
Technical University of Crete, Greece

Department of Electronic and Computer Engineering

A CASE (Computer-Aided Software

Engineering) Tool

for Robot-Team Behavior-Control Development

Angeliki Topalidou-Kyniazopoulou

Thesis Committee

Assistant Professor Michail G. Lagoudakis (ECE)

Assistant Professor Aikaterini Mania (ECE)

Dr Nikolaos Spanoudakis (Department of Science)

Chania, March 2012

http://www.tuc.gr
http://www.ece.tuc.gr

Πολυτεχνειο Κρητης

Τμημα Ηλεκτρονικων Μηχανικων και Μηχανικων Υπολογιστων

΄Ενα εργαλείο CASE (Computer-Aided

Software Engineering)

για την Ανάπτυξη Ρομποτικής Συμπεριφοράς

Ελέγχου

Αγγελική Τοπαλίδου-Κυνιαζοπούλου

Εξεταστική Επιτροπή

Επίκουρος Καθηγητής Μιχαήλ Γ. Λαγουδάκης (ΗΜΜΥ)

Επίκουρη Καθηγήτρια Αικατερίνη Μανιά (ΗΜΜΥ)

Δρ Νικόλαος Σπανουδάκης (Γενικό Τμήμα)

Χανιά, Μάρτιος 2012

http://www.tuc.gr
http://www.ece.tuc.gr

Acknowledgements

Firstly, I would like to thank my parents for loving me and supporting

me from day one. I would also like to thank my two lovely grandmoth-

ers and my two younger brothers for helping me in every possible way.

I would like to thank my supervisor Michail G. Lagoudakis for trust-

ing me, welcoming me to the RoboCup team Kouretes, giving me a

diploma thesis, and helping me to get one step farther. I would also

like to thank my co-supervisor Nikolaos Spanoudakis for his guidance

and his willingness to answer any question I had. Both of them were

encouraging me in every step of the way.

From the Kouretes ”family”, I would like to thank every single past,

present and future member that love and support the Kouretes team.

I would like to thank my teammates, with whom I spend eighteen

months of coding, competing and demonstrating our work. For the

memories and the knowledge that I gathered from every one of them I

would like to say ”Georgios, Alex, Andreas, Vangelis, Lefteris, Manos,

Iris, Dimitra, Maria, Nikos Kofinas, and Nikos Pavlakis thank you all

for giving me a lot of stories to tell”.

From the TUC ”family”, I would like to thank the friends that I made

the past years in Crete for every happy and sad moment that we spent

together. Thank you all for being part of my life!

At last I would like to express my gratitude to Kouretes members

Dimitra and Alex. Alex is the person that helped me the most through

the development of my thesis, since he had prior experience and a part

of his thesis has been used in my thesis, and this is something that I

will not forget. Dimitra is the first person that I met here in Crete

and was there for me from the very beginning to the very end, she is

the sister I never had.

Abstract

The development of high-level behavior for autonomous robots is a time-

consuming task even for experts. Computer-Aided Software Engineering (CASE)

tools improve productivity and quality in software development, however they

are not widely used for robot behavior development, even in domains, such as the

RoboCup (robotic soccer) competition, where robot behavior needs to be quite

frequently modified. This thesis presents a CASE tool, named Kouretes State-

chart Editor (KSE), which enables the developer to easily specify a desired robot

behavior as a statechart model utilizing a variety of base robot functionalities

(vision, localization, locomotion, motion skills, communication). A statechart is

a compact platform-independent formal model used widely in software engineer-

ing for designing software systems. KSE adopts the model-driven Agent Systems

Engineering Methodology (ASEME) and guides the developer through a series of

design steps within a graphical environment that leads to automatic source code

generation. More specifically, KSE supports (a) the automatic generation of the

initial abstract statechart model using compact liveness formulas, (b) the graph-

ical editing of the statechart model and the addition of the required transition

expressions, and (c) the automatic source code generation for compilation and ex-

ecution on the robot. KSE has been developed using the Eclipse Modeling Project

technologies and has been integrated with the Monas software architecture and

the Narukom communication framework, which provide the base functionalities.

KSE is used for developing the behavior of the Aldebaran Nao humanoid robots

of our team Kouretes competing in the RoboCup Standard Platform League. As

a result, the process of behavior development and modification has become much

quicker and less error-prone. The flexible design of KSE allows its use in other

behavior specification domains and its configuration for source code generation

compatible with other software architectures.

Angeliki Topalidou-Kyniazopoulou 5 March 2012

Περίληψη

Η ανάπτυξη συμπεριφοράς υψηλού επιπέδου για αυτόνομα ρομπότ είναι μια χρο-

νοβόρα διαδικασία, ακόμη και για έμπειρους μηχανικούς. Τα εργαλεία CASE (

Computer-Aided Software Engineering) βελτιώνουν την παραγωγικότητα και την

ποιότητα στην ανάπτυξη λογισμικού, ωστόσο δεν χρησιμοποιούνται ευρέως για την

ανάπτυξη ρομποτικής συμπεριφοράς, ακόμα και σε τομείς όπως ο διαγωνισμός ρο-

μποτικού ποδοσφαίρου RoboCup, όπου η συμπεριφορά των ρομπότ εξάνάγκης τρο-

ποποιείται αρκετά συχνά. Στην παρούσα εργασία παρουσιάζεται ένα εργαλείο CASE,

με την επωνυμία Kouretes Statechart Editor (KSE), το οποίο επιτρέπει στον προ-

γραμματιστή να καθορίσει εύκολα μια επιθυμητή ρομποτική συμπεριφορά με τη μορφή

ενός μοντέλου διαγράμματος καταστάσεων (statechart) χρησιμοποιώντας μια ποι-

κιλία βασικών ρομποτικών λειτουργιών (όραση, εντοπισμός, μετακίνηση, κινητικές

δεξιότητες, επικοινωνία). Το διάγραμμα καταστάσεων είναι ένα συμπαγές τυπικό

μοντέλο ανεξάρτητο από την πλατφόρμα που χρησιμοποιείται ευρέως στην τεχνο-

λογία λογισμικού για το σχεδιασμό συστημάτων λογισμικού. Το εργαλείο KSE

υιοθετεί τη μεθοδολογία Agent Systems Engineering Methodology (ASEME) που

βασίζεται στη χρήση μοντέλων και καθοδηγεί τον προγραμματιστή σε μια σειρά

βημάτων σχεδιασμού μέσα σε γραφικό περιβάλλον που καταλήγει στην αυτόματη πα-

ραγωγή κώδικα. Πιο συγκεκριμένα, το εργαλείο KSE υποστηρίζει (α) την αυτόματη

δημιουργία του αρχικού αφηρημένου διαγράμματος καταστάσεων χρησιμοποιώντας

συμπαγείς liveness φόρμουλες, (β) τη γραφική επεξεργασία του διαγράμματος κα-

ταστάσεων και την προσθήκη των απαιτούμενων εκφράσεων μετάβασης, και (γ) την

αυτόματη δημιουργία πηγαίου κώδικα για μεταγλώττιση και εκτέλεση στο ρομπότ.

Το εργαλείο KSE έχει αναπτυχθεί με χρήση των τεχνολογιών του Eclipse Modeling

Project και έχει ενοποιηθεί με την αρχιτεκτονική λογισμικού Monas και το πλαίσιο

επικοινωνίας Narukom, τα οποία παρέχουν τις βασικές λειτουργίες. Το εργαλείο

KSE χρησιμοποιείται για την ανάπτυξη της συμπεριφοράς των ανθρωποειδών ρομπότ

Aldebaran Nao της ομάδας Κουρήτες που αγωνίζεται στο πρωτάθλημα Standard

Platform League του RoboCup. Ως αποτέλεσμα, η διαδικασία της ανάπτυξης και

τροποποίησης συμπεριφοράς έχει γίνει πολύ πιο γρήγορη και λιγότερο επιρρεπής σε

σφάλματα. Ο ευέλικτος σχεδιασμός του εργαλείου KSE επιτρέπει τη χρήση του σε

άλλους τομείς καθορισμού συμπεριφοράς και τη διαμόρφωσή του για την παραγωγή

πηγαίου κώδικα συμβατού με άλλες αρχιτεκτονικές λογισμικού.

Angeliki Topalidou-Kyniazopoulou 7 March 2012

Contents

1 Introduction 14

1.1 Thesis Outline . 14

2 Background 16

2.1 RoboCup . 16

2.2 RoboCup Competitions . 17

2.3 RoboCupRescue . 17

2.4 RoboCup@Home . 18

2.5 RoboCupJunior . 19

2.6 RoboCupSoccer League . 19

2.6.1 Simulation League . 20

2.6.2 Small Size League . 21

2.6.3 Middle Size League . 21

2.6.4 Humanoid League . 22

2.6.5 Standard Platform League 23

2.7 Kouretes Team . 24

2.8 NAO Robot . 26

2.9 Monas architecture . 29

2.10 Narukom . 33

2.11 ASEME Methodology . 34

2.12 Eclipse Modeling Project . 42

2.13 Xpand and IAC-2-Monas . 42

3 Problem Statement 45

3.1 Soccer Team Formation . 45

3.2 Robot Behavior . 45

Angeliki Topalidou-Kyniazopoulou 8 March 2012

CONTENTS

3.3 Design Behavior . 46

3.4 Related work . 46

3.4.1 Yakindu . 46

3.4.2 Xabsl Editor . 49

3.4.3 An Interactive Editor For The Statechart’s Graphical Lan-

guage . 51

4 Our Approach 53

4.1 The Design of a Behavior . 53

4.2 Graphs . 53

4.3 The Representation of a Behavior 54

4.4 Methodology of designing robot behaviors 54

4.5 From Statechart Description to Robot Behavior 56

4.6 CASE tool Functionlities . 57

5 Implementation 58

5.1 The choice of platform and its benefits 58

5.2 The GMF models . 59

5.3 Validation Rules . 64

5.4 From graphical editor to CASE tool 67

5.4.1 Liveness Formula Editor 67

5.4.2 Liveness Formula to Statechart Transformation 68

5.4.3 Copy-Cut-Paste Functionality 69

5.4.4 StateChart to Text Transformation 71

5.4.5 Statechart’s Connection to Local Code Repository 76

5.4.6 Editing of BASIC States’ activities 76

5.4.7 The automated labeling of model’s elements for proper code

generation . 76

5.4.8 Configuring KSE . 77

5.4.9 Help section . 78

5.5 Exporting KSE from eclipse . 78

6 Results 80

6.1 Evaluation of the CASE tool - KSE 80

6.2 The evaluation’s questionnaire . 81

Angeliki Topalidou-Kyniazopoulou 9 March 2012

CONTENTS

7 Conclusions 87

7.1 Discussion . 87

7.2 Future Work . 88

References 91

A User Manual 92

A.1 Overview . 92

A.2 Requirements and Installation . 92

A.3 KSE architecture . 93

A.4 Configuration of KSE . 93

A.5 Design a statechart following the ASEME Methodology for Monas

architecture Step By Step . 94

A.6 Design a statechart from scratch - Graphically 97

A.7 How to ... 98

A.8 Transition’s Grammar . 100

A.9 Statechart’s Rules . 102

A.10 Examples . 102

A.10.1 Transition Expression Example 102

A.10.2 Liveness Formula Examples 104

Angeliki Topalidou-Kyniazopoulou 10 March 2012

List of Figures

2.1 Robocup 2011 logo. 17

2.2 RoboCupRescue environments simulate hostile environments that

exist in the real world. 18

2.3 Robocup@Home represents a social aspect of robotics interacting

with people. 19

2.4 Crowd watching simulation soccer games. 20

2.5 Middle size league game in Robocup 2010. 22

2.6 Standard Platform League game in Robocup 2008(Opponents

should be in different colors, but there was a lack of Nao robots in

that event due to malfunctions) 23

2.7 Kouretes team 2011 in Istanbul. From left to right sitting down are

Astero-Dimitra Tzanetatou, Iris Kyranou, Angeliki Topalidou- Kyni-

azopoulou. From left to right standing up Emmanouel Orfanoudakis,

Eleutherios Chatzilaris, Nikolaos Spanoudakis, Michael Lagoudakis and

Evangelos Vazaios . 25

2.8 Nao’s overview. 26

2.9 Nao’s field of View . 27

2.10 Embedded and Desktop software. 28

3.1 Design of an Heating Control embedded system. 47

3.2 Yakindu Environment . 47

3.3 Damos Block Diagram . 48

3.4 Simulation . 49

3.5 XABSLEditor . 50

3.6 Interactive Editor For The Statechart’s Graphical Language . . . 52

Angeliki Topalidou-Kyniazopoulou 11 March 2012

LIST OF FIGURES

4.1 Left image: FSM. Right image: statechart. 54

4.2 IAC model according to EMF . 55

5.1 The implementation procedure for GMF. 60

5.2 STCT model according to EMF 61

5.3 Goalie example in IAC representation 62

5.4 Goalie example in STCT representation 63

5.5 The Liveness Formula Editor . 68

5.6 The abstract statechart as generated by liveness to statechart trans-

formation . 70

5.7 The IAC-2-Monas code generator class diagram. 72

5.8 The generated Activity template class, header and .cpp, without

any variables, the same with version two. 72

5.9 The generated model class for Goalie example. 73

5.10 The generated Activity template class, header and .cpp, with two

variables. 74

5.11 The IAC-2-Monas code generator final edition class diagram. . . . 75

5.12 The generated Condition and Action classes 75

5.13 This action opens a C++ editor for the selected BASIC state’s

(SpecialAction) activity. 77

5.14 The KSE configuration dialog for Linux(up) and Windows(down). 78

6.1 The statechart of the provided SPL Goalie behavior. 82

6.2 The statechart of the provided SPL Goalie behavior with the new

representation. 82

A.1 Software Architecture . 94

A.2 The generated classes. 103

A.3 The generated classes. 104

A.4 The generated model for a liveness formula. 105

Angeliki Topalidou-Kyniazopoulou 12 March 2012

List of Tables

2.1 Operators for Liveness Formula(Table 1 from ”THE AGENT SYS-

TEMS ENGINEERING METHODOLOGY (ASEME)”) 38

2.2 The liveness formula grammar in EBNF format 40

7.1 Feature comparison of XabslEditor, Yakindu, and KSE. 88

A.1 Operators for Liveness Formula(Table 1 from ”THE AGENT SYS-

TEMS ENGINEERING METHODOLOGY (ASEME)”) 95

Angeliki Topalidou-Kyniazopoulou 13 March 2012

Chapter 1

Introduction

1.1 Thesis Outline

The main contribution of this thesis is the presentation of a CASE tool, its imple-

mentation process, and the benefits of the Agent-Oriented System Engineering

(AOSE) methodology for Robot-Team Behavior-Control Development.

In chapter 2 we discuss the technologies and methodologies that we used for

this thesis. We make an acquaintance with the roboCup Soccer Team Kouretes.

We introduce the robot platform that the Kouretes team uses, i.e. the NAO robot.

Furthermore, we discuss the Kouretes team software architecture, Monas and the

communication interface, Narukom. Agent Systems Engineering Methodology

(ASEME) and Agent Modeling Language (AMOLA) models are introduced for

agent behavior specification. At the last section of this chapter we present the

Eclipse Modeling Project which has been used for this thesis implementation.

In chapter 3 we discuss the values and the needs of a soccer team, what a robot

behavior is and how can anyone design a robot behavior. Which technologies are

available for behavior development what are their advantages and disadvantages.

We present the existing behavior desing tools and their characteristics.

In chapter 4 we present our proposal for a CASE tool for robot-team behavior-

control development. In addition, we present the available means and the require-

ments for achieving the implementation of our proposal. We discuss about the

functionalities that a CASE tool should provide and which design methodology

we use for developing an agent behavior.

Angeliki Topalidou-Kyniazopoulou 14 March 2012

1.1 Thesis Outline

In chapter 5 we introduce the implementation of our approach, the used tech-

nologies and the problems that we faced during this procedure. We present the

eclipse platform, which was used for the implementation and its modeling compo-

nents, which are very useful for designing a costumized graphical editor for UML

models or any kind of models designed with Eclipse Modeling Framework (EMF).

We present the actions, commands, functions that we added to the eclipse graph-

ical editor in order to implement a CASE tool how can anyone export an eclipse

product for multiple platforms by using one package and one configuration file.

In chapter 6 we present the evaluation that we did for our CASE tool KSE

(Kouretes Statechart Editor). The first informal evaluation was made by Kouretes

team members during the beta-testing period. In order to have official and ob-

jective evaluation results, ECE undergraduate students taking the Autonomous

Agent course at the Technical University of Crete were asked to use KSE and eval-

uate it in one of their laboratory sessions. We present graphs with the responders

answers, discuss their suggestions and present the ones that were implemented

after this evaluation.

In chapter 7 we compare our CASE tool with other available CASE tools that

are used for behavior control in RoboCup competition and at the market.

At the appendix A we present the KSE user manual.

