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2 CHAPTER 1. ABSTRACT CHAPTER

1.1 Abstract

In this diploma thesis the main aspect was to develop an indirect adaptive
regulation of unknown nonlinear dynamical systems. This method is based
on a new Neuro-Fuzzy Dynamical Systems definition which uses the concept
of Fuzzy Dynamical Systems (FDS) operating in conjunction with High Order
Neural Network Functions (F-HONNFs). In this problem the plant is considered
unknown, and so we first propose its approximation by a special form of a
fuzzy dynamical system while in the sequel the fuzzy rules are approximated by
appropriate HONNFs. Thus the identification scheme leads up to a Recurrent
High Order Neural Network, which however takes into account the fuzzy output
partitions of the initial FDS. This scheme does not require a-priori experts’
information on the number and type of input variable membership functions
making it less vulnerable to initial design assumptions. At first, we identify the
system around an operation point, and then it is regulated to zero adaptively.
Weight updating laws are provided for the HONNFs, which guarantee that
both the identification error and the system states reach zero exponentially fast,
while keeping all signals in the closed loop bounded. We assure the existence
of the control signal by introducing a method of parameter hopping, which is
incorporated in the weight updating law. The applicability of the method is
tested on a DC Motor system, where it is shown that by following the proposed
procedure one can obtain asymptotic regulation.
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2.1 General Introduction

Non linear time invariant dynamical systems can be reprsented by general non-
linear dynamical equations of the form

&= f(z,u) (2.1)

The mathematical description of the system under study is required, so that
we are able to control it. However, the exact mathematical model of the plant,
especially when this is highly complex and nonlinear, is rarely known and for
this reason appropriate identification schemes have to be applied which will pro-
vide us with an approximate model of the plant.

It has been established that neural networks and fuzzy inference systems
are universal approximators [1], [2], i.e., they can approximate any nonlinear
function to any prescribed accuracy provided that sufficient hidden neurons
and training data or fuzzy rules are available. Recently, the combination of
these two different technologies has given rise to fuzzy neural or neuro fuzzy
approaches, that are intended to capture the advantages of both fuzzy logic and
neural networks.

The neural and fuzzy approaches are most of the time equivalent, differing
between each other mainly in the structure of the approximator chosen. In order
to bridge the gap between the neural and fuzzy approaches several researchers
introduce adaptive schemes using a class of parameterized functions that include
both neural networks and fuzzy systems[5] - [10].

In the neuro or neuro fuzzy approaches, most of the already presented works
[10] - [16] deal with idirect adaptive control (trying first to identify the dynamics
of the systems and then generating a control input according to the certainty
equivalence principle), whereas few authors [17] and [18] face the direct approach
(i.e. directly generating the control input to guarantee stability), because it is
not always clear how to construct the control law without knowledge of the
system dynamics.

Recently [20], [21], high order neural network function approximators (HON-
NFs) have been proposed in order to identify nonlinear dynamical systems of
the form (2.1), approximated by a Fuzzy Dynamical System (FDS). The above
approximation depends on the fact that fuzzy rules could be identified with the
help of HONNFs.
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In this diploma thesis HONNFs are also used for the neuro fuzzy indirect
adaptive control of unknown nonlinear dynamical systems, which includes two
interrelated phases: first the identification of the model-plant and second the
adaptive control of it.

The identification phase usually consists of two main categories: structure
identification and parameter identification. Structure identification involves
finding the main input variables out of all possible, specifying the member-
ship functions, the partition of the input space and determining the number of
fuzzy rules which is often based on a substantial amount of heuristic observation
to express proper strategy’s knowledge. Most of structure identification meth-
ods are based on data clustering, such as subtractive clustering [12], mountain
clustering [11] and fuzzy C-means clustering [9]. The above approaches require
that all input-output data are ready before we start to identify the plant. So,
those approaches are called off-line.

In our proposed approach structure identification is also made off-line and it
is based either on human expertise or on gathered data. However, the required
a-priori information obtained by linguistic information or data is very limited.
The only required information is an estimate of the centers of the output fuzzy
membership functions and it is not necessary on the underlying fuzzy rules, be-
cause this is automatically estimated by the HONNFs. Based on these facts the
proposed method is less vulnerable to initial design assumptions.The parameter
identification part is then easily addressed by HONNFs, based on the linguistic
information regarding the structural identification of the output part and from
the numerical data obtained from the actual system to be modeled.

