
1

Technical University of Crete

Department of Electronic and Computer Engineering

A Mixed Initiative Q&A and Chatterbot System

Maraggouli Afrodity

Diploma Thesis

Thesis Committee:

A. Potamianos (Supervisor)

V. Digalakis

E. Petrakis

Chania, 2009

2

3

... to my uncle

4

5

Acknowledgements

Initially I would like to sincerely thank my supervisor professor A. Potamianos for trusting

me with this diploma thesis and for the significant guidance and help that he offered me until

the last moment of this work. I would also like to thank the rest of the professors in my thesis

committee, E. Petrakis and V. Digalakis. It would be a great omission not to thank the Ph.D.

candidate Elias Iosif for his constant support and the valuable help that he offered me. In

addition I would like to thank all the post graduate students being under professor’s A.

Potamianos supervisory who provided me their advises and help whenever I asked for them.

The first person that I would like to thank for the enormous encouragement that she gave me

and for being by my side during all this time is my friend Stavroula Founta. Also I would like

to thank the rest of my friends that truly stood by my side, even without their physical

presence, this period of my life. I would like to thank the guys that accompanied me during

the many hours of my work in the lab and colored this period with pleasant incidents. At last I

would like to thank my family for their patience and support which I will never be able to

reciprocate.

6

7

Abstract

In this thesis is presented the implementation of a mixed initiative question answering

(Q&A) and chatterbot system. The initial goals of this work was to increase the chatterbot’s

initiative during the dialogue along with giving the system some attributes that enables it to

demonstrate performance similar to Q&A systems. The specific implementation is an

extension of an already existing chatterbot system that consists of an AIML knowledge base

and an AIML interpreter. The first application that was accomplished in the previously

mentioned terms was a time counter that detects the user’s input inactivity in order to

encourage the user to continue the existing dialogue. Another attempt to increase the

chatterbot’s initiative was the accomplishment of an application that enables the system to

detect in the course of dialogue a previously discussed topic in which the user reenters

according to his utterances. Eventually an application that enables the system to detect the

user’s loss of interest was added in the initial system. The specific application resolves the

detected state of the user by suggesting a subject which is produced from further procedures.

These procedures involve a data base with biographical documents concerning significant

personalities of various domains from where the stored information is submitted into certain

information retrieval techniques along with the a part of the dialogue history that consists of

the user’s utterances that preceded the time of this detection.

8

9

Περίληψη

Κατά τη διάρκεια της εκπόνησης της συγκεκριμένης διπλωματικής εργασίας υλοποιήθηκε

ένα διαλογικό σύστημα ικανό να επιδείξει χαρακτηριστικά παρόμοια με αυτά που επιδεικνύει

ένας άνθρωπος ο οποίος κατέχει την θέση του συνομιλητή. Η είσοδος του εκάστοτε χρήστη

λαμβάνεται από το πληκτρολόγιο διατυπωμένη σε φυσική γλώσσα και η έξοδος γίνεται

αποδεκτή από το χρήστη στην οθόνη του διατυπωμένη επίσης σε φυσική γλώσσα. Σκοπός

λοιπόν αυτής της διπλωματικής εργασίας ήταν το διαλογικό αυτό σύστημα να επιδεικνύει

ορισμένη πρωτοβουλία κατά την διάρκεια του διαλόγου του με τον εκάστοτε χρήστη. Επίσης

στη συγκεκριμένη υλοποίηση προστέθηκαν στοιχεία που καθιστούν το σύστημα ικανό να

προσφέρει πληροφορίες οι οποίες απορρέουν από βιογραφικά σημειώματα σημαντικών

προσωπικοτήτων τοποθετημένα στην γνωστική του βάση. Η υλοποίηση αυτή βασίστηκε σε

ένα ήδη υπάρχων σύστημα και αποτελεί επέκταση αυτού. Το τελικό διαλογικό σύστημα έχει

πλέον την ικανότητα να ανιχνεύει την επιστροφή του χρήστη σε παλαιότερο θέμα συζήτησης

με σκοπό να το επισημάνει στον τελευταίο. Επίσης σε περίπτωση που η είσοδος του χρήστη

παραμένει ανενεργή για ορισμένο χρονικό διάστημα τότε το σύστημα ζητά από το χρήστη να

συνεχίσουν την ροή της συζητησής του. Η τελευταία προσθήκη που έγινε αφορά την

ικανότητα του συστήματος να αντιλαμβάνεται την περίπτωση οπού ο χρήστης κατά την

διάρκεια της συζήτησης χάνει το ενδιαφέρον του και μέσα από πολλαπλές διαδικασίες να του

προτείνει ένα άλλο θέμα συζήτησης.

10

11

Contents

Introduction ... 13

1 Chatter bots .. 15

1.1 Introduction .. 15

1.2 Eliza the first chatterbot ... 16

1.3 From early to recent chatterbots ... 19

1.3.1 Parry .. 19

1.3.2 Jabberwacky .. 19

1.3.3 ALICE ... 20

1.4 Artificial Intelligence from the perspective of chatterbots 21

1.5 Turing Test ... 21

1.6 Real-life applications that use chatterbots .. 23

1.7 Summary .. 24

2 Question Answering Systems (Q&A) .. 25

2.1 Introduction .. 25

2.2 General framework of a Q&A system ... 26

2.2.1 Question type identification .. 26

2.2.2 Answer type identification .. 26

2.2.3 Information retrieval and further contextual processing 27

2.3 Implementations of Q&A systems and various techniques applied on them 27

2.3.1 Answer type generation through learning surface text patterns 27

2.3.2 Q&A system based in knowledge annotation and knowledge mining

techniques .. 29

2.3.3 Probabilistic methods applied in a Q&A system .. 32

2.3.4 A Chatbot intermediate between user and a Q&A system 33

2.4 Summary .. 35

12

3 Artificial Intelligence Markup Language (AIML) .. 37

3.1 Introduction .. 37

3.2 Category and recursion .. 37

3.3 Significant tags and elements ... 40

3.4 Summary .. 42

4 Our Architecture .. 43

4.1 Introduction .. 43

4.2 PyAIML ... 44

4.3 Detection of previously discussed topic ... 49

4.4 Detection of max inactive input ... 51

4.5 Detection of the user’s loss of interest ... 52

4.5.1 Process of detection .. 52

4.5.2 Resolution of the user’s loss of interest .. 53

4.5.3 Index term’s extraction ... 58

5 Evaluation .. 61

5.1 Introduction .. 61

5.2 Description of the evaluation process .. 61

5.3 Results .. 62

5.4 ANOVA Analysis .. 63

6 Conclusions – Future work .. 67

7 Bibliography .. 69

13

Introduction

Scanning through the scientific and technological achievements of the previous years it

would be impossible not noticing that the main focus of the scientists is on inventing new

methods or improving the already existing ones in order to facilitate human life. Working

under this aspect eventually these attempts were focused on inventing machines which can

perform similarly to the human nature and in many cases replace human’s existence. Of

course the resulting products of these attempts had various effects in human life. The use of

them in some cases accomplished the facilitation of the daily life, though in other cases

triggered work problems in people as the human existence was set unnecessary by the use of

machines. Deviating though from the social effects of these achievements, the scientific labor

and the remarkable technological progress being succeeded through this labor should be

underlined. Scientists in their attempt to copy human behavior in order to construct machines

that would perform processes having the same results as those that derive from the human’s

effect took a step forward and achieved the construction of machines that can imitate the

human way of participating in a conversation which is conducted in natural language. These

conversational agents are able of demonstrating intelligence when engaging in a dialogue with

a human user. These specific computer programs are widely known as chatterbots or chatbots

and their main goal is to conduct an open domain conversation with the other side user using

textual or vocal techniques.

There have been many interesting implementations of chatterbots that can perform in

similar ways with the human performance in a conversation and the place of the pioneer is

possessed by the first ever constructed chatterbot Eliza. While Eliza could be involved in a

simple conversation relying on simple pattern matching rules and a simple knowledge base,

the technological progress brought to the light many other similar machines with additional

properties much more interesting than Eliza’s. As a result scientists introduced to the world

machines with learning abilities through the interaction with the human user and machines

that serve the needs of information retrieval through conversational process which are

conducted in natural language. These latter involve the combination of chatterbots and

question answering systems.

This thesis presents the design of a chatterbot system combining also some properties that

are found in a question answering system. The implementation was based in an already

14

existing chatterbot, thus the resulting implementation is an extension of the previous. The

initial goals were to extend the chatterbots implementation in order to increase the dialogue

initiative of the chatterbot. Working under this aspect this thesis includes the accomplishment

of an application that is able to detect a previously discussed subject of conversation and

mention it to the user, an application of a time counter which with the arrival of the timeout

encourages the user to continue the existing conversation, and an application that tries to

detect the user’s loss of interest during the conversation and suggest another topic for

discussion. The latter application involves also techniques applied for information retrieval.

When the user’s loss of interest is detected then according to the previous user’s utterances

there are two possible stages. The chatterbot can either inform the user on the biography of a

significant person relative to the suggested subject or just respond to the user by informing

him on a significant event which has happened the same date that the specific conversation is

conducted, or just return to the user a witticism that an important man said once.

In the first chapter of this thesis the first ever implemented chatterbot Eliza is presented in

detail and similar implementations accomplished after Eliza are presented in order to show the

progress on the field. The second chapter is dedicated to the question answering systems in

order to comprehend the applied techniques on them and introduce the variety of information

retrieval methods. The third chapter constitutes a brief tutorial of the Artificial Intelligence

Markup Language which has been used in the specific work in order to import the knowledge

in the chatterbot. The forth chapter presents in detail the work that have been made in order to

result in the implementation that this thesis concerns. The fifth chapter consists of the

evaluation process that was applied in the implemented system and also the results extracted

from it. Finally the last chapter presents the conclusions extracted from the systems

performance and the future work that can be applied in order to improve it.

15

1 Chatter bots

1.1 Introduction

A chatterbot or chatbot, as it is commonly known in the web, is a type of conversational

agent whose design is based in a form of artificial intelligence. This type of computer

program aims to imitate a conversation conducted in terms of human nature, with the

significant and interesting extension of replacing the one participant. The communicative

conditions under which this dialogue is accomplished rely on either text typing or acoustic

methods. Throughout the interaction with such a program, the user gets the illusion that the

program is intelligently interpreting the human input prior to providing an appropriate

response. This user’s misconception is desirable, as the intention of such a program is to

deceive the user by giving him the fake impression of discussing with a real person. This

misleading conversational performance of a chatterbot is trying to externally approach human

conversational manners.

Although a good understanding of a conversation is apparently required for a human to

follow up a meaningful dialogue, this does not apply to most chatterbots. The prevalent

designing technique of a chatterbot is grounded on the principle of recognizing cue words or

phrases from the user’s input and reaching the resulting response through a matching process.

The matching process is conducted with the use of pre-prepared or pre-calculated responses

which are stored in a local database. Most chatterbots simply scan for keywords within the

user’s input and pull a reply with the most similar wording pattern from the local database.

For example a simple approach is a chatbot to be programmed to answer the user’s input “I

am feeling sad today”, by recognizing the phrase “I am” and replacing it with the phrase

“Why are you”, followed by a question mark at the end. This would result in answering with

the question “Why are you feeling sad today?”. Of course the more sophisticated a chatterbot

is, the larger the database of words and phrases needs to be, and likewise the larger the

chatbot logic will be.

The above programming technique of personal pronoun transformations was introduced by

Eliza the first chatterbot ever constructed. There are other programs classified as chatbots that

use other principles than simple pattern matching. Some chatbots attempt to model the human

way of learning facts and language, and as a result they are increasing their knowledge bases

16

through the interaction with users. Some others use natural language processing in their

attempt to provide the user with more meaningful answers.

