
Diploma Thesis

Bilinear Neuro-Fuzzy Indirect Adaptive Control of
unknown Nonlinear Systems

Filipp N. Andreadis

Author

Technical University of Crete
Department of Electronic and Computer Engineering
Systems Division

2

Dedication

I would like to thank especially my supervisor professor Mr. Manolis Christodoulou
for his unlimited and precious assistance which helped me a lot in order to finish
this diploma thesis. A man who I had the great fortune to have met in my life
and helped me in a very special way to be in the place I am today. This diploma
thesis is dedicated to him.

Furthermore, I would like to thank form the bottom of my heart Mr. Ioan-
nis Boutalis for his great help and his valuable hints along with his unlimited
patience.

Last but not least, I would like to thank my parents and my girl who have
always been there for me, for their moral support which has been the ally for all
the difficulties I faced during this work. Thank you for being in my life. This
diploma thesis is dedicated to them too.

ii

Contents

List of Figures . v

1 Abstract Chapter 1
1.1 Abstract . 2

2 Introductory Chapter 5
2.1 General Introduction . 6

3 Preliminaries related to Adaptive Fuzzy Systems 11
3.1 Notion and Representation of Adaptive Fuzzy Systems . . . 12

3.1.1 Adaptive Fuzzy Systems 12
3.1.2 Fuzzy system description using rule indicator functions 13

4 The RHONNs 19
4.1 Identification of Dynamical Systems using RHONNs 20
4.2 The RHONN Model . 21

4.2.1 Approximation Properties 24
4.3 Learning Algorithms . 25

4.3.1 Filter Regressor RHONN 26
4.3.2 Filtered Error RHONN 29

4.4 Robust Learning Algorithms 30

5 The HONNF’s 35
5.1 The HONNF’s as Fuzzy Rule Approximators 36

6 Bilinear Neuro-Fuzzy Indirect Adaptive Control 41
6.1 Indirect Adaptive Neuro-Fuzzy Control 42

6.1.1 Neuro-Fuzzy Representation and Identification . . . 42
6.1.2 Parametric and partition centers uncertainty 45
6.1.3 Introduction to the parameter hopping 48

7 Simulation and Results 53
7.1 Simulation of a DC Motor 54

8 Conclusions Chapter 69
8.1 Conclusions . 70

iii

iv CONTENTS

9 Bibliography-References 73

10 Appendix 81
10.1 Proofs of Theorems . 82
10.2 Matlab Code . 94

List of Figures

6.1 Overall scheme of the proposed indirect adaptive neuro-fuzzy con-
trol system. 42

6.2 Overall scheme of the proposed indirect adaptive neuro-fuzzy con-
trol system. 47

6.3 Pictorial Representation of parameter hopping) 49
6.4 Vector explanation of parameter hopping) 50

7.1 Evolution of the armature current of the DC motor system . 57
7.2 Evolution of the angular velocity of the DC motor system . 58
7.3 Evolution of the magnetic flux of the DC motor system . . 59
7.4 Evolution of the control signal of the proposed scheme . . . 60
7.5 Evolution of the error signal between the F-HONNF approxima-

tor and the actual system 61
7.6 Evolution of the armature current of the DC motor system . 62
7.7 Evolution of the angular velocity of the DC motor system . 63
7.8 Evolution of the magnetic flux of the DC motor system . . 64
7.9 Evolution of the control signal of the proposed scheme . . . 65
7.10 Evolution of the error signal between the F-HONNF approxima-

tor and the actual system 66

v

vi LIST OF FIGURES

Chapter 1

Abstract Chapter

1

2 CHAPTER 1. ABSTRACT CHAPTER

1.1 Abstract

In this diploma thesis the main aspect was to develop an indirect adaptive
regulation of unknown nonlinear dynamical systems. This method is based
on a new Neuro-Fuzzy Dynamical Systems definition which uses the concept
of Fuzzy Dynamical Systems (FDS) operating in conjunction with High Order
Neural Network Functions (F-HONNFs). In this problem the plant is considered
unknown, and so we first propose its approximation by a special form of a
fuzzy dynamical system while in the sequel the fuzzy rules are approximated by
appropriate HONNFs. Thus the identification scheme leads up to a Recurrent
High Order Neural Network, which however takes into account the fuzzy output
partitions of the initial FDS. This scheme does not require a-priori experts’
information on the number and type of input variable membership functions
making it less vulnerable to initial design assumptions. At first, we identify the
system around an operation point, and then it is regulated to zero adaptively.
Weight updating laws are provided for the HONNFs, which guarantee that
both the identification error and the system states reach zero exponentially fast,
while keeping all signals in the closed loop bounded. We assure the existence
of the control signal by introducing a method of parameter hopping, which is
incorporated in the weight updating law. The applicability of the method is
tested on a DC Motor system, where it is shown that by following the proposed
procedure one can obtain asymptotic regulation.

1.1. ABSTRACT 3

4 CHAPTER 1. ABSTRACT CHAPTER

Chapter 2

Introductory Chapter

5

6 CHAPTER 2. INTRODUCTORY CHAPTER

2.1 General Introduction

Non linear time invariant dynamical systems can be reprsented by general non-
linear dynamical equations of the form

ẋ = f(x, u) (2.1)

The mathematical description of the system under study is required, so that
we are able to control it. However, the exact mathematical model of the plant,
especially when this is highly complex and nonlinear, is rarely known and for
this reason appropriate identification schemes have to be applied which will pro-
vide us with an approximate model of the plant.

It has been established that neural networks and fuzzy inference systems
are universal approximators [1], [2], i.e., they can approximate any nonlinear
function to any prescribed accuracy provided that sufficient hidden neurons
and training data or fuzzy rules are available. Recently, the combination of
these two different technologies has given rise to fuzzy neural or neuro fuzzy
approaches, that are intended to capture the advantages of both fuzzy logic and
neural networks.

The neural and fuzzy approaches are most of the time equivalent, differing
between each other mainly in the structure of the approximator chosen. In order
to bridge the gap between the neural and fuzzy approaches several researchers
introduce adaptive schemes using a class of parameterized functions that include
both neural networks and fuzzy systems[5] - [10].

In the neuro or neuro fuzzy approaches, most of the already presented works
[10] - [16] deal with idirect adaptive control (trying first to identify the dynamics
of the systems and then generating a control input according to the certainty
equivalence principle), whereas few authors [17] and [18] face the direct approach
(i.e. directly generating the control input to guarantee stability), because it is
not always clear how to construct the control law without knowledge of the
system dynamics.

Recently [20], [21], high order neural network function approximators (HON-
NFs) have been proposed in order to identify nonlinear dynamical systems of
the form (2.1), approximated by a Fuzzy Dynamical System (FDS). The above
approximation depends on the fact that fuzzy rules could be identified with the
help of HONNFs.

2.1. GENERAL INTRODUCTION 7

In this diploma thesis HONNFs are also used for the neuro fuzzy indirect
adaptive control of unknown nonlinear dynamical systems, which includes two
interrelated phases: first the identification of the model-plant and second the
adaptive control of it.

The identification phase usually consists of two main categories: structure
identification and parameter identification. Structure identification involves
finding the main input variables out of all possible, specifying the member-
ship functions, the partition of the input space and determining the number of
fuzzy rules which is often based on a substantial amount of heuristic observation
to express proper strategy’s knowledge. Most of structure identification meth-
ods are based on data clustering, such as subtractive clustering [12], mountain
clustering [11] and fuzzy C-means clustering [9]. The above approaches require
that all input-output data are ready before we start to identify the plant. So,
those approaches are called off-line.

In our proposed approach structure identification is also made off-line and it
is based either on human expertise or on gathered data. However, the required
a-priori information obtained by linguistic information or data is very limited.
The only required information is an estimate of the centers of the output fuzzy
membership functions and it is not necessary on the underlying fuzzy rules, be-
cause this is automatically estimated by the HONNFs. Based on these facts the
proposed method is less vulnerable to initial design assumptions.The parameter
identification part is then easily addressed by HONNFs, based on the linguistic
information regarding the structural identification of the output part and from
the numerical data obtained from the actual system to be modeled.

One of our consideration is that the nonlinear system is affine in the control
and could be approximated with the help of two independent fuzzy subsystems.
Every fuzzy subsystem is approximated by a family of HONNFs, each one be-
ing related with a group of fuzzy rules. Weight updating laws are given and
we prove that when the structural identification is appropriate then the error
reaches zero very fast. Moreover, an appropriate state feedback is constructed
in order to achieve asymptotic regulation of the output, while keeping all signals
of the system bounded in the closed loop. The existence of the control signal is
always assured by introducing a method of parameter hopping, which is incor-
porated in the weight updating law.

The diploma thesis is organized as follows. Section 3.1 presents some prelim-
inaries related to the concept of Adaptive Fuzzy Systems(AFS) and the termi-
nology used in the remaining thesis, while section 4.1 presets some preliminaries
related to the Recurrent Neural Networks. Section 5.1 reports on the ability of
HONNFs to act as fuzzy rule approximators. The indirect neuro fuzzy adaptive
regulation of affine in the control dynamical systems is presented in Section 6.1,
where the method of parameter hopping is explained and the associated weight
adaptation laws are given. Simulation results on the control of a DC Motor sys-

8 CHAPTER 2. INTRODUCTORY CHAPTER

tem are given in Section 7.1, showing that by following the proposed procedure
one can obtain asymptotic regulation. Finally, Section 8.1 concludes the work
of this diploma thesis, while the appendix includes the proofs of the theorems
we used and the matlab code of the simulation of the DC motor.

2.1. GENERAL INTRODUCTION 9

10 CHAPTER 2. INTRODUCTORY CHAPTER

Chapter 3

Preliminaries related to
Adaptive Fuzzy Systems

11

12CHAPTER 3. PRELIMINARIES RELATED TO ADAPTIVE FUZZY SYSTEMS

3.1 Notion and Representation of Adaptive Fuzzy
Systems

In this chapter of the diploma thesis it is briefly presented the notion of adaptive
fuzzy systems and their conventional representation. It is also introduced the
representation of of fuzzy systems using the fuzzy rule indicator functions, which
is used for the development of the proposed method.

3.1.1 Adaptive Fuzzy Systems

Some basic characteristics of an adaptive fuzzy system representation, like the
performance, complexity and adaptive law, can be quite different depending
upon whether the representations is linear or nonlinear in its adjustable param-
eters. Adaptive fuzzy controllers depend also on the type of the adaptive fuzzy
subsystems they use. According to [2], we classify adaptive fuzzy controllers
into two main types:

• The fuzzy logic systems which are used in an adaptive fuzzy controller
are linear in their adjustable parameters. This adaptive fuzzy controller
is called a first-type adaptive fuzzy controller

• The fuzzy logic systems which are used in an adaptive fuzzy controller are
nonlinear in their adjustable parameters. This adaptive fuzzy controller
is called a second-type adaptive fuzzy controller

Both first and second types of adaptive fuzzy controllers are nonlinear adap-
tive controllers. Suppose that the adaptive fuzzy system is intended to approx-
imate the nonlinear function f(x). In the first-type adaptive fuzzy controller,
Wang [2] uses the following fuzzy logic representation:

f(x) =
M∑
l=1

θlξl(x) = θT ξ(x) (3.1)

where M is the number of fuzzy rules, θ = (θ1, ..., θM)T , ξ(x) = (ξ1(x), ..., ξM (x))T

and ξl(x) is the fuzzy basis function defined by

ξl(x) =

∏n
i=1 µF li (xi)∑M

l=1

∏n
i=1 µF li (xi)

3.1. NOTION AND REPRESENTATION OF ADAPTIVE FUZZY SYSTEMS13

θl are adjustable parameters, and µF li are given membership functions of the
input variables (can be Gaussian, triangular, or any other type of membership
functions). Clearly, Eq. (3.1) is equivalent to the following equation assuming
that µF li are given: that is, µF li will not change during the adaptation procedure.

f(x) =

∑M
l=1 y

l
(∏n

i=1 µF li (x)
)

∑M
l=1

(∏n
i=1 µF li (x)

) (3.2)

In the second-type adaptive fuzzy controller, the following fuzzy logic system
is used:

f(x) =

∑M
l=1 y

l
(∏n

i=1 exp(−(xi−x
l
i

σli
)2)
)

∑M
l=1

(∏n
i=1 exp(−(xi−x

l
i

σli
)2)
) (3.3)

where yl, xli, σ
l
i are the adjustable parameters.

From the definitions we gave above it is apparent that the success of the
adaptive fuzzy system representations in approximating the nonlinear function
f(x) depends on the careful selection of the fuzzy partitions of input and output
variables, the selected type of the membership functions and the proper number
of fuzzy rules. In approximating complex nonlinear functions, this number may
become very large [8] leading to parameter explosion.

3.1.2 Fuzzy system description using rule indicator func-
tions

Let us consider the system with input space u ⊂ Rm and state - space x ⊂ Rn

, with its i/o relation being governed by the following equation

zt = f(xt, ut) (3.4)

where f(·) is a continuous function and the superscript t denotes the temporal
variable. In case the system is dynamic the above equation could be replaced
by the following difference equation

xt+1 = f(xt, ut) (3.5)

where the superscript t denotes the temporal variable, t = 1, 2,
By setting y = [x, u] and omiting superscript t, Eq. (3.4) may be rewritten

as follows
z = f(y) (3.6)

In many practical situations, we are unable to measure accurately the states
and inputs of a system of the form in (3.4); in most cases, we are provided
with cheap sensors, expert’s opinions, e.t.c which provide us with imprecise
estimations of the state and input vectors. Thus, instead of vectors x and u we
are provided with some linguistic variables x̃i and ũi, respectively.

14CHAPTER 3. PRELIMINARIES RELATED TO ADAPTIVE FUZZY SYSTEMS

Let now ỹ := (x̃, ũ) and suppose that each linguistic variable ỹi belongs to
a finite set Li with cardinality ki, i.e. ỹi takes one of ki variables. Let also ỹij
denotes the ith element of the set Li. Then we may define a function h̃i : R→ Li
to be the output function of the system in Eq. (3.6) in the case that

ỹi = h̃i(yi) (3.7)

Note that h̃i(·) maps the real axis into a set of linguistic variables Li , and thus
h̃i(·) is not defined in the usual way. In order to overcome such a problem we
define the function h̃i : R→ {1, 2, ..., ki} as follows

h̃i(yi) = ỹij ⇐⇒ hi(yi) = j (3.8)

Since hi(·) is very similar to h̃i(·) , we will call the function hi(·) the ith output
of the system in Eq. (3.6). Also, h̃i(·) and consequently hi(·) is related with the
structural identification part mentioned in section 2.1 and arrive after using an
automatic procedure based on system operation data or after consulting human
experts advising on how to partition the system variables.

