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Abstract

Social network analysis has its origins in sociology. With the remarkable growth

of online social networking sites, social network analysis has steered considerable

interest in the fields of Computer Science and Telecommunications. The main ob-

jective of this thesis is to develop tools that enable extraction of social structures

from communication network data (such as email, packet/flow or TCP data). The

analysis aims to construct a map of the social network by analyzing communication

patterns using traffic between nodes in the network. Such graphical interpretation

of the data enables the data analyst to perform visual exploration and it is a first

step in automated analysis using e.g., clustering tools. The main idea is that the

higher the traffic between two nodes the lower their social distance. Hence, social

distance can be defined as an appropriate monotone decreasing function of pair-

wise traffic. These pseudo-distances can be transformed to proper distances using a

shortest path algorithm. We then invoke Multidimensional Scaling (MDS ) to gen-

erate a social map from the processed distances. Exploiting the temporal dimension

we further propose using 3-way MDS to capture social dynamics. We illustrate our

approach using the well-known Enron email corpus.
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Introduction

Consider a network with N nodes that exchange messages. Let M be a matrix with

elements mij equal to the number of messages that user i has sent to user j over a

given period. We may define social distance as a monotically decreasing function of

the number of messages f(mij). This models our intuition that social interaction

implies a large number of exchanges. Possible choices for f(mij) could be:

• f(mij) = 1
mij+c

• f(mij) = Ae−bmij

• f(mij) = A− bmij

Since there are many choices that are consistent with our basic intuition, we need

to investigate which ones are reasonable.

It is important to note that in order for f(mij) to be a distance metric, it must

satisfy certain properties. Thus, for any two nodes (i, j) of the network:

• f(mij) ≥ 0 (non-negativity).

• f(mij) = 0 only if j = i.

• f(mij) = f(mji). This can be enforced by construction, if we symmetrize (sum

up) the message exchanges in both directions (i→ j and j → i).
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• f(mij) ≤ f(mik) + f(mkj). This is not automatically ensured by “reasonable”

choices of f(.); however we propose using a shortest path algorithm for this

purpose, as will be explained in the sequel.

Let D be a matrix holding the pairwise distances between the nodes of the

network. In order to generate a social map of the users in the network from the

given pairwise distance estimates, we can pose the following problem: given matrix

D find points in 2-D or 3-D Euclidean space that generate these distances. This

problem is known as Multidimensional Scaling (MDS ) [3].

Noting that data may change over the time, we may aim to exploit the temporal

dimension to better localize the individual nodes and capture social dynamics. Thus,

instead of using classical matrix representation in order to store the data, we use a

tensor array of order N ×N ×K where N , K denote the number of network users

and time-steps respectively. Consequently, we propose using 3-way MDS and show

superior results for the localization and tracking of dynamically changing datasets-in

particular for the Enron data [12].
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Multidimensional Scaling

MDS is a method that maps estimated distances between pairs of objects into a

set of points, usually in a low-dimensional space, which approximately reproduce

the given distances. MDS as a technique was discovered in Psychology [1, 2]. Since

then, it has found numerous applications e.g., most recently for node localization in

wireless sensor networks [4]. In this chapter we illustrate the basic idea behind MDS

and its application to social networks..

2.1 Basic Idea

Denote the distance of object i and j as dij. The set of all distances between all

objects yields the distance matrix D. Let XN×m be the matrix of true coordinates

of the nodes. Each row i of X indicates the coordinates of node i in m dimensions.

The matrix of squared distances P can be expressed as [3]:

P = c1T + 1cT − 2XXT = c1T + 1cT − 2B (2.1)

where c is a N × 1 vector of the diagonal elements of matrix XXT and 1 is a N × 1

vector of ones.
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Multiplying from left and right by the centering operator J = I − 11T/N and

by the factor −1
2

gives:

−1

2
JPJ = −1

2
J(c1T + 1cT − 2XXT)J

= −1

2
Jc1TJ− 1

2
J1cTJ +

1

2
J(2XXT)J

= −1

2
Jc0T − 1

2
0cTJ + J(XXT)J

= (I− 11T

N
)XXT(I− 11T

N
)

= (XXT −XXT 11T

N
− 11T

N
XXT +

11TXXT11T

N2
)

= XXT = B.