1.2 Eliza the first chatterbot

Eliza is the first computer program classified as a chatbot which introduced the idea of

human’s textual communication with a machine in the form of natural language. Eliza was

written by Joseph Weizenbaum between 1964 and 1966 (1). The program is simulating a

Rogerian psychotherapist and operates by processing users’ responses to scripts which consist

of some decomposition and reassembly rules. Eliza’s general operating technique is that

rephrases the user’s statements and poses those as questions to the other side user.

Eliza’s first implementation is written in MAD-Slip for the IMDB 7094. The user can

communicate with Eliza by simply typing a statement or a set of statements in natural

language using the ordinary punctuation and grammatical rules. In brief the procedure which

the program conducts in order to result in an appropriate response is the below:

• The user’s text input is read and inspected for the existence of a keyword.

• During the keyword scanning execution certain unconditional transformations are

being made if needed.

• If a keyword is retrieved through the user’s input then a sentence transformation

follows according to a rule associated with the keyword. Eventually the resulting

sentence is printed out as a response to the user.

Although the above procedure doesn’t appear to be burdensome, as its details are being

examined more closely through this chapter, the complexity of such an attempt will be

revealed.

The transformation rules (decomposition and reassembly), which are mentioned above, are

a number of Slip functions. These functions are being used to decompose the input string

according to a certain criteria and figure out which criteria satisfy and afterwards to

reassemble the decomposed sentence according to appropriate assembly specifications. Eliza

has the ability to recognize a comma or a period as a delimiter. Whenever either of them

exists in a user’s input and a keyword has already been identified, then the rest of the text is

being discarded. If no keyword had yet been found, the whole input including the delimiter is

17

discarded. Hence only single phrases are ever transformed. To avoid unnecessary details an

example of sentence transformation is apposed below:

User’ input: It seems that you hate me

Decomposition rule:

(* YOU * ME)

User’s input after the application of the rule:

(a)It seems that (b) you (c) hate (d) me

Reassembly rule:

 (What makes you think I (c) you)

The “*” in decomposition rule represents an indefinite number of words while (c) in the

reassembly rule represents the 3rd component of the decomposed sentence. Similar logic is

applied for all the transformations.

Of course there is a predefined structure that represents the relation between keywords and

the transformation rules, in order to detect the rule that matches the input sentence. The basic

format of this structure is a list consisted of a keyword and its associated rules.

1

2

1 1,1 1,2 1,

2 2,1 2,2 2,

,1 ,2 ,

((()()()...()))

 (()()()...())

 (()()()...()

n

m

m

n n n n m

K D R R R

D R R R

D R R R

 (1.1)

Where:

K is the keyword

iD is i୲୦ decomposition rule associated with the keyword K

,i jR is the j୲୦ reassembly rule associated with the i୲୦ decomposition rule.

This structure consists of 2 levels. The first and top level is consisted of the keywords

followed by the names of lists which are the second level. This level is again a list structure

that contains a decomposition rule followed by reassembly rules. This keyword dictionary is

18

constructed with the use of a particular key vector. Each word that is going to constitute a

keyword is being hushed through a specific procedure and placed in its unique position in this

key vector. Then the keywords’ rules are added in this structure in adjacent positions to the

keyword. Hence the identification of a keyword is executed with the same way the keyword

was inserted in the structure. The programming time is eliminated as a result of this process.

We have mentioned before that certain word substitutions are made during the input’s

scanning time. In order to be consistent to this, any word in the key dictionary may be

followed by the word to be its substitute interjecting the equal sign (=). At this point it would

be necessary to mention that keywords have ranks. This derives from the fact that each word

in a sentence holds different semantic weight. The procedure of the identification of a

keyword has as a result a pointer to the list of transformation rules associated with the

keyword to be found. Taking though into consideration the keywords’ ranking, this procedure

gets more complex. A list of keywords is used to store the previously mentioned pointers.

When a word is identified as a keyword and its ranking is higher than that of any previously

encountered word, then the pointer is placed on the top of that list of keywords which is called

keystack, otherwise it is placed on the bottom of the keystack. Eventually on the top of the

keystack will be placed the pointer associated with the transformations rules of the higher

ranked keyword to be identified.

In order to avoid repetitions while attempting to match the input text according to the

selected decomposition rule, there is a mechanism that insures that every reassembly rule will

be tested only once whether it matches or not. Of course there will be the case that every

decomposition rule of the highest ranked keyword will fail. The reassembly rule (NEWKEY)

attempts to overcome this serious problem. Whenever this rule is invoked the keyword in the

top of the keystack is removed and discarded and the next keyword with the highest rank is

recovered so as the whole transformation process to reinitiate.

It couldn’t be unremarked the case where no keywords remain to be tested for

transformation when every previous attempts have failed. This problem arises when the

(NEWKEY) reassembly rule is invoked and the keystack is empty or in the case where no

keywords were identified in the user’s input. In order to cope with this failure every script of

ELIZA includes in the keystack the reserved keyword “NONE” which is associated with the

‘catch all’ decomposition rule. This decomposition rule is followed by content-free remarks in

the form of transformation rules.

19

Concluding the presentation of the framework to which ELIZA is constructed, needs to be

mentioned that there are more other mechanisms that are included in this work, but omitted

from this chapter in order to be more comprehensive.

1.3 From early to recent chatterbots

Having presented in detail the implementation of Eliza, in this section the route of

chatterbots through the following years will be lightened. Some of the most famous

chatterbots will be presented in order to understand the progress made on this field. Of course

in order to be comprehensive the chatbots which are examined closer below are only a few

representatives of the work that it has been done.

1.3.1 Parry

After Eliza introduced itself as a pioneer in the world of chatterbots, many others made

their appearances being based upon its initial model. An early entrance in the circles of

chatterbots was made by Parry written in 1972 by psychiatrist Kenneth Colby (2) (3). In

contrast to Eliza, instead of simulating a psychotherapist, Parry was a computer program

which reflected the mind of a paranoid schizophrenic who was being under the examination

of his doctor. His creator indented on using the program as a teaching system for students of

psychiatry, before they were let loose on real patients. Parry was constructed using a custom

design knowledge data base, like Eliza’s, but positive or negative ranking was applied to

words or phrases in the flow of the conversation. Parry’s responses were based upon the

emotional state of it, caused from the user’s input.

1.3.2 Jabberwacky

After Eliza and Parry many other chatterbots were constructed. An interesting one is

Jabberwacky (4). Its purpose is to accomplish a conversation in an entertaining and humorous

way without demonstrating a specific behavior such as Eliza and Parry which simulate the

behavior of a psychotherapist and a paranoid schizophrenic respectively. Jabberwacky is

based upon a particular form of artificial intelligence to which it owes its severalty. Instead of

having a preformed knowledge base as most of chatterbots have, Jabberwacky has no

knowledge to language and is designed with the remarkable quality of being able to learn

20

everything from the ground up. This noticeable characteristic gives Jabberwacky the ability of

manipulating several different languages without the requirement of any extra coding.

While a conversation is carried out Jabberwacky stores the dialogue history in log files.

This occurs in every conversation and as a result the conversation base grows. Jabberwacky In

order to respond in each user’s input uses contextual pattern matching techniques. It uses the

stored information and through the interaction with users it learns more. Its design relies on

the principle of feedback. This freedom of learning any language, any linguistic idiom and

borrowing any dialogue habit from the participant in the conversations makes it capable of

developing a vary of personalities. Of course it’s reasonable that such systems are depending

entirely on their teacher for the developing of their personalities. One of these Jabberwacky

personalities won the bronze prize in 2006 at the Loebner awards. It was described as ‘sassy’

because of the sarcastic way that it responded to user’s questions whose answer was very

obvious. The conclusion is that when a chatterbot relies on human responses to build its

knowledge, this fact helps in appearing more realistic.

1.3.3 ALICE

ALICE (Artificial Intelligence Computer Entity) is another recent chatbot introduced by

Richard S. Wallace in 2003 (5). This is a conversational agent that engages a human in

dialogue. The difference between ALICE and the other existing chatterbots lies on the fact

that this specific chatbots implementation is based upon AIML (Artificial Intelligent Mark-up

Language) , a language similar to XML. The advantage of this chatterbot is the simplicity of

AIML. This is a language whose the basic units are categories. Each category has a pattern

which is used in the matching process of the user’s input and from the template that is

associated to each category the appropriate response is retrieved. So ALICE’s implementation

is based on prefixed input/output rules written in AIML. For programmers who already know

HTML, working on ALICE in order to build an implementation such as a chatterbot is rather

simple. Of course ALICE lacks the ability of self learning as the artificial intelligence which

is used for its implementation can be classified as week. Further down AIML is examined in a

more detailed way, as it is a part of our own application.

21

1.4 Artificial Intelligence from the perspective of chatterbots

Artificial intelligence (AI) is a complex field where the first attempts focused on the

development of machines being able to behave exactly like humans even in the emotional

section and to duplicate human intelligence. This idea was abandoned easily as researchers

had to cope with the fact that intelligent behavior is more complicated than initially

considered. This realization had as a result the separation of artificial intelligence in two sub

categories, the strong artificial intelligence and the weak artificial intelligence.

The strong artificial intelligence as it can be assumed by the characterization involves the

complexity of this field relied on the researchers’ first belief that it can be possible to create a

thinking machine. This form of AI includes the combination of clever programming and

complex algorithms. Jabberwacky which was analyzed above can be classified in the

machines that use some form of this AI.

On the contrary ALICE is a chatterbot based upon the principles of weak artificial

intelligence. This form of AI focuses on modeling intelligent behavior in a modest way.

Computer programs that use this kind of AI lack of sapience and reasoning ability and their

operation depends on pure pattern matching.

1.5 Turing Test

A significant test that a chatterbot or generally a conversational agent can undergo is the

Turing test (6). It is essential to be able to measure the ability of a chatbot to demonstrate

intelligence and this serious issue was stated from Allan Turing in 1950. Turing Test is

supposed to be inarguably one of the most disputed topics in artificial intelligence and

philosophy of mind. Some believe that his work was the foundation of artificial intelligence

and some other finds it useless. Turing was not in life to witness the realization of his own

idea but followers of his beliefs and work turned this idea into reality.

The question that torments for decades the scientific communities of artificial intelligence,

philosophy and psychology, is “what is intelligence?” or in other words “how can it be

measured?” . Some philosophers during these years expressed the idea that the intelligence

lies behind the ability of someone to deal with various symbol systems as those of

mathematics. In the contrary others placed the definition of intelligence in a more emotional

area. The latter seem to define intelligence as a reflection from feelings, personality and

22

morality and so on. Turing believed that the only practical mean to observe intelligence is

behavior.

Turing in his work begins posing the question ‘Can machines think?’, which is until

nowadays regarded a very ambiguous one. In his attempt of being more tangible and provide

a method to answer the previous question, he proposed the so called “Imitation game”.

The ‘imitation game’ as introduced initially by Turing consisted of three participants a man,

a woman and an interrogator. The interrogator is placed in separate room from the other two

participants. The whole procedure that is about to take place is conducted through a teletype

connection. The interrogator communicates with the rest of the participants in natural

language. The underlying dialogue consists of any imaginable topic and there are no

limitations. The interrogators goal is to distinguish without any doubts which one of the

participants is the woman. The other two participants join the game having in mind that they

should convince the interrogator of their female sex regardless of their actual sex.

