TECHNICAL UNIVERSITY OF CRETE, GREECE

DEPARTMENT OF ELECTRONIC AND COMPUTER ENGINEERING

Learning Strategies

for Network Fault Detection and Remediation

Aggelos Aggelidakis

Thesis Committee

Assistant Professor Michail G. Lagoudakis (ECE)
Assistant Professor Georgios Chalkiadakis (ECE)
Assistant Professor Polychronis Koutsakis (ECE)

Chania, February 2013

http://www.tuc.gr
http://www.ece.tuc.gr

Aggelos Aggelidakis ii February 2013

[IOAYTEXNEIO KPHTHY

TMHMA HAEKTPONIKON MHXANIKON KAT MHXANIKON YTTIOAOTIZTON

MdOnon Xtpatnyixny
v Evtoniopnd xouw Anoxotdotactn BAoSdv

AwxetOou

‘Ayyehog Ayyelddnng

Eéetactinr Emtpony
Enixoupoc Kodnynthc Mook I'. Aoyouddxne (HMMT)
Enixoupoc Kodnyntic I'eddpyroc Xarnoddxne (HMMT)
Enixoupoc Kadnyntric Hohuyedvne Koutodune (HMMT)

Xovid, PePpoudproc 2013

http://www.tuc.gr
http://www.ece.tuc.gr

Aggelos Aggelidakis iv February 2013

Abstract

Network repair is a domain of growing significance. Viewing the network repair problem
as a sequential decision problem, offers the opportunity to design autonomous agents
able to implement minimum-cost fault detection and remediation policies through the
execution of appropriate test and repair actions on the network. A repair policy consists
of a sequence of test actions that help diagnose the faulty node of the network, followed
by repair actions to restore it to proper operation with minimum cost. This thesis
extends the Cost-Sensitive Fault Remediation (CSFR) model developed for such problems
by introducing a minimax criterion for planning and learning and applies the extended
CSFR model and algorithms to the problem of network repair. The minimax criterion, in
contrast to the minimum expected cost criterion of the original CSFR planning algorithm,
aims to deliver safer policies which keep the maximum (worst) cost low. Planning with
the minimax criterion is complemented with three heuristics for resolving possible repair
action ordering issues. The original planning algorithm and the three variations of the
proposed planning algorithm were applied on fault detection and remediation problems
in simulated networks of various sizes. To account for the computational limitations
of the planning agent, another agent was developed using instance-based reinforcement
learning. While the learning agent cannot guarantee optimality, it can handle much
larger problems by exploiting data collected through interaction with the environment.
Our results with both planning and learning indicate that the CSFR-based approach is
able to handle network repair problems effectively. In several cases, the proposed minimax
criterion yields a maximum actual repair cost which is lower compared to the maximum

actual cost of the minimum expected cost criterion.

Aggelos Aggelidakis vi February 2013

ITepiindn

H aroxatdotaon dixtiomy eivan évag Touéos auiavouevne onuacioc. Bhénovtag to mpdfinua
ATOXUTACTACNE OIXTOOU (¢ €va TEOBATUO BAdOYIXOY amopdoewy, divetal 1 euxonpla yia
TO GYEBIOUO EVOC AUTOVOUOL TEAXTOP, 0 OTolog elvol 1XavOS Vo UAOTIOLACEL TOMTIXES €-
Aaytotou xbotoug, oL onoleg oToyEVOLY TNV avlyveuoT) TN PASENE xou o TNy amoxatdoTaoT),
UEOL TNG EXTEAEONC XATIAANAWY EVERYELOY BLdYVWOoNE xal emOLOpUnong oTo dixtuo. Mia
TONTIXT amoXATdoTaoNG amoTeAeiTon amd Uior GELRd EVERYELWY OLdyVwaeng, Tou Bondoly cTov
EVIOTUOUO TOU ECPAMIEVOLU xOUBOU TOU BIXTLOU, ot aTd EVERPYELEG ETOLOPVWONE YLl VoL o
ToXAToG TOVEL 1) WO TH AetToupyla Ue To eAdyloTo duvatd x6cTtoc. H mapoloa Simhwmpotinn
epyooio enexteivel o poviého Cost-Sensitive Fault Remediation (CSFR), to onolo ova-
Oy Onxe yia Té€Tolou eldoug TpoAuaTa, Ue TNV Teoc¥ixn evog minimax xpitrnplou ylo oye-
OLaoud xon pdinom xou egapuoélet o véo CSFR povtého xon toug avtiotoryoug aiyopliuoug
070 mEOBANUA e amoxatdoTacne dtbou. To minimax xpitrplo, oe aviideon pe To
xputrpto edayloTou avauevouevou xdctoug tou apytxol CSFR ahyoplduou oyediouoy,
E€YEL 1S TTOYO VoL TEOTPEREL (o AGPAURES TERT TONLTIXY) TOU BloTtnpel TO UEYLOTO (YEWROTERO)
%007T0¢ ot YounAd enineda. O oyedlooudc Ue To minimax xpLTAPI0 CUUTATIOWVETOL UE TEELS
eLEETXES HEVBBOUC Yio TNV ETAUCT TGV TEOBANUATDY %aTd T1) SLATAULT) TV EVERYELDY €-
moLopoong. O apyinde ahydptduog oyedlacol xoL oL TEELS TUPUAAAYES TOU TROTEWVOUEVOU
alyopiluou EQuoUOCTNXAY O TEOBANUUTH EVTIOTULOUOU Xl anoxatdotaong BAuBny ot Tpo-
COUOLOUEVA B{XTUOL BlaopeTIXWY PeYEV®Y. AoufdvovTtag utddr Toug UTOAOYIG TXO)E TERLO-
PLOUOUE TOU TEEXTOPA GYEDBLAOHUOU, avamTUYINXE Evag EMTAEOY TEAXTOROS UE YPHOT) EVIOY U-
g wdinong otnetlouevn o otiymotura. O mpdxtopag udidnong dev umopel va eyyundet
BehtiotoOTNTA, OUGS UTOREL Vo YEWLoTEL TOAD PEYOA)TEPX TEOPAT LT AELOTOWVTOS Tol OE-
dopEVL TTOU GUAAEYEL XaTd TNV odAnienidpaon pe to tepBdhhov. Ta anoteréopotd pog 1000
UE TO OYEDