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Chapter 1 

Introduction 
 

In this thesis we proceed to the adaptive identification of a pneumatic pump. Pumps are 

used in an incredibly great deal of different applications in our life. Since, virtually any 

environment where there is a need for moving, displacing or regulating the flow of fluids 

relies on pumps, their identification with ultimate aim their control is very important. In 

order to identify this nonlinear dynamical system we use the Recurrent High Order Neural 

Network model and robust learning algorithms. 

In chapter 2 we present the theoretical background of our work, introducing some general 

facts about pumps. We focus on pump characteristic parameters, how pumps can be 

classified with a brief description of each category and we emphasize at pneumatic pumps, 

which are the objective of our study, their applications and how they work. 

In chapter 3, the implementation of our pneumatic pump-model takes place. After the 

presentation our model, we describe the tool we used to implement it, which is the Matlab 

Simulink environment and then we end up with the implementation of the pneumatic pump-

model in Matlab Simulink.  

In chapter 4 we deal with the adaptive system identification using Recurrent High Order 

Neural Networks. After some general facts about neural networks are mentioned, we 

present the RHONN model and then we focus on some different identification techniques 

based on this model.  

In chapter 5 we apply the adaptive identification scheme using robust learning algorithms 

presented in chapter 4 to our pneumatic pump-model implemented in chapter 3. In the end 

we present its results which are really successful.  

Finally in chapter 6 we end up with the conclusions of our work and how it could be possibly 

further developed in the future.  
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In order to implement and identify our pneumatic pump model, some definitions about how 

pumps work, the way they are 

is the subject this chapter deals with. In the end of chapter 2 w

pumps, which are the objective of our study, their

2.1 Introduction 
 

A pump is a machine used to

to another. This transfer is accomplished by increasing the pressure of the fluid to the 

amount needed. A fluid’s pressure must be increased in order to raise the fluid from one 

elevation to a higher. For example when is needed to move liqu

building to a higher, or to pump liquid up a hill. Moreover pressure must be increased to 

move the fluid through a piping system because pipes, valves, and fittings experience 

frictional losses along the way. These losses vary with t

the flow rate and with the geometry and material of the pipe, valves and fittings. There are 

also process reasons as the pressure of a fluid must often be raised to move the fluid into a 

pressurized vessel, such as a 

it may be necessary to overcome a vacuum in the supply vessel. 

        

  

   Figure 1.1      

Chapter 2 

Pumps 

In order to implement and identify our pneumatic pump model, some definitions about how 

pumps work, the way they are classified and their basic characteristics should be given. That 

is the subject this chapter deals with. In the end of chapter 2 we emphasize at pneumatic 

pumps, which are the objective of our study, their operation and some of their

 

to transfer fluids such as liquids, gases or slurries

to another. This transfer is accomplished by increasing the pressure of the fluid to the 

amount needed. A fluid’s pressure must be increased in order to raise the fluid from one 

. For example when is needed to move liquid from one floor of a 

building to a higher, or to pump liquid up a hill. Moreover pressure must be increased to 

move the fluid through a piping system because pipes, valves, and fittings experience 

frictional losses along the way. These losses vary with the viscosity and density of the fluid, 

the flow rate and with the geometry and material of the pipe, valves and fittings. There are 

also process reasons as the pressure of a fluid must often be raised to move the fluid into a 

pressurized vessel, such as a boiler or fractionating tower, or into a pressurized pipeline. Or, 

it may be necessary to overcome a vacuum in the supply vessel.    

 

Figure 1.1      A typical pumping system     [13]  

In order to implement and identify our pneumatic pump model, some definitions about how 

classified and their basic characteristics should be given. That 

e emphasize at pneumatic 

operation and some of their applications. 

liquids, gases or slurries from one place 

to another. This transfer is accomplished by increasing the pressure of the fluid to the 

amount needed. A fluid’s pressure must be increased in order to raise the fluid from one 

id from one floor of a 

building to a higher, or to pump liquid up a hill. Moreover pressure must be increased to 

move the fluid through a piping system because pipes, valves, and fittings experience 

he viscosity and density of the fluid, 

the flow rate and with the geometry and material of the pipe, valves and fittings. There are 

also process reasons as the pressure of a fluid must often be raised to move the fluid into a 

boiler or fractionating tower, or into a pressurized pipeline. Or, 
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A pump can be further defined as a machine that uses a lot of different energy 

transformations to increase the pressure of a fluid. A pump in operation converts the energy 

available in the engine into potential, kinetic and heat energy of the fluid it transfers. The 

energy input into the pump is typically the energy source used to power the driver. Most 

commonly, this is electricity used to power an electric motor. Alternative forms of energy 

used to power the driver include high-pressure steam to drive a steam turbine, fuel oil to 

power a diesel engine, high-pressure hydraulic fluid to power a hydraulic motor, and 

compressed air to drive an air motor.  

[2], [4] 

 

2.2 Early History of Pumps 

 

‘’After the existence of life a perfect pump started operating. The heart! It’s characterized as perfect 
since it works tirelessly for many decades, with variable flow depending on its needs; it is self-

adjusting, quiet and self-repairing. No man has ever built a pump which is so gentle, so strong and so 
reliable.’’ 

 

The pump is the earliest invention for the conversion of natural energy to useful work, 

substituting natural energy for human physical effort. It could only contend with the sail for 

this “title”, however the last one cannot be classified as a machine.   

The earliest pump we know is the shaduf or swape. It was invented by the Mesopotamians 

about 3000 B.C. and it is an ancient water-raising device. It was positioned right next to a 

riverbank, and made with a wooden lever pivoted on two posts placed in the ground 

upright. On one end of the lever they placed a wooden pole or branch. At the long end of 

this pole there was attached a bucket, and something heavy like a stone was attached to the 

other end to serve as a counterweight. Water was retrieved by pushing the pole down until 

the bucket was filled with water, at which point the counterweight would help raise the 

bucket back up. It became popular throughout the Middle East, and was the only form of 

water pump used in that region for the next two thousand years. Around 300 B.C. Ctesibius 

of Alexandria, often mentioned as the father of pneumatics , invented the ancestor of the 

modern force pump—which features a cylinder with a plunger or piston at the top that 
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creates a vacuum and draws water upward through val

mentioned this device, as he did the 

this pump, which was usually made of bronze, have been found in many buildings dating 

from the days of the Roman Empire. The valves a

inventions that were incorporated into other kinds of machinery, including military 

equipment. The Romans, for instance, used this kind of pump to hurl flammable liquids at 

invading Arabs. 

About the same time period A

Archimedean screw or screw

because though it is commonly attributed to 

before him, in Egypt. The Archimedes crew 

screw is turned usually by a windmill or by manual labor. As the bottom end of the tube 

turns, it scoops up a volume of water

until it finally pours out from the top of the tube and feeds the irrigation systems. 

contact surface between the screw and the pipe does not need to be perfectly water

because of the relatively large amount of water being scooped at each turn with r

the angular frequency and angular speed of the screw. Also, water leaking from the top 

section of the screw leaks into the previous one and so on, so a sort of mechanical 

equilibrium is achieved while using the machine, thus limiting a decrease i

efficiency. This device was firstly

mostly used for draining water out of mines or 

 

    

creates a vacuum and draws water upward through valves at the bottom. Vetruvius 

mentioned this device, as he did the saqiya, in his first century B.C. chronicles. Remains of 

this pump, which was usually made of bronze, have been found in many buildings dating 

from the days of the Roman Empire. The valves and plungers were particularly valuable 

inventions that were incorporated into other kinds of machinery, including military 

equipment. The Romans, for instance, used this kind of pump to hurl flammable liquids at 

About the same time period Archimedes described the Archimedes' screw, also called the 

Archimedean screw or screw pump. It is mentioned that he described the screw

because though it is commonly attributed to Archimedes, it was actually used for centuries 

e Archimedes crew is made of screw inside a hollow 

screw is turned usually by a windmill or by manual labor. As the bottom end of the tube 

turns, it scoops up a volume of water which slides up in the spiral tube as the shaft is turned, 

l it finally pours out from the top of the tube and feeds the irrigation systems. 

contact surface between the screw and the pipe does not need to be perfectly water

because of the relatively large amount of water being scooped at each turn with r

the angular frequency and angular speed of the screw. Also, water leaking from the top 

section of the screw leaks into the previous one and so on, so a sort of mechanical 

equilibrium is achieved while using the machine, thus limiting a decrease i

was firstly used for removing water from the hold of a ship

mostly used for draining water out of mines or other areas of low lying water.

Figure 1.2  The Archimedean screw    [15] 

ves at the bottom. Vetruvius 

, in his first century B.C. chronicles. Remains of 

this pump, which was usually made of bronze, have been found in many buildings dating 

nd plungers were particularly valuable 

inventions that were incorporated into other kinds of machinery, including military 

equipment. The Romans, for instance, used this kind of pump to hurl flammable liquids at 

rchimedes described the Archimedes' screw, also called the 

It is mentioned that he described the screw pump 

, it was actually used for centuries 

screw inside a hollow metal pipe. The 

screw is turned usually by a windmill or by manual labor. As the bottom end of the tube 

up in the spiral tube as the shaft is turned, 

l it finally pours out from the top of the tube and feeds the irrigation systems. The 

contact surface between the screw and the pipe does not need to be perfectly water-tight 

because of the relatively large amount of water being scooped at each turn with respect to 

the angular frequency and angular speed of the screw. Also, water leaking from the top 

section of the screw leaks into the previous one and so on, so a sort of mechanical 

equilibrium is achieved while using the machine, thus limiting a decrease in mechanical 

for removing water from the hold of a ship but it was 

other areas of low lying water.  
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The Archimedean screw also persists into modern times. It is still being manufactured for 

low-head applications where the liquid is frequently laden with trash or other solids. 

Perhaps most interesting, however, is the fact that with all the technological development 

that has occurred since ancient times, including the transformation from water power 

through other forms of energy all the way to nuclear fission, the pump remains probably the 

second most common machine in use, exceeded in numbers only by the electric motor. 

[4], [7], [15], [16], [17], [18] 

 

2.3 Pump Characteristics 

 

A pump is characterized by some basic features. These are the pump’s capacity, head, 

efficiency and power. The fluid quantities associated with all pumps are the flow rate and 

the head, whereas the basic mechanical quantities involved are the power and the 

efficiency.  Each one of them is being discussed bellow. 

 

2.3.1 Capacity 

Capacity (flow rate, discharge or Q) of a pump is the volume of fluid pumped per unit of 

time. It is commonly measured in cubic meters per second ( )3m / s  (in SI units) for large 

pumps or cubic meters per hour ( )3m / h  and litres per second ( )lt / s  for smaller pumps.  

The requirements of the system in which the pump is located, is what determines the 

required capacity of the pump. We can distinguish the following specific meanings of 

capacity: 

• Nominal Capacity NQ is the capacity for which the pump is ordered and applies to 

the pump with nominal speed Nn , with nominal total head NH and with pumped 

fluid which is indicated in the contract order (conventional liquid/gas). 

• Minimum Capacity minQ is the minimum permissible capacity in which the pump can 

operate continuously without being damaged. 
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• Maximum Capacity maxQ is the Maximum permissible capacity in which the pump 

can operate continuously without being damaged. 

• Optimal Capacity optQ is capacity in the point of maximum efficiency with nominal 

speed Nn and with the conventional liquid/gas. 

Mass Flow mf of a pump is the product of the density of the pumped fluid ρ with the 

capacity and it is given by the type: 

     f m  Qρ= .  

[2], [7] 

 

2.3.2 Head 

The energy imparted to a fluid by a pump is measured as the head per unit weight of fluid. 

It is expressed in meters (in SI) because it is the height of the column of the same fluid which 

contains the same amount of energy. 

It is important to realize the relationship between head and pressure. Any pressure 

expressed in SI Pa is equivalent to a static volume of liquid expressed in m (SI) of head. 

Conceptually head is a specific energy term and pressure is a force applied to an area, 

however if for example we would like to measure the pressure at the bottom of liquid it 

would be equal to: P H p g=  where P is the static pressure in Pa, H the head in m, p the 

density of the liquid and g the gravitational constant. 

To determine the required size of a pump for a particular application, all the components of 

the head for the system in which the pump is to operate must be added up to determine the 

pump total head.  

There are four separate components of total system which are: 

 

2.3.2.1 Static Head 

Static head (h or H) is the elevation of a free surface of fluid above (or below) a reference 

datum which is chosen arbitrarily. In most cases, static head is normally measured from the 
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surface of the fluid in the supply vessel to the surface of the 

fluid is being delivered.  

[2], [7] 

2.3.2.2 Total static head 

Total static head is the useful

the fluid and it is equal to the

The total static head is measured from 

regardless of whether the pump is located above the liquid level in the suction vessel (which 

is referred to as a “suction lift”), or below the liquid level in the suction vessel (“discharge 

head”). Figure below demonstrates an example of a pump on a suction lift, and defines static 

suction lift, static discharge head, and total static head. Note that for a pump in a closed 

loop system, the total static head is zero.

[2], [7] 

 

 
 
          Figure 1.3 Static suction lift, static discharge head, and total static head      [19]

d in the supply vessel to the surface of the fluid in the vessel where the 

Total static head  

useful mechanical energy imparted by the pump per unit

equal to the difference of head at discharge ( dh ) and head at suction (

The total static head is measured from supply vessel surface to delivery vessel surface, 

regardless of whether the pump is located above the liquid level in the suction vessel (which 

is referred to as a “suction lift”), or below the liquid level in the suction vessel (“discharge 

below demonstrates an example of a pump on a suction lift, and defines static 

suction lift, static discharge head, and total static head. Note that for a pump in a closed 

loop system, the total static head is zero.  

Static suction lift, static discharge head, and total static head      [19] 

luid in the vessel where the 

per unit weight of 

) and head at suction (hs ). 

supply vessel surface to delivery vessel surface, 

regardless of whether the pump is located above the liquid level in the suction vessel (which 

is referred to as a “suction lift”), or below the liquid level in the suction vessel (“discharge 

below demonstrates an example of a pump on a suction lift, and defines static 

suction lift, static discharge head, and total static head. Note that for a pump in a closed 
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2.3.2.3 Total head 

The determination of the total head of the pump from the suction and discharge gauge 

indications is given by: 

 

( ) ( )2 2
d sd s

d s

v –  vp p
H  z  z ,

g 2gρ
−

= + + −  

where   dp  is the pressure at pump discharge nozzle, 

sp  is the pressure at pump suction nozzle, 

gρ  is the product of the fluid’s density with the gravitational constant, 

dv  is the flow velocity at discharge nozzle, 

sv   is the flow velocity at suction nozzle and 

d sz  z−  is the vertical distance of gauges. 