Angeliki Topalidou-Kyniazopoulou 15 March 2012

Chapter 2

Background

2.1 RoboCup

There are few events that match the complexity of RoboCup. It is a venue for

artificial intelligence, intelligent robotics research and a display of the achieved

advancements. The RoboCup Competition, in its short history, has grown to

a well-established annual event bringing together the best robotics researchers

from all over the world, in Robocup 2011 which was held in Istanbul, Turkey,

the participant teams were from 40 different countries. The initial conception

by Hiroaki Kitano [1] in 1993 led to the formation of the RoboCup Federation

with a bold vision: ”By the year 2050, to develop a team of fully autonomous

humanoid robots that can win against the human world soccer champions”. The

uniqueness of RoboCup stems from the real-world challenge it poses, whereby

the core problems of robotics (perception, cognition, action, coordination) must

be addressed simultaneously under real-time constraints. The proposed solutions

are tested on a common benchmark environment through soccer games, rescue

quests and human-machine interaction at home in various leagues, with the goal

of promoting the best approaches, and ultimately advancing the state-of-the-art

in the area. The robocup Competition has leagues for soccer, rescue, @home,

and logistics. There are also competitions for junior students. Seeing the ad-

vancements in the leagues each year as 2050 becomes a closer date, our hope in

meeting the challenge increases more.

Angeliki Topalidou-Kyniazopoulou 16 March 2012

2.2 RoboCup Competitions

Figure 2.1: Robocup 2011 logo.

2.2 RoboCup Competitions

RoboCup consists of four major competitions RoboCupSoccer, RoboCupRes-

cue, RoboCup@Home and RoboCupJunior. Every competition of the above,

except RoboCup@Home, has more than one leages that present contests that

take place in a real field or a simulated one. A lot of progress has been made so

far in many disciplines of robotics and RoboCup has been established in one of

the most important events around the world.

2.3 RoboCupRescue

RoboCupRescue is a competition in which real or simulated robots perform a

quest for objects in a hostile environment(Figure 2.2). RoboCupRescue initiated

from the need of people to create robots capable of operating in those environ-

ments instead of humans. This area is very motivating in terms of helping the

humanity while promoting robotics. RoboCupRescue is to promote research and

development in this socially significant domain at various levels involving multi-

agent team work coordination, physical robotic agents for search and rescue,

information infrastructures, personal digital assistants, a standard simulator and

decision support systems, evaluation benchmarks for rescue strategies and robotic

systems that are all integrated into a comprehensive systems in future.

Angeliki Topalidou-Kyniazopoulou 17 March 2012

2.4 RoboCup@Home

Figure 2.2: RoboCupRescue environments simulate hostile environments that

exist in the real world.

2.4 RoboCup@Home

The RoboCup@Home competition focuses on real-world applications and human-

machine interaction with autonomous robots. The aim is to develop service and

assistive robot technology with high relevance for future personal domestic appli-

cations. It is the largest international annual competition for autonomous service

robots and is part of the RoboCup initiative. A set of benchmark tests is used

to evaluate the robots’ abilities and performance in a realistic non-standardized

home environment setting (Figure 2.3).

The research domains of this competition include Human-Robot-Interaction

and Cooperation, Navigation and Mapping in dynamic environments, Computer

Vision and Object Recognition under natural light conditions, Object Manipula-

tion, Adaptive Behaviors, Behavior Integration, Ambient Intelligence, Standard-

ization and System Integration.

Angeliki Topalidou-Kyniazopoulou 18 March 2012

2.5 RoboCupJunior

Figure 2.3: Robocup@Home represents a social aspect of robotics interacting

with people.

2.5 RoboCupJunior

RoboCupJunior is a project-oriented educational initiative for students up to

the age of 19. It is a new and exciting way to understand science and tech-

nology through hands-on experiences with electronics, hardware and software.

RoboCupJunior also offers opportunities to learn about teamwork while sharing

ideas with friends. This competition has leagues such as Dance League, Rescue

League, Soccer League and CoSpace League, so the young students can choose

among a variety of contests to participate in. The development of study materials

and innovative teaching methods are among RoboCupJunior’s aims. It is very

important to understand that this competition has nothing to be jealous of the

other leagues, but in fact share the same vision and the required dedication to

excel.

2.6 RoboCupSoccer League

The RoboCupSoccer League, is the domain with the most fans and consists

of simulated and real-field matches. In this league researchers combine their

technical knowledge in order to prepare the best robotic soccer team among other

Angeliki Topalidou-Kyniazopoulou 19 March 2012

2.6 RoboCupSoccer League

universities and research institutions. We will focus more in this league, as this

thesis is related to a robot soccer team software.

2.6.1 Simulation League

Simulation league consists of 2 different leagues, 2D simulation league and 3D

simulation league. In these leagues teams don’t need to maintain hardware, be-

cause their players are autonomous software programs(agents). Every match runs

on a server and the crowd can watch the matches on a big screen(Figure 2.4).

The 3D simulation competition increases the realism of the simulated environ-

ment used in other simulation leagues by adding an extra dimension and more

complex physics. This shifted the aim of the 3D simulation competition from the

design of strategic behaviors of in playing soccer towards the low level control of

humanoid robots and the creation of basic behaviors like walking, kicking, turning

and standing up, among others. The interest in the 3D simulation competition

is growing fast and research is slowly getting back to the design and implemen-

tation of multi agent higher level behaviors based on solid low level behavior

architectures for realistic humanoid robot teams.

Figure 2.4: Crowd watching simulation soccer games.

Angeliki Topalidou-Kyniazopoulou 20 March 2012

2.6 RoboCupSoccer League

2.6.2 Small Size League

A Small Size robot soccer game takes place between two teams of five robots

each. Each robot must conform to the special specifications relating to the size

according to their vision type, on board or global. Global vision robots, by far the

most common variety, use an overhead camera and off-field PC to identify and

track the robots as they move around the field. The overhead camera is attached

to a camera bar located 4m above the playing surface. Local vision robots have

their sensing on the robot itself. The vision information is either processed on-

board the robot or is transmitted back to the off-field PC for processing. An off-

field PC is used to communicate referee commands and, in the case of overhead

vision, position information to the robots. Typically the off-field PC also performs

most, if not all, of the processing required for coordination and control of the

robots. Communication is wireless and typically uses dedicated commercial FM

transmitter/receiver units.

2.6.3 Middle Size League

In the Middle size league according to 2011 rules, two teams of up to 6 robots

play soccer on an 18m × 12m indoor field. Each robot is equipped with sensors

and an on-board computer to analyse the current game situation and successfully

play soccer. Communication among robots (if any) is supported on wireless

communications. These robots are the best players far among other leagues.

The robots’ bodies are heavy enough having powerful motors, heavy batteries,

omni-directional camera, and a full laptop computer running in every robot;

characteristics that make this league a great domain for research. In recent years

research made good progress. Until 2010, the robots were only able to distinguish

their own goal from the opponent goal by the goal color (the goals were colored

yellow and blue respectively). From 2011’s tournament all teams were able to

play with net goals only. The ball is the only item that is still color-marked. The

official FIFA winter ball is used - it is red. Middle Size is more competitive and

demanding, having the largest field dimensions among other leagues (Figure 2.5).

Angeliki Topalidou-Kyniazopoulou 21 March 2012

2.6 RoboCupSoccer League

Figure 2.5: Middle size league game in Robocup 2010.

2.6.4 Humanoid League

In the Humanoid League, autonomous robots with a human-like body plan

and human-like senses play soccer against each other. Unlike humanoid robots

outside the Humanoid League the task of perception and world modelling is not

simplified by using non-human like range sensors. In addition to soccer compe-

titions technical challenges take place. Dynamic walking, running, and kicking

the ball while maintaining balance, visual perception of the ball, other players,

and the field, self-localization, and team play are among the many research issues

investigated in the Humanoid League. Several of the best autonomous humanoid

robots in the world compete in this league. The robots are divided into three

size classes: KidSize (30− 60cm height), TeenSize (100− 120cm) and AdultSize

(130cm and taller). In the KidSize soccer competition teams of three, highly

dynamic autonomous robots compete with each other. For the first time, the

TeenSize soccer competition will have teams of two autonomous robots compet-

ing with each other. In AdultSize soccer, a striker robot plays against a goal

keeper robot first and then they play with exchanged roles against each other.

The Humanoid League is one of the most dynamically progressing leagues and

the one closest to the 2050’s goal.

Angeliki Topalidou-Kyniazopoulou 22 March 2012

2.6 RoboCupSoccer League

2.6.5 Standard Platform League

In Standard Platform League all teams use identical robots and is the most

popular. Therefore, the teams concentrate on software development only, while

still using state-of-the-art robots. The robots operate fully autonomously, i.e.

there is no external control, neither by humans nor by computers. In 2008 the

league goes through a transition from the four-legged Sony AIBO to the humanoid

Aldebaran Nao (Figure 2.6). Every team has four players and the games take

place in a 4m × 6m field marked with thick white lines on a green carpet. The

two colored goals (sky-blue and yellow until 2011) also serve as landmarks for

localizing the robots in the field. Each game consists of two 10-minute halves

and teams switch colors and sides at half-time. There are several rules enforced

by human referees during the game. For example, a player is punished with a

30-seconds removal from the field if he performs an illegal action, such as pushing

an opponent for more than three seconds, grabbing the ball between his legs for

more than three seconds, or entering his own goal area as a defender. The main

Figure 2.6: Standard Platform League game in Robocup 2008(Opponents should

be in different colors, but there was a lack of Nao robots in that event due to

malfunctions)

characteristic of the Standard Platform League is that no hardware changes are

Angeliki Topalidou-Kyniazopoulou 23 March 2012

2.7 Kouretes Team

allowed; all teams use the exact same robotic platform, which is developed by an

external robotics company and differ only in terms of their software. Given that

the underlying robotic hardware is common for all competing teams, research

effort has been focused on maximizing the efficiency of the hardware, the devel-

opment of more efficient algorithms and techniques for visual perception, active

localization, omni-directional motion, skill learning, and coordination strategies.

During the course of the years, one could easily notice a clear progress in all

research directions.

2.7 Kouretes Team

Kouretes Team,is a robotic team that participates in SPL(Standard Platform

League) based at the Intelligent Systems Laboratory at the Department of Elec-

tronic and Computer Engineering. Until this date is the first Greek team partic-

ipating in Robocup Soccer competition and especially in the Standard Platform

League and the MSRS Simulation League.Kouretes Team was founded in 2006

by Michail G. Lagoudakis, assistant professor at Department of Electronic and

Computer Engineering. The team’s name, Kouretes, comes from the Ancient

Greek Mythology and refers to Kouretes brothers Epimedes, Paionaios, Iasios,

Idas and Hercules.

Since 2008 and the transition in RoboCup SPL from the AIBO robot to the

NAO robot Kouretes Team develop their own open source code and their own

customized to their needs system tools. The team aims to develop independent

platform code for robots, but is still in early stages. The software architecture that

the teams uses separates the platform characteristics from the modules that pro-

cess the information taken from the environment and configures those modules for

the specific platform. The main modules that Kouretes’ code is highly and occa-

sionally absolutely bound to the robot’s middle-ware is the localization(Kouretes

use the robot model given from Aldebaran-robotics) and the motion(Aldebaran

walk) of the robot. Kouretes Team doesn’t use source code from other teams,

but uses the gained knowledge from their research in order to develop efficient

Angeliki Topalidou-Kyniazopoulou 24 March 2012

2.7 Kouretes Team

algorithms and techniques for information processing.

Kouretes have participated in many competitions, exhibitions, and affairs,

but the highlights of the steep orbit the team followed were the second place in

Robocup 2007, Atlanta, USA in the MSRS Simulation League, the first and third

place in Robocup 2008, Suzhou, China in the MSRS Simulation League, and the

Standard Platform League accordingly and the second place in Standard Platform

League’s Open Challenge Competition in Robocup 2011, Istanbul, Turkey.

Figure 2.7: Kouretes team 2011 in Istanbul. From left to right sitting down are

Astero-Dimitra Tzanetatou, Iris Kyranou, Angeliki Topalidou- Kyniazopoulou. From

left to right standing up Emmanouel Orfanoudakis, Eleutherios Chatzilaris, Nikolaos

Spanoudakis, Michael Lagoudakis and Evangelos Vazaios .

More information and news of the team but also its members can be found at

http://www.kouretes.gr.

Angeliki Topalidou-Kyniazopoulou 25 March 2012

http://www.kouretes.gr

2.8 NAO Robot

Figure 2.8: Nao’s overview.

2.8 NAO Robot

NAO (Figure 2.8), in its final version, is 58 cm tall humanoid robot and weights

5.2 Kg. In 2012 Nao will be commercially released. According to Aldebaran-

robotics over one thousand NAO robots have been sold since 2008 and until 2011

to universities and research institutions. The initial limited edition of the robot

(RoboCup edition v2) made its debut at RoboCup 2008. The Nao robot v4

that will be out to the market in 2012 carries a full computer on board with an

ATOM Z530 processor at 1.6 GHz, 1 GB RAM, and 2 GB flash memory running

an Embedded Linux distribution. It is powered by a Lithium-Ion battery which

provides about 60 minutes on active use or 90 minutes on normal use. NAO

robot communicates with remote computers via an IEEE 802.11g wireless or a

wired ethernet link. The NAO robot features a variety of sensors and actuators,

in order to understand the environment and act in it.

NAO has two cameras(Figure 2.9) on its head of type SOC Image sensor which

produce 30 images of 960p per sec. These two cameras can not function simul-

taneously, the robot can use only one camera at the time, so the choice of which

camera is on, is due to whether the object to observe is near or far away from the

robot. The perception of the environment concludes with the output of the two

Angeliki Topalidou-Kyniazopoulou 26 March 2012

2.8 NAO Robot

Figure 2.9: Nao’s field of View

ultrasonic sensors(also referred as sonars) that represent the obstacles that stand

25cm to 255cm away from the robot.In case an object is in front of the robot in

distance less than 15cm there is no information about the position of the object,

but only for its existence.

A rich inertial unit (two 1-axis gyrometer and a 3-axis accelerometer) in the

robot’s torso provides real-time information about its instantaneous body move-

ments. An array of force sensitive resistors on each foot delivers feedback on the

forces aplied to the feet, while encoders on all servos record the actual joint posi-

tion at each time and two bumpers on the feet provide information on collisions of

the feet with obstacles. Finally, a pair of microphones allows for stereo audio per-

ception. The Nao robot has a total of 21 degrees of freedom; 4 in each arm, 5 in

each leg, 2 in the head, and 1 in the pelvis (there are 2 pelvis joints which are cou-

pled together on one servo and cannot move independently). Stereo loudspeakers

and a series of LEDs complement its motion capabilities with auditory and visual

actions. Connecting to a robot is a major concept, thus Aldebaran provide us

two means of connection. The NAO robot, can be connected directly or sharing

the same network, through a wired ethernet link. Additionally, an IEEE 802.11g

wireless card is available, which is the frequent way of connection, due to the lack

of forces applied to the robot through the network cable. Through the wireless

Angeliki Topalidou-Kyniazopoulou 27 March 2012

2.8 NAO Robot

Figure 2.10: Embedded and Desktop software.

connection robots exchange data and during the soccer matches robots receive the

referee’s decisions. The NAO programming environment (Figure 2.10) is based

on the proprietary NaoQi framework which serves as a middle-ware between the

robot and high-level languages, such as C, C++, and Python. NaoQi offers a dis-

tributed programming and debugging environment which can run embedded on

the robot or remotely on a computer offering an abstraction for event-based, par-

allel and sequential execution. Its architecture is based on modules and brokers

which can be executed on board on the robot or remotely on pc’s and allows the

seamless integration of various heterogeneous components, including proprietary

and custom-made functionality.

In overall, Aldebaran Robotics designed and assembled a low-cost robot, which

can be a great platform used not only for scientific purposes, but entertainment as

well, easily programmable, focusing on the wide audience of robotics’ researchers

and fans. The development of humanoid robots is a tough procedure that only

few universities and companies have undergone, and even fewer were located in

Europe.

To be fair, we have to admit that the first version of Nao was not functional to

the level that Robocup teams would be satisfied. Nevertheless, most teams were

Angeliki Topalidou-Kyniazopoulou 28 March 2012

2.9 Monas architecture

able to present some basic soccer behaviors, confirming that even under these

limitations and the minimum available time for development, people involved in

Robocup gave their best shot.

2.9 Monas architecture

Monas architecture [2] is the software architecture developed by team Kouretes

for the NAO robot and for the robocup competition. While designing this ar-

chitecture the engineer considers the robot as a collection of agents. Software

modules are running concurrently, having their own goals. They can use any

information available not only on the robot itself, but also information available

on the robot’s broader environment, for example other connected robots and

computers. Thus, the Monas framework aims to manage the robot’s software

modules, allocate the resources appropriately, and provide a principled process

for developing new modules. Additionally, Monas provides the necessary ab-

straction and platform independence, in both robots and computers, to allow

for source code reusability among software tools that ease the development of

agent’s components. The above, offers a justification for the architecture’s name:

Monas. According to the ancient Greek philosophers, the Pythagoreans, Monas

represents the first being, the indivisible, but also the totality of all beings. Its

symbol, a circle with a point at its center, has also been used in astronomy to

symbolize the sun, as well as by alchemists to represent gold. Hence, Monas, or

Μονάς in Greek, being a software architecture for robotic agents represents the

totality of the robot.