One of our consideration is that the nonlinear system is affine in the control
and could be approximated with the help of two independent fuzzy subsystems.
Every fuzzy subsystem is approximated by a family of HONNFs, each one be-
ing related with a group of fuzzy rules. Weight updating laws are given and
we prove that when the structural identification is appropriate then the error
reaches zero very fast. Moreover, an appropriate state feedback is constructed
in order to achieve asymptotic regulation of the output, while keeping all signals
of the system bounded in the closed loop. The existence of the control signal is
always assured by introducing a method of parameter hopping, which is incor-
porated in the weight updating law.

The diploma thesis is organized as follows. Section 3.1 presents some prelim-
inaries related to the concept of Adaptive Fuzzy Systems(AFS) and the termi-
nology used in the remaining thesis, while section 4.1 presets some preliminaries
related to the Recurrent Neural Networks. Section 5.1 reports on the ability of
HONNFs s to act as fuzzy rule approximators. The indirect neuro fuzzy adaptive
regulation of affine in the control dynamical systems is presented in Section 6.1,
where the method of parameter hopping is explained and the associated weight
adaptation laws are given. Simulation results on the control of a DC Motor sys-
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tem are given in Section 7.1, showing that by following the proposed procedure
one can obtain asymptotic regulation. Finally, Section 8.1 concludes the work
of this diploma thesis, while the appendix includes the proofs of the theorems
we used and the matlab code of the simulation of the DC motor.
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3.1 Notion and Representation of Adaptive Fuzzy
Systems

In this chapter of the diploma thesis it is briefly presented the notion of adaptive
fuzzy systems and their conventional representation. It is also introduced the
representation of of fuzzy systems using the fuzzy rule indicator functions, which
is used for the development of the proposed method.

3.1.1 Adaptive Fuzzy Systems

Some basic characteristics of an adaptive fuzzy system representation, like the
performance, complexity and adaptive law, can be quite different depending
upon whether the representations is linear or nonlinear in its adjustable param-
eters. Adaptive fuzzy controllers depend also on the type of the adaptive fuzzy
subsystems they use. According to [2], we classify adaptive fuzzy controllers
into two main types:

e The fuzzy logic systems which are used in an adaptive fuzzy controller
are linear in their adjustable parameters. This adaptive fuzzy controller
is called a first-type adaptive fuzzy controller

e The fuzzy logic systems which are used in an adaptive fuzzy controller are
nonlinear in their adjustable parameters. This adaptive fuzzy controller
is called a second-type adaptive fuzzy controller

Both first and second types of adaptive fuzzy controllers are nonlinear adap-
tive controllers. Suppose that the adaptive fuzzy system is intended to approx-
imate the nonlinear function f(z). In the first-type adaptive fuzzy controller,
Wang [2] uses the following fuzzy logic representation:

M
fle) =04 (x) =0"¢(x) (3.1)
=1

where M is the number of fuzzy rules, 6 = (61, ...,0x)7, &£(x) = (&1(2), ..., Epr (2)T
and & (z) is the fuzzy basis function defined by

_ [T HE! (@)
- M n
pomy | HF! (zi)

& ()
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0, are adjustable parameters, and p Fl are given membership functions of the
input variables (can be Gaussian, triarigular, or any other type of membership
functions). Clearly, Eq. (3.1) is equivalent to the following equation assuming
that p 1 are given: that is, p Fl will not change during the adaptation procedure.

S (T e ()
Zl]\il (H?:l HE! (x))

In the second-type adaptive fuzzy controller; the following fuzzy logic system

is used: I
S (T ew(-(5))
St (T ep(—(2554)2))

where 3!, 2}, ol are the adjustable parameters.