[7] 

 

2.3.2.4 Friction Head 

Friction head or resistance head (or head loss) is the head necessary to overcome the 

friction in the pipes, valves, fittings and elbows of the system in which the pump operates. It 

takes a force to move the fluid against friction, like the force that is required to lift a weight. 

The direction of the force that is exerted is the same as the moving fluid and energy is 

expended. The friction head is calculated with the force required to overcome friction times 

the displacement (pipe length) divided by the weight of fluid displaced. Friction loss in a 

piping system varies as the square of the liquid’s velocity (assuming fully turbulent flow). The 

smaller the size of the pipe, valves, and fittings for a given flow rate, the greater the friction 

head loss. 

In designing a piping system, if smaller sizes of pipes, valves, and fittings are chosen, the cost 

of the piping system is reduced. However, the trade-off is that this has as result higher total 

pump head due to the increased friction head loss. This, in turn, usually increases pump and 

driver capital cost, and also increases lifetime energy costs. 

In theory, friction losses that take place as liquid flows through a piping system must be 

calculated by means of complicated formulae, taking into account such factors as liquid 

density and viscosity, and pipe inside diameter and material. Luckily, the information needed 
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is gathered empirically, and then recorded in tables so that we can estimate these values 

according to the flow, the pipe size, the pipes material it is constructed out of, pipe age and 

any deposits, the type of valve, etc. This additional resistance to flow must be compensated 

for, in order to deliver the desired flow rate.  

[2], [20], [21] 

2.3.2.5 Pressure Head 

Pressure head is the head required to overcome a pressure or vacuum in the system 

upstream or downstream of the pump. It is normally measured at the fluid surface in the 

supply and delivery vessels. This happens due to the static pressure of the fluid and it is 

equal to 
p
gρ

, where p is fluid’s pressure and ρ is fluid’s density. If the pressure in the 

supply vessel from which the pump is pumping and the pressure in the delivery vessel are 

identical, then there is no required pressure head adjustment to total head. Likewise, there 

is no pressure adjustment to total head for a closed loop system. If the supply vessel is under 

a vacuum or under a pressure different than that of the delivery vessel, a pressure head 

adjustment to total head is required. [2], [7] 

 

2.3.2.6 Velocity Head 

Velocity head (Hv) is the energy produced due to the fluid’s motion at some velocity. It is 

equal to: 

 

2

v

v
H  

2g
= , where v is fluid’s velocity.  

  

It can be measured with a Pitot tube which can measure fluid’s flow. The value of velocity 

head is different at the suction and discharge of the pump, because the size of the suction 

piping is usually larger than the size of the discharge piping. So in order to determine the 

velocity head component of total head it is necessary to calculate the change in velocity 

head from suction to discharge. However the change of velocity head is often less than 1% 

of total head many pump selectors choose to totally ignore the effect of velocity which is not 

always a valid assumption. [2], [7] 

 



15 
 

2.3.3 Power and Efficiency 

Pump power is the power of the pump typically expressed in W or KW.  It refers to the 

amount of energy a pump needs to be supplied in order to operate. 

The output pump power DN is the output of the pump handling a fluid of a given specific 

gravity, with a given flow and head and is calculated as follows: 

 

DN g Q Hρ=  , 

 

Where ρ is the fluid’s density ( )3kg / dm ,  

g is the gravitational constant approximately
29,81 m/s , 

Q is the flow rate ( )3m / s and 

H is the total head ( )m . 

 

The input pump power Nis the actual amount of power that must be supplied to the pump 

to obtain a particular flow and head. It is the input power to the pump or the required 

output power from the driver and is calculated as follows: 

 

( ) g Q H
N , KW

ρ
η

= , where η=pump efficiency. 

 

Another equation that can also be used for the calculation of the input pump power is the 

following: 

 

 Q H
N

367
ρ

η
=  ( )KW   

Where 

ρ is the fluid’s density ( )3kg / dm ,  

Q is the flow rate ( )3m / h , 

H is the total head ( )m and 

η=pump efficiency. 
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The pump efficiency is expressed as a decimal number less than one; it is equal to the ratio 

of the output and input pump power and is calculated as follows: 

DN
N

η = .   

There are many factors that cause pumps to be less efficient. Some of them are hydraulic 

loses, mechanical loses, volumetric and disk friction loses. 

[2], [7], [8] 

 

2.4 Pump Classification  

 

There are many ways to classify pumps, such as on the basis of the applications they serve, 

the materials of construction, the liquids they handle, their conditions of service, or the way 

they are oriented in space. 

Here, in our system of classification, pumps are classified by general mechanical 

configuration. 

Under this system, all pumps may be divided into two major categories:  

 

• Kinetic or (roto)-dynamic pumps 

In this type of pumps, energy is continuously added to the liquid in order to increase 

its velocity. When velocity is increased to values greater than those that occur at the 

discharge, then subsequent velocity reduction within or beyond the pump produces 

a pressure increase. The basic two groups in which they are subdivided are 

centrifugal pumps and vertical-turbine pumps. 

 

• Positive displacement pumps 

In this type of pumps, energy isn’t added continuously but periodically to the liquid 

by the direct application of a force to one or more movable volumes of liquid. This 

causes an increase in pressure up to the value required to move the liquid through 

ports in the discharge line. Positive displacement pumps are subdivided into three 

major groups which are reciprocating, rotary and pneumatic pumps.[2], [4], [5], [24] 
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The classification of pumps into kinetic and positive displacement pumps and into their sub

categories is illustrated at the following figure: 

 

  Figure 1.4 Classification of pumps.  Courtesy of hydraulic institute standards     

 

 

The classification of pumps into kinetic and positive displacement pumps and into their sub

categories is illustrated at the following figure:  

Classification of pumps.  Courtesy of hydraulic institute standards     

The classification of pumps into kinetic and positive displacement pumps and into their sub-

 

Classification of pumps.  Courtesy of hydraulic institute standards      [5] 
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2.4.1 Kinetic Pumps 

Kinetic pumps impart velocity and pressure to the fluid as it moves past or through the 

pump impeller and, subsequently, convert some of that velocity into additional pressure. 

They are inexpensive and have low maintenance requirements; their size is rather small so 

there is no demand for large area of installation and they do not require external lubrication. 

However, they have low efficiencies when the flow rate is low and the pressure is high. 

The two major groups of kinetic pumps are centrifugal (or volute) and vertical (or turbine) 

pumps. [5], [7], [8] 

 

2.4.1.1 Centrifugal pumps 

A centrifugal pump consists of an impeller mounted on a rotating shaft and a pump casing 

that encloses the impeller. As the impeller rotates the liquid moves toward the discharge 

side of the pump into the casing surrounding the impeller. This movement has as result the 

creation of a void or reduced pressure area at the impeller inlet.   

 

  

     

    Figure 1.5a, 1.5 b centrifugal pump parts 

  

The difference between this pressure area and the higher pressure of the casing inlet leads 

to force additional liquid into the impeller to fill the void. Once it reaches the rotating 

impeller, the liquid entering the pump moves along the impeller vanes, increasing in velocity 

as it progresses. As the liquid leaves the impeller vane, the liquid is at its maximum velocity.      
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The vanes of the rotating impeller 

to the outer periphery of the pump casing, where an expansion of 

occurs. This cross-sectional area of the flow passages increases as the liquid moves through 

the casing resulting in a diffusion process causing the liquid’s velocity to decrease. The 

decreased kinetic energy is transformed into increa

pressure of the liquid to increase as the velocity decreases.  The fluid is then discharged from 

the centrifugal pump through the discharge connection.

[2], [11], [12] 

    

  
 

  Figure 1.6 pressure vs. velocity through a 

     

Centrifugal pumps have low maintenance expense and they are characterized by simplicity. 

They don’t have a great deal of moving parts and they have no check valves associated with 

the pumps. Centrifugal pumps produce minimal pr

rubbing contact with the pump rotor, and are not subject to the fatigue loading of bearings 

and seals that the periodic aspect of many positive displacement pumps produce. 

problem of centrifugal pumps is that the

the liquid being pumped are present on the suction side of the pump and can cause serious 

damage to the pump. [2] 

 

impeller impart a radial and rotary motion to the liquid, forcing it 

to the outer periphery of the pump casing, where an expansion of cross

sectional area of the flow passages increases as the liquid moves through 

the casing resulting in a diffusion process causing the liquid’s velocity to decrease. The 

decreased kinetic energy is transformed into increased potential energy, causing the 

pressure of the liquid to increase as the velocity decreases.  The fluid is then discharged from 

the centrifugal pump through the discharge connection. 

 

pressure vs. velocity through a centrifugal pump   [12] 

Centrifugal pumps have low maintenance expense and they are characterized by simplicity. 

They don’t have a great deal of moving parts and they have no check valves associated with 

the pumps. Centrifugal pumps produce minimal pressure pulsations, they do not have 

rubbing contact with the pump rotor, and are not subject to the fatigue loading of bearings 

and seals that the periodic aspect of many positive displacement pumps produce. 

of centrifugal pumps is that they develop cavitation. This happens when

the liquid being pumped are present on the suction side of the pump and can cause serious 

impart a radial and rotary motion to the liquid, forcing it 

cross-sectional area 

sectional area of the flow passages increases as the liquid moves through 

the casing resulting in a diffusion process causing the liquid’s velocity to decrease. The 

sed potential energy, causing the 

pressure of the liquid to increase as the velocity decreases.  The fluid is then discharged from 

Centrifugal pumps have low maintenance expense and they are characterized by simplicity. 

They don’t have a great deal of moving parts and they have no check valves associated with 

essure pulsations, they do not have 

rubbing contact with the pump rotor, and are not subject to the fatigue loading of bearings 

and seals that the periodic aspect of many positive displacement pumps produce. A basic 

. This happens when vapors of 

the liquid being pumped are present on the suction side of the pump and can cause serious 
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2.4.1.2 Vertical Pumps

Vertical pumps are equipped with an axial diffuser or discharge bowl that performs the same 

[4], [5] 

 

2.4.2 Positive Displacement 

In positive displacement pumps

element such as a piston force

contained space could be a cylinder, plunger, or rotor.

 

[3], [5] 

 Figure 1.7  parts of a vertical pump [22]

2.4.1.2 Vertical Pumps 

Vertical pumps are equipped with an axial diffuser or discharge bowl that performs the same 

basic functions as the volute. Vertical 

pumps were originally developed for 

well pumping.  

The bore size of the well limits the 

outside diameter of the pump and so

controls the overall pump design. These 

pumps are very versatile and are often 

used for installations not related to well 

pumping.  

The basic components of which a 

typical vertical pump is consisted

the bowl assembly, the column, 

discharge head and the driver. 

pumps can be sub-divided into many 

categories. The most common

shaft pumps, submersible

horizontally mounted axial

  

 

2.4.2 Positive Displacement Pumps 

In positive displacement pumps, the fluid flows into a contained space

piston forces the fluid out of the cylinder increasing the pressure.

a cylinder, plunger, or rotor. 

parts of a vertical pump [22] 

Vertical pumps are equipped with an axial diffuser or discharge bowl that performs the same 

basic functions as the volute. Vertical 

pumps were originally developed for 

The bore size of the well limits the 

outside diameter of the pump and so 

controls the overall pump design. These 

pumps are very versatile and are often 

used for installations not related to well 

The basic components of which a 

typical vertical pump is consisted are 

the bowl assembly, the column, the 

d the driver.  Vertical 

divided into many 

categories. The most common are line 

submersible, and 

mounted axial-flow pumps. 

id flows into a contained space and a moving 

increasing the pressure. This 
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2.4.2.1 Positive Displacement and Centrifugal Pumps 

Comparison and Characteristics

The choice between a centrifugal and a positive displacement pump depends on the 

behavior of these two types.

power) although they are of equal importance; the emphasis placed on certain of these 

quantities is different for different pumps.

the flow rate delivered by it and the head developed. Thus, a plot of head and flow rate 

given speed forms the fundamental performance characteristic of a pump. In order to 

achieve this performance, a power input is required which involves efficiency of energy 

transfer. Thus, it is useful to plot also the efficiency 

 
Hence, after studying carefully the following characteristic curves of the two types of pumps, 

it can be concluded when the 

 
 
 
 
 
The Q-H characteristic curve of the positive 

displacement pump is a straight line 

perpendicular to the axis of flow; therefore 

the capacity is constant and independent of 

the head and pressure, whereas the capacity 

of a centrifugal pump is varying and depends 

on pressure and head.  

 
 
 

Figure 1.9 flow rate-viscosity characteristics of 
a positive displacement and a centrifugal 
pump [23] 

Positive Displacement and Centrifugal Pumps 

Comparison and Characteristics 

The choice between a centrifugal and a positive displacement pump depends on the 

behavior of these two types. The characteristics of each pump (flow, head, efficiency, 

gh they are of equal importance; the emphasis placed on certain of these 

quantities is different for different pumps. The output of a pump running at a given speed is 

the flow rate delivered by it and the head developed. Thus, a plot of head and flow rate 

given speed forms the fundamental performance characteristic of a pump. In order to 

achieve this performance, a power input is required which involves efficiency of energy 

transfer. Thus, it is useful to plot also the efficiency η against Q. 

fter studying carefully the following characteristic curves of the two types of pumps, 

it can be concluded when the use of positive displacement pumps is more common.

H characteristic curve of the positive 

displacement pump is a straight line 

perpendicular to the axis of flow; therefore 

the capacity is constant and independent of 

the head and pressure, whereas the capacity 

mp is varying and depends 

 

This chart portrays how the capacity of the pump 

is affected by viscosity. There is an increase in 

positive displacement pump’s flow as the viscosity 

rises, whereas in centrifugal pumps, the increase 

of the viscosity implies the reduction of the 

pump’s flow rate. This is due to the fact that the 

higher viscosity liquids fill the clearances of the 

pump causing a higher volumetric efficiency.

Figure 1.8 head-capacity characteristics of a 
positive displacement and a centrifugal pump
[23] 

characteristics of 
a positive displacement and a centrifugal 

Positive Displacement and Centrifugal Pumps 

The choice between a centrifugal and a positive displacement pump depends on the 

The characteristics of each pump (flow, head, efficiency, 

gh they are of equal importance; the emphasis placed on certain of these 

The output of a pump running at a given speed is 

the flow rate delivered by it and the head developed. Thus, a plot of head and flow rate at a 

given speed forms the fundamental performance characteristic of a pump. In order to 

achieve this performance, a power input is required which involves efficiency of energy 

fter studying carefully the following characteristic curves of the two types of pumps, 

use of positive displacement pumps is more common. 

This chart portrays how the capacity of the pump 

is affected by viscosity. There is an increase in 

positive displacement pump’s flow as the viscosity 

rises, whereas in centrifugal pumps, the increase 

implies the reduction of the 

w rate. This is due to the fact that the 

higher viscosity liquids fill the clearances of the 

pump causing a higher volumetric efficiency. 

capacity characteristics of a 
centrifugal pump 
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The H-η chart on the right illustrates how 

pressure changes influence pump’s efficiency. 