Turing though, moving one step further, retracted his initial question and in its place posed

a new one, having the form of ‘What will happen if a machine replaced one of the two

participants?’. The present issue that is under consideration now has nothing to do with

gender identification. The real issue now is transferred to whether or not the interrogator will

be able to distinguish the machine from the human. As a result if a machine confused with its

responses the interrogator and made him uncertain on his decision, the machine would be

considered intelligent as its intelligent contestant.

Turing restrains the participation of all machines in the test and he permits only ‘digital

computers’. As ‘digital computers’ he considers those who consist of the following three

parts:

• Store

• Executive unit

• Control

The store corresponds to the data base of the machine which may consist of information

and rules that the machine should follow. The executive unit is the part that consists of all the

operations which employ every calculation that might need to be done. The control is the part

which checks if the rules of the store are being followed.

23

Of course there are many versions of the Turing tests today and it cannot be determined

which of all was intended by Alan Turing. Turing in his work did not clarify many things that

left the space for disputes. It is regarded as standard interpretation though, that the computer

to take part in the Turing test is examined for its ability to imitate human rather than to

deceive the interrogator. The previously mentioned Eliza and Parry have succeeded on

passing the Turing test and many others after them.

Loebner prize, which was previously mentioned, is a chatbot competition that lies upon the

ideas introduced by Turing. In order to be accepted as a reliable competition many

modifications were made in the original Turing Test. In this competition the central idea is the

same as this on the Test. Hence, judges engage in dialogues with both humans and machines

and rank these conversations according to how convincing they are. The contest though

deviates from the original test in many ways. The topic to be under discussion in each

conversation can be only one and the alternations are not permitted. There also restrains on

the way the interrogator will handle the dialogue flow. This includes the use of tricky

techniques like the use of gibberish, or repetition of questions during the conversation.

1.6 Real-life applications that use chatterbots

A reasonable consequence of the design of such computer programs as chatterbots is their

utilization in several aspects of real life. A chatterbot’s qualifications indicate its usage in

several domains in order to replace human occupation or partially facilitate him. Chatterbots

are being used for educational reasons as tutors of languages. Relying on the fact that chatbots

employ well the language which they use to communicate, they offer services such as

practicing of a language or even teaching. In addition to these services, chatterbots provide

also customer services in places frequently visited by the public, such as libraries. The type of

the service in this case can be to either help the visitors be informed of the library’s provided

services in the web or introduce them to the available electronic information. Chatterbots can

be used in commercial fields playing the role of the shopping assistant and helping clients to

reach appropriate e-commerce sites according to the seeking product. The use of chatterbots

expands everyday due to their promising qualities that are improving day after day.

24

1.7 Summary

This chapter was an introduction to the interesting field of conversational agent’s

development. The very first chatbot introduced in the field of technology, Eliza, was

explicitly analyzed and the successors of it were presented revealing the progress in this

domain. The principles on which such operational engines rely were examined closer in order

to understand their construction techniques. Various attempts of getting closer to human

behavior through machines lacking reasoning and sense were unfold and confirmed Turing’s

prediction that machines could perform intelligently some day. The place that these

achievements of artificial intelligence have in real life was presented in order to indicate that

the progress accomplished in this field is significant even in everyday life.

25

2 Question Answering Systems (Q&A)

2.1 Introduction

Passing through the years, someone would observe as much the remarkable scientific

evolution as the technology process, which led humanity in covering the century of

information. It would be impossible not noticing the dominance of information in every

aspect of the present daily life. In order to be able to deal with this irrational pace of

information quest, researchers casted upon the flowering field of information retrieval. The

fruits of their labor are the many and widely known information search engines. Nowadays

most of people at least once in their life, had to address to such an engine to receive a

satisfying answer of any kind of question which they might had.

Web based search engines, such as Google, are the endued carriers of the vast amounts of

information that are available to be reached when it is needed. So given this enormous amount

of information, these engines seem quite appealing as resources for answering a variety of

questions. It is rather disappointing though, the fact that these kinds of engines have a very

restrained way of accessing their stored information. It would make no difference if the

submitted statement in such engines would have the form of a statement expressed in natural

language or the form of a query consisted of the most representative words concerning the

subject of the research. The engine in both cases will manipulate the input in the same way

and produce the same form of information. Not only casual users but also the professional

ones are frequently overwhelmed by the amount of information being return to them

whenever they use these search engines. The reason why this is happening can be found in the

hundred of thousand documents that users are flood with and they must wade through them to

conclude in the subject of their research.

The above reasons led researchers to move a step forward in the field of information

retrieval and introduce the emerging technology of question answering. This form of

information retrieval appears vary promising as its aim is to provide more intuitive methods

of information access. In contrast to the regular widely known search engines that follow the

principles of formulating queries and browse results in the form of documents, the model

adopted by question answering systems is the simple one of accepting the user’s request

expressed in natural language and return a response including the precise answer. Although its

26

apparent simplicity during the close examination of this kind of systems their complexity will

start to unfold.

2.2 General framework of a Q&A system

After having introduced the actual orientation of a Q&A system, it is time to describe the

common techniques followed by anyone who attempts to build such a system. Researcher

who engage in building Q&A systems focus their concentration on the bellow targets

• Question type identification

• Answer type identification

• Information retrieval and answer extraction

2.2.1 Question type identification

Being engaged in a natural language conversation, someone in order to respond correctly to

a question posed by the other side participant, needs to understand in depth the requested

subject. As a consequence of this, a system lacking reasoning it would be impossible to

expect it to perform in such a manner. Apparently the same question phrased in natural

language has several ways in which it can be expressed, still though conserving the same

meaning. Despite the occurrence of the above, a factoid question expressed in any possible

way consists of some distinct elements that enclose the meaning of the question. An obvious

and helpful approach is to create a kind of question type taxonomy and try to index a question

among the several predefined types of this. These distinct elements of a question that were

mentioned above contribute to the construction of this taxonomy. As a result of this are the

types of questions that can be easily recognized such as the question beginning with ‘when’,

‘where’ or ‘what’. On the other side though there are also questions that are unique and

cannot be easily classified into types. This kind of questions needs more complex logic.

2.2.2 Answer type identification

This next step of answer type identification is strictly related to the previous process. It

would be reasonable to believe that an answer correspond to a specific question most of the

times will be a rephrase of this question. The redundancy of information though that lies in

the web comes to contradict this initial belief. Since the answer will be retrieved from a text

written in natural language the same problems as in the process of the question type

27

identification are about to be revealed. As a result of the above the answer should be classified

in more than one type, in order to avoid rejecting context that might be related to the question

and include the correct respond.

2.2.3 Information retrieval and further contextual processing

This part of a Q&A system’s framework involves the previously mentioned information

search engines. After defining the question type and extracting the question keywords to

formulate a query, this query is applied to a search engine in order to retrieve documents that

possibly contain the requested response. Of course these documents are submitted into further

processing responsible for retrieving textual snippets that correspond to the type of the

question and the type of the answer. Moreover techniques are applied in order to rank these

textual snippets or even prune them into smaller textual pieces such as paragraphs or

sentences. In order to accomplish the answer extraction several various techniques might be

applied. Such techniques are the application of the N-gram model to manage the sentence or

phrase ranking or the part-of-speech tagger to enable recognition of the answer candidates.

Some of these techniques are presented below in more detail.

2.3 Implementations of Q&A systems and various techniques

applied on them

In this section an exploration of the different existing implementations of Q&A systems is

going to be attempted. The reader will also be surveyed through the various techniques

applied from researchers in order to develop Q&A systems. The complexity of these systems

is going to be revealed through their close examination.

2.3.1 Answer type generation through learning surface text patterns

The work to be presented here concerns the production of surface text patterns from

predefined question types that can be used for spotting the correct answer (7). In other words

this implementation suggests an approach of constructing automatically an answer types table

corresponding to several standard question types. These produced text patterns consist of

regular expressions formulated during the process to be presented below.

28

The initial step of the underlying procedure is the application of a pattern – learning

algorithm on many examples of each distinct given question type. The description of this

specific algorithm can be summarized as follows:

1. According to the specific type of the question used as example, the question term and

the answer term are determined. In this step the several ways that an answer term or a

question term can be encountered have to be taken under consideration. This would result

in recognizing all the several ways as the determined term.

2. The latter terms are submitted after being formulated as a query to the search engine in

order to download the 1000 top ranked documents related to this query.

3. Retrieved documents are separated into sentences from the responsible application.

4. Sentences that contain either the answer or question term, or even none of them

determined in the first step are discarded. The remaining sentences are applied to further

procedure such as html tags removal and white space handling in order to require the

appropriate form for being able to be submitted to regular expression matching tools.

5. Then the use of suffix trees on the remaining sentences follows. This operation is

responsible of indentifying the useful answer substrings depending on the repeated word

ordering in the sentences being under examination. Another useful element produced

during this procedure is the number of the sentences responsible for the appearance of these

substrings.

6. The resultant phrases from the previous step are filtered in order to keep only those

which contain both the question and answer term.

7. In order to serve generality the replacement of the question term and the answer term

by general tags such as <NAME> and <ANSWER> follows.

After the completion of this learning-pattern algorithm various patterns are produced for

every question type. The procedure that follows is one that concerns the estimation of the

accuracy of each pattern. The first 4 steps until the sentence segmentation of a document are

repeated as described above in the following algorithm. The only difference is that the

documentation retrieval is being conducted using only the question term of the example

representing a specific question type and the sentences retained are the ones containing the

question term.

After the execution of these steps the algorithm can be described in the following way.

Using the results of the pattern-learning algorithm and the resulted sentences of this one, a

matching procedure is being conducted. This procedure concerns the observation of two

29

cases. The first one is when a pattern appears in the sentence with the <ANSWER> tag

replaced by any word and the other is when the pattern matches a sentence but the latter tag is

replaced by the correct answer. Then the accuracy of each pattern is estimated using the

equation (2.1).

 a

o

CP
C

= (2.1)

Where:

aC Corresponds to the number of patterns with the answer term present

oC Corresponds to the number of patterns with the answer term replaced by any word

The next step is to keep only the patterns that match an effectual predefined number of

examples. The 2 algorithms that have been described are applied in different examples of the

same question type.

Having completed the work of generating the answer patterns follows the answer extraction

for new questions. Initially the question type and term are determined. Documents related to

the formulated query are retrieved and submitted to the sentence breaker and further

procedure as mentioned above. The replacement of the question term by the appropriate

question tag in the resulted sentences follows and the matching procedure of the sentences

with the patterns provided for the specific type almost completes the answer extraction. One

thing left to be done is to rank the resulted answers according to the accuracy of their

matching patterns.

Of course the evaluation of this system revealed some deficiencies like the difficulty of

managing long distance dependencies. Another weakness that has been detected is that

although reaching to an answer through the correct pattern, the answer may be incorrect and

this originates from the fact that the system lacks the use of a speech tagger or ontology.

2.3.2 Q&A system based in knowledge annotation and knowledge mining

techniques

The implementation that is about to be presented in this section constitutes a Q&A system

that reaches the desirable results through the combination of two different applications (8).

30

The first one represented by the technique of knowledge annotation handles the mass of

questions phrased in natural language and are encountered frequently. These questions can be

easily classified to certain question categories. The second application based upon the

techniques of knowledge mining is used for the remaining questions that cannot be placed

among the common categories.

This alternative way of a Q&A implementation that employs the knowledge annotation

techniques takes advantage of the structured or semi structured knowledge existing in the

web. In order to be able to access this kind of information repository this method is based

upon a number of access schemata. These access schemata consist of pairs of a group of

regular expressions that represent a question type and a properly formulated query. This query

includes the information resource where the answer to be searched might lies, a variable

representing the object in the posed question and the general characterization of the question’s

answer (e.g. birth date). The latter’s value is the answer in the user’s question. So this

component in responsible for matching the user’s question to one of the regular expressions

and then execute the produced query. The query execution in order to find the correct answer

involves hand crafted applications such as the wrapping of the data sources. These

applications vary according to the information resource from which the data was extracted.