Following the standard approach in fuzzy systems theory we associate with
each ỹij a membership function µ̃ij(yi) ∈ [0, 1] which satisfies

µ̃ij(yi) = max
l
µ̃il(yi)⇐⇒ hi(yi) = j (3.9)

From the definition of the functions h̃i(·) [or hi(·)] we have that the space
y = x×u is partitioned in the following way: let yij be defined as follows

yij = {yi ∈ R : hi(yi) = j} (3.10)

i.e. yij denotes the set of all the variables yi that output the same linguistic
variable ỹij . Thus y is partitioned into disjoint subsets yj1,j2,...,jn+m

defined as
follows

yj1,j2,...,jn+m
:= y1j1

× · · · × y(n+m)jn+m
, ji ∈ {1, 2, ..., ki} (3.11)

In a similar way we may define the sets xij , uij , zij and the sets xj1,j2,...,jn ,
uj1,j2,...,jn and zj1,j2,...,jn . Note now the following fact: for two vectors (x(1), u(1)) ∈
yj1,j2,...,jn+m

and (x(2), u(2)) ∈ yj1,j2,...,jn+m
there maybe

hi(fi(x(1), u(1))) 6= hi(fi(x(2), u(2))) (3.12)

for some i ∈ {1, 2, ..., n} , i.e. two input vectors belonging to the same subset
yj1,j2,...,jn+m

may point - through the vector - field f(·) , to different subsets

zl1,l2,...,ln . Let now Ωl1,l2,...,lnj1,j2,...,jn+m
be defined as the subset of yj1,j2,...,jn+m

that
points - through the vector - field f(·) , to the subsets zl1,l2,...,ln , i.e

Ωl1,l2,...,lnj1,j2,...,jn+m
:=

3.1. NOTION AND REPRESENTATION OF ADAPTIVE FUZZY SYSTEMS15

= {(x, u) ∈ yj1,j2,...,jn+m
: h1(z1) = l1, ..., hn(zn) = ln}

and define the transition possibilities πl1,...,lnj1,...,jn+m
as follows

πl1,...,lnj1,...,jn+m
:=

∫
(x,u)∈Ω

l1,...,ln
j1,...,jn+m

dXdU∫
(x,u)∈yj1,...,jn+m

dXdU
(3.13)

where πl1,...,lnj1,...,jn+m
is a number belonging to a set [0,1] that represents the

fraction of the vectors (x,u) in yj1,...,jn+m that points - through the vector field
f(·) to the set χl1,...,ln . Obviously∑

l1,...,ln

πl1,...,lnj1,...,jn+m
= 1 (3.14)

In order to present the lemma of Section 5.1, we define the indicator func-
tion: Let I l1,l2,...,lnj1,j2,...,jn+m

denote the indicator function of the subset Ωl1,l2,...,lnj1,j2,...,jn+m

, that is,

I l1,...,lnj1,...,jn+m
(x, u) =

{
1 if (x, u) ∈ Ωl1,...,lnj1,...,jn+m

0 otherwise

}
(3.15)

Using the above definitions, we can see that the system in Eq. (3.6) is de-
scribed by fuzzy rules of the form

Rl1,...,lnj1,...,jn+m
⇔


IF y1 is ỹ1j1 AND...

AND yn+m is ỹ(n+m)jn+m

THEN
z1 is z̃1l1 AND...AND zn is z̃nln

with possibility πl1,...,lnj1,...,jn+m

 (3.16)

where obviously ỹiji = h̃i(yti) and z̃ili = h̃i(zi) = h̃i(fi(x, u)).
In the above notation, if j1 = l1, j2 = l2 and . . . and jn = ln, then these

points participate to the definition of the same fuzzy rule. If j1 6= l1 or j2 6= l2
or or jn 6= ln, then these points define alternative fuzzy rules describing this
transition. Consider now the next definition.

Definition 1 A Fuzzy System - (FS) is a set of Fuzzy Rules of the form (Rl1,l2,...,lnj1,j2,...,jn+m
);

the system in Eq. (3.4) is called the Underlying System - (US) of the previously
defined FS. Alternatively, the system in Eq. (3.4) will be called a Generator of
the FS that is described by the rules (Rl1,l2,...,lnj1,j2,...,jn+m

).

Due to the linguistic description of the variables of the FS it is not rare to
have more than one systems of the form in Eq. (3.6) to be generators for the
FS that is described by the rules (Rl1,l2,...,lnj1,j2,...,jn+m

).

16CHAPTER 3. PRELIMINARIES RELATED TO ADAPTIVE FUZZY SYSTEMS

Define now the following system

z =
∑

z̄l1,...,lnj1,...,jn+m
× I l1,...,lnj1,...,jn+m

(χ, u) (3.17)

Where z̄l1,...,lnj1,...,jn+m
∈ Rn be any vector satisfying hi(z̄

l1,...,ln
j1,...,jn+m

(i)) = li where

z̄l1,...,lnj1,...,jn+m
(i) denotes the ith entry of z̄l1,...,lnj1,...,jn+m

Then, according to [20], [21]

the system in (3.17) is a generator for the FS (Rl1,l2,...,lnj1,j2,...,jn+m
).

It is obvious that Eq. (3.17) can be also valid for dynamic systems. In its
dynamical form it becomes

χt+1 =
∑

x̄l1,...,lnj1,...,jn+m
× I l1,...,lnj1,...,jn+m

(χt, ut) (3.18)

Where x̄l1,...,lnj1,...,jn+m
∈ Rn be any vector satisfying hi(x̄

l1,...,ln
j1,...,jn+m

(i)) = li where

x̄l1,...,lnj1,...,jn+m
(i) denotes the ith entry of x̄l1,...,lnj1,...,jn+m

.

3.1. NOTION AND REPRESENTATION OF ADAPTIVE FUZZY SYSTEMS17

18CHAPTER 3. PRELIMINARIES RELATED TO ADAPTIVE FUZZY SYSTEMS

Chapter 4

The RHONNs

19

20 CHAPTER 4. THE RHONNS

4.1 Identification of Dynamical Systems using
RHONNs

The use of multi-layer neural networks for pattern recognition and for modeling
of ”static” systems is currently well-known. Given pairs of input-output data
(which may be related by an unknown algebraic relation, a so-called ”static”
function) the network is trained to learn the particular input-output map. The-
oretical work by several researchers, including [23], and [24], have proven that,
even with one hidden layer, neural networks can approximate any continuous
function uniformly over a compact domain, provided the network has a suffi-
cient number of neural networks for modeling and identification of dynamical
systems. These networks, which naturally involve dynamic elements in the form
of feedback connections, are known as recurrent neural networks.

Several training methods for recurrent networks have been proposed in the
literature. Most of these methods rely on the gradient methodology and in-
volve the computation of partial derivatives, on sensitive functions. In this
respect, they are extensions of the backpropagation algorithm for feedforward
neural networks [25]. Examples of such learning algorithms include the recur-
rent backpropagation [26], the backpropagation-through-time algorithms [29],
the real-time recurrent learning algorithm [30], and the dynamic backpropaga-
tion [28] algorithms. The last approach is based on the computation of sensitiv-
ity models for generalized neural networks. These generalized neural networks,
which were originally proposed in [27], combine feedforward neural networks
and dynamical components in the form of stable rational transfer functions.

Although the training methods mentioned above have been used successfully
in many empirical studies, they share some fundamental drawbacks. One draw-
back is the fact that, in general, they rely on some type of approximation for
computing the partial derivative. Furthermore, these training methods require
a great deal of computational time. A third disadvantage is the inability to ob-
tain analytical results concerning the convergence and stability of these schemes.

Recently, there has been a concentrated effort towards the design and anal-
ysis of learning algorithms that are based on the Lyapunov stability theory [31],
[32], [34], [33], [35], [36], [37], [38], [39] targeted at providing stability, con-
vergence and robustness proofs, in this way, bridging the existed gap between
theory and applications.

In this section we discuss the identification problem which consists of choos-
ing an appropriate identification model and adjusting its parameters according

4.2. THE RHONN MODEL 21

to some adaptive law, such that the response of the model to an input signal (or a
class of input signals), approximates the response of the real system to the same
input. Since a mathematical characterization of a system is often a prerequisite
to analysis and controller design, system identification is important not only for
understanding and predicting the behavior of the system, but also for obtaining
an effective control law. For identification models we use recurrent high-order
neural networks. High-order networks are expansions of the first-order Hop-
field [40] and Cohen-Grossberg [41] models that allow higher-order interactions
between neurons. The superior storage capacity of has been demonstrated in
[42], [43], while the stability properties of these models for fixed-weight values
have been studied in [44],[45]. Furthermore, several authors have demonstrated
the feasibility of using these architectures in applications such as grammatical
inference [46] and target detection [47].

The idea of recurrent neural networks with dynamical components distributed
throughout the network in the form dynamical neurons and their application
for identification of dynamical systems was proposed in [39]. In this section we
combine distributed recurrent networks with high-order connections between
neurons. At first we show that recurrent high-order neural networks are capa-
ble of modeling a large class of dynamical systems. In particular, it is shown
that if enough higher-order connections are allowed in the network then there
exist weight values such that the input-output behavior of the RHONN model
approximates that of an arbitrary dynamical system whose state trajectory re-
mains in a compact set. In the sequel, we develop weight adjustment laws for
system identification under the assumption that the system to be identified can
be modeled exactly by the RHONN model. It is shown that these adjustment
laws guarantee boundedness of all the signals and weights and furthermore, the
output error converges to zero. Then, this analysis is extended to the case where
there is a nonzero mismatch between the system and the RHONN model with
optimal weight values. We apply this methodology to the identification of a
simple robotic manipulator system and some final conclusions are drawn.

4.2 The RHONN Model

Recurrent neural networks (RNN) models are characterized by a two way con-
nectivity between units (i.e. ,neurons). This distinguishes them from feedward
neural networks, where the output of the unit is connected only to inputs of the
next layer. In the most simple case, the state history of each neuron is governed
by a differential equation of the form:

ẋi = −aixi + bi
∑
j

wijyj (4.1)

22 CHAPTER 4. THE RHONNS

Where xi is the state of the i − th neuron,ai,bi are constants, wij is the
synaptic weight connecting the j − th input to the i − th neuron and yj is the
j − th input to the above neuron. Each yj is either an external input or the
state of a neuron passed through a sigmoid function (i.e., yj = s(xj)), where
s(·) denotes the sigmoid nonlinearity.

The dynamic behavior and the stability properties of neural network models
of the form (4.1) have been studied extensively by various researchers [40],[41],[45],[44].
These studies exhibited encouraging results in application areas such as associa-
tive memories, but they also revealed the limitations inherent in such a simple
model.

In a recurrent second order neural network, the input to the neuron is not
only a linear combination of the components yi, but also of their product yiyk.
One can pirsue this line further to include higher order interactions represented
by triplets yiykyl, quadraplets, etc. forming the recurrent high order neural
networks (RHONNs).

Let us now consider a RHONN consisting of n neurons and m inputs. The
state of each neuron is governed by a differential equation of the form:

ẋi = −aixi + bi

[
M∑
k=1

wik
∏
j∈Ik

y
dj(k)
j

]
(4.2)

Where {I1, I2, ..., IL} is a collection of L not-ordered subsets of {1, 2, ...,m+
n}, ai,bi are real coefficients, wik are the adjustable synaptic weights of the neu-
ral network and dj(k) are non-negative integers. The state of the i − th input
neuron is again represented by xi and y := [y1, y2 · · · ym+n]T is the input vector
to each neuron defined by:

y =



y1

y2

.

.

.
yn
yn+1

.

.

.
yn+m



=



s(x1)
s(x2)
.
.
.

s(xn)
u1

u2

.

.

.
um



(4.3)

4.2. THE RHONN MODEL 23

where u := [u1, u2 · · · um]T is the external input vector to the network. The
function s(·) is monotone-increasing, differentiable and is usually represented
by sigmoids of the form:

s(x) = a
1

1 + e−βx
− γ (4.4)

where the parameters a,β represent the bound and slope of sigmoid’s cur-
vature and γ is a bias constant. In the special case where a = β = 1,γ = 0,
we obtain the logistic function and by setting a = β = 2,γ = 1, we obtain the
hyperbolic tangent function. These are the sigmoid activation functions most
commonly used in neural network applications.

We now introduce the L−dimensional vector z, which is defined as

z =



z1

z2

.

.

.
zL


=



∏
j∈I1

y
dj(1)
j∏

j∈I2
y
dj(2)
j

.

.

.∏
j∈IL

y
dj(L)
j


(4.5)

Hence, the RHONN model (4.2) becomes

ẋi = −aixi + bi

[
L∑
k=1

wikzk

]
. (4.6)

Moreover, if we define the adjustable parameter vector as

wi = bi[wi1, wi2 · · · wiL]T ,

then (4.6) becomes

ẋi = −aixi + wTi z. (4.7)

24 CHAPTER 4. THE RHONNS

The vectors [wi : i = 1, 2, · · ·, n] represent the adjustable weights of the net-
work, while the coefficients [ai : i = 1, 2, · · ·, n] are part of the underlying net-
work architecture and are fixed during training.

In order to guarantee that each neuron xi is bounded-input bounded-output
(BIBO) stable, we shall assume that [ai > 0, i = 1, 2, · · ·, n]. In the special case
of a continuous-time Hopfield model [40], we have ai = 1

RiCi
, where Ri > 0 and

Ci > 0 are the resistance and capacitance connected at the i − th node of the
network respectively.

The dynamic behavior of the overall network is described by expressing (4.7)
in vector notation as:

ẋi = Ax+WT z, (4.8)

where x = [x1, x2, · · ·, xn]T ∈ Rn,W = [w1, w2, · · ·, wn]T ∈ RLxn and A =
diag [−a1,−a2, · · ·,−an] is a nxn diagonal matrix. Since [ai > 0, i = 1, 2, · · ·, n],
A is a stability matrix. Although it is not written explicitly, the vector z is a
function of both the neural network state x and the external input u.

4.2.1 Approximation Properties

Consider now the problem of approximating a general nonlinear dynamical sys-
tem whose input-output behavior is given by

χ̇ = F (χ, u), (4.9)

where χ ∈ Rn is the system state, u ∈ Rn is the system input and F :
Rn+m → Rn is a smooth vector field defined on a compact set y ⊂ Rn+m.

The approximation problem consists of determining whether by allowing
enough higher-order connections, there exists weights W , such that the RHONN
model approximates the input-output behavior of an arbitrary dynamical sys-
tem of the form (4.9).

In order to have a well-posed problem, we assume that F is continuous and
satisfies a local Lipschitz condition such that (4.9) has a unique solution, in the
sense of Caratheodory [50], and {χ(t), u(t)} ∈ y for all t in some time interval

4.3. LEARNING ALGORITHMS 25

JT = {t : 0 ≤ t ≤ T}. The interval JT represents the time period over which the
approximation is to be performed. Based on the above assumptions we obtain
the following result:

Theorem 1 Suppose that the system (4.9) and the model (4.8) are initially at
the same state x(0) = χ(0), then for any ε > 0 and any finite T > 0, there exists
an integer L and a matrix W ∗ ∈ RLxn such that the state x(t) of the RHONN
model (4.8) with L high-order connections and weight values W = W ∗ satisfies:

sup
0≤t≤T

|x(t)− χ(t)| ≤ ε.

The proof of the above theorem can be studied in the Appendix.

The above theorem proves that if sufficiently large number of connections is
allowed in the RHONN model then it is possible to approximate any dynamical
system to any degree of accuracy. This is strictly an existence result; it does not
provide any constructive method for obtaining the optimal weights W ∗. In what
follows, we consider the learning problem of adjusting the weights adaptively,
such that the RHONN model identifies general dynamic systems.

4.3 Learning Algorithms

In this section we develop weight adjustment laws under the assumption that
the unknown system is modeled exactly by a RHONN architecture of the form
(4.8). This analysis is extended in the next section to cover the case where
there exists a nonzero mismatch between the system and the RHONN model
with optimal weights values. This mismatch is referred to as modeling error.

Although the assumption of no modeling error is not very realistic, the iden-
tification procedure of this section is useful for two reasons:

• The analysis is more straightforward and thus easier to understand.