The curve of the positive di

indicates that pump’s efficiency is slightly 

affected by changes of pressure. However 

pressure changes have a great impact on the 

efficiency of the centrifugal pump.   

 
 
 
 
 
 

 
The data presented above are adopted from [23] and are the actual data of a specific 

application. They are presented as an example of the performance behavior and in other 

applications these charts would have taken different curves and efficiency valu

centrifugal pump was selected at its best efficient point and the positive displacement pump 

was picked to match the flow, viscosity and pressure.

 
According to the above mentioned points, positive displacement pumps are 

high viscosity, when there are variations in pressure because they maintain their flow rate 

and obviously in case variations in viscosity exist since 

inefficient at even modest viscosity

applications and they have the ability to handle shear sensitive liquids better than 

centrifugal pumps, since pumps shear liquids more when the speed is increased and 

centrifugal pumps are high speed pumps. 

Figure 1.11 efficiency-viscosity characteristics 
of a positive displacement and a centrifugal 
pump [23] 

on the right illustrates how 

pressure changes influence pump’s efficiency. 

of the positive displacement pump 

indicates that pump’s efficiency is slightly 

affected by changes of pressure. However 

pressure changes have a great impact on the 

efficiency of the centrifugal pump.    

 
 
In centrifugal pumps  the rise of the viscosity 

implies the rapid drop of the pump’s efficiency. 

This happens because of the frictional losses 

within the pump. In a positive displacement 

pump efficiency often increases with the rise of 

the viscosity.     

 
 
 
 

 
 
 
 

The data presented above are adopted from [23] and are the actual data of a specific 

application. They are presented as an example of the performance behavior and in other 

applications these charts would have taken different curves and efficiency valu

centrifugal pump was selected at its best efficient point and the positive displacement pump 

was picked to match the flow, viscosity and pressure. 

According to the above mentioned points, positive displacement pumps are 

high viscosity, when there are variations in pressure because they maintain their flow rate 

variations in viscosity exist since centrifugal pumps become 

inefficient at even modest viscosity. Moreover, they are the best choice in high pressure 

applications and they have the ability to handle shear sensitive liquids better than 

centrifugal pumps, since pumps shear liquids more when the speed is increased and 

centrifugal pumps are high speed pumps. [23], [2] 

Figure 1.10 efficiency-head
of a positive displacement and a centrifugal 
pump [23] 

characteristics 
of a positive displacement and a centrifugal 

In centrifugal pumps  the rise of the viscosity 

implies the rapid drop of the pump’s efficiency. 

because of the frictional losses 

within the pump. In a positive displacement 

pump efficiency often increases with the rise of 

The data presented above are adopted from [23] and are the actual data of a specific 

application. They are presented as an example of the performance behavior and in other 

applications these charts would have taken different curves and efficiency values. The 

centrifugal pump was selected at its best efficient point and the positive displacement pump 

According to the above mentioned points, positive displacement pumps are used in case of 

high viscosity, when there are variations in pressure because they maintain their flow rate 

pumps become very 

in high pressure 

applications and they have the ability to handle shear sensitive liquids better than 

centrifugal pumps, since pumps shear liquids more when the speed is increased and 

head characteristics 
of a positive displacement and a centrifugal 



23 
 

 The three basic types of positive displacement pumps are:

• Reciprocating pumps 

• Rotary pumps 

• Pneumatic pumps 

 

2.4.2.2 Reciprocating Pumps

In a reciprocating pump, a piston or plunger moves up and down

a volume of liquid is drawn into 

through the outlet valves on the discharge stroke. The discharge from a reciprocating pump 

is pulsating and changes only when the speed of the pump is modified. This is due to the fact 

that the intake is always a constant volume. 

with over-pressure protection because they can develop very high pressures and a relief 

valve or bursting disc must be fitted. 

Types of reciprocating pumps include 

diaphragm pumps. Simplex pumps are reciprocating pumps with a single piston,

diaphragm. Names for multiple

three cylinders, quadruplex, with four cylinde

multiplex, with many cylinders.

 

[3], [5], [9] 

           Figure 1.12 

 

 

basic types of positive displacement pumps are: 

2.4.2.2 Reciprocating Pumps 

a piston or plunger moves up and down. During the suction stroke, 

a volume of liquid is drawn into the cylinder and is discharged under positive pressure 

through the outlet valves on the discharge stroke. The discharge from a reciprocating pump 

is pulsating and changes only when the speed of the pump is modified. This is due to the fact 

is always a constant volume. Reciprocating pumps must always be operated 

pressure protection because they can develop very high pressures and a relief 

valve or bursting disc must be fitted.  

Types of reciprocating pumps include plunger pumps, piston pumps, metering pumps and 

Simplex pumps are reciprocating pumps with a single piston,

diaphragm. Names for multiple-cylinder pumps are duplex, with two cylinders, triplex, with 

three cylinders, quadruplex, with four cylinders, quintuplex, with five cylinders and 

multiplex, with many cylinders. 

 
Figure 1.12 A simple piston reciprocating pump’s part [25] 

. During the suction stroke, 

the cylinder and is discharged under positive pressure 

through the outlet valves on the discharge stroke. The discharge from a reciprocating pump 

is pulsating and changes only when the speed of the pump is modified. This is due to the fact 

Reciprocating pumps must always be operated 

pressure protection because they can develop very high pressures and a relief 

ton pumps, metering pumps and 

Simplex pumps are reciprocating pumps with a single piston, plunger, or 

cylinder pumps are duplex, with two cylinders, triplex, with 

rs, quintuplex, with five cylinders and 
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2.4.2.3 Rotary pumps

A rotary pump has a rotary displacement element, such as gears, screws, 

Each compartment between the dividing elements will hold a determined volume of fluid. As 

the first compartment fills with liquid, the fluid in the last compartment flows into the 

discharge piping. They can handle almost any liquid that do

solids, including viscous liquids. They are also simple in design and efficient in handling flow 

conditions that are usually considered too low for economic application of centrifug

Types of rotary pumps include 

 

[5] 
 

 
   Figure 1.13 

 

2.4.4 Pneumatic Pumps

Pneumatics is the science which 

gas to effect mechanical motion.

pneuma which signifies breath or air. Though the science of air was known to man for 

centuries, it wasn’t used in industry before the beginning of the Second World War. This was 

the age when the present d

compressed air in production plants. Nowadays, p

accessories are used in every aspect of 

plumbed with compressed air

under a certain pressure, usually greater than that of the atmosphere. In Europe, 10 percent 

of all electricity used by industry is used to produce compressed air, amounting to 80 

terawatt hour consumption per year.

Rotary pumps 

A rotary pump has a rotary displacement element, such as gears, screws, 

Each compartment between the dividing elements will hold a determined volume of fluid. As 

the first compartment fills with liquid, the fluid in the last compartment flows into the 

discharge piping. They can handle almost any liquid that does not contain hard and abrasive 

solids, including viscous liquids. They are also simple in design and efficient in handling flow 

conditions that are usually considered too low for economic application of centrifug

Types of rotary pumps include lobe pumps, progressing cavity pumps and screw pumps.

Figure 1.13 How a rotary pump works [26] 

2.4.4 Pneumatic Pumps 

which deals with the study and application of use of 

to effect mechanical motion. The term pneumatics is derived from the Greek word 

pneuma which signifies breath or air. Though the science of air was known to man for 

centuries, it wasn’t used in industry before the beginning of the Second World War. This was 

the age when the present day concept of automation started provoking man to use 

compressed air in production plants. Nowadays, pneumatic systems, air operated tools and 

every aspect of industrial life, where factories

compressed air or compressed inert gases. Compressed air is 

, usually greater than that of the atmosphere. In Europe, 10 percent 

of all electricity used by industry is used to produce compressed air, amounting to 80 

consumption per year.  An inert gas is a non-reactive gas used during chemical 

A rotary pump has a rotary displacement element, such as gears, screws, vanes, or lobes. 

Each compartment between the dividing elements will hold a determined volume of fluid. As 

the first compartment fills with liquid, the fluid in the last compartment flows into the 

es not contain hard and abrasive 

solids, including viscous liquids. They are also simple in design and efficient in handling flow 

conditions that are usually considered too low for economic application of centrifugals. 

mps, progressing cavity pumps and screw pumps. 

 

study and application of use of pressurized 

The term pneumatics is derived from the Greek word 

pneuma which signifies breath or air. Though the science of air was known to man for 

centuries, it wasn’t used in industry before the beginning of the Second World War. This was 

ay concept of automation started provoking man to use 

, air operated tools and 

factories are commonly 

is air which is kept 

, usually greater than that of the atmosphere. In Europe, 10 percent 

of all electricity used by industry is used to produce compressed air, amounting to 80 

reactive gas used during chemical 
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synthesis, chemical analysis, or preservation of reactive materials. Inert gases are selected 

for specific settings for which they are functionally inert since the cost of the gas and the 

cost of purifying the gas are usually a consideration. Neon and argon are the most common 

inert gases for use in chemistry and archival settings.  

Pneumatics also has applications in dentistry, construction, mining, medicine, entertainment 
and other areas. 

[27], [28], [29], [30] 

Pneumatic pumping and generally the use of pneumatic systems have many advantages and 

that’s why they are so extensively used. One of the most important is the simplicity and 

flexibility of design, since a pneumatic system can be easily designed using standard 

cylinders and other components. The wide availability and the compressibility of the air, as 

well as the fact that compressed air can be easily transferred in pressure vessels, containers 

and long pipes and can be stored, allowing the use of machines when electrical power is lost, 

are some of the reasons that make the application of pneumatics in industries more 

advantageous. By the same token, pneumatic systems are very safe because they do not 

pose any risk of fire or explosion since a probable leak would not cause contamination in the 

way that hydraulic systems leaking oil would. The initial cost of such a system is very low 

because of the simplicity of their design and the inexpensive materials they are composed 

of, but the long term operating cost of a pumping system could be very high because of the 

amount of energy needed for the gas compression. Compared to hydraulic systems, 

pneumatics has better operational advantages but hydraulic systems are indispensable in 

terms of power requirement and accuracy of the operations.  

[27], [30] 

Pneumatic pumps are the pumps that use compressed air or other pressurized gas in order 

to move fluids from one place to another. Pneumatic pumps are classified as positive 

displacement pumps because it is their most common use however there are also pneumatic 

centrifugal pumps. The two most common and interesting applications of the pneumatic 

pumps are the pneumatic ejector and the air lift pump. 

 [5] 
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2.4.4.1 Pneumatic ejector

 Pneumatic ejector is a pump used to raise sewage or sludge.

compressed air from a gravity

line.  It pumps low flow rates of wastewater at high heads

I. Shone. The flow rates in which it is used 

operate at discharge heads up to 100 m.

 

  Figure 1.14 A pneumatic ejector. Adopted from Yeomans Chicago Corp [5]

 

The liquid is admitted into an air chamber through a flap valve and 

allowed to fill by gravity until a predetermined level is reached. 

supplied from a plant air system or from close located compressors.

operated to admit compressed air to the vessel. The high pressure moves 

force main and when the chamber 

and vent the air in the tank to the atmosphere, which allows the next cycle to begin

Because of exposure to air the pneumatic ejector and air supply system 

freezing, so low temperatures should be avoided.   

[5], [10] 

 

 

2.4.4.1 Pneumatic ejector  

neumatic ejector is a pump used to raise sewage or sludge. The liquid is displaced by 

ompressed air from a gravity-fed pressure vessel through a check valve into the discharge 

It pumps low flow rates of wastewater at high heads and it was developed in 1870s by 

. The flow rates in which it is used amount to approximately 0,04 m3/sec and it can 

at discharge heads up to 100 m.  

A pneumatic ejector. Adopted from Yeomans Chicago Corp [5]

The liquid is admitted into an air chamber through a flap valve and a pressure vessel is 

lowed to fill by gravity until a predetermined level is reached. The compressed air is 

supplied from a plant air system or from close located compressors. Controls are then 

operated to admit compressed air to the vessel. The high pressure moves the liquid 

force main and when the chamber has been emptied, the controls close the air supply valve 

and vent the air in the tank to the atmosphere, which allows the next cycle to begin

Because of exposure to air the pneumatic ejector and air supply system are in danger of 

freezing, so low temperatures should be avoided.    

The liquid is displaced by 

fed pressure vessel through a check valve into the discharge 

and it was developed in 1870s by 

/sec and it can 

 

A pneumatic ejector. Adopted from Yeomans Chicago Corp [5] 

a pressure vessel is 

The compressed air is 

Controls are then 

the liquid into the 

has been emptied, the controls close the air supply valve 

and vent the air in the tank to the atmosphere, which allows the next cycle to begin. 

are in danger of 
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2.4.4.2 Air-lift pumps

Air lift pumps are pneumatic devices used for pumping sludge, contaminated liquid, large 

particles, sugar beets, hot or corrosive fluids, 

The pump consists of a simple tube 

sensitive to temperature. 

However, air lift pumps are relatively inefficient (usually 30 to 50%) and allow very little 

system flexibility. Process control is difficult because it is also not 

the pump age changes erratically with small variations in the air delivered. Moreover 

compressed air is expensive; the use of compressors reduces the overall efficiency even 

Figure 1.15  An air lift pump. Adapted from Walker
Process Corp [5] 
 

lift pumps 

Air lift pumps are pneumatic devices used for pumping sludge, contaminated liquid, large 

particles, sugar beets, hot or corrosive fluids, raw wastewater and sandy or dirty water.

The pump consists of a simple tube immersed in a sump or a wet well. A high volume of low

pressure compressed air is forced into 

the bottom of the tube submerged in the 

liquid to be pumped. This mixture of air 

and liquid is lighter than the surrounding 

liquid and therefore rises up the tube. 

The air-liquid mixture hits

dampening disc and overflows into the 

open discharge channel

density of a column of

mixture is used to raise the liquid in an air

lift pump and the liquid is not 

pressurized. This is the reason why air lift 

pump is not regarded by many people as 

a pump but as a ‘water-lifting device’. 

Such pumps are easy to 

operate. The pump itself is almost 

indestructible and, except for the 

splashing and the daily need for cleaning, 

requires virtually no maintenance. They 

are inexpensive and their 

very simple; there are not any moving 

parts and sealing problems, the risk of 

blockage is small and they are not 

are relatively inefficient (usually 30 to 50%) and allow very little 

Process control is difficult because it is also not simple to regulate flow and 

the pump age changes erratically with small variations in the air delivered. Moreover 

compressed air is expensive; the use of compressors reduces the overall efficiency even 

An air lift pump. Adapted from Walker 

Air lift pumps are pneumatic devices used for pumping sludge, contaminated liquid, large 

and sandy or dirty water. 

immersed in a sump or a wet well. A high volume of low-

pressure compressed air is forced into 

the bottom of the tube submerged in the 

liquid to be pumped. This mixture of air 

ter than the surrounding 

liquid and therefore rises up the tube. 

liquid mixture hits at the 

dampening disc and overflows into the 

open discharge channel. The reduced 

density of a column of an air–liquid 

mixture is used to raise the liquid in an air 

lift pump and the liquid is not 

pressurized. This is the reason why air lift 

pump is not regarded by many people as 

lifting device’.  