(2.2)

Given matrix B or a noisy estimate thereof we can then determine X by minimizing

the function:

h(X) = ||B−XXT||2F (2.3)

Thus, the node coordinates can be estimated by the n principal eigenvectors of B.

B ≈ (UnΛ
1/2
n )(Λ1/2

n UT
n ) = YYT (2.4)

Result: The application of the classical MDS procedure with the correct number

of dimensions and for the true distance matrix P, returns estimates of the coordi-

nates Y of all nodes of the network that are equal to the true coordinates X (up to

rotation, reflection and translation) [13].

2.2 A simple illustration of Classical MDS

A good way to understand the main idea of Classical MDS is by giving a simple

example. Consider the distances between 5 cities measured on a map (see Table 2.1).

Based only on the measurements of Table 2.1, our intention is to constuct a map

of 5 points such that the distances between these points are equal to the distances
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between the 5 cities in the original map. Note that the reconstructed map in Figure

2.1 correspond to the true distances between the 5 cities in Table 2.1.

Table 2.1: Distances between 5 cities in km

Athens Salonica Herakleion Istanbul Rome

Athens 0 344 359 637 1230

Salonica 344 0 698 568 1040

Herakleion 359 698 0 806 1530

Istanbul 637 568 806 0 1590

Rome 1230 1040 1530 1590 0
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Figure 2.1: Reconstruction of the map of 5 cities using MDS

Although the reconstructed map has an unconventional orientation, this can be

easily adjusted, if we look at the map upside-down. This is the main problem of



2.3 Classical MDS and social network analysis 12

bilinear decomposition that is discussed below: rotational freedom

2.3 Classical MDS and social network analysis

In the following section, we present an example applied to social network clique

analysis. Firstly, we create 25 points in the Euclidean space in such a way in order

to create 5 groups of 5 points each (c.f. Figure 2.2).

Figure 2.2: Illustration of 5 groups of 5 nodes.

Afterwards, we generate packets between the nodes at a rate of packet (proba-

bility generation and transmission) that is inversely proportional to their distance.

Hence, mij = 1
dij

, where mij is the number of packets that user i sends to user j

and dij their distance for i, j = 1 . . . 25. Thus, we model 5 groups of 5 individu-

als sending packets to each other. We define the social distance of the nodes as

d̂ij = f(mij) = 1
mij

. Then, we use Dijkstra algorithm for each node in order to

transform the pseudo - distances to proper distances. Finally, MDS is applied using

Singular Value Decomposition (SVD) in order to cluster them in groups (c.f. Figure

2.3). Notice the difference between Figure 2.2 and Figure 2.3 because of rotational

freedom.
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Figure 2.3: Illustration of 5 cliques using Classical MDS.
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All pairs shortest path algorithm

Consider a weighted, directed graph G = (V,E) with weight function w : E → R

that maps edges to real-valued numbers. The weight of path p = 〈u0, u1, . . . , un〉

can be defined as the sum of the weights of its constituent edges:

w(p) =
n∑

j=1

w(uj−1, uj)

Then the shortest path from vertex u to vertex v is:

δ(u, v) =

 min
{
w(p) : u

p→ v
}

if there is a path from u to v,

∞ otherwise.

3.1 Properties of shortest paths

Theorem 1: (Optimal substructure) A subpath of a shortest path is a shortest

path.

Proof
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Let’s consider a subpath p(x, y) of the shortest path δ(u, v). Assume that p(x, y)

isn’t a shortest path. Then, there exists a shortest path δ(x, y) that goes from x to

y. If we have a shorter path from x to y than p(x, y) then we can replace the older

path p(x, y) with the shorter one δ(x, y). Then there must exist a path from u to v

which is shorter than the shortest one δ(u, v) which is a contradiction.