• The techniques developed for the case of no modeling error are also very
important in the design of weight adaptive laws in the presence of modeling
errors.

Based on the assumption of no modeling error, there exist unknown weight
vectors w∗i , i = 1, 2, · · ·, n, such that each state χi of the unknown dynamic
system (4.9) satisfies:

26 CHAPTER 4. THE RHONNS

χ̇i = −aiχi + w∗i z(χ, u), χi(0) = χ0
i . (4.10)

where χ0
i is the initial i − th state of the system. In the following, unless

there is no confusion, the arguments of the vector field z will be omitted.

As in standard in system identification procedures, we will assume that the
input u(t) and the state χ(t) remain bounded for all t ≥ 0. Based on the defini-
tion of z(χ, u), as given in (4.5), this implies that z(χ, u) is also bounded. In the
sections that follow we present different approaches for estimating the unknown
parameters w∗i of the RHONN model.

4.3.1 Filter Regressor RHONN

The following lemma is useful in the development of the adaptive identification
scheme presented in this section.

Lemma 1 The system described by

χ̇i = −aiχi + w∗i z(χ, u), χi(0) = χ0
i (4.11)

can be expressed as

ζ̇i = −aiζi + zi, ζi(0) = 0, (4.12)

χi = w∗Ti ζi + e−aitχ0
i (4.13)

The proof of the above lemma can be studied in the Appendix.

Using Lemma 1, the dynamical system described by (4.9) is rewritten as

χi = w∗Ti ζi + εi, i = 1, 2, · · · , n, (4.14)

where ζi is a filtered version of the vector z(as described by (4.5)) and
εi := eaitχ0

i is an exponentially decaying term which appears if the system
is in a nonzero initial state. By replacing the unknown weight vector w∗i in
(4.14), by its estimate wi and ignoring the exponentially decaying term εi, we
obtain the RHONN model:

4.3. LEARNING ALGORITHMS 27

xi = wTi ζi, i = 1, 2, · · · , n. (4.15)

The exponentially decaying term εi(t) can be omitted in (4.15) since, as we
shall see later, it does not affect the convergence properties of the scheme. The
state error ei = xi − χi between the system and the model satisfies:

ei = φTi ζi − εi, (4.16)

where φi = wi − w∗i is the weight estimation error. The problem now is to
derive suitable adaptive laws for adjusting the weights wi, for i = 1, · · · , n. This
can be achieved by using well-known optimization techniques for minimization
of the quadratic cost functional

J(w1, · · · , wn) =
1
2

n∑
i=1

e2
i =

1
2

n∑
i=1

[
(wi − w∗i)T ζi − εi

]2
. (4.17)

Depending on the optimization method that is employed, different wight
adjustment laws can be derived. Here, we consider the gradient and the least-
squares method [51]. The gradient method yields

ẇi = −Γiζiei, i = 1, 2, · · · , n, (4.18)

where Γi is a positive definite matrix referred to as the adaptive gain or
learning rate. With this we obtain

{
ẇi = −Piζiei
Ṗi = −PiζiζTi Pi

i = 1, 2, · · · , n (4.19)

where P (0) is a symmetric positive definite matrix. In the above formula-
tion, the least-squares algorithm can be thought of as a gradient algorithm with
a time-varying learning rate.

The stability and convergence properties of the weight adjustment laws given
by (4.18),(4.19) are well-known in the adaptive control literature(see, for ex-
ample, [49],[52]).

Theorem 2 Consider the RHONN model given by

xi = wTi ζi, i = 1, 2, · · ·, n, (4.20)

28 CHAPTER 4. THE RHONNS

whose parameters are adjusted according to:

ẇi = −Γiζiei, i = 1, 2, · · ·, n, (4.21)

where Γi is a positive definite matrix referred to as the adaptive gain or
learning rate.
Then for i = 1, 2, · · ·, n it is proved that:

a) ei, φi ∈ L∞ (ei and φ are uniformly bounded)
b) limt→∞ ei(t) = 0

The proof of the above theorem can be studied in the Appendix.

Remark 1 The stability proof for the least-square algorithm:

ẇi = −PiζieiṖi = −PiζiζTi Pi (4.22)

where i = 1, 2, · · ·, n, where P (0) is a symmetric positive definite matrix. In
the above formulation, the least-squares algorithm can be thought of as a gradi-
ent with a time-varying learning rate.

proceeds along the same lines as in the proof of the previous theorem by con-
sidering the Lyapunov function:

V = 1
2

N∑
i=1

(φTi P
−1
i φi +

∞∫
t

ε2i (τ)dτ).

A problem that may be encountered in the application of the least-squares
algorithm is that P may become arbitrarily small and thus slow down adapta-
tion in some directions [51],[49]. This so-called problem can be prevented by
using one of various modifications which prevent P (t) form going to zero. One
such modification is the so-called, where if the smallest eigenvalue of P (t) be-
comes smaller than ρ1 then P (t) is reset to P (t) = ρoI, where ρo ≥ ρ1 > 0 are
some design constraints.

Remark 2 The above theorem does not imply that the weight estimation error
φi = wi − w∗i converges to zero. In order to achieve convergence of the weights
to their correct value the additional assumption of persistent excitation needs to
be persistently exciting if there exist positive scalars c and d and T such that for
all t ≥ 0

4.3. LEARNING ALGORITHMS 29

cI ≤
t+T∫
t

ζi(τ)ζi(τ)T dτ ≤ dI,

where is the LxL identity matrix.

Remark 3 The learning algorithms developed above can be extended to the case
where the underlying neuron structure is governed by the higher-order Cohen-
Grossberg model [41],[44]:

ẋi = −ai(xi)

bi(xi) +
L∑
k=1

wik
∏
j∈Ik

y
dj(k)
j

 (4.23)

where ai(·), bi(·) satisfy certain conditions required for the boundedness of the
state variables [44]. It can be seen readily that in (4.23) the differential equation
is still linear in the weights and hence a similar parameter estimation procedure
can be applied.

The filtered-regressor RHONN model considered in this subsection relies on
filtering the vector z, which is sometimes referred to as the regressor vector.
By using this filtering technique, it is possible to obtain a very simple algebraic
expression for the error, which allows the application of well-known optimiza-
tion procedures for designing and analyzing weight adjustment laws but there is
an important drawback to this method, namely the complex configuration and
heavy computational demands required in the filtering of the regressor. Gen-
erally, the dimension of the regressor will be larger than the dimension of the
system, i.e., L > n, it might be very expensive computationally to employ to
many filters. In the next subsection we consider a simple structure that requires
only n filters and hence, fewer computations.

4.3.2 Filtered Error RHONN

In developing this identification scheme we start again from the differential equa-
tion that describes the unknown system, i.e.,

χ̇i = −aiχi + w∗Ti z, i = 1, 2, · · ·, n. (4.24)

Based on (4.24), the identifier is now chosen as:

ẋi = −aixi + wTi z, i = 1, 2, · · ·, n. (4.25)

30 CHAPTER 4. THE RHONNS

where wi is again the estimate of the unknown vector w∗i . In this case the
state error ei := xi − χi satisfies:

ėi = −aiei + φTi z, i = 1, 2, · · ·, n. (4.26)

where φi = wi − w∗i . The weights wi, for i = 1, 2, . . . , n are adjustable ac-
cording to the learning laws:

ẇi = −Γizei, (4.27)

where the adaptive gain Γi is a positive definite LxL matrix. In the special
case that Γi = γiI, where γi > 0 is a scalar, then Γi in (4.27) can be replaced
by γi.

The next theorem shows that the identification scheme has similar con-
vergence properties as the filtered regressor RHONN model with the gradient
method for adjusting the weights.

Theorem 3 Consider the filtered error RHONN model given by (4.25) whose
weights are adjustable according to (4.27). Then for i = 1, 2, . . . , n

(a) ei, φi ∈ L∞
(b) limt→∞ ei(t) = 0

The proof of the above theorem can be studied in the Appendix.

4.4 Robust Learning Algorithms

The derivation of the learning algorithms developed in the previous section made
the crucial assumption of no modeling error. Equivalently, it was assumed that
there exist weight vectors w∗i , for i = 1, 2, · · · , n such that each state of the
unknown dynamical system (4.9) satisfies

χ̇i = −aiχi + w∗Ti z(χ, u) (4.28)

4.4. ROBUST LEARNING ALGORITHMS 31

In many cases this assumption will be violated. This is mainly due to an
insufficient number of higher-order terms in the RHONN model. In such cases,
if standard adaptive laws are used for updating the weights, then the presence
of the modeling error in problems related to learning in dynamic environments,
may cause the adjusted weight values (and, consequently, the error ei = xi−χi)
to drift to infinity. Examples of such behavior, which is usually referred to as,
can be found in the adaptive control literature of linear systems [51],[52].

In this section we shall modify the standard weight adjustment laws in order
to avoid the parameter drift phenomenon. These modified weight adjustment
laws will be referred to as robust learning algorithms.

In formulating the problem it is noted that by adding and subtracting
aiχi + w∗Ti z(χ, u) + vi(t), the dynamic behavior of each state of the system
(4.9) can be expressed by a differential equation of the form:

χ̇i = −aiχi + w∗Ti z(χ, u) + vi(t) (4.29)

where the modeling error vi(t) is given by

vi(t) := Fi(χ(t), u(t)) + aiχ(t)− w∗Ti z(χ(t), u(t)) (4.30)

The function Fi(χ, u) denotes the i−th component of the vector field F (χ, u),
while the unknown optimal weight vector w∗i is defined as the value of the weight
vector wi that minimizes the L∞-norm difference between F (χ, u) + aiχ and
wTi z(χ, u) for all (χ, u) ∈ y ⊂ Rn+m, subject to the constraint that |wi| ≤ Mi,
where Mi is a large design constraint. The region y denotes the smallest com-
pact subset of Rn+m that includes all the values that (χ, u) can take, i.e.,
(χ(t), u(t)) ∈ y for all t ≥ 0. Since by assumption u(t) is uniformly bounded
and the dynamical system to be identified is BIBO stable, the existence of such
y is assured. It is pointed out that in our analysis we do not require knowledge
of the region y, nor upper bounds for the modeling error vi(t).

In summary, for i = 1, 2, . . . , n, the optimal weight vector w∗i is defined as

w∗i := arg min
|wi|≤Mi

{
sup

(χ,u)∈y
|Fi(χ, u) + aiχ− wTi z(χ, u)|

}
(4.31)

32 CHAPTER 4. THE RHONNS

The reason for restricting w∗i to a ball of radius Mi is twofold: firstly, to
avoid any numerical problems that m ay arise owing to having weight values
that are too large, and secondly, to allow the use of the σ-modification [51],
which will be developed below to handle the parameter drift problem. The for-
mulation developed above follows the methodology of [31] closely. Using this
formulation, we now have a system of the form (4.29) instead of (4.28). It is
also noted that since χ(t) and u(t) are bounded, the modeling error vi(t) is also
bounded, i.e., sup

t≥0
|vi(t)| ≤ 0 for some finite constant v̄i.

In what follows we develop robust learning algorithms based on the filtered
error RHONN identifier; however, the same underlying idea can be extended
readily to the filtered-regressor RHONN. Hence, the identifier is chosen as in
(4.25), i.e.,

ẋi = −aixi + wTi z, i = 1, 2, · · · , n (4.32)

where wi is the estimate of the unknown optimal weight vector w∗i . Using
(4.29),(4.32), the state error ei = xi − χi satisfies

ėi = −aiei + φTi z − vi, (4.33)

where φi = wi − w∗i . Owing to the presence of the modeling error vi, the
learning laws given by (4.27) are modified as follows:

ẇi =
{

−Γizei, if |wi| ≤Mi

−Γizei − σiΓiwi, if |wi| > Mi

}
(4.34)

where σi is a positive constant chosen by the designer. The above weight
adjustment law is the same as (4.27) if wi belongs to a ball of radius Mi. In
the case that the weight leave this ball, the weight adjustment law is modified
by the addition of the leakage term σiΓiwi, whose objective is to prevent the
weight values from drifting to infinity. This modification is known as the [51].

In the following theorem we use the vector notation v := [v1, · · · , vn]T and
e := [e1, · · · , en]T .

4.4. ROBUST LEARNING ALGORITHMS 33

Theorem 4 Consider the filtered error RHONN model given by (4.32) whose
weights are adjusted according to (4.34). Then for i = 1, 2, · · · , n

(a) ei, φi ∈ L∞
(b)there exist constants λ,m such that

t∫
0

|e(τ)2|dτ ≤ λ+m
t∫

0

|v(τ)2|dτ

The proof of the theorem can be studied in the Appendix.

Remark 4 It is noted that the σ modification causes the adaptive law (4.34) to
be discontinuous; therefore standard existence and uniqueness results of solutions
to differential equations are in general not applicable. In order to overcome the
problem of existence and uniqueness of solutions, the trajectory behavior of wi(t)
can be made ”smooth” on the discontinuity hypersurface {wi ∈ RL : |wi| = Mi}
by modifying the adaptive law (4.34) to

ẇi =


−Γiziei, if {|wi| < Mi} or {|wi| = Mi and wTi Γizei > 0}

−Γizei+w
T
i Γizei

wTi Γiwi
Γiwi , if {|wi| = Mi} and {−σiwTi Γiw ≤ wTi Γizei ≤ 0}

−Γizei − σiΓiwi , if {|wi| > Mi} or {|wi| = Mi} and {wTi Γizei < −σiwTi Γiw}


(4.35)

As shown in [53], the adaptive law (4.35) retains all the properties of (4.34)
and, in addition, guarantees the existence of a unique solution, in the sense
of Caratheodory [50]. The issue of existence and uniqueness of solutions in
adaptive systems is treated in detail in [53].

34 CHAPTER 4. THE RHONNS

Chapter 5

The HONNF’s

35

36 CHAPTER 5. THE HONNF’S

5.1 The HONNF’s as Fuzzy Rule Approxima-
tors

The main idea in presenting the basic result of this section of the thesis lies on
the fact that functions of high order neurons are capable of approximating dis-
continuous functions. So, we use high order neural networks functions in order
to approximate the indicator functions I l1,...,lnj1,...,jn+m

.g disc However, in order the
approximation problem to make sense the space y := x× u must be compact.
Thus, our first assumption is the following:

(A.1) y := x×u is a compact set.

Notice that since y ⊂ <n+m the above assumption is identical to the as-
sumption that it is closed and bounded. Also, it is noted that even if y is not
compact we may assume that there is a time instant T such that (xt, ut) remain
in a compact subset of y for all t < T ; i.e. if yT := {(xt, ut) ∈ y, t < T} We
may replace assumption (A.1) by the following assumption

(A.2) yT is a compact set.

It is worth noticing, that while assumption (A.1) requires the system in Eq.
(3.5) solutions to be bounded for all ut ∈ U and x0 ∈ X, assumption (A.2) re-
quires the system in Eq. (3.5) solutions to be bounded for a finite time period;
thus, assumption (A.1) requires the system in Eq. (3.5) to be BIBS stable while
assumption (A.2) is valid for systems that are not BIBS stable and, even more,
for unstable systems and systems with finite escape times.

We are now ready to show that high order neural network functions are
capable of approximating the indicator functions I l1,...,lnj1,...,jn+m

Let us define the
following high order neural network functions (HONNFs).