Such pumps are easy to maintain and 

. The pump itself is almost 

indestructible and, except for the 

splashing and the daily need for cleaning, 

requires virtually no maintenance. They 

are inexpensive and their construction is 

simple; there are not any moving 

sealing problems, the risk of 

blockage is small and they are not 

are relatively inefficient (usually 30 to 50%) and allow very little 

simple to regulate flow and 

the pump age changes erratically with small variations in the air delivered. Moreover 

compressed air is expensive; the use of compressors reduces the overall efficiency even 
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more and air blowers do require maintenance. For all except very low heads, the air lift 

pump requires large submergence. 

[1], [4], [5] 

 

2.4.4.3 Pneumatic pump types 

Pneumatic pumps are usually made of three main types: membrane-diaphragm pumps, 

bellows pumps and piston pumps.  

In pneumatic bellows pumps, pumping action is performed by two bellows mounted on an 

alternatively moving shaft, in which one side of the bellows is in contact with the gas being 

pumped and the other side is in contact with the compressed air. 

 In pneumatic piston pumps the pumping action is performed by a piston connected to an 

alternatively moving shaft linked to a pneumatic engine. 

 A pneumatic diaphragm pump contains a single diaphragm or double diaphragms 

connected to a reciprocating shaft in which one side of the diaphragm is in contact with the 

gas being pumped and the other side is in contact with the compressed air.  

Membrane pneumatic pumps are cheap however piston pneumatic pumps are more reliable 

and are more commonly used. 

[31], [32] 

 

  Figure 1.16 An air operated bellows pump configuration [32] 
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2.4.4.4 A pneumatic piston pump commercial example 

A typical example of a pneumatically operated piston pump, used for commercial purposes, 

adopted from [33] is the one following.  

 

 
Figure 1.17 A pneumatic operated pump used in progressive lubricating systems  [35] 

 

This pump is intended for use in progressive lubricating systems. The air is supplied to the air 

inlet via a 2/2 solenoid valve. This valve when activated the pump starts its operation and if 

it is de-activated it stops the operation of the pump. 

When the air is fed into the pump, the air piston starts its forward stroke, pushing the lube 

piston forward and ejecting grease through the outlet check valve and into the main 

lubrication line. As the piston nears the end of the forward stroke, it actuates the reversing 

valve, which dumps the air pressure through a vent hole on the underside of the pump. The 

piston is forced back by the return spring. In doing so, the metering chamber once more fills 

with grease. The outlet check valve prevents grease being sucked back from the outlet. The 

air piston returns to the original position, it closes the vent port, enabling the cycle to begin 

again. Outlet pressure is determined by the inlet air pressure and the fixed piston ratio. The 

speed of pump operation may be regulated by means of an air flow regulator.  

 

[33], [34], [35] 
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Chapter 3 

Presentation of our model and 
Implementation in Matlab Simulink® 

 

Since some basic facts about pumps were introduced in the previous chapter, we are now 

able to deal with the presentation of our model and its implementation in Matlab Simulink. 

Firstly, we give some basic facts about differential and ordinary differential equations and 

what second order models are. Afterwards, we present our model, the two equations that 

characterize it and the values of the pump’s parameters. There is a brief description about 

the tool we use to implement our model which the Matlab Simulink® environment, how we 

use ordinary differential equations in MATLAB Simulink® and what is the way we chose a 

Solver Type for the solution of ODE’s. Then an example is given and what follows is the 

implementation of our model in Matlab simulink. 

 

3.1 Introduction 
 

Our goal is to create a mathematical model of our system which describes the function of a 

pneumatic pump. In this procedure the processing mechanism of the system has to be 

understood and be described in the form of some mathematical equations. These equations 

constitute the mathematical model of the system. The mathematical model of the system 

should describe accurately the input/output behavior of the system and be simple enough. 

Simplicity is very important because it makes the control task easier to understand and 

implement and it is more reliable for practical purposes.   

Our model is a second order model and has two states. The first one is the line pressure and 

the other one is the pump stroke. The pressure under which the pump operates is the line 

pressure and the length of the pump stroke is the principal contributor to how much flow 

and pressure the pump produces. Each one of these two states is described by a first order 

ordinary differential equation.  

In order to fully understand our model, some definitions should be given. 
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3.2 Ordinary differential equations and second order 
models 
 

A differential equation (or DE) is an equation that contains an unknown function and one or 

more derivatives of it. An ordinary differential equation (or ODE) is an equation that involves 

functions of only one independent variable and one or more derivatives of this variable. The 

order of a differential equation is the order of the highest derivative that occurs in the 

equation. An example of a first order equation is  

dy
ay

dx
= , where α is a constant.  

 Another notation used for the derivatives is
dy

y
dx

′ = . 

Solving the differential equation means finding a function (or every such function) that 

satisfies the differential equation. 

 

Second order models arise from systems that are modeled with two differential equations-

two states. Second-order state determined systems are systems that two state variables 

describe them. There are many physical second-order models that contain two independent 

energy storage elements. These elements exchange stored energy, and may contain 

additional dissipative elements. Physical second-order models are often used to represent 

the exchange of energy between mass and stiffness elements in mechanical systems, 

between capacitors and inductors in electrical systems and between fluid inheritance and 

capacitance elements in hydraulic systems. Moreover second-order system models are 

frequently used to represent the exchange of energy between two independent energy 

storage elements in different energy domains coupled through a two-port element. Energy 

exchange for example, occurs between a mechanical mass and a fluid capacitance (tank) 

through a piston or between an electrical inductance and mechanical inertia as might occur 

in an electric motor.  

Second-order models are used in the preliminary stages of design so as to establish the 

parameters of the energy storage and dissipation elements which are required in order to 

accomplish a satisfactory response. Second-order system responses depend on the 

dissipative elements in the system. Some systems are oscillatory and are characterized by 
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decaying, growing, or continuous oscillations, whereas some other second order systems’ 

responses do not show oscillations.  

[36], [37] 

 

 3.3 Model Presentation 
 

As mentioned above, the model has two states the line pressure and the pump stroke. 

Line pressure ( )lP t  is described by the following differential equation: 

  

• ( ) ( ) ( ) ( ) ( ) ( )( )0 , ,l l
l

P t K x Q t Q l s Q s P
V Pl

α α
β ω= − − − ∆&

l max0 P P< ≤   

 where β is the compressibility and  

 ( )0 1l l v lV V Pα= +
, 

Vl0 
is the line volume; αv is the volume variation rate;  

 ( )l lK kω ω=
, 

kl is the pump gain; ω [rad/s] is pump angular rate and Q0  is the 

 Lubricating flow, which is known and constant. 

 ( )Q t  describes the demanded flow. Q is series of trapezoidal profiles with slew rate 

 maxQ (increasing and decreasing) not greater than the table value which amounts to 

 2 dm3/s, and max value lower than max pump flow in (1). 

 
( )

1, 0

0, 0

s
l s

s

<
=

≥  

 S and Qa are presented below.
  

The pump stroke ( )x t , max0 x x≤ ≤  whose rate is proportional to pilot cylinder flow is 

described by the following differential equation: 

 

• ( ) ( )( )( ),ax t Q s P s leakage Aα α= ∆ −&   [m3/s/m2 ] 

 

 
( ) ( )( ) ( ) ( )1 2, sgna a a aQ s P P s s s P sµ µ∆ = ∆ + ∆  
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a

c a

K x I
s

K K
ϕ− +

=
+

 [m], where I is the driving current provided by a solenoid. 

It should be remarked that fluid leakage is neglected (disturbance). 

( )1 2s sµ µ+  describes the aperture of a valve. However the second order term of the 

aperture 2µ  may be neglected 2µ =0 though not negligible. 

 

The pump stroke equations have an intrinsic feedback, whose error is the pilot valve stroke s 

[m]. 

 When the error is zero (steady state), then 
a

I
x

K
ϕ

= .  

Multiplying the pump stroke x times the pump gain, the steady-state pump flow range is 

obtained since: 

l l
a

I
Q k

K
ϕ ω=  3 3

,max0 2.1 10 0 (1)lm s Q−≅ ÷ × = ÷  

Assuming the feedback as above, only one measurement is available: the line pressure. 

ly P e= +
 

The pressure drop ΔP a depends on all variables through a static equation switching with s 

 

( ) ( )( ) 0a l l u a
P t P F Kx t A Pγ∆ = + − −  , 0s≥  

( ) ( )( )a l l l u a
P t P P F Kx t Aγ∆ = − − − , 0s<  

 

The bias uF  and lP  must be such that the pressure drop is no negative. 

0 max 400u aF P A Kx N≥ + ≅  

( )1l u a lP F A γ≥ − ≅ 1.0 MPa=Pmin 

 

Therefore the initial value of the pressure line must be greater than Pmin. The initial value of 

the pump stroke should be zero: no flow. 

 

It should also be remarked that starting from no flow, the line pressure decreases because of 

the lubricating flow: Q0. 
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In the following table there are the values of the parameters used to describe our model.  

 

 

No. Type Symbol Unit Value  

0 Line volume Vl0 dm3 0.25  

0bis Compressibility β MPa 1200 Uncertainty 20% 

0ter Volume variation rate αv 1/ MPa 0.04  

1 Max pressure Pmax MPa 25 =250 bar 

2 Load flow slew rate 
maxQ&  dm3/s 2 ±10% uncertain 

3 Pump gain kl m2 30.6 10−×
 

 

4 Pump angular rate ω rad/s 200  

5 Lubricating flow Q0 dm3/s 0.13 ±10% 

6 Pump current range I A 0÷ 0.8  

7 Piston area Aa dm2 0.05  

8 Control time unit T ms 5  

9 Max pump stroke xmax mm 24  

10 Flow aperture 

coefficient 

μ1 m2/s/

Pa  

678 10−×  Uncertain 20% 

10bis Idem μ2 m2/s/

Pa  

678 10−×  Idem 

11 Solenoid gain  φ Vs  28  

12 Pilot valve spring 

stiffness 

Kc N/m 27300  

13 Feedback spring 

stiffness 

Kα N/m 1300  

14 Bias spring stiffness K N/m  8300  

15 Bias force Fu N 400  

16 Line pressure fraction γl  0.2  

17 Bias pressure P0 MPa 0.4  

18 Min line pressure Pmin MPa 1  
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3.4 Model Implementation  

 

3.4.1 MATLAB Simulink 

The tool used to implement the model presented is MATLAB Simulink. It is an environment 

developed by MathWorks used for multidomain simulation and Model-Based Design for 

dynamic and embedded systems. It can be used in many areas to design, simulate, 

implement, and test a variety of time-varying systems, including communications, controls, 

signal processing, video processing, and image processing. Simulink provides an interactive 

graphical user interface environment and a customizable set of block libraries. It offers tight 

integration with the rest of the MATLAB environment and can either drive MATLAB or be 

scripted from it. Simulink can be used to explore the behavior of a wide range of real-world 

dynamic systems, including electrical circuits, shock absorbers, braking systems, and many 

other electrical, mechanical, and thermodynamic systems. Dynamic systems are systems 

whose outputs change over time and the way they are represented is by a set of differential 

equations in time. Simulating such a system with Simulink requires a user to create a block 

diagram using the Simulink model editor that graphically depicts time-dependent 

mathematical relationships among the system’s inputs, states, and outputs and then 

command Simulink to simulate the system represented by the model from a specified start 

time to a specified stop time.   

 

3.4.1.1 Matlab Simulink for ODE’s 

A mathematical model of a dynamic system is described by a set of equations. The 

mathematical equations described by a block diagram model are known as algebraic, 

differential, and/or difference equations. Simulink block diagrams use Integrator blocks to 

indicate integration and a chain of operator blocks connected to the integrator block to 

represent the method for computing the state’s derivative. The chain of blocks connected to 

the Integrator’s is the graphical counterpart to an ordinary differential equation (ODE). 

Integrating the states requires the use of numerical methods called ODE solvers. These 

various methods trade computational accuracy for computational workload. Simulink comes 

with computerized implementations of the most common ODE integration methods and 

allows a user to determine which it uses to integrate states represented by Integrator blocks 

when simulating a system.  The Simulink product provides an extensive library of solvers, 

http://en.wikipedia.org/wiki/MathWorks
http://en.wikipedia.org/wiki/MATLAB


36 
 

each of which determines the time of the next simulation step and applies a numerical 

method to solve the set of ordinary differential equations that represent the model. In the 

process of solving this initial value problem, the solver also satisfies the accuracy 

requirements specified by the user. 

[38] 

3.4.1.2 Choosing a Solver Type 

The Simulink library of solvers is divided into two types of solvers which are fixed-step and 

variable-step. The other categories they are subdivided into are discrete or continuous, 

explicit or implicit, one-step or multistep, and single-order or variable-order solvers.  

The one used in our implementation is the ode45 solver. It is an explicit continuous variable-

step solver. The variable-step solvers in the Simulink product dynamically vary the step size 

during the simulation. Each of these solvers increases or reduces the step size using its local 

error control to achieve the tolerances that you specify. Computing the step size at each 

time step adds to the computational overhead but can reduce the total number of steps, 

and the simulation time required to maintain a specified level of accuracy. The explicit 

variable-step solvers are designed for non stiff problems. 

The ode45 solver is a one-step method of medium accuracy and the numerical method 

applied is the Runge-Kutta, Dormand-Prince pair. In general, the ode45 solver is the best to 

apply as a first try for most problems. For this reason, ode45 is the default solver for models 

with continuous states. This solver is a fifth-order method that performs a fourth-order 

estimate of the error. This solver also uses a fourth-order "free" interpolant, which allows 

for event location and smoother plots. 

[38] 

 

3.4.1.3 Example of how we solve differential equations in 

Simulink 

Using Simulink to solve differential equations is very quick and easy. A simple example is the 

following: 

We want to model the differential equation: 

( ) 5 ( ) ( )x t x t u t′ = + , 

where u(t) is a square wave with an amplitude of 1 and a frequency of 1rad/sec.  
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What is needed is an Integrator 

generate the signal wave u (t).

The solution can be approximated in Simulink by using an integrator to integrate the first 

order derivative, x’, to produce 

The above differential equation is 

 

   
   Figure 3.1

 

3.4.2 Implementation of our model in

The pneumatic pump model presented above was implemented in 

environment in the way illustrated 

 

  

 

     Figure 3.2

 

What is needed is an Integrator block, a Gain block, a Sum block and a Signal Generator to 

generate the signal wave u (t). 