From the definitions we gave above it is apparent that the success of the
adaptive fuzzy system representations in approximating the nonlinear function
f(z) depends on the careful selection of the fuzzy partitions of input and output
variables, the selected type of the membership functions and the proper number
of fuzzy rules. In approximating complex nonlinear functions, this number may
become very large [8] leading to parameter explosion.

f(@) (3.2)

f(x) (3-3)

3.1.2 Fuzzy system description using rule indicator func-
tions

Let us consider the system with input space u C R™ and state - space © C R"
, with its i/o relation being governed by the following equation

2t = f(a'ub) (3.4)

where f(-) is a continuous function and the superscript t denotes the temporal
variable. In case the system is dynamic the above equation could be replaced
by the following difference equation

o = f(at,ub) (3.5)

where the superscript t denotes the temporal variable, t = 1,2, ....
By setting y = [z, u] and omiting superscript t, Eq. (3.4) may be rewritten
as follows

z=f(y) (3.6)

In many practical situations, we are unable to measure accurately the states
and inputs of a system of the form in (3.4); in most cases, we are provided
with cheap sensors, expert’s opinions, e.t.c which provide us with imprecise
estimations of the state and input vectors. Thus, instead of vectors z and u we
are provided with some linguistic variables Z; and u;, respectively.
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Let now g := (Z,4) and suppose that each linguistic variable g; belongs to
a finite set L; with cardinality k;, i.e. g; takes one of k; variables. Let also ;;
denotes the ith element of the set L;. Then we may define a function hi: R— L;
to be the output function of the system in Eq. (3.6) in the case that

i = hi(y:) (3.7)

Note that iNLZ() maps the real axis into a set of linguistic variables L; , and thus
hi(+) is not defined in the usual way. In order to overcome such a problem we
define the function h; : R — {1,2, ..., k;} as follows

hi(yi) = §ij <= hi(ys) = J (3.8)

Since h;(-) is very similar to h;(-) , we will call the function k;(-) the ith output
of the system in Eq. (3.6). Also, h;(-) and consequently h;(-) is related with the
structural identification part mentioned in section 2.1 and arrive after using an
automatic procedure based on system operation data or after consulting human
experts advising on how to partition the system variables.

Following the standard approach in fuzzy systems theory we associate with
each g;; a membership function f;;(y;) € [0, 1] which satisfies

fij(yi) = max fit(yi) <= hi(yi) = j (3.9)

From the definition of the functions h;(-) [or h;(-)] we have that the space
Y = X x U is partitioned in the following way: let Y be defined as follows

Y, = {yi € R:hi(yi) = 7} (3.10)

i.e. Y denotes the set of all the variables y; that output the same linguistic
variable §;;. Thus y is partitioned into disjoint subsets Yt dorinim defined as
follows

Yisdoroinim = Y15 % X Yingmy o Ji € {12000 i} (3.11)

In a similar way we may define the sets X;;, U;;, Z;; and the sets T;
Jn and Zj

1:J2500 000
+dorjn- Note now the following fact: for two vectors (1), u(})) €

and (2, u®) e y. there maybe

]17j2»--~7jn+m,

U

1,025

yj17j27--~7jn+wz

hi(fi(@®,utD)) # hi(fi(a™®,u®))) (3.12)

for some i € {1,2,...,n} , i.e. two input vectors belonging to the same subset
may point - through the vector - field f(-) , to different subsets

. that

yj17j27-~7jn+m

llvl21<~~7ln ~ ~
2yl - Let mow Q702078 be defined as the subset of 4, . .

points - through the vector - field f(-) , to the subsets 2, 4, .4, , i.e

l_1,l_2,...,l,_, —
J15J2544 Int+m *
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={(z,u) € Yis orjim hi(z1) =11,y hn(2n) = 1n}

and define the transition possibilities 77?1’7'.'."”?;7“ as follows
- f(z,u)eﬂzl """ o dXdU
Loveotn L LI (3.13)
I In+m
f(w,u)eyh ~~~~~ Jn4m dxXdu
where Wélll]" is a number belonging to a set [0,1] that represents the
,,,,, n4m

fraction of the vectors (x,u) in y;, .
f() to the set xy,,...1,. Obviously

Ll
Do, =1 (3.14)

ly,nln

that points - through the vector field

--7jn+m

In order to present the lemma of Section 5.1, we define the indicator func-
tion: Let Iit2ln _denote the indicator function of the subset Qltesenln

. J15J25 5 In+ 91,3253 Jn4m
, that is,
. li,sln
foots (g = {1 UEw et -
JiseaJndm 0 otherwise

Using the above definitions, we can see that the system in Eq. (3.6) is de-
scribed by fuzzy rules of the form

IF Y1 1S glj] AND...
AND Yn+m 18 g(n—&-m)jn,er
Rl e THEN (3.16)
2118 Z1y, AND..AND 2z, is Zn,
with possibility wéi’,:‘.'.”lj’;ﬂl
where obviously g;,, = Bz(yf) and Z;, = fll(zl) = izz(fz(x,u))

In the above notation, if j; = Iy, jo» = Iy and ... and j, = [,, then these
points participate to the definition of the same fuzzy rule. If j; # Iy or js # lo
or or j, # l,, then these points define alternative fuzzy rules describing this
transition. Consider now the next definition.