The second approach to the specific Q&A system relies on the data redundancy provided

from the enormous amount of information in the web. It is time to present the knowledge

mining as a method that deals with the attempt to relate a standard question to the several

ways that its answer can be expressed. This the central focus of this technique and introduces

a way of coping with the extend expressiveness of the natural language. Of course natural

language processing such as semantic or syntactic is available to be applied, but instead of

these the knowledge mining technique uses the simple pattern matching based on the fact that

among the mass of information on the web the answer to be sought will appear as a rephrase

of the question. The description that follows enumerates the different operations that need to

be executed from the component of a Q&A system that involves knowledge mining.

1. The first concern is to produce the query to be executed in the section that involves

information retrieval. The novelty here is that instead of formulating only a query based on

pattern matching rules, this operation moves forwards on producing another query that is not

as specific as the first one. The first query holds the information of the exact location of the

answer and it is characterized as exact query, while the second one called inexact indicates

31

that the answered to be searched possibly occurs in the vicinity of a set of keywords. In this

step two inexact and one exact query are produced and ranked.

2. Secondary follows the execution of the above generated queries using a search

engine. In both of the cases the retrieved documents are submitted to further processing to

ensure that the correct textual fragments are retrieved.

3. The next step consists of the generation of N-grams from the passages produced from

the previous step. These N-grams are weighted according to the query that triggered their

retrieval.

4. A new rank is assigned now to the resulting N-grams, which is estimated from the sum

of the ranks of the appearances of each N-gram. This affects the documents of low quality in a

negative way in order not to be considered credible while the frequently occurred textual

segments are boosted.

5. A filtering process follows and some of the above answer candidates are discarded.

Such candidates begin or end with stop words or include words appearing in the user’s

question except the question focus words. Also some heuristics and a set of fixed – list filters

are applied in order to reduce the candidate answers when the expected answer is for example

a language or a nationality or includes the word ‘meters’.

6. The ranking process continues by adding the rank of a short answer to the rank of a

longer one if the latter includes the former.

7. Completing the ranking process each answer candidate is multiplied by the following

factor, equation (2.2), which balances the effect of individual keywords having different

priors:

 1 log
A c

N
A ω∈

⎛ ⎞
⎜ ⎟ω⎝ ⎠

∑ (2.2)

Where:

A is the set of keywords in the candidate answer

N is the total number of words in our corpus

cω is the number of occurrences of word ω in the corpus

8. The last test that remains to be done is whether the resulting candidate answers appear

in the initially retrieved documents from the web.

32

Given the results of both previous applications a number of heuristics are further applied in

the answer candidates. These heuristics concern answers that deal with locations or dates and

are based on large lists of them.

The main issue that remains the central problem of the system’s part that employs the

knowledge annotation technique is the manual labor. This labor concerns the wrapping of data

sources and the production of the query database. The deficiency detected in the use of

knowledge mining technique is that although the hard efforts there still several questions that

cannot be answered correctly lacking the deeper understanding of the natural language.

2.3.3 Probabilistic methods applied in a Q&A system

This approach (9) of implementing a Q&A system that is about to be presented here

includes stages that were introduced from the already mentioned implementations. The

procedures though differ from the previous in most of these stages and this is the reason of

examining them more closely. The stage of query modulation that would be expected to be

the initial process is omitted in this approach as it is unnecessary in the stage of document

retrieval that is going to follow later.

The first stage involves the recognition of the question type. To manage the desirable result

questions being under examination were submitted through two different applications, the

Riper a machine learning tool and a heuristic rule based algorithm. In order for the questions

to be submitted to the Riper a further natural language processing is done. This extra

processing resulted in the representation of each question of 13 features most of them

consisting the semantic ones that are helpful for the question type identification executed by

the Ripper.

The heuristic algorithm that is applied here uses a Part-Of-Speech tagger in order to tag

questions. In addition this algorithm is trying to locate base nouns and informative nouns

which can indicate the type of certain questions. A hand crafted lexicon is used to index the

nouns in the appropriate question types.

After concluding to the question type the next step is document retrieval. In this stage the

questions are submitted in three major search engines without any modulation. The 40 top

ranked documents that are retrieved are segmented into sentences.

33

Sentence and phrase ranking are the subsequent stages. The sentence ranking helps

improving the computational complexity of the phrase ranking operation. The sentence

ranking is achieved with the use of an N-gram model and the ordinary Vector Space model.

 After the completion of the sentence ranking follows the phrase ranking. This operation is

conducted with the use of a chunker in order to achieve the segmentation of the retrieved

documents into phrases. The ranking algorithm functions in such a way that results in

attributing high scores in phrases which include many of the query terms or in phrases which

appear in the vicinity of a large number of query words.

Another technique applied for phrase ranking is the one that relates the question to the

expected answer and it is introduced by the name ‘phrase signatures’. The score that is

estimated from the latter technique is then multiplied to the previously estimated score and the

resulting score of the phrases that constitute the candidate answers is produced.

2.3.4 A Chatbot intermediate between user and a Q&A system

Through the course of studding the various implementations of a Q&A system, it becomes

even more apparent to the reader that a Q&A system serves only the needs of the pure

question answering dialogue deviating from the natural conversation that can be conducted

among humans. These constraining conditions of a dialogue in which someone can be

engaged with a Q&A system can be altered by the intervention of a chatterbot. A chatterbot as

previously mentioned can manage the looseness of a conversation that comes close to the

human nature.

The induction of a chatterbot in the implementation of a Q&A system derives from certain

deficiencies which were observed in the dialogic performance of the system (10). The

incompetency of the system to recognize so much questions of multiple subject, as questions

that can be the succession of previous ones are the substantial reasons of this specific

approach.

The entire implementation is modeled upon a dialogue scenario consisted of specific

potential moves that can be made by both participants in the conversation. The moves can be

omitted but the scenario can be summarized. This scenario involves stages that correspond to

the conduction of a realistic conversation. Anytime in the course of this scenario the user can

ask for the system to become more conceivable by making some clarifications. Initially the

participants greet each other, or the human user starts the conversation by addressing a direct

34

question to the system. The system now attempts to identify whether the posed question from

the other side user is relevant to previously answered questions. If it is confirmed that the

question is irrelevant then it is submitted to the Q&A system. On the contrary, if the relevance

to the previous question is detected, then the system proceeds in the identification of this

relation. Two forms of question relation can be recognized and according to the properties of

this relation then the question is characterized either elliptic or anaphoric. Depending on the

form of the relation, the user’s question is treated differently. When the question is found to

be elliptic which means that might not contain a verb, the system reformulates the user’s

question with keywords extracted from the antecedent questions and then submits the

produced question to the Q&A system. In the case where the question is anaphoric, in other

words when the question includes references to previous questions, the system proceeds again

in the reformulation of the question. This time though instead of submitting the reformulated

question to the Q&A component, the system verifies if the produced question corresponds to

the initial information that the user is seeking. If this is verified then the system is permitted to

process the question through the Q&A component otherwise the user is requested to rephrase

his initial question until the new one is expressed in the appropriate way. The next step is for

the system to provide the answer to the user and show eagerness to answer another question

according to the user’s will. If the user wants to carry on then he poses a new question, else

the conversation ends up with the system’s acknowledgement. The completion of the

conversation is accomplished with the participant’s greetings.

The chatterbot’s responsibilities are focused on the part of identifying the elliptic or

anaphoric questions and invoke the appropriate resolution components. For that reason some

new AIML tags are added in order to support operations like those mentioned above or to

invoke the Q&A component.

After having examined the dialogue model on which the architecture of the system is based,

it is time to explore the structural techniques that have been used. It hasn’t been mentioned yet

that the system’s incompetency of answering questions of multiple matters is partially

resolved. In order to detect this kind of questions a chunker is used and with the

condescension of the user the system answers on the part of the question where the most

tokens were marked.

The system supports the resolution of elliptic questions, those which contain third person

pronoun/possessive adjective anaphora, or questions which contain noun phrase anaphora.

35

The latter two constitute the anaphoric questions. So in order to be able to manage the

occurrence of such questions initially a detection algorithm is applied.

The detection algorithm follows a number of actions that are invoked depending on the

detected type of the question. If the question isn’t verified to belong to any of the above types

then the processing is transferred to the field of Q& A component’s responsibilities. In the

case that the question is elliptic, then the keywords of previous questions are used to fill the

textual gaps of this one. There is also the occasion where the question is anaphoric and the

systems performance varies according to the specific type of the anaphoric question. When

the pronoun adjective anaphora is traced the first noun phrase compatible antecedent question

is used. In the case of noun phrase anaphora the first noun phrase that corresponds to all the

references in the question is used to replace them. Of course it could not be neglected the

occasion where no previous question serving the demanded constraints can be found. I this

particular case the system itself request the user to explicitly rephrase the question.

2.4 Summary

The readers of this chapter were introduced to another type of conversational agents, the

Q&A systems. The common architecture of such systems was presented in order to put the

reader in the way of comprehending the demands of building them. Nevertheless specific

implementations of certain Q&A systems were examined in such a depth revealing the variety

of the architectural techniques that can be applied on them. More specifically the readers was

introduced to the method of extracting answer types through learning surface patterns, which

is one of the most significant stages in a Q&A implementation. Moreover knowledge

annotation and knowledge mining entered the contsractual fields of Q&A systems and

suggested another interesting approach in the issue. Eventually probabilistic methods

appeared in this section demonstrating the power that they offer when implemented in Q&A

systems. Through the presentation of the above the differences between these systems and

chatterbots are being noticeable. These operational engines serve different purposes and in

order to signalize the fact the one complete the services that the other offers, an application

based on the collaboration of both of them was presented. The conclusion is that the

limitations of Q&A systems can be compensated by the interference of chatterbots in their

implementations.

36

37

3 Artificial Intelligence Markup Language (AIML)

3.1 Introduction

The contents of the section that is about to be presented, aim to describe the most

significant elements that constitute the artificial intelligence markup language, as well as their

operational behavior. This language facilitates those who attempt to implement a chatterbot

by providing them the means to import knowledge to the application being under

construction. Although AIML was introduced by ALICE’s implementation, its potentialities

are still growing (11). Nevertheless in the present section the focus is on fundamental

elements of AIML with some worth notice exceptions. It must be underlined that AIML is an

XML variant and this is a justifiable observation to be made until the completion of this

section.

AIML consists of several tags that are responsible of converting the response in order to

accomplish many operations. These operations enable the application to store required

information, to stimulate other programs if it is necessary and to return to the user responses

under certain conditions or through the recursive use of pattern matching. The convenience

which AIML pattern language offers, derives from the fact that permits only the use of words,

numbers, spaces and the wild card symbols _ and *. The following are the most important

data units and some of them are being presented in further detail below:

• <aiml> : this is the tag that marks the beginning and the end of an AIML document

• <category> : this is the tag that labels the basic units of knowledge in the application’s

knowledge base

• <pattern> : this tag encloses a simple pattern which attempts to match the user’s input

• <template> : this is the tag that contains the appropriate response to the user’s input

3.2 Category and recursion

Category is the most fundamental element of AIML and is composed from additional

elements. The general structure of category includes a properly formulated query, the

response corresponding to the specific query and further context that its existence is optional

according to the requirements that are handled in each occasion. The above mentioned query

38

is represented by the pattern tag and is the responsible unit for matching the user’s input. The

corresponding reply is represented by the formerly mentioned tag of template. The additional

context that may be encounter in the category’s composition consists by the tags <that> and

<topic>. The <that> tag consists of a pattern, that intends to represent the last utterance of the

chatterbot and of course match it. While the latter tag is possible to be encountered only inside

the category, the <topic> tag appears only outside of it. This tag is responsible of

congregating several categories which deal with user’s input concerning the same subject. The

value assignment to the <topic> is performed inside the template. There are three category

types represented below.