The solution can be approximated in Simulink by using an integrator to integrate the first 

, to produce x. 

The above differential equation is solved in Simulink as portrayed bellow: 

 
Figure 3.1 A Matlab Simulink example  

3.4.2 Implementation of our model in Matlab Simulink

The pneumatic pump model presented above was implemented in M

environment in the way illustrated bellow: 

Figure 3.2 Pneumatic Pump model in Matlab Simulink  

block, a Gain block, a Sum block and a Signal Generator to 

The solution can be approximated in Simulink by using an integrator to integrate the first 

Simulink 

Matlab Simulink 
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As mentioned above, our model consists of two ordinary differential equations (ode

odes are: 

( ) ( ) ( ) ((l l
l

P t K x Q t Q l s Q s P
V Pl
β ω= − − − ∆&

( ) ( )( )( ,ax t Q s P s leakage Aα α= ∆ −&

 

Using the matlab Simulink environment the first one is implemented as:

 

 
   Figure 3.3 

 

whereas the second one is: 

 

       
   Figure 3.4 

As mentioned above, our model consists of two ordinary differential equations (ode

( ) ( ) ( ))0 ,P t K x Q t Q l s Q s Pα α= − − − ∆
  

)x t Q s P s leakage Aα α= ∆ −
 

Simulink environment the first one is implemented as: 

Figure 3.3 Line Pressure Pl implemented in Matlab Simulink
 

 

Figure 3.4 Pump stroke x implemented in Matlab Simulink
 

As mentioned above, our model consists of two ordinary differential equations (odes). These 
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Where s and ΔPa are implemented as:

 

  
   Figure 3.

 

 
   Figure 3.5 

 

3.4.3 Simulation results of the implementation of our model 

The results of the implementation for the 

  

In this implementation the current increases from 0 to 0.8 for the first 1

stable for 10 seconds and then it falls back to 9 for the next 15 seconds

pump stroke increases, remains stable

with pressure line, it initially

starts rising, it keeps increasing when being at max stroke

starts falling.   

 

are implemented as: 

Figure 3.5 Pilot valve stroke s implemented in Matlab Simulink
 

Figure 3.5 Pressure drop ΔPa implemented in Matlab Simulink
 

3.4.3 Simulation results of the implementation of our model 

The results of the implementation for the model for the first 40 seconds are the following:

In this implementation the current increases from 0 to 0.8 for the first 15 seconds,

for 10 seconds and then it falls back to 9 for the next 15 seconds. We can notice that 

remains stable and then falls in proportion to the current. In regard 

, it initially decreases due to the lubrication flow. During the upstroke it 

starts rising, it keeps increasing when being at max stroke and during the down

 

 

3.4.3 Simulation results of the implementation of our model  
are the following: 

5 seconds, it remains 

We can notice that 

and then falls in proportion to the current. In regard 

. During the upstroke it 

during the down-stroke it 
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Pump stroke x is represented by the following graph: 

 

 

    Figure 3.6 Pump stroke x
 

 

The graph bellow shows the line pressure: 

  

 

    Figure 3.7 Line Pressure Pl
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Pump stroke is initially 0 since there is no flow whereas line pressure must have a value 

greater than minP ,  which is 61 10MPa Pa=  that is why it is initialized starting from 2

62 10MPa Pa= ⋅ .
 

In steady state where 17,2
a

I
x mm

K
ϕ

= = , the steady-state pump flow range is obtained, 

since 3 3
,max 2.1 10lQ m s−= ×

 
, whereas the line pressure keeps rising in proportion with the 

demanded flow. When there is no current applied, the pump stroke is 0 mm and the line 

pressure keeps falling.  
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Chapter 4 

System Identification using Recurrent High 
Order Neural Networks 

 

In the previous chapter we examined the pneumatic pump model that we want to identify in 

this thesis. Now we can proceed to the presentation of the adaptive system identification 

scheme that we use for this process. We firstly introduce some basic facts about neural 

networks and how they can be used for control. Then, we present the RHONN model, three 

different identification techniques with or without modeling error and finally we use the 

RHONN model and system identification for the development of indirect adaptive control. 

 

4.1 Introduction 

 

The ever increasing technological advances have led to complex systems that include 

uncertain, and possibly unknown, nonlinearities, operating in highly uncertain 

environments, resulting in situations where regulatory and corrective influences should be 

exerted without complete knowledge of basic causes and effects. However the need for 

design and control decisions still exists, but the treatment of complex processes, attempts at 

complete understanding at a basic level may consume so much time and so large quantity of 

resources as to impede us in more immediate goals of control. For this reason, several 

“intelligent” techniques have been developed with the artificial neural networks being one 

of the most important tools that serve in this direction. 

 

4.2 Artificial neural networks 

 

Artificial neural networks are systems inspired by the study of biological neural networks. 

The main aim of a neural network is similar with a mathematical function, mapping an input 
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to a desired output. They are used because the way they solve problems is much different 

than this followed by conventional computers. This is due to the fact that the information is 

processed the same way as in the human brain. 

The biological nervous system

electrically excitable cells that receive input

neurons and cells. A typical neuron

and axons. The dendrites are special nodes and fibers connected to the soma and structured 

as a tree branch. Their purpose is to send and receive electrochemical signals from other 

neurons. The neuron sends out spikes of electrical activity through the axon, a long thin 

straight structure that splits into thousands of branches at the end of which exists an 

electrochemical junction known

other and to non-neuronal cells such as those in

[40], [41], [42], [43], [44] 

                                

    

 

The first artificial neuron was produced in 1943 by the neurophysiologist Warren McCulloch

and the logician Walter Pits. The artificial neural network consists of artificial neurons in 

correspondence with the biological neurons presented above, which are t

processing elements of the neural 

called a node. Each node receives

They are used because the way they solve problems is much different 

owed by conventional computers. This is due to the fact that the information is 

processed the same way as in the human brain.  

The biological nervous system is composed of millions of neurons which are simple 

electrically excitable cells that receive inputs from other neurons and send outputs to other 

neuron consists of a central cell body-also called soma, dendrites 

and axons. The dendrites are special nodes and fibers connected to the soma and structured 

as a tree branch. Their purpose is to send and receive electrochemical signals from other 

euron sends out spikes of electrical activity through the axon, a long thin 

straight structure that splits into thousands of branches at the end of which exists an 

electrochemical junction known as a synapse, through which neurons send signals t

neuronal cells such as those in muscles or glands.  

Figure 4.1 A typical neuron [39] 

The first artificial neuron was produced in 1943 by the neurophysiologist Warren McCulloch

and the logician Walter Pits. The artificial neural network consists of artificial neurons in 

correspondence with the biological neurons presented above, which are t

processing elements of the neural network. In artificial neural networks a 

receives a set of numerical inputs (representing the one or more 

They are used because the way they solve problems is much different 

owed by conventional computers. This is due to the fact that the information is 

is composed of millions of neurons which are simple 

s from other neurons and send outputs to other 

also called soma, dendrites 

and axons. The dendrites are special nodes and fibers connected to the soma and structured 

as a tree branch. Their purpose is to send and receive electrochemical signals from other 

euron sends out spikes of electrical activity through the axon, a long thin 

straight structure that splits into thousands of branches at the end of which exists an 

send signals to each 

 

The first artificial neuron was produced in 1943 by the neurophysiologist Warren McCulloch 

and the logician Walter Pits. The artificial neural network consists of artificial neurons in 

correspondence with the biological neurons presented above, which are the fundamental 

. In artificial neural networks a neuron is also 

(representing the one or more 
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dendrites) from different sources

performs a calculation based on

come in simultaneously or remain activated for the 

computation of the output.  

A model of a neuron is the one following. There is a set of connecting links between the 

input values and the neuron wh

characterized by a weight which shows the strength of the synapse. The synaptic weight 

includes both positive and negative values,

influences to each input. An inpu

synaptic weight xkm. 

   Figure 

 

All the weighted inputs are added at the summing junction and the sum is passed through a 

non linear function known as activation function which is responsible for limiting the 

amplitude of the output of the neuron.  

sigmoid, linear or threshold. 

activation function in respect to whether it is positive or not. 

directed either to the environment

the output of an element in a dynamic system partially influences the input which is applied 

to same element then it is said that feedback exists.

There are many different types of neural networks that control systems use, but the decision

of which type to use and what training procedure to follow depends on the intended 

application. The ways in which the neurons are structured, and the learning rules are used to

sources, either from other neurons or from the environment

calculation based on these inputs and produces a single output value. All inputs

come in simultaneously or remain activated for the same amount of time until the 

.   

A model of a neuron is the one following. There is a set of connecting links between the 

input values and the neuron which represent the synapses. Each one of them is 

characterized by a weight which shows the strength of the synapse. The synaptic weight 

includes both positive and negative values,, therefore providing excitory or inhibitory 

An input signal of xm connected to neuron k is multiplied by the 

Figure 4.2 Non linear model of a neuron [40] 

All the weighted inputs are added at the summing junction and the sum is passed through a 

non linear function known as activation function which is responsible for limiting the 

amplitude of the output of the neuron.  The activation or transfer function is 

sigmoid, linear or threshold. The bias bk raises or decreases the network input of the 

activation function in respect to whether it is positive or not. The output produced

to the environment, or fed as input to other neurons in the network

the output of an element in a dynamic system partially influences the input which is applied 

to same element then it is said that feedback exists. 

There are many different types of neural networks that control systems use, but the decision

of which type to use and what training procedure to follow depends on the intended 

application. The ways in which the neurons are structured, and the learning rules are used to

from the environment, 

output value. All inputs 

same amount of time until the 

A model of a neuron is the one following. There is a set of connecting links between the 

ich represent the synapses. Each one of them is 

characterized by a weight which shows the strength of the synapse. The synaptic weight 

, therefore providing excitory or inhibitory 

connected to neuron k is multiplied by the 

 

All the weighted inputs are added at the summing junction and the sum is passed through a 

non linear function known as activation function which is responsible for limiting the 

he activation or transfer function is usually 

raises or decreases the network input of the 

output produced is 

he network. When 

the output of an element in a dynamic system partially influences the input which is applied 

There are many different types of neural networks that control systems use, but the decision 

of which type to use and what training procedure to follow depends on the intended 

application. The ways in which the neurons are structured, and the learning rules are used to 
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train the network are intricately linked to each other and it is essential to study both of 

them. 

[40], [41], [42], [43], [44] 

 

4.2.1 Neural network architectures 

The neurons are generally structured in three ways: single-layer feedforward networks, 

multilayer feedforward networks and recurrent networks. 

In the single-layer feedforward networks there is an input layer of nodes which projects onto 

an output layer of neurons but not vice versa. This means that the information always move 

one direction and it never goes backwards. If the neural network was portrayed as a 

directed graph, the feedforward networks would be acyclic graphs. 

In multilayer feedforward networks there one or more hidden layers. It consists of an input 

layer, an output layer of neurons and between them it is composed of one or more layers of 

neurons called hidden layers. The output signals of the second layer are the input signals of 

the third layer and so on is formed the whole network. The last layer outputs are the overall 

response of the network. The feedforward multilayer neural networks are the neural 

networks that are the most commonly used. The information is not fed back during 

operation but there is feedback information available during training. They can handle 

relatively complex tasks such as the known problem of exclusive or.  

[40], [45], [43] 

 

  Figure 4.3 Multilayer feedforward neural networks’ structure [46] 
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 In recurrent neural networks the layer structure still exists, but it is different because 

recurrent neural networks consist of at least one feedback loop. The feedback loops have a 

great impact on the network performance and on its learning capability. They also involve 

the use of branches which is composed of unit delay elements and in case nonlinear units 

are contained, it has the outcome of nonlinear dynamical behavior. 

[40], [43] 

   

     Figure 4.4 Recurrent neural networks’ structure [46] 

 

4.2.2 Learning process  

What’s the most important at a neural network is its ability to learn from its environment 

and improve its performance.  Learning means, given a task to solve and a class of functions 

F, finding the optimal task solution using a set of observations. The optimal solution is the 

one that has the least cost. This means that a cost function should be determined to 

measure how far away from an optimal solution to the problem, a particular solution is. 

After the neural network is simulated by an environment, the learning procedure takes place 

through an interactive process of adjustments of the synaptic weights and bias level. The 

type of learning depends on the manner in which the free parameters of the neural network 

change, based on the above procedure. A set of rules used to solve a learning problem 

compose a learning algorithm. There are great deals of learning methods with the only 

difference the way in which the synaptic weights are adjusted. 

The manner in which a neural network relates to its environment is also important and there 

are some techniques that refer to a model of the environment in which the neural network 

operates. They are called learning paradigms and they are basically classified into supervised 
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and unsupervised learning. Unsupervised learning is the learning where there are no labeled 

examples- patterns of the function to be learned from the network. There are given some 

data and the cost function and we want to minimize it but it can be any function of the data 

and the output of the network. In supervised learning the environment is unknown to the 

neural network but there are some input-output examples giving some knowledge about the 

environment. This means that we are given example pairs and we search the function that 

matches with these patterns. When the cost used is the mean-squared error and it is 

minimized using gradient descent for the class of multilayer perceptrons neural networks 

the backpropagation algorithm for training neural networks is obtained. Versions of this 

algorithm are most commonly used for training neural networks. However it takes a long 

time to converge so it is generally a slow and time consuming process. 

[40], [43], [47] 

 

4.2.3 Use of neural networks for adaptive control 

The most significant problem in generalizing the application of neural networks in control is 

the fact that the very interesting simulation results that are provided, lack theoretical 

verification. Crucial properties like stability, convergence and robustness of the overall 

system must be developed and/or verified. The main reason for the existence of the above 

mentioned problem is the mathematical difficulties associated with nonlinear systems 

controlled by highly nonlinear neural network controllers. The problem of controlling an 

unknown nonlinear dynamical system has been attacked from various angles using both 

direct and indirect adaptive control structures and employing different neural network 

models. 

 Adaptive controllers do not need any knowledge of the system parameters and they are 

adapted to parameter uncertainties by using performance error information on-line, in 

contrast with other control methods such as PID, pole placement, optimal, robust, or 

nonlinear control that the system parameters must be known. A typical adaptive control 

system consists of a plant, a controller with parameters, and an adaptive law to update the 

controller parameters to achieve some desired system performance.   

Plant is the process to be controlled. It has a certain number of inputs that are processed in 

order to produce a number of outputs. These outputs are the dependent variables we want 

to control and represent the measured output response of the plant.  
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    Figure 4.5 Plant representation [48] 

[48] 

It can be single-input single-output or multi-input multi-output, continuous or discrete, 

linear or nonlinear. 