Definition 1 A Fuzzy System - (FS) is a set of Fuzzy Rules of the form (Ré—ll”?z”'.'.'f’lfnm);
the system in Eq. (3.4) is called the Underlying System - (US) of the previously
defined FS. Alternatively, the system in Eq. (8.4) will be called a Generator of

the FS that is described by the rules (R"'2!n ),

51,9255 Jn+m

Due to the linguistic description of the variables of the FS it is not rare to
have more than one systems of the form in Eq. (3.6) to be generators for the
FS that is described by the rules (B2l )

J15J25- 5 Jn+m
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Define now the following system

Iisoln Jhsenln
2= D A X D (0 ) (317)
Where zll’ ljnm € R" be any vector satisfying h;(z;; ll’ ljn+m (7)) = l; where
Eélll]”+( ) denotes the i'" entry of _lhm’lﬂmn Then according to [20], [21]
the system in (3.17) is a generator for the F'S (Réll’lf?”ijm)

It is obvious that Eq. (3.17) can be also valid for dynamic systems. In its
dynamical form it becomes

li,enln l1,e.0ln t
th ,,,,, Jntm Ijl ~~~~~ Jn+m <X u ) (3'18)
Where $§17.,_lgﬂ+m € R" be any vector Satlsfymg hi(z ll’m’lﬂlw (1)) = l; where
N S N S e S SR ln
zptor (i) denotes the i " entry of :z: e
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4.1 Identification of Dynamical Systems using
RHONNSs

The use of multi-layer neural networks for pattern recognition and for modeling
of "static” systems is currently well-known. Given pairs of input-output data
(which may be related by an unknown algebraic relation, a so-called ”static”
function) the network is trained to learn the particular input-output map. The-
oretical work by several researchers, including [23], and [24], have proven that,
even with one hidden layer, neural networks can approximate any continuous
function uniformly over a compact domain, provided the network has a suffi-
cient number of neural networks for modeling and identification of dynamical
systems. These networks, which naturally involve dynamic elements in the form
of feedback connections, are known as recurrent neural networks.

Several training methods for recurrent networks have been proposed in the
literature. Most of these methods rely on the gradient methodology and in-
volve the computation of partial derivatives, on sensitive functions. In this
respect, they are extensions of the backpropagation algorithm for feedforward
neural networks [25]. Examples of such learning algorithms include the recur-
rent backpropagation [26], the backpropagation-through-time algorithms [29],
the real-time recurrent learning algorithm [30], and the dynamic backpropaga-
tion [28] algorithms. The last approach is based on the computation of sensitiv-
ity models for generalized neural networks. These generalized neural networks,
which were originally proposed in [27], combine feedforward neural networks
and dynamical components in the form of stable rational transfer functions.

Although the training methods mentioned above have been used successfully
in many empirical studies, they share some fundamental drawbacks. One draw-
back is the fact that, in general, they rely on some type of approximation for
computing the partial derivative. Furthermore, these training methods require
a great deal of computational time. A third disadvantage is the inability to ob-
tain analytical results concerning the convergence and stability of these schemes.

Recently, there has been a concentrated effort towards the design and anal-
ysis of learning algorithms that are based on the Lyapunov stability theory [31],
[32], [34], [33], [35], [36], [37], [38], [39] targeted at providing stability, con-
vergence and robustness proofs, in this way, bridging the existed gap between
theory and applications.