N(x, u;w,L) =
L∑
k=1

wk
∏
j∈Ik

Φdj(k)
j (5.1)

Where {I1, I2, ..., IL} is a collection of L not-ordered subsets of {1, 2, ...,m+
n}, dj(k) are non-negative integers, Φj are sigmoid functions of the state or the
input, which are the elements of the following vector

5.1. THE HONNF’S AS FUZZY RULE APPROXIMATORS 37

Φ =



Φ1

.

.

.
Φn

Φn+1

.

.

.
Φm+n


=



S(x1)
.
.
.

S(xn)
S(u1)
.
.
.

S(um)


(5.2)

where

S(u) or S(x) = a
1

1 + e−βx
− γ (5.3)

and w := [w1 · · · wL]T are the HONNF weights. Eq. (5.1) can also be written

N(x, u;w,L) =
L∑
k=1

wksk(x, u) (5.4)

Where sk(x, u) are high order terms of sigmoid functions of the state and/or
input.

The next lemma [20] states that a HONNF of the form in Eq. (5.4) can
approximate the indicator function I l1,...,lnj1,...,jn+m

.

Lemma 2 Consider the indicator function I l1,...,lnj1,...,jn+m
and the family of the

HONNFs N(x, u;w,L). Then for any ε > 0 there is a vector of weights wj1,...,jn+m;l1,...,ln

and a number of Lj1,...,jn+m;l1,...,ln high order connections such that

sup
(x,u)∈ȳ

{I l1,...,lnj1,...,jn+m
(x, u)−

−N(x, u;wj1,...,jn+m;l1,...,ln , Lj1,...,jn+m;l1,...,ln)} < ε

where ȳ ≡ y if assumption (A.1) is valid and ȳT ≡ y if assumption (A.2) is
valid.

Let us now keep Lj1,...,jn+m;l1,...,ln constant, i.e. let us preselect the number
of high order connections, and let us define the optimal weights of the HONNF
with Lj1,...,jn+m;l1,...,ln high order connections as follows

w̄j1,...,jn+m;l1,...,ln := arg min
w∈Rj1,...,jn+m;l1,...,ln

×

38 CHAPTER 5. THE HONNF’S sup
(x,u)∈ȳ

∣∣∣I l1,...,lnj1,...,jn+m
(x, u)−N(x, u;w,Lj1,...,jn+m;l1,...,ln)

∣∣∣


and the modelling error as follows

νl1,...,lnj1,...,jn+m
(x, u) = I l1,...,lnj1,...,jn+m

(x, u)−

−N(x, u;wj1,...,jn+m;l1,...,ln , Lj1,...,jn+m;l1,...,ln)

It is worth noticing that from Lemma 2 we have that sup
(x,u)∈ȳ

∣∣∣νl1,...,lnj1,...,jn+m
(x, u)

∣∣∣
can be made arbitrarily small by simply selecting appropriately the number of
high order connections.

Using the approximation Lemma 2 it is natural to approximate system in
Eq. (3.18) by the following dynamical system

zt+1 =
∑
x̄l1,...,lnj1,...,jn+m

(x, u)×

×N(zt, ut;wj1,...,jn+m;l1,...,ln , Lj1,...,jn+m;l1,...,ln)

Let now χt(χ0, ut) denote the solution in Eq. (3.18) given that the initial
state at t = 0 is equal to χ0 and the input is ut. Similarly we define zt(z0, ut).
Also let

ν(zt, ut) =
∑

(x̄l1,...,lnj1,...,jn+m
(x, u)× νl1,...,lnj1,...,jn+m

(zt, ut)) (5.5)

Then, it can be easily shown that

zt(z0, ut) = χt(z0, ut) + ν(zt, ut) (5.6)

Note now that from the approximation Lemma 2 and the definition of
ν(zt, ut) we have that modeling error can be made arbitrarily small provided
that (zt, ut) remain in a compact set (e.g. ȳ).

Theorem 5 Consider the FDS (Rl1,...,lnj1,...,jn+m
) and suppose that system in Eq.

(3.5) is its underlying system. Assume that either assumptions (A.1) or (A.2)
hold. Also consider the RHONN in [21]. Then, for any ε > 0 there exists a
matrix Θ∗ and a number L∗ high order connections and Θ = Θ∗ is a generator
for the FDS described by the rules

5.1. THE HONNF’S AS FUZZY RULE APPROXIMATORS 39

Rl1,...,lnj1,...,jn+m
⇔


IF y1 is ỹ1j1 AND...

AND yn+m is ỹ(n+m)jn+m

THEN
χ1 is ỹ1l1 AND...AND χn is ỹnln

with possibility
_
π
l1,...,ln
j1,...,jn+m

 .

where

max
∣∣∣πl1,...,lnj1,...,jn+m

− _
π
l1,...,ln
j1,...,jn+m

∣∣∣ < ε.

40 CHAPTER 5. THE HONNF’S

Chapter 6

Bilinear Neuro-Fuzzy
Indirect Adaptive Control

41

42CHAPTER 6. BILINEAR NEURO-FUZZY INDIRECT ADAPTIVE CONTROL

6.1 Indirect Adaptive Neuro-Fuzzy Control

6.1.1 Neuro-Fuzzy Representation and Identification

At first we consider affine in the control, nonlinear ,in general, dynamical sys-
tems of the form

ẋ = f(x) +G(x) · u (6.1)

where the state x ∈ Rn is assumed to be completely measured, the control signal
u is in Rn, f is an unknown smooth vector field which is called the drift term
and G ia a matrix with columns the unknown smooth controlled vector fields
gi, i = 1, 2, ..., n and G = [g1, g2, . . . , gn]. The above class of continuous-time
nonlinear systems are called affine, because in (6.1) the control input appears
linear with respect to G. The main reason for considering this class of nonlinear
systems is that most of the systems encountered in engineering, are by nature
or technical design, affine. Furthermore, we note that non affine systems of the
form given in (4.11) can be converted into affine, by passing the input through
integrators, a procedure which is widely known as dynamic extension.

In our approach, referred to as indirect adaptive fuzzy-HONNF control, the
parameters of the plant are estimated on-line except of the fuzzy partitions
which are used to calculate the controller parameters. The basic structure of
the indirect fuzzy-RHONN controller is shown in Fig. (6.1).

Reference
Model

Controller

F-RHONN
Identifier

Plant Model

On line
Adaptation
of Weights

Of line
Calculation
of Partitions

u

-+
e

y

u
Persistence
of excitation

X

Figure 6.1: Overall scheme of the proposed indirect adaptive neuro-fuzzy control
system.

6.1. INDIRECT ADAPTIVE NEURO-FUZZY CONTROL 43

The following mild assumptions are also imposed on (6.1), to guarantee
the existence and the uniqueness of solution for any finite initial condition and
u ∈ U .

Proposition: Given a class U of admissible inputs, then for any u ∈ U and
any finite initial condition, the state trajectories are uniformly bounded for any
finite T > 0 . Hence, |x(T)| <∞.

Proposition: The vector fields f, gi, i = 1, 2, ..., n are continuous with respect
to their arguments and satisfy a local Lipchitz condition so that the solution
x(t) of (6.1) is unique for any finite initial condition and u ∈ U .

We are using an affine in the control fuzzy dynamical system, which ap-
proximates the system in (6.1) and uses two fuzzy subsystem blocks for the
description of f(x) and G(x) as follows:

f(χ) = Aχ+
∑

f̄ l1,...,lnj1,...,jn
× I l1,...,lnj1,...,jn

(χ) (6.2)

gi(χ) =
∑

(ḡi)
l1,...,ln
j1,...,jn

× I1l1,...,lnj1,...,jn
(χ) (6.3)

where the summation is carried out over the number of all available fuzzy
rules, I, I1 are appropriate fuzzy rule indicator functions and the meaning of
indices •l1,...,lnj1,...,jn

has already been described in Section 3.1.
According to Lemma for indicator HONNF’s, every indicator function can

be approximated with the help of a suitable HONNF. Therefore, every I, I1 can
be replaced with a corresponding HONNF as follows:

f(χ) = Aχ+
∑

f̄ l1,...,lnj1,...,jn
×N l1,...,ln

j1,...,jn
(χ) (6.4)

ḡi(χ) =
∑

(ḡi)
l1,...,ln
j1,...,jn

×N1
l1,...,ln
j1,...,jn

(χ) (6.5)

where N, N1 are appropriate HONNFs.

In order to simplify the model structure, since some rules result to the same
output partition, we could replace the NNs associated to the rules having the

44CHAPTER 6. BILINEAR NEURO-FUZZY INDIRECT ADAPTIVE CONTROL

same output with one NN and therefore the summations in (6.4),(6.5) are car-
ried out over the number of the corresponding output partitions. Therefore, the
affine in the control fuzzy dynamical system in (6.2), (6.3) is replaced by the
following equivalent affine Recurrent High Order Neural Network (RHONN),
which depends on the centers of the fuzzy output partitions f̄l and ḡi,l

˙̂χ = Aχ̂+
Npf∑
l=1

f̄ ×Nl(χ) +
n∑
i=1

(
Npgi∑
l=1

(ḡi)l ×N1l(χ)

)
ui (6.6)

Or in a more compact form

˙̂χ = Aχ̂+XWS(χ) +X1W1S1(χ)u (6.7)

Where A is a n × n stable matrix which for simplicity can be taken to be
diagonal as A = diag[a1, a2, ..., an] , X, X1 are matrices containing the centres
of the partitions of every fuzzy output variable of f(x) and g(x) respectively,
S(χ), S1(χ) are matrices containing high order combinations of sigmoid func-
tions of the state χ and W,W1 are matrices containing respective neural weights
according to (6.6) and (5.4). The dimensions and the contents of all the above
matrices are chosen so that XWS(χ) is a n×1 vector and X1W1S1(χ) is a n×n
matrix. Without compromising the generality of the model we assume that the
vector fields in (6.3) are such that the matrix G is diagonal. For notational
simplicity we assume that all output fuzzy variables are partitioned to the same
number, m, of partitions. It should be noted that each output fuzzy variable
may have a different number of let’s say mi partitions where

k =
n∑
i=1

mi

Then the matrix X is of dimension n × k and is block diagonal. Without
loss of generality (the same results are true for non-equal partition-numbers
for each variable), X is a n × n · m block diagonal matrix of the form X =
diag(X1, X2, . . . , Xn) with each Xi being an m-dimensional raw vector of the
form

Xi =
[
f̄ i1 f̄ i2 · · · f̄ im

]
where f̄ ip denotes the centre of the p − th partition of fi. Also, S(χ) =[

s1(χ) . . . sk(χ)
]T , where each si(χ) with i = {1, 2, ..., k}, is a high order

combination of sigmoid functions of the state variables and W is a n · m × k
matrix with neural weights. W assumes the form W =

[
W 1 · · · Wn

]T ,

where each W i is a matrix
[
wij l

]
m×k

. Also, X1 is a n × n ·m block diagonal

6.1. INDIRECT ADAPTIVE NEURO-FUZZY CONTROL 45

matrix X1 = diag(1X1, 1X2, . . . , 1Xn) with each 1Xi being an m-dimensional
raw vector of the form

1Xi =
[
ḡi,i1 ḡi,i2 · · · ḡi,im

]
,

where ḡi ik denotes the center of the k-th partition of gii. W1 is a m · n × n
block diagonal matrix W1 = diag(1W 1, 1W 2, . . . , 1Wn), where each 1W i is a
column vector

[
1wij l

]
m×1

of neural weights. Finally, S1(χ) is a n× n diagonal

matrix with each diagonal element si(χ) being a high order combination of
sigmoid functions of the state variables.

According to the above definitions the configuration of the F-HONNF ap-
proximator is shown in Fig. (6.2). When the inputs are given into the fuzzy-
neural network shown in Fig. (6.2), the output of layer IV gives indicator
function outputs which activate the corresponding rules and are calculated by
Eq. (5.4). At layer V, each node performs a fuzzy rule while layer VI gives the
function output.

The approximator of indicator functions, has four layers. At layer I, the
input nodes represent input and/re state measurable variables. At layer II, the
nodes represent the values of the sigmoidal functions. At layer III, the nodes are
the values of high order sigmoidal combinations. The links between layer III and
layer IV are fully connected by the weighting factors W =

[
W 1 · · · Wn

]T
,

the adjusted parameters. Finally, at layer IV the output represents the values
of indicator functions.

6.1.2 Parametric and partition centers uncertainty

We assume the existence of uncertainty in the partition centers and parameter
weight uncertainty, so, we can take into account that the actual system (6.1)
can be modeled by the following neural form:

χ̇ = Aχ+X∗W ∗S(χ) +X∗1W
∗
1 S1(χ)u (6.8)

Define now, the error between the identifier states and the real states as

e = χ̂− χ (6.9)

Then from (6.7) and (6.8) we obtain the error equation

ė = Ae+X∗W ∗S(χ) +X∗1W
∗
1 S1(χ)u

46CHAPTER 6. BILINEAR NEURO-FUZZY INDIRECT ADAPTIVE CONTROL

−XWS(χ)−X1W1S1(χ)u

To this end add and subtract to the above error equation the termsX∗WS(χ)
and X∗1W1S(χ))u

and define: W̃ = W −W ∗ and W̃1 = W1 −W ∗1 .
Then the error equation becomes:

ė = Ae−X∗W̃S(χ)− X̃WS(χ)−X∗1W̃1S1(χ)u− X̃1W1S1(χ)u (6.10)

Our objective is to find suitable control and learning laws to drive both e
and χ to zero, while all other signals in the closed loop remain bounded. Taking
u to be equal to

u = − [X1W1S1(χ)]−1
XWS(χ) (6.11)

and substituting it into (7.4) we finally obtain

˙̂χ = Aχ̂ (6.12)

In the next theorem the weight update laws are given, which can serve identi-
fication and control objectives, provided the updating of the weights of matrices
X1 and W1 is performed in such a way, so that the existence of [X1W1S1(χ)]−1

is assured.

Theorem 6 Consider the identification scheme given by (6.10). Provided that
[X1W1S1(χ)]−1 exists the learning laws:

a) For the elements of W and X{
Ẇ = sgn(X∗)TPeST

Ẋ = PeSTWT (6.13)

b) For the elements of W1 and X1{
Ẇ1 = sgn(X∗1)TPeuTST1

Ẋ1 = PeuTST1 W
T
1

(6.14)

guarantee the following properties.

• e, χ̂, W̃ , W̃1 ∈ L∞, e, χ̂ ∈ L2

• limt→∞ e(t) = 0, limt→∞ χ̂(t) = 0

6.1. INDIRECT ADAPTIVE NEURO-FUZZY CONTROL 47

• limt→∞
˙̃W (t) = 0, limt→∞

˙̃W1(t) = 0

where the matrices sgn(X∗) and sgn(X∗1) are defined in the proof.

The proof can be studied in the Appendix.

x
1

f1 x
2

f1 x
3

f1 x
q-1

f1 x
q

f1

x
1

fn x
2

fn x
r

fn

ð

Ó

ð

ð ð ð

s s

Ó

x1 xn

fF-HONNF

-a1 1÷
t

x
3

fn x
r-1

fn
w1

1
w1

2
w1

k

ð ð ð

s s

Ó

wq

1

wq

2
wq

k

ð

Ó

ð

gF-HONNF

u

ð

Output
layer VI

Rule
layer V

Indicator
layer IV

layer III

layer II

layer I

Figure 6.2: Overall scheme of the proposed indirect adaptive neuro-fuzzy control
system.

48CHAPTER 6. BILINEAR NEURO-FUZZY INDIRECT ADAPTIVE CONTROL

6.1.3 Introduction to the parameter hopping

The weight updating laws presented previously in Section 6.1.2 are valid when
the control law signal in (6.11) exists. Therefore, the existence of [X1W1S1(χ)]−1

has to be assured. Since S1(χ) is diagonal with its elements si(χ) 6= 0 and
X1, W1 are block diagonal the existence of the inverse is assured when 1Xi ·
1W i 6= 0, ∀i = 1, . . . n. Therefore, W1 has to be confined such that

∣∣1Xi · 1W i
∣∣ ≥

θi > 0, with θi being a design parameter. In case the boundary defined by the
above confinement is nonlinear the updating W1 can be modified by using a pro-
jection algorithm [54]. However, in our case the boundary surface is linear and
the direction of updating is normal to it because ∇

[
1Xi · 1W i

]
= 1Xi. There-

fore, the projection of the updating vector on the boundary surface is of no use.
Instead, using concepts from multidimensional vector geometry we modify the
updating law such that, when the weight vector approaches (within a safe dis-
tance θi) the forbidden hyper-plane 1Xi · 1W i = 0 and the direction of updating
is toward the forbidden hyper-plane, it introduces a hopping which drives the
weights in the direction of the updating but on the other side of the space, where
here the weight space is divided into two sides by the forbidden hyper-plane.
This procedure is depicted in Fig. 6.3, where a simplified 2-dimensional repre-
sentation is given. Theorem 7 below introduces this hopping in the updating
law.

Theorem 7 Consider the control scheme (6.10), (6.11), (6.12). The updating
law:

a) For the elements of W i given by (6.13)
b) For the elements of 1W i given by the modified form:

1Ẇ i = −(1Xi)T pieiuisi(χ) if
∣∣1Xi · 1W i

∣∣ > θi > 0
or

∣∣1Xi · 1W i
∣∣ = θi and

1Xi · 1Ẇ i ≤ 0

1Ẇ i = −(1Xi)T pieiuisi(χ)−

− 2
tr{(1Xi)T 1Xi}

1Xi 1W i (1Xi)T otherwise

guarantees the properties of theorem 6 and assures the existence of the control
signal.

Vectorial proof of parameter hopping

In selecting the terms involved in parameter hopping we start from the vector
definition of a line, of a plane and the distance of a point to a plane. The equa-
tion of a line in vector form is given by r = a+λt, where a is the position vector
of a given point of the line, t is a vector in the direction of the line and λ is a real

6.1. INDIRECT ADAPTIVE NEURO-FUZZY CONTROL 49

xw=0
xw=è

xw=-è

Hopping
magnitude

w
1

w
2

Weight
updating
direction

Figure 6.3: Pictorial Representation of parameter hopping)

scalar. By giving different numbers to λ we get different points of the line each
one represented by the corresponding position vector r. The vector equation of
a plane can be defined by using one point of the plane and a vector normal to it.
In this case r ·n = a ·n = d is the equation of the plane, where a is the position
vector of a given point on the plane, n is a vector normal to the plane and d
is a scalar. When the plane passes through zero, then apparently d = 0. To
determine the distance of a point B with position vector b from a given plane
we consider Fig. 6.4 and combine the above definitions as follows. Line BN
is perpendicular to the plane and is described by vector equation r = b + λn,
where n is the normal to the plane vector. However, point N also lies on the
plane and in case the plane passes through zero

r · n = 0⇒ (b+ λn) · n = 0⇒ λ = −b·n
‖n‖ .

Apparently, if one wants to get the position vector of B́ (the symmetrical of
B in respect to the plane), this is given by

r = b− 2 b·n
‖n‖n.

50CHAPTER 6. BILINEAR NEURO-FUZZY INDIRECT ADAPTIVE CONTROL

In our problem b = 1W i, our plane is described by the equation 1Xi ·1W i = 0
and as it has already been mentioned the normal to it is the vector 1Xi.

o

b

B

A

a

N

Plane

B’

Figure 6.4: Vector explanation of parameter hopping)

6.1. INDIRECT ADAPTIVE NEURO-FUZZY CONTROL 51

52CHAPTER 6. BILINEAR NEURO-FUZZY INDIRECT ADAPTIVE CONTROL

Chapter 7

Simulation and Results

53

54 CHAPTER 7. SIMULATION AND RESULTS

7.1 Simulation of a DC Motor

In this section we apply the proposed approach to solve the problem of control-
ling the speed of a 1 KW DC motor with a normalized model described by the
following dynamical equations

Ta
dIa
dt = −Ia − ΦΩ + Va

Tm
dΩ
dt = ΦIa −K0Ω−mL

Tf
dΦ
dt = −If + Vf
Φ = aIf

1+bIf

(7.1)

(7.2)

Traditionally, the angular velocity of a DC motor is controlled with changes
in its armature voltage, while keeping constant the field excitation. Thus, the
aboe nonlinear model is linearized and reduced to

Ta
dIa
dt = −Ia − ΦΩ + V

Tm
dΩ
dt = ΦIa −K0Ω−mL

(7.3)

now with Ω a constant value parameter.

So, the regulation problem of a DC motor is translated as follows: Find a
state feedback to force the angular velocity Ω and the armature current Ia to
go to zero, while the magnetic flux varies.

To achieve such a goal, assuming that the dynamics of the system are un-
known, we first assume that the system is described, within a degree of accuracy,
by a neuro-fuzzy system of the form

˙̂χ = Aχ̂+XWS(χ) +X1W1S1(χ)u (7.4)

Where A is a n × n stable matrix which for simplicity can be taken to be
diagonal as A = diag[a1, a2, ..., an] , X, X1 are matrices containing the centres

7.1. SIMULATION OF A DC MOTOR 55

Table 7.1: Parameter values for the DC motor.

Parameter Value
1/T a 148.88
1/Tm 42.91
K0/Tm 0.0129
Tf 31.88
TL 0.0
a 2.6
β 1.6

of the partitions of every fuzzy output variable of f(x) and g(x) respectively,
S(χ), S1(χ) are matrices containing high order combinations of sigmoid func-
tions of the state χ and W,W1 are matrices containing respective neural weights.

The number of states being n = 2, the number of fuzzy partitions being
m = 5 and the depth of high order sigmoid terms k = 11. In this case si(x)
assumes high order connection up to the second order.

Also, to regulate the motor speed to zero we apply the control law

u = − [X1W1S1(χ)]−1
XWS(χ) (7.5)

where the number of fuzzy partitions of each gi i is m = 3.

We simulated a 1 KW DC motor with parameter values that can be seen in
Table 7.1. Our two stage algorithm, was applied.

We considered the identification procedure known and for the indirect adap-
tive control we used the following values

For the block diagonal matrix X = diag(X1, X2, · · · , Xn) with n = 2 and
the sub-matrices X1, X2, we gave the following values for the centers of the
fuzzy partitions:

X =
[
X1 0
0 X2

]
where the centers of the fuzzy partitions of X1, X2 are the following:

X1 =
[
−163.3061 − 148.9226 − 153.1720− 79.9453 − 175.4806 − 18.1483

]

56 CHAPTER 7. SIMULATION AND RESULTS

X2 =
[
25.1305 9.1845 − 15.2403 18.0842 − 9.2918 − 0.1840

]
For the block diagonal matrix X1 = diag(1X1, 1X2, . . . , 1Xn) with n = 2

and the sub-matrices 1X1, 1X2, we gave the following values for the centers of
the fuzzy partitions:

X1 =
[

1X1 0
0 1X2

]
where the centers of the fuzzy partitions of X1, X2 are the following:

1X1 =
[
148 149 150

]
1X2 =

[
42 43 44

]
In the sequel, we give the values of the matrices (W,W1) which contain the

neural weights

For the block diagonal (2*6x2) matrix W, the initial values are

W =



0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0


And for the block diagonal (2*3x2) matrix W1, the initial values

W =


0.04 0
0.04 0
0.04 0
0 0.04
0 0.04
0 0.04


In order to estimate our actual system-model in the proposed neural form,

we need to calculate the function sigmoidals, i.e., the matrices S(χ), S1(χ). For
that reason, we used the following values for their parameters a, b, c:

7.1. SIMULATION OF A DC MOTOR 57

a1 = 0.1; b1 = 1; c1 = 0 sigmoidal parameters used in w update.

a2 = 6; b2 = 1; c2 = 0 sigmoidal parameters used in w1 update.

Last, we need to find an appropriate matrix A > 0 which is chosen in order
to satisfy the Lyapunov equation

PA+ATP = −I,

and a matrix A we found in order to achieve the satisfaction of the above
equation is

A =
[
−1 0
0 − 1

]
This matrix P , which is calculated by the Lyapunov equation is used in the

update laws for W,X,W1, X1.

The figures 7.1,7.2,7.3 give the evolution of the states of the DC motor,i.e.,
the armature current Ia, the angular velocity Ω and the magnetic flux Φ respec-
tively.We used the initial values Ω = 0.3 and Ia = 0.3 for the angular velocity
and the armature current respectively.

Figure 7.1: Evolution of the armature current of the DC motor system .

As can be seen,both Ω and Ia converge to zero very fast as desired.

58 CHAPTER 7. SIMULATION AND RESULTS

Figure 7.2: Evolution of the angular velocity of the DC motor system .

As we can see below the magnetic flux remains bounded,as desired.

7.1. SIMULATION OF A DC MOTOR 59

Figure 7.3: Evolution of the magnetic flux of the DC motor system .

In the sequel, we give the evolution of the control signal u, which is calcu-
lated by the controller stage.

As can be seen below, the 2 − state control input remains bounded and
converges to zero as time evolves.

60 CHAPTER 7. SIMULATION AND RESULTS

Figure 7.4: Evolution of the control signal of the proposed scheme .

Last, we give the evolution of the error between the F-RHONN approxima-
tor and the actual system.

As can be seen below, the error between the F-RHONN approximator and
the actual system converges to zero as desired.

7.1. SIMULATION OF A DC MOTOR 61

Figure 7.5: Evolution of the error signal between the F-HONNF approximator
and the actual system .

In the sequel we present the figures 7.6,7.7,7.8 for the same variables, but
now we put initial values for Ia,Ω = 0.1.

The three states of the DC motor system are the following

62 CHAPTER 7. SIMULATION AND RESULTS

Figure 7.6: Evolution of the armature current of the DC motor system .

As can be seen,both Ω and Ia converge to zero very fast as desired despite
the change of the initial values.

7.1. SIMULATION OF A DC MOTOR 63

Figure 7.7: Evolution of the angular velocity of the DC motor system .

As we can see below the magnetic flux remains bounded as well,as desired.

64 CHAPTER 7. SIMULATION AND RESULTS

Figure 7.8: Evolution of the magnetic flux of the DC motor system .

In the sequel, we give the evolution of the control signal u, which is calcu-
lated by the controller stage.

As can be seen below, the 2 − state control input remains bounded and
converges to zero as time evolves.

7.1. SIMULATION OF A DC MOTOR 65

Figure 7.9: Evolution of the control signal of the proposed scheme .

Last, we give the evolution of the error between the F-RHONN approxima-
tor and the actual system.

As can be seen below, the error between the F-RHONN approximator and
the actual system converges to zero as desired.

We proved the stability the stability of the proposed scheme for different
values of the initial parameters which guarantees the viable results of the men-
tioned theory.

66 CHAPTER 7. SIMULATION AND RESULTS

Figure 7.10: Evolution of the error signal between the F-HONNF approximator
and the actual system .

Chapter 8

Conclusions Chapter

67

68 CHAPTER 8. CONCLUSIONS CHAPTER

8.1 Conclusions

In this diploma thesis we considered an indirect adaptive control scheme in or-
der to regulate unknown nonlinear plants. This approach is based on a new
Neuro-Fuzzy Dynamical Systems definition, which uses the concept of Fuzzy
Dynamical Systems (FDS) operating in conjunction with High Order Neural
Network Functions (HONNFs). Since the plant is initially considered unknown,
we first propose its approximation by a special form of an affine in the control
fuzzy dynamical system (FDS) and in the sequel the fuzzy rules are approxi-
mated by appropriate HONNFs. Once the system is identified around an op-
eration point is regulated to zero adaptively. The proposed scheme does not
require a-priori experts’ information on the number and type of input variable
membership functions making it less vulnerable to initial design assumptions.
Weight updating laws for the involved HONNFs are provided, which guarantee
that both the identification error and the system states reach zero exponentially
fast, while keeping all signals in the closed loop bounded. A method of param-
eter hopping assures the existence of the control signal and is incorporated in
the weight updating law. Simulations illustrate the potency of the method by
comparing its performance with this of conventional approaches. More specifi-
cally, the applicability of the method was tested on a DC Motor system where
it is shown that by following the proposed procedure one can obtain asymptotic
regulation.

8.1. CONCLUSIONS 69

70 CHAPTER 8. CONCLUSIONS CHAPTER

Chapter 9

Bibliography-References

71

72 CHAPTER 9. BIBLIOGRAPHY-REFERENCES

Bibliography

[1] K. Hornic, M. Stinchcombe, and H. White, “Multilayer feedforward networks
are universal approximators”, Neural Networks, vol. 2, pp. 359-366, 1989.

[2] L. Wang, Adaptive Fuzzy Systems and Control, Prentice Hall, Englewood
Cliffs, NJ, 1994.

[3] J. S. R. Jang, “ANFIS: Adaptive-network-based fuzzy inference system”,
IEEE Trans. Syst. Man. Cyber., vol. 23, pp. 665-684, 1993.

[4] C.T. Lin, “A neural fuzzy control system with structure and parameter
learning”, Fuzzy Sets and Systems, vol. 70, pp. 183-212, 1995.

[5] K.B. Cho and B.H.Wang, “Radial basis function based adaptive fuzzy sys-
tems and their applications to system identification and prediction”, Fuzzy
Sets and Systems, vol. 83, pp. 325-339, 1996.

[6] C.F.Juang and C. T. Lin, “An on-line self-constructing neural fuzzy inference
network and its applications”, IEEE Trans. Fuzzy Syst., vol. 6, pp. 12-32,
1998.

[7] R. P. Li and M. Mukaidono, “A new approach to rule learning based on
fusion of fuzzy logic and neural networks”, IEICE Trans. Fuzzy Syst, vol.
E78-d, pp. 1509-1514, 1995.

[8] H.L. Hiew, C.P. Tsang, ”Fuzzy Chaos and recursive partitioning”, in
B.Kosko(Ed.), Fuzzy Engineering, Prentice-Hall International Inc. new Jer-
sey, 1997.

[9] S. L. Chiu, “Fuzzy model identification based on cluster estimation”, Journal
of Intelligent and Fuzzy Systems, vol. 2, 1994.

[10] Y. H. Lin and G. A. Cunningham, “A new approach to fuzzy-neural system
modelling”, IEEE Trans. Fuzzy Syst., vol. 3, pp. 190-197, 1995.

[11] C. F. Jang and C. T. Lin, “An online self-constructing neural fuzzy in-
ference network and its applications”, IEEE Trans. Fuzzy Syst., vol. 6, pp.
12-32, 1998.

73

74 BIBLIOGRAPHY

[12] S. Mitra and Y. Hayashi, “Neuro-fuzzy rule generation: survey in soft
computing framework”, IEEE Trans. On Neural Networks, vol. 11, pp. 748-
768, 2000.

[13] B. S. Chen, C. H. Lee, and Y. C. Chang, “Tracking design of uncertain
nonlinear siso systems: Adaptive fuzzy approach”, IEEE Trans. Fuzzy Syst.,
vol. 4, pp. 32-43, Feb. 1996.

[14] J. T. Spooner and K. M. Passino, “Stable adaptive control using fuzzy
systems and neural networks”, IEEE Trans. Fuzzy Syst., vol. 4, pp. 339-359,
June 1996.

[15] K. S. Narendra and K. Parthasarathy, “Identification and control of dynam-
ical systems using neural networks”, IEEE Trans. Neural Networks, vol. 1,
pp. 4-27, Feb.1990.

[16] M. M. Polycarpou and M. J. Mears, “Stable adaptive tracking of uncer-
tain systems using nonlinearly parameterized online approximators”, Int. J.
Control, vol. 70, no. 3, pp. 363-384, 1998.

[17] G. A. Rovithakis and M. A. Christodoulou, “Adaptive control of unknown
plants using dynamical neural networks”, IEEE Trans. Syst, Man, Cybern.,
vol. 24, , pp. 400-412 Mar. 1994.

[18] F.C. Chen and C.C. Liu, ”Adaptively controlling nonlinear continuous-time
systems using multilayer neural networks”, IEEE Trans. Automat. Control,
vol.39, June 1994, pp.1306-1310.

[19] N. Golea, A. Golea, K. Benmahammed, “Stable indirect fuzzy adaptive
control”, Fuzzy Sets and Systems, vol. 137, pp. 353-366, 2003.

[20] E. B. Kosmatopoulos and M. A. Christodoulou, “Recurrent neural networks
for approximation of fuzzy dynamical systems”, Int. Journal of Intelligent
Control and Systems, vol. 1, pp. 223-233, 1996.

[21] M. A. Christodoulou, D. C. Theodoridis, and Y. S. Boutalis, “Building
Optimal Fuzzy Dynamical Systems Description Based on Recurrent Neu-
ral Network Approximation”, in Proc. Int. Conf. of Networked Distributed
Systems for Intelligent Sensing and Control, Kalamata, Greece, June, 2007.

[22] W. Yu, X. Li, “Fuzzy neural identification by online clustering with appli-
cation on crude oil blending”, Int. Conf. on Fuzzy Systems, Vancouver, BC,
Canada, July 16-21, 2006.

[23] Cybenko G.,(1989) “Approximations by superpositions of a sigmoidal func-
tion“, Mathematics of Control Signals and Systems, vol.2, pp. 303-314.

[24] Funahashi K.,(1989) “On the approximate realization of continuous map-
pings by neural networks“,Neural Networks, vol.2, pp. 183-192.

BIBLIOGRAPHY 75

[25] Rumelhart D.,Hinton D.,Williams G.,(1986) “Learning internal respecta-
tions by error propagation“, in Parallel Distributed Processing, D.Rumelhart
and F.McClelland, Eds, Vol.1, Cambridge, MA, MIT Press.

[26] Pineda F.J., (1988) ”Generalization of backpropagation to recurrent net-
works”, Phys. Rev. Lett., vol.59, no.19, pp.2229-2232.

[27] Narendra K.S., Parthasarathy K., (1991) ”Gradient methods for the opti-
mization of dynamical systems containing neural networks”, IEEE Transac-
tions on Neural Networks, vol.2, no.2, pp.252-262.

[28] Narendra K.S., Parthasarathy K., (1990) ”Identification and Control of
Dynamical Systems using Neural Networks”, IEEE Transactions on Neural
Networks, vol.1, no.1, pp.4-27.

[29] Werbos P.J.,(1990) ”Backpropagation through time: what it does and how
we do it”, Proc. IEEE, vol.78, pp.1550-1560.

[30] Williams R.J., Zipser D., (1989) ”A learning algorithm for continually run-
ning fully recurrent neural networks”, Neural Computation, vol.1, pp.270-
280.

[31] Polycarpou M.M.,Ioannou P.A.,(1991) ”Identification and Control of Non-
linear Systems using neural networks models: design and stability analysis”,
Tech. Rep. 91-09-01, Univ. of Southern Cal., Los Angeles

[32] Sanner R.M., Slotine J.-J.E., (1992) ”Gaussian neural networks for direct
adaptive control”, IEEE Trans. Neural Networks, vol.3, no.6., pp. 837-863.

[33] Chen F.-C., Liu C.-C., (1994) ”Adaptively controlling nonlinear
continuous-time systems using multi-layer neural networks”,IEEE Trans.
Automat. Control, vol.39, no.6, pp. 1306-1310.

[34] Chen F.-C., Khalil H.K., (1995) ”Adaptive control of a class of nonlinear
discrete time systems using neural networks”,IEEE Trans. Automat. Con-
trol, vol.40, no.5, pp. 791-801.

[35] Lewis F.L.,Liu K.,Yesildirek A., (1995) ”Neural net robot controller with
quaranteed tracking performance”, IEEE Trans. Neural Natworks, vol.6,
no.3, pp.703-715.

[36] Sadegh N.,(1991) ”Nonlinear identification and control via neural net-
works”, Control Systems with Inexact Dynamic Models, DSC-vol. 33, ASME
Winter Annual Meeting.

[37] Sadegh N.,(1993) ”A perceptron network for functional identification us-
ing radial gaussian networks”, IEEE Trans. Neural Networks, vol.4, no.6,
pp.982-988.

76 BIBLIOGRAPHY

[38] Rovithakis G.A., Christodoulou M.A., (1994) ”Adaptive Control of Un-
known Plants using Dynamical Neural Networks”, IEEE Trans. Systems
Man Cybernetics, vol.24, no.3, pp.400-412.

[39] Kosmatopoulos E.B., Polycarpou M., Christodoulou M.A., Ioannou P.A.,
(1995) ”High-order neural networks structures for identification of dynamical
systems”, IEEE Trans. Neural Networks, vol.6, no.2, pp.422-431.

[40] Hopfield J.J., (1984) ”Neurons with graded response have collective com-
putational properties like those of two-state neurons”, Proc.Natl.Acad.Sci.,
vol.81, pp. 3088-3092.

[41] Cohen M.A.,Grossberg S., (1983) ”Absolute stability of global pattern for-
mation and parallel memory storage by competitive neural networks”, IEEE
Trans. on Systems, Man., and Cybernetics, vol. SMC-13, pp. 815-826.

[42] Paretto P., Niez J.J., (1986) ”Long term memory storage capacity of mul-
ticonnected neural networks”, Biol.Cybern., vol.54, pp.53-63.

[43] Baldi P., (1988) ”Neural networks, orientations of the hypercube and alge-
braic threshold functions”, IEEE Transactions on Information Theory, vol.
IT-34, pp.523-530.

[44] Dempo A.,Faroimi O., Kailath T., (1991) ”High-order absolutely stable
neural networks”, IEEE Transactions on Ciruits and Systems, vol.38, no.1.

[45] Kamp Y.,Hasler M., (1990) ”Recursive Neural Networks for Associative
Memory”, J.Wiley and Sons.

[46] Giles C.L., Chen D., Miller C.B., Chen H.H., Sun G.Z., and Lee Y.C.,
(1991) ”Second-order recurrent neural networks for grammatical inference”,
Proc. of Inter. Joint Conf. on Neural Networks, IJCNN91, vol.2, pp.273-281.

[47] Liou R.,Azimi-Sadjadi M.R., Dent R., (1991) ”Detection of dim targets
in high cluttered backround using high order correlation neural networks”,
Proc. of Iner. Joint Conf. on Neural Networks, IJCNN91, vol.1, pp.701-706.

[48] Cotter N.E., (1990) ”The Stone-Weierstrass theorem and its application to
neural network”, IEEE Trans. on Neural Networks, vol.1, no.4, pp. 290-295.

[49] Goodwin G.C., Sin K.S., (1984) ”Adaptive filtering, Prediction and Con-
trol”, Prentice Hall, New Jersey.

[50] Hale J.K., (1969) ”Ordinary Differential Equations”, New York, NY, Wiley-
InterScience.

[51] Ioannou P.A., Datta A., (1991) ”Robust Adaptive Control: a unified ap-
proach”, Proceedings of the IEEE, December.

[52] Narendra K.S., Annaswamy A.M., (1989) ”Stable Adaptive Systems”, En-
glewood Cliffs, NJ, Prentice-Hall.

BIBLIOGRAPHY 77

[53] Polycarpou M.M., Ioannou P.A., (1994) ”On the existence and uniqueness
of solutions in adaptive control systems”, IEEE Trans. on Automatic Con-
trol, vol. 30, no.3, pp.474-479.

[54] P.Ioannou and B.Fidan, ”Adaptive Control Tutorial”, SIAM:Advances in
Design and Control Series, 2006.

78 BIBLIOGRAPHY

Chapter 10

Appendix

79

80 CHAPTER 10. APPENDIX

10.1 Proofs of Theorems

In this section we present the proofs of the theorems and lemmas we used in
the previous sections of this diploma thesis.

Theorem 8 Consider the system:

χ̇ = F (χ, u), (10.1)

where χ ∈ Rn is the system state, u ∈ Rn is the system input and F :
Rn+m → Rn is a smooth vector field defined on a compact set y ⊂ Rn+m

and the model

ẋ = Ax+WT z, (10.2)

where x = [x1, x2, · · ·, xn]T ∈ Rn,W = [w1, w2, · · ·, wn]T ∈ RLxn and A =
diag [−a1,−a2, · · ·,−an] is a nxn diagonal matrix. Since [ai > 0, i = 1, 2, · · ·, n],
A is a stability matrix. Although it is not written explicitly, the vector z is a
function of both the neural network state x and the external input u.

Suppose that the system (10.1) and the model (10.2) are initially at the same
state x(0) = χ(0); then for any ε > 0 and any finite T > 0, there exists an inte-
ger L and a matrix W ∗ ∈ RLxn such that the state x(t) of the RHONN model
(10.2) with L high-order connections and weight values W = W ∗ satisfies

sup
0≤t≤T

|x(t)− χ(t)| ≤ ε.

Proof 1 From (10.2), the dynamic behavior of the RHONN model is described
by

ẋ = Ax+WT z(x, u). (10.3)

Adding and subtracting Aχ, (10.1) is rewritten as

χ̇ = Aχ+G(χ, u), (10.4)

where G(x, u) = F (x, u)−Aχ. Since x(0) = χ(0), the state error e = x− χ
satisfies the differential equation

10.1. PROOFS OF THEOREMS 81

ė = Ae+WT z(x, u)−G(χ, u), e(0) = 0. (10.5)

By assumption, (χ(t), u(t)) ∈ y for all t ∈ [0, T], where y is a compact
subset of Rn+m. Let

ye =
{

(χ, u) ∈ Rn+m : |(χ, u)− (χy, uy)| ≤ ε, (χy, uy) ∈ y
}
. (10.6)

It can be seen easily that ye is also a compact subset of Rn+m and y ⊂ ye.
In simple words ye is ε larger than y, where ε is the required degree of approx-
imation. Since, z is a continuous function, it satisfies a Lipschitz condition in
ye, i.e., there exists a constant l such that for all (x1, u), (x2, u) inye

|z(x1, u)− z(x2, u)| ≤ l|x1 − x2|. (10.7)

In what follows, we show that the function WT z(x, u) satisfies the conditions
of the Stone-Weierstrass Theorem and can approximate any continuous function
over a compact domain, therefore.

From (4.2),(4.3) it is clear that z(x, u) is in the standard polynomial expan-
sion with the exception that each component of the vector x is preprocessed by a
sigmoid function s(·). As shown in [14], preprocessing of input via a continuous
invertible function does not affect the ability of a network to approximate contin-
uous functions; therefore, it can be shown readily that if L is sufficiently large,
then there exist weight values W = W ∗ such that W ∗Tz(x, u) can approximate
G(x, u) to any degree of accuracy, for all (x, u) in a compact domain.Hence,
there exists W = W ∗ such that

sup
(χ,u)∈y

e

|W ∗Tz(χ, u)−G(χ, u)| ≤ δ, (10.8)

where δ is a constant to be designed in the sequel.

The solution of (10.5) is

e(t) =
t∫

0

eA(t−τ) [W ∗Tz(x(τ), u(τ))−G(χ(τ), u(τ))] dτ =

t∫
0

eA(t−τ) [W ∗Tz(x(τ), u(τ))−W ∗Tz(χ(τ), u(τ))] dτ +

t∫
0

eA(t−τ) [W ∗Tz(χ(τ), u(τ))−G(χ(τ), u(τ))] dτ.

82 CHAPTER 10. APPENDIX

Since A is a diagonal stability matrix, there exists a positive constant α such
that ‖eAt‖ ≤ e−αt for all t ≥ 0. Also, let L = l‖W ∗‖.Based on the aforemen-
tioned definitions of the constants α,L, ε, let δ in (10.8) be chosen as:

δ =
εα

2
e
−L
α > 0. (10.9)

First consider the case where (x(t), u(t)) ∈ ye for all t ∈ [0, T]. Starting
from the equation of the solution of (10.5), taking the norms on both sides and
using (10.7),(10.8) and (10.9), the following inequalities hold for all t ∈ [0, T]:

|e(t)| ≤
t∫

0

‖eA(t−τ)‖
∣∣W ∗T z(x(τ), u(τ))−W ∗T z(χ(τ), u(τ))

∣∣ dτ
+

t∫
0

‖eA(t−τ)‖
∣∣W ∗T z(χ(τ), u(τ))−G(χ(τ), u(τ))

∣∣ dτ,
≤

t∫
0

e−α(t−τ)L|e(τ)|dτ +
t∫

0

δe−α(t−τ)dτ,

≤ ε
2e
−Lα + L

t∫
0

e−α(t−τ)|e(τ)|dτ.

Using the Bellman-Gronwall Lemma [34], we obtain

|e(t)| ≤ ε

2
e−

L
α + eL

t∫
0

e−α(t−τ)dτ ≤ ε

2
. (10.10)

Now suppose (for the sake of contradiction), that (x, u) does not belong to ye
for all t ∈ [0, T]; then, by continuity of x(t), there exist a T ∗, where 0 ≤ T ∗ ≤ T ,
such that (x(T ∗), u(T ∗)) ∈ ∂ye, where ∂ye denotes the boundary of ye. If
we carry out the same analysis for t ∈ [0, T ∗] we obtain that in this interval
|x(t)− χ(t)| ≤ ε

2 , which is clearly a contradiction. Hence, (10.10) holds for all
t ∈ [0, T].

Lemma 3 The system described by

χ̇i = −aiχi + w∗i z(χ, u), χi(0) = χ0
i . (10.11)

can be expressed as

ζ̇i = −aiζi + zi, ζi(0) = 0, (10.12)

χi = w∗Ti ζi + e−aitχ0
i . (10.13)

10.1. PROOFS OF THEOREMS 83

Proof 2 From (10.12) we have

ζi =
t∫

0

e−ai(t−τ)z(χ(τ), u(τ))dτ

therefore,

w∗Ti ζi + e−aitχ0
i = e−ait +

t∫
0

e−ai(t−τ)w∗Ti z(χ(τ), u(τ))dτ. (10.14)

Using (10.11), the right hand side of (10.14) is equal to χ(t) and this con-
cludes this proof.

Theorem 9 Consider the RHONN model

xi = wTi ζi, i = 1, 2, · · · , n (10.15)

whose parameters are adjusted according to

ẇi = −Γiζiei, i = 1, 2, · · · , n. (10.16)

Then for i = 1, 2, · · · , n

a) ei, φi ∈ L∞ (ei and φ are uniformly bounded)
b) limt→∞ ei(t) = 0

Proof 3 Consider the Lyapunov function candidate

V =
1
2

n∑
i=1

φTi Γ−1
i φi +

∞∫
t

εei (τ)dτ

 . (10.17)

Using (10.16) and ei = φTi ζi − εi, where φi = wi − w∗i is the weight estima-
tion error, the time derivative of V in (10.17) is expressed as

V̇ =
n∑
i=1

(
−eiφTi ζi − 1

2ε
2
i

)
=

n∑
i=1

(
−ei(ei + εi)− 1

2ε
2
i

)
= − 1

2

n∑
i=1

(
e2
i + (ei + εi)2

)
≤ 0.

84 CHAPTER 10. APPENDIX

Since V̇ ≤ 0, we obtain that φi ∈ L∞. Moreover, using ei = φTi ζi−εi and the
boundedness of ζi, we have that ei is also bounded. To show that ei(t) converges
to zero, we first note that since V is a non-increasing function of time and also
bounded from below, the limt→∞ V (t) = V∞ exists; therefore, by integrating both
sides of the above expression of the derivative V̇ from t = 0to∞, and taking
bounds we obtain

∞∫
0

n∑
i=1

e2
i (τ)dτ ≤ 2(V (0)− V∞),

so for i = 1, 2, · · · , n ei(t) is square integrable. Furthermore, using ei =
φTi ζi − εi :

ėi(t) = φ̇Ti ζi + φTi ζ̇i − ε̇i = −eiζTi Γiζi − aiφTi ζi + φTi z − ε̇i

Since ei, ζi, φi, ε̇i are all bounded, ėi ∈ L∞. Hence, by applying Barbalat’s
Lemma [73] we obtain that limt→∞ ei(t) = 0.

Theorem 10 Consider the filtered error RHONN model given by

ẋi = −aixi + wTi z, i = 1, 2, · · · , n, (10.18)

whose weights are adjusted according to

ẇi = −Γizei (10.19)

where the adaptive gain Γi is a positive definite LxL matrix, and wi is the
estimate of the unknown vector w∗i . Then for i = 1, 2, · · · , n

(a) ei, φi ∈ L∞
(b) limt→∞ ei(t) = 0

Proof 4 Consider the Lyapunov function candidate

V =
1
2

n∑
i=1

(
e2
i + φTi Γ−1

i φi
)

(10.20)

Then, using ėi = −aiei + φTi z, i = 1, 2, · · · , n, whereφi := wi − w∗i , and
(10.19), and the fact that φ̇i = ẇi, the time derivative of V in (10.20) satisfies

V̇ = −
n∑
i=1

aie
2
i ≤ 0 (10.21)

10.1. PROOFS OF THEOREMS 85

Since V̇ ≤ 0, from (10.20) we obtain that ei, φi ∈ L∞ for i = 1, 2, · · · , n.
Using this result in ėi = −aiei + φTi z, i = 1, 2, · · · , n, whereφi := wi − w∗i , we
also have that ėi ∈ L∞. Now by employing the same techniques as in proof of
theorem 9 it can be shown readily that ei ∈ L2, i.e., ei(t) is square integrable;
therefore, by applying Barbalat’s Lemma we obtain that limt→∞ ei(t) = 0.

Theorem 11 Consider the filtered error RHONN model given by

ẋi = −aixi + wTi z, i = 1, 2, · · · , n, (10.22)

whose weights are adjusted according to

ẇi =
{

−Γizei, if |wi| ≤Mi

−Γizei − σiΓiwi, if |wi| > Mi

}
(10.23)

Then for i = 1, 2, · · · , n

(a) ei, φi ∈ L∞
(b)there exist constants λ,m such that

t∫
0

|e(τ)2|dτ ≤ λ+m
t∫

0

|v(τ)2|dτ

Proof 5 Consider the Lyapunov function candidate

V =
1
2

n∑
i=1

φTi Γ−1
i φi +

∞∫
t

εei (t)dt

 . (10.24)

Using ėi = −aiei + φTi z − vi,and (10.23) it can be shown that

V̇ =
n∑
i=1

(−aie2
i − eivi − I∗wiσiφ

Twi). (10.25)

where I∗wi is the indicator function defined as I∗wi = 1 if |wi| > Mi and
I∗wi = 0 if |wi| ≤Mi. Since φi = wi − w∗i , we have that

φTi wi = 1
2φ

T
i φi + 1

2 (φTi φi + 2φTi w
∗
i) = 1

2 |φi|
2 + 1

2 |wi|
2 − 1

2 |w
∗
i |2.

Since, by definition, |w∗i | ≤Mi and |wi| > Mi for I∗wi = 1, we have that

I∗wi
σi
2 (|wi|2 − |w∗i |2) ≥ 0;

86 CHAPTER 10. APPENDIX

therefore, (10.25) becomes

V̇ ≤
n∑
i=1

(−aie2
i − I∗wi

σi
2
|φi|2 − eivi), (10.26)

≤
n∑
i=1

(−ai2 e
2
i − σi

2 |φi|
2) +

n∑
i=1

(
(1− I∗wi)

σi
2 |φi|

2 − ai
2 (e2

i + 2
ai
eivi)

)
.

So. we have that

V̇ ≤ −αV +
n∑
i=1

(
(1− I∗wi)

σi
2
|φi|2 +

v2
i

2ai

)
, (10.27)

where

α := min
{
ai,

σi
λmax(Γ−1

i)
; i = 1, 2, · · · , n

}
and λmax(Γ−1

i) > 0 denotes the maximum eigenvalue of Γ−1
i . Since

(1− I∗wi)
σi
2 |φi|

2 =
{
σi
2 |φi|

2 if |wi| ≤Mi

0 otherwise

}
we obtain that (1 − I∗wi)

σi
2 |φi|

2 ≤ σiM
2
i . Hence, (10.27) can be written in

the form

V̇ ≤ −αV +K,

where K :=
n∑
i=1

(σiM2
i + v̄2

i /2ai) and v̄i is an upper bound for vi; therefore,

for V ≥ V0 = K/α, we have that V̇ ≤ 0, which implies that V ∈ L∞. Hence
ei, φi ∈ L∞.

To prove the second part, we note that by completing the square in (10.26)
we obtain

V̇ ≤
n∑
i=1

(−aie2
i − eivi) ≤

n∑
i=1

(
−ai

2
e2
i +

v2
i

2ai

)
. (10.28)

Integrating both sides of (10.28) yields

V (t)− V (0) ≤
n∑
i=1

(
−ai2

t∫
0

ei(τ)2dτ + 1
2ai

t∫
0

vi(τ)2dτ

)
,

10.1. PROOFS OF THEOREMS 87

≤ −amin2

t∫
0

|e(τ)|2dτ + 1
2amin

t∫
0

|v(τ)|2dτ,

where amin := min ai ; i = 1, 2, · · · , n; therefore,

t∫
0

|e(τ)|2dτ ≤ 2
2amin

[V (0)− V (t)] + 1
2a2
min

t∫
0

|v(τ)|2dτ,

≤ λ+ µ
t∫

0

|v(τ)|2dτ,

where λ := (2/amin)supt≥0[V (0)− V (t)] and µ := 1/a2
min. This proves part

(b) and concludes the proof of this theorem.

Theorem 12 Consider the identification scheme given by

ė = Ae−X∗W̃S(χ)− X̃WS(χ)−X∗1W̃1S1(χ)u− X̃1W1S1(χ)u (10.29)

Provided that [X1W1S1(χ)]−1 exists the learning laws:

a) For the elements of W and X{
Ẇ = sgn(X∗)TPeST

Ẋ = PeSTWT (10.30)

b) For the elements of W1 and X1{
Ẇ1 = sgn(X∗1)TPeuTST1

Ẋ1 = PeuTST1 W
T
1

(10.31)

guarantee the following properties.

• e, χ̂, W̃ , W̃1 ∈ L∞, e, χ̂ ∈ L2

• limt→∞ e(t) = 0, limt→∞ χ̂(t) = 0

• limt→∞
˙̃W (t) = 0, limt→∞

˙̃W1(t) = 0

where the matrices sgn(X∗) and sgn(X∗1) are defined in the proof.

Proof 6 Consider the Lyapunov function candidate

V (e, χ̂, X̃, W̃ , X̃1, W̃1) = 1
2e
TPe+ 1

2 χ̂
TPχ̂+

88 CHAPTER 10. APPENDIX

+ 1
2 tr{X̃

T X̃}+ 1
2 tr{W̃

T∆W̃}

+ 1
2 tr{X̃

T
1 X̃1}+ 1

2 tr{W̃
T
1 ∆1W̃1}

Where P > 0 is chosen to satisfy the Lyapunov equation

PA+ATP = −I

and matrices ∆ and ∆1 are both diagonal n ·m×n ·m and defined as follows:

∆ = diag{(|f̄1∗
1 |, |f̄1∗

2 |, . . . , |f̄1∗
m |), (|f̄2∗

1 |, |f̄2∗
2 |, . . . , |f̄2∗

m |), . . . ,

(|f̄m∗1 |, |f̄m∗2 |, . . . , |f̄m∗m |)}

and

∆1 = diag{(|ḡ1,1∗
1 |, |ḡ1,1∗

2 |, . . . , |ḡ1,1∗
m |),

(|ḡ2,2∗
1 |, |ḡ2,2∗

2 |, . . . , |ḡ2,2∗
m |), . . . ,

(|ḡm,m∗1 |, |ḡm,m∗2 |, . . . , |ḡm,m∗m |)}

Thus ∆ ≥ 0 and ∆1 ≥ 0.

Taking the derivative of the Lyapunov function candidate and taking into
account (6.12) we get

V̇ = 1
2e
T
(
ATP + PA

)
e+ 1

2 χ̂
T
(
ATP + PA

)
χ̂+

+ 1
2 tr{

˙̃XT X̃}+ 1
2 tr{

˙̃WT∆W̃}

+ 1
2 tr{

˙̃
1X
T X̃1}+ 1

2 tr{
˙̃

1W
T∆1W̃1} ⇒

V̇ = 1
2e
T
(
ATP + PA

)
e+ 1

2 χ̂
T
(
ATP + PA

)
χ̂+(

− 1
2e
TPX̃WS − 1

2e
TPX̃WS

)
−(

− 1
2e
TPX∗W̃S − 1

2e
TPX∗W̃S

)
−

−
(

1
2e
TPX̃1W1S1u− 1

2e
TPX̃1W1S1u

)
−

−
(

1
2e
TPX∗1W̃1S1u− 1

2e
TPX∗1W̃1S1u

)
+

tr{ ˙̃WT∆W̃}+ tr{ ˙̃WT
1 ∆1W̃1} ⇒

tr{ ˙̃XT X̃}+ tr{ ˙̃XT
1 X̃1} ⇒

10.1. PROOFS OF THEOREMS 89

V̇ = − 1
2e
T e− 1

2 χ̂
T χ̂+ eTPXW̃S+ eTPXW̃1S1U+ tr{ ˙̃WT W̃}+ tr{ ˙̃WT

1 W̃1} ⇒
Take:

tr{ ˙̃WT∆W̃} = eTPX∗W̃S

tr{ ˙̃XT X̃} = eTPX̃WS

tr{ ˙̃WT
1 ∆1W̃1} = eTPX∗1W̃1S1u

tr{ ˙̃XT
1 X̃1} = eTPX̃1W1S1u

Then the Lyapunov function becomes:

V̇ = − 1
2e
T e− 1

2 χ̂
T χ̂ ≤ 0

Using the fact that whenever tr{ẊT X̃} = AX̃B, where A is a row and B is
a column vector, ⇒ Ẋ = ATBT , we get:


∆Ẇ = X∗TPeST

Ẋ = PeSTWT

∆1Ẇ1 = X∗1
TPeuTST1

Ẋ1 = PeuTST1 W
T
1

(10.32)

We write X∗T = ∆{sgn(X∗)}T
and X∗T1 = ∆1{sgn(X∗1)}T

where:

sgn(X∗) = diag{sgn(X1∗), sgn(X2∗), . . . , sgn(Xn∗)}

where:

sgn(Xi∗) = [sgn(f̄1
i,∗), sgn(f̄2

i,∗), . . . , sgn(f̄m
i,∗)]

and:

sgn(X∗1) = diag{sgn(X1∗
1), sgn(X2∗

1), . . . , sgn(Xn∗
1)}

where:

sgn(Xi∗
1) = [sgn(ḡ1

i,i,∗), sgn(ḡ2
i,i,∗), . . . , sgn(ḡmi,i,∗)]

Then equations (10.32) become:

90 CHAPTER 10. APPENDIX


Ẇ = sgn(X∗)TPeST

Ẋ = PeSTWT

Ẇ1 = sgn(X∗1)TPeuTST1
Ẋ1 = PeuTST1 W

T
1

(10.33)

The update laws (10.33) are implementable, provided we know the signs of
the partitions, which is a very reasonable assumption. However the centers of
the partitions are automatically selected by our algorithm optimally.

Using the above Lyapunov function candidate V and proving that V̇ ≤ 0 all
properties of the theorem are assured [54].

For the proof of the next theorem we shall use some basic equations of the
section of Neuro-Fuzzy Indirect Adaptive Control, and those are the following

ė = Ae−X∗W̃S(χ)− X̃WS(χ)−X∗1W̃1S1(χ)u− X̃1W1S1(χ)u (10.34)

u = − [X1W1S1(χ)]−1
XWS(χ) (10.35)

˙̂χ = Aχ̂ (10.36)

Theorem 13 Consider the control scheme (10.34), (10.35), (10.36). The up-
dating law:

a) For the elements of W i given by (10.30)
b) For the elements of 1W i given by the modified form:

1Ẇ i = −(1Xi)T pieiuisi(χ) if
∣∣1Xi · 1W i

∣∣ > θi > 0
or

∣∣1Xi · 1W i
∣∣ = θi and

1Xi · 1Ẇ i ≤ 0

1Ẇ i = −(1Xi)T pieiuisi(χ)−

− 2
tr{(1Xi)T 1Xi}

1Xi 1W i (1Xi)T otherwise

guarantees the properties of theorem 12 and assures the existence of the con-
trol signal.

10.1. PROOFS OF THEOREMS 91

Proof 7 In order the properties of theorem 12 to be valid it suffices to show that
by using the modified updating law for 1W i the negativeness of the Lyapunov
function is not compromised. Indeed the if part of the modified form of 1Ẇ i is
exactly the same with (10.31) and therefore according to theorem 12 the nega-
tiveness of V is in effect. The if part is used when the weights are at a certain
distance (condition if

∣∣1Xi · 1W i
∣∣ > θi)from the forbidden plane or at the safe

limit (condition
∣∣1Xi · 1W i

∣∣ = θi) but with the direction of updating moving the
weights far from the forbidden plane (condition 1Xi · 1Ẇ i ≤ 0).

In the otherwise part of 1Ẇ i, term − 2
tr{(1Xi)T 1Xi}

1Xi 1W i (1Xi)T deter-
mines the magnitude of weight hopping, which as explained later and is depicted
in Fig. 6.4 has to be two times the distance of the current weight vector to the
forbidden hyper-plane. Therefore the existence of the control signal is assured
because the weights never reach the forbidden plane. Regarding the negative-
ness of V̇ we proceed as follows.

Let that 1W ∗i contains the initial values of 1W i provided from the iden-
tification part such that

∣∣1Xi · 1W ∗i
∣∣ >> θi and that 1W̃ i = 1W i − 1W ∗i.

