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Abstract

The proliferation of low-cost wireless networking options, the advance of sen-

sor network technologies and the inherent importance of location awareness

in many scenarios, from item tracking and monitoring to social networks, has

generated an immense interest on localization techniques over the last years.

This thesis considers the general problem of estimating the coordinates of net-

worked sensors under constraints. Localization is considered ”cooperative” in

the sense that agents of unknown location cooperate with neighboring agents

in order to estimate their position in the network, and ”constrained” in the

sense that energy, bandwidth or cost limitations may exist.

Specific state-of-the-art localization techniques found in the literature are

presented. Their performance is quantified on the basis of offered estima-

tion accuracy and bandwidth requirements, in the presence of Gaussian or

non-Gaussian, unimodal ranging error noise. This thesis offers concrete

bandwidth-friendly versions of SPAWN, i.e., factor-graph based localization,

shown to significantly reduce the total size of exchanged messages, one-to

two- orders of magnitude. Furthermore, a computationally efficient flavor

is proposed that further reduces the mean squared error (MSE) compared to

prior-art. Cramer-Rao bound calculation corroborates the efficiency of the

proposed algorithms.
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Chapter 1

Introduction

1.1 Wireless Sensor Networks

A Wireless Sensor Network (WSN) consists of spatially distributed autonomous

sensors to monitor physical or environmental conditions and to cooperatively

pass their data through the network to a main location. Dramatic advances in

technology have made possible the use of large scale wireless sensor networks

for a variety of monitoring and control applications. Possible applications

of sensor networks are of interest to the most diverse fields. For example,

precision agriculture will reduce cost and environmental impact by watering

exactly where necessary [8]. Environmental monitoring networks will sense

air, water and soil quality and identify the source of pollutants in real time

[30]. Animal tracking and monitoring is made possible with dynamic sensor

networks, providing insight into their behavior and moves [25]. Even medi-

cal research and health-care will greatly benefit from sensor networks: vital

sign monitoring and accident recognition are the most natural applications

[21]. Countless applications have been enabled by the promise of inexpensive

reliable wireless sensor networks, as described in review articles in [2, 14, 35].

Automated network self-configuration is a critical demand for the effective

use of today’s wireless sensor networks; their scale precludes requiring a

human administrator to set up each node in the network. Automatic location

estimation of the sensors in these networks is a subset of the self-configuration

problem which is of crucial importance. The overwhelming reason is that in

order for the data of a sensor to be meaningful, it’s location must be known.

If an application is set up to respond locally to changes in sensor data in

must know where those changes are occurring.

The Global Positioning System (GPS), applied in numerous military and
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civilian applications has already provided a positioning solution for users

world wide. However, the large scale of today’s wireless sensor networks ren-

ders equipping each sensor with a GPS receiver impractical, energy-wise and

cost-wise. Problems such as increased cost, rapid battery depletion and a

severe lack of robustness in indoor environments or hash terrain, prohibits

extended use of GPS for localization purposes in large wireless sensor net-

works.

As a result, in many conventional localization systems a limited num-

ber of reference nodes, referred to as anchors, with prior knowledge of their

location (e.g., equipped with GPS), are deployed. These reference nodes in-

teract with devises of unknown location, hereby referred to as agents, who

exploit information such as the coordinates of anchors and the distance mea-

surements to them, in order to infer their own position. The performance of

positioning depends heavily on the network connectivity. In the general case,

each agent requires at least three anchors to determine it’s own position on

the two-dimensional plane (Fig. 1.1)). Localization is ensured given commu-

nication with a sufficient number of reference nodes, scattered throughout

the network.

Performance in both accuracy and coverage can be significantly improved

by introducing cooperation between connected agents. Cooperative localiza-

tion overcomes the reliance on the coverage of anchor nodes (referred to as

non-cooperative positioning) by allowing connectivity between pairs of agents

within communication range. Fig. 1.1) shows an example where unambiguous

localization could not be achieved without the improved coverage coopera-

tion provides. Cooperation and the additional information and coverage it

provides is a powerful tool and this work focuses exclusively on cooperative

localization techniques.

The focus of this thesis is on the self-configuration problem of estimat-

ing a sensor’s spatial location using distributed schemes and cooperation

between agents under communication constraints. As mentioned, estimat-

ing a sensor’s physical coordinates is intuitively important: data reported

from a sensor needs to be accompanied with an indication of where in space

that data was recorded. However, available sensor data is constrained by
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the bandwidth and energy limitations imposed by the network. Large quan-

tities of aggregate information exchanged solely for localization purposes in

addition to ”meaningful” sensed data could deplete batteries and reduce the

lifetime of an energy-constrained network, or could be completely infeasible

in cases such as underwater systems, due to narrow-band acoustic modems.

The focus of this work is not only on localization accuracy, but also on the

very important trade-off between localization accuracy and communication

bandwidth required for location estimation in motion-less or mobile wireless

networks.

1.1.1 Motivating Application : Under-water

Navigation

The absence of Global Positioning System signals underwater makes nav-

igation for Autonomous Underwater Vehicles (AUVs) a difficult challenge.

Without an external reference in the form of acoustic beacons an known lo-

cations, the AUV has to rely on proprioceptive information obtained through

uncertainty

Node 1

Node 2

Node 3

Node 5

Node 4

uncertainty

Figure 1.1: The benefit of using cooperative localization: using only distance

estimates with respect to the anchors (node 1,2 and 3), agent nodes 4 and

5 are unable to determine their respective positions without ambiguity. By

allowing communication between agent nodes 4 and 5 (as depicted by the red

arrow), they can cooperate to unambiguously determine their positions



1.2. Formal Problem Statement 16

a compass, a Doppler Velocity Logger (DVL) or an Internal Navigation Sys-

tem (INS). Independent of the quality of the sensors used, errors in the po-

sition estimates introduced based on the aforementioned information grows

without a bound [5]. Furthermore, while a position estimate can be obtained

through GPS if the AUV surfaces, it is undesirable and even infeasible in

some cases (e.g., under ice).

Cooperative localization, as described in the previous section, could be

utilized to create a fully mobile network of AUVs that perform acoustic rang-

ing and exchange data with one another to achieve cooperative positioning.

The importance of bandwidth conservation is crystal clear in a scenario such

as the above. Due to narrow-band state-of-the-art acoustic modems, hard

constraints are imposed on the total number of bits that can be exchanged

in a limited period of time for localization purposes. Smart cooperative lo-

calization techniques with respect to energy and/or bandwidth constraints,

as proposed in this thesis, are a key enabling technology, providing such

AUVs with the means to achieve accurate position estimations for extended

duration missions over large areas without relying on GPS or expensive so-

phisticated DVL and INS sensors.

1.2 Formal Problem Statement

Before going into detail, it is useful to formally state the problem of coopera-

tive sensor localization. Throughout this thesis a network of N+NA nodes is

assumed, with N agents of unknown location and NA anchors with a priori

known coordinates across the entire network. The objective is to estimate

the coordinates of the agents, given a priori the known coordinates of the

anchors and at least one of a variety of location measurements. In other

words, for a two-dimensional localization problem, a total of 2N unknown

location parameters must be estimated, p = [ px,py ], where

px = [ x1, . . . , xN ], py = [ y1, . . . , yN ] (1.1)
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given the anchors known reference coordinates

[ xN+1, . . . , xNA , yN+1, . . . , yNA ]

and cooperation between neighboring agents. The set, H(i) stands for the

set that includes all neighbors of node i, i.e. all nodes with which node i can

exchange information messages or perform ranging measurements. Further-

more, the location of sensor i is also referred to as xi, where xi = [xi, yi]
T

for two-dimensional localization. We are interested in both two-dimensional

(2D) as well as three-dimensional (3D) localization and D denotes the cor-

responding dimensionality of the localization problem.

1.2.1 Measurements: Pair-Wise & Internal

Measurements can be either pair-wise or internal. Pair-wise measurements,

zi,j between communicating sensors i,j, could be any physical reading that

indicates distance or relative position, such as time-of-arrival (TOA) requir-

ing synchronized time in one-way ranging measurements, received-signal-

strength (RSS), angle-of-arrival (AOA) or even connectivity indicators. In-

ternal measurements such as pedometers, compasses, altitude meters etc. are

also considered available. Both type of measurements can contain, directly

(e.g. TOA) or indirectly (e.g. RSS), information about the relative position

of the sensors in the network.

Pair-wise measurements are allowed only between neighboring nodes.

That is, nodes i,j can perform pair-wise measurements if and only if i ∈ H(j)

and j ∈ H(i). Various measurement methods, such as the ones mentioned

above, are presented with greater detail in Chapter 2. It is noteworthy that

these pair-wise measurements are adversely affected by the physical envi-

ronment and due to the fact that the exact environment in with the mea-

surements are performed cannot be known a priori, environmental effects

are considered random. Chapter 2 presents in detail each type of pair-wise

measurement, with additional information noted as needed.
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1.2.2 Absolute & Relative Positioning

While relaying on set of anchor nodes with a priori known coordinates is quite

common, it is not a necessity. In many applications reference nodes may not

exist or may not be of interest and when such is the case, we refer to relative

localization. A reference point does not exist so an arbitrary coordinate

system can be chosen. For example in swarming techniques [1], only distances

and angles between nodes are of interest and thus a absolute coordinate

system is redundant. In this thesis, relative localization is considered in

Section 3.4 providing insight into this alternative localization method.

1.3 Thesis Contributions

The work presented in this thesis examines the tradeoff between localization

accuracy and communication bandwidth required for distributed, cooperative

location estimation in wireless networks, i.e. localization with nodes that

cooperatively exchange range measurements and exploit network connectiv-

ity. Such problems are inspired by practical setups where communication

bandwidth is limited, e.g. in underwater systems with narrow-band acoustic

modems or in energy-constrained sensor networks where the size of local-

ization messages should be limited. Bandwidth-friendly versions of factor

graph based cooperative localization are proposed and compared with wide-

band graph based cooperative localization, cooperative particle filtering, as

well as distributed multi-dimensional scaling. The trade-off between local-

ization accuracy and size of total messages exchanged is quantified in the

presence of both Gaussian and non-Gaussian unimodal ranging error noise.

It is shown that the proposed algorithms can significantly reduce the total

size of exchanges messages, one-to-two orders of magnitude. Additionally,

a computationally-efficient version is shown to further reduce the localiza-

tion mean square error compared to state-of-the-art. Cramer-Rao bound

calculation corroborates the efficiency of the proposed algorithms.
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1.4 Outline of Thesis

The goal of this thesis is to quantify the performance of various known local-

ization algorithms and specifically to explore the trade-off between localiza-

tion accuracy and required bandwidth. First, Chapter 2 introduces various

measurement modalities and presents their major sources of error. Chap-

ter 3 reviews a subset of the rich localization literature by introducing and

testing various iterative, distributed, cooperative localization algorithms and

presents a factor graph based cooperative localization algorithm, the Sum

Product Algorithm over Wireless Networks (SPAWN). Chapter 4 extends the

SPAWN framework by introducing a bandwidth-friendly version, parameter-

ized SPAWN (P-SPAWN) which is extensively simulated, evaluated as far as

localization accuracy is concerned and shown to significantly reduce required

bandwidth without sacrificing localization accuracy compared to the original

SPAWN. Furthermore, a back to back scheme (BtB) is proposed and shown

to further reduce the localization mean square error, thus out-performing

state-of-the-art algorithms. Cramer-Rao bound calculation corroborates the

efficiency of the proposed algorithm. Finally, Chapter 5 summarizes the

whole thesis, presents the conclusions and gives some suggestions for future

work.



Chapter 2

Ranging Measurements &

Models

Ranging and angle measurements form the basis of any localization system.

Information regarding relative or absolute position can be directly or indi-

rectly extracted by range and/or angle measurements between communicat-

ing sensors. Understanding each type of measurement, the major sources

of error, as well as the difficulties associated with it is a key to developing

reliable localization systems.

The information and models presented in this Chapter have been re-

ported and verified in the literature, to be good approximations for the very

complicated behavior of pair-wise measurements in the notoriously unpre-

dictable RF channels. It is extremely important to note that the information

presented here is the base of deriving Cramer-Rao bounds on location per-

formance in cooperative localization, lower bounds independent of the par-

ticular localization algorithm employed [11, 27]. Part of the assumptions and

properties presented here are used in our own derivation of the CRB for 3D

Long-Baseline Localization (LBL) systems in Appendix 1.

This Chapter serves the purpose of a general introduction to each type of

measurement and briefly presents the key points related to them. Through-

out the rest of this thesis it is assumed that range measurements between

sensors are obtained either via RSS or TOA or perhaps a combination of

the two. Additionally, relative angle measurements are assumed to be ob-

tained exclusively via AOA. Both RSS and TOA can be measured via RF

or by acoustic media; both media are subject to multipath and shadow fad-

ing phenomena which impair range estimates. In a similar fashion, AOA

measurements are impaired by additive noise and multipath.
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2.1 Received Signal Strength (RSS)

Received signal strength (RSS) is typically defined as the signal power re-

ceived by a reference antenna. An indication is provided by the voltage

measured at the receiver’s received signal strength indicator (RSSI) circuit.

When neighboring wireless sensors communicate, RSS of RF signals can be

measured relatively inexpensively and in a simple fashion without present-

ing additional bandwidth or energy requirements. Due to this fact, RSS

measurements have become immensely popular in the localization commu-

nity. Unfortunately RSS measurements are also extremely unpredictable and

error-prone.