• Atomic

• Default

• recursive

Atomic categories are the simpler approach in category’s formulation. The pattern

description does not involve the use of wild card symbols. A representative sample of the

specific occasion follows.

<category>

<pattern> WHAT IS A CIRCLE </pattern>

<template> <set_it> A circle </ set_it> is the set of points equidistant from a common point
called the center.

</template>

</category>

This category matches the user’s input “What is a circle?” with the pattern that includes. The

value “A circle” is assigned to the “IT” variable. The returned answer to the user is the one

enclosed in the template tags.

Default categories are another form frequently encountered and their substantial difference

with the atomic categories is the presence of at least a wild card character in their pattern.

Wild card characters are capable of substituting any other word in the pattern. The frequently

encountered default categories include a pattern that involves a few words and a wild card

symbol. An enlightening example of such categories follows.

<category>

<pattern> I NEED HELP * </pattern>

39

<template> Can you ask for help in the form of a question? </template>

</category>

The above category is capable of treating a group of user’s inputs that consist of the phrase “I

need help” and continue with any other sequence of words represented in this occasion by the

star symbol. The use of that specific category type is a deceptive method that has as a result

to make the user believe that the chatterbot does not lack reasoning. This result derives from

the user’s impression of conducting a coherent conversation with the chatterbot.

The last category type is known as the recursive type. Recursion is a significant quality of

AIML because of the many offering facilities. This kind of categories define the route to be

followed from the moment the user types the input, through the categories that congregate the

knowledge map. The produced output of a category is used as the input of another and this

procedure has as a result the formation of a category chain which ends up producing the final

response. Recursion can be used in the above applications or the combination of them and the

responsible tag is <srai>:

1. Symbolic reduction is the application where the AIML user attempts to convert

complex grammatical forms to simpler ones. The common strategy followed is to create

categories as simple as the atomic ones. When a query is represented in a more complex form

from the user and the atomic category that represents this query in the simplest form exists in

the chatterbot’s knowledge base and then this category can be reached through recursion and

produce the correct output.

<category>

<pattern> DO YOU KNOW WHO * IS </pattern>

<template> <srai> WHO IS <star/> </srai> </template>

</category>

In the above example the more complicated input “Do you know who * is?” is reduced to the

simpler one “Who is *?” and the initial word being replaced by the wild card symbol is

represented in the reply by the tag <star/>. The final response will be produced from the

existing atomic category whose pattern will match the user’s initial input.

2. Divide and conquer is another application that recursion is used in. This method is

responsible for the segmentation of the user’s input into many parts which afterwards are

40

applied separately as inputs in the appropriate categories and eventually the desirable output is

produced by the responses returned from each part.

3. The resolution of synonyms is the most common application of the recursion. This

derives from the fact there are many words in natural language that can describe one and only

thing and unfortunately only one pattern per category is permitted. Thus the recursion

provides the ability of accessing the appropriate category consisting a simple pattern through

other categories whose templates include this specific pattern while their patterns are

synonyms of this.

4. Spelling and grammar correction is an additional application of recursion. This

handles the common mistakes that are possible to appear in the typed input. Besides of

correcting them this application also produces the corresponding response. A representative

example follows.

<category>

<pattern> YOUR A * </pattern>

<template> <srai> YOU ARE A <star/> </srai> </template>

</category>

5. The use of <srai> contributes also in the detection of keywords in the user’s input that

can be used as leverages to activate specific categories. The following example illustrates the

format of such an application.

<category>

<pattern> MOTHER_ </pattern>

<template> <srai>MOTHER </srai> </template>

</category >

In the above example the keyword is detected when it appears as a prefix in the user’s input.

Similar format have the categories that indentify keywords in the place of prefix or infix in a

sentence and afterwards attempt to reach the category with the desirable template which will

produce the final answer.

3.3 Significant tags and elements

It has been mentioned previously that in a category format there is a possibility of using the

tags <that> and <topic>. These tags are very important for the reasons mentioned above and

41

in an attempt to comprehend their operational behavior an example of their usage is presented

here.

<category>

<pattern> THAT IS GREAT </pattern>

<that> Today I am happy. </that>

<template> But will I still be happy tomorrow? </template>

</category >

In the above category the pattern matches the user’s input “That is great” only if the

precedent utterance of the chatterbot is the one enclosed in the <that> tag. It is obvious that in

the knowledge base it is possible to encounter categories that have the same pattern but differ

in the part of the tag <that>. On the other side it is explained that <topic> is responsible for

grouping certain categories together. The reason of referring to these tags together is that the

later depends on the existence of the former. A category that belongs to a specific topic will

be retrieved only if exists in the knowledge base another category with the same pattern and

the same <that> tag.

Other significant elements of AIML are the conditional ones. The conditional elements are

used in order to retrieve responses given certain criteria. At this point the predicates of AIML

are going to be introduced. These predicates represent variables that are used to store useful

information from the user’s input. The tag <set> is the one responsible for this storage

procedure and its appearance is permitted in the tag <template> or in other special tags. So in

conditional elements the output depends on the matching process of a predicate against a

given pattern. There are three types of conditional elements the block condition, single-

predicate condition and the multi predicate condition. These types are described in further

detail below.

The block condition is the type of conditional element that involves an AIML predicate

declared by the use of an attribute name e.g. “occupation” and a corresponding attribute value

that consists of a simple pattern expression such as “engineer”. During the predicates

matching process if the attribute value agrees with the value that has been assigned to the

predicate with the specified attribute name, then the contents of the condition are returned

otherwise the empty string is returned. The single-predicate condition is the type of

conditional element that involves an AIML predicate but instead of the attribute value used in

the above condition type involves some other AIML element the li elements. These li

42

elements are a type of variables with predefined values. The procedure followed here begins

with comparing the value of the predicated specified the name attribute to the value of the

first li element. If these values match then the contents of the li item are returned and the

process stops. Otherwise the matching process continues until the match process succeeds.

There are three types of li elements though the reference to them would be redundant. The

multi-predicate condition is a variation of the latter and their basic difference is that each of

them uses different types of li elements.

3.4 Summary

This section was an introduction to the fundamentals elements of AIML. The important

tags that consist AIML were examined closer in order to comprehend their operational

behavior and the distinguish occasions that each one of them handles. During the examination

of the category element and the recursion operation which can be conducted through the

<srai> tag, the convenience that AIML offers in the procedure of knowledge loading in a

chatterbot was made obvious in addition to the capability of handling many complex cases.

The conditional elements came to contribute to the previous conclusion by verifying that

despite the simple technique of pattern matching AIML provides the means to apply even

more demanding techniques. Of course the potentialities of this language are not limited in the

ones having mentioned. There are still more AIML elements that were wittingly omitted in

order to provide to the reader a more global illustration of AIML avoiding entering in heavy

details.

43

4 Our Architecture

4.1 Introduction

In the previous sections the focus was on two different types of conversational agents,

chatterbots and Q&A systems. Thus far it has become obvious that chatterbots provide the

means for the user’s engaging in a natural language conversation conducted in ostensibly

realistic terms. On the other side, Q&A systems serve the needs of producing responses to the

user’s questions relying upon predefined question and answer types and the techniques of

information retrieval and extraction. A few representative implementations of the former

mentioned systems were studied in the previous chapters in order to predispose the reader for

the main issue of the present thesis and provide him the adequate knowledge to comprehend

the work that have been conducted here.

The initial goal of the present thesis was to accomplish the construction of a chatterbot

based upon the techniques applied in the implementation of ALICE bot. The extended

reference in AIML elements and their operational details intended to accommodate the reader

in the following presentation of the specific thesis, since AIML is the partially responsible

tool for the knowledge that have been loaded in this chatterbot. The intention of this work was

to achieve an implementation of a system which can engage the user in a conversation

conducted in natural language and based on the communicative method of text typing.

Besides the common characteristics of an open domain dialogue the attempts in this thesis

focused mainly on increasing the chatterbot’s initiative towards the human user’s initiative.

Unlike the common existing chatterbots the one implemented in the present thesis attempts

through the course of each dialogue to take responsibility for changing under certain

circumstances the subject in issue and provoke the user to participate in the new subject.

Additionally the focus of the present thesis was on partially inserting in the chatterbots

construction qualities that describe Q&A systems and involve specifically information

retrieval. Besides the knowledge base of the system that is constructed using AIML, under

certain circumstances responses returned to the user are extracted from a base of documents

concerning biographies of significant personalities after a special procedure of the documents

and the user’s input.

44

4.2 PyAIML

In the present work the implementation of the chatterbot in issue was not initiated from

“scratch”. On the contrary an already existing interpreter for AIML written in Python was

used to handle AIML categories that already existed and moreover which were added in the

course of this thesis. Of course in the contents of this interpreter, the PyAIML interpreter,

were made many alterations and additions in order to accomplish the desirable result and

reach the goals of this thesis. The initial components of this interpreter were six classes

written in python and their responsibilities are going to be described below.

The first class to be presented and its written in python is the AimlParser. This class as it

can be assumed by its name is responsible for parsing the AIML documents that exist in the

chatterbots knowledge base. This class is capable of parsing AIML documents and checking

for their validity according to the structure that is followed by them. For example some

substantial inspection to be made by this component is whether the tags of <pattern>,

<template> and <that> are inside the category. In general this component is responsible for

the preservation of the regulations that AIML imposes. Beside the previously mentioned

operation, the specific component executes additional fundamental operation. This operation

is responsible for the production of a substantial dictionary which is a basic and commonly

used structure in python. Such a structure written in python consists of two essential elements,

the key and the value. In this occasion the key each time is the contents of the category that

was parsed and as it was demonstrated earlier these contents consist of the information

enclosed in the tags <pattern>,<that> and <topic>. The value in each case is assigned to the

contents inside the tag <template>. So the conclusion to be extracted from here is that the

product of the specific component is the contents of the AIML knowledge base in a useful

formation which facilitates the following procedures.

The next class written in python and constitutes another substantial component of the

specific AIML interpreter is the PatternMng. The word PatternMng is abbreviation of the

words pattern manager. This component is responsible for many tasks but two of them are the

most significant ones. The first task is the transformation of the knowledge base in a structure

that can be approached easily in order to retrieve the correct enclosed information. This task

aims to give the knowledge base a tree structure similar to the one that exists in the common

linguistic dictionaries or encyclopedias. The resulted structure is a graph that consists of a

collection of nodes and branches that connect them to each other. From the root of this graph

45

starts the mapping of the branches that each one of them represents the first word of every

parsed pattern. The branches are either single words or wild cards. The number of the leaf

nodes in the collection is the same as the number of the categories in the AIML knowledge

base. The leaf nodes also contain the contents of the <template> tag of each category. So

initially the pattern is separated into its consisted words and its one of them enters the tree

node represented by a branch. The next insertion to be made in this tree structure is the

contents of the <that> tag if they are non empty. Afterwards the contents of the <topic> tag

are included in the tree node if they are non empty and the last one is the insertion of the

<template>.