In adaptive control, the plant parameters are unknown and we often use discrete samples of 

the plant inputs and outputs for the neural network training.  An adaptive controller is 

formed by combining an online parameter estimator-also known as adaptive law, which 

provides estimates of unknown parameters at each instant, with a control law that is 

motivated from the known parameter case. The way the parameter adaptive law is 

combined with the control law gives rise to two different approaches, the direct and the 

indirect adaptive control.  In indirect adaptive control, the plant parameters are estimated 

on-line and then they are used to calculate the controller parameters. In direct adaptive 

control the plant model is parameterized in terms of the controller parameters that are 

estimated directly without intermediate calculations involving plant parameter estimates.  

The use of neural networks for indirect control involves two steps: system identification and 

control design. System identification is the procedure where a neural network model of the 

plant we want to control is produced, whereas control design is the procedure where the 

neural network plant model is used to design or train the controller.  

[47], [48], [49] 

 

4.3 System identification 

 

System identification is of a great importance in order to understand and predict the 

behavior of the system, but also to obtain an effective control law. Neural networks support 

identification of systems with any number of input and output signals.  

They can be trained to identify nonlinear dynamical systems via forward and inverse 

modeling. 
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Forward modeling is the procedure of training a neural network to represent the forward 

dynamics of the plant.  

The neural network model is placed in parallel with the plant as shown below. The training 

signal of the network is the prediction error, which is the error between the plant output 

and the neural network output. 

  

  
    

    Figure 4.6 

 

We assume that the plant is governed by the nonlinear difference equation that follows: 

( ) ( )(1 ,..., 1 ; ,..., 1p p py k f y k y k n u k u k m+ = − + − +

The plant output yp at time k+1 depends on the past n output values, in the sense defined b

the nonlinear map f. The plant output also depends on the past m values of the input u.  

is the procedure of training a neural network to represent the forward 

The neural network model is placed in parallel with the plant as shown below. The training 

signal of the network is the prediction error, which is the error between the plant output 

and the neural network output.   

Figure 4.6 Forward modeling identification [50] 

We assume that the plant is governed by the nonlinear difference equation that follows: 

( ) ( ) ( ))1 ,..., 1 ; ,..., 1p p py k f y k y k n u k u k m+ = − + − +  

at time k+1 depends on the past n output values, in the sense defined b

the nonlinear map f. The plant output also depends on the past m values of the input u.  

is the procedure of training a neural network to represent the forward 

The neural network model is placed in parallel with the plant as shown below. The training 

signal of the network is the prediction error, which is the error between the plant output 

 

We assume that the plant is governed by the nonlinear difference equation that follows:  

at time k+1 depends on the past n output values, in the sense defined by 

the nonlinear map f. The plant output also depends on the past m values of the input u.   
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An obvious approach for system modeling is to choose the input

neural network to be the same as that of the system, as shown at the 

equation that follows: 

( ) ( )(1 ,..., 1 ; ,..., 1m p p
apry k f y k y k n u k u k m+ = − + − +

Where ym is the network’s output,

network which is the approximation of f. 

It is obvious that the input to the network includes 

hence, the system has no feedback. Assuming that after a certain training period the 

network gives a good representation of the plant, that is

post-training purposes the network output together with its delay values can be fed back 

and used as part of the network input. In this way, the network can be used independently 

of the plant. Such a network model is described by:

( ) ( )(1 ,..., 1 ; ,..., 1m m m
apry k f y k y k n u k u k m+ = − + − +

[47], [50] 

Inverse modeling is the procedure of training a neural network to represent the inverse 
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During inverse modeling, the assumption made is that the neural network can approximate 

the inverse of the plant well. This obviously means that the inverse exists and it is unique 

and stable. If the inverse is not unique then the ranges of the input to the network should be 

given some special attention. 

[47], [50] 

 

4.4.1 System identification of dynamic systems 

It is a fact that the interest towards the usage of neural networks for the modeling and 

identification of dynamical systems has increased. In order that neural network architecture 

be able to approximate the behavior of a dynamical system in some sense, it is clear that it 

should contain dynamic elements in the form of feedback connections. These networks, as 

mentioned in previous subsections, are called recurrent neural networks.   

A dynamic network can also be made from a static one, if the past neural outputs are passed 

as inputs to the network. In order to avoid making the neural network a very complicated 

and highly nonlinear dynamic system, a more efficient way to introduce dynamics with the 

aid of feedforward multilayer neural networks was proposed in [49]. In this technique static 

multilayer neural networks are connected with stable linear dynamical systems, in a way 

which combines both linear, parallel and feedback connections and the synaptic weights are 

adjusted according to a gradient descent rule. However, by this way some serious issues 

occur. The main one is that the synaptic weights appear nonlinearly in the mathematical 

representation that governs their evolution, resulting to a number of significant drawbacks. 

The learning laws used, require a high amount of computational time and the fact that the 

synaptic weights appear nonlinearly has the outcome of the functional possessing many 

local minima so there is no way to ensure the convergence of the weights to the global 

minimum. Moreover, the highly nonlinear nature of the neural network architecture fails to 

verify basic properties like stability, convergence and robustness.  

In contrast, recurrent networks possess a linear-in-the-weights property that makes the 

issues of proving stability and convergence feasible and their incorporation into a control 

loop promising. There have been proposed a lot of training methods for recurrent networks 

in literature, most of which rely on the gradient methodology and involve the computation 

of partial derivatives, or sensitivity functions. In this respect, they are extensions of the 

backpropagation algorithm for feedforward neural networks [68]. Although these methods 
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have been used successfully in many empirical studies, they share some fundamental 

drawbacks since they require a great deal of computational time, the computation of the 

partial derivative is done approximat
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In the simplest case, the state history of each neuron can be described by a differential 

equation of the form: 

i i i i ij j
j

x a x b w y= − + ∑&

 

Where ix  is the state of the ith neuron, ,i ia b  are constants, ijw is the synaptic weight 

connecting the jth input to the ith neuron. Each jy  is either an external input or the state of 

a neuron passed through a sigmoid function.
 

 In a recurrent second order neural network, the input to the neuron is not only a linear 

combination of the components jy  but also of their product j ky y . Higher order 

interactions are represented by triplets j k ly y y , quadruplets j k l my y y y , etc. forming the 

recurrent high order neural networks. 

Supposing we have a recurrent high order neural network which is composed of n neurons 

and m inputs. Then the state of each neuron would be described by a differential equation 

of the form: 

( )

1

j

k

L
d k

i i i i ik j
k j I

x a x b w y
= ∈

 
= − +  

 
∑ ∏&  

Where { }1 2, , , LI I IK  is a collection of L not-ordered subsets of{ }1,2, ,m n+K , wik are the 

adjustable synaptic weights of the neural network, 
,i ia b  are real coefficients and dj(k) are 

non-negative integers. The state of the ith neuron is again represented by xi and the input 

vector to each neuron 1 2[ , , , ]Tm ny y y y += K is defined by: 
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where [ ]1 2, , ,
T

mu u u u= K is the external input vector to the network. 
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The function ( ).s  represents the sigmoid function which is monotone-increasing, 

differentiable and is usually represented by sigmoids of the form: 

( ) ,
1 x

a
s x

e β γ−= −
+  

where the parameters ,a β  represent the bound and slope of sigmoid curvature and γ is a 

bias constant. The sigmoid activation functions most commonly used in neural network 

applications are the logistic and the hyperbolic tangent function. According to the above 

type for the sigmoids, in the special case where 1a β= = , 0γ =  we obtain the logistic 

function ( ) 1
1 xs x

e−
=

+
and by setting 2a β= = , 1γ =  the hyperbolic tangent function 

( )
2

2

1
1

x

x

e
s x

e
−

=
+

 is obtained. 

Using the L-dimensional vector 
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(4.1)

 

the RHONN model takes the form: 

1

L

i i i i ik k
k

x a x b w z
=

 
= − +  

 
∑&  

And if we define the adjustable parameter vector as 

[ ]1 2
T

i i i i iLw b w w w= L  , our model becomes:  

T
i i i ix a x w z= − +&  . (4.2) 

The vectors { }: 1,2,iw i n= K represent the adjustable weights of the network and the  

coefficients { }: 1,2,ia i n= K are part of the underlying network architecture and are fixed  

during training. 
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In order to guarantee that each neuron ix  is bounded-input bounded-output (BIBO) stable, 

we shall assume that 0,ia > 1,2, ,i n∀ = K . In the special case of a continuous time 

Hopfield model [59], we have 
1

i
i i

a
RC

= , where 0iR >  and 0iC >  are the resistance and 

capacitance connected at the ith node of the network respectively. 

The above model in (4.2) can be described with vectors if we set: 

[ ]1 2, , ,
T n

nx x x x= ∈L �   

[ ]1 2, , ,
T L n

nW w w w ×= ∈L �
 

{ }1 2, , , nA diag a a a= − − −L , a n n× diagonal stability matrix since ai>0 1,2, , .i n∀ = K  

The vector z is a function of both the neural network state x and the external input u. 

Then the dynamic behavior of the overall network would be formed as: 

Tx Ax W z= +& . 

The reason for using high order neural networks is because if a sufficient number of 

connections exists in the RHONN model then it is possible to approximate any dynamical 

system to any degree of accuracy. This can be shown if we consider the problem of 

approximating a general nonlinear dynamical system with input-output behavior given by: 

     ( , )F uχ χ=&    (4.3),  

where 
nχ∈�  is the system state, mu∈� is the system input and : n m nF + →� � is a 

smooth vector field defined on a compact set 
n my +⊂� . 

The approximation problem consists of determining whether by allowing enough higher-

order connections, there exist weights W, such that the RHONN model approximates the 

input-output behavior of an arbitrary dynamical system of the form (4.3). 

We assume that F is continuous and satisfies a local Lipschitz condition such that (4.3) has a 

unique solution- in the sense of Caratheodory [57] and ( ) ( )( ),t u t Yχ ∈ for all t in some 

time interval { }: 0TJ t t T= ≤ ≤ . The interval TJ is the time period over which the 



56 
 

approximation is to be performed. Based on the above assumptions the following result is 

obtained. 

Supposing that we have the system ( , )F uχ χ=&  and the model Tx Ax W z= +&  and initially 

they are at the same state (0) (0)x χ= , then for any 0ε > and any finite 0Τ> , there exists 

an integer L and a matrix L nW ∗ ×∈�  such that the state ( )x t  of the RHONN model with L 

high-order connections and weight values W W ∗= satisfies ( ) ( )
0
sup

t T
x t tχ ε

≤ ≤
− ≤ .  

From this Theorem we can conclude that if enough higher-order connections are allowed in 

the network then there exist weight values such that the input-output behavior of the 

RHONN model approximates that of an arbitrary dynamical system whose state trajectory 

remains in a compact set. This is strictly an existence result as it does not provide any 

constructive method for obtaining the optimal weightsW ∗ .  

In what follows, we consider the learning problem of adjusting the weights adaptively, such 

that the RHONN model identifies general dynamic systems.   

[47] 

 

4.4.1.2 Adaptive system Identification using RHONN 

In this section we develop weight adjustment laws under the assumption that the unknown 

system is modeled exactly by RHONN architecture of the form Tx Ax W z= +& . 

Firstly we suppose that there is no modeling error because the analysis is easier and the 

techniques developed in this case are of great importance for the design of weight adaptive 

laws in the presence of modeling errors for  0t ≥  .  

There exist unknown weight vectors iw∗
, 1,2,i n= K  such that each state iχ  of the 

unknown dynamic system ( , )F uχ χ=&  satisfies: 

( , )i i i ia w z uχ χ χ∗= − +& , 
0(0)i iχ χ= .  
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0
iχ  is the initial ith  state of the system. The arguments of the vector field z are omitted and 

the input u(t) and the state χ(t), as is standard in system identification procedures, remain 

bounded for all 0t ≥  .  

Based on the definition of ( , )z uχ as given by (4.1),  

where 
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 ,  

this implies that ( , )z uχ  is also bounded. With these assumptions we present two different 

approaches for estimating the unknown parameters iw∗of the RHONN model. These are the 

filtered-regressor and the filtered-error RHONN identifiers. 

[47] 

 

4.4.1.3 Filtered Regressor RHONN 
Using the lemma: 

The system described by ( , )i i i ia w z uχ χ χ∗= − +& , 0(0)i iχ χ=  , 

can be expressed as: 

0 ,
T t

i i i iw e ιαχ ζ χ−∗= +    
,i i i zζ αζ= − +&
 

(0) 0iζ =
, 

the dynamical system ( , )F uχ χ=&  can be described as 

,
T

i i i iw eχ ζ∗= +   1,2,...,i n=  . (4.4) 

Where iζ  is a filtered version of the vector z as described by 4.1 and 0: ia t
i ie e χ=

 is an 

exponentially decaying term which appears if the system is in a nonzero initial state. 
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 By replacing the unknown weight vector iw∗ in the 4.1, by its estimate iw and ignoring the 

exponentially decaying term ie , we obtain the RHONN model: 

,T
i i ix w ζ=  1,2,i n= K .  

The exponentially decaying term ( )ie t  can be omitted, since it does not affect the 

convergence properties of the scheme. The state error i i ie x χ= −  between the system and 

the model satisfies: 

i i i ie eϕ ζΤ= − , where *
i i iw wϕ = −  is the weight estimation error.  

The problem now is to derive suitable adaptive laws for adjusting the weights iw
 for

1,2,...,i n= . This can be achieved by using well-known optimization techniques for 

minimization of the quadratic cost functional: 

* 2
1

1

1
( , ..., ) [( ) ]

2

n
T

n i i i i
i

J w w w w eζ
=

= − −∑ . 

Depending on the optimization method that is employed, different weight adjustment laws 

can be derived. Here two methods are considered; the gradient and the least square method 

[45].  

The gradient method yields i i i iw eζ=−Γ& , 1,2,...,i n= ,  

where iΓ  is a positive definite matrix referred to as the adaptive gain or learning rate.  

With the least square method we obtain 

i i i i
T

i i i

w P e

P Pi P

ζ
ζ ζ

= −
 = −

&

& ,   1,2,...,i n= , 

Where P(0) is a symmetric positive definite matrix. In this formulation, the least squares 

algorithm can be thought of as a gradient algorithm with a time varying learning rate. 

The stability and convergence properties (which are of great importance) of these two 

weight adjustment laws are well-known in the adaptive control literature (for example [55], 

[58]).  
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The filtered regressor RHONN model relies on filtering the vector z. This vector is sometimes 

referred to as the regressor vector. The use of this filtering technique could make it possible 

to obtain a very simple algebraic expression for the error. This allows the application of well-

known optimization procedures for designing and analyzing weight adjustment laws.  

However, in this method there is a significant drawback. The filtering of the regressor 

requires complex configuration and heavy computational demands. Moreover, the 

dimension of the regressor will be larger than the dimension of the system and the 

employment of so many filters might be very expensive computationally.   