Range measurements based on RSS degrade with distance. In free space,

signal power decays proportional to d−2 where d is the distance between

transmitter and receiver. In real world channels, objects in the environment

have the effect of multiplying the signal energy by attenuation factors. The

cumulative effect of many such multiplications, by a central limit argument,

results in a log-normal distribution of RSS at the receiving end [17]. If

Pi,j(mW ), the received power in mW at sensor i transmitted by sensor j,

is log-normal, then the received power in dB, Pi,j = 10 log10Pi,j(mW ), is

Gaussian. Thus Pi,j is typically modeled as

Pi,j ∼ N (P̄i,j, σ2
dB)

P̄i,j = P0 − 10np log10(dij/d0)
(2.1)

where P̄i,j is the mean power in decibel milliwatts at distance dij, σ
2
dB is the

variance of the shadowing, P0 is the received power at distance d0 (typically

d0 = 1) calculated form the free space path loss formula and the path loss

exponent np is determined by the environment [16, 36].
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2.1.1 Range estimation via RSS

Using the model for received power presented previously one can derive a

maximum likelihood (ML) estimate of the distance between sensors i and j

δML
i,j = d010

(P0−Pi,j)
10np (2.2)

It is important to note that δML
i,j has a log-normal distribution since log δML

i,j

is Gaussian and that

E
{
δML
i,j

}
= Cdij (2.3)

where

C = e
γ
2 , where γ =

(
10np

σdB log 10

)2
(2.4)

i.e., the ML estimator is biased. Therefore, a bias-corrected estimator can

be offered by dividing by C:

δML
i,j = (d0/C)10

(P0−Pi,j)
10np (2.5)

The most important result of the log-normal model is that RSS-based range

estimates (using any of the two estimators presented) have variance propor-

tional to their actual range. This characteristic of RSS-based estimation

leads to very high errors at large path lengths, which have limited its appli-

cation in traditional localization systems. Clearly, RSS is most valuable in

high-density sensor networks, where distances between communicating nodes

tend to be small.

2.2 Time of Arrival (TOA)

Time-of-Arrival (TOA) is the measured time at which a signal (RF, acoustic,

or other) first arrives at a receiver. The measured TOA between transmis-

sion at sensor i and reception at sensor j includes the time of transmission

plus a propagation-included time delay, Ti,j, equal to the transmitter-receiver

separation distance, dij, divided by the propagation velocity, up. The corner-

stone of time-based techniques is the receiver’s ability to accurately estimate
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the arrival time of the direct line-of-sight (DLOS) signal, a process which is

hampered both by additive noise and multipath signals.

The power in the DLOS path is attenuated by any obstacles in between

transmitter and receiver and it is quite common for later-arriving non-line-

of-sight (NLOS) multipath components to arrive at the receiver with greater

of equal power that the DLOS. Later-arriving paths contribute an increasing

proportion of the overall power received power, as the distance between two

communicating devises increases [23, 36]. Yet, even in the absence of mul-

tipath, the accuracy of the arrival time is limited by additive noise, with a

lower bound provided in [38] through computation of the Cramer-Rao Bound

(CRB) in a multipath-free channel. Finally time delays in the transmitter

and receiver hardware and software further add to the measured TOA, in-

troducing additional errors.

2.2.1 Statistical model for TOA

Measurement campaigns in [11, 27] have shown that for short range mea-

surements, measured time delay can be roughly modeled as Gaussian

f(Ti,j = t|p) = Nt
(
dij
up

+ µT , σ
2
T

)
(2.6)

where µT , σ
2
T are the mean and variance of the time delay error, p is defined

in (1.1), dij is the actual range between i and j, up is the propagation velocity

and the notation Nx(µ, σ2) is used to denote the Gaussian distribution with

mean µ and variance σ2, evaluated in t. Typical values of µT and σ2
T have

been obtained with extensive measurements, as reported in [33] or can be

estimated as nuisance parameters [15]. Obviously, an estimator for the time

delay can be constructed [10, 41].

In is interesting to note that implementations of Ultra Wideband (UWB)

based range measurements using TOA have been reported in [3, 19]. The very

high bandwidth of UWB leads to a very high temporal resolution, making

it ideal for high precision radiolocation applications. Extensive measure-

ment campaigns using commercial UWB radios in [47] produce a model of

the UWB ranging measurements d̂ as a function of true distance d in an
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environment E as a Gaussian density described by

p(d̂|d, E) = Nd̂
(
PE,µ,2(d), PE,σ2,2(d)

)
(2.7)

where PE,µ,2(d), PE,σ2,2(d) are carefully selected quadratic polynomials, depend-

ing upon the condition (i.e LOS, NLOS etc.) [47].

2.2.2 Time-difference of Arrival (TDOA)

Time-of-Arrival measurements present a serious drawback: communicating

sensors must be synchronized. The state of each sensors clock (its bias com-

pared with absolute time) can also be considered to be an unknown param-

eter and included in the parameter vector p. In this case, one-way TOA

is measured and input to a localization algorithm which estimates both the

sensor coordinates and the biases of each sensors clock [27]. The difference

between the arrival times of the same signal at two sensors is called the time-

difference of arrival (TDOA). A TDOA measurement does not depend on

the clock bias of the transmitting sensor. TDOA methods have been used in

source localization for decades for locating asynchronous transmitters, and

has application in GPS and cellular localization. Interestingly, under certain

weak conditions, it has been shown that TOA with clock bias (treated as an

unknown parameter) is equivalent to TDOA [42].

2.3 Angle of Arrival (AOA)

Angle-of-Arrival measurements provide information complementary to the

RSS and TOA/TDOA measurements presented in the previous sections.

As the name suggests, AOA measurements provide localization information

about the direction to neighboring sensors as opposed to distance to neigh-

boring sensors.

Angle-of-Arrival estimation is a conquered problem, with many estima-

tion algorithms and associated properties proposed [32, 43, 45]. The most

common method to measure AOA is to use a sensor array combined with
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signal processing techniques at the sensor nodes. To be more specific, when

such is the case, each sensor node consists of two or more individual sensors

(e.g., antennas for RF, microphones for acoustic signal) whose location with

respect to the node center are known. The AOA is estimated, similar to time

delay estimation, from the differences in the arrival times for a transmitted

signal to each of the individual sensors integrated in the receiving node.

Alternatively, it is quite common for two or more directional antennas

located on the sensor to be deployed. If the antennas are pointed in different

directions such that their main beams overlap, AOA can be estimated using

the ratio of their individual RSS values.

If device cost and size if of significant importance, the demand of multiple

antenna elements may render the AOA approach impractical. However, in

many cases all the required hardware for AOA estimation may be already

present in the application. Consider for example [? ], where the purpose

of the sensor network is to identify and locate acoustic sources. Acoustic

sensors are be required by the application in order to operate. If such is the

case, locating the sensors themselves using acoustics in these applications

is a natural extension. Furthermore, despite the cost, localization may not

even be achievable without AOA estimation [1], a common case in relative

location estimation.

Unfortunately, AOA measurements are impaired by additive noise and

multipath phenomena, the very same sources discussed in the TOA section

above.

2.3.1 Statistical model for AOA

AOA measurements are typically modeled as Gaussian, with ensemble mean

equal to the the true angle to the source and standard deviation σα. Standard

deviation bounds have been reported, both for acoustic based AOA estima-

tion [13] as well as RF AOA estimation (using the RSS ration method) [4].

As a final note, AOA estimation requires sensors be placed with known

orientation (e.g., using a built in compass). If such information is not avail-

able, the network localization problem must be extended to consider each
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sensor’s orientation as an unknown parameter, to be estimated along with

position.

For a more detailed discussion on AOA and AOA estimation, the reader

is referred to [4, 13, 32, 43, 45] and references therein.

2.4 Connectivity

When simple, inexpensive, backward-compatible location measurements are

of interest its quite common for localization research to consider connectivity

(also referred to as proximity) measurements [16]. in conjunction with other

measurement types.

Two devices can determine whether on not they communicate indepen-

dently of whether or not accurate RSS measurement circuitry in available

at their receivers. In truth, two sensors are considered to be connected if

the receiving sensor can successfully demodulate packets transmitted by the

other sensor (i.e distance between sensors is not the only decisive factor). If

RSS is to low the receiver fails to successfully demodulate packets.

It is apparent that connectivity is a function of RSS, considered random

due to the randomness of RSS measurements (see section 2.1). Specifically,

if Pthr denotes the receiver threshold (dBm) under which packets cannot be

demodulated and Pij denotes the received power (dBm) at sensor i transmit-

ted by sensor j, then the connectivity measurement of sensors i and j, Ci,j
can be modeled as

Ci,j =

1, if Pij ≥ Pthr

0, if Pij < Pthr
(2.8)

i.e connectivity is a binary quantization of Received Signal Strength [16].

Using the above definition of proximity and the model for Pij presented

equation (2.1) of section 2.1 it can be shown that the probability mass func-

tion (PMF) of Ci,j given the location coordinates xi,xj of sensors i, j is

p(Ci,j = s|xi,xj) = s+ (−1)sΦ
[√

γ ln
||xi−xj ||

ds

]
(2.9)
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where

γ =
(

10np
σdB log 10

)2
(2.10)

where s ∈ {0, 1}, and ds is the range at which the mean received power is

Ps, equal to

δs = d010
(P0−Ps)

10np (2.11)

as shown in section 2.1

Naturally, since connectivity is strongly related to RSS, it suffers from the

same sources of error : multipath and channel fading. Furthermore, while

randomness of packet errors given the received power level is an additional

source of variation in proximity measurements, variation caused by the fad-

ing channel is far more severe, allowing packet related errors to be ignored

without compromising generality.

2.5 Chapter 2 Conclusions

This chapter presented the basic principles of each type of pair-wise mea-

surements : Received Signal Strength (RSS), Time-of-Arrival (TOA), Angle-

of-Arrival (AOA) and connectivity (i.e., proximity) measurements.

The inherent importance of pair-wise measurements become apparent as

this thesis progresses. For one, performance bounds are derived using the

models presented in the previous section through computation of the Cramer-

Rao Bound (CRB). These bounds do not rely on the specific algorithm de-

ployed and thus can be used to quickly judge the precisions possible from

various measurement modalities under a variety of scenarios.

In many cases, the available measurement types will determine the specific

algorithm used to perform localization. The topics discussed in this chapter

are fundamental to the localization algorithms as well as their performance,

presented in the following chapter.



Chapter 3

Cooperative Localization

Algorithms

Up until this chapter we have limited the discussion on an overview of wireless

sensor networks and applications, as well as automatic location estimation

and the available ranging measurement types, without considering the means

by which accurate position estimation is achieved. Chapter 3 bridges that

gap by introducing several cooperative localization algorithms, operating on

the available signal metrics presented in chapter 2 to make applications such

as the ones presented in chapter 1 possible.

This chapter is organized as follows. Section 3.1 provides a brief overview

of the rich literature in sensor localization algorithms. Then section 3.2

presents the distributed weighted multi-dimensional scaling algorithm for

node localization in wireless sensor networks.

Section 3.3 shows how the geometry of the topology can be taken ad-

vantage of in order to perform localization through an iterative localization

algorithm operating on the barycentric coordinates of the sensors. This ap-

proach attempts to limit the need for anchor nodes to a minimum.

An introduction to relative location estimation is made in section 3.4.

Here, the absence of anchor nodes forces agents to cooperatively localize in a

relative coordinate system, using pair-wise distance and angle measurements.

Relative location estimation, as presented in this section, opens the door to

numerous swarming and routing applications.

Each localization algorithm presented is simulated under the exact same

conditions. In section 3.5 conclusions are drawn regarding the limitations,

the offered accuracy, as well as the bandwidth requirements of each approach.
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3.1 Overview of Cooperative Localization

Algorithms

The literature in cooperative sensor localization in rich and ever growing.

The proliferation of low-cost wireless networking options, the advance of sen-

sor network technologies and the inherent importance of location awareness

in many scenarios (including social applications) has created an immense

interest on localization techniques over the last years.

While positioning and navigation have a long history, enabling coopera-

tion requires existing methods to be extended by finding ways to use pair-wise

measurements between sensors in communication range. The challenge is to

allow sensors of unknown location (agents) which are not in range of any

known-location devices (anchors) to be located, and further, to improve the

location estimates of all sensors.

The relevant literature is rich and includes centralized schemes, where

location-dependent information must be conveyed and processed at a central

station and distributed schemes, which rely on location estimation locally

(i.e. not at a central server) and involve communication among neighboring

nodes, possibly iteratively.

3.1.1 Centralized Algorithms

In centralized localization, the positions of all agents are determined by a cen-

tral processor. This processor gathers measurements from anchors as well as

agents and computes the positions of all the agents. Centralized schemes have

demonstrated good estimation performance and the literature involves: a)

exploitation of connectivity, proximity and maximum communication range

information with geometric techniques (e.g. [9]) or linear programming [20]

b) trilateration techniques with (noisy) distance measurements from known-

location anchors (as in global positioning system or proprietary systems (e.g.

[34],[46]) and c) exploitation of (noisy) distance measurements from anchors

as well as unknown-location agents, as in classic multi-dimensional scaling

(MDS) [18] or in semi- definite programming (e.g. [6, 7, 29]). Centralized
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algorithms are, among others, usually not scalable and thus impractical for

large networks

3.1.2 Distributed Algorithms

Research has demonstrated the feasibility of distributed localization algo-

rithms, which are required for scalability and balancing computational costs

across large sensor networks. In one approach, the immediate to the an-

chors neighbors localize first with standard triangulation techniques, then

the neighboring nodes to the previous localized nodes perform triangulation

and so forth (e.g. [39], where localization error accumulation is addressed

with non-linear optimization).