The above procedure of the construction of the knowledge tree is strictly defined by the

way the matching of the input is executed. The resulted tree is constrained to be in this

formation because of the stages followed in the matching process. When the user’s input is

given then a standard matching process is followed. If there is a given word “X” and the root

of the graph is also know then this process consists of the following stages:

1. The navigation through the tree nodes initiates from the root. The first key that is

expected to be found is the wild card “_”. When the specific key is found then the process

continues by searching the subgraph that has in the place of the root the wild card “_”. The

remaining suffixes of the input that follows “X” are checked for matching and if there is no

match found then the process proceeds to the next stage.

2. The next thing to be sought here is the word “X”. If the search succeeds then the

subgraph initiating with the child node “X” is searched. The next expected matching is the

one of the tail of the input, in other words the user’s input with the word “X” removed. If this

matching process fails then the next stage is invoked.

3. This stage is responsible for the finding of the wild card “*”. If this key is found then

the search proceeds in the subgraph rooted at the child node linked by “*”. In the specific

subgraph any of the remaining suffixes of the input following “X” is expected to be found. If

no match is found then the procedure starts from the top.

The terminal case here is the one where the input is left with no more words and the leaf

node contains the matched template. Of course if the procedure fails there is an easy way to

obviate such a failure. This failure is confronted by the existence of the wild card “*” pointing

to a leaf node.

46

Of course it must be mentioned that the entire matching process involves also the contents

of <that> and <topic> in order to result in the correct response. In the previous section was

made a reference in the way that the tags <that> and <topic> contribute in the matching

process. If the formerly mentioned matching stages succeed then the contents of the two latter

tags are being searched for matching in the tree structure to result to the corresponding

template.

Through the examination of the matching process someone would notice that in every node

the wild card “_” has the major priority and then follows the word matching with the wild

card “*” owning the lowest priority. An additional observation is that the matching process is

conducted word by word and no category by category. Nevertheless there is no need for the

patterns to be alphabetically ordered but only partially ordered so that the wild card “_” comes

before any word and the wild card “*” comes after any word in the tree structure. An example

of the way that the knowledge tree is build piece by piece is presented below. A

demonstration of the insertion of three categories in the tree structure follows.

<category>

<pattern> I HAVE A PROJECT </pattern>

<template>

<think> <set name=”topic”> PROJECT </set>

On which course?

</template>

</category >

<category>

<pattern> ON NLP </pattern>

<template> Good luck! </template>

</category >

<topic name=”PROJECT”>

<category>

<pattern> ON NLP </pattern>

<template> Is it difficult? </template>

47

</category >

</topic>

When a category does not contain the tag <that> or does not belong to a specific topic

suggested from the tag <topic> then the keys of the dictionary that refer to this parts of the

category to be parsed are assigned to the symbol “*”. Through the parsing of the above

categories the corresponding dictionary is produced with the appropriate keys and values. The

next stage that is responsible for constructing the knowledge tree according to the keys and

values of the dictionary. The resulting structure is presented below using the next

codification:

• “_” = 0

• “*” = 1

• <template> = 2

• <that> = 3

• <topic> = 4

After the insertion of the first category the tree has the following image:

Knowledge Tree

{

{u’I’:{u’HAVE’:{u’A’:{u’PROJECT’:{3:{1:{4:{1:{2:{categories[value]}}}}}}}}}}

}

After the second category’s insertion the image of the knowledge tree is the below:

Knowledge Tree

{

{u’I’:{u’HAVE’:{u’A’:{u’PROJECT’:{3:{1:{4:{1:{2:{categories[value]}}}}}}}}}},{u’ON’

:{u’NLP’:{3:{1:{4:{1:{2:{categories[value]}}}}}}}}

}

And eventually after the last category’s insertion to the tree, the later has the following image:

Knowledge Tree:

{

48

{u’I’:{u’HAVE’:{u’A’:{u’PROJECT’:{3:{1:{4:{1:{2:{categories[value]}}}}}}}}}},{u’ON’

:{u’NLP’:{3:{1:{4:{1:{2:{categories[value]}}},{u’PROJECT’:{2:

{categories[value]}}}}}}}}

}

After having explicitly described the operation of the two most important components of

the AIML interpreter it is time proceed in the presentation of the less significant ones. The

WordSub class is the component that handles the word substitution when is needed. The most

common word substitution is for example if the user’s input is “I’m not …” in order to be able

the interpreter to process the sentence must transform it to a new one having replaced the

truncated phrase “I’m” with the integral one “I am”. In addition to this kind of substitution

this component also handles the substitutions of personal pronouns. The class DefaultSubs is

the repository of these substitutions and it is used from the WordSub in order for this task to

be achieved. In other words the DefaultSubs consists of dictionaries that refer to the several

kinds of word substitution and have as the key the word to be replaced and the corresponding

value is the substitute word.

The class Utils written in python is the component that is responsible for segmenting the

user’s input in sentences. The segmentation of the input into distinguished sentences is a

simple procedure that relies on the search of the input for punctuation. When a full stop, a

question or an exclamation point is detected in the user’s input this component keeps the

already parsed elements of the input and stores them in a list considering them elements of an

individual sentence. The implementation of this process derives from the fact that the specific

chatterbot has the ability of processing one sentence at a time.

The last but not least component of the interpreter is the one that handles most of the

operations and additionally is responsible for invoking the formerly mentioned components.

This component is the class Kernel of this implementation and it is the one in which several

interventions were made in order to achieve the goals of this thesis. The operations that this

component handles initiate from processing the user’s input and with the contribution of the

remaining components produces the appropriate response to the user expressed in correct

formed natural language.

49

4.3 Detection of previously discussed topic

In the general goals of this thesis was included the increment of chatterbot’s initiative. So

working under the aspect of the initiative increment an additional function was added in the

operations of the chatterbot. This function enables the chatterbot to detect whenever the user

returns in a previously discussed subject. Nevertheless this function succeeds its purpose

under certain conditions. These conditions will be revealed in the following paragraphs as the

corresponding work will be explained in detail.

Initially it must be underlined that the chatterbot is programmed to store certain information

of every dialogue session in which each individual user participates. The sessions are

individualized by a specific identification number. The way that this identification number is

reproduced will be analyzed in a following section. The bottom line here is that from every

session some information is retained in order to achieve some required checks. The

component that is responsible for the stored information is the class of Kernel.

Before intervening in the interpreter’s components the information that could retain the

chatterbot during the course of a conversation with a user was the input history and the output

history. The input history represents the user’s utterances. This history is stored in a form of

list and every insertion concerns the user’s input segmented in individual sentences. So when

the user’s input consists of three sentences then three will be the insertions on the input

history list. The output history respectively is a form of list where the responses that the

chatterbot produces and returns to the other side user are stored.

The intervention that was made in the kernel’s component concerns the retaining of further

information that can contribute in the detection of a previously discussed subject. Another list

called TopicHistory, where the discussed subjects are stored, is added. It has been mentioned

earlier that given the user’s input a matching process follows across the knowledge tree in

order the template containing the correct response to be extracted. The returned template is in

the form of a dictionary containing besides the correct answer some other AIML tags which

serve various operations. One of these tags that is possible to be encountered in the returned

template is the tag <set name = “X”>. This specific tag assigns a value to the predicate X. The

value is represented from the words that follow the predicate X in the structure of the category

from which the template derives. When the name of the predicate is the “topic” then the value

refers to the specific subject that the user’s recently posed utterance introduces. After

retrieving the correct template additional functions in the Kernel component are responsible

50

for handling the various tags that are included in it. The function which is responsible for

processing the tag <set name = ”X”> exists in the Kernel’s component and is called

processSet. In this process when the name of the predicate is “topic” then the value of this

predicate represents the current subject of the conversation. The last element of the

TopicHistory list, which represents the last subject of the present conversation, is retrieved

and is compared to the current discussion’s subject. If the two elements set into comparison

are proved to be the same then the insertion of the topic’s value in the TopicHistory is

omitted, otherwise is executed. If the current subject of the conversation is different from the

last one then follows the search of the TopicHistory list for the existence of this specific

topic’s value. If the search succeeds this means that the user brought up again a previously

discussed subject and the value of another predicate called “oldTopic” is assigned to TRUE.

In the next stage where the process of the template has been completed and the correct

response is ready to be returned to the user, the value of the predicate “oldTopic” is checked

whether is TRUE or FALSE. If the value is proved to be TRUE then the fetched response is

not returned to the user until through the same matching process another response is fetched.

This latter response constitutes of a sentence which reminds the user that the new introduced

subject of the discussion it is actually a previous discussed one. The formerly fetched

response that corresponds to the user’s input is concatenated to this one and the flow of the

conversation keeps on.

Besides the interventions that were made in the Kernel’s component in order to achieve the

detection of the previously discussed subject the AIML knowledge also has been extended.

Certain categories were added in the knowledge base which included the tag <set name =

“topic”>. In addition to these categories on more was created to serve the needs of the needs

of verifying this detection and it is presented below. In order to be retrieved the template of

this category the input is provided from inside the Kernel’s component and is the same with

the category’s pattern.

<category>

<pattern>OLDTOPIC</pattern>

<template>

<random>

I see we ended up talking about <get name="topic"/> again.

Here we go with <get name="topic"/> again.

51

So we are back in <get name="topic"/>.

</random>

</template>

</category>

In the beginning of this subsection a reference was made to certain circumstances under

which this application succeeds its performance. These circumstances are described above by

the extensions of the AIML knowledge base. In order to achieve the best performance of this

application there should be a careful selection of the categories to be added in the knowledge

base which is a rather demanding manual labor. In spite though of these obstacles the specific

application combined to a properly formed AIML knowledge base can accomplish its initial

aims.

4.4 Detection of max inactive input

Continuing working under the aspect of increasing the chatterbot’s initiative the application

to be presented in this section was accomplished. Most of the popular existing

implementations of a chatterbot are constructed in such a way that only the user can hold the

initiative of engaging in a conversation. In an attempt to augment the chatterbot’s initiative in

this application the focus was on the detection of the max inactive input from the side of the

user. The method applied in this occasion did not interfere with any of the existing

components of the initial implementation of the AIML interpreter or with the AIML

knowledge base.

For the needs of this purpose a specific server-client application written in python was

created. Whenever the user wants to connect with the server the program that concerns the

client should be activated. The connection with the server is succeeded through an individual

socket which is different for every user. The knowledge base of the chatterbot is not

constructed from the start for every individual user. Instead of this an object of the class

Kernel is created for each one user. In this way a significant space saving is achieved. In a

previous subsection an identification number that individualizes every session being

conducted between the user and the chatterbot was mentioned. In the server’s application this

number is reproduced randomly among 65.000 thousands possible numbers and as a result

every time a user attempts to connect with the server obtains his identification number that is

different from any other used number. When the client’s application receives any data then

52

the data are sent to the server’s application. The time that the server’s application realizes the

existence of the data in the socket’s input then the corresponding method of the Kernel class

is called in order to handle the data. This method is called respond. In the client’s application

a timer is activated when the user connects to the server. If the user’s input remains inactive

for a period of time equal to the predefined timeout of the timer then the client’s application

sends a signal in the server’s application. The signal is stored in the data that are sent to the

server. When the server recognizes the signal then sends to the client’s output a response that

encourages the user to continue the conversation.

The returned response in the particular occasion is not retrieved from the AIML knowledge

base but derives from the server’s application. As result the specific response is not stored in

the output history. A slight defect of this implementation is that the input is activated when

the user have completed the typing of the data. In this way when the predefined time is over

and the user is in the middle of the typing task the encouraging response will be send to him.

That is the most frustrating reason for fetching the encouraging response from the server’s

application instead of retrieving it from the AIML base. Nevertheless the chatterbot’s

initiative is incremented due to this small contribution.