The following is a key property of shortest paths:

Theorem 2: (Triangle inequality) ∀u, v, x ∈ V , we have δ(u, v) ≤ δ(u, x) +

δ(x, v) where δ(x, y) denotes the length of the shortest path from x to y.

Proof By contradiction and the definition of shortest path.

3.2 All pairs shorthest paths problem

All pairs shortest paths is an optimization problem that finds all shortest paths for

every pair of u and v in the network graph G(V,E). This problem can be solved:

• by executing a single-source shortest paths algorithm for all the vertices V of

the graph.

• by executing an all pairs shortest paths algorithm

Single-source shortest paths algorithms

Consider a weighted, directed graph G(V,E) with source s and weighted function

w : E → R. The Bellman-Ford algorithm solves the single source shortest paths

problem in which edge weights may be negative. If there is a negative-weight cycle

that is reachable from the source, the algorithm indicates that there is no solution.

Otherwise, the algorithm finds the shortest paths and their weights from the source.

The running time of Bellman-Ford algorithm is O(|V ||E|) and by running Bellman-

Ford process |V | times the complexity is O(|V |2|E|).
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Algorithm 1 Bellman-Ford algorithm

Ensure: The shortest paths from s to all u ∈ V − s.

1: Initialize-Single-Source(G, s)

2: for i← 1 to |V [G]| − 1 do

3: for all (u, v) ∈ E[G] do

4: Relax(u, v, w)

5: end for

6: end for

7: for all (v, u) ∈ E[G] do

8: if d[v] ≥ d[u] + w(u, v) then

9: return FALSE

10: end if

11: end for

12: return TRUE

Algorithm 2 Initialize-Single-Source(G, s)

1: for all v ∈ V [G] do

2: d[v]←∞

3: pr[v]← ∅

4: end for

5: d[s]← 0

Algorithm 3 Relax(u, v, w)

1: if d[v] ≥ d[u] + w(u, v) then

2: d[v]← d[u] + w(u, v)

3: pr[v]← u

4: end if

On the other hand, Dijkstra algorithm solves the single source shortest paths

problem in which all edges weights are nonnegative. Given a set S of vertices whose

shortest paths are known from the source s, the algoritm selects the vertex u ∈ V −S
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whose estimated distance from s is the minimum shortest path, and updates all

estimated distances of vertices that are adjacent to u. In our implementation we use

a min-priority queue Q of vertices. The running time of Dijkstra algorithm depends

on how the min-priority queue is implemented. If we use an array the complexity of

the algorithm is O(|V |2) and by running |V | times Dijkstra process the complexity

is O(|V |3). For the single sourtest paths case, we can achieve a running time of

O(|V | log |V |+ |E|) by implementing the min-priority queue with a Fibonacci heap

[10].

Algorithm 4 Dijkstra algorithm

Require: The source vertex s and the min-priotity queue Q of G(V,E).

Ensure: The shortest paths from s to all u ∈ V − s.

1: Initialize-Single-Source(G, s)

2: S ← ∅

3: Q← V [G]

4: while Q 6= ∅ do

5: u← Extract-Min(Q).

6: S ← S ∪ u

7: for all v ∈ Adj[u] do

8: Relax(u, v, s)

9: end for

10: end while

All pairs shortest paths algorithms

Floyd-Warshall algorithm solves the all-pairs shortest-paths problem on a directed

graph G(V,E). Negative-weight edges may be present but no negative-weight cycles.

We define a recursive to the all-pairs shortest-paths problem. Let d
(k)
ij be the weight

of a shortest path from vertex i to vertex j for which all intermediate vertices are

in {1, 2, . . ., k}. When k = 0, then a path from vertex i to vertex j with no

intermediate vertex numbered higher than 0, has no intermediate vertices. Thus,

d
(0)
ij = wij. A recursive solution is given by
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d
(k)
ij

 wij if k = 0,

min(d
(k−1)
ij , d

(k−1)
ik + d

(k−1)
kj ) if k ≥ 1.

Floyd−Warshall algorithm runs in Θ(|V |3).

Algorithm 5 Floyd-Warshall algorithm

Require: The weight matrix W (n× n).

Ensure: All shortest paths for every pair (u, v) ∈ G(V,E).

1: n← rows[W ]

2: D(0) ← W

3: for k ← 1 to n do

4: for i← 1 to n do

5: for j ← 1 to n do

6: d
(k)
ij ← min(d

(k−1)
ij , d

(k−1)
ik + d

(k−1)
kj )

7: end for

8: end for

9: end for

10: return D(n)

In our case we have to solve the all-pairs shortest-paths problem on a undirected,

dense graph G(V,E) with weight function w : E → R
+. As we presented above,

the running time of Bellman-Ford algorithm is the most costly; the Bellman-Ford

complexity depends on the number of edges |E| of the graph G(V,E) and when the

graph is dense |E| >> |V |. The above optimization problem can be solved by using

either Dijkstra or Floyd-Warshall algorithm as described above. The pseudocodes

of all the above algorithms were collected from [10].
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Three way multidimensional

scaling

The information in large or complex datasets is often difficult to describe. This is

common in real world applications where the data are not static and change over

time. Exploiting the temporal dimension, we use 3-way MDS to localize better the

individual nodes and capture social dynamics. The distance - estimates are stored

in a tensor array of order N × N ×K where N, K denote the number of network

users and time-steps respectively.

4.1 Individual Scaling

Given the double centered distance matrices Si for i = 1, . . . , K, our goal is to

minimize the function

h(X,W1,W2, . . . ,WK) =
K∑

i=1

||Si −XWiX
T||2F (4.1)

where X is a I × r matrix, Wi is a diagonal weight matrix of size r × r. The

optimization problem described above is called INDSCAL. There is no analytical

solution for the equation (c.f. Equation 4.1) for any X and Wi. Caroll and Chang [5]

proposed a method called CANDECOMP/PARAFAC that solves the above equation

iteratively.
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More specifically, given the equation:

h(X,Y,W1,W2, . . . ,WK) =
K∑

i=1

||Si −XWiY
T||2F (4.2)

where X is a I × r matrix, Y is a J × r matrix, Wi is a diagonal matrix r× r and r

is the rank approximation that we want to achieve, Caroll and Chang claimed that,

when CANDECOMP converges X and Y are column-wise proportional. Note that

each row i of X indicates the coordinates of node i in r dimensions. The dimension

weights wrri for every dimension r and time-slice i are non-negative and the time

differences are possible only in the weights on the dimensions of X.

4.2 Parallel Factor Analysis

4.2.1 Linear Algebra Properties

Definition 1: The rank of a matrix X can be defined as the minimum number of

outer products (rank-one factors) that generate X as their sum.

X = a1b
T
1 + a2b

T
2 + . . .+ arb

T
r

or alternatively,

X = ArB
T
r

where X ∈ C
I×J matrix, ai, bi for i = 1, . . . , r are so - called “loading”/ “score”

column vectors, aib
T
i are the rank - one factors, and r is the rank of matrix X.

Property 1: Given X = ArB
T
r there are infinitely many equivalent decompositions

of X. This is the basic principle behind bilinear decomposition, called rotational

freedom.

Proof

Let X be a matrix of order (I×J). Suppose that we have found A, B that decompose

X. So,

X = ABT = AMM−1BT = AM(BM−T)T = A1B
T
1
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where M is a nonsingular matrix, A1 = AM and B1 = BM−T.

Let’s now consider a three-way array X ∈ C
I×J×K . The trilinear decomposition,

also known as PARAFAC, represents X as the sum of outer products of three vec-

tors. Thus, for each slice i:

Xi =
R∑

r=1

arbr
Tcir

or alternatively,

Xi = ADi(C)BT.

where ar, br are the rth columns of the loading matrices A ∈ CI×R, B ∈ CJ×R, cir

is the element of C ∈ C
K×R and Di(C) is a diagonal matrix with main diagonal

constructed by the ith row of C.

Figure 4.1: A representation of PARAFAC decomposition, where A ∈ C
I×r, B ∈

C
J×r and D ∈ Cr×r×K .

Property 2: Trilinear decomposition is unique under mild assumptions.

The necessary and sufficient conditions for the uniqueness of this analysis is described

in the cited literature [8, 6, 9].

4.2.2 Khatri-Rao product

The Khatri-Rao product (KR product) can be defined as the columnwise Kronecker

product of two matrices with the same number of columns F .

A�B = [a1 ⊗ b1|a2 ⊗ b2| . . . |aF ⊗ bF]
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or alternatively,

A�B =


BD1(A)

BD2(A)
...

BDI(A)

 (4.3)

where A ∈ CI×R, B ∈ CJ×R and �, ⊗ are the Khatri Rao and Kronecker operator

respectively.

The PARAFAC model can be expressed in different ways as described above.

Thus, let’s consider again the three way array X ∈ CI×J×K . A useful formulation of

X in matrix representation is by the use of the KR product :

X(JI×K) = (A�B)CT. (4.4)

X(IK×J) = (C�A)BT. (4.5)

X(KJ×I) = (B�C)AT. (4.6)

where X(JI×K), X(IK×J) and X(KJ×I) are obtained by unfolding X along the third,

second and first dimension respectively.

4.2.3 Trilinear Alternative Least Squares

A widely used method that fit the PARAFAC model is the TALS-Trilinear Alter-

native Least Squares algorithm. Consider,

min
A,B,C

‖X(JI×K) − (A�B)CT‖2F.

1. Initialization of A, B, C.

2. Least Squares updates:

AT = (B�C)†X(KJ×I). BT = (C�A)†X(IK×J).

CT = (A�B)†X(JI×K).

3. Go to step 2 until convergence criterion holds.

Table 4.1: TALS



4.3 Application of 3-way MDS to social networks 23

where † denotes matrix pseudo-inverse.

4.3 Application of 3-way MDS to social networks

In this section we present an example of 3-way MDS applied to social networks that

change over the time, using trilinear and singular value decomposotion - SVD.

We create 25 points in the 2-D space in such a way in order to create 5 groups

of 5 nodes each. The coordinates of the nodes are stored in a matrix X ∈ R
25×2

(c.f. Equation 4.1). In order to model a network that dynamically change, the node

coordinates are multiplied by a diagonal matrix Wk ≥ 0 for k = 1 . . . 5. Afterwards,

we generate packets between the nodes at a rate of packet (probability generation

and transmission) that is inversely proportional to their distance as in section (2.3).

Thus, mijk = 1
dijk

where mijk is the number of packets that user i sends to user j

at k-th time slice and dijk their distance for i, j = 1 . . . 25 and k = 1 . . . 5. Thus,

we define the social distance of the nodes as d̂ijk = 1
mijk

. Instead of using classical

matrix representation in order to store the data, we use a tensor array S ∈ R25×25×5.

4.3.1 Noiseless case

Firstly, we sum the 3-way array S along the time dimension. Then, by using Dijkstra

algorithm we transform the pseudo-distances to proper distances. Classical MDS is

applied, by the use of SVD, in order to localize the individual nodes in the Euclidean

space.

Secondly, we use the 3-way MDS model in order to decompose the tensor S ∈

R
25×25×5. After the application of Dijkstra algorithm for each time slice, 3-way MDS

is applied by the use of Parafac1 decomposition. The above procedures have allowed

to classify the 5 cliques of the network.

1We use parafac procedure of nway Toolbox for Matlab (ver. 7.3) under the constraint: C-

mode non-negativity constraint. We use non-negativity of the weights according to the weighted

Euclidean model.
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(a) k = 1 (b) k = 2

(c) k = 3 (d) k = 4

(e) k = 5

Figure 4.2: Illustration of 5 groups of 5 nodes that dynamically change.
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Figure 4.3: Illustration of 5 cliques using parafac procedure (noiseless case).

Figure 4.4: Illustration of 5 cliques using SVD (noiseless case).
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4.3.2 Noisy case

In the presence of noise the matrix X ∈ R
25×2 that holds the node coordinates

becomes:

X = X + W

Note that noise can model data inaccuration or even the loss of data. We use again

SVD as described above to represent the nodes of the graph. Unlike SVD, 3-way

MDS using Parafac has allowed to classify the cliques of the network. The reason

for this is that 3-way MDS assumes and exploits more structure in the data, which

structure in this case is correct (by construction). The same structure often holds

because different individuals weight latent dimensions differently over time e.g., as

their needs/ life evolve.
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(a) k = 1 (b) k = 2

(c) k = 3 (d) k = 4

(e) k = 5

Figure 4.5: Illustration of 5 groups of 5 nodes that dynamically change (noisy case).
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Figure 4.6: Illustration of 5 cliques using parafac procedure (noisy case).

Figure 4.7: Illustration of 5 cliques using SVD (noisy case).
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Enron email data processing

Enron was a U.S. energy company that was formed in 1985, under the direction

of Keneth Lay, through the merger of a utility and a gas pipeline company. Enron

quickly became the nation’s seventh-largest company in revenue by buying electricity

from generators and selling it to consumers. From 1999, Enron created offshore

“special purpose entities” (SPE), to hide losses from equity and look more profitable

than it actually was. In August 2000, Enron’s stock price hit its highest value of

90$ billions. In December 2000, Jeffrey Skilling took over the position of chief

executive from Keneth Lay and helped make Enron the biggest wholesaler of gas

and electricity, trading over 27$ billions per quarter.

At this point Enron executives, who possessed the inside information on the

hidden losses, began to sell their stock, while at the same time, the Enron’s investors

were told to buy the stock. As the executives sold their shares, the price began to

drop. In August 2001 Skilling surprisingly resigned, stating personal reasons for

quitting. As October closed, the Enron’s stock price had fallen to 15$ billions.

At the end of 2001 Enron filed for bankruptcy and the “Enron scandal” quickly

followed. The Securities and Exchange Commission (SEC) and the Federal Energy

Regulatory Commission (FERC) started inquiry into Enron. In May 2002, FERC

released a corpus of the emails from about 150 employees during its investigation.
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Enron email dataset is the only substantial collection of real email data that is

public. For this study, the email data were collected from [7]. There are 184 email

accounts with emails logs during a period of 44 months (1998-2002). However, there

were email accounts which belong to the same person, thus we firstly identify the

emails that belong to the same person and add them to one account. So, the 184

email accounts belong to 151 users. Afterwards, we store the email data in a tensor

array S of order 151× 151× 44.

5.1 Preprocessing steps

In order to perform network analysis we must specify the kind of the relations be-

tween the individuals in the network graph. There are two kind of relations: a)

the number of emails exchanged between the employees and b) the content of the

emails. In this thesis we use the first kind of relation (communication networks).

All the steps described below are performed in MATLAB version 7.6.0.324 (R2008a)

released in February 10, 2008.

Goal

According to [11] Enron data are multi-mode (work relationship, friendship), multi-

link and multi-time period. Our goal is to look at the profiles of the network graph

and extract social structures.

Definition of social distance

The social distance of the nodes of the graph can be represented by means of the

exponential function e−mij where mij is the number of emails that user i sends to

user j. This is based on the assumption that social distance between nodes is in-

versely proportional to the number of emails.

Undirected graph

Each slice of the tensor S represents a directed graph. We construct an undirected

graph in order to perform a 3-way MDS analysis. Thus, we symmetrize each slice:
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Si =
(Si+ST

i )

2
for i = 1 . . . K.

Triangle inequality

Symmetry of the data was imposed by the procedure described above. Non-negativity

holds for Si ≥ 0. In order to achieve a graphical interpretation of the data and ensure

that social distances are real distances we must ensure that the triangle inequality

also holds. In this case we used an all pairs shortest path algorithm for each slice.

Double centering

After the all pairs shortest paths step, we square the produced distances and we

apply the centering operator as in Equation (2.2). Then, each slice can be written

as:

Si = YiY
T
i

where i = 1 . . . 44, Yi ∈ R151×r and r is the rank of matrix Yi. Assuming that each

slice Si differs from each other, by a weight on each of the dimensions r (according

to the weighted Euclidean model) we have:

Si = AWiA
T = (AW

1/2
i )(W

1/2
i AT ) = YiY

T
i

where Wi ∈ Rr×r is a diagonal matrix with the weights for each dimension r and

A ∈ R151×r. Note that each Wi ≥ 0. The point at this stage is to specify the rank

of Yi or alternatively, to specify the dimensions of the common stimulus space A.

For this reason, spectral analysis of Enron data is done in the following section.

5.2 Spectral analysis of Enron data

Let Bi = YiY
T
i for i = 1 . . . 44, thus we have tensor B. We sum tensor B along

third (time) dimension. Let,

C =
K∑
i=1

Bi
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In the following we illustrate that matrix C has a low rank approximation by ap-

plying SVD to matrix C and plotting the singular values. Compact SVD of matrix

C ∈ R151×151 can be defined as:

C = UΣVT

where U and V are the left and right singular vectors respectively. U ∈ R
151×r

and V ∈ R151×r are orthogonal matrices (UTU = I and VTV = I). Σ ∈ Rr×r is a

diagonal matrix that contains the singular values of C. Note that singular values

are non-negative and the diagonal entries in Σ are placed in descending order.
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Figure 5.1: Singular values of matrix C shows that the two largest singular values are

clearly above the rest - although a “significant dozen” more singular values appear,

as typical for real data.
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The largest two singular values of C are 155 and 85 respectively and the rest

singular values are below 60.

5.3 Algorithm

After the application of double centering, trilinear decomposition with 2 components

is applied (note that the distance coordinates have a 2-rank approximation) in order

to find the profile of each user and plot it in 2-D space.

Algorithm 6 Factor analysis of Enron data

Require: Tensor array S ∈ R151×151×44 which contains the number of emails over

44 months.

1: for all i = 1 . . . 44 do

2: for all j = 1 . . . 151 do

3: for all k = 1 . . . 151 do

4: sijk = e−sijk

5: end for

6: end for

7: Si =
(Si+ST

i )

2

8: Si = Si − diag(diag(Si))

9: Di = dijkstra(Si)

10: Di = −1
2
JD2

i J

11: end for

12: [A,B,C] = parafac(D, 2)
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Figure 5.2: Profiles of Enron users over the 44 month period.

5.4 Results

The relations that are developed between the working staff of the company according

to the emails that they exchanged are examined as for:

• their position in the company

• the Department of the company they belong

In the first case, among the 151 users we have adequate information concerning

their position in the company only for 126 of them. Among those 126, we choose to

place in the following diagram those who belonged to the largest categories so that

the diagram be clear as much as possible. Consequently, our sample amounts up to

121 individuals (cf. Table 5.1).

In the second case, as shown in the second table below, we made a list of 7

categories of the working staff of the company, which account for up to 78 individuals

totally. For those who are not included in the table, either their Department was

unknown or they formed small groups which again would complicate the diagram

(cf. Table 5.2).
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Table 5.1: Number of Employees

per position

President 4

Vice - President 23

Director 15

Managing - Director 2

Manager 16

Employees 42

CEO 4

Traders 17

COO 1

In House Lawyer 1

Asst. General Counsel 1

n/a 11

xxx 14

Summary 151

Table 5.2: Number of Employees

per Department

Gas - Trading 37

Gas - Pipeline (ETS) 10

Finance 8

Government & Reg. Affairs 5

Legal Department 12

Marketing Department 3

Risk Management 3

Summary 78

The first diagram (cf. Figure 5.5) shows the working staff’s relations according

to their position as follows:

• The Presidents of Enron Corporation communicate more frequently with the

Chief Executive Officers and the Managers.. Furthermore, there is an intercom-

munication network between the Presidents of Enron Company as underscored

by the small distance of their nodes in the diagram (cf. Figure 5.3).

• Notice the dense node distribution of the Vice - Presidents in the diagram

and a more frequent communication with the high - profiled members of the

company (cf. Figure 5.4).

• The Directors, due to their position in the company, communicate with the

high - profiled members as well as with the Employees of the company.
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Figure 5.3: Profiles of CEO, Presidents, Managers & VP

Figure 5.4: Profiles of Vice President
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• The Chief Executive Officers are strongly connected with the Presidents and

Vice - Presidents of the company. Only, Jeffery Skilling communicates occa-

sionally with a large number of individuals.

• There is a large distribution of Managers in the diagram. This demonstrates

that this group communicate with all the working staff in the company.

• Both Traders and Employees communicate with all the categories cited above

as well as with the individuals of their own group.

The second diagram (cf. Figure 5.6) shows the relation between the Departments

of the comany as follows:

• The employees of Legal Department are strongly connected. In that sense, we

can speak again of an intercommunication network between the members of

this group.

• The nodes that represent the Pipeline Company (ETS-Enron Transportation

Services), Gas Trading Department and Marketing Department which promote

and circulate the gas, are closer to each other. Therefore, there is a frequent

communication between these Departments during the period of 44 months.

• The Finance Department of the company communicate mostly with the Man-

agers and Marketing Department. However, there are some employees that

communicate with the employees of Legal Department and ETS company too.

• The Risk Management Department communicate with Gas Trading, ETS, Gov-

ernment & Regulatory Affairs and Legal Department employees. It is obvious

that there is no communication between this department and the Marketing

Department.

• It is expected the nodes of Government & Regulatory Affairs to be closer to

the nodes of Legal Department. This shows that there is a communication of

this community of employees with the lawyers of the company. Additionally,

we notice the communication between this department with ETS and Gas
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Trading Departments, something which is normal because the role of this

sector is to ensure that their company comply with all of the regulations and

laws pertaining to their business.
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Figure 5.5: Visualization clustering of Enron data, color-coded per position.
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Figure 5.6: Visualization clustering of Enron data, color-coded per department.
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Conclusion and Future Work

Our analysis concetrated on constructing a map of a social network by analyzing

communication patterns using only the traffic between the nodes in the network.

Our basic intuition was that the higher the traffic between two nodes the lower their

social distance. Thus, we define social distance as a positive, monotically decreasing

function of pairwise traffic.

Since there were many possible choices that were consistent with our basic in-

tuition, we examined which ones are reasonable (c.f. Appendix A). However, we

don’t have a good analytical insight on how to choose this function. We only know

the properties that this function should have in order to be as close as possible to

the “true” function. Hence, only reasonable choices can be made. Ideally, we would

like to adopt a function that is motivated /corroborated by research in the social

sciences.

Finally, we illustrated our approach using the Enron email corpus. We propose to

use 3-way MDS in order to capture social dynamics and examine the relations among

the employees of the company according to their Department and their position they

belong (c.f. Ch. 5).



Appendix A

Function that generates social

distances

As mentioned above this function must be non negative and monotically decreasing

in order to represent the social distance between the nodes of the communication

network. The choice of the proper function depends on the kind of data one has.

Consider a peer to peer network as described in section (4.3). In such a network

the range of variation of the number of packets exchaged among different peers is

large. Thus, the function that generates the pseudo-distances of the nodes should

not necessarily decrease fast. In this case, a reasonable choice of the function that

maps messages to social distances could be 1
x

where x denotes the number of packet-

exchanges.

In contrast, email data are by nature sparse and the range of variation of the

number of emails that users exchange is not large (typically in Enron data the

biggest number of emails that have been exchanged between two users over a period

of a month is 147 emails). Thus, in this case in order to visually explore the social

structures of the email graph we need a function that quickly decreases. Thus, we

define as social distance the function e−x.
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