Another approach involves iterative exchange of information among neigh-

boring nodes until certain criteria are met. Examples include work in [31],

where distance vectors are propagated (similarly to distance vector routing)

and include distance to neighbors as well as hop count, distributed versions

of the classic MDS scheme [16, 24, 40], work with barycentric coordinates

[26] and finally, work based on factor graphs [47]. Specifically, work in [24]

merges local maps in order to find out the global topology; work in [40] es-

timates (known) location of anchors and iteratively propagates corrections

to agents; work in [16] crafts local functions through majorization, which

are minimized numerically using gradient descent. Work in [26] assumes all

agents in the convex hull formed by the anchors.

Factors graphs provide another distributed iterative method. These meth-

ods are particularly promising for sensor network localization - each sensor

stores a conditional density of its own coordinates based on its own internal

measurements and the conditional density of its neighbors.A good example is

the factor graph-based algorithm in [47] which has been experimentally and

successfully tested with ultra wide band (UWB) radios. Alternatively parti-

cle filtering (PF) methods have each sensor store a set of ”particles”, i.e., can-

didate representations of its coordinates, weighted accordingly. [28, 37, 44]

These methods have been used to accurately locate and track mobile robots

[28] and are a promising open topic for future research.



3.2. Distributed Weighted Multi-dimensional Scaling (dwMDS) 31

3.1.3 Centralized / Distributed Comparison

There are three big motivations for developing distributed localization al-

gorithms. First, for some applications, no central processor, or none with

enough computational power, is available to handle the calculations. Sec-

ond, when a large network of sensors must forward all data to a single cen-

tral processor, there is a communication bottleneck and thus a higher energy

drain near the central processor. Third, as mentioned, centralized algorithms

usually do not scale well as the network size increases.

Both centralized and distributed algorithms must face the high relative

costs of communication. Centralized algorithms require each sensor’s mea-

surements to be sent over many hops to a central processor as opposed to

distributed where sensors exchange one-hop data (but possibly make mul-

tiple iterations). In the general case, when the average number of hops to

the central processor exceeds the necessary number of iterations, distributed

schemes are likely more energy-efficient.

Some approaches to localization attempt to reduce energy consumption

by combining centralized and distributed features. For example, in [24] the

sensor network is divided into small clusters and a processor from within each

cluster estimates a map of the cluster’s sensors in a centralized fashion. Then,

cluster processors operate a distributed algorithm to merge and optimize the

local estimates.

3.2 Distributed Weighted Multi-dimensional

Scaling (dwMDS)

This section introduces a distributed localization algorithm, based on a weighted

version of multidimensional scaling (MDS) [18], which naturally incorporates

local communication constraints within the sensor network [16]. The key fea-

tures of dwMDS are:

1. A weighted cost function that allows range measurements to be weighted

according to their accuracy; measurements that are believed to be more
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accurate are weighted more heavily.

2. An adaptive neighbor selection method that avoids the biasing effects

of selecting neighbors based on noisy range measurements (see section

2.1 and subsection 3.2.1).

3. A majorization method which has the property that each iteration is

guaranteed to improve the value of an objective cost function to be

minimized.

In this approach, sensor position estimation is achieved by minimizing the

following global cost function (a.k.a STRESS function [18]):

S = 2
N∑
i=1

N+NA∑
j=i

wij (δij − ||xi − xj||)2 +
N∑
i=1

ri ||xi − x̄i||2 (3.1)

where D-dimensional coordinates {xi} are found which minimize S given:

• pair-wise measurements δij between neighboring sensors,

• an arbitrary weight associated with the predicted accuracy of the mea-

surements,

• imperfect prior information : with accuracy ri, agent node i is located

at coordinates x̄i, (1 ≤ i ≤ N ),

• and perfect prior information regarding the positions of the anchor

nodes j, (N < j ≤ NA).

In summary, the first N nodes (agents whose positions are to be estimated)

have imperfect prior information while the remaining sensors N + 1 . . .NA
have perfect prior coordinate information. If no prior information is available

for agent node i, ri = 0, and furthermore if no measurement δij is available

between sensors i and j, then wij = 0. It is assumed that wij ≥ 0, wii = 0

and wij = wji, i.e., the weights are non-negative and symmetric. After simple

manipulations, S can be re-written as follows:

S =
N∑
i=1

Si + c (3.2)
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where c is a constant independent of the nodes location and local cost func-

tions Si are defined for each agent ( i.e., 1 ≤ i ≤ N )

Si = 2
N∑

j=1, j 6=i

wij (δij − ||xi − xj||)2 +
N∑

j=N+1

2wij (δij − ||xi − xj||)2

+ ri ||xi − x̄i||2

(3.3)

Motivated by this cost structure, the authors in [16] propose an iterative

scheme in which each sensor minimizes its corresponding cost function after

collecting distance measurements and position estimates from its neighbors,

thus updating its own position estimate (to be shared in subsequent itera-

tions).

3.2.1 The dwMDS two-stage algorithm

Unlike classical MDS, no closed form expression exists for the minimum of

the local or global cost function. Instead, in [16], the authors minimize Si

iteratively using quadratic majorizing functions as in SMACOF (Scaling by

MAjorizing a COmplicated Function [22]), which generates a sequence of

non-increasing STRESS values. A majorizing function Ti(x,y) of Si(x) is a

function Ti : RD×D → R that satisfies the following properties:

1. Si(x) ≤ Ti(x,y) ∀ y

2. Si(x) = Ti(x,x)

As a result, function Si(x) can be minimized using the following approach.

Starting an an initial condition x0, the majorizing function Ti(x,x0) is min-

imized as a function of x. A new majorizing function Ti(x,x1) can then be

defined by using the newly found minimum x1. This process can be repeated

until convergence (see [22] for details).

By utilizing a simple majorizing function that can be minimized analyti-

cally, e.g., a quadratic function, it can be shown [16] that if X(k) is the matrix

whose columns contain the position estimates for all sensors at iteration k,
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an update for the position estimate of node i is given by:

x
(k+1)
i = αi

(
rix̄i + X(k)b

(k)
i

)
(3.4)

where

α−1
i =

N∑
j=1, j 6=i

wij +

N+NA∑
j=N

2wij + ri (3.5)

and b
(k)
i = [ b1, . . . , bN+NA ] is a vector whose entries are given by:

bj = wij

[
1− δij/||x(k)

i − x
(k)
j ||
]

j ≤ N , j 6= i

bi =
N∑
j=1

wijδij/||x(k)
i − x

(k)
j ||+

N+NA∑
j=N+1

2 wijδij/||x(k)
i − x

(k)
j ||

bj = 2wij

[
1− δij/||x(k)

i − x
(k)
j ||
]

j > N

(3.6)

Note that the weights wij are non-zero only for nodes j in the neighbor-

hood of node i meaning that the update rule for xi will depend only on its

neighborhood. The algorithm that implements the aforementioned iterative

scheme is presented bellow.

Algorithm 3.2.1: dwMDS({δij}, {wij}, {ri}, x̄i, NA, ε, initial condition X(0))

Initialize : S(0), compute αi from equation (3.5) , k ← 0

repeat

k ← k + 1

for i = 1 to N
compute b

(k−1)
i from equation (3.6)

x
(k)
i ← αi

(
ri x̄i + X(k−1) b(k−1) )

compute S
(k)
i

S(k) ← S(k) − S(k−1)
i + S

(k)
i

communicate x
(k)
i to neighbors of node i

communicate S(k) to node i+ 1 ( mod N )

end for

until S(k−1) − S(k) < ε
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Note the following comments:

1. The choice of the weighting function wij should reflect the accuracy

of the pair-wise measurements between sensors i and j, such that less

accurate measurements are down-weighted in the overall cost function.

While weights can be tailored to the variance predictions of the under-

lining noise measurement model, one can adopt a model-independent

weight assignment such as

wi,j =

exp
{
−δ2

ij/h
2
ij

}
, if δij is measured

0, otherwise
(3.7)

where hij = max [{δi,k}k ∪ {δk,j}k}], i.e., a non-zero, symmetric LOESS-

based (see [12]) weighting scheme, shown to perform robustly in [16].

2. The values of ri should quantify the knowledge about the prior infor-

mation regarding node i’s position. If ri’s are very high (compared

to wij’s) then the solution to (3.1) will ”stretch” range measurements

in order to place sensors with prior information at their a-priori co-

ordinates. On the other hand, if ri’s are very low, then the solution

will attempt to preserve range measurements and instead find a global

translation and rotation that results in agreement between estimates

and prior coordinates. Typical values of ri should range between 10−2

and 102, and as long as ri’s are within the correct order of magnitude

the results will be near-optimal.

3. Regarding initialization, each node requires an initial estimate of its

position. In section 3.3 it can be seen that the algorithm is relatively

robust with respect to ”rough” initial position estimates. Furthermore,

while it is assumed in the description of the algorithm that updates

are performed in an ordered fashion (i.e., in the order 1, 2, . . . ,N ),

many other non-cyclic update rules are possible. One possibility is for

clusters of sensors to iterate among themselves until their position esti-

mates stabilize. The estimates can then be transmitted to neighboring

clusters, before starting a new iteration step.
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Figure 3.1: The expected value of the RSS-based estimate of range given that

two devices are neighbors and the ideal unbiased performance

4. Although the majorization approach used guarantees an non-increasing

STRESS function, a major drawback is that, like any gradient search

method, it may converge to a local minimum of the cost function.

The process of selecting neighbors based on noisy distance measurements

needs to be carefully addressed when the measurement type is RSS-based,

due to the fact that the distance estimation provided is in fact biased. The

RSS-based biasing effect has been addressed in section 2.1.1. Specifically, the

range estimator offered is negatively-biased. Figure 3.1) plots the expected

value of the RSS-based estimate of range given that two sensors are connected

and the ideal unbiased performance. The channel has σdB/n = 1.7 and the

dR = 1 (i.e., distances are normalized by dR which denotes the distance

under which sensor are considered neighbors). Ideally, the range estimator

should have a mean value equal to the actual range. However, as the range

increases, the expected value of δij (given that i and j are neighbors) deviates

from linear and asymptotically becomes constant. The is a strong negative

bias for sensors separated by dR or greater. Note that the discussion here

is also applicable to system which use noisy TOA-based range estimates for

neighbor selection.
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To counter the negative biasing effect of selecting neighbors based on

noisy distance measurements a two-stage algorithm is proposed, based in the

predicted distances between sensors.

Algorithm 3.2.2: SelectionAlgorithm({δij}, {wij}, {ri}, x̄i, NA, ε, X(0))

Stage 1: Execute dwMDS with light termination condition ε1

{x̂} ← dwMDS({δij}, {wij}, {ri}, x̄i, NA, ε1, X(0))

Compute new neighborhood structure w
′

ij based on interim estimates {x̂}

Stage 2: Execute dwMDS using {x̂} as initial condition

{x} ← dwMDS({δij}, {w
′

ij}, {ri}, x̄i, NA, ε2, {x̂})

In the first step the dwMDS algorithm is run with a neighborhood struc-

ture based on the available range measurements using (3.7) and a connectivity

constraint (two sensors are considered connected if δij < dR where dR is a

problem specific parameter). An interim estimate x̂ of the sensors location

is provided after convergence.

In the second step the (negatively biased) predicted distances resulting

from the interim estimate x̂ are used as connectivity constraints to construct

a new neighborhood structure. Then using x̂ as an initial condition and the

new neighborhood structure, the dwMDS algorithm is re-run, resulting in the

final location estimates of the sensors. Note that the predicted distances are

used only to select neighbors (i.e., which weights are positive)- the measured

ranges δij as still used to determine the weight values.

The numerical result in the next section demonstrate that the two stage

selection algorithm effectively counters the negative bias phenomenon. It

is important to note, that the selection scheme proposed does not imply

twice the computation. Since the first step need to provide coarse location

information, it does not need to be accurate and can be terminated quickly

with a large ε. The second step begins with a good (although biased) estimate

and will likely require fewer iteration to converge.
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3.2.2 Performance of the dwMDS method

The performance of the dwMDS method is demonstrated on the two-dimensional

50 × 50m network of figure 4.3. We consider ranging error measurements

given by δij = dij + wij, where dij is the true Euclidean distance and wij is

zero mean Gaussian noise of variance σ2.

The experiments are run with the following configurations. To achieve

the connectivity of 4.3, dR is set to 35m, allowing each agent to be connected

with only two anchors; cooperation is obviously needed in order to localize

the nodes.

Figure 3.3 depicts the mean squared error (MSE) as a function of the

ranging error variance σ2 with and without assuming prior knowledge about

the nodes location. Prior knowledge is considered as an a-prior indication of

the agents locations. It is evident that, given prior information, the dwMDS

shows impressive performance. This is not the case for limited prior knowl-

edge. The dwMDS is thus, sensitive upon initialization.
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Figure 3.2: Network topology for 2-dimentional localization. Observe that

agent are connected only with two anchor and need to cooperate in order to

localize.
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Figure 3.3: Mean squared error (MSE) as a function of ranging noise variance

σ2
r for 2D localization with the dwMDS method. Operations are performed

with and without assuming prior knowledge regarding the agents locations

Bandwidth requirements are presented in figure 3.4 for both cases. The

dwMDS scheme has reasonable bandwidth requirements. As the network

density,size and dimensionality increases, so do the bandwidth requirements.

The same principle applies to the ranging error variance.
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ization with the dwMDS method. Operations are performed with and without

assuming prior knowledge regarding the agents locations
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Finally, figures 3.5 and 3.6 depict the same setup for three-dimensional

localization. The conclusion drawn in the two-dimensional case can be gen-

eralized to higher dimensions.
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Figure 3.5: Mean squared error (MSE) as a function of ranging noise variance

σ2
r for 3D localization with the dwMDS method. Operations are performed

with and without assuming prior knowledge regarding the agents locations
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3.3 Distributed Localization in Random

Environments (DLRE)

This section introduces DLRE [26], a distributed, iterative algorithm to co-

operatively locate N agent in RNA−1, with respect to a minimal number of

NA anchors with a priori known location. The proposed algorithm operates

under the strict assumption that all agents lie in the convex hull formed

by the anchors and under these conditions is shown to perform robust lo-

calization under a variety of random operating conditions, with guaranteed

convergence and without requiring more than NA anchors.

Before moving on, it is useful to cover the notation used throughout the

rest of this section. The agents and the anchors lie in RNA−1. Let Θ be the

set of nodes in the network decomposed as

Θ = k ∪ Ω (3.8)

where k is the set of known location nodes, the anchors, and Ω is the set of

agents whose locations are to be estimated. For a set Ψ of nodes, its convex

hull (i.e., the smallest convex set containing Ψ) is denoted by C(Ψ). For

example, if Ψ is a set of three non-collinear nodes in a plane, then C(Ψ) is

a triangle. AΨ denotes the generalized volume (area in D = 2, volume in

D = 3, and their generalization in higher dimensions) of Ψ. If dlk denotes the

true Euclidean distances between two nodes l, k ∈ Θ then, the neighborhood

of node l in a given radius rl is:

K(l, rl) = {k ∈ Θ : dlk < rl} (3.9)

Finally, due to the iterative nature of the approach presented, the notation

cl(t) is used to represent the estimated location vector of the node l at itera-

tion t, while the true location (to be estimated) of node l is represented by c∗l .

DLRE is developed under the following assumptions:
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• Convexity : All agent lie inside the convex hull of the anchors

C(Ω) ⊂ C(k) (3.10)

• Anchor nodes : The anchors’ locations are known a priori, i.e., their

state remains constant

cq(t) = c∗q, q ∈ k, t ≥ 0. (3.11)

• Non-degeneracy : The anchors do not lie on a hyperplane. Thus

Ak 6= 0 (3.12)

• Internode Communication: There is a communication link between all

of the nodes in the set {l} ∪ K(l, rl), ∀l ∈ Ω.

With the above assumption it follows easily the for every agent l ∈ Ω,

there exists some rl > 0 such that a triangulation set, Θl(rl), satisfying the

following conditions:

Θl(rl) ⊂ K(l, rl), l /∈ Θl(rl), l ∈ C (Θl(rl))

|Θl(rl)| = NA AΘl(rl) 6= 0
(3.13)

exists, where | . | denotes the cardinality of a set. Finding the triangulation

set Θl is a crucial step in DLRE, referred to as triangulation.

Finally, DLRE is expressed in terms of the barycentric coordinates, αlk,

of the node l ∈ Ω, with respect to the nodes, k ∈ Θ. The barycentric

coordinates are unique and are given by (see [? ] and [? ])

αlk =
A{l}∪Θl\{k}

AΘl

(3.14)

with AΘl 6= 0, where ”\” denotes the set difference, and A{l}∪Θl\{k} is the

generalized volume of the set Θl with the node l added and the node k

removed.
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Barycentric coordinates can be computed using only the information

available at each node, namely the inter-node distances dlk using the Cayley-

Menger determinants. To be specific, for m+ 1 points in Rm:

A2
Θl

=
1

sm+1

∣∣∣∣∣ 0 1Tm+1

1m+1 Y

∣∣∣∣∣ (3.15)

where Y = {d2
l,j}, l.j ∈ Θl is the matrix of squared distances among the m+1

points in Θl and

sm =
2m(m!)2

−1m+1

(3.16)

is an integer sequence through which the generalized volume AΘl of the con-

vex hull C(Θl) of the m + 1 points in Rm is related to the Cayley-Menger

determinant.

3.3.1 The DILOC algorithm

Before addressing realistic scenarios, a DIstributed LOCalization (DILOC)

algorithm operating under noise free conditions is presented. The DILOC

algorithm is then further extended to account for random link failures and

additive channel noise leading to the DLRE algorithm. Both variations in-

clude a common setup (triangulation) phase as well as an iterative state

updating phase.

DILOC \DLRE Setup Phase: In the setup stage, each sensor l attempts

to triangulate itself (i.e the triangulation set Θl is determined). To this end,

each sensor l establishes a communication radius rl and arbitrarily chooses

NA nodes with in that radius. Node l tests if it lies in the convex hull

of these nodes and repeats this process with all collections of NA nodes in

rl until Θl is determined. If all attempts fail, the communication range is

increased and the process is repeated. Due to the fact that node l lies in the

convex hull formed by the anchors, success if eventually achieved and node l

is triangulated by finding Θl with the aforementioned properties.

A straight-forward procedure, aimed to act as a convex hull inclusion test

is presented bellow. Consider a set of NA nodes denoted as κ. Clearly, if
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(a) (b)

Figure 3.7: A three dimensional convex hull inclusion test: Sensor l is depicted

by ”o” while neighbors are depicted by ”5”. (a) Ak = Ak∪{l} and (b) Ak > Ak∪{l}

node l lies in the convex hull C(κ) then

C(κ) = C(κ ∪ {l}) (3.17)

i.e. the two convex hulls are one and the same and as a result share the same

generalized volume. Thus if Aκ and Aκ∪{l} denote the generalized volumes

of C(κ) and C(κ ∪ {l}) respectively

Aκ = Aκ∪{l} =
∑
k∈κ

Aκ∪{l}\{k} (3.18)

and a convex hull inclusion test, shown in figure 3.7) can be constructed as

Aκ =
∑
k∈κ

Aκ∪{l}\{k} (3.19)

It is noteworthy that due to the fact that the above inclusion test in based

solely on generalized volumes, only the distance information in the Cayley-

Menger determinants is required for calculation.

DILOC State Update Phase: Once all agents l ∈ Ω have triangulated

the DILOC setup phase in complete. At time t + 1, each agent l iteratively

updates its location estimate, by a convex combination of the states of the
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nodes in Θl at time t:

cl(t+ 1) =

cl(t), l ∈ κ,∑
k∈Θl

αlkck(t) l ∈ Ω
(3.20)

where αlk denote the barycentric coordinates of agent l with respect to node

k ∈ Θl, computed via the Cayley-Menger determinant using only local inter-

node distances.

It is useful for notation and analysis purposes to write DILOC in matrix

form. By indexing the anchors in κ as 1, 2, . . . ,NA and the agents in Ω as

NA + 1,NA + 2, ...,N + NA the following (N + NA) × (NA) -dimensional

coordinate matrix can be defined:

C = [cT1 , c
T
2 , . . . , c

T
N+NA ]T (3.21)

Using the above notation, DILOC equations can then be written in compact

matrix form

C(t+ 1) = YC(t) (3.22)

where the (N +NA)× (N +NA) matrix Y can be partitioned as

Y =

[
INA 0

B P

]
(3.23)

The (N ) × (NA) block B = {blj} is a zero matrix, except for those entries

corresponding to agents l ∈ Ω with a direct link to anchors. The (N )× (N )

matrix P = {plj} is also sparse; non-zero entries in row l correspond to the

sensors in Θl. The matrices Y,B and P have important properties that will

be used in DILOC’s extension to DLRE.

3.3.2 Extension of DILOC to DLRE

While it is apparent that DILOC operates distributively exploiting only local

information, its application is limited to unrealistic noise-free scenarios. In

practical scenarios, inter-node distances are subject to errors, communication
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links between neighboring nodes may fail and, when alive, communication

among nodes may be corrupted by noise. This section extends the DILOC

algorithm to DLRE, in order to operate in the generic imperfect communi-

cation case.

For notational convenience, the update equations of DILOC are first writ-

ten in terms of the columns cj(t), 1 ≤ j ≤ NA − 1 of the coordinate matrix

C(t) as follows:

cj(t+ 1) = Ycj(t), 1 ≤ j ≤ NA − 1 (3.24)

Based on the observation that the above update of cJ(t+ 1) does not involve

the coordinates cj(t) at time t, a relaxation parameter α is further introduced.

cj(t+ 1) = [(1− α)I + αY] cj(t), 1 ≤ j ≤ NA − 1 (3.25)

If cj(t) is partitioned as

cj(t) =

[
uj

xj(t)

]
(3.26)

where uj ∈ RNA×1 corresponds to the j-th coordinates of the anchors (hence

the ommited time index) and xj(t) ∈ RN×1 corresponds to the j-th coordi-

nates of the agents at time t, then the state update (performed only only the

agents whose positions are to be estimated) can be re-written equivalently

as

xj(t+ 1) = [(1− α)I + αP]xj(t) + αBuj (3.27)

where the system matrices B and P have been defined in the previous section.

In order to account for the partial imperfect information received by an

agent at each iteration, the above recursion needs to be modified. In practice,

there are several limitations:

• Randomness in System Matrices : Due to imperfect inter-node distance

measurements, the system matrices B and P, needed by each agent

in the update procedure, may in fact be random. Thus, since a single
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measurement of the inter-node distances in the setup phase may lead

to large random errors, it is assumed that a given agent estimates

the required distances at each iteration of the algorithm. In other

words, at each iteration, the l-th sensor can only obtain estimates of

the corresponding rows of the P and B system matrices:

B̂(t) = B + SB + S̃B

P̂(t) = P + SP + S̃P

(3.28)

where {S̃B(t)}t≥0, {S̃P(t)}t≥0 are independent sequences of random ma-

trices with

E
[
S̃B(t)

]
= 0,∀t, sup

t≥0
E
[
‖S̃B(t)‖2

]
= kB ≥ ∞

E
[
S̃P(t)

]
= 0,∀t, sup

t≥0
E
[
‖S̃P(t)‖2

]
= kP ≥ ∞

(3.29)

and SB,SP are the mean measurement errors. Note that the above

does not limit the noise model to additive; it only says that any random

object may be written as the sum of the deterministic mean part and

the corresponding zero-mean random part.

• Random Link Failure: It is assumed that each inter-node communica-

tion link may at times fail randomly. If two sensors l and n share a

communication link, it is assumed that with probability 1−qln the link

fails. Therefore, each link is associated with a binary random variable

eln(t), such that eln(t) = 1 with corresponding probability qln indicates

an active link, while eln(t) = 0 with probability 1 − qln indicates a

link-failure.

• Additive Channel Noise: Given that a communication link (l, n) is

active, sensor l may receive only a corrupt version of sensor n’s state,

cjn given by:

yjln(t) = cjn(t) + vjln(t) (3.30)

This models the communication-impairing channel noise.

Under the random environment model, presented above, the state update
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procedure is modified, leading to the Distributed Localization in Random

Environment (DLRE) algorithm:

xjl ( t+ 1)

= (1− α(t))xjl (t)

+α(t)

[ ∑
n∈κ∩Θl

eln(t)B̂ln(t)

qln

(
ujn + vjln(t)

)]

+α(t)

[ ∑
n∈Ω∩Θl

eln(t)P̂ln(t)

qln

(
xjn(t) + vjln(t)

)]
l ∈ Ω, 1 ≤ j ≤ N(A)

(3.31)

Note that the relaxation parameter is now time varying. This is important

for convergence analysis purposes and the reader in referred to [26] for more

information.

3.3.3 Performance of the DILOC & DLRE algorithms

Both the DILOC and DLRE algorithm were tested on a two-dimensional

topology of 49 nodes depicted in figure 3.8.
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Figure 3.8: Toy 2D topology of 49 nodes to be localized through DILOC and

DLRE. Note that all agents, depicted by blue ”o”s, lie in the convex hull of

the anchors, depicted by the red triangles.
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DILOC is executed with no noise in the system. The communication

radius is increased until triangulation is achieved and all nodes begin with

zero initial conditions. Figure 3.9 shows the estimated coordinates of two

arbitrary nodes; this illustrates the geometric convergence of DILOC to the

exact sensor location. Observe that, even under a noise free channel, DILOC

requires at least 100 iterations for the given setup.
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Figure 3.9: Convergence of DILOC estimates to exact sensor locations under

a noiseless channel for the topology of figure (3.8). While convergence is

guaranteed, it is also slow.

We now consider DLRE, simulated under the following scenario. Com-

munication links are assumed to be active 90% of the time, i.e., qln = 0.9

∀l, n, subject to l ∈ Ω, n ∈ Θl. Active links are hampered by additive com-

munication noise that is Gaussian i.i.d with zero mean and unit variance. It

is further assumed that the perturbation matrices, S̃B and S̃P are zero-mean

Gaussian i.i.d with variance 0.1, since elements of B and B lie in the unit

interval [0, 1].

Figure 3.10 shows the estimated coordinates of two arbitrary nodes.

DLRE’s impressive performance is obvious. Even under the realistic noisy

scenario, agents estimated location almost converge to the exact locations.
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However, note the trade-off between accurate location estimation and band-

width requirements. DLRE requires approximately 25000 iteration till con-

vergence. Since each iteration requires nodes to exchange positioning infor-

mation, DLRE requires ample bandwidth in order to localize.
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Figure 3.10: Convergence of DLRE estimates to exact sensor locations under

a noisy channel for the topology of figure (3.8). Impressive performance is

accompanied by heavy bandwidth requirements expressed as the total amount

of real numbers exchanged.

The same conclusions can be drawn about the case of three-dimensional

localization. Figure 3.11 shows a three-dimensional topology of nodes to be

localized. As in the two-dimensional case, agent nodes lie in the convex hull

formed by the anchors.

We omit simulating the DILOC algorithm and instead focus on the DLRE

algorithm. Under the same setup as in the two-dimensional case, DLRE’s

performance is characterized by the same treade-off. Figure 3.12 shows

a fraction of DLRE’s iterations with the corresponding mean square error

values. As seen, impressive performance comes with heavy bandwidth re-

quirements.
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Figure 3.11: Three-dimensional topology for localization through DLRE.