4.5 Detection of the user’s loss of interest

In the present section another application will be presented which is conducted in the terms

of this thesis. This section concerns two different parts, the process followed in order to detect

the user’s loss of interest and the process followed in order to resolve the problem. In this part

of the specific thesis the other side of the present implemented chatterbot will be revealed.

This side is the one that can place this implementation among those which attempt to combine

the application of a chatterbot with a Q&A system. Of course in this implementation only

some borrowed methods that are applied in the general framework of a Q&A system

constitutes the elements which can lead to the conclusion that this is an application based on

the combination of a Q&A system and a chatterbot. Through the course of this section the

presentation of further details will be enlightening.

4.5.1 Process of detection

In order to detect the user’s loss of interest a counter of the letters which the user’s input

consists of is set in the Kernel’s component. When the user’s input applied then the counter is

53

activated and the resulted number is stored in a list called ChaCountList. The counting of the

characters is applied in the entire user’s input without any consideration of the number of

sentences that the input consists of. If this number is lower than fifteen then the last five

elements of the list are retrieved and it is checked whether each of them is equal to fifteen. If

the check succeeds then the ChaCountList is evacuated from the existing elements and the

user’s current input segmented in sentences is inserted in another list called

beforeChangeTopic. It must be mentioned that the matching process has not been applied yet

to the user’s input. In this point instead of fetching the corresponding reply to the user’s input

the given input to be searched and matched is the one that will result in the chatterbot’s asking

the user if he would like to discuss something else besides the present subject. This response

is fetched through the matching process that is applied to the input “CANGETOPIC”. The

input is given from inside the Kernel and the returned response is retrieved due to the

existence of the below category in the chatterbot’s knowledge base.

<category>

<pattern> CHANGETOPIC </pattern>

<template>

<think> <set name = "errChangeTopic"> TRUE </set> </think>

Would you like to discuss something else with me? </template>

</category>

The chatterbot in this point accepts only a “yes” or “no” answer. If the user’s answer is

negative then the initial input of the user is extracted from the beforeChangeTopic and is

applied to the matching process in order to continue the previous conversation. On the other

side if the user agrees to discuss something else then another process is followed in order for

the chatterbot to find the appropriate subject and suggest it to the user. This part of the

application is explicitly analyzed in the following subsection.

4.5.2 Resolution of the user’s loss of interest

In order to resolve the user’s loss of interest and in the case that the user willingly agreed to

change the conversation’s subject another process is followed. This process aims to find a

subject for discussion and suggest it to the user. Instead of picking randomly a subject this

application relies on the information that can be retrieved from the history of the dialogue.

54

Initially it must be mentioned that besides the AIML knowledge base which exists in the

specific implementation, there is also another knowledge base that consists of a collection of

biographies that concern famous people such as actors and actresses, athletes, authors,

scientists, philosophers, painters and singers or even music bands. This collection of

biographies was downloaded and the corresponding HTML documents were submitted in a

cleaning process through which the HTML tags were discarded and the resulted documents

contain only plain informative text ready to be processed.

In order to find the subject to be suggested to the user another component written in python

was used, the Trigger.py. This component contains a dictionary that consists of keys and their

corresponding values. The values consist of a list of index terms extracted manually from

each biographical document while the keys that the values belong to represent the category

that the documents from which the index terms where extracted belong to. There are seven

categories in the existing data base and are presented below.

• Cinema

• Sports

• Literature

• Music

• Painting

• Philosophy

• Science

In this component is also stored a dictionary that consists of dates and the corresponding

significant historical events that have happened from time to time. The dates are the keys and

the events are represented by the keys’ values. When the user agrees to change the subject of

the conversation then a part of the input history is submitted to the Trigger component. This

part consists of these elements of the input history that have been inserted in the list after the

last detection of the user’s loss of interest. The process to be followed searches these elements

in order to find existing terms that correspond to the stored index terms. If no term is found in

the input history then the dictionary in the form of a journal is searched and its keys are

checked whether they match to the present date. If this matching process succeeds the

corresponding value to the key is returned. In this case the returned response to the user is in

the form of a question asking if the user was aware of the retrieved fact. If the matching

process through the journal fails then the returned response will concern a bon mot, in other

55

word a witticism, fetched randomly through the corresponding AIML category that is

presented below. The input, in order to be retrieved one of the several witticisms, is submitted

to the matching process inside the Kernel’s component.

<category>

<pattern> BON MOT </pattern>

<template>

<random>

 Having been at someone's else's mercy suggests that mercy may matter .

 The pain was an extension of experience, so new and astonishing as to have intellectual
interest.

 One half of the world cannot understand the pleasures of the other.

 It is personalities, not principles that move the age.

 Progress is the realization of utopia.

 In this world, nothing is certain but death and taxes.

 The art of prophecy is very difficult, especially with respect to the future.

</random>

</template>

</category>

In the case that some index terms are identified in the input history their corresponding

category that represents also the topic that they belong to is stored in a list. These index terms

are also stored in a dictionary and constitute the values of the keys that are represented by the

found subjects. In another dictionary are stored the sets of the default terms that belong to the

subjects that have been found. The Trigger process returns those three lists. In order to

suggest a subject for discussion to the user the component of the Kernel follows another

procedure.

When the Trigger component has completed its operation and the resulted lists and

dictionaries are returned then the first element of the list, containing the candidate subjects, is

checked in order to verify that this subject was not the one suggested when the previous loss

of interest was detected. This procedure is conducted by searching another list of subjects

existing in the Kernel’s component. The later list stores the subject that is suggested each time

to the user. If a repetition of the subject is detected then recursively the next subject to be

56

checked is the next in the returned list from the Trigger component. If all the elements of the

list are checked without any success then the returned response to the user is again a bon mot.

In the contrary if the specific process succeeds to find the appropriate subject the user is asked

whether he is interested in it or not. If the reply of the user is negative then the response of the

chatterbots is retrieved either from the journal list or from the category that contains the

various witticisms. In the case that the user expresses his eagerness to discuss the suggested

subject then the list of the found index terms is checked to see if there are any specific index

terms besides the general ones that describe this subject. If this list is empty then the list

containing the default index terms is retrieved and it is asked from the user to select one of

them.

The next stage is to submit either the selected default index term or the elements of the

input history in another component responsible for finding the most similar document to the

user’s selected utterances. This component estimates the similarity between the user’s

utterances and the documents that belong in the suggested subject. The weights of the words

in every document were estimated using the equation for the Tf-Idf weighting (12). The

weights of the words of every document are stored in a dictionary in this specific component.

With the help of this dictionary the similarity is estimated in this occasion using the equation

that represents the cosine similarity (13).

 ,
, log

j

i j
i j

w i

freq Nw
n n

= ⋅ (4.1)

Where:

,i jw is the weight of the i word in the j document

,i jfreq is the frequency of the word in the j document

wn is the number of all the words in the specific document

N is the total number of the documents to be compared

in is the number of the documents in which the i word appears

57

 1

2 2
1 1

(,)
M

iq idi
M M

iq idi i

w wq dSim q d
q d w w

=

= =

⋅
= =

⋅

∑
∑ ∑

 (4.2)

Where:

,i qw is the weight of the i word in the user’s query which in the specific occasion is the

input history

,i dw is the weight of the i word in the d document

M is the total number of the words in the d documents

After estimating the cosine similarity between the documents of a subject and the user’s

input history, the top ranked document according to this similarity is now available. Of course

it is not retrieved the entire document. An additional work was preceded for the present case

where the most similar document to the user’s input history is available.

For this case in the AIML knowledge base were added two more special categories. These

categories are formed in such a way that they are capable of giving the user the basic

biographical information about the person that the retrieved document from the estimation of

the cosine similarity concerns. This basic biographical information is the full name, the date

of birth and the place of birth. If the document concerns a music band instead of a person then

the corresponding category informs the user about the name, date of the formation of the band

and the place of action of the band. These specific categories retrieve the biographical

information from some AIML predicates that are assigned their values in the Kernel’s

component. For their values assignment the process of the extraction of this information has

been preceded and the biographical information that was extracted from each document was

stored in text documents. Thus when the most similar document is available the document

which contains the basic biographical information is also available and inside the Kernel the

corresponding predicates obtain their correct values and the appropriate input is submitted to

the matching process in order to be fetched the template from the corresponding category.

The time that the biographical information is retrieved and returned as response to the user

the chatterbot also asks the user whether he would be interested in further information on the

same subject. The same subject corresponds to the person whose the biographical elements

were extracted. If the user responds expressing his eagerness the second phase of this process

58

initiates. In other text documents the summary of each document is stored after being

extracted from the initial documents. So when the user accepts to be further informed on the

specific person or band the returned response consists of the summary of the corresponding

biographical document.

4.5.3 Index term’s extraction

As it was previously mentioned the extraction of the index terms from each document was

conducted manually. In order to prove that this process was more efficient than applying a

process that would produce automatically the index terms, a second process of index term

extraction was applied in the documents. The C/NC value method was used in the latter

process (14). This method relies on the combination of linguistic and statistical information.

The process begins by estimating initially the C-value of each word in the corpus in order to

use these values for the estimation of the NC-value.

The C-value method consists in its linguistic part of three components. The first component

is the part-of-speech tagger that identifies grammatically each word of the corpus attributing a

relative tag. The second component is a linguistic filter which takes under consideration the

grammatical tags of each word and identifies possible patterns as terms. Last component that

is used in the C-value method is a stop-list that consists of words which have minimum

possibility to represent index terms. The statistical part of the C-value method estimates the

possibility of a candidate string to represent an index term and this part takes under

consideration statistical properties of each candidate string. The statistical properties consist

of the frequency that the candidate string is encountered in the corpus and the corresponding

frequency that this string is a part of other longer candidate strings. The number of these

longer candidate strings and the number of the words that constitute the string are included

also in the statistical properties.

The NC-value method can be described in three stages. The initial stage is the one where

the corpus of the document is submitted to the process of the C-value estimation and results in

the production of a list filled with candidate terms and their corresponding C-value scores.

The second stage of this method concerns the extraction of a list of words relative to the

document that undergoes the entire process weighted according to the number of candidate

terms near which they appear in the corpus. This stage uses an initial list of terms related to

each document in order to find the most important words, which are called context words, in

59

the vicinity of them. The weights of the extracted context words are estimated according to

the following equation:

 ()() T wweight w
n

= (4.3)

Where:

w is the word that is found in the vicinity of the candidate term

()weight w is the weight assigned to the word w

()T w is number of the terms that the word appears with

n is the total number of terms

In an attempt not to deviate from the automatic extraction of the index terms this list consists

of the top ranked candidate terms extracted from the C-value method. The third and last stage

of the CN-value estimation involves firstly the estimation of another factor. Every candidate

term’s factor is estimated by multiplying each weight of the context word lying in the vicinity

of the specific candidate term with the frequency of the occurrence of both of the terms in the

corpus. The last estimation is the one of the CN-value of each candidate term, which derives

from the next equation:

 () 0.8 () 0.2 ()NC value a C value a CF a− = ∗ − + ∗ (4.4)

Where:

a is the candidate term

()C value a− is the C-value of the candidate term a

()CF a is the factor estimated for the candidate term a

The application of the C/NC-value method in the documents that are used in this work

produced a list of candidate index terms consisting of one word and ranked with their NC

value. Because of the fact, that the number of the manually extracted index terms were

maximum 7 per document, the precision and the recall between this two lists of terms was

estimated among the manually extracted index terms of each document and the group of the

60

20 first terms extracted automatically segmented in bunches of 5 terms. The following figure

shows the results of this estimation. The precision and the recall estimated by the equations

(4.5) and (4.6).