A major challenge for any software architecture is to provide a sufficient level

of abstraction for organizing the source code. To this end Monas decomposes

each module into activities. An activity refers to a simple discrete task that the

agent has the ability to perform. The activity is supposed to be as simple as

possible, but this is not enforced. Monas provided the developer with the nec-

essary structure for organizing the code without compromising his/her freedom.

To deal with larger activities, Monas provides further decomposition of activi-

ties into functionalities. Functionalities are implementations of what an activity

Angeliki Topalidou-Kyniazopoulou 29 March 2012

2.9 Monas architecture

does and each activity must be associated with at least one functionality. Func-

tionalities are source elements that implement very specific features found in the

bottom of the hierarchy. Although the latter decomposition step is not optional

in the design, it can be omitted in practice when there is no gain in decom-

posing the corresponding activity, for example when the implementation of the

activity-functionality pair counts only a few lines of code. Agent decomposition

also improves the code reusability as functionalities and activities can be freely

used without modification in as many activities and agents respectively as the

user likes. The developer can also trace the execution of the activities and thus

the modification and data creation throughout the agent cycle yielding better

debugging performance. Another advantage of the activity model is that agents

can be modified at runtime by adding and/or removing modules without having

to stop the execution of the architecture or even of the agent.

Monas architecture is designed to be a mobile architecture framework that

supports a variety of robotic platforms. The only platform requirements posed

by the architecture are the availability of a cpp (cross-) compiler for the on-board

computer and the appropriate configuration to accomplish the building. In order

to separate the user’s source code from the underlaying platform, Monas intro-

duces an abstraction layer that consists form a set of interfaces. The set is divided

into two major sections: one that manages the robots sensors and actuators, and

one for managing platform specific and operating system issues. That approach is

appropriate because it separates the robot from its operating system and enables

the architecture to run on a personal computer while is configured for a specific

robotic platform.

To control the agent creation a primitive agent management system was im-

plemented. Agents are defined in an XML file and instantiate at runtime. Each

agent runs at its own thread with its activities executed sequentially. The pro-

posed approach has the advantage that is very easy to understand and use effi-

ciently. Managing agents from an XML file that is required at the start of the

architecture, gives the developer the freedom to change the components of the

agent and create new agents without the necessity to recompile the source code.

Angeliki Topalidou-Kyniazopoulou 30 March 2012

2.9 Monas architecture

Monas also supports to start and terminate agents on the fly, by sending the

appropriate network message. Agent modification is also supported over the net-

work but the interface is not implemented yet.

Another feature of Monas architecture is the use of statecharts. Following the

Agent System Engineering MEthodology, as described in section 2.11, it is very

easy to design and develop an agent or a multi-agent system. At this point state-

charts are used by team Kouretes as an agent that controls the robot’s behavior.

Statecharts’ major difference from finite state machines and its derivatives is that

they natively support concurrency. The advantage of statecharts is that it allows

more than one state to be active simultaneously, in contrast to finite machines

that allow only one state to be active at the time. To support that in the engine

itself, without introducing loss of the system responsiveness, we split the execu-

tion of the engine into two parts. The first part is responsible for stepping the

engine and is executed in its own thread, whereas the second one is responsi-

ble for executing all the activities that are active at the time, implemented as a

thread pool. The implementation enables the developer to specify the maximum

number of activities that can be active simultaneously, managing the CPU load

and taking advantage of multi-cores CPU’s.

Monas’ statechart engine, can be used with the Narukom communication sys-

tem for inter-activity and inter- statechart communication, giving the ability to

every activity, action and transition to directly access a Narukom instance, which

is unique within the underlaying statechart, and to a blackboard instance. Thus,

activities can communicate, actions can interact with the environment and tran-

sitions evaluate their conditions using the publish-subscribe system. The black-

board instance is not one for every statechart instantiation but its is scoped. The

scope include all the states between the lowest level OR-state that is a common

ancestor of both the source and target states. As a result, activities that live

in a different region of an AND-state will not have the same data at a specific

time, this does also apply to the evaluation of transitions expressions in which the

same condition may evaluate to true in a region whereas in an other one to false.

The communication model solves the synchronization issues that arise, such as

Angeliki Topalidou-Kyniazopoulou 31 March 2012

2.9 Monas architecture

the consumer-producer problem which occurs when an activity is executed more

times than another activity which uses data provided by the first, as well as the

starvation problem when multiple threads try to lock the same mutex simulta-

neously, that would have been occurred if have used a shared-memory model for

the communication.

Monas statechart engine implementation has slightly different semantics from

the Harrel’s Rhapsody tool [3]. Beyond the OR-state, AND-state and BASIC-

state, it defines the START-state and END-state, as in UML. Theses states are

introduced to formalize the default transition inside an OR-state and to indicate

that the inner state has reach its end of execution respectively. These states

are useful because they ease not only the development of the engine but also the

visual representation of the statechart. Also transition expressions can, of course,

be included in their outgoing and incoming transitions making further control of

the entrance and exit of an OR-stage formalized. Every state can have an entry

and an exit action. Actions differ from activities as they do not consider to

consume any, significant, computational time. Both actions are optional and will

be executed in the activation and deactivation of the state. An activity must be

assigned to a BASIC-state. On the activation of the state, the activity is enqueued

to the thread pool and is then executed, according to the thread pool internal

algorithm, on a separate thread. The activity is not executed endlessly as long

as the state is active but it only runs once. As long as the activity is running,

a shared mutex is locked so the states which share the same blackboard can

not step to ensure the correct execution of the statechart. Transition segments

support transition expressions which are represented visually as e[c]/a with ’e’

denotes the event, ’c’ the condition and ’a’ the action. The transition expressions

controls the execution of the transition: if the event match and the condition

evaluate to true only then the action is executed. In the transition algorithm

the event is disambiguated by the cpp typeid which indicates the class type of

an object at runtime. Transition segments can orientate and/or reach the states

that are described above or special states called connectors, forming compound

transitions. A compound transition can be either executed as a whole, which

means that every transition segment that participate must be executed, or not

Angeliki Topalidou-Kyniazopoulou 32 March 2012

2.10 Narukom

executed at all. From the connectors introduced in Rhapsody only the condition

connector is implemented. Other connectors can be implemented with ease as

the engine is written to be expandable. Transition segments are template classes

with arguments the source and the destination type. The type, which can be

either a normal state or the condition connector, is used by the compiler to select

the appropriate transition algorithm at compile time.

2.10 Narukom

Narukom [4] is the communication framework that the Kouretes team has de-

veloped and has been using for inter- and intra- robot communication as well

as robot-to-computer communication. Narukom is a message-based architecture

and provides a simple, efficient and flexible way of exchanging messages between

robots, without imposing restrictions on the type of the data transferred over

the network. The framework is based on the publish/subscribe paradigm and

provides maximal decoupling not only between nodes, but also between threads

on the same node.

The Narukom framework uses Google Protocol Buffers for the creation of its

messages. Protocol Buffers are a way of encoding structured data in an efficient,

flexible and extensible format and is being used by Google for almost all of its

internal Remote Procedure Call protocols and file formats. Data serialization and

de-serialization which is needed for network transmissions, especially between dif-

ferent platforms, is carried out by Protocol Buffers. Each message differs, except

from data type and data, in topic and message type. In order to read a message

the receiver should know where the desired message is published, ie its topic and

subscribe to that specific topic. The receiver should also know what the type of

the message is, Signal, State or Data. The publisher of the message determines

the topic and the type of the message and different publishers can publish in the

same or in a different way the same message. The meta-data contains the sender

node name, the publisher name as well as integrated temporal information in or-

der to address synchronization needs. Moreover, Narukom provides a blackboard

to the publish/subscribe architecture. The blackboard is a software architecture

Angeliki Topalidou-Kyniazopoulou 33 March 2012

2.11 ASEME Methodology

model, in which multiple individuals share a common knowledge base. Individu-

als can read or update the contents of the blackboard and therefore cooperate to

solve a problem. It is common for blackboards to organize the containing knowl-

edge as efficiently as possible to enable quick retrieval of data. The blackboard

in Narukom is available only between individuals that run on the same thread of

execution and provides full access, read/write, on local information and read-only

access to information that arrives from third-parties.

2.11 ASEME Methodology

The Agent Systems Engineering MEthodology (ASEME) [5] is an Agent Ori-

ented Software Engineering (AOSE) methodology for developing multi-agent sys-

tems. It uses the Agent MOdeling LAnguage (AMOLA), which provides the

syntax and semantics for creating models of multi-agent systems covering the

analysis and design phases of a software development process. It supports a mod-

ular agent design approach and introduces the concepts of intra- and inter-agent

control. The former defines the agent’s behavior by co-ordinating the different

modules that implement his capabilities, while the latter defines the protocols

that govern the coordination of the society of the agents. ASEME applies a

model driven engineering approach to multi-agent systems development, so that

the models of a previous development phase can be transformed to models of the

next phase. Thus, different models are created for each development phase and

the transition from one phase to another is assisted by automatic model trans-

formation, including model to model (M2M), text to model (T2M), and model

to text (M2T) transformations leading from requirements to computer programs.

The ASEME Platform Independent Model (PIM), which is the output of the

design phase, is a statechart that can be instantiated in a number of platforms

using existing Computer Aided System Engineering (CASE) tools, like the one

that this thesis presents.

The Agent Modelling Language (AMOLA) [6] describes both an agent and

a multi-agent system. The concept of functionality is defined to represent the

thinking, thought and senses characteristics of an agent. Then, the concept of

Angeliki Topalidou-Kyniazopoulou 34 March 2012

2.11 ASEME Methodology

capability is defined as the ability to achieve specific goals (e.g. the goal to decide

in which restaurant to have a diner this evening) that requires the use of one or

more functionalities. Therefore, the agent is an entity with certain capabilities,

including inter and intra-agent communication. Each of the capabilities requires

certain functionalities and can be defined separately from the other capabilities.

The capabilities are the modules that are integrated using the intra-agent control

concept to define an agent. Each agent is considered a part of a community of

agents, i.e. a multi-agent system. Thus, the multi-agent system’s modules are

the agents and they are integrated into it using the inter-agent control concept.

The intra-agent control concept allows the assembly of an agent by coordinating

a set of modules, which are themselves implementations of capabilities that are

based on functionalities. Here, the concepts of capability and functionality are

distinct and complementary.

The agent developer can use the same modules, but different assembling

strategies, proposing a different ordering of the modules execution producing

in that way different profiles of an agent. This approach provides an agent with a

decision making capability that is based on an argumentation based decision mak-

ing functionality. Another implementation of the same capability could be based

on a different functionality, e.g. multi-criteria decision making based functional-

ity. Then, in order to represent system designs, AMOLA is based on statecharts,

a well-known and general language and does not make any assumptions on the

ontology, communication model, reasoning process or the mental attitudes (e.g.

belief-desire-intentions) of the agents giving this freedom to the designer. The

AMOLA models are related to the requirements analysis, analysis and design

phases of the software development process. AMOLA aims to model the agent

community by defining the protocols that govern agent interactions and each part

of the community, the agent, focusing in defining the agent capabilities and the

functionalities for achieving them. The details that instantiate the agent’s func-

tionalities are beyond the scope of AMOLA that has the assumption that they

can be achieved using classical software engineering techniques.

Angeliki Topalidou-Kyniazopoulou 35 March 2012

2.11 ASEME Methodology

The Agent System Engineering Methodology consists of three phases, the re-

quirement analysis phase, the analysis phase and the design phase. In each phase

one or more models are created in order to produce the final output, the stat-

echart that describes each part (agent) of the desired multi-agent system. In

the requirements analysis phase, AMOLA defines the System Actors and Goals

(SAG) and the Requirements Per Goal (RPG) models. In the analysis phase

AMOLA defines the System Use Cases model (SUC), the Agent Interaction Pro-

tocol (AIP) model, the System Roles Model (SRM) and the Functionality Table

(FT). In the design phase AMOLA defines the Inter-Agent Control (EAC) model

and the Intra-Agent Control (IAC) model. Although this thesis isn’t directly

connected to all of the ASEME phases, but to some of them it is useful to explain

shortly each developing phase.

The model for the requirements analysis phase according to AMOLA and

ASEME is the SAG model that is composed by the Actor diagram, containing

the actors and their goals. The SAG model is a graph involving actors who each

have individual goals. A goal of one actor may be dependent for its realization

to another actor; such a goal is also called dependum. The depender actor de-

pends on the dependee in order to achieve the dependum. Graphically, actors are

represented as circles and goals as rounded rectangles. Dependencies are naviga-

ble from the depender to the dependum and from the dependum to the dependee.

Note that for simplicity of presentation, if a goal has no dependees is just drawn

next to the depender. The goals are then related to functional and non-functional

requirements in plain text form. An entity can qualify as an actor if it represents

a real world entity (e.g. a ”broker”, the ”director of the department”, etc).

After creating the SAG model the developer can pass the next step of require-

ments analysis phase in which is necessary to describe the requirements of the

desired goal. The Requirements Per Goal (RPG) is a simple model aiming to as-

sociate SAG goals to requirements presented in plain text form. In order to form

the RPG model the engineer would have to answer to the following questions for

each SAG’s goal:

Angeliki Topalidou-Kyniazopoulou 36 March 2012

2.11 ASEME Methodology

• Why does the actor have this goal and why does he depend to another for

it (this is the most important question and its answer is usually the goal’s

name)

• What is the outcome of achieving the goal (identify related resources)

• How is he expected to achieve this goal (identify the task to be performed

for reaching this goal)

• When is this goal valid (identify timing requirements)

After completing successfully the first ASEME phase(Requirements analysis

phase) the engineering can now easily develop the models of the next phase, the

Analysis Phase. The main models associated with this phase are the System Use

Cases model (SUC), the Agent Interaction Protocol model (AIP), the System

Roles Model (SRM) and the Functionality Table (FT). The SUC is an extended

UML use case diagram and the SRM is mainly inspired by the Gaia methodol-

ogy [7]. Thus, a Gaia roles model method fragment can be used with minimal

transformation effort.

The use case diagram (SUC) helps to visualize the system including its inter-

action with external entities, be they humans or other systems. No new elements

are needed other than those proposed by UML. However, the semantics change.

In a use case diagram, the actor ”enters” the system and assumes a role and

agents are modelled as roles, either within the system box (for the agents that

are to be developed) or outside the system box (for existing agents in the envi-

ronment). Human actors are represented as roles outside the system box (like in

traditional UML use case diagrams). The human roles are distinguished by their

name that is written in italics. This approach aims to show the concept that we

are modelling artificial agents interacting with other artificial agents or human

agents. The different use cases must be directly related to at least one artificial

agent role. The general use cases, also referred as capabilities, can be decomposed

to simpler ones using the include use case relationship. A use case that connects

two or more (agent) roles implies the definition of a special capability type: the

participation of the agent in an interaction protocol. A use case that connects

Angeliki Topalidou-Kyniazopoulou 37 March 2012

2.11 ASEME Methodology

Operator Interpretation

x . y x followed by y

x | y x or y occurs

x? x occurs 0 or more times

x+ x occurs 1 or more times

x˜ x occurs infinitely

[x] x is optional

x || y x and y interleaved

Table 2.1: Operators for Liveness Formula(Table 1 from ”THE AGENT SYS-

TEMS ENGINEERING METHODOLOGY (ASEME)”)

a human and an artificial agent implies the need for defining a human-machine

interface (HMI), another agent capability. A use case can include a second one

showing that its successful completion requires that the second also takes place.

An AIP (the reader should take care not to confuse it with the AIP model

of AUML [8], for the remainder of this document AIP will refer to the AMOLA

model) defines one or more participating agent roles, the rules for engaging (why

would the roles participate in this protocol), the outcomes that they should ex-

pect in successful completion and the process that they would follow in the form

of a liveness formula. The liveness formula is a process model that describes

the dynamic behavior of the role inside the protocol. It connects all the role’s

activities using the Gaia operators (Table 2.1). The liveness formula defines the

dynamic aspect of the role, that is which activities execute sequentially, which

concurrently and which are repeating.

The System Roles Model (SRM) is mainly inspired by the Gaia roles model [7,

Angeliki Topalidou-Kyniazopoulou 38 March 2012

2.11 ASEME Methodology

9]. A role model is defined for each agent role. The role model contains the

following elements: a) the interaction protocols that this agent will be able to

participate in, b) the liveness model that describes the role’s behavior. The

liveness model has a formula at the first line (root formula) where activities or

capabilities can be added. A capability must be decomposed to activities in a

following formula. The liveness formula grammar has not been defined formally

in the literature, thus it is defined here using the Extended Backus-Naur Form

(EBNF) [10], which is a metasyntax or metametamodel notation used to express

context-free grammars. It is a formal way to describe computer programming lan-

guages and other formal languages. It is an extension of the basic Backus-Naur

Form (BNF) metasyntax notation. EBNF was originally developed by Niklaus

Wirth (1996). The EBNF syntax for the liveness formula (Table 2.2), using the

BNF style followed by Russell and Norvig [11], i.e. terminal symbols are written

in bold.

The Functionality Table (FT) the last step of the analysis phase is where the

analyst associates each activity participating in the liveness formulas of the SRM

to the technology or tool (functionality) that it will use.

After completing the functionality Table the engineer can pass to the de-

sign phase in which EAC and IAC models are created. The Inter-Agent Control

(EAC) is defined as a statechart. It should be initialized by transforming the

agent interaction protocols of the analysis phase to statecharts. Harel and Kugler

(2004) [3] present the statechart language adequately, but not formally. David’s

UML semantics [12] for statecharts has been used as basis for the definition of

the AMOLA statecharts as it is the first intended for object-oriented language

implementation. These models not only formally describe the elements of the

statechart, they also focus on the execution semantics. It is assumed that, as

long as the language of statecharts is not altered, a statechart can be executed

with any semantics available depending on the available CASE tool. The formal

model that is adopted here-in is a subset of the ones presented in the literature as

there are several features of the statecharts not used herein, such as the history

Angeliki Topalidou-Kyniazopoulou 39 March 2012

2.11 ASEME Methodology

liveness →formula

formula →leftHandSide ” = ” expression

leftHandSide →string

expression →term

→| parallelExpression

→| orExpression

→| sequantialExpression

parallelExpression →term ”||” term ”||” ... ”||” term

orExpression →term ”|” term ”|” ... ”|” term

sequentialExpression→term ”.” term ”.” ... ”.” term

term →basicTerm |”(” expression ”)”

→|”[” expression ”]”

→| term ” ? ”

→| term+

→| term ”˜”

→|”|” term ”˜|” number

basicTerm →string

number →digit | digit number

digit →”1”|”2”|”3”| ...

string →letter | letter string

letter →”a”|”b”|”c”| ...

Table 2.2: The liveness formula grammar in EBNF format

Angeliki Topalidou-Kyniazopoulou 40 March 2012

2.11 ASEME Methodology

states (which are also defined differently in these works).

Before formally defining the statechart for the EAC model, the elements that

compose the transition expressions are examined. Then, the transition expres-

sions are defined in EBNF. Transitions are usually triggered by events. Such

events can be:

1. a sent or received (or perceived, in general) inter-agent message

2. a change in one of the executing state’s variables (also referred to as an

intra-agent message)

3. a time-out

4. the ending of the executing state activity

The latter case is also true for a transition with no expression. Note that each

state automatically starts its activity on entrance. A message event is expressed

by P(x,y,c) where P is the performative, x is the sender role, y the receiver role

and c the message body. The items that the designer can use for defining the

state transition expressions are the message performatives, the ontology used for

defining the messages content and the timers. An agent can define timers as nor-

mal variables initializing them to a value representing the number of milliseconds

until they time-out (at which time their value is equal to zero). The transition

expressions can use the time-out unary predicate, which is evaluated to true if

the timer value is equal to zero, and false otherwise. Timers are initialized in the

action part of a transition expression, while the time-out predicate can be used

in both the event and condition parts of the transition expression depending on

the needs of the designer.

Besides inter-agent messages and timers there is another kind of events, the

intra-agent messages. The change of a value of a variable can have consequences

in the execution of a protocol. The variables taking part in a transition expres-

sion imply the fact that they are defined in the closest common ancestor OR

Angeliki Topalidou-Kyniazopoulou 41 March 2012

2.12 Eclipse Modeling Project

state of the source and target states of the transition or higher in the state-

chart nodes hierarchy. The intention regarding the performative definition is not

to enumerate all possible performatives, the modeler can define such as he sees fit.

In the agent level, the Intra-Agent Control (IAC) is defined using statecharts

in the same way with the Inter-Agent Control model (EAC). The difference is

that the top level state (root) corresponds to the modeled agent (which is named

after the agent type). One IAC is defined for each agent type.

2.12 Eclipse Modeling Project

The Eclipse Modeling Project (EMP) [13] provides several frameworks for

defining a Domain Specific Language (DSL) and develop software for this lan-

guage. EMP allows the developer to createtools supporting for Model-Driven

Software Development (MDSD), which is useful for the development of agents.

EMP consists of EMF (Eclipse Modeling Framework) [14], QVT (Query: Val-

idation: Transaction), M2M (Model-to-Model transformation), M2T (Model-

to-Text transformation), TMF (Textual Modeling Framework) and GMF (

Graphical Modeling Framework). EMF allows the developer to define a DSL

language in an abstract syntax. EMF has as an output a model that describes a

new language. QVT provides query, validation and transaction features for the

EMF models. M2M provides Operational Mapping Language that allows model-

to-model transformation for EMF models. M2T allows model-to-text by using

JET (Java Emitter Template) or Xpand as a template engine. TMF is still under

development and does not offer a lot of capabilities, but its purpose is to provide

a textual editors with syntax highlighting, code completion and build for EMF

models. In the other hand, GMF provides graphical editors for EMF models.

2.13 Xpand and IAC-2-Monas

Xpand language was proposed by Open Architecture Ware (oAW) and is used

for Model-to-Text (M2T) transformations. The language is offered as part of the

Eclipse Modeling Project (EMP). The language allows the developer to define a

Angeliki Topalidou-Kyniazopoulou 42 March 2012

2.13 Xpand and IAC-2-Monas

set of templates that transform objects that exist in an instance of a model into

text. Major advantages of Xpand are the fact that it is source model independent,

which is usually source code but it can be whatever text the user desires, and its

vocabulary is limited, allowing for a quick learning curve. The language requires

as input a model instance, the model and the transformation templates. Xpand

first validates the instance through the provided model and then, as the name

suggests, expands the objects found in the instance with the input templates.

It allows the user to define, except form the expansion templates, functions im-

plemented in Java language using the Xtext functionality. Xpand is a markup

language and uses the ”<<” and ”>>” to mark the start and the end of the

markup context. Enables code expansion using the model structure (i.e. expand-

ing all child elements of a specific type inside a node) and supports if-then-else

structure. Functions call be called inside markup. The advantages of Xpand are

the fact that it is source model independent, its vocabulary is limited allowing

for a quick learning curve while the integration with Xtend allows for handling

complex requirements. Then, EMP allows for defining workflows that can help a

modeler to achieve multiple parsings of the model with different goals.

IAC-2-Monas is a code generator, which extracts a statechart model in C++

language compatible with Monas architecture (see section 2.9) from a IAC model

(see section 2.11). IAC-2-Monas was developed by Alexandros Paraschos [2] for

Kouretes. IAC-2-Monas is developed in Xpand and java language and uses these

java packages:

• org.eclipse.emf.mwe.utils.Reader

• org.eclipse.xpand2

• java.util.HashSet

• java.util.List

• java.util.Set

• java.util.StringTokenizer

Angeliki Topalidou-Kyniazopoulou 43 March 2012

2.13 Xpand and IAC-2-Monas

• java.util.regex.Matcher

• java.util.regex.Pattern

• java.util.Comparator

• IAC

Angeliki Topalidou-Kyniazopoulou 44 March 2012

Chapter 3

Problem Statement

3.1 Soccer Team Formation

The main properties of a soccer team are the coach, the players and the for-

mations the team uses during the matches. Every player has a specific role in a

match and especially in every formation. It is very important for a soccer team to

have various formations available for each match, and its players role to be flexible

enough for every situation. All of the above are part of coach’s job. The coach is

responsible for the harmonic cooperation of all teammates and the district soccer

player roles.

3.2 Robot Behavior

Every robot is an autonomous agent. In order to design an agent (robot)

that reacts with the environment in a desired way, one would have to define the

robot’s behavior. The behavior of the robot is the module, or the part of the

robot’s software that collects the calculated information from the environment

and makes decisions. So, the decision making module of the robot is called

behavior. It is important for the developer to be able to define or change the

robot’s behavior in a simple and quick way and that’s what thesis presents to

you.

Angeliki Topalidou-Kyniazopoulou 45 March 2012

3.3 Design Behavior

3.3 Design Behavior

It is very important for software engineers, who compete in RoboCup Soccer

competitions to be able to adjust easily and fast the existing robot behaviors

to any occasion. It is also important to have the ability to design quickly a

robot behavior in an abstract way from scratch and develop modules that would

be reusable for other behaviors too. Kouretes team having previous experience,

since the team competes in Standard Platform League since 2006, has concluded

in the need of developing a handful tool for easy editing of an agent in the

form of statechart and given a semi-automated code generation. The team has

designed its software architecture, Monas, in a way that it would fit to the ASEME

methodology output. ASEME gives the programmer a structured methodology

of designing an agent or even a multi-agent system. That is the value of ASEME

that Kouretes team wanted to exploit in every mean. In order to do so it is

critical to design an application or a software tool that connects the ASEME

output to the Monas code. As described in section 2.11 ASEME’s output is a

statechart for the inter and intra-agent that lays in an abstract form. Hence,

Kouretes would have to find an easy way to implement the ”abstract” ASEME’s

output to compatible code for Monas.

3.4 Related work

Although there are a lot of CASE tools available, we will present three of them

that are quite similar to our approach and used technologies.

3.4.1 Yakindu

Yakindu (Figure 3.2) is an free toolkit for the model driven development of

embedded systems. Through the systematic use of models, it aims at an inte-

grated development process as well as an increase in quality and maintainability.

The Yakindu toolkit supports the development of both reactive, event-driven and

data flow-oriented systems with the help of statecharts and block diagrams. The

continuous support begins with graphical modelling tools, includes integrated

Angeliki Topalidou-Kyniazopoulou 46 March 2012

http://www.yakindu.org/yakindu/

3.4 Related work

validation and simulation, that allows for the early assessment of the models

and offers efficient code-generators for the generation of source code for a target

platform. Technologically, it is based on Eclipse-platform and integrates itself

seamlessly into Eclipse-based workbenches and extends this in the direction of

model-driven development. The Yakindu toolkit allows to design embedded sys-

tems by using both statecharts and block-diagrams (Figure 3.1).

Figure 3.1: Design of an Heating Control embedded system.

Figure 3.2: Yakindu Environment

Angeliki Topalidou-Kyniazopoulou 47 March 2012

3.4 Related work

The Yakindu Statechart Tools (SCT) allow graphical modeling based on

Harel-statecharts [15]. They support all essential concepts like extended state

variables, hierarchical states, orthogonal states (also known as And-States or

parallel regions) or History-States. This corresponds to the concepts that are

used in modelling languages such as UML. The convenient model-editor inte-

grates features such as model validation and simulation as well as the generation

of source code.

Furthermore, the ”Yakindu Toolkit” includes the data flow-oriented modelling

environment Damos (Figure 3.3), which enables the generation of block diagrams,

the simulation of models and the code generation for a target platform. Due to

the modular and open structure, aspects of the modelling environment can be

adapted to individual needs. This includes the development of one’s own blocks,

whereby here the tailored data flow-oriented systems scripting language Mscript

can be used to specify the behavior of the blocks.

Figure 3.3: Damos Block Diagram

Both SCT and Damos already during the modelling execute consistency checks

on the models. Examples are the tests for unavailable conditions in statecharts

and the verification for correct calculations with SI-units in Damos. During the

processing of the models, the developer receives with it a feedback or an acknowl-

edgment early on if such consistency conditions are violated.

Angeliki Topalidou-Kyniazopoulou 48 March 2012

3.4 Related work

Through the simulation(Figure 3.4, the actual run-time behavior of finite-state

machines and block diagrams are tested and validated early on in the develop-

ment process as to whether the models implement the requirements of the system

correctly. As a result, a class of errors found by the consistency checks described

above can remain undetected and can just be poorly traced through visual in-

spection. The simulation engines of SCT and Damos integrate themselves into

the Eclipse-Workbench and allow the direct execution of the models.

Figure 3.4: Simulation

The Damos and SCT-Code-Generators allow the automatic mapping of the

models to source code that can be integrated into the respective embedded

software. Both Damos as well as SCT support Out-Of-The-Box C as a target

language-SCT additionally also Java. These code generators can be directly ap-

plied and generate efficient implementations.

3.4.2 Xabsl Editor

The Extended Agent Behavior Specification Language (XABSL) [16] is a simple

language to describe behaviors for autonomous agents based on hierarchical finite

state machines. XABSL was developed by the RoboCup Soccer team German-

Team to design the behavior of soccer robots. The usage of the language is not

restricted to robotic soccer. XABSL is a good choice to describe behaviors for all

Angeliki Topalidou-Kyniazopoulou 49 March 2012

3.4 Related work

kinds of autonomous robots or virtual agents like characters in computer games.

Figure 3.5: XABSLEditor

For XABSL there is a corresponding editor, the XABSLEditor (Figure 3.5).

The XABSLEditor was developed by the Nao Team Humbolt in 2008 and allows

the user to describe agents and behaviors by using the XABSL language. This

editor is basically a text editor for XABSL, but also represents graphically the

hierarchical finite state machines that describe the agents behavior. It also pro-

vides a compiler for XABSL.

XABSLEditor:

• runs on all platforms (since it is written in Java)

• open source (all used components are open source to)

• has syntax highlighting

• provides live view of the state graph

Angeliki Topalidou-Kyniazopoulou 50 March 2012

https://launchpad.net/XABSLeditor

3.4 Related work

• has auto completiona ability:

– completion of symbols with parameters and enums

– live documentation (generated from comments)

• has live syntax check (errors are red underlined, without of recompiling of

the whole project)

• has multiple tabs, thus multiple open editors

• can jump to an option definition (a click on an used option opens the file

were the option is defined)

• has a build in compiler (ruby has not to be necessary installed)

• has a search feature (in files and in the whole project)

• allows unlimited undo/redo

3.4.3 An Interactive Editor For The Statechart’s Graph-

ical Language

The Statechart Editor, which was developed by Stephen Edwards for State-

chart’s graphical language, which uses a hierarchy of interacting finite-state ma-

chines. The editor is written using the incr Tcl add-on to the Tcl/Tk language.

The editor keeps transitions attached, and allows for multiple, consistent views

of the database. The objective of this project was to produce a graphical, inter-

active editor for the Statechart’s graphical language, which uses hierarchically-

arranged finite state machines.

A Statechart (Figure 3.6) contains two sorts of entities: states, which are boxes

with names, and transitions, which are curved arrows connecting two states.

The editor can:

• add and delete states and transitions

Angeliki Topalidou-Kyniazopoulou 51 March 2012

http://http://www.cs.columbia.edu/~sedwards/sc/index.html

3.4 Related work

Figure 3.6: Interactive Editor For The Statechart’s Graphical Language

• move states and transitions, either preserving hierarchy or modifying it

• When states move, transitions remain attached. Transitions’ shapes either

come from a single index of curvature, or can be specified arbitrarily by the

user.

• edit multiple views of the database, each starting from a different state in

the hierarchy, going down a different depth, and with different magnification

• edit attributes (fonts, colors, shape) of states and transitions in dialogs read

and write the database to disk

• print a view of the database to a PostScript file

This editor is written using McLennan’s incr Tcl package, which brings an

object-oriented data model to Tcl.

Angeliki Topalidou-Kyniazopoulou 52 March 2012

Chapter 4

Our Approach

4.1 The Design of a Behavior

Kouretes team needs a tool for soccer player behavior development. This tool

should allow the user to design quickly a new behavior or change easily an existing

behavior. A nice and user friendly way of describing a behavior is by describing

it graphically. The behavior of an (robot) agent usually consists of if/else if

loops, because it has to describe an action for every possible event. A good way

of describing such a behavior is an Finite State Machine, or any kind of state

machines. It is very common to design state graphs in order to describe system

behavior, data flow, class hierarchy or even an algorithm.

4.2 Graphs

For an algorithm represantation, one could use a flow chart. For a class hi-

erachy representation he could use a UML diagram. If someone would like to

describe the ”flow” of data through an information system, he could use a data

flow diagram. In case of system behavior, someone could use Finite State Ma-

chines(FSM) (Figure 4.1) hierarchical or not and statecharts. For our appoach

we chose statecharts(Figure 4.1). Statecharts offer the great values of FSMs and

multi-thread execution, since when AND nodes exist in a statechart the children

nodes OR are executed in parallel. In an FSM only one state can be active, that’

Angeliki Topalidou-Kyniazopoulou 53 March 2012

4.3 The Representation of a Behavior

Figure 4.1: Left image: FSM. Right image: statechart.

s not the case with statecharts because of the parallel execution.

4.3 The Representation of a Behavior

It is crucial to a behavior developer to have a graphical representation of the

designed behavior or even to be able to design and edit it graphically. Kouretes

team for years had been developing agent behavior as one class that makes the

decision for robot’s actions. That approach leads to a huge class full of if/else

if loops and overpopulated functions in one block, which is also difficult to

understand and debug. Kouretes team decided that a graphical representation of

an agent as a statechart would be more clear to a developer and also easier to

design and edit. So, Kouretes now design robot behaviors as statecharts, which

facilitate the graphical representation of complex behaviors.

4.4 Methodology of designing robot behaviors

On the one hand statecharts provide a useful representation of a complex be-

havior, on the other hand it is time consuming to describe graphically a complex

behavior state by state and transition by transition. In conclusion it is easy to

understand an existing statechart with a graphical representation, but it is ”diffi-

cult” to create one from scratch. In order to overcome the time consuming initial

representation Kouretes team decided to exploit the ASEME models. ASEME

Angeliki Topalidou-Kyniazopoulou 54 March 2012

4.4 Methodology of designing robot behaviors

provides an analysis phase and a design phase. The analysis phase helps the de-

veloper make clear the desired goals of the agent and the way of achieving them.

In addition, the liveness formula that lies at the analysis phase allows the user to

describe in quick and comprehensive way a complex behavior. The design phase

allows the developer to describe the model of behavior that came out from the

analysis phase. The developer can and should describe the model’s functionalities

int he analysis phase and the transitions’ expressions int the design phase. So,

we would need a tool, which provides the means for editing the models from the

analysis and design phase as well. The model from the analysis phase would be

described by liveness formulas has text form and the model, which would come

out as a result, is the IAC model (Figure 4.2) that has the form of a statechart.

As you can conclude ASEME can provide us the representation of the desired

behavior in a statechart at the end of the two phases.

Figure 4.2: IAC model according to EMF

IAC model consists of:

• Model has a name and contains nodes, transitions and variables and repre-

sents the statechart

• Node contains one or more variables and nodes and represents statechart’s

states and has:

Angeliki Topalidou-Kyniazopoulou 55 March 2012

4.5 From Statechart Description to Robot Behavior

– name

– label, which is unique and indicates the state’s execution sequence

– type, which indicates state’s type(values: OR, AND, START, END,

CONDITION and BASIC)

– activity, this attribute is null for every type of states except BASIC

states and contains the state’s source code or a reference to a source

file

• Transition has name and TE (Transition Expression), TE consists of tran-

sition’s event, condition and action. Transition has as source and target a

model’s node

• Variable has a name and a type and belongs to one or more nodes.

4.5 From Statechart Description to Robot Be-

havior

Statecharts in a model form or an image form is something that a machine

(robot) can not ”understand”. So, we would have to find a way to translate the

statecharts into source code. Monas architecture has a statechart engine that

executes statecharts on the robot. Statecharts as source code for Monas consist

of these classes:

• Statechart that represents the execution sequence of states and transitions

• States (or, and, start, end, condition, and basic)

• Activitiies of each basic state

• Transition and its parts:

– Event

– Condition

– Action

Angeliki Topalidou-Kyniazopoulou 56 March 2012

4.6 CASE tool Functionlities

For this purpose a code generator is necessary to use. The code generator

should translate the statechart’s model from IAC model to the Monas’ statechart

architecture. So, a IAC’s TE will we be generated as event, condition and/or

action classes, basic state’s activity we be generated as activity, model will be

generated as statechart and it will contain model’s states and transitions.

4.6 CASE tool Functionlities

Considering the above, Kouretes team needs a CASE tool that allows the devel-

oper to edit the liveness formulas, in text form, and the statechart, in a graphical

way. So, a text editor for liveness formulas and a graphical editor is necessary.

Besides the editors, a CASE tool should provide more functions in order to facili-

tate the developer’s work. An important charectistic of the ASEME’s IAC model

is that its node has a label that is unique and indicates the execution sequence.

If someone designs a statechart graphically without writing the liveness formulas

from the analysis phase, he would have to add each state’s label very carefully

in order to obtain label’s uniqueness and sequence indication. That’s is a func-

tionality that a tool should do automatically whenever the developer thinks it is

necessary.

Furthermore, a code generator should be part of a CASE tool, since the pur-

pose of a CASE tool is system development. In order to describe the functional-

ities of each statechart class we would have either to write code on the diagram

for each element or edit each element’s code in a seperate editor. For complex

behaviors it would be chaotic to represent each elements code on the diagram,

so it would be better to write only the descritpion of transitions and edit state’s

code in a seperate editor.

When desinging a statechart it is very important to know if the model obeys

to the defined syntax and/or semantics. Since the IAC model describes a state-

chart that follows the Harel’s statemate’s semantics and rules, there should be a

validation functionality that alerts the developer for any mistakes and misuses of

the rules.

Angeliki Topalidou-Kyniazopoulou 57 March 2012

Chapter 5

Implementation

Kouretes team needed a graphical user interface(GUI) for creating soccer player

behaviors following the ASEME methodology. Although a soccer player behavior

is an agent and ASEME is a methodology for developing agents, Kouretes do not

perform all the steps and do not design all the models of ASEME. In summary,

the procedure needed for the design of a soccer player behavior for Kouretes is:

• Creation of liveness formula (according to AMOLA)

• Liveness to statechart transformation (according to ASEME’s IAC model)

• Graphical representation and editing of the created statechart

• Statechart model to C++ code for Monas transformation

5.1 The choice of platform and its benefits

In order to design the CASE tool for the Kouretes team, it is necessary to

choose the platform of implementation. As the IAC model was implemented

as an EMF (Eclipse Modeling Framework) model and the liveness to statechart

transformation was implemented in java, it was dictated to develop the CASE

tool in java by using the GMF (Graphical Modeling Framework) provided by IBM

and eclipse. For every new class that we add to the generated GMF application we

have to declare it to the MANIFEST.MF file to the extension points and add the

required dependencies to the homonym MANIFEST’s section. For implementing

Angeliki Topalidou-Kyniazopoulou 58 March 2012

5.2 The GMF models

this thesis we had to install the Eclipse Modeling Tools release of eclipse and

some additional packages and components:

• Eclipse Modeling Framework

• Graphical Modeling Framework

• OCL tools

• Xpand SDK

• Xtext SDK

• delta pack

5.2 The GMF models

The GMF provides some models in order to initialize the graphical definition

of an EMF model. The models are simple and provide a large variety of shapes

and colors. In order to use correctly the GMF we used the GMF DashBoard

(Figure 5.1), which shows all the necessary models for implementation and their

dependencies. Since the developer has described the desired EMF model, he

can define its graphical definition via the Graphical Definition Model. Another

model that the developer should describe, is the Tooling Definition Model, which

is responsible for the EMF model’s creation tools definition. As long as the devel-

oper has defined the models mentioned above, he can link the desired graphical

representation to the respectively creation tool via the definition of the Mapping

Model. The developer can also define the rules that the model should obey via the

same model. After the completion of the steps mentioned above, the developer

can create and edit the Diagram Editor Generate Model in order to complete the

definition of the EMF model’s graphical editor and finally generate it.

During the process of development it became clear that the IAC model (Fig-

ure 4.2) needed to be changed in order to represent graphically the models as

desired, thankfully only one small change made the difference. IAC, as imple-

mented, did not give us the ability to design the children nodes inside the parent

Angeliki Topalidou-Kyniazopoulou 59 March 2012

5.2 The GMF models

Figure 5.1: The implementation procedure for GMF.

node, but it only allowed us to represent them in a tree form. The solution was

very easy to implement and didn’t affect the characteristics of the model, a new

relationship was entered which defined that a node can contain nodes as children.

The new EMF model has been named StateChart with file extension stct (Fig-

ure 5.2) and its graphical representation looks alike the STATEMATE semantics

of statecharts [17].

In order to make clear that the IAC model was not serving our purpose, we

created a simple GMF graphical editor and initialized Kouretes Goalie behav-

ior(Figure 5.3) and did the same for STCT representation (Figure 5.4) that has

been developed for this thesis.

As you can see the representation of IAC model makes it difficult to navigate

through the designed model in comparison to the representation of the STCT

model. Since we had a handy EMF model we had to describe the graphical

representation of each model element as the Graphical Definition Model of GMF.

Nodes of different type should have different representation :

• START node should be a small black circle

• CONDITION node should be a circled C

• OR node should be a yellow labeled rectangle that contains START, CON-

DITION, OR, BASIC, AND and END nodes

Angeliki Topalidou-Kyniazopoulou 60 March 2012

5.2 The GMF models

Figure 5.2: STCT model according to EMF

• AND node should be a light blue rectangle that contains two or more OR

nodes

• BASIC node should be a green rectangle

• END node should be a white circle with a small black circle in its center.

Although the model has a lot of relationships between its elements it was a

necessity to not represent all of them in order to keep the diagram simple and

clean. The relationships that are represented are :

• transitions between nodes as an arrowed connection starting from the source

node and pointing to the target node

• children nodes of an OR or an AND node inside of the parent node

In addition, variables are represented as a bright green rectangle outside the

nodes. For setting a variable as a node’s variable we should select the desired

Angeliki Topalidou-Kyniazopoulou 61 March 2012

5.2 The GMF models

Figure 5.3: Goalie example in IAC representation

node and select the variables relationship from the properties view.

According to GMF after creating the Graphical Definition Model it is neces-

sary to define the creation tools of its element in the Tooling Definition Model.

It is important to mention that we didn’t add creation tools for every element

and relationship of the EMF model. We could not have a creation tool for the

relationship ”variables”, because we didn’t defined its representation. We also

could not define a creation tool for the relationship ”children”, this relationship

is created as the user adds the new node in an another node.

Since the Graphical Definition Model and the Tooling Definition Model are de-

fined we then need to connect them through the definition of the Mapping Model.

At this phase the programmer can define the validation rules of the model, if

any, and its error or warning messages. Since we have different representations

Angeliki Topalidou-Kyniazopoulou 62 March 2012

5.2 The GMF models

Figure 5.4: Goalie example in STCT representation

and creation tools for the element node, according to the value of its ”type”, we

have to use the OCL and define the constrains and restrictions for each different

representation and creation tool. For the validation rules we chose java as the

language of implementation and we will analyze this phase of implementation at

the next section.

When all the above definitions are complete the programmer can define some

extra features for the graphical editor, such as print action, live or not validation,

the file’s extension etc in the Diagram Editor Gen Model, which is the model

that organize the code generation for the defined graphical editor. For our im-

Angeliki Topalidou-Kyniazopoulou 63 March 2012

5.3 Validation Rules

plementation we chose the extra features: live validation, validation decorators,

print action and the generation of the editor as an eclipse application. Now the

programmer can use the GMF generator for generating the basic functions of the

Statechart editor. The generated application is based on eclipse environment and

it is basically a customized eclipse. If the target group of users use the eclipse

modeling components it is more convenient for them to use the eclipse plug-in,

but if they do not use the eclipse modeling version or not even the eclipse plat-

form, the generated application is the best choice.

The generated application uses the GMF runtime package and provides imple-

mented actions, commands, view edit parts, view policies, view provider, valida-

tion provider, properties sheet etc. If someone wants to develop easily a graphical

editor for a model GMF provides various functionalities and makes a great case,

but it has some problems also. The GMF’s disadvantage is that the implemented

provider for cut-copy-paste actions is not functional and the programmer should

write its implementation by hand. Another disadvantage of GMF is that once

the programmer describes the graphical representation of an element that can’t

change. For example, if someone wants to select when an element’s attribute will

be visible and when not, that is not possible.

5.3 Validation Rules

In order to be able to create a statechart that obeys to the ASEME rules and

the transition’s grammar we had to define some validation rules. Firstly, we had

to be sure that the designed statechart follows the statechart rules, which are:

• StateChart Model can have only one root node of type OR.

• Every OR node should have exactly one START node as a child.

• Every OR node can’t have more than one END nodes as children.

• A START node can only be a source node for an transition.

• An END node can only be a target node for a transition.

Angeliki Topalidou-Kyniazopoulou 64 March 2012

5.3 Validation Rules

• An AND node can only have OR nodes as children.

In order to have code generation for the transitions, we had to define EBNF

grammar that enables the easy description of a more complicated class definition.

Since the EBNF grammar has been declared, we had to add a validation system.

The grammar that should be checked is:

TransitionExpression = [event][”[” condition”]”][/actions]

event = string

condition = expr

| expr (compOp | logicOp) condition

| ”(”condition”)”

| notOp condition

actions = TimeoutAction

| Actions

Actions = Actions connectiveOp action

action = ”process messages”

| ”publish all”

| ”publish” ”.” topic”.”commType”.”msgType”.”membersetfunction”(”val”)”

TimeoutAction = TimeoutAction”.”topic”.”time

expr = varVal | func ”(” args ”)”

func = < any valid cpp decleared function name >

| TimeoutCheck ”(” topic ”)”

args = varVal

| varVal ”,” args

varVal = message | variable | value

value = constant | stringLiteral | number+

compOp = ” < ”|” <= ”|” > ”|” >= ”|” == ”|”! = ”

logicOp = ”&&” | ”||”
notOp = ”!”

connectiveOp = ”;”

message = topic ”.” commType ”.” msgType

Angeliki Topalidou-Kyniazopoulou 65 March 2012

5.3 Validation Rules

variable = message ”.” member

commType = ”Signal”|”State”|”Data”

host = string

topic = string

msgType = string

member = string ”(” number? ”)” (”.”string ”(” number? ”)”)

membersetfunction = string (”(” number? ”)” ”.” string)?

time = number +

stringLiteral = ” string ”

string = letter (letter | number | ” ”)?

letter = ”a” | ”A” | ”b” | ” B” | ”c” | ”C” | ”d” | ”D” | ...

number = ”0” | ”1” | ”2” | ”3” ...

We also added validation for the variables, a variable’s name should start

with letter or ” ” and its type should be described as Narukom message, ie as the

messages described at the transition’s grammar.

For the above rule definitions we had to edit the generated code, since we

chose java as the language of implementation. The generated functions that we

had to edit were the ”validate” empty functions for every rule that were part of

the ValidationProvider class. For the correct description of a transition and a

variable we used regular expressions. For every part of the generated code that

we edited we had to put the flag:

/*

* generated NOT

*/

in order to keep that code unchanged from a possible next code generation, for

example if we wanted to change the representation of a model’s element or add

a new rule.

Angeliki Topalidou-Kyniazopoulou 66 March 2012

5.4 From graphical editor to CASE tool

5.4 From graphical editor to CASE tool

The GMF Framework enabled us to describe graphically our model and create

easily an application that allows us to edit it, but this is not enough for making

an application that helps a code developer to design a behavior for a robot soccer

player. Our purpose is to design and implement a useful CASE tool for model-

driven software development. This CASE tool has been named KSE (Kouretes

Statechart Editor). For our KSE implementation the statechart editor from GMF

can not be considered as a CASE tool. There are missing a lot of functions, such

as:

• liveness formula editor

• liveness formula to statechart transformation (Text-to-Model (T2M) trans-

formation)

• copy-cut-paste functionality for graphical views, this is not supported by

GMF

• statechart to Monas statechart transformation (Model-to-Text (M2T)),

also known as code generation

• statechart connection to Monas architecture and local repository

• editing of activities, BASIC states that are already implemented in C++

code in users’ local repository

• the automated labeling of model’s elements for proper code generation

5.4.1 Liveness Formula Editor

A special editor has been implemented for liveness formula (Figure 5.5). The

user can enter the model’s/formula’s name and the liveness formula itself. This

editor is implemented as a JFrame class from javax.swing package and has

a plain JTextArea from the same package for editing the formula’s name and

another one for editing formulas as well. The same editor appears when the user

chooses the action ”Open Formula” from the file menu.

Angeliki Topalidou-Kyniazopoulou 67 March 2012

5.4 From graphical editor to CASE tool

Figure 5.5: The Liveness Formula Editor

5.4.2 Liveness Formula to Statechart Transformation

The transformation of liveness formula to IAC has been implemented by Niko-

laos Spanoudakis as part of the ASEME project. The transformation creates an

”abstract” IAC model with ”empty” transition and ”empty” BASIC states. An

”empty” transition has TE = null and an ”empty” BASIC state has activity

= null. That means that every transition’s condition is true and every BASIC

state has no functionality, ie no decision is taken. Since we haven’t used the IAC

model for the graphical representation of the statechart, but we have used the

STCT instead, we had to define a transformation of the liveness formulas to an

STCT model. To do that we changed the existing liveness2IAC transformation

and defined the liveness2Statechart transformation. We changed the addition of

new nodes to the model, since for STCT you have to add the children nodes

Angeliki Topalidou-Kyniazopoulou 68 March 2012

5.4 From graphical editor to CASE tool

to the parent node and not to the model as IAC model requires. So, firstly we

add the root node to the model and then only add children nodes to the parent

nodes. One node can have one or no parent node, but more than one children.

The parsing of the liveness formula has not changed, but the search function for

already created nodes has changed, since the the model has only one node and

that node contains the rest of the nodes as its children or its children children and

so. The ”abstract” STCT model that is generated from this transformation has

the same characteristics as the IAC described above (Figure 5.6). The liveness

formulas for Goalie statechart(Figure 5.6) is shown below:

goalie = Init.(playing | nonPlaying)+

nonPlaying = NoPlay .[GoToPosition+]

playing = Scan+ | ApproachBall+ | Kick | followBall

followBall = Stare+.[SpecialAction]

5.4.3 Copy-Cut-Paste Functionality

Although GMF provides an easy implementation of graphical editors with a

variety of functionalities for EMF models, the functionality of copy-cut-paste is

not implemented successfully. So, we had to implement the above functionality

hard-coded and specified for our model editing. In our situation, the action copy-

paste is not as plain as copy-paste for simple text editors. It is very significant

for our model, each node to have a unique label that describes the node’s priority

for execution, because of that the copy-paste action is not exactly copy-paste as

the nodes’ labels get updated according to the new position in the statechart. As

consequence of the new nodes’ labels transitions’ names get updated accordingly.

For that purpose we had to import our implementation of the cut-copy-

paste action handler and provider and ignore the GMF implementations which

have ”bugs”. For our handler and provider implementations we used abstract

classes from org.eclipse.gmf.runtime package, specifically for our handler,

StateChartClipboardSupportGlobalActionHandler, we used the DiagramGlobal-

ActionHandler class, and for our action provider, StateChartActionProvider, we

Angeliki Topalidou-Kyniazopoulou 69 March 2012

5.4 From graphical editor to CASE tool

Figure 5.6: The abstract statechart as generated by liveness to statechart trans-

formation

used the AbstractProvider class and the IGlobalActionHandlerProvider interface.

Since the action handler and provider is ready for use, we had to implement the

commands for cut, copy, and paste. For the cut and copy commands the imple-

mentation is similar. The most important part of this implementation is that

when the user chooses an OR or AND node to copy or cut, their children nodes,

transitions, and variables should get copied to our clipboard too. For the paste

command implementation, firstly we had to check whether the elements to paste

have a valid paste target in the diagram. As long as the paste target is valid

and the elements to paste are valid too, we can add them to the diagram, but we

Angeliki Topalidou-Kyniazopoulou 70 March 2012

5.4 From graphical editor to CASE tool

have to obtain the STCT model’s characteristic for the labels, we have to obtain

the uniqueness of its label and its value should indicate the execution sequence.

As the reader can understand the copy-paste function for KSE is not actually

copy-paste as we know it, the label attribute of its node has to change accord-

ingly. After adding the new elements to the target, we have to refresh the edit

policies for every item. For each item we have to refresh its SemanticEditPolicy,

ConnectionEditPolicy, and CanonicalEditPolicy and we start from the root item,

the model and then refresh the rest of them.

5.4.4 StateChart to Text Transformation

The purpose of creating a STCT model is to describe a behavior for a robot

soccer player, which for Kouretes team needs should be implemented in C++ lan-

guage and accordingly to Monas architecture. The described application allows

the user to create a STCT model, but that is not enough for code development.

The STCT model should be transformed to C++ code for Monas architecture’s

statechart engine YASE [2]. A plain code generator had been implemented by

Alexandros Paraschos, the IAC-2-Monas. The first version of IAC-2-Monas (Fig-

ure 5.7) could just create template classes for activities (Figure 5.8) and transi-

tions and an implemented class for the model’s description (Figure 5.9). IAC-

2-Monas generates the statechart’s model class which describes the execution

priority of the nodes and the transitions. For doing that correctly and be sure

that the Statechart Engine will execute it in the right sequence the node’s at-

tribute label, which is unique and represents the depth of the node in execution

and the sequence in execution for the nodes with the same depth. For example,

the root node has label ”0” and its first child ”0.1”.

The second version of IAC-2-Monas, which had also been implemented by

Alexandros Paraschos could additionally transform the transition’s expression to

C++ classes, such as event, condition and action. The first and second versions

of IAC-2-Monas ran through the eclipse application by using a workflow file, so

it couldn’t be used in KSE.

Angeliki Topalidou-Kyniazopoulou 71 March 2012

5.4 From graphical editor to CASE tool

Figure 5.7: The IAC-2-Monas code generator class diagram.

#ifndef t e s t h

#define t e s t h 1

#include ” a r ch i t e c t u r e / IAc t i v i t y . h”

class t e s t : public IAc t i v i t y {
public :

int Execute () ;

void Use r In i t () ;

std : : s t r i n g GetName () ;

} ;
#endif // t e s t h

#include ” t e s t . h”

namespace{ Act iv i tyReg i s t r a r<t e s t > : :Type temp(” t e s t ”) ; }
int t e s t : : Execute () {

return 0 ;

}
void t e s t : : Us e r In i t () { }

std : : s t r i n g t e s t : : GetName () {
return ” t e s t ” ;

}

Figure 5.8: The generated Activity template class, header and .cpp, without any

variables, the same with version two.

For the KSE a third version and currently the last of IAC-2-Monas (Fig-

ure 5.11) has been implemented. In this version the code generator adds node’s

variables as input messages to the generated activity class template (Figure 5.10).

In order to generate code for the transition classes we used the EBNF grammar

that was used in validation. The developer can choose, whether logger calls will be

added to transition’s condition or not. For transition’s action, the TimeoutAc-

tion as an action implementation has been added and the expression ”Time-

outCheck(topic)” for the TimeoutAction’s expiration for the transition’s condi-

tion has been added to the transition’s grammar. If the developer wants to add a

Angeliki Topalidou-Kyniazopoulou 72 March 2012

5.4 From graphical editor to CASE tool

#include ”Goal ie . h”

#include ” t ran s i t i onHeade r s . h”

using namespace s t a t e cha r t eng i n e ;

namespace {
Sta t echar tReg i s t ra r<Goalie > : :Type temp(”Goal ie ”) ;

}
Goal ie : : Goal ie (Narukom∗ com) {

s t a t e c h a r t = new Statechar t (”Node Goalie ” , com) ;

Sta techar t ∗ Node 0 = s t a t e c h a r t ;

s t a t e s . push back (Node 0) ;

S ta r tS ta t e ∗ Node 0 1 = new Sta r tS ta t e (”Node 0 1” , Node 0) ; //Name : 0 . 1

s t a t e s . push back (Node 0 1) ;

IAc t i v i t y ∗ NodeAct ivInst 0 2 = Act iv i tyFactory : : In s tance ()−>CreateObject (” I n i t ”) ;

a c t i v i t i e s . push back (NodeAct ivInst 0 2) ;

Bas i cState ∗ Node 0 2 = new Bas icState (”Node In i t ” , Node 0 , NodeAct ivInst 0 2) ; //Name :

I n i t

s t a t e s . push back (Node 0 2) ;

OrState∗ Node 0 3 = new OrState (”

Node open g roup p lay ing o r nonP lay ing c l o s e g roup one o r more t imes ” , Node 0) ; //

Name : g r p l a y i n g o r n onP l a y i n g o n e o r mo r e t im e s

s t a t e s . push back (Node 0 3) ;

S ta r tS ta t e ∗ Node 0 3 1 = new Sta r tS ta t e (”Node 0 3 1 ” , Node 0 3) ; //Name : 0 . 3 . 1

s t a t e s . push back (Node 0 3 1) ;

OrState∗ Node 0 3 2 = new OrState (” Node open group p lay ing o r nonP lay ing c l o s e g roup ” ,

Node 0 3) ; //Name : g r p l a y i n g o r n o nP l a y i n g

s t a t e s . push back (Node 0 3 2) ;

S ta r tS ta t e ∗ Node 0 3 2 1 = new Sta r tS ta t e (”Node 0 3 2 1 ” , Node 0 3 2) ; //Name : 0 . 3 . 2 . 1

s t a t e s . push back (Node 0 3 2 1) ;

ConditionConnector∗ Node 0 3 2 2 = new ConditionConnector (”Node 0 3 2 2 ” , Node 0 3 2) ;

//Name : 0 . 3 . 2 . 2

s t a t e s . push back (Node 0 3 2 2) ;

OrState∗ Node 0 3 2 3 = new OrState (”Node playing ” , Node 0 3 2) ; //Name : p l a y i n g

s t a t e s . push back (Node 0 3 2 3) ;

S ta r tS ta t e ∗ Node 0 3 2 3 1 = new Sta r tS ta t e (”Node 0 3 2 3 1 ” , Node 0 3 2 3) ; //Name

: 0 . 3 . 2 . 3 . 1

s t a t e s . push back (Node 0 3 2 3 1) ;

ConditionConnector∗ Node 0 3 2 3 2 = new ConditionConnector (”Node 0 3 2 3 2 ” ,

Node 0 3 2 3) ; //Name : 0 . 3 . 2 . 3 . 2

s t a t e s . push back (Node 0 3 2 3 2) ;

OrState∗ Node 0 3 2 3 3 = new OrState (”Node Scan one or more t imes ” , Node 0 3 2 3) ; //

Name : Scan one o r more t imes

s t a t e s . push back (Node 0 3 2 3 3) ;

S ta r tS ta t e ∗ Node 0 3 2 3 3 1 = new Sta r tS ta t e (” Node 0 3 2 3 3 1 ” , Node 0 3 2 3 3) ; //

Name : 0 . 3 . 2 . 3 . 3 . 1

s t a t e s . push back (Node 0 3 2 3 3 1) ;

. . .

Figure 5.9: The generated model class for Goalie example.

TimeoutAction to a transition he would have to write the expiration check to the

Angeliki Topalidou-Kyniazopoulou 73 March 2012

5.4 From graphical editor to CASE tool

#ifndef t e s t h

#define t e s t h 1

#include ” a r ch i t e c t u r e / IAc t i v i t y . h”

#include ”messages /AllMessagesHeader . h”

class t e s t : public IAc t i v i t y {
public :

int Execute () ;

void Use r In i t () ;

std : : s t r i n g GetName () ;

private :

void read messages () ;

boost : : shared ptr<const HeadToBMessage> hbm;

boost : : shared ptr<const WorldInfo> wor ldIn fo ;

} ;
#endif // t e s t h

#include ” t e s t . h”

namespace {
Act iv i tyReg i s t r a r<t e s t > : :Type temp(” t e s t ”) ;

}
int t e s t : : Execute () {

read messages () ;

return 0 ;

}
void t e s t : : Us e r In i t () {

blk−>updateSubscr ipt ion (” behavior ” , msgentry : : SUBSCRIBE ON TOPIC) ;

}
std : : s t r i n g t e s t : : GetName () {return ” t e s t ” ; }
void t e s t : : read messages () {

hbm = blk−>readState<HeadToBMessage> (” behavior ”) ;

wor ldIn fo = blk−>readData<WorldInfo> (” behavior ”) ;

}

Figure 5.10: The generated Activity template class, header and .cpp, with two

variables.

transition’s condition. So, for example, if he wants to activate a TimeoutAction

in topic behavior for 250 msec he would have to write the transition’s expression

as:

[TimeoutCheck(behavior)]/TimeoutAction.behavior.250

The source code generated for this transition is in (Figure 5.12).

These were not the only changes made, the IAC-2-Monas was developed for

IAC model and not for STCT, which KSE uses for the graphical representation.

For this reason the java class ”ModelConvertor”, which transforms a STCT model

to IAC model and vice versa, was implemented. ”MainWindowApplication”, a

java class with main function was added, in order to export the generator’s project

from eclipse as a java runnable jar. ”MainWindowApplication” gets as inputs,

through the main function, the file of the STCT model to be generated and the

Angeliki Topalidou-Kyniazopoulou 74 March 2012

5.4 From graphical editor to CASE tool

Figure 5.11: The IAC-2-Monas code generator final edition class diagram.

#include ” a r ch i t e c t u r e / s tatechar tEng ine / ICondit ion . h”

#include ”messages /AllMessagesHeader . h”

#include ” t o o l s /BehaviorConst . h”

class TrCond Goal ie0 3 20 3 2 : public s t a t e cha r t eng i n e : : ICondit ion {
public :

void Use r In i t () { blk−>updateSubscr ipt ion (” behavior ” , msgentry : : SUBSCRIBE ON TOPIC) ; }
bool Eval () {

/∗ TimeoutCheck (b e ha v i o r) ∗/
boost : : shared ptr<const TimeoutMsg > msg = blk−>readState< TimeoutMsg > (” behavior ”) ;

return ((msg . get () !=0 && msg−>wakeup () !=”” &&

boost : : pos ix t ime : : f r om i s o s t r i n g (msg−>wakeup ())<boost : : pos ix t ime : : m i c r o s e c c l o ck : :

l o c a l t ime ())) ;

}
} ;

#include ” a r ch i t e c t u r e / s tatechar tEng ine / IAct ion . h”

#include ” a r ch i t e c t u r e / s tatechar tEng ine /TimoutAciton . h”

class TrAct ion Goa l i e0 3 20 3 2 : public s t a t e cha r t eng i n e : : TimeoutAction{
/∗ TimeoutAction . b e ha v i o r .250 ∗/
public : TrAct ion Goa l i e0 3 20 3 2 () : s t a t e cha r t eng i n e : : TimeoutAction (” behavior ” , 250) { ;}

} ;

Figure 5.12: The generated Condition and Action classes

targeted folder for generation. ”MainWindowApplication” uses the ”ModelCon-

vertor” for transforming the STCT model to IAC model. It also uses the ”Work-

flowRunner” from the package org.eclipse.emf.mwe.core.WorkflowRunner in

order to run the project’s .mwe files as workflows. This last version has three

instead of one workflow file, as the previous two versions had. The ”activity-

Gen.mwe” file generates only the chosen BASIC state’s activity class template.

The ”logger.mwe” generates code for the STCT model with logger calls in it’s

Angeliki Topalidou-Kyniazopoulou 75 March 2012

5.4 From graphical editor to CASE tool

transition’s conditions. The ”workflow.mwe” generates code for the STCT model

without logger calls in it’s transition’s conditions.

5.4.5 Statechart’s Connection to Local Code Repository

During the beta-testing of KSE the need of connecting the created STCT model

to the user’s local Monas repository was obvious. At first the generated code

from the statechart model was saved in the application’s workspace, which was

not convenient, because once the user wanted to test it on the robot he/she would

have to copy the folder with the generated code and paste it to the local Monas

repository in folder Monas/src/statecharts, copy the generated and implemented

statechart’s activities in folder Monas/src/activities, then compile, and upload

the binary files to the robot. This was not convenient at all, so every model

that transforms to code through this applications has to be linked to a local

folder. In case the user uses the KSE code generator and creates a link to an

empty folder or a non Monas repository the code still gets generated according

to Monas architecture.

5.4.6 Editing of BASIC States’ activities

Since the STCT models are linked to a code repository, the implementation

of transitions’ classes is automatic, and the creation of a template activity class

are done through this application it became necessary to be able to edit the

activities’ classes through this application (Figure 5.13). Although no C++ editor

is implemented for this CASE tool, the user can open and edit the BASIC states’

activities with a C++ editor of his/hers system through the application.

5.4.7 The automated labeling of model’s elements for proper

code generation

In case of someone uses this application to design a statechart without using the

liveness formula, but just designs the statechart graphically, the need of automatic

labeling for the statecharts elements is obvious. The STCT that we use for

describing an agent, in order to be transformed in code correctly has to have

Angeliki Topalidou-Kyniazopoulou 76 March 2012

5.4 From graphical editor to CASE tool

Figure 5.13: This action opens a C++ editor for the selected BASIC state’s

(SpecialAction) activity.

only labeled elements. When we are referring to labeled elements, we mean that

every model’s node has to have the attribute label completed, every label has to

be unique, every label has to describe the priority of execution in the statechart

and the transitions between nodes named.

5.4.8 Configuring KSE

Although KSE has been developed for Kouretes team and Monas architecture,

it can be configured according to the users preferences. The user can define

through a configuration dialog (Figure 5.14) the desired text editor for the activ-

ities’ source code and the desired model’s code generator.

Angeliki Topalidou-Kyniazopoulou 77 March 2012

5.5 Exporting KSE from eclipse

Figure 5.14: The KSE configuration dialog for Linux(up) and Windows(down).

5.4.9 Help section

A user manual and instructions have been added to the application in the help

section. For this functionality, we added to the application’s extension point the

org.eclipse.ui.helpsupport extension point and we implemented the class Abstrac-

tHelpUI from the package org.eclipse.ui.help. For the help display system’s

browsers are used. the instructions are written in html files and if anyone wants

to edit them or replace them, he can do it with any html editor. If anyone wants

simply to change the sections of the html files, he can do it, but in order to be

able to open them from the help menu he has to keep the toc.html file because

it is the file that the application opens for the help action.

5.5 Exporting KSE from eclipse

The eclipse platform gives us the ability to export our application as an eclipse

product. for doing so, we have to have the plug-in development component in-

stalled to our eclipse application. The plug-in development component provide

us a configuration file of product configuration type. In this file the program-

mer can configure an eclipse product and export it as an individual application.

In order to export it for multiple platforms you have to install first the delta

pack to your eclipse and then configure the product configuration file. Although

the rest required packages we installed them through the aclipse application,

Angeliki Topalidou-Kyniazopoulou 78 March 2012

5.5 Exporting KSE from eclipse

for delta pack we had to do it manually. First we had to find the delta pack

build which had the same build ID with our eclipse application, download it

from http://download.eclipse.org/eclipse/downloads/ and follow the installation

instructions from http://www.vogella.de/articles/EclipsePDEBuild/ar01s02.html.

With the delta pack installed, we could export our application for any platform.

We configured the exported applications through the product configuration file,

we set the application’s name, folder, runtime, package dependencies, launching

icons, copyright and lincense. we used the Eclipse Product export wizard and

chose the target platforms. A few minutes later, KSE is ready for use!

Angeliki Topalidou-Kyniazopoulou 79 March 2012

http://download.eclipse.org/eclipse/downloads/
http://www.vogella.de/articles/EclipsePDEBuild/ar01s02.html

Chapter 6

Results

6.1 Evaluation of the CASE tool - KSE

The first evaluation for KSE came with a live user tutorial and the evaluators

were the members of Kouretes team, lets notice that this was the beta-testing

as well. Although the target group of users are the members of Kouretes team,

the evaluation of my teammates was not as objective as it should be in order

to present it in this thesis. It is important to notice that their comments and

requests were considered seriously and the majority of them were implemented

and added to KSE.

To obtain an objective evaluation of our CASE tool, 28 ECE undergradu-

ate students taking the Autonomous Agent class at the Technical University of

Crete were asked to use KSE and evaluate it in one of their laboratory sessions.

The plan of this 2-hour lab session was to go through a short tutorial on using

KSE, study a complete SPL Goalie behavior as an example (shown in Figure 5.4

without the transition expressions), and finally develop their own SPL Attacker

behavior using KSE and the same functionalities of the Goalie behavior. The

provided functionalities were supported by a Monas source code repository. The

students worked in small teams of two or three people per team. None of them

had any prior experience with CASE tools, KSE, Monas, SPL, or RoboCup in

general. This lab session was run three times to accommodate all students in the

four available work stations. At the end of each lab session, a quick SPL game

Angeliki Topalidou-Kyniazopoulou 80 March 2012

6.2 The evaluation’s questionnaire

took place with the four attackers split in two teams of two players each.

The results were in general positive for KSE as a CASE tool, but also for the

concept of ASEME-based behavior development. Both seemed to be pretty un-

derstandable, even though most students were not familiar with Agent-Oriented

Software Engineering. All student teams were able to go through the provided

material and deliver the requested SPL Attacker behavior. The great bet, won

by KSE in this evaluation, was that all student participants succeeded to create

a simple SPL robot behavior and even enjoyed watching their players in a game

without having to go through the typical lengthy training procedures required for

student members of an SPL team.

6.2 The evaluation’s questionnaire

All student participants were asked to fill in an anonymous user satisfaction

questionnaire after the lab session. The total amount of responders was 19.

Although they were split in groups for the lab session, the questionnaire was

answered individually. The overall assessment of KSE was positive. The main

negative comment was that the long transition expressions on the model were

cluttering the view of the statechart graph. Before handing out this thesis we

tried to change the representation of long transition expressions (TE), the solu-

tion was to define them as a multiline string to the EMF model and the GMF

representation includes only the first line of the transition expression. So, now

you can see only the first line of the expression on the graph (Figure 6.2). The

new representation is not that ”crowded” as the one that the evaluators had to

work with (Figure 6.1).

As you can see, there is a great improvement between the two versions of

KSE, the users suggestions were taken seriously. For more information about the

evaluation you can study the question graphs and judge the results.

Angeliki Topalidou-Kyniazopoulou 81 March 2012

6.2 The evaluation’s questionnaire

Figure 6.1: The statechart of the provided SPL Goalie behavior.

Figure 6.2: The statechart of the provided SPL Goalie behavior with the new

representation.

Angeliki Topalidou-Kyniazopoulou 82 March 2012

6.2 The evaluation’s questionnaire

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 more than 4

How many bugs did you encounter?

0

1

2

3

4

5

6

7

8

less than 5 from 5 min to 15
min

from 15 min to 25
min

more than 25 min

How much time did you need for
debugging? (in minutes)

0

2

4

6

8

10

12

14

Very easy Easy Normal Difficult Very difficult

How easy was it to edit the liveness
formulas?

0

2

4

6

8

10

12

Very easy Easy Normal Difficult Very difficult

How easy was it to edit the
statechart?

0

2

4

6

8

10

Very easy Easy Normal Difficult Very difficult

How easy was it to navigate the
menus of KSE and achieve your

task?

0

2

4

6

8

10

12

Very easy Easy Normal Difficult Very difficult

How easy did you find the use of
KSE in general?

Angeliki Topalidou-Kyniazopoulou 83 March 2012

6.2 The evaluation’s questionnaire

0

1

2

3

4

5

6

7

8

9

is incomprehensible needs improvement is understandable is very well
explained

is totally clear

The KSE documentation:

0

1

2

3

4

5

6

7

8

9

is incomprehensible needs improvement is understandable is very well
explained

is totally clear

The liveness formula concept:

0

1

2

3

4

5

6

7

8

is incomprehensible needs improvement is understandable is very well
explained

is totally clear

The statecharts model:

Angeliki Topalidou-Kyniazopoulou 84 March 2012

6.2 The evaluation’s questionnaire

0

2

4

6

8

10

12

is
incomprehensible

needs
improvement

is understandable is very well
explained

is totally clear

The KSE tool functionality in general:

0

2

4

6

8

10

12

friendly modern easy to learn not so friendly, but
an experienced

user can cope with
it

not so modern, but
tolerable

not friendly at all very old fashion

The user interface of KSE tool is

0

2

4

6

8

10

12

14

unsatisfying somewhat
satisfying

indifferent satisfying

The performance of KSE tool is

0

2

4

6

8

10

12

14

unsatisfied somewhat
satisfied

indifferent satisfied It was a great
experience, can I

do it again?

How satisfied are you from the
experience of using the KSE tool in

general?

Angeliki Topalidou-Kyniazopoulou 85 March 2012

6.2 The evaluation’s questionnaire

0

2

4

6

8

10

12

14

16

I am very
experienced

I am
experienced

I am not that
experienced

I lack of
experience

I am not a
code

developer

How experienced code developer
are you?

0

2

4

6

8

10

12

14

16

18

20

No Yes

Have you ever used another
CASE tool before?

0

2

4

6

8

10

12

No Yes I still do not know what a
CASE tool is

Did you know what a CASE tool is before
this project?

0

2

4

6

8

10

12

14

16

No Yes

Are you familiar with AOSE (Agent -
Oriented Software Engineering)?

Angeliki Topalidou-Kyniazopoulou 86 March 2012

Chapter 7

Conclusions

7.1 Discussion

Our approach is not a breakthrough, but it is an honest effort of solving an ex-

isting problem. The CASE tools that are similar or have similar purposes as our

own are XabslEditor and YAKINDU as mentioned in chapter 2. XabslEditor has

been build for robocupSoccer and YAKINDU has been build in the same platform

as KSE. We will now see what a tool build for robocup, as ours and a tool build

with eclipse GMF as ours has to offer in comparison to KSE. It is important to

notice that XabslEditor is an academic product as opposed to YAKINDU that is

developed by a company.

As seen in the table 7.1 KSE offers has some characteristics that make the

design of a behavior much easier. KSE offers graphical editing of the statechart,

something that XabslEditor does not offer. XabslEditor provides only text editor

with highlight for editing an FSM, which is visualized in another view. KSE

offers an implementation of copy-paste of graphical components, something that

neither of the two tools mentioned provide. Although what have been mentioned

above, has made a good case; the biggest advantage of the KSE is the analysis

tool, in which the user can describe the desired behavior by using the liveness

formula. In addition the user can configure the KSE and use it with a different

generator for the model than the one that KSE provides and can choose which

one editor the KSE would open for the activities’ editing. In that way anyone

Angeliki Topalidou-Kyniazopoulou 87 March 2012

7.2 Future Work

Table 7.1: Feature comparison of XabslEditor, Yakindu, and KSE.

Feature XabslEditor Yakindu KSE

Supported Platforms java eclipse helios linux, windows

Open Source
√

free-ware
√

Model Validation
√ √ √

Analysis Tool
√

Model Simulation
√

Multiple Editing Tabs
√ √ √

Symbol Auto-Completion
√

Graphical Editing
√ √

Reusability of Graphical Components
√

Source Code Generation
√ √ √

Integrated Source Code Editing
√ √

Customization of Code Generator
√

can use the KSE for the editing of the liveness formula, the graphical editing and

representation of the statechart and just develop a code generator for the desired

purpose and has his own customized statechart editor.

7.2 Future Work

KSE is a CASE tool that provides a variety of functionalities, but every applica-

tion needs improvements and has potential future work. The answers from the

evaluation gave us some material for future projects.

A project that would be usefull for the development of a behavior is a soccer

match and robot simulator. The simulator is quite useful, because it is easier

to test and debug the system on your computer, whether on the robot. At the

simulator one can test the developed behavior in a soccer match of two teams of

four players, but in order to do that with real robot someone would have to own

eight robots which is expensive. It is important to notice that a simulator would

be fully connected to a specific robot platform and that would constrict the use

Angeliki Topalidou-Kyniazopoulou 88 March 2012

7.2 Future Work

of KSE.

Another project that would make the debuging process for the developed

behavior more convinient is a real-time monitor that would represent live and

graphically the statechart and show which state is executed currently on the

robot. That project would have dependency with KSE and the used robot com-

munication.

Another way to enrich the KSE tool is by adding more editors for ASEME

models.

Angeliki Topalidou-Kyniazopoulou 89 March 2012

References

[1] Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E., Matsubara, H.:

Robocup: A challenge problem for AI. AI Magazine 18(1) (1997) 73–85 16

[2] Paraschos, A.: Monas: A flexible software architecture for robotic agents.

Diploma thesis, Technical University of Crete, Greece (2010) 29, 43, 71

[3] Harel, D., Kugler, H.: The RHAPSODY Semantics of Statecharts (Or on

the Executable Core of the UML). In: Integration of Software Specification

Techniques for Application in Engineering 32, 39

[4] Vazaios, E.: Narukom: A distributed, cross-platform, transparent commu-

nication framework for robotic teams. Diploma thesis, Technical University

of Crete, Greece (2010) 33

[5] Spanoudakis, N.: The Agent Systems Engineering Methodology (ASEME).

PhD thesis, Paris Descartes University, France (2009) 34

[6] Spanoudakis, N., Moraitis, P.: The agent modeling language (AMOLA). In:

Proceedings of the 13th International Conference on Artificial Intelligence:

Methodology, Systems, and Applications (AIMSA). Volume 5253 of Lecture

Notes in Computer Science. Springer (September 2008) 32–44 34

[7] Wooldridge, M., Jennings, N.R., Kinny, D.: The Gaia methodology for

agent-oriented analysis and design. Autonomous Agents and Multi-Agent

Systems 3(3) (2000) 285–312 37, 39

[8] Cabac, L., Moldt, D.: Formal semantics for AUML agent interaction pro-

tocol diagrams. In: Agent-Oriented Software Engineering V. Volume 3382

Angeliki Topalidou-Kyniazopoulou 90 March 2012

REFERENCES

of Lecture Notes in Computer Science. Springer Berlin, Heidelberg (2005)

47–61 38

[9] Spanoudakis, N., Moraitis, P.: Gaia agents implementation through models

transformation. In: Proceedings of the 12th International Conference on

Principles of Practice in Multi-Agent Systems (PRIMA). Volume 5925 of

Lecture Notes in Computer Science. Springer (December 2009) 127–142 39

[10] ISO/IEC: Extended Backus-Naur form (EBNF). 14977 (1996) 39

[11] : Artificial Intelligence A Modern Approach, Second Edition. Pearson Edu-

cation (2003) 39

[12] Harel, D., Maoz, S.: Assert and negate revisited: Modal semantics for

UML sequence diagrams. Software and Systems Modeling 7 (2008) 237–252

10.1007/s10270-007-0054-z. 39

[13] Gronback, R.: Eclipse Modeling Project:A domain-Specific Language(DSL)

Toolkit, year = 2009 42

[14] Budinsky, F., Brodsky, S.A., Merks, E.: Eclipse Modeling Framework. Pear-

son Education (2003) 42

[15] Harel, D., Naamad, A.: The Statemate semantics of statecharts. ACM

Transactions on Software Engineering and Methodology 5 (1996) 293–333

48

[16] Loetzsch, M., Risler, M., Jungel, M.: Xabsl - a pragmatic approach to behav-

ior engineering. In: 2006 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS). (October 2006) 5124–5129 49

[17] David, H., Amnon, N.: The statemate semantics of statecharts. ACM

Transactions on Software Engineering and Methodology (TOSEM) 5 (Octo-

ber 1996) 60

Angeliki Topalidou-Kyniazopoulou 91 March 2012

Appendix A

User Manual

A.1 Overview

KSE (Kouretes StateChart Editor) is the first CASE (Computer-Aided System

Engineering) tool from the robocup team Kouretes. KSE is a graphical statechart

editor that helps the developer to organize and edit code for a statechart according

to ASEME methodology and Monas architecture. This CASE tool contains:

• Liveness formula editor

• EMF generator for the liveness formula

• Graphical Editor for statecharts

• C++ code generator for Monas architecture

• C++ Editor for code editing(one of your system’s editors)

• Validation provider for statecharts that are developed according to ASEME

and transition expressions that are written according to the given genera-

tor’s grammar.

A.2 Requirements and Installation

KSE is developed on eclipse platform and it is an eclipse product. The required

software for installing KSE at your pc is:

Angeliki Topalidou-Kyniazopoulou 92 March 2012

A.3 KSE architecture

• java environment, minimum version jre 6.26.

• any Linux or Windows distribution, as long as you download the respec-

tively KSE edition.

All you have to do is to download the application from http://www.kouretes.gr

and extract the downloaded file. Linux users can start the application by double-

click on the icon ”KSE” or by typing in a terminal opened in the application’s

folder ./KSE. Windows users can start the application by double-click on the icon

”KSE.exe” or by typing in the command prompt .\<path-of-KSE.exe>.

A.3 KSE architecture

KSE gives the user the opportunity to develop C++ code from a model. KSE

has several components (Figure A.3) for different functionalities, such as trans-

formation from liveness formula to EMF Model, model’s validation according to

ASEME and Monas, code generation according to the model, editing of the model

and editing of the code.

A.4 Configuration of KSE

You can configure partially the KSE tool through a dialog, for opening that dialog

got to Edit → Configure KSE... . You can choose the editor for the activities.

If you running the application on Linux software you can choose among gedit,

geany, eclipse, kdevelop or you can specify the desired editor on a textbox.

If you do not have eclipse installed on your pc through the system and want to

use it, you would have to write on the text box ./<path-eclipse-application>.

the same thing you will have to do for any editor that is not installed in your

system and does not appear on your application bar.

Angeliki Topalidou-Kyniazopoulou 93 March 2012

http://www.intelligence.tuc.gr/kouretes/web

A.5 Design a statechart following the ASEME Methodology for
Monas architecture Step By Step

Eclipse Platform

LivenessToEMF
Tranformation

StateChart
Validation

StateChart
Editor

C++ Code
Generator

StateChart
Meta-Model C++ Editor

Developed by third parties

Developed by Kouretes

Figure A.1: Software Architecture

A.5 Design a statechart following the ASEME

Methodology for Monas architecture Step

By Step

First Step - Write Liveness Formula

If you want to create a new StateChart the easiest way to do it, is by writ-

ing the liveness formula according to ASEME methodology. Go to File → New

StateChart → Formula. Or choose the respectively icon from the toolbar. A

window appears, and all you have to do is first enter the name of the formu-

Angeliki Topalidou-Kyniazopoulou 94 March 2012

A.5 Design a statechart following the ASEME Methodology for
Monas architecture Step By Step

la/model in the respectively text box. Then write the Liveness Formula in the

respectively text box. You should use the Gaia operators (Table A.1) in order to

write the formula. After completing the above, click the OK button. You should

now choose the source folder of the existing activities to connect your StateChart

Model(EMF) which will be saved in your workspace, as an *.stct file. A file di-

alog will apear and you would have to select the folder for code generation. If

your want to develop a behavior according to Monas architecture you would have

to choose the Monas/src/activities folder for generation. The activities tem-

plates will be generated to activities folder and the statechart with its transitions

in Monas/src/statecharts folder. Since you have chosen a folder the model is

connected to a local code repository.

Table A.1: Operators for Liveness Formula(Table 1 from ”THE AGENT SYS-

TEMS ENGINEERING METHODOLOGY (ASEME)”)

Operator Interpretation

x . y x followed by y

x | y x or y occurs

x? x occurs 0 or more times

x+ x occurs 1 or more times

x˜ x occurs infinitely

[x] x is optional

x || y x and y interleaved

Second Step - Initialize and Edit the Diagram Model

Angeliki Topalidou-Kyniazopoulou 95 March 2012

A.5 Design a statechart following the ASEME Methodology for
Monas architecture Step By Step

After completing successfully first step your EMF Model’s file is in your

workspace as an *.stct file, so now you are able to initialize the model’s graphical

representation.

Go to File→ Initialize kse diagram file. Choose the model you want to initial-

ize click on Next button. Choose the element Model as the root element and click

on Finish button. The Diagram (Graphical representation of the model) is now

open on the editor.If the states are overpopulated or overlapped press ctrl+A and

go to Diagram → Arrange → All, or choose the above actions from the toolbar.

It is possible that you will have to arrange the diagram elements more than once.

If you have followed all the steps carefully and no error has occurred, you can now

add the input message variables to the BASIC states, which are unimplemented

and choose from the toolbar to edit the BASIC state’s activity. You can also

fill the necessary transition expressions. For writing the transition’s expression

you need to follow the grammar’s syntax. If you leave any transition expression

empty, it means that it is always true. When you finish the editing of the model

you can generate the C++ code for Monas architecture.

Third Step - Generate C++ Code For Monas Architecture

After finishing the editing of the model you can generate the Statechart’s code

for Monas architecture.

Go to File → Generate Code For Model. Or choose from the toolbar. The

Diagram (Graphical representation of the model) that is now open on the editor

will be generated. You should choose whether to add logger calls in transition’s

conditions generated code or not. It is recommended to do so, only for debugging,

because logger calls increase significantly execution time. When the generation

is completed you will be notified by a message.

If the statechart’s activities are not implemented, you can edit their source

files by clicking on the BASIC state and then go to Edit→ Edit Activity an editor

will open for the class implementation.

Angeliki Topalidou-Kyniazopoulou 96 March 2012

A.6 Design a statechart from scratch - Graphically

A.6 Design a statechart from scratch - Graphi-

cally

First Step - Create an Empty Diagram File

If you want to create a new StateChart by creating the diagram instead of

using the ASEME Methodology and liveness formula follow the next steps. Go

to File→ New→ StateChart Diagram A wizard will appear and you will have to

enter the filename for the diagram file and the EMF model file. We recommend

you to create a new folder in your workspace for the new StateChart and save

there your new diagram(.kse) and EMF model file(.stct). After completing all

the steps of the wizard click on finish.

Second Step - Edit the Empty Diagram File

After completing successfully the first step your empty diagram will be opened

in a new tab at the workbench of the StateChart Editor. You can now add the

diagram’s elements. Be careful to follow the ASEME rules so the model can be

valid for the StateChart Engine of Monas architecture. For writing the tran-

sition’s expression you need to follow the grammar’s syntax. If you leave any

transition expression empty, it means that it is always true and no action will

occur. As soon as you finish the editing of the model you can connect the model

to a source folder that contains the implemented activities or to the folder that

you would like to be the folder of the activities. If you are creating a StateChart

for Monas architecture you should choose the folder Monas/src/activities. After

you connect the model to a source folder the code for the opened model will be

generated to the selected folder.

Step - Generate C++ Code For Monas Architecture

Angeliki Topalidou-Kyniazopoulou 97 March 2012

A.7 How to ...

After finishing the editing of the model you can generate the Statechart’s code

for Monas architecture.

Go to File → Generate Code For Model. Or choose from the toolbar.

The Diagram (Graphical representation of the model) that is now open on the

editor will be generated. When the generation is completed you will be notified

by a message.

If the statechart’s activities are not implemented, you can edit their source

files by clicking on the BASIC state and then go to Edit → Edit Activity an

editor will open for the class implementation.

A.7 How to ...

How to configure KSE

Go to Edit→ Configure KSE... and a Configuration dialog will open, choose

an editor for your activities and whether you are going to use the Monas

code generator or not. You can set as default generator any generator you

would like, as long as you declare how to execute it. For example if your

generator is in your home folder and it is a runnable jar file you have to

write at the text box java -jar home/user/generator.jar and KSE will

execute it with the models absolute path and the source code repository’s

path as inputs. The same declaration you would have to for the editor as

well.

How to create new elements

Select the element you want to add from the palette and then select the

point on the diagram that you want to put the new element. If you would

like to add an transition after selecting the transition from the palette, you

would have to click on the node that would be the transition’s source node

and drag on the transition’s target node .

How to create an empty diagram

Go to File → New → StateChart Diagram.

Angeliki Topalidou-Kyniazopoulou 98 March 2012

A.7 How to ...

How to create a new liveness formula

Go to File→ New→ StateChart Formula. Read the instructions for writing

a formula.

How to Initialize a diagram for an existing .sct model

Go to File → Initialize sctd diagram file

How to open an existing diagram

Go to File → Open.. or Open URI.

How to open an existing formula

Go to File→ Open Formula. BE CAREFUL if you click on OK the existing

model will be overwritten. Read the instructions for writing a formula.

How to edit the elements

Edit the elements’ attributes from properties view or by clicking on the

visible attributes of the elements and pressing F2.

How to put automatically the nodes’ label, name and transitions’ name

Go to Edit → Labeling Diagram or click the respectively icon from the

toolbar.

How to edit the activity of a BASIC state

Select the BASIC state you would like to edit and go to Edit→ Edit Activity

or clicking the respectively icon from the tool bar.

How to connect the opened model diagram to a source folder

Go to Edit → Connect Model to source folder or clicking from the toolbar.

How to generate code C++ for the opened model

Go to File → Generate Code for model or clicking the respectively icon

from the toolbar.

How to zoom in or out

Go to Diagram → zoom or press Ctr+”+” for zoom in and Ctr+”-” for

zoom out.

Angeliki Topalidou-Kyniazopoulou 99 March 2012

A.8 Transition’s Grammar

How to add rulers, page breakers or grid

Go to Diagram → view.

How to change a diagram element’s view

Click on it and going to Diagram and choose the characteristic you would

like to change, you can change font,line color and line style.

How to open a new window for the application

Go to Window → Open in new Window.

How to check if the StateChart is valid according to ASEME and transition’s

expression grammar

Go to Edit → Validate.

How to save diagram as image

Right-click on the top node of the part of the diagram you want to save as

image and choosing from the pop-up menu File→ save as image File....NOTE:The

pdf format is unavailable, but you can save it as png, jpeg, jpg, svg, gif and

bmp.

How to print the diagram

Click on the print button of the toolbar.

A.8 Transition’s Grammar

This is the grammar for writing successfully a valid transition expression

TransitionExpression = [event][”[” condition”]”][/actions]

event = string

condition = expr

| expr (compOp | logicOp) condition

| ”(”condition”)”

| notOp condition

actions = TimeoutAction

| Actions

Angeliki Topalidou-Kyniazopoulou 100 March 2012

A.8 Transition’s Grammar

Actions = Actions connectiveOp action

action = ”process messages”

| ”publish all”

| ”publish” ”.” topic”.”commType”.”msgType”.”membersetfunction”(”val”)”

TimeoutAction = TimeoutAction”.”topic”.”time

expr = varVal | func ”(” args ”)”

func = < any valid cpp decleared function name >

| TimeoutCheck ”(” topic ”)”

args = varVal

| varVal ”,” args

varVal = message | variable | value

value = constant | stringLiteral | number+

compOp = ” < ”|” <= ”|” > ”|” >= ”|” == ”|”! = ”

logicOp = ”&&” | ”||”
notOp = ”!”

connectiveOp = ”;”

message = topic ”.” commType ”.” msgType

variable = message ”.” member

commType = ”Signal”|”State”|”Data”

host = string

topic = string

msgType = string

member = string ”(” number? ”)” (”.”string ”(” number? ”)”)

membersetfunction = string (”(” number? ”)” ”.” string)?

time = number +

stringLiteral = ” string ”

string = letter (letter | number | ” ”)?

letter = ”a” | ”A” | ”b” | ” B” | ”c” | ”C” | ”d” | ”D” | ...

number = ”0” | ”1” | ”2” | ”3” ...

Be careful, in case a message does not appear on the blackboard the evaluation

of its condition becomes false. TimeoutCheck(topic) generates code for the check

of TimeoutAction expiration.

Angeliki Topalidou-Kyniazopoulou 101 March 2012

A.9 Statechart’s Rules

A.9 Statechart’s Rules

Every model that represents a statechart needs to obey some rules.

• StateChart Model can have only one root node of type OR.

• Every OR node should have exactly one START node as a child.

• Every OR node can’t have more than one END nodes as children.

• A START node can only be a source node for an transition.

• An END node can only be a target node for a transition.

• An AND node can only have OR nodes as children.

A.10 Examples

In this section you can find examples of how to write a transition and how to

write a liveness formula. You will also see examples of the generated code and

EMF model.

A.10.1 Transition Expression Example

For the following expression the generated code will be like (Figure A.2)

[TimeoutCheck(behavior) &&

(behavior.State.GameStateMessage==NULL ||

behavior.State.GameStateMessage.player_state() != PLAYER_FINISHED)]

/TimeoutAction.behavior.250

For the following expression the generated code will be like (Figure A.3)

[behavior.State.HeadToBMessage.ballfound()!=0 &&

readyToKick(behavior.Data.WorldInfo)]

Angeliki Topalidou-Kyniazopoulou 102 March 2012

A.10 Examples

#include ” a r ch i t e c t u r e / s tatechar tEng ine / ICondit ion . h”

#include ”messages /AllMessagesHeader . h”

#include ” t o o l s /BehaviorConst . h”

#include ” t o o l s / l ogge r . h”

#include ” t o o l s / toS t r ing . h”

// d e c i s i on TO de c i s i o n

class TrCond Goal ie0 3 20 3 2 : public s t a t e cha r t eng i n e : : ICondit ion{
public :

void Use r In i t () {
blk−>updateSubscr ipt ion (” behavior ” , msgentry : : SUBSCRIBE ON TOPIC) ;

}
bool Eval () {

/∗ TimeoutCheck (b e ha v i o r) && (b eha v i o r . S t a t e . GameStateMessage==NULL | | b e ha v i o r . S t a t e .

GameStateMessage . p l a y e r s t a t e () !=PLAYER FINISHED) ∗/
boost : : shared ptr<const GameStateMessage> var 621149599 = blk−>readState<

GameStateMessage> (” behavior ”) ;

boost : : shared ptr<const TimeoutMsg > msg = blk−>readState< TimeoutMsg > (” behavior ”) ;

Logger : : Ins tance () . WriteMsg (” dec i s i on TO dec i s i on , TimeoutCheck (behavior) && (behavior .

State . GameStateMessage==NULL | | behavior . State . GameStateMessage . p l a y e r s t a t e () !=

PLAYER FINISHED)” ,

t oS t r i n g ((msg . get () !=0&&msg−>wakeup () !=””&&boost : : pos ix t ime : : f r om i s o s t r i n g (msg−>
wakeup ())<boost : : pos ix t ime : : m i c r o s e c c l o ck : : l o c a l t ime ())&&(var 621149599 . get ()

==0||(var 621149599 . get () !=0 && var 621149599−>p l a y e r s t a t e () !=PLAYER FINISHED))) ,

Logger : : In f o) ;

return ((msg . get () !=0&&msg−>wakeup () !=””&&boost : : pos ix t ime : : f r om i s o s t r i n g (msg−>wakeup

())<boost : : pos ix t ime : : m i c r o s e c c l o ck : : l o c a l t ime ())&&(var 621149599 . get () ==0||(
var 621149599 . get () !=0 && var 621149599−>p l a y e r s t a t e () !=PLAYER FINISHED))) ;

}
} ;

#include ” a r ch i t e c t u r e / s tatechar tEng ine / IAct ion . h”

#include ” a r ch i t e c t u r e / s tatechar tEng ine /TimoutAciton . h”

// d e c i s i on TO de c i s i o n

class TrAct ion Goa l i e0 3 20 3 2 : public s t a t e cha r t eng i n e : : TimeoutAction{
/∗ TimeoutAction . b e ha v i o r .300 ∗/
public : TrAct ion Goa l i e0 3 20 3 2 () : s t a t e cha r t eng i n e : : TimeoutAction (” behavior ” , 300) { ;}

} ;

Figure A.2: The generated classes.

Angeliki Topalidou-Kyniazopoulou 103 March 2012

A.10 Examples

#include ” a r ch i t e c t u r e / s tatechar tEng ine / ICondit ion . h”

#include ”messages /AllMessagesHeader . h”

#include ” t o o l s /BehaviorConst . h”

#include ” t o o l s / l ogge r . h”

#include ” t o o l s / toS t r ing . h”

// 0 . 3 . 2 . 3 . 2 TOKick

class TrCond Goa l i e0 3 2 3 20 3 2 3 5 : public s t a t e cha r t eng i n e : : ICondit ion {
public :

void Use r In i t () {
blk−>updateSubscr ipt ion (” behavior ” , msgentry : : SUBSCRIBE ON TOPIC) ;

}
bool Eval () {

/∗ b e ha v i o r . S t a t e . HeadToBMessage . b a l l f o u n d ()>0 && readyToKick (b e ha v i o r . Data . WorldInfo) ∗/
boost : : shared ptr<const HeadToBMessage> var 1901744185 = blk−>readState<HeadToBMessage>

(” behavior ”) ;

boost : : shared ptr<const WorldInfo> var 1071592760 = blk−>readData<WorldInfo> (” behavior ”

) ;

Logger : : Ins tance () . WriteMsg (” 0 . 3 . 2 . 3 . 2 TOKick , behavior . State . HeadToBMessage . ba l l f ound ()>0

&& readyToKick (behavior . Data . WorldInfo) ” ,

t oS t r i n g ((var 1901744185 . get () !=0&&var 1901744185−>ba l l f ound ()>0)&& readyToKick (

var 1071592760)) , Logger : : In f o) ;

return ((var 1901744185 . get () !=0&&var 1901744185−>ba l l f ound ()>0)&& readyToKick (

var 1071592760)) ;

}
} ;

Figure A.3: The generated classes.

A.10.2 Liveness Formula Examples

For the following formula the generated abstract model will be like (Figure A.4)

Attacker = Init.Play~

Play = Repulse|(AprroachBall+.Kick)

Repulse =CalculateSpeed+||(Stare+.SpecialAction)

Angeliki Topalidou-Kyniazopoulou 104 March 2012

A.10 Examples

Figure A.4: The generated model for a liveness formula.

Angeliki Topalidou-Kyniazopoulou 105 March 2012

	1 Introduction
	1.1 Thesis Outline

	2 Background
	2.1 RoboCup
	2.2 RoboCup Competitions
	2.3 RoboCupRescue
	2.4 RoboCup@Home
	2.5 RoboCupJunior
	2.6 RoboCupSoccer League
	2.6.1 Simulation League
	2.6.2 Small Size League
	2.6.3 Middle Size League
	2.6.4 Humanoid League
	2.6.5 Standard Platform League

	2.7 Kouretes Team
	2.8 NAO Robot
	2.9 Monas architecture
	2.10 Narukom
	2.11 ASEME Methodology
	2.12 Eclipse Modeling Project
	2.13 Xpand and IAC-2-Monas

	3 Problem Statement
	3.1 Soccer Team Formation
	3.2 Robot Behavior
	3.3 Design Behavior
	3.4 Related work
	3.4.1 Yakindu
	3.4.2 Xabsl Editor
	3.4.3 An Interactive Editor For The Statechart's Graphical Language

	4 Our Approach
	4.1 The Design of a Behavior
	4.2 Graphs
	4.3 The Representation of a Behavior
	4.4 Methodology of designing robot behaviors
	4.5 From Statechart Description to Robot Behavior
	4.6 CASE tool Functionlities

	5 Implementation
	5.1 The choice of platform and its benefits
	5.2 The GMF models
	5.3 Validation Rules
	5.4 From graphical editor to CASE tool
	5.4.1 Liveness Formula Editor
	5.4.2 Liveness Formula to Statechart Transformation
	5.4.3 Copy-Cut-Paste Functionality
	5.4.4 StateChart to Text Transformation
	5.4.5 Statechart's Connection to Local Code Repository
	5.4.6 Editing of BASIC States' activities
	5.4.7 The automated labeling of model's elements for proper code generation
	5.4.8 Configuring KSE
	5.4.9 Help section

	5.5 Exporting KSE from eclipse

	6 Results
	6.1 Evaluation of the CASE tool - KSE
	6.2 The evaluation's questionnaire

	7 Conclusions
	7.1 Discussion
	7.2 Future Work

	References
	A User Manual
	A.1 Overview
	A.2 Requirements and Installation
	A.3 KSE architecture
	A.4 Configuration of KSE
	A.5 Design a statechart following the ASEME Methodology for Monas architecture Step By Step
	A.6 Design a statechart from scratch - Graphically
	A.7 How to ...
	A.8 Transition's Grammar
	A.9 Statechart's Rules
	A.10 Examples
	A.10.1 Transition Expression Example
	A.10.2 Liveness Formula Examples