Agent nodes lie in the convex hull formed by the anchors.
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Figure 3.12: Mean square error as a function of the number of iterations for

localization through DLRE for the topology of figure (3.11). The conclusions

regarding two-dimensional localization can be extended to three-dimensional

localization.
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3.4 GPS-Free Node Localization

Many wireless sensor networks involve applications in which mobile nodes are

required to move in a collaborative manner. Quite often a set of pre-existing

anchors with globally known positions may not always be available or their

availability may not be desired. Such is the case, in multiple swarming and

rooting applications.

This section introduces a localization scheme [1] where each node must

be aware of both its position and orientation relative to the network. The

algorithm presented assumes no anchor nodes, and thus sensors are local-

ized in an arbitrary coordinate system. Furthermore, as numerical results

demonstrate, the GPS-Free node localization scheme is robust with respect

to errors, is unaffected by the speed of the mobile nodes, and scales well as

the network size increases.

The algorithm works under the following assumptions:

• Each node has a compass pointing North (or any other common refer-

ence direction)

• Nodes can measure the distance to their neighbors using a well known

range measurement method (e.g.Time of Arrival (TOA))

• Motion actuators allow each node to move a specific distance in a spe-

cific direction (with respect to North)

• Actuator, compass and distance measurements are subject to errors

caused by various real world disturbances

• Other than the above, no additional positioning equipment or infras-

tructure is required (i.e. anchor nodes are redundant)

Localization in performed in two steps. First, a Core Localization algo-

rithm generates an ambiguous position estimate relative to a reference point,

for each node in the network. Then, a Verification algorithm employs in-

formation generated from each node’s neighborhood in order to resolve the

aforementioned ambiguity. As a result, each node is unambiguously localized

in a relative coordinate system.
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3.4.1 Two stage positioning algorithm

The Core Localization algorithm operates on well defined time-slots, referred

to as rounds, initiated by nodes whenever they require localization. Each

node initiating the core localization process requires at least two neighbors

to eventually localize unambiguously. Each round consists essentially of three

steps:

(1) It begins with inter-distance measurements between neighbors, (2)

it continues with individual, independent node movement, (3) it ends with

a mutual exchange between nodes, of distance and angle measurements for

that round.

As an example consider figure 3.13 which demonstrates the typical move-

ment of two nodes, n1 and n2, during an arbitrary round. At time t0, nodes

n1 and n2 are located at positions (x0, y0) and (x2, y2) on a two-dimensional

plane respectively, and measure their inter-node distance as d1. Between

times t0 and t1, each node {ni}2
i=1 covers a distance vi in a direction αi. At

time t1 both nodes, now at positions (x1, y1) and (x3, y3) exchange informa-

tion concerning their movement (vi, αi) and measure their new inter-node

distance d2, signaling the end of the round.

Figure 3.13: Typical movement of two neighbor nodes during a round for

relative localization.
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To achieve localization, each node selects itself as the origin and localizes

its neighbors in its own local coordinate system. Continuing the example,

to locate the position of node n2 in the relative coordinate system of n1, the

initial position (x0, y0) of n1 is selected as the origin and as a result:

x1 = v1 cosα1, y1 = v1 sinα1,

x3 = x2 + v2 cosα2, y3 = y2 + v2 sinα2,

(x3 − x1)2 + (y3 − y1)2 = d2
2, x2

2 + y2
2 = d2

1.

(3.32)

Substituting the first and second pairs of equations in the third pair of equa-

tion yields:

x2A+ y2B = C (3.33)

where:

A = v2 cosα2 − v1 cosα1, B = v2 sinα2 − v1 sinα1

C =
1

2
(d2

2 − d2
1 − v2

1 − v2
2 + 2v1v2 cos(α1 − α2))

(3.34)

Substituting:

x2 =
C − y2B

A
and y2 =

C − x2A

B
(3.35)

into x2
2 + y2

2 = d2
1, results in:

x2
2D − 2x2E + F = 0, y2

2D − 2y2G+H = 0, (3.36)

where D,E, F,G and H are defined as follows:

D = A2 +B2, E = AC, F = C2 − (d1B)2

G = BC, H = C2 − (d1A)2 (3.37)

Using equation (3.36), each dimension of n2’s new location solves indepen-

dently to:

x2 =
E +
√
E2 −DF
D

, y2 =
G+
√
G2 −DH
D

(3.38)

and, as long as D 6= 0, solutions can be paired up using equation (3.33),
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resulting in two distinct location estimates. Note that if D = 0, localization is

impossible, and we have an exceptional condition, discussed in greater detail

near the end of this section. The core localization algorithm is presented in

detail bellow.

Algorithm 3.4.1: CoreLocalization(n1, n2, v1, α1)

(1) : d1 ← inter-distance(n1, n2)

(2) : Move node n1 by v1 and α1

(3) : d2 ← inter-distance(n1,n2)

(4) : Retrieve v2 and α2 by n2

(5) : Calculate positions of n2 using (3.33)(3.36)(3.38)

After the core localization algorithm terminates for n1 and n2, each node

is left with two position estimates for its neighbor. Since only one position

is valid (the other is due to symmetry), an additional verification step is

required, in with both nodes diminish ambiguity by enlisting the aid of a

common neighbor, n3.

The verification process is straight-forward using a third neighbor. Af-

ter solving the equations of the core localization algorithm, node n1 is left

with two position estimates {n1.2}3
j=2 for each of its neighbors n2 and n3.

In order to unambiguously localize both neighbors simultaneously, node n1

retrieves the inter-node distance measurement d2,3 from either n2 or n3 and

selects a pair of positions such that it better matches the received distance

measurement.
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Algorithm 3.4.2: Verification(NeighborListNL)

(1) : for each neighbor pair (m,n) in NL do

(2) : if m and n are neighbors then

(3) : dm,n ← inter-distance(m,n)

(4) : for each pair {mi, nj|i, j = 1, 2} do

(5) : D ← Euclidean-distance(mi, nj)

(6) : if D − dm,n = min then

(7) : Mark mi, nj as true positions

(8) : end if

(9) : end for

(10) : end if

(11) : end for

Exceptional Conditions: The above two stage algorithm works well for

rigid geometries. However, two problematic configurations exist, where the

core localization algorithm may be unable to estimate two position estimates

per node. These are, the equal parallel movement and the excessive error

configurations.

Equal parallel movement, as the name suggests, occurs when two neigh-

bors move in parallel during the same round. This is equivalent to A =

B = D = 0. Since both nodes move in parallel with maintaining the same

inter-distance, at the end of the round node n2 lies anywhere on a circular

ring centered around n1, and vise-versa ; the resulting position estimates are

infinite.

The excessive error configuration occurs when highly erroneous d, v and

α values create a non-rigid geometry, such that E2DF < 0 or G2DH < 0

leaving the core localization algorithm unable to estimate any positions.

Fortunately, both exceptional configurations may be detected in the core

localization algorithm, and nodes can make necessary adjustments (e.g. ran-

dom changes) to their speed and direction to avoid the same ill-configuration

in the next round.
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3.4.2 Performance of GPS-Free Node localization

The performance of GPS-Free node localization is tested for a topology of

100 nodes randomly arranged in a 100 × 100m grid during a period of 100

rounds. Nodes move according to a random walk with random speed [0, 5),

random angle [0, 2π) and a fixed radio range of 6m Simulation is performed

under the following conditions: to simulate errors, uniform random noise is

added to all measurements. For distance measures a percent error relative

to the measured value is added, and for angle measures and absolute percent

error (percent of 2) is added to the measured value.

Figure 3.14 depicts the average position error as a function of inaccuracies

in both distance and angle measurements. The impressive performance of

the algorithm is attributed mainly to the fact, that errors introduced in a

round don’t carry on to the next round, i.e, errors do not accumulate.

Figure 3.14: Average positioning error as a function of distance and angle

measurements for GPS-Free relative node localization.

Figure 3.15 shows the number of nodes unlocalized due to errors in

distance and angle measurements. By introducing errors, excessive configu-

rations are more likely to occur. However, even with 30% errors on distance

and angle measurements, the portion of unlocalized nodes is bellow 16%.

It is important to note, that the results presented previously are closely

related to the network’s dynamic density. For sparse networks, the lack
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Figure 3.15: Percent of nodes unlocalized as a function of distance and angle

measurements for GPS-Free relative node localization. Observe that given the

right density (collective movement) performance is impressive.

sufficient connectivity brought about by independent node movement hinders

the localization process. However, the GPS-Free node localization scheme’s

performance is excellent in collective movement cases. The interested reader

is referred to [1] and references therein for move information on relative

localization and collective movement schemes.

3.5 Chapter 3 Conclusions

This chapter presented a subset of the rich localization literature and included

a performance evaluation of three distinct localization algorithms. Each al-

gorithm’s performance as far as bandwidth-efficiency and offered accuracy is

concerned, was quantified under the same noisy scenario.

Distributed weighted Multi-Dimensional Scaling (dwMDS) performs well

error-wise without unrealistic bandwidth requirements but may converge to

a local minimum and requires some prior information.

The Distributed Localization In Random Environments (DLRE) algo-

rithm offers impressive performance without the need for additional anchor

nodes and accounts for various random scenarios including communication

link-fails and imperfect node communication. However, while convergence is
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guaranteed, it is slow and as a result the DLRE algorithm requires a signifi-

cant amount of bandwidth for localization purposes.

To serve as an introduction to relative location estimation, the GPS-Free

node localization two stage algorithm was tested. The algorithm performs ro-

bustly and scales well as the network size increases. Bandwidth requirements

are minimal since each node is localized in one step. The mayor drawback of

the GPS-Free node localization scheme is its heavy reliance of the network’s

dynamic density. As a result, its use is limited mainly to collective-movement

applications.

The next chapter introduces a factor graph based localization algorithm

as well as two variations. The offered algorithms are extensively simulated

under identical scenarios and conclusions are drawn.



Chapter 4

The Sum Product Algorithm

over Wireless Networks

The Sum Product Algorithm over Wireless Networks [47] is a factor-graph

based cooperative location estimation algorithm. The algorithm aims to

compute the position estimates of all the nodes consisting the network, based

on available information to that time. Available information includes internal

and relative, pair-wise measurements (see section 1.2.1) as well as information

regarding the network’s prior state.

As a first step, the relationship between all variables in the network is

determined, then factorized and a factor-graph corresponding to that fac-

torization is constructed. SPAWN then maps that factor graph onto the

network topology by associating each node with its local information and de-

velops the message passing scheme over the network factor graph (net-FG).

As a result, each node may update its position estimate. based on the rules

of the Sum Product Algorithm, implemented atop the network factor graph.

Due to the nature of the approach mentioned above, before going into

detail it is useful to introduce the basic concepts of factor graphs and the

sum product algorithm.

4.1 An introduction to Factor Graphs (FGs)

A factor graph [47? ], is a way to graphically represent a factorization of a

function or a distribution. For example, consider a hypothetical function

f(x1, x2, x3)
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and further assume that it can be factorized as follows:

f(x1, x2, x3) = f1(x1)f2(x1, x2)f3(x1, x2)f4(x1, x3)

where x = {x1, x2, x3, x4} are referred to as variables, while f = {f1, f2, f3, f4}
are referred to as factors. The above factorization can be graphically repre-

sented by a factor-graph, as seen in figure [? ]. It is important to note that

factorization followed by a message passing scheme allows difficult functions

to be handled.

Observe that the depicted factor-graph is cyclic. Unfortunately, this sug-

gests that messages from the edges of the cycle will iteratively be transmitted

within the cycle without an end. However, factorizations are by no means

unique: by grouping f2 and f3 together, we result in a cycle-free (tree) graph.

Due to the lack of cycles, tree graphs are appropriate for use in conjunction

with message passing algorithms such as the sum product algorithm, intro-

duced in the following subsection.

4.1.1 The Sum Product Algorithm (SPA)

The sum-product algorithm (or belief propagation) is a popular message pass-

ing algorithm operating on factor graphs. The SPA operates by computing

messages inside the vertices and sending those messages over the edges. This

subsection aims to describe the computational rules of the SPA; readers are

referred to [47] and references therein for a more detailed treatment.

Let µi→j(xij) denote the message sent from node i to node j. Message

computation is handled as follows:

• A message from a factor node fi to a variable node xi is given by:

µfi→xi(xi) =

∫
fi(x0, x1, . . . , xi, . . . , xn)

∏
µxk→fi(xi) (4.1)

• A message from a variable node xi to a factor node fi is given by:

µxi→fi(xi) =
∏

µfk→xi(xi) (4.2)
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• The marginal distribution of node xi is given by

b(xi) = µfi→xi(xi)µxi→fi(xi) (4.3)

• The marginal of a cluster of variables is obtained by multiplying the

incoming messages with the corresponding factor.

4.1.2 Factor Graphs and Sequential Estimation

Sequential estimation refers to the process of estimating dynamic variables,

that is, variables that change over time [47]. A common approach is the

estimation of variables at certain times, for example variable x(t) at time

t, using a set of independent observation up to and including time t, for

example z(1:t) = [ z(1), . . . , z(n)]. By relying on the following assumptions:

p(x(t) | x(1:(t−1))) = p(x(t) | x(t−1))

p(z(t) | x(0:t)) = p(z(t) | x(t))
(4.4)

it can be shown that

p(x(t) | z(1:t)) =

∫
p
(
x(t), x(t−1) | z(1:t)

)
dx(t−1)

∝ p
(
z(t) | x(t), z(1:t−1)

)
p
(
x(t) | z(1:t−1)

) (4.5)

where

p
(
x(t) | z(1:t−1)

)
=

∫
p
(
x(t), x(t−1) | z(1:t−1)

)
dx(t−1)

=

∫
p
(
x(t) | x(t−1), z(1:t−1)

)
p
(
x(t−1) | z(1:t−1)

)
dx(t−1)

=

∫
p
(
x(t) | x(t−1)

)
p
(
x(t−1) | z(1:t−1)

)
dx(t−1),

(4.6)

This allows us to determine the a posteriori distribution p(x(t)|z(1:t)) in a two

step process based on the following simple observation. Given all observations

before time t, the distribution p(x(t) | z(1:t−1)) can be determined though

equation (4.6). This step is referred to as the prediction operation for obvious
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reasons. Then, through the newly calculated distribution and by taking

the new observation z(t) in to consideration, the distribution of interest can

be calculated though equation (4.5), in a step referred to as the correction

operation.