In this section we discuss the identification problem which consists of choos-
ing an appropriate identification model and adjusting its parameters according



4.2. THE RHONN MODEL 21

to some adaptive law, such that the response of the model to an input signal (or a
class of input signals), approximates the response of the real system to the same
input. Since a mathematical characterization of a system is often a prerequisite
to analysis and controller design, system identification is important not only for
understanding and predicting the behavior of the system, but also for obtaining
an effective control law. For identification models we use recurrent high-order
neural networks. High-order networks are expansions of the first-order Hop-
field [40] and Cohen-Grossberg [41] models that allow higher-order interactions
between neurons. The superior storage capacity of has been demonstrated in
[42], [43], while the stability properties of these models for fixed-weight values
have been studied in [44],[45]. Furthermore, several authors have demonstrated
the feasibility of using these architectures in applications such as grammatical
inference [46] and target detection [47].

The idea of recurrent neural networks with dynamical components distributed
throughout the network in the form dynamical neurons and their application
for identification of dynamical systems was proposed in [39]. In this section we
combine distributed recurrent networks with high-order connections between
neurons. At first we show that recurrent high-order neural networks are capa-
ble of modeling a large class of dynamical systems. In particular, it is shown
that if enough higher-order connections are allowed in the network then there
exist weight values such that the input-output behavior of the RHONN model
approximates that of an arbitrary dynamical system whose state trajectory re-
mains in a compact set. In the sequel, we develop weight adjustment laws for
system identification under the assumption that the system to be identified can
be modeled exactly by the RHONN model. It is shown that these adjustment
laws guarantee boundedness of all the signals and weights and furthermore, the
output error converges to zero. Then, this analysis is extended to the case where
there is a nonzero mismatch between the system and the RHONN model with
optimal weight values. We apply this methodology to the identification of a
simple robotic manipulator system and some final conclusions are drawn.

4.2 The RHONN Model

Recurrent neural networks (RNN) models are characterized by a two way con-
nectivity between units (i.e. ,neurons). This distinguishes them from feedward
neural networks, where the output of the unit is connected only to inputs of the
next layer. In the most simple case, the state history of each neuron is governed
by a differential equation of the form:

i = —aiw; + b Y Wiy, (4.1)
J
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Where z; is the state of the ¢ — th neuron,a;,b; are constants, w;; is the
synaptic weight connecting the j — th input to the ¢ — th neuron and y; is the
j — th input to the above neuron. Each y; is either an external input or the
state of a neuron passed through a sigmoid function (i.e., y; = s(z;)), where
s(+) denotes the sigmoid nonlinearity.

The dynamic behavior and the stability properties of neural network models
of the form (4.1) have been studied extensively by various researchers [40],[41],[45],[44].
These studies exhibited encouraging results in application areas such as associa-
tive memories, but they also revealed the limitations inherent in such a simple
model.

In a recurrent second order neural network, the input to the neuron is not
only a linear combination of the components y;, but also of their product y;ys.
One can pirsue this line further to include higher order interactions represented
by triplets y;yry;, quadraplets, etc. forming the recurrent high order neural
networks (RHONNS).

Let us now consider a RHONN consisting of n neurons and m inputs. The
state of each neuron is governed by a differential equation of the form:

Lo ‘ M . d; (k)
&y = —azr; +b; | > wik [[ y; (4.2)
k=1  jelx

Where {I1, I, ..., 11} is a collection of L not-ordered subsets of {1,2,...,m+
n}, a;,b; are real coefficients, w;y, are the adjustable synaptic weights of the neu-
ral network and d;(k) are non-negative integers. The state of the ¢ — th input
neuron is again represented by z; and ¥ := [y1,%2 - - Ymsn)? is the input vector
to each neuron defined by:

s(z1)
Y1

S\

Y2 (w2)
s(x

Yy= Yn = (u n) (4 3)

1
Yn+1 Us
yn-i-nL U
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where u := [uy,uz - - - um]T is the external input vector to the network. The
function s(-) is monotone-increasing, differentiable and is usually represented
by sigmoids of the form:

1

— - 4.4
T op 7 (4.4)

s(x) =

where the parameters a,0 represent the bound and slope of sigmoid’s cur-
vature and v is a bias constant. In the special case where a = § = 1,y = 0,
we obtain the logistic function and by setting a = = 2,7 = 1, we obtain the
hyperbolic tangent function. These are the sigmoid activation functions most
commonly used in neural network applications.