Then, the weight hopping can be equivalently written with respect to 1W̃ i as
−2θi1W̃ i/‖1W̃ i‖. Under this consideration the modified updating law is rewrit-
ten as 1Ẇ i = −(1Xi)T pieiuisi(χ) − 2θi1W̃ i/‖1W̃ i‖. With this updating law it
can be easily verified that V̇ = − 1

2e
T e− 1

2 χ̂
T χ̂−Θ, with Θ being a positive con-

stant expressed as Θ =
∑

2θi
(

(1W̃ i)T)1W̃ i)
)
/‖1W̃ i‖, where the summation

includes all weight vectors which require hopping. Therefore, the negativeness
of V̇ is actually enhance

92 CHAPTER 10. APPENDIX

10.2 Matlab Code

In this section we present the matlab code we constructed in order to simulate
the DC motor system according to the theory we developed in this diploma
thesis.

Below, it is presented the main program.

%Simulation of a dc motor described by differential equations in bilinear
%form using neuro-fuzzy indirect adaptive control.
%Programed by Filipp Andreadis.

close all;
clear all;
clc;

global SP;
SP = 0.001; % sampling period

%Time edges.
T0 = 0;
Tf = 5;

x_initial = [3; -3];
x_init = [0.3; 0.3; 0.3]; %We mean here 0.3 of the nominal value. For example
%if the nominal angular velocity is 2500 rpm here we mean 0.3*2500 = 750
%rpm. The objective is to drive the angular velocity and the current to
%zero.This is called the regulation problem. If we want the states to
% follow some values or value trajectories we call it the tracking problem.

%Definition of the time space.
time_plot = T0:SP:Tf;

ind=0; %Index for the iterations.

%Desired Values for the states.
xdes(1,:) = 0*(sin(time_plot));
xdes(2,:) = 0*(cos(time_plot));

x = x_init;
xhut = x_initial;

%Definition of matrices W,W1 from the learning laws.

nf_order = 2;% Order of the neuro fuzzy model.

10.2. MATLAB CODE 93

ho_w_depth = 2; % number of sigmoidal terms used in W.
ho_w1_depth = 2; % number of sigmoidal terms used in W1. Warning, the number

% of sigmoidal terms in S1 is equal to nf_order, because S1 is
% diagonal n x n, where n is the number of states

%Number of output membership functions partitions.
part_x = 6;
part_x1 = 3;

%Next the subvectors of matrices X and X1, which are considered known.

X(1,:) = [-163.3061 -148.9226 -153.1720 -79.9453 -175.4806 -18.1483];

X(2,:) = [25.1305 9.1845 -15.2403 18.0842 -9.2918 -0.1840];

Xmat = [X(1,:) zeros(1,part_x); zeros(1,part_x) X(2,:)];

Xmat_steady(1,1:part_x) = -1 ;
Xmat_steady(1,part_x+1:nf_order*part_x) = 0 ;
Xmat_steady(2,1:part_x) = 0 ;
Xmat_steady(2,part_x+1:nf_order*part_x) = [1 1 -1 1 -1 -1] ;

X1(1,:) = [148 149 150];

X1(2,:) = [42 43 44];

X1mat = [X1(1,:) zeros(1,part_x1); zeros(1,part_x1) X1(2,:)];

X1mat_steady(1,1:part_x1) = 1 ;
X1mat_steady(1,part_x1+1:nf_order*part_x1) = 0 ;
X1mat_steady(2,1:part_x1) = 0;
X1mat_steady(2,part_x1+1:nf_order*part_x1) = 1;

%Initial values for W and W1 weights.
%Initial values of W can be zeros. However initial values of
% W1 cannot be zero in order to avoid X1*W1*S1 to go to zero. In this case
% the inverse of the matrix does not exist. Dont forget that W1 has to be a
% block diagonal matrix.
Wmat = zeros(nf_order*part_x,ho_w_depth);

W1mat = zeros(nf_order*part_x1,ho_w1_depth);

for pp = 1:ho_w1_depth

W1mat((pp-1)*part_x1+1:pp*part_x1,pp) = ones(part_x1,1)*0.04;

94 CHAPTER 10. APPENDIX

end

%Computatiuon of the matrices S(x),S1(x) calling the function sigmoidals.
a1 = 0.1 ; b1 = 1 ; % sigmoidal parameters used in w update
a2 = 6 ; b2 = 1 ; % sigmoidal parameters used in w1 update

sigm_W = Sigmoidals(x,a1,b1) ;
sigm_W1 = Sigmoidals(x,a2,b2) ;

sigm_W1_diag = diag(sigm_W1) ;

%Computation of the matrix P used in learning laws of W,W1.

%Initial Values for nxn stable matrix A which is used in Ricatti Equation.
A = [-1 0 ; 0 -1] ;

%Definition of an apropriate matrix.
C = -[1 0 ; 0 1] ;
B = zeros(2) ;

%Use of are function of matlab solving Algebraic Ricatti Equations.
P = are(A,B,C) ;

for i = T0:SP:Tf %Beggining of the iterations.
ind = ind+1 ;

x1plot(ind) = Xmat(1,1) ; %store the elements of Xmat.
x2plot(ind) = Xmat(1,2) ;
x3plot(ind) = Xmat(1,3) ;
% Computation of the control input.
u = - inv(X1mat*W1mat*sigm_W1_diag) * (Xmat*Wmat*sigm_W) ;
u_plot(ind,:) = u’ ;

xold = x;
% Real system dynamic equations.
parameters = struct(’t’, {i}, ’update’, {x}, ’u’, {u}) ;
x = RungeKutta(parameters, ’DC_MOT’) ;
x_plot(ind,:) = x’ ;

% Computation of the error.
% The error is not between the desired and the actual
% states of the system, but between the F-RHONN approximator and the
% states of the system.
xhut_old = xhut;
parameters = struct(’t’,{i}, ’update’, {xhut}, ’Xmat_sign’,{Xmat}
,’Wmat_sign’,{Wmat}, ’sigm_W_sign’,{sigm_W}, ’X1mat_sign’,{X1mat},

10.2. MATLAB CODE 95

’W1mat_sign’,{W1mat}, ’sigm_W1_diag_sign’,{sigm_W1_diag}, ’u’,{u},
’Amat_sign’,{A});
xest(:,ind) = RungeKutta(parameters,’Neural_Form’);
xhut = xest(:,ind);

sigm_W = Sigmoidals(xhut,a1,b1) ;
sigm_W1 = Sigmoidals(xhut,a2,b2) ;
sigm_W1_diag = diag(sigm_W1) ;

e = xhut-x(1:2,:) ;
plot_e(ind,:) = e’ ;

%Computation of the matices W,X,W1,X1.

for ii=1:nf_order
%For segments of matrix W and matrix X.
Xmat_temp(1,:) = Xmat(ii,(ii-1)*part_x+1 : ii*part_x); % take the row vector
segment from X

Wmat_temp = Wmat((ii-1)*part_x+1 : ii*part_x , 1:ho_w_depth);
% take the submatrix W^i of W, that has to be updated
Wmat_temp_old = Wmat_temp; % keep the not updated Wmat_temp in a separate matrix
% now update submatrix W^i of W
parameters = struct(’t’,{i}, ’x_signal’,{Xmat_temp}, ’update’,
{Wmat_temp}, ’e_signal’,{e(ii)}, ’matrixS’,{sigm_W}, ’Pmat’,{P(ii,ii)}) ;
Wmat_temp = RungeKutta(parameters, ’Diff_eq_W’) ; % updating of the submatrix
Wmat((ii-1)*part_x+1 : ii*part_x , 1:ho_w_depth) = Wmat_temp;
% store the updated submatrix into the large matrix W
% now update vector X^i of X
parameters = struct(’t’,{i}, ’W_signal’,{Wmat_temp_old},’update’,
{Xmat_temp}, ’e_signal’,{e(ii)}, ’matrixS’,{sigm_W}, ’Pmat’,{P(ii,ii)}) ;
Xmat_temp = RungeKutta(parameters, ’Diff_eq_X’) ;
Xmat(ii,(ii-1)*part_x+1 : ii*part_x) = Xmat_temp(1,:);
% Store the updated row vector segment into X

% Now the same procedure for W1 and X1
X1mat_temp(1,:) = X1mat(ii,(ii-1)*part_x1+1 : ii*part_x1); % take
the row vector segment from X1
W1mat_temp(:,1) = W1mat((ii-1)*part_x1+1 : ii*part_x1 , ii); % take the subcolumn
W1^i of W1, that has to be updated
W1mat_temp_old = W1mat_temp; % keep the not updated Wmat_temp in a separate matrix
% now update subvector W1^i of W1
parameters = struct(’t’,{i}, ’X1_signal’,{X1mat_temp},’update’,
{W1mat_temp}, ’e_signal’,{e(ii)}, ’u’,{u(ii)}, ’matrixS1’,
{sigm_W1_diag(ii,ii)}, ’Pmat’,{P(ii,ii)}) ;
W1mat_temp = RungeKutta(parameters, ’Diff_eq_W1’) ;

96 CHAPTER 10. APPENDIX

W1mat((ii-1)*part_x1+1 : ii*part_x1 , ii) = W1mat_temp(:,1); % Store the
updated
subcolumn W1^i into W1

%now update the i-th subvector of X1
parameters = struct(’t’,{i}, ’W1_signal’,{W1mat_temp_old},’update’,
{X1mat_temp}, ’e_signal’,{e(ii)}, ’u’,{u(ii)}, ’matrixS1’,
{sigm_W1_diag(ii,ii)}, ’Pmat’,{P(ii,ii)}) ;
X1mat_temp = RungeKutta(parameters, ’Diff_eq_X1’) ;
X1mat(ii,(ii-1)*part_x1+1 : ii*part_x1) = X1mat_temp(1,:); % Store the
updated row vector segment into X1

end % {for ii loop}

end % end of the iterations {for i loop}.

%Construction of the plots x1 and x2.
figure
plot(time_plot,xdes(1,:),’b’,time_plot,x_plot(:,1),’r’);
title(’Construction of the 1st state of the DC Motor’)
xlabel(’Time’)
ylabel(’Values of the desired and the actual state’)
legend(’Desired State’,’Actual State’)

figure
plot(time_plot,xdes(2,:),’b’,time_plot,x_plot(:,2),’r’);
title(’Construction of the 2nd state of the DC Motor’)
xlabel(’Time’)
ylabel(’Values of the desired and the actual state’)
legend(’Desired State’,’Actual State’)

figure
plot(time_plot,x_plot(:,3),’r’);
title(’Construction of the 3rd state of the DC Motor’)
xlabel(’Time’)
ylabel(’Values of the desired and the actual state’)
legend(’Desired State’,’Actual State’)

%Construction of the control input u.
figure
plot(time_plot,u_plot);
title(’Construction of the control input of the Neuro-Fuzzy Model’)
xlabel(’Time’)
ylabel(’Values of the control input’)
legend(’1st input’,’2nd input’)

10.2. MATLAB CODE 97

%Construction of the error signal between the F-RHONN approximator and
the states of the system.
figure
plot(time_plot,plot_e)
title(’Error between the F-RHONN approximator and the states of the system’)
xlabel(’Time’)
ylabel(’Values of the estimated error’)

In the sequel we present all the appropriate .m files which we used in the
main program.

It can be seen below, the .m files for the differential equations of the update
laws for the matrices W,X,W1, X1, as long as the construction of the neural
form of the RHONN model, the dynamical equations of the DC motor the cal-
culated sigmoidals terms, and last the Runge-Kutta solution of the differential
equations we solved in the main program.

%This m-file contains all differential equations of W.

function xdot = Diff_eq_W(params);

X = params.x_signal ;
P_mat = params.Pmat ;
S_mat = params.matrixS ;
error_signal = params.e_signal ;

xdot = [sign(X’)] * (S_mat’) * (P_mat) * (error_signal) ;

%This m-file contains all differential equations of X.

function xdot = Diff_eq_X(params);

W = params.W_signal ;
P_mat = params.Pmat ;
S_mat = params.matrixS ;
error_signal = params.e_signal ;

xdot = S_mat’ * W’ * P_mat * error_signal ;

%This m-file contains all differential equations of W1.

function xdot = Diff_eq_W1(params);

X1 = params.X1_signal ;

98 CHAPTER 10. APPENDIX

P_mat = params.Pmat ;
S1_mat = params.matrixS1 ;
error_signal = params.e_signal ;
u_signal = params.u ;

xdot = [sign(X1’)] * (P_mat) * (error_signal) * u_signal’ * S1_mat;

%This m-file contains all differential equations of X1.

function xdot = Diff_eq_X1(params);

W1 = params.W1_signal ;
P_mat = params.Pmat ;
S1_mat = params.matrixS1 ;
error_signal = params.e_signal ;
u_signal = params.u ;

xdot = [sign(W1’)] * (P_mat) * (error_signal) * u_signal * S1_mat ;

%This m-file contains the neural form that the actual system(DC MOTOR) is
%modeled by.

function xdot = Neural_Form(params);

x_signal = params.update ;
X = params.Xmat_sign ;
W = params.Wmat_sign ;
Sx = params.sigm_W_sign ;
X1 = params.X1mat_sign ;
W1 = params.W1mat_sign ;
S1x = params.sigm_W1_diag_sign ;
u_signal = params.u;
A = params.Amat_sign;

xdot = A*x_signal + X*W*Sx + X1*W1*S1x*u_signal ;

function xdot = DC_MOT(parameters);

x = parameters.update;
u = parameters.u;

xdot(1,1) = -148.88*x(1,1)-148.88*x(2,1)*x(3,1)+148.88*u(1) ;
xdot(2,1) = 42.91*x(1,1)*x(3,1)-0.0129*x(2,1) ;
xdot(3,1) = -1/31.88*(x(3,1)/(2.6-1.6*x(3,1)))+1/31.88*u(2) ;

%Function of sigmoidals that we use in order to compute the high order

10.2. MATLAB CODE 99

%combination of sigmoid functions.

function sig=Sigmoidals(x,a,b);

%We produce the sigmoidal functions as follows:

sigt = a/(1+exp(-b*x(1,1)));

sig1 = sigt^2 ;

sigt2 = a/(1+exp(-b*x(2,1)));

sig2 = sigt2^2 ;

%sigmoid vectors

sig = [sig1 ; sig2];

function xnew = RungeKutta(parameters,fname);

% Fourth order Runge-Kutta integration subroutine (fixed time step)
% File RungeKutta.m
% SP Sampling period
% x the state vector
% xdot the derivative of the state vector

global SP;

xdot = feval(fname, parameters);

x = parameters.update;
t = parameters.t;

K1 = SP*xdot;
x1 = x + 0.5*K1; parameters.update = x1;

t = t + 0.5*SP; parameters.t = t;
x1dot = feval(fname, parameters);

K2 = SP*x1dot;
x1 = x + 0.5*K2; parameters.update = x1;

100 CHAPTER 10. APPENDIX

x1dot = feval(fname, parameters);

K3 = SP*x1dot;
x1 = x + K3; parameters.update = x1;

t = t + 0.5*SP; parameters.t = t;
x1dot = feval(fname, parameters);
K4 = SP*x1dot;

Dx = 1/6*(K1+2*K2+2*K3+K4);
xnew = x + Dx;

10.2. MATLAB CODE 101

I hereby affirm that I composed this work independently and used no other
than the specified sources and tools and that I marked all quotes as such.