However, what is important is that sequential estimation can also be

performed in an automated fashion equivalently by factoring the distribution

p(x(0:T )|z(1:T )), where x(0:T ) and z(1:T ) denote the collection of all variables

and observations up to time T , and by applying the sum product algorithm

[47]. This important characteristic of sequential estimation will be used in

the derivation of the SPAWN algorithm, presented in the following section.

4.2 Sum Product Algorithm over Wireless

Networks (SPAWN)

4.2.1 Modeling Assumptions

Inline with the system model and the notation introduced in previous sec-

tions, time is considered slotted and the goal is to compute the position

estimates x(0:T ) of all the nodes in the network, for all time slots t. Each

node i is equipped in order to perform internal measurements at time t, de-

noted as z
(t)
i,self and may perform pair-wise measurements with its neighbors,

denoted as z
(t)
i,rel.

Work in [47] includes the following modeling assumptions. Let x(t1:t2),

z
(t1:t2)
self and z

(t1:t2)
rel denote the sequence of positions, available internal and

available pair-wise measurements respectively, for all nodes from time t1 to

time t2. Then:

• The positions of nodes are a priori independent:

p(x(0)) =
N∏
i=1

p(x
(0)
i ) (4.7)
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• The movement of nodes follows a memoryless walk:

p(x(0:T )) = p(x(0))
T∏
t=1

p(x(t) | x(t−1)) (4.8)

• Nodes move independently:

p(x(t) | x(t−1)) =
N∏
i=1

p(x
(t)
i | x

(t−1)
i ) (4.9)

• Given the nodes position, relative measurements are independent of

internal measurements:

p(z
(1:T )
rel | x(0:T ), z

(1:T )
self ) = p(z

(1:T )
rel | x(0:T )) (4.10)

• Self measurements are mutually independent and depend only on the

current and previous node positions:

p(z
(1:T )
self | x

(0:T )) =
T∏
t=1

p(z
(t)
self | x

(t),x(t−1)) (4.11)

• Given the nodes position, relative measurements are independent from

time slot to time slot :

p(z
(1:T )
rel | x(0:T )) =

T∏
t=1

p(z
(t)
rel | x

(t)) (4.12)

• The relative measurements at any time slot t are conditionally inde-

pendent:

p(z
(t)
rel | x

(t)) =
N∏
i=1

∏
j∈St→i

p(z
(t)
j→i | x

(t)
j ,x

(t)
i ) (4.13)

Finally, the following assumptions, constituting the local information of

any node i in the network at any time t, are made:

• the initial position distribution p(x
(0)
i ), is known,
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• the mobility model at any time t, p(x
(t)
i | x

(t−1)
i ), is known,

• the likelihood function, p(z
(t)
i,self | x

(t)
i ,x

(t)
j ), is known,

• the likelihood function, p(z
(t)
i,rel | x

(t)
i ,x

(t)
j ), is known,

• both internal and pairwise measurements at time t, z
(t)
i,self , z

(t)
i,self , are

known.

Under the aforementioned assumptions, the SPAWN algorithm is derived in

the following sections. For more information regarding the modeling assump-

tions, the interested reader is referred to [47] and references therein.

4.2.2 Creation of Network Factor Graph

The first step in the derivation of the SPAWN framework is the factorization

of the the relationship between all variables in the network, i.e., the poste-

rior distribution p(x(0:T ) | z(1:T )). Under the assumptions presented in the

previous section and though application of Bayes rule:

p(x(0:T ) | z(1:T )) ∝ p(x(0:T ), z(1:T ))

= p(x(0:T ), z
(1:T )
rel , z

(1:T )
self )

= p(z
(1:T )
rel | x(0:T ), z

(1:T )
self )p(x(0:T ), z

(1:T )
self )

= p(z
(1:T )
rel | x(0:T ))p(x(0:T ), z

(1:T )
self )

(4.14)

Due to the assumptions of the memoryless walk, mutual independence of in-

ternal measurements and independence of relative measurements in sequen-

tial time slots:

p(z
(1:T )
rel | x(0:T )) p(x(0:T ), z

(1:T )
self ) = p(z

(1:T )
rel | x(0:T ))p(z

(1:T )
self | x(0:T ))p(x(0:T ))

=p(x(0:T ))
∏T

t=1 p(z
(t)
rel | x(t))p(z

(t)
self | x(t),x(t−1))

=
∏T

t=1 p(x
(t) | x(t−1))p(z

(t)
rel | x(t))p(z

(t)
self | x(t),x(t−1)).

(4.15)
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By substitution in the above:

(4.15) = p(x(0))
∏T

t=1 p(x
(t) | x(t−1))p(z

(t)
rel | x(t))p(z

(t)
self | x(t),x(t−1))

=
∏N

i=1 p(x
(0)
i )
∏T

t=1 p(x
(t)
i | x

(t−1)
i )p(z

(t)
i,self | x

(t)
i ,x

(t−1)
i )p(z

(t)
rel | x(t))

(4.16)

Finally, the above can be expressed in factor-graph terms

(4.16) =
N∏
i=1

fi(x
(0)
i )

T∏
t=1

ht−1
i (x

(t)
i ,x

(t−1)
i )p(z

(t)
rel | x

(t)) (4.17)

by the appropriate definitions

h
(t−1)
i (X

(t)
i ,X

(t−1)
i ) = p(X

(t)
i | X

(t−1)
i )p(z

(t)
i,self | X

(t)
i ,X

(t−1)
i )

f(X
(0)
i ) = p(X

(0)
i )

(4.18)

Following factorization, the next step is the construction of the corresponding

factor graph. This process can be seen in figure 4.2. Due to equation, (4.13)

the term p(z(t) | x(t)) can be further factorized. This provides an indication

regarding which nodes of the network can communicate, with an example of

a corresponding factor graph for the network of figure 1.1 presented in figure

4.1.
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Figure 4.1: The factor graph of the factorization of factor p(z
(t)
rel | x(t)) for the

network of example [1.1].
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Figure 4.2: A graphical illustration of a FG corresponding to the expression

(4.17) Observe that the message flow, from past to present indicated by the

direction of arrows, acounts for temporal constraints.

In order to utilize the factor graphs of figures 1.1 and 4.1, they need

to be mapped on the time-varying network topology to create a network
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factor graph (Net-FG). A natural choice is to perform the mapping based on

information local to each node. For figure 1.1 this translates to mapping the

vertices h
(t−1)
i (X

(t−1)
i ,X

(t)
i ) to node i, as these vertices contain strictly local

information. Similarly, in figure 4.1, for every variable X
(t)
i , an equality

vertex as well as a set of vertices labeled φj→i exist, with the latter been

functions of z
(t)
j→i, i.e. information local to node i. Association of node i

with all the aforementioned elements as a mapping choice results in a tree-

subgraph. This is an extremely important result allows direct application of

the SPA.

4.2.3 Prediction and Correction Operations

Before applying the SPA to the newly created local tree-subgraphs, the spa-

tiotemporal constraints of the network need to be taken into consideration,

i.e., a message schedule needs to be introduced:
Temporal constraints : To account for temporal constraints messages flow

only forward, from past to present. This is indicated by the arrows present
in figure ??. This leads to the first part of the SPAWN algorithm, presented
bellow:

Algorithm 1 [47]

1: given p(x
(0)
i ), ∀i

2: for t = 1 to T do

3: ∀ nodes i = 1 to N in parallel

4: prediction operation according to SPA rules

µ
h
(t−1)
i →X(t)

i

(
x
(t)
i

)
∝

∫
p
(
x
(t)
i |x

(t−1)
i

)
p
(
z
(t)
i,self|x

(t−1)
i ,x

(t)
i

)
︸ ︷︷ ︸

=h
(t−1)
i

(
x
(t−1)
i , x

(t)
i

)
×µ

X
(t−1)
i →h(t−1)

i

(
x
(t−1)
i

)
dx

(t−1)
i

5: end parallel

6: Correction Operation Algorithm (Algorithm 2)

7: end loop
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Note the presence of both a prediction and correction operation, indicative

of the fact that the location estimation problem, as formulated in this chap-

ter, is indeed a sequential estimation problem. During the correction phase

and in compliance with the SPA, node i computes the message µ
h
(t−1)
i →X(t)

i
(.)

through message µ
X

(t−1)
i →h(t−1)

i
(.), the mobility model p(x

(t)
i | x

(t−1)
i ) and the

likelihood function p(z
(t)
i,self | x

(t)
i , x

(t−1)
i ). Note that all information is lo-

cal. On the other hand, during the correction operation node i relies on

the exchange of information with neighboring nodes to compute the message

µ
X

(t)
i →h

(t)
i

(.) based on all the messages µ
h
(t−1)
k →X(t)

k
(.) ∀k as well as all the

metrics z
(t)
rel.

Spacial constraints : To account for spacial constraints, the message sched-
ule is depicted in figure [? ]. Internode messages, sent as packets over the
wireless link, are denoted by the red arrows. Intranode messages, computed
internally by each node, are denoted by the blue arrows. According to this
schedule, messages flow in one direction over edges, are independent of the
recipient node and thus can be broadcast. This leads to the SPAWN correc-
tion phase, presented bellow

Algorithm 2 [? ]

1: nodes i = 1 to N in parallel

2: initialize belief b
(0)

X
(t)
i

(· ) = µ
h
(t−1)
i →X(t)

i
(· )

3: end parallel

4: for l = 1 to Niter do

5: nodes i = 1 to N in parallel

6: broadcast b
(l−1)
X

(t)
i

(· )

7: receive b
(l−1)
X

(t)
i

(· ) from neighbors ∈ S(t)j→i
8: convert b

(l−1)
X

(t)
i

(· ) to a distribution with respect to variable X
(t)
i using SPA rules

µ
(l)

gj→i→X(t)
i

(
x
(t)
i

)
∝
∫
x
(t)
j

p
(
z
(t)
j→i|x

(t)
i ,x

(t)
j

)
b
(l−1)
X

(t)
j

(
x
(t)
j

)
dx

(t)
j
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9: Compute new message using SPA rules

b
(l)

X
(t)
i

(
x
(t)
i

)
∝ µ

h
(t−1)
i →X(t)

i

(
x
(t)
i

) ∏
j∈S(t)

j→i

µ
(l)

gj→i→X(t)
i

(
x
(t)
i

)

10: end parallel

11: end loop

12: nodes i = 1 to N in parallel

13: determine outgoing message: µ
X

(t)
i →h

(t)
i

(· ) = b
(Niter)

X
(t)
i

(· )

14: end parallel

where a message broadcast by node i, at iteration l at time t, is denoted by

b
(l)

X
(t)
i

(.) and referred to as the belief of node i.

SPAWN is executed as a combination of both algorithms presented previ-

ously. At any given time, each node may obtain and estimate of its location

by taking the mean or mode of its local message µ
X

(t)
i →h

(t)
i

. Note that the

algorithm is completely asynchronous; time slots need not be synchronized

between different nodes.

4.3 Performance of SPAWN

This section provides and discusses some numerical results. For extensive

simulations the reader is referred to Chapter 5. We consider a two-dimensional

50 × 50 networks of five nodes distributed as seen in figure 4.3. Location

performance in evaluated in terms of offered accuracy, through the Mean

Square Error (MSE) metric, as well as in terms of bandwidth consumption.

As in previous simulations, bandwidth consumption is expressed as the size

of the messages (i.e., amount of real numbers) exchanged between all nodes

of the network. SPAWN is utilized with a grid resolution of δ = 0.5m under

the presence of unimodal Gaussian noise of variance σr.

Figure 4.4 illustrates the performance of SPAWN as a function of the

noise variance hindering the pair- wise measurements between communicat-

ing nodes. As the noise variance increases so does the MSE in the position

estimation; large levels of noise variance prohibit the use of SPAWN.
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Figure 4.3: Network topology for two dimensional localization through

SPAWN.
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Figure 4.4: MSE as a function of the noise variance for SPAWN

SPAWN requires ample amount of bandwidth. This can be attributed to

the fact that SPAWN requires the iterative exchange of distributions. The

authors in [47] assumed a UWB infrastructure, ideal for SPAWN operations.

However, in cases were bandwidth is constrained SPAWN can not be applied,

as is evident in figure 4.5.

Finally, figure 4.6 plots the Cramer-Rao Bound for distributed, two-
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dimensional, cooperative localization. As seen, the CRB curve follows the

SPAWN MSE curve, corroborating the efficiency of the SPAWN framework.

The interested reader will find the full derivation of the CRB in appendix I.

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

1

2

3

4

5

6

7

8

9

10
x 10

4

Mean Square Error

T
o

ta
l 
M

e
s
s
a

g
e

s
 (

re
a

l 
n

u
m

b
e

rs
)

 

 

SPAWN − σ
r

2
 = 0.01

SPAWN − σ
r

2
 = 4

Figure 4.5: Total size of exchanged messages for small and large ranging er-

ror noise variance for SPAWN algorithm. Observe the prohibiting order of

magnitude.