[47] 

 

4.4.1.4 Filtered error RHONN 

In developing this identification scheme we start again from the differential equation that 

describes the unknown system which is: 

i i i ia w zχ χ
Τ∗= − +&  , 1,2,...,i n=  

Based on the above differential equation for the unknown system the identifier is now 

chosen as: 

T
i i i ix a x w z= − +& ,   1, 2, ..., ,i n= (4.5) 

where iw is again the estimate of the unknown vector *
iw .  

In this case the state error: :i i ie x χ= −  satisfies: 

T
i i i ie ae zϕ=− +& , 1,2,...,i n= , 

 where *
i i iw wϕ = − . 

 The weights iw , for 1,2,...,i n= , are adjusted according to the learning law: 

i i iw ze=−Γ& ,  
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where the adaptive gain iΓ  is a positive definite LxL matrix. In the special case that

i iγΓ = Ι , where 0iγ >  is a scalar, then it can be replaced by iγ . 

This identification scheme has similar convergence properties as the filtered regressor 

RHONN model with the gradient method for adjusting the weights. This is showed by the 

theorem that follows: 

If we consider the filtered error RHONN model given above, whose weights are adjusted 

according to i i iw ze=−Γ& . Then for 1,2,...,i n=  a) ie , i Lϕ ∞∈  b) lim
t→∞

 ( ) 0ie t = .  

The filtered-error RHONN model has a simpler structure than the filtered-regressor, since 

less filters are required and hence, fewer computations.  

[47] 

 

4.4.1.5 Robust learning algorithm 

In the previous two learning algorithms, filtered regressor and filtered error, there is made 

the assumption that there is no modeling error. Equivalently, it is assumed that there exist 

weight vectors *
iw , for 1,2,...,i n= , such that each state of the unknown system 

( , )F uχ χ=&  satisfies: 

* ( , ) .
T

i i i ia w z uχ χ χ= − +& (4.6) 

However in many cases this assumption will be violated. This is mainly due to the fact that in 

the RHONN model there are an insufficient number of higher order terms. In such cases, if 

standard adaptive laws are used for updating the weights, then the presence of the 

modeling error in problems related to learning in dynamic environments may cause the 

adjusted weight values and consequently, the error i i ie x χ= −  to drift to identify. In order 

to avoid the parameter drift phenomenon we modify the standard weight adjustment laws. 

These modified weight adjustment laws are referred to as robust learning algorithms.  

This identification scheme is the one we use in this thesis to identify the pneumatic pump 

model presented in chapter 3. 
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In formulating the problem it is noted that by adding and subtracting * ( , )
T

i i iw z uα χ χ+ , the 

dynamic behavior of each state of the system ( , )F uχ χ=& in (4.3) can be expressed by a 

differential equation of the form: 

* ( , ) ( )
T

i i i i iw z u v tχ α χ χ= − + +& .(4.7) 

The modeling error ( )iv t  is given by: 

*( ) : ( ( ), ( )) ( ) ( ( ), ( ))
T

i i i iv t F t u t a t w z t u tχ χ χ= + − . 

The function ( , )iF uχ  denotes the ith component of the vector field ( , )F uχ , while the 

unknown optimal weight vector *
iw  is defined as the value of the weight vector iw that 

minimizes the L∞ -norm difference between ( , )i iF u aχ χ+ and ( , )T
iw z uχ  for all  

( , ) n muχ +∈Υ⊂� , subject to the constraint that i iw M≤ , where iΜ  is a large design 

constant. The region Y denotes the smallest compact subset of n m+�  that includes all the 

values that ( , )uχ  can take. i.e., ( ( ), ( ))t u t Yχ ∈  for all 0t ≥ .  

Since by assumption ( )u t  is uniformly bounded and the dynamical system to be identified is 

BIBO stable, the existence of such Y is assured. It is pointed out that in our analysis we do 

not require knowledge of the region Y, nor upper bounds for the modeling error ( )iv t . 

In summary, for 1,2,...,i n=  the optimal weight vector *
iw  is defined: 

( )
( )*

,
: arg min sup , ( , )

i i

T
i i i iw M u Y

w F u a w z u
χ

χ χ χ
≤ ∈

 
= + − 

 
. 

The reason for restricting *
iw  to a ball of radius iΜ  is firstly to avoid any numerical 

problems that may arise owing to having weight values that are too large, and secondly, to 

allow the use of the σ-modification [60], which will be developed below to handle the 

parameter drift problem. 
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The formulation developed above follows the methodology of [66] closely. Using this 

formulation, we now have a system of the form: * ( , ) ( )
T

i i i i iw z u v tχ α χ χ= − + +&  (4.7) 

instead of the system of the form (2.6). 

It should be outlined that since ( )tχ  and ( )u t  are bounded, the modeling error ( )iv t  is 

also bounded, i.e., 
0

sup ( )i i
t

v t v
≥

≤  for some finite constant iv . 

In what follows, we are based on the filtered error RHONN identifier for the development of 

robust learning algorithms. This doesn’t mean that filtered filtered-regressor RHONN 

couldn’t be used instead. The same underlying idea can be extended readily to the filtered-

regressor RHONN.  

So, the identifier is chosen as in (4.5), 

 i.e. T
i i i ix a x w z= − +& , 1,2,...,i n= , (4.8)  

where iw  is the estimate of the unknown optimal weight vector *
iw .  

Using the equations in 4.7 and 4.8, the state error i i ie x χ= −  satisfies T
i i i i ie a e z vϕ= − + −&

, 

where *
i i iw wϕ = − .  

Owing to the presence of the modeling error iv , the learning laws given by i i iw ze=−Γ&  are 

modified as follows: 

,

,

ii i

ii i i i i

ze w Mi
i

ze w w Mi

w
σ

−Γ ≤

−Γ − Γ >


= 


& , (4.9)  

where iσ is a positive constant chosen by the designer. 

 The above weight adjustment law is the same as ,i i iw ze=−Γ&
 if iw  belongs to a ball of 

radius iM .  In the case that the weights leave this ball, the weight adjustment law is 

modified by the addition of the leakage term i i iwσΓ , whose objective is to prevent the 

weight values from drifting to infinity.  
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If we use the vector notation 1: [ ... ]Tnv v v=  and 1: [ ... ]Tne e e=  and consider the filtered error 

RHONN model given by (4.8) whose weights are adjusted according to (4.9) , then it can be 

proved that for 1, 2, ..., :i n=  

(a) ie , i Lϕ ∞∈
 

(b) There exist constants λ, μ such that ( )
2

0

t

e dτ τ∫  ≤  ( )
2

0

t

v dλ µ τ τ+ + ∫ . 

In simple words the above theorem states that the weight adaptive law (4.9) guarantees 

that ie  and iϕ  remain bounded for all 1,2,...,i n= , and furthermore, the “energy” of the 

state error ( )e t  is proportional to the “energy” of the modeling error ( )v t .  

In the special case that the modeling error is square integrable, i.e., 2v L∈ , then ( )e t  

converges to zero asymptotically. 

It is noted that the σ-modification causes the adaptive law (4.9) to be discontinuous; 

therefore standard existence and uniqueness of solutions, the trajectory behavior of ( )iw t  

can be made “smooth” on the discontinuity hyper-surface { }:L
i i iw w M∈ =�  by 

modifying the adaptive law (4.9) to  

{ } { }

{ } { } { }

, 0

, { 0}

,

T
i i i i i i i i i

T
T Ti i i i

i i i i i i i i i i i i iT
i i i

T T
i i i i i i i i i i i i i i i

ze f w M or w M and w ze

w z e
w ze w f w M and w w w ze

w w

ze w if w M or w M and w ze w w

σ

σ σ

 −Γ < = Γ >

 Γ

= −Γ + Γ = − Γ ≤ Γ ≤
Γ

−Γ − Γ > = Γ < − Γ

&

    

As shown in [82], the above adaptive law retains all the properties of (4.9) and, in addition, 

guarantees the existence of a unique solution, in the sense of Caratheodory [57]. The issue 

of existence and uniqueness of solutions in adaptive systems is treated in detail in [67]. 

[47] 
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4.5 Use of system identification for indirect adaptive 

control based on the RHONN model 

 

Here, we deal with the development of indirect adaptive control techniques using recurrent 

high order neural networks. These techniques are used in order to control nonlinear 

dynamical systems, with highly uncertain and possibly unknown nonlinearities. Since the 

actual system is assumed to be completely unknown firstly we create an identification 

model, whose parameters are updated on-line such a way that the error between the actual 

system output and the model output is approximately zero. Then, the controller receives 

information from the identifier and outputs the necessary signal, which forces the plant to 

perform a pre-specified task.  

 

4.5.1 Identification 

In this phase, a RHONN is employed to perform “black box” identification around a known 

operational point. Previously, in (4.4.1) some learning laws were developed. These laws can 

be used herein in the building up of the identification part of the architecture. In order to 

increase robustness these algorithms can further enriched. 

To begin, we consider affine in the control, nonlinear dynamical systems of the form:

( ) ( )x f x G x u= +& .  

These continuous-time non-linear systems are called affine because the control input 

appears linear with respect to G .  In the above equation, the state nx∈�   is assumed to be 

completely measured, the control u  is in n�  and f  called the drift term is an unknown 

smooth vector field. G  is a matrix with columns the unknown smooth controlled vector 

fields ig , 1,2,...i n=  1 2[ ... ]nG g g g= .  

In previous sections we considered non affine systems of the form: ( , )x f x u=&  .  

These systems can be easily converted into affine, by passing the input through integrators 

[64], a procedure known as dynamic extension. Affine systems, both by nature and design, 

are commonly encountered in engineering and that is the main reason for using them.  
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According to the analysis of previous subsections, our model can be described by an affine 

RHONN model of the form: ˆ ˆ ( ) ( )x Ax BWS x BWS x u′= + +& , (4.10) 

where ˆ nx∈� , the inputs nu U∈ ⊂ � , W is a n n×  matrix of synaptic weights, Α is a 

n n×  stable matrix, Bis a n n×  matrix with elements the scalars ib  for all 1,2,...,i n=  and 

1W  is a n n×  diagonal matrix of synaptic weights of the form [ ]1 11 21 1... nW diag w w w= . 

Finally, ( )S x  is a n-dimensional vector and ( )S x′  is a diagonal matrix, with elements 

combinations of sigmoid functions. For simplicity we could take matrix A to be diagonal. 

In the case where only parametric uncertainties are present we can prove using techniques 

analogous to them presented before that: 

Considering the identification scheme: 1( ) ( )e Ae BWS x BW S x u′= + +% %  

and the learning law :  ( )ij i i j iw b p s x e= −& ,  

1 ( )i i i j i i iw b p s x pue′= −& , for all , 1,2,...i j n=  

the properties following could be guaranteed:  

1ˆ, , , ,e x W W L∞∈% %  2,e L∈
  lim ( ) 0,

t
e t

→∞
= lim ( ) 0,

t
W t

→∞
=&%

1lim ( ) 0.
t

W t
→∞

=&%  

The robust learning algorithms developed previously can also be used herein to cover for the 

existence of modeling errors.  

[47] 

 

4.5.1.1 Robustness of the rhonn identifier owing to 

unmodeled dynamics 

It is well known that the model can be of lower order than the plant. This is due to the fact 

that un-modeled dynamics exist. In order to include such cases where dynamic uncertainties 

are present, we extend our theory within the framework of singular perturbations. Now we 

assume that the unknown plant can be completely described by: 
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* * 1
1 1 1 0 0 0 1( ) ( ) ( , , ) ( , , )x Ax BW S x BW S x u F x W W A B W u F x W W z−′= + + + +& , 

0 0 0z A z BWuµ = +& , rz∈� , (4.11) 

where z is the state of the un-modeled dynamics and 0µ >  a small singular perturbation 

scalar.  

If we define the error between the identifier states and the real system states ˆe x x= −  

then from (4.10) and (4.11) we obtain the error equation: 

1
1 0 0 0 1( ) ( ) ( , , ) ( , , )e Ae BWS x BWS x u F x W W A B W u F x W W z−′= + + − −% %&  

0 0 0z A z BWuµ = +& , rz∈� , (4.12) 

 where 1 0 0 1( , , ), , ( ), ( )F x W W B W u BWS x BWS x′% %  are bounded and differentiable with 

respect to their arguments for every  
11 WW B∈ %

% a ball in n�  and all xx B∈  a ball in n� . 

Further, we assume that the un-modeled dynamics are asymptotically stable for all xx B∈ . In 

other words we assume that there exists a constant 0v>  such that Re 0{ } 0A vλ ≤− < . 

It should be mentioned that z&  is large since µ is small and hence, the un-modeled 

dynamics are fast. For a singular perturbation from 0µ >  to 0µ =  we obtain

1
0 0 0z A BW u−=− .  

The existence of 1
0
−Α  is assured because the un-modeled dynamics are asymptotically 

stable.  As it is well known from singular perturbation theory, we express the state z as 

( , )z h x η η= + , (4.13) 

where ( , )h x η  is defined as the quasi-steady-state of z  and η  as its fast transient. In our 

case we have:  

1
0 0 0( , )h x A BW uη −=−

. 

Substituting (4.13) into (4.12) we obtain the singularly perturbed model as  

1 1( ) ( ) ( , , ) ,e Ae BWS x BWS x u F x W W η′= + + −% %&  
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0 1( , , , , )A h e W W uµη η µ η= − & % %
, 

 where we define 1 1
1

( , , , , ) .
h h h h

h e W W u e W W u
e W W u

η
∂ ∂ ∂ ∂

= + + +
∂ ∂ ∂ ∂

& && % % % %& &
% %  

However, in the control case, u is a function of 1, ,e W W% %  therefore making 1( , , , , )h e W W uη% %  

equal to 
1 1

1

( , , , , ) .
h h h

h e W W u e W W
e W W

η
∂ ∂ ∂

= + +
∂ ∂ ∂

& &% % % %&
% %

 

It should be remarked that 1
1 0 0 0( , , )F x W W A B W u− , 1( , , )F x W W z  can be viewed as 

correcting terms in the input vector fields and in the drift term of 

* *
1( ) ( )x Ax BW S x BW S x u′= + +& , in the sense that the unknown system can now be 

described by a neural network plus the correction terms. 

The successful completion of the identification phase implies that a model of the originally 

unknown nonlinear dynamical system has been obtained. Then we can proceed to the 

control phase of our algorithm. Stability of the identification scheme plus convergence of the 

identification error to within a small neighborhood of zero is guaranteed with the aid of 

Lyapunov and singular perturbations theories. 

[47] 

 

4.5.2 Indirect control 

After having been identified around an operational point, the unknown nonlinear dynamical 

system is regulated to zero adaptively. In what follows cases that lead to modeling errors are 

taken into consideration, where parametric and dynamic uncertainties exist. 