{ } { }

{ }
relevant index terms retrieved index terms

Precision
retrieved index terms

∩
= (4.5)

{ } { }

{ }
relevant index terms retrieved index terms

Recall
relevant index terms

∩
= (4.6)

The relevant index terms are considered to be the terms which are extracted manually while

the retrieved index terms are those extracted automatically with the use of C/NC-value

method. The precision for the 5 top ranked retrieved index terms and the relevant index terms

was estimated per document and the average precision for all the documents was estimated

afterwards. This procedure continued in order to estimate the average precisions for each

group of 5 terms among the 20 top ranked. Hence, the following results to be presented in the

next table are estimated:

Table 4.1: Precision - Recall

Retrieved index

terms

0-5 6-10 11-15 16-20

Precision 0.225 0.047 0.017 0.020

Recall 0.226 0.051 0.018 0.027

The conclusions that can be extracted are that the C/NC-value method fails to extract the

right index terms and this is attributed to the fact that this method relies more on statistical

features of the corpus. In general the frequency of a term is taken under significant

consideration while in the process of the manual extraction of the index terms semantics

features consider to be more important than the frequency of a term. In other words the

manually extracted terms are semantically related in high degree to the person or the music

band that the biographical document is presenting.

61

5 Evaluation

5.1 Introduction

An inevitable and significant concluding stage of this thesis was the objective evaluation in

which the implemented system was submitted. In cases where the knowledge base of a

chatterbot system is full of information, the chatterbot in issue is open to be engaged in

conversations which concern every topic that the user suggests. When such a system is

submitted in an objective evaluation a major part of the concentration is placed to whether the

dialogue between the user and the system qualifies or not coherence. On the contrary in the

evaluation process being presented here the focus deviated a lot from this target. In the

specific occasion the AIML knowledge base is not sufficient to support a big variety of

subjects that the user might suggested, so some boundaries on the subject’s domain had to be

set. The insufficiency of the knowledge base is attributed to the time consuming process of

information storage. The AIML knowledge base of the specific implementation is limited and

the user’s who have participated in the conduction of the evaluation were informed about the

topics that the chatterbot would be able to support. Despite this fact the produced

conversations in a few segments lack coherence and as a result of this, coherence was not the

most significant criteria of this evaluation process. Instead of coherence though the significant

evaluation criteria was whether the system under evaluation meets with success the detection

of user’s loss of interest.

5.2 Description of the evaluation process

The specific evaluation process included 6 users. Each user after being informed on the

topics which the system can support was asked to engage in a conversation with two

distinguished chatterbot systems. The first system called system 1 represented the initial

system that the specific implementation is based on. The second system with which the user’s

engaged in a conversation was the system being under issue in this thesis. The users during

the entire evaluation process were totally unaware of the identity of both of the systems

submitted in this process. Of course both of the systems contain the same stored information

in their AIML knowledge base. On the other side their operational attributes obtained by each

AIML interpreter’s implementation are the ones that lead each system in expressing an

62

individual performance. The participants after being engaged in a conversation with both of

the systems were asked to fill an evaluation form. In this form the users, relying in their

personal experience with each one of the systems, evaluated them by applying scores

concerning different aspects of each system’s performance. The scores ranged from 1 to 10,

where 1 represented a very poor performance of the system, 5 represented an average

performance while 10 represent an excellent one. Initially the participants were involved in an

overall system’s evaluation, secondary in evaluating the system’s success of detecting the

time in which the user loses his interest and finally they were asked to evaluate the coherence

during the course of the dialogue. Attributing scores of the same range, the users showed their

beliefs on whether the system worked the way they expected and additionally they showed in

which degree they would be eager to re-interact with the same system. Eventually under the

previously defined terms this evaluation process was completed and produced the following

results that are presented in the next subsection.

5.3 Results

In the overall system’s 1 evaluation the estimated average score is 7 while in the

corresponding evaluation of the system 2 the resulting average score is approximately 8.3.

Evaluating the performance of the system in the detection of user’s loss of interest the score

corresponding to the system 1 is estimated approximately 4.2 and the corresponding score for

the system 2 is approximately 8.8. During the evaluation of the coherence that the dialogue

appeared, the average score for the system 1 is 7.2 while the score for the system 1 is 7.3. In

an attempt of measuring the satisfaction of the participants deriving from the interaction with

each one of the systems, the estimated score concerning the accomplishment of the user’s

expectations from the system 1 is approximately 6.7 while for the system 2 the score is

approximately 8.2. The participants’ eagerness to use the system again is expressed for the

system 1 through the score of 7.5 and for the system 2 through the score of 8.3.

This evaluation process proves that despite the restricted domain of topics that the specific

chatterbot’s knowledge base is able to support, the initial goals of this work have been

achieved in a considerable degree. The detection of a previously discussed topic was achieved

as long as the stored categories in the AIML base, from which the answer were extracted,

conserved the terms that were discussed in the relative subsection. The detection of loss of

interest of the user had also satisfying results. Whenever the process of the detection

63

succeeded the suggested subject for discussion was indeed related to the preceded user’s

utterances.

5.4 ANOVA Analysis

The average value by itself is not sufficient to describe a data set, as it doesn’t provide

information about the variation in the data. ANalysis Of VAriance (ANOVA) is an alternative

technique used to determine if differences between two or more data sets are statistically

significant. ANOVA technique involves six steps which are described below:

• Calculation of sum of squares ()SSs due to each source

• Calculation of degrees of freedom ()dof , associated with each source

• Calculation of mean squares ()MS SS dof=

• Calculation of the F ratio ()F

• Determination of the critical F ratio ()criticalF

• Determination of significance, p value−

It must be mentioned that the only requirement for ANOVA is that there are sets of data for

at least two different “treatments”.

 In this thesis in order to estmate how significant are the results of the evaluation process of

the two systems, the Matlab’s function ()1p anova X= is used, where X is a matrix and p is

the return value of the function. Anova1 function performs balanced one-way analysis for

variance, for comparing the mean of two or more columns of data in matrix X . Each column

represents an independent sample with independent observations. Returned value, p , shows

the level of significance that the samples represent. If the p value− is near zero, it means that

at least on sample mean is significant different than the other sample means. Commonly

encountered significance levels are 0.01 or 0.05. The very small p value− indicates that

differences between columns means are highly significant. The matrix which is used in order

to evaluate how statistically significant the systems are, is presented below.

64

6 9
6 7
8 9
8 9
7 9
7 8

X

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

The first column represent the users’ scores for the system1 and the second column the

scores for the system2. Anova fuction displays two figures, the standard ANOVA table and

box plots of the columns of X , which suggests the size of F and the p value− . The figures

are presented below.

Figure 5.1: ANOVA table

65

Figure 5.2: ANOVA box plots

Observing the resulted score that is assigned to the p value− through the ANOVA analysis it

is reasonable to consider that the results of the preceded evaluation process are statistically

significant.

66

67

6 Conclusions – Future work

During the course of this thesis and having examined closely the framework and the various

implementations of chatterbot’s system and involving partially with the philosophy that

encloses the implementation of Q&A systems some interesting extensions on an already

existing chatterbot system have been achieved. These extensions derived from an initial

central goal which was to increase the dialogue initiative of the chatterbot against the

initiative of the human. Working under this major aspect the resulted system acquires now

some interesting attributes.

At first a time counter was set upon an implementation of a server client application. This

counter is activated each time that the user inserts the input utterance into the system and

counts down to a certain period. When the counting, called timeout, finishes and the user has

not posed yet the next utterance then a response is sent to the user trying to encourage him to

continue the dialogue. This application though lacks the connectivity with the preceding or

the following dialogue because of the fact that the chatterbot’s utterance is retrieved from the

level of the server’s application. The obstacles of retrieving this encouraging message from

the AIML base were that this message would be send to the user over and over again even if

the user missed to reply and the retained information of the dialogue history would be

confused. Another significant obstacle was that the time counter was not possible to be

implemented in the application of the Kernel’s class. Nevertheless a modest attempt was

made.

The next intention of this thesis was to make the system capable of detecting the time that

the user reenters a previously discussed topic. The initial implementation was able only to

detect the current discussed topic and identify the change of it. For this work the responsible

was only the AIML base and the categories stored in it. In the present implementation the

responsibility of detecting a previously discussed topic share both the AIML base and the

AIML interpreter. Having filled the AIML knowledge base with the correct categories the

interpreter acquired this interesting attribute.

The important part of this work is the last one that concerns the ability of the chatterbot to

detect a certain state of the user and try to cope with this state. This certain state represents the

user’s loss of interest during the course of the conducted dialogue. When this certain state is

68

detected the user is asked to verify this detection. If this detection doesn’t stands the dialogue

flows according to the previous input of the user. On the contrary I if the user is eager to

change the subject of the discussion, the chatterbot is capable of suggesting one. The process

that is responsible of finding this subject relies on an information retrieval technique known

as the cosine similarity. The details have been presented in a previous chapter. The

performance of this application is more that satisfying as the results of the evaluation process

can confirm this fact.

The future work that can be suggested in order to improve the system’s performance

derives mostly of the encountered obstacles while working in this thesis. The great

dependency of the user’s output from the AIML knowledge base was rather a restricted factor

for this implementation. The pattern matching technique that was followed set the need of a

fully updated base inevitable in order to succeed coherence on the dialogue. So a well updated

knowledge base having an easy administrating structure is required. This would take off the

demanding work of filling the base. Despite the efficiency of the knowledge base, some

semantic and pragmatic features should be added in the implementation, in order to improve

the coherence of the dialogue. The retrieved answers are impossible to correspond always to

the user’s input correctly and as a result of that a semantically process of the data would be

considerable. Another future extension it would be to extract from the documents index terms

that would consist of more than one word and extend the corresponding application in order

to be able to handle the user’s input by separating it in groups of 2 or more subsequent words.

This suggestion implies the use of N-grams generation techniques.

69

7 Bibliography

1. Weizenbaum, Joseph. Eliza -A Computer Program for the Study of Matural Language

Communication Between Man and Machine. 1966.

2. Kenneth Mark Colby, Franklin Dehnis Hilf,Sylvia Weber, Helena C. Kraemer. A

Resemblance Test for the Validation of a Computer Simulation of Paranoid Processes. 1971.

3. Kenneth Mark Colby, Roger C. Parkinson, Bill Faught. Pattern-Matching Rules for

the Recognition of Natural Language Dialogue Expressions. 1974.

4. Patrick, Crews. Protochat: An Exploration of Chatbot Construction.

5. R., Wallace. The Elements of AIML Style. 2003.

6. A.M., Turing. Computing machinery and intelligence. 1950.

7. Hovy, Deepak Ravichandran and Eduard. Learning Surface Text Patterns for a

Question Answering System. 2002.

8. Katz, Jimmy Lin and Boris. Question Answering fron the Web using Knowledge

Annotation and Knowledge Mining Techniques. 2003.

9. Dragomir Radev, Weiguo, Hong Qi, Haris Wu, Amardeep Grewal. Probabilistic

Question Answering on the Web.

10. Manandhar, Silvia Quarteroni and Suresh. A Chatbot-based Interactive Question

Answering System. 2007.

11. R., Wallace. http://www.alicebot.org/documentation/matching.html. 2001.

12. Christopher D. Manning, Prabhakar Raghavan and Hinrich Schutze. Introduction

to Information Retrieval. 2008.

13. Schutze, Christopher D. Manning and Hinrich. Foundations of Statistical Natural

Language Processing. 1999.

14. Frantzi, K. & Ananiadou, S. The C-value / NC-value domain independent method for

multi-word term extraction. 1999.

70