0.5 1 1.5 2 2.5 3 3.5 4
10

−2

10
−1

10
0

10
1

10
2

�
r

2

C
ra

m
e
r−

R
a
o

B
o
u
n
d

Cramer−Rao Bound for 2D topology

Cramer−Rao Bound

Figure 4.6: Cramer-Rao lower bound (CRB) for the topology of figure [4.3].



73

Chapter 5

Parameterized Sum Product

Algorithm over Wireless

Networks (P-SPAWN)

The previous Chapter revealed a very important result regarding localization

through application of the Sum Product Algorithm over Wireless Networks.

In the absence of ultra-wide-band radios, SPAWN’s bandwidth requirements

are quite heavy.

Specifically, the belief message b
(l)

X
(t)
i

(
x

(t)
i

)
of node i regarding its own lo-

cation
(
x

(t)
i

)
, which is broadcasted at the beginning of iteration l+ 1, maps

RD → R and thus, requires significant amount of communication bandwidth.

For example, for 2D localization, area of interest 50m× 50m and grid reso-

lution of 0.5m× 0.5m (i.e. grid resolution parameter δ = 0.5m) at least 104

real numbers need to be transmitted per agent per iteration.

The goal of this chapter is to reduce the amount of total transmitted in-

formation during the localization process, without compromising localization

accuracy. Towards that goal, a variant of the SPAWN algorithm is proposed.

For 3D localization (D = 3), by exploitation of the independent depth/height

measurement at each node, the inter-node measured distances are projected

to a common 2D plane. Specifically, the depth/height unbiased, minimum

mean squared error (MSE) estimate zi of each node i is equivalent to its

internal measurement, i.e. zi = ζi , according to the Gauss-Markov theorem.

The range measurement between nodes i and j is projected on a common

plane, according to d̃pij =
√
d̃ij − (ẑi − ẑj)2 , which is no longer Gaussian.

The variant of SPAWN , namely Parameterized Sum Product Algorithm

over Wireless Networks (P-SPAWN) is then applied. For 2D localization
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(D = 2), the algorithm is directly applicable.

5.1 Message representation

The P-SPAWN approach exploits the fact that the belief message b
(l)

X
(t)
i

(
x

(t)
i

)
of node i can be carefully expressed via a family of known parametric distri-

butions, using a limited number of parameters. For example, if a node has

a single neighbor, which is an anchor, then it’s belief will form a grommet

(i.e. a ring) centered at the anchor’s location, with diameters proportional

to the measured distance, as well as the ranging error 5.1; the node can

be located anywhere on the ring. Even though the possible locations (and

their corresponding belief values) are numerous, such belief message can be

directly modeled with only three parameters (center, range and range error

variance) and thus, the belief to be broadcasted can be significantly com-

pressed through the transmission of those parameters only.
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Figure 5.1: An agent measuring noisy distance from an anchor can be located

anywhere on a grommet centered at the anchors location.

Therefore, the problem at hand can be viewed as a four step process,

followed by each node i:

• successful identification of the appropriate belief type b
(l)

X
(t)
i

(
x

(t)
i

)
,
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• its expression to a limited number of parameters,

• broadcasting of those parameters to the neighbors (and not the belief

itself),

• reconstruction of the belief at a receiving node through those parame-

ters.

Inline with the computational rules of the Sum Product Algorithm (sec-

tion 4.4.1), the belief message of node i at iteration l during time slot t is

the multiplication outcome of factor graph messages:

b
(l)

X
(t)
i

(
x

(t)
i

)
∝ µ

h
(t−1)
i →X(t)

i

(
x

(t)
i

) ∏
j∈S(t)j→i

µ
(l)

gj→i→X
(t)
i

(
x

(t)
i

)
(5.1)

At the simplest case, messages µ
(l)

gj→i→X
(t)
i

(
x

(t)
i

)
can be viewed as circular

grommets centered at the neighbors estimated locations (note that these lo-

cations may be ambiguous i.e. numerous rings per message). In figure 5.2

for example, an agent receives beliefs from 3 anchors, obtaining as a result a

unimodal belief after application of equation (5.1).
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Figure 5.2: Communication with three anchors leads to a unimodal belief on

the 2D plane.
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The area of each grommet

rj→i = {xt : µ
(l)

gj→i→X
(t)
i

(
x

(t)
i

)
6= 0} (5.2)

quantifies localization accuracy. For the specific example of figure 5.2, the

neighbors are anchors and thus, the only source of uncertainty is the range

measurement noise. However, if the neighbor is an agent, then there will be

two sources of uncertainty: range measurement noise as well as ambiguity

regarding the agents location 5.3. This leads to wider areas, which naturally

indicate greater uncertainty; the set of possible locations is bigger.
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Figure 5.3: The area of received factor graph messages quantifies uncertainty.

Having determined how messages are represented, we are now ready to clas-

sify each possible type of resulting belief. Section 5.2 develops a simple

classification scheme based on the number of neighbors as well as the type

of messages their broadcast.
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5.2 Classification of beliefs in a noiseless

environment

In order to classify the types of resulting beliefs, we first a noiseless channel

in which nodes are able to perform perfect measurements. In the ideal noise-

less channel, the grommets of section (5.1) revert to perfect circles centered

at the estimated (possibly ambiguous) locations on the transmitting nodes

with a radius of δij, were δij denotes the true Euclidean distance between

communicating nodes i and j.

Consider agent node i, updating its location estimate at time t, through

iteration l of the SPAWN algorithm. Under the noiseless channel assumption,

each message received by node i from neighbor j ∈ Sj→i during iteration l is

associated with the following set:

C(l)
j→i(x

(t)
i ) = {xi ∈ R2 : (xi − xj)2 + (yi − yj)2 =

√
δij

∀xj, yj such that b
(l−1)

X
(t)
j

(
x

(t)
j

)
> 0} (5.3)

It can easily be seen that the set C(l)
j→i is a collection of circles in R2. The

cardinality of the set, expressed in terms of individual circles is equal to the

number of modes in transmitter node j’s belief. For example, if j’s belief is

unimodal, the cardinality of set C(l)
j→i is equal to one. A transmitter node j

with a bimodal belief leads to a set C(l)
j→i of cardinality two. In the general

case, if the belief of the transmitting node is K-modal, the cardinality of set

C(l)
j→i is K.

Note that an exception to the above rule occurs when the distribution of

the transmitting node is a circle. This leads to a set of infinite circles for

C(l)
j→i. It will be shown that, under the presence of noise, the resulting set

C(l)
j→i contains only one ring of larger uncertainty (area). Thus, we consider

that a circle distribution results in cardinality of one.

The above formulation allows us to express the set C(l)
j→i as an enumeration

of the circles:

C(l)
j→i = {cj,1, cj,2, . . . , cj,K} (5.4)
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where K denotes the modality of b
(l−1)

X
(t)
j

and cj,m, m = 1, . . . , K denotes the

circles corresponding to each mode.

As a result, the non-zero points of message µ
(l)

gj→i→X
(t)
i

(
x

(t)
i

)
received by

node i from node j are given on the two-dimensional plane, in terms of sets,

by the union of the collections of circles in C(l)
j→i

µ
(l)

gj→i→X
(t)
i

(
x

(t)
i

)
2D

= {x(t)
i ∈

K⋃
m=1

cm,j ⊂ R2} (5.5)

where the subscript 2D indicates that we are interested only on the points

at which the message is non-zero (i.e., potential locations) and not on the

quality of estimation.

In a similar fashion, in terms of sets, the correction operation of SPAWN

given by equation (5.1) can be expressed as the union of the intersections of

the sets of C(l)
j→i for all nodes j = 1, . . . , J with a communication link to node

i:

b
(l)

X
(t)
i

(
x

(t)
i

)
2D

= {x(t)
i ∈

(
K⋃
m=1

cm,1

)
∩

(
K⋃
m=1

cm,2

)
∩ . . . ∩

(
K⋃
m=1

cm,J

)
⊂ R2}

(5.6)

Since the intersections of unions is the union of intersections (the intersec-

tion operation is distributive over the union operation) we can now easily

determine the maximum possible modality of the resulting belief of node i

at iteration l of time slot t. The distribution is given by the non-overlapping

union of intersection operations, and thus the maximum number of modes is

given by

Kmax =
N !

(N − 2)!
(5.7)

where

N =
J∑
d=1

Kd∑
k=1

mkjd (5.8)

Kd denotes the cardinality of the set C(l)
j→i for j = d and J is the cardinality

of the set Sj→i, i.e., the set of all neighbors of node i.

It is important to note that Kmax determines the maximum possible
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modality and will, in all likelihood, be different that the actual modality.

We can however, determine the actual number of modes through a simple

clustering algorithm, such as K-means, by clustering b
(l−1)

X
(t)
i

(
x

(t)
i

)
2D

for Kmax

clusters and discarding invalid results by taking the point-wise multiplication

with the original belief. Clustering efficiently requires an indication regard-

ing the number of clusters so, in a best effort attempt, the maximum number

of modes needed to be determined a-priori.

Summarizing, the modality of the new belief of node i, b
(l)

X
(t)
i

can be de-

termined in the following steps:

1. Given a set of J neighbors, each with Kj-modal distributions, Kmax is

computed.

2. If node i has only one neighbor with a circle distribution, i.e.:(
N∑
n=1

− 2

)
= 0 (5.9)

the process is terminated this the distribution of i’s belief has been

determined.

3. A set of clusters, C, is determined through application of the K-means

algorithm and placed on the topology.

4. Invalid clusters are discarded though point-wise multiplication with the

positions in which the original belief is non-zero (potential locations of

node i).

C∗ = C . b
(l)

X
(t)
i

(
x

(t)
i

)
2D

(5.10)

C∗ now contains all valid clusters.

The process then continues in subsequent iterations. The important result

is that, given the number of clusters, we have already determined a message

parameterization of node i’s new belief. Specifically, each mode (i.e cluster)

of node i’s belief, can be expressed by it’s coordinates on the two dimensional

plane. This information is sufficient for constructing node i’s belief without

the need for the whole distribution to be broadcasted in the next iteration.
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The exceptional case of the circle distribution is handled in the following

section where, under a noisy channel, it is shown it results in a ring of larger

proportions, expressed by 4 numbers: two-dimensional center, radius and an

uncertainty parameter.

5.3 The P-SPAWN algorithm

P-SPAWN operates under practical, realistic environments where communi-

cation in impaired by noise, by generalizing the results of the previous section.

In the ideal case, messages where a collection of circles. Under noise, mes-

sages are a collection of grommets. While the same principles apply, we note

the following distinctions:

• Discovered clusters are associated with two-dimensional Gaussian dis-

tributions with mean equal to the cluster’s coordinates and variance

corresponding to uncertainties due to noise (see figure 5.2)

• Grommets are characterized by their width (i.e., uncertainty 5.1. Dif-

ferent nodes have different levels of uncertainty. Therefore, during com-

munication of node i with its neighbors the different levels of uncer-

tainty and their contribution to the resulting belief of node i need to

be taken into account.

• When the belief broadcasted is a ring, through line 8 of the SPAWN

algorithm, the receiving end obtains a ring of much greater proportions.

This quantifies the level of uncertainty caused by the infinite possible

locations on the ring’s periphery. Using the approach of sets, it is

evident that since each of the infinite modes on the ring corresponds

to a ring at the receiving side, their union blends in a larger area.

Fortunately this observation allows direct computation of the width of

the new ”fatter” ring.

• Due to uncertainties, the intersection of two rings will never result in a

single point as in the ideal case. This has been taken into consideration

while discussing the clusters. However an exceptional case may occur,
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as is evident in the case of neighbors lying on a hyperplane. Figure 5.3

depicts this exceptional case. In order to better model the resulting

belief, referred to as a crescent distribution, clustering will include a

additional step to detect this case.

Having addressed the aforementioned distinctions, we are ready to de-

velop a heuristic scheme in which nodes identify their belief type and broad-

cast only the parameters needed for reconstruction by the receiving end. The

following cases may occur:

• Case 1: Agent node i has no neighbors; its belief will be uniform over

the area of interest and will not be broadcasted in subsequent iterations

(it contains no useful information).

• Case 2: Agent node i has one neighbor j. The following possibilities

exist:

– Case 2.1: Node j has a unimodal belief: Node i’s belief will be of

ring-type.

– Case 2.2: Node j has a ring belief: Node i’s belief will be of

ring-type.

– Case 2.3: Node j has a crescent belief: Node i’s belief can be

sufficiently approximated as a ring-type distribution.

– Case 2.4: Node j has a K-modal belief: Node i′s belief is the union

of the collection of rings corresponding to each mode of node j.

We characterize the resulting belief as K-modal (see subsection

5.2).

• Case 3: Node i has at least two neighbors; In order to determine node

i’s distribution we follow the automated clustering procedure described

in subsection 5.2 to determine the mode of node i’s belief.

Observe that cases 1 through 2.4 do not require computation of Kmax.
This allows computationally efficient clustering. This very process is exe-
cuted by the BeliefClassification algorithm, presented bellow.
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The algorithm at node i receives as input SPAWN belief message b
(l)

X
(t)
i

(
x

(t)
i

)
at iteration l and outputs its estimated type parameters, that will be trans-
mitted instead.

BeliefClassification

(
b
(l)

X
(t)
i

(
x
(t)
i

)
2D
, Sj→i, J, σ2

bi

)
[49]

1: Given cardinality of set C(l)j→i ∀j ∈ Sj→i, Kj

2: if (J == 1) && (Kj == 1) then

4: parameters ← CompressBelief (”ring”, Null, σ2
bi

)

5: σ2
µi
← g( σ2

r , ri, σ
2
bj

)

6: elseif (J == 1) && (Kj > 1) then

7: for m = 1 to Kj with step 3 do

8: parameters[m : m+ 3] ← CompressBelief (”ring”, Null, σ2
bi

)

9: end loop

10: σ2
µi
← g1( σ2

r , ri, σ
2
bj

)

11: else (i.e. J > 1 && Kj > 0)

12: Compute maximum estimated modality through equation (5.7)

Kmax =
N !