 

4.5.2.1 Parametric uncertainty 

Firstly we consider that the unknown system can be modeled exactly by a dynamical neural 

network of the form: 

* *
1( ) ( )x Ax BW S x BW S x u′= + +& , (4.14) 
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 where the matrices are as defined previously and the error between the identifier and the 

real system states is: e x x= −) . 

Then from (4.10) and (4.14) the error equation can be obtained which is:  

1( ) ( )e Ae BWS x BW S x u′= + +% %& , where *W W W= −%  and *
1 1 1W W W= −% . 

What we want to accomplish is finding suitable control and learning laws to drive both e  

and x  to zero, while all other signals in the closed loop remain bounded. 

 At each time instant the actual system is modeled by a RHONN of the form:  

1ˆ ˆ ( ) ( )x Ax BWS x BW S x u′= + +& , where W  and 1W  are the synaptic weight estimates, 

provided by the RHONN identifier.  

Taking 1
1[ ( )] ( )u W S x WS x−′= − , we finally obtain ˆ ˆx Ax=& . 

In order to derive stability of our adaptive laws, we use again the Lyapunov synthesis 

method. So if we take the Lyapunov function candidate, 

1 1 1

1 1 1 1ˆ ˆ ˆ( , , , ) { } { }
2 2 2 2

T T T TV e x W W e Pe x Px tr W W tr W W= + + +% % % % % % , where 0P>  is chosen to 

satisfy the Lyapunov equation: TPA A P I+ = − , we obtain that the learning laws : 

( ) ,ij i i j iw b p s x e=−&
  

1 ( )in i i i i iw bs x pue+ ′=−& , 

 for all , 1,2,...,i j n=  make 
2 21 1 ˆ 0

2 2
V e x= − − ≤& .  

Furthermore, it is trivial to verify that the learning laws above can be written in matrix form 

as 0W EBS=−& , 1W BPS UE′= −& , where all matrices are defined as follows: 

1 2[ , ,..., ]nP diag p p p= , 1 2[ , ,..., ]nB diag b b b= , 1 2[ , ,..., ]nE diag e e e= , 

1 2[ , ,..., ]nU diag u u u= , 
1

0

1

( ) ( )

( ) ( )

n

n

s x s x

S

s x s x

 
 =  
 
 

K

M O M

L

. 
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To apply the control law 1
1[ ( )] ( )u W S x WS x−′= − , we have to assure the existence of 

1
1( ( ))WS x −′ .  Since 1W and ( )S x′  are diagonal matrices and ( ) 0is x′ ≠ , 0t∀ ≥ , 

1,2,...,i n∀ =  all we need to establish is 1( ) 0inw t+ ≠ , 1,2,...,i n∀ = . Hence 1( )W t  is 

confined, through the use of a projection algorithm ([63], [56], and [60]) to set 

1 1{ : }mW W W w= ≤%  where mw a positive constant is. Furthermore, *
1 1 1W W W= −%  and 

*
1W  contains the initial values of 1W  that identification provides. 

 In particular, the standard adaptive laws are modified to: 

0W EBPS= −& , 

{ }{ }

{ }

1 1 1

1

2

1

1 1 1 1

, 0

1
{ } , 0

m

m
m

BPS UE if W W or W w and tr BPS UEW

W

W
BPS UE tr BPS UEW W if W w and tr BPS UEW

w



 ′ ′− ∈ = − ≤
= 


 +
 ′ ′ ′− + = − >    

% %

&

%
% % % %

 

Therefore, if the initial weights are chosen such that ( ) 1
0 mn

W w
+

≤% , then we have that 

1 mW w≤%  for all 0t ≥ . This can be readily established by noting that whenever 

( ) 1 mn
W t w

+
=%  then

( )
2

1 0n
d W t

dt
+ ≤

%
, which implies that the weights 1W  are directed 

towards the inside or the ball{ }1 1: mW W w≤% .  

It can be proved that if we consider the control scheme 1( ) ( )e Ae BWS x BW S x u′= + +% %& , 

1
1[ ( )] ( )u W S x WS x−′= − , ˆ ˆx Ax=& and the above learning law the following properties can 

be guaranteed:  

1 2ˆ ˆ, , , , , ,e x W W L e x L∞∈ ∈% %
 

( ) ( )ˆlim 0, lim 0,
t t

e t x t
→ ∞ → ∞

= = ( ) ( )1lim 0, lim 0
t t

W t W t
→∞ →∞

= =& &% %
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The analysis presented above, implies that the projection modification guarantees 

boundedness of the weights, without affecting the rest of the stability properties established 

in the absence of projection. 

[47] 

 

4.5.2.2 Parametric plus Dynamic Uncertainties 

Now, we examine a more general case where parametric and dynamic uncertainties are 

present. To analyze the problem, the complete singular perturbation model 3.6 is used so 

the control scheme is now described by the following set of nonlinear differential equations 

Our actual system as we have seen is ( ) ( )x f x G x u= +& . 

The error system is: 

1 1

0 1

( ) ( ) ( , , ) ,

ˆ ˆ,

( , , , ).

e Ae BWS x BW S x u F x W W

x Ax

A h e W W

η

µη η µ η

′ ′= + + −

=

= −

% %

&

& % %&

 

The control law we use is ( ) ( )1

1 .u WS x WS x
−

′= −    

The adaptive law is 0W EBPS= −&
 

{ }{ }

{ }

1 1 1

1

2

1

1 1 1 1

, 0

1
{ } , 0

m

m
m

BPS UE if W W or W w and tr BPS UEW

W

W
BPS UE tr BPS UEW W if W w and tr BPS UEW

w



 ′ ′− ∈ = − ≤
= 


 +
 ′ ′ ′− + = − >    

% %

&

%
% % % %

. 

It can be proved that 1( , , , , )h e W W uη& % %  is bounded by 1 1 2( , , , , )h e W W u eη ρ ρ η≤ +& % % , 

provided that: 
0 ,wh W k e≤&%  

1 1 1 ,wh W k e≤&%  ( )1 2 ,eh BW S x u k e′ ≤%  

( ) 3 ,eh BWS x k e≤%  ( )1 2, , ,eh F x W W ρ≤  4e eh k eΑ ≤  and 

1 0 1 2 3 4k k k k kρ = + + + + . 
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This can lead us to the result that the control scheme presented above is asymptotically 

stable for all ( )00,µ µ∈ , where 0
1 2 3

1 1
2 2

µ
γ γ γ

 
=  + 

 and that the adaptive law 

mentioned guarantees the following properties:  

1, , , ,e x W W Lη ∞∈% %& , 2, ,e x Lη∈& , lim ( ) 0, lim ( ) 0, lim ( ) 0
t t t

e t x t tη
→∞ →∞ →∞

= = =& , 

 1lim ( ) 0, lim ( ) 0
t t

W t W t
→∞ →∞

= =& &% % . 

[47] 
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Chapter 5 

 Adaptive identification of a pneumatic pump 
implemented in Matlab Simulink 

 

In this chapter we proceed to the adaptive identification of our pneumatic pump model. In 

the previous chapter we examined some different identification schemes and now we are 

able to use them to identify the pneumatic pump model presented in chapter three. Firstly 

we focus on how robust learning algorithms can be used to identify our model and how it is 

implemented in Matlab Simulink. Then we present the simulation results of the system 

identification. 

  

5.1 Implementation of the identification using robust 
learning algorithms in Matlab Simulink 
 

The identification scheme we use in this thesis was presented in (4.4.1.5) and it is the robust 

learning algorithms for adaptive identification based on the Recurrent High Order Neural 

Networks model. Our actual system is the pneumatic pump model presented in (3.3). It 

consists of two states the line pressure lP and the pump stroke x  and each one of these two 

values of our actual system are given as inputs to the RHONN identifier system. Here, our 

objective is to train the neural network so as it can identify the pneumatic pump model.   

We have a second order neural network based on the robust training algorithms scheme. 

The state of the ith neuron is represented by xi with the identifier model being a 2 1×  matrix 

given by: ,T
i i i ix a x w z= − +&  where each i represents one of the two states of our actual 

system (either pressure line or pump stroke).    

The weight adjustment laws are given by: 
,

,
.

ii i

ii i i i i

ze w Mi
i

ze w w Mi

w
σ

−Γ ≤

−Γ − Γ >


= 


&  



73 
 

( )

( )

( )
( )

1

2

1

11 1

2
2 2 2

.

j

j

d
j

j I

d
j

j I

y
sz y

z and y
z y sy

χ

χ
∈

∈

 
      

= = = =      
       

  

∏

∏

  
Where y is the input vector to each neuron and ( )S χ  is a 2 1×  matrix that contains high 

 order combinations of sigmoid functions of the state χ. The sigmoidal nonlinearity  

employed is: ( ) 1
.

1 xS x
e−

=
+

  

 
The identification error is the difference between the identifier and the actual system and it 

is equal to: .i i ie x χ= −
  

Moreover, we use other two matrixes A and Γ. These are 2 2×  diagonal matrixes with 

values:   

120 0

0 41
A

 
=  
   

and 

 
10000 0

0 30
 

Γ =  
 

 

 Γ is a positive definite matrix referred to as adaptive gain or learning rate and A is a diagonal 

stability matrix  with the coefficients a1, a2 being part of the underlying network architecture 

and being fixed during  training.  

In our training process, our RHONN identification model learns to approximate the 

dynamical behavior of the system in each epoch. The process is consisted from the following 

steps: 

 

1) Initialization of the W matrix. 

2) Initialization of the diagonal matrixes A and Γ. 

3) Initialization of the real system and the identifier in the same initial 

condition. 

4) Extraction of the training data from the pneumatic pump-model we have simulated 

5) The data pass through the Log-Sigmoids to compute z. 
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6) Evaluation of the identifie

7) Calculation of the error e x

8) Calculation of the weights (W).

9) The final weight values of W are set as initial values for W in the next

training process. 

 

We perform these steps until a number of maximum epochs 

in order to drive the error to an 

the real system, which is what actually happens, since the error converges to zero. 

After the successful completition of the training, we proceed to validation process, the 

results of which are presented in the following section.

 

The identification procedure 

    

 

The output of our actual system is fed up as the input of the RHONN Identifier Model. The 
outputs we want to examine are the two errors that have to convergence to zero and the 
identified values of line pressure and pump stroke.

identifier’s state. 

e x χ= − . 

) Calculation of the weights (W). 

) The final weight values of W are set as initial values for W in the next 

hese steps until a number of maximum epochs is reached. We follow this steps 

error to an acceptable low value. This means that our model ‘follows’ 

is what actually happens, since the error converges to zero. 

ter the successful completition of the training, we proceed to validation process, the 

results of which are presented in the following section. 

The identification procedure is implemented in Matlab Simulink as illustrated bellow:

 Figure 5.1 

The output of our actual system is fed up as the input of the RHONN Identifier Model. The 
outputs we want to examine are the two errors that have to convergence to zero and the 

line pressure and pump stroke. 

 iteration of the 

We follow this steps 

means that our model ‘follows’ 

is what actually happens, since the error converges to zero.  

ter the successful completition of the training, we proceed to validation process, the 

as illustrated bellow: 

 

The output of our actual system is fed up as the input of the RHONN Identifier Model. The 
outputs we want to examine are the two errors that have to convergence to zero and the 
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The RHONN Identifier model

 

               Figure 

 

5.2 Simulation results of the adaptive identification of 
the pneumatic pump
 

In what follows we present the simulation results of the adaptive identification of the 

pneumatic pump-model. It should be mentioned that the efficiency of an identification 

procedure depends mainly on three factors. The error and speed of convergence, the

stability in cases of abrupt input changes and the performance of the identification model 

after the training stops. All three factors are checked during our simulations.

The RHONN Identifier model is implemented in Matlab Simulink the way portrayed bellow:

Figure 5.2 Implementation of the RHONN Identifier model 

Simulation results of the adaptive identification of 
the pneumatic pump-model 

In what follows we present the simulation results of the adaptive identification of the 

model. It should be mentioned that the efficiency of an identification 

procedure depends mainly on three factors. The error and speed of convergence, the

stability in cases of abrupt input changes and the performance of the identification model 

after the training stops. All three factors are checked during our simulations. 

is implemented in Matlab Simulink the way portrayed bellow: 

 

Simulation results of the adaptive identification of 

In what follows we present the simulation results of the adaptive identification of the 

model. It should be mentioned that the efficiency of an identification 

procedure depends mainly on three factors. The error and speed of convergence, the 

stability in cases of abrupt input changes and the performance of the identification model 
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             Figure 5.3 Pump stroke error 

 

 

     Figure 5.4 Pressure Line error 

 

 



77 
 

 

   Figure 5.5 Pressure Line error with zoom for the initial 0.12 seconds 

     

In figures 5.3 and 5.4 we can see that the approximating errors converge to zero very 

quickly. In figure 6.5 we can notice that line pressure error converges to zero after about 

0.08 second since the initial value of line pressure is 62 10⋅ Pa whereas the line pressure 

identifier begins from 0 Pa. 

In the figures following we can see the differences between the actual system and the 

RHONN Identifier values. The first two figures represent the pump stroke and the other 

three the line pressure. The actual system’s values are portrayed in pink whereas the 

Identification system’s values are in yellow. It is very interesting how quickly both coincide.  
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   Figure 5.6 Pump Stroke both actual and identification models 

 

 

 

   

  Figure 5.7 Pump Stroke both actual and identification models with zoom 
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   Figure 5.8 Line Pressure of both actual and identification models 

 

 

 

   

  Figure 5.9 Line Pressure of both actual and identification models with zoom 
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Figure 5.10 Line Pressure of both actual and identification models with zoom for the first 1.2 seconds to see 
exactly when these two coincide  
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Chapter 6 

Conclusions and Future developments 

 

In this thesis we dialed with the adaptive identification of a pneumatic pump. Firstly we 

presented and implemented the model and then we proceeded to the identification 

procedure. The identification scheme we used is for nonlinear dynamical systems and it uses 

robust learning algorithms when modeling errors exist. This identification scheme is based 

on the Recurrent High Order Neural Network model and it is very powerful since it 

converges to zero very quickly.  

 

Our identification scheme, enriched further to increase robustness can be used for the 

design of an adaptive controller. This could possibly be the next step to our work. Recurrent 

high order neural networks provide a powerful mathematical tool for the calculation of the 

appropriate control in order to bring the system to the right dynamical behavior. This 

behavior would mean that we could keep our pneumatic-pump-model’s line pressure 

between some certain values.   

The control objective in our application would be to keep the line pressure equal to a 

constant value greater than 1MPa, which is the minimum line pressure, and less than the 

maximum line pressure, which is 20 MPa, whereas the demanded flow could vary. In fact in 

section 5.4 we have already described how system identification can be used to develop 

indirect adaptive control based on the Recurrent High Order Neural Network Model. 
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