We now introduce the L—dimensional vector z, which is defined as

1
2 Jjel 4;(2)
2 H ij

j€l2
ZL .dj L

[I Y; )

JElL

Hence, the RHONN model (4.2) becomes
L

T; = —a;x; + b; {Z wi}czk:| . (4.6)
k=1

Moreover, if we define the adjustable parameter vector as
w; = bi[wir, wiz - - wig]”,

then (4.6) becomes

T; = —a;T; + wsz (4.7
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The vectors [w; : 4 = 1,2, - -, n|] represent the adjustable weights of the net-
work, while the coefficients [a; : i = 1,2, - -, n] are part of the underlying net-
work architecture and are fixed during training.

In order to guarantee that each neuron z; is bounded-input bounded-output
(BIBO) stable, we shall assume that [a; > 0,7 =1,2,---,n]. In the special case
of a continuous-time Hopfield model [40], we have a; = ﬁ, where R; > 0 and
C; > 0 are the resistance and capacitance connected at the i — th node of the
network respectively.

The dynamic behavior of the overall network is described by expressing (4.7)
in vector notation as:

i = Ar+ W'z, (4.8)
where x = [z1, 29, - -, x| € R*, W = [wy,wa,- - -, w,]T € RE*™ and A =
diag [—ay,—aa, - - -, —ay)] is a nan diagonal matrix. Since [a; > 0,7 =1,2,- -+, n],

A is a stability matrix. Although it is not written explicitly, the vector z is a
function of both the neural network state z and the external input .

4.2.1 Approximation Properties

Consider now the problem of approximating a general nonlinear dynamical sys-
tem whose input-output behavior is given by

X = F(x,u), (4.9)

where x € R" is the system state, u € R™ is the system input and F' :
R"™™ — R™ is a smooth vector field defined on a compact set Y C R"™.

The approximation problem consists of determining whether by allowing
enough higher-order connections, there exists weights W, such that the RHONN
model approximates the input-output behavior of an arbitrary dynamical sys-
tem of the form (4.9).

In order to have a well-posed problem, we assume that F' is continuous and
satisfies a local Lipschitz condition such that (4.9) has a unique solution, in the
sense of Caratheodory [50], and {x(¢),u(¢t)} € ¥ for all ¢ in some time interval
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Jr = {t:0 <t <T}. Theinterval Jr represents the time period over which the
approximation is to be performed. Based on the above assumptions we obtain
the following result:

Theorem 1 Suppose that the system (4.9) and the model (4.8) are initially at
the same state £(0) = x(0), then for any € > 0 and any finite T > 0, there exists
an integer L and a matriz W* € RL™™ such that the state x(t) of the RHONN
model (4.8) with L high-order connections and weight values W = W* satisfies:

sup_|a(t) = x(t)] < e.
0<t<T

The proof of the above theorem can be studied in the Appendix.

The above theorem proves that if sufficiently large number of connections is
allowed in the RHONN model then it is possible to approximate any dynamical
system to any degree of accuracy. This is strictly an existence result; it does not
provide any constructive method for obtaining the optimal weights W*. In what
follows, we consider the learning problem of adjusting the weights adaptively,
such that the RHONN model identifies general dynamic systems.

4.3 Learning Algorithms

In this section we develop weight adjustment laws under the assumption that
the unknown system is modeled exactly by a RHONN architecture of the form
(4.8). This analysis is extended in the next section to cover the case where
there exists a nonzero mismatch between the system and the RHONN model
with optimal weights values. This mismatch is referred to as modeling error.

Although the assumption of no modeling error is not very realistic, the iden-
tification procedure of this section is useful for two reasons:

e The analysis is more straightforward and thus easier to understand.

e The techniques developed for the case of no modeling error are also very
important in the design of weight adaptive laws in the presence of modeling
errors.

Based on the assumption of no modeling error, there exist unknown weight
vectors w},? = 1,2, - -,n, such that each state x; of the unknown dynamic
system (4.9) satisfies:
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where \? is the initial i — th state of the system. In the following, unless
there is no confusion, the arguments of the vector field z will be omitted.

As in standard in system identification procedures, we will assume that the
input u(t) and the state x(t) remain bounded for all ¢ > 0. Based on the defini-
tion of z(x, u), as given in (4.5), this implies that z(x, u) is also bounded. In the
sections that follow we present different approaches for estimating the unknown
parameters w; of the RHONN model.

4.3.1 Filter Regressor RHONN

The following lemma is useful in the development of the adaptive identification
scheme presented in this section.

Le