(N − 2)!

13: Cluster the belief for Kmax

C ← Kmeans

(
b
(l)

X
(t)
i

(
x
(t)
i

)
2D
, Kmax

)
14: Discard invalid clusters by (5.10)

C∗ = C . b
(l)

X
(t)
i

(
x
(t)
i

)
2D

15: Trim redundant clusters: C∗∗ ← trim( C∗ )

16: for m = 1 to size(C∗∗) with step 2 do

17: parameters[m : m+ 2] ← CompressBelief (”K”, C∗∗(m,m+ 1), σ2
bi

)

18: end loop

19: σ2
µi
← g1( σ2

r , ri, σ
2
bj

)

20: endif
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Function BeliefClassification(.) outputs parameters according to the in-

put string. For the case of a ring distributions the parameters include the two

dimensional ring center, the ring radius as well as a uncertainty parameter,

to be discussed further down.

It is noted that an automated way to locate the ring center of a ring-type

belief stems from the selection of three [xy]T points on the 2D plane that

maximize the belief on the periphery of the ring; creating two line segments

that connect a pair of those points and taking the perpendicular bisector of

each line segment, offer an estimate of the ring center as the intersection of

the two bisectors. The ring radius is proportional to the measured range.

K-modal distributions (K ≥ 1) are modeled through function BeliefClas-

sification by a two-dimensional mean (cluster) per mode and an uncertainty

parameter. The process of trimming, performed by the trim function, refers

to discarding clusters the are close to each other and substituting them with

one cluster. This is a necessary step due to over-clustering performed through

the Kmax parameter.

For input string ”K” the BeliefClassification function also classifies cres-

cent type distributions through comparison of cluster-heads inter-distance.

This is performed on the basis that clusters that are not close enough to be

grouped (see trim function) in to a single cluster, may also lead to accuracy

loss if grouped as two individual clusters under certain conditions (see figure

5.4). In this case, the combination of clusters leads to a crescent distribu-

tion, and is modeled as such (Case 2.3). As a rule-of-thumb, this occurs when

the cluster inter-distance is between two-to-six times the standard deviation

associated with the belief variance uncertainty parameter, discussed further

bellow.

P-SPAWN carefully quantifies localization uncertainty using two vari-

ables: σ2
b and σ2

µ. Variable σ2
b denotes the localization uncertainty that

should be modeled at the parameters of each node’s belief. For example,

in the unimodal case of figure 5.2 that variable determines the variance of

the underlying Gaussian. Variable σ2
µ quantifies the uncertainty in the loca-

tion of node i given the broadcasted belief (and corresponding uncertainty)

of neighboring node j. Specifically, σ2
µ resulted from the belief broadcasted
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Figure 5.4: The resulting belief is not modeled adequately neither as a single

nor a pair of clusters.

from node j to agent i is given by:

σµj→i = g1( σ2
r , ri, σ

2
bj

) = σr + σ2
bj

(5.11)

where σ2
bj

is one of the estimated parameters that model belief of node j.

When node j is an agent with a ring distribution, the formula reverts to:

σµj→i = g( σ2
r , ri, σ

2
bj

) =
2

3
∗ ri + σr + σ2

bj
(5.12)

so that the additional localization uncertainty is taken into account. The

results are obtained through carefull computation of the width of messages,

viewed as ring distributions corresponding to each potential point of the

belief, as discussed in previous sections.

The estimated belief variance of node i is given by:

σ2
bi

= min
j∈Sj→i

σµj→i (5.13)

since belief of i is the product of the factor graph messages and thus, the one

with the smallest area (and thus uncertainty) will determine the area of the

produced belief.
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In the numerical results section it will be shown that P-SPAWN, as well

as a SPAWN variation based on truncation provide a flexible and efficient

tradeoff between bandwidth reduction and localization accuracy, even with

unimodal, non-Gaussian ranging error distribution.

5.4 Performance of P-SPAWN algorithm

Numerical results are provided for both 2D as well as 3D localization. The

[x y z]T coordinates and the connectivity of each node are given at Fig. 4.3,

where it is shown that each agent is connected with only two anchors. Even

for 2D localization, connectivity with only two anchors provides ambiguity

between two possible locations and thus, additional information is needed.

However, each agent is also connected to another agent (of unknown location)

and thus, cooperation among the two provides that necessary extra informa-

tion. Notice that in classic LBL systems, only two anchors are utilized for a

given area. We first describe the results for 2D localization, assuming that all

nodes are placed on a common plane, according to their x and y coordinates.

3D localization results follow, alongside with the Cramer-Rao bound (CRB)

for the examined problem. The reported mean squared error (MSE) has been

calculated after 150 experiments (with the exception of BTB schemes, which

have been tested for a larger number of experiments equal to 1000, given

their computational simplicity) per reported noise variance. K-SPAWN has

utilized K = 27 and only non-zero belief value reporting (i.e. a zero belief

value is not transmitted).

Fig. 5.6 offers the mean square error (MSE) calculated across all agents,

as a function of the ranging noise variance σ2
r , for 2D localization. It is

shown that the proposed bandwidth versions K-SPAWN and P-SPAWN of-

fer MSE results similar to the original SPAWN, even though they utilize

exchanged messages of significantly reduced size (to be quantified and dis-

cussed subsequently). Furthermore, all three algorithms above, computed

for a grid resolution of δ = 0.5 m,outperform the distributed version of MDS

(dwMDS); the latter requires some prior knowledge regarding the initial lo-

cation of the agents; such knowledge was not available for any of the above
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algorithms above.

Fig. 5.7 offers the size of the exchanged messages among all nodes (anchors

and agents) and the corresponding MSE across all agents. The size of the

messages is expressed as the total real numbers exchanged in the network

(e.g. if a message broadcasted at iteration l from agent i consists of n real

numbers, it will increase the total number by n). For the classic SPAWN,

the considered topology and grid resolution of δ = 0.5 m, the total real

numbers required until final localization was on the order of 80K numbers.

Fig. 5.7 shows that K-SPAWN reduces the total message size to ∼ 180 real

numbers (two orders of magnitude reduction), while P-SPAWN reduces total

numbers to ∼ 20 (three-orders of magnitude). There is also an interesting

tradeoff between localization accuracy and respective size (depicted by an

arrow), since one can sacrifice MSE and choose P-SPAWN instead of K-

SPAWN, so that smaller messages are utilized and thus, localization can be

performed faster in bandwidth-limited environments (e.g. those with acoustic

modems). For larger ranging error noise variance, all algorithms perform

poorly with similar MSE but vastly different message size requirements. K-

and P-SPAWN will be also shown to perform relatively well below, in non-

Gaussian (but unimodal) ranging error environments.

Fig. 5.8 shows that performance of BTB schemes. Specifically, K-, P-

or classic SPAWN was first run with a ”rough” grid resolution of δ = 5

m (i.e. one order of magnitude smaller than above). Such grid resolution

allowed faster calculation of all the double integrals (for 2D) of SPAWN

(and its variants) compared to δ = 0.5 and offered an initial estimate of

all agent’s location. Next, dwMDS was executed, using the outcome of

SPAWN or P-SPAWN or K-SPAWN as prior knowledge. It is shown that

BTB schemes reduce the MSE and thus, improve localization accuracy com-

pared to prior art. If K-SPAWN or P-SPAWN is used in conjunction with

dwMDS, computation- and bandwidth-friendly localization is possible, since

initial estimate of agents’ location is offered with smaller size of exchanged

messages, compared to classic SPAWN. On the other hand, if classic SPAWN

is utilized instead, localization can be further improved at the expense of in-

creased message size. Such tradeoff is shown at Fig. 5.9 where it can be seen
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that the total number of exchanged of BTB-SPAWN is one order of mag-

nitude larger than BTB-P-SPAWN or BTB-K-SPAWN. Notice again that

under large ranging error noise variance, all algorithms achieve the same

(relatively) large MSE. Discussion regarding MSE limits (of BTB or other

schemes) is offered at the end of this section.

Fig. 5.10 shows the sensitivity of SPAWN and its variants on grid res-

olution δ. Since the location of anchor nodes and the dimensions of the

examined topology are a priori known (or can be approximated), a good bal-

ance is achieved by setting the grid resolution equal to the greatest common

divisor (GCD) of all anchors’ non-zero coordinates. In Fig. 5.10 it is shown

that when parameter δ = 5 (i.e the GCD of all nodes’ non-zero coordinates

for the given topology), MSE is smaller than that for δ = 4; the latter value of

δ, even though smaller, results to inaccurate anchor location approximation

before SPAWN (or its variants) is executed, resulting to higher MSE.

For 3D localization, the projection of range measurements between any

two nodes on a common plane results to a non-Gaussian random variable.

Fig. 5.11 depicts localization MSE for all agents, for depth/height measure-

ment noise variance σ2
z = 1 and various range noise variance σ2

r values. It

can be seen that P-SPAWN (as well as K-SPAWN) offers similar MSE re-

sults with classic SPAWN, even though it operates on non-Gaussian ranging

noise. Such result can be explained by the fact that range measurements

are distributed according to a unimodal distribution. Furthermore, BTB-

SPAWN with grid resolution parameter δ = 5 achieves the smallest MSE

among the tested algorithms (SPAWN, P-SPAWN and K-SPAWN are tested

with δ = 0.5 and BTB-SPAWN with δ = 4 performs inferiorly, for reasons

already explained above). The bandwidth-friendly versions of SPAWN re-

duce the required number of exchanged real numbers one order (K-SPAWN)

or two orders (P-SPAWN) of magnitude compared to (BTB-SPAWN), which

however achieves the smallest MSE (Fig. 5.9). It is further noted that classic

SPAWN in 3D localization would need at least one order of magnitude larger

amount of exchanged real numbers, while attaining larger MSE, compared to

its BTB counterpart. For stronger range noise variance, all algorithms offer

similar, relatively hight MSE with different bandwidth requirements.
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Finally, the Cramer-Rao bound (CRB) is depicted in Fig. ??, i.e. the

MSE lower bound achieved by an unbiased estimator of the unknown co-

ordinates across all agents. The CRB has been calculated at the appendix

for the 3D long-baseline (LBL) setup of this work, assuming independent

noise at both ranging and depth/height measurements. Fig. ?? shows that

the MSE bound follows the same trend with the numerical results of the

proposed algorithms, i.e. increased noise variance, either at depth/height

or range measurement increases the achieved MSE. It is also observed that

the achieved MSE for the BTB cases is smaller than the above CRB bound.

That can be explained by the fact that a) the reported MSE of all algo-

rithms is offered after a bounded number of experiments and thus itself is

an estimate (with associated variance) and b) the SPAWN-based algorithms

(including the classic SPAWN) offer estimated variance of localization error

that does not coincide with estimated MSE, i.e. the offered estimator is bi-

ased ; the estimated belief messages are approximations of the posterior pdf

of each agents’ true location, providing non-zero average localization error

(and thus, biased estimators). However, the calculated and reported CRB

values clearly offer an order of magnitude for the tested algorithms’ MSE.
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Figure 5.5: Test topology and node connectivity: three anchors are placed at

[0 0 0]T , [20 35 0]T , [50 50 0]T and two agents at [15 20 20]T , [45 20 30]T ,

respectively. Notice that each agent can communicate with only two anchors

and another agent. For 2D experiments, nodes are assumed on a common

plane according to their x and y coordinates.
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total number of real numbers exchanged by two to three orders of magnitude,

compared to classic SPAWN. For large ranging error variance, all algorithms

achieve similar MSE with vastly different message size requirements.
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tude smaller exchanged messages (in total real numbers) compared to BTB-

SPAWN. The latter achieves the smallest MSE. All BTB algorithms achieve

similar MSE in relatively large ranging error variance.
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Figure 5.10: Approximating the 2D plane with a grid of area δ2 regions is

necessary for numerical calculations. Parameter δ = 5 m offers better MSE
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greatest common devisor of all anchor’s non-zero coordinates.
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Figure 5.11: MSE across all agents as a function of ranging noise variance σ2
r
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z = 1 for 3D localization.
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Figure 5.12: BTB-SPAWN further reduces MSE compared to classic SPAWN,

while reducing size of exchanged messages one order of magnitude. K-SPAWN

and P-SPAWN can further reduce the required bandwidth by one or two orders

of magnitude compared to BTB-SPAWN, at the expense of MSE.
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(LBL) network setup of this work, including ranging noise variance σ2
r and

depth/height noise variance σ2
z . CRB for 2D networks is also depicted as a

function of σ2
r .



Chapter 6

Conclusion and Future Work

Factor graph-based cooperative localization was extended to bandwidth-

friendly versions, tested with Gaussian as well as non-Gaussian, unimodal

distance measurement error and com- pared with cooperative particle filter-

ing, as well as distributed MDS. The tradeoff between localization accuracy

and size of total messages exchanged was quantified. It was found that the

proposed algorithms can significantly reduce total size of exchanged mes-

sages, one- to two- orders of magnitude. In that way, cooperative localiza-

tion can be offered in narrow-band scenarios (as in underwater or resource

constrained sensor networks). Additionally, a computationally- efficient ver-

sion was found that further improved the localization accuracy, compared

to prior-art. Cramer-Rao bound corroborated the efficiency of the proposed

algorithms. Future work includes testing with multi-modal ranging error

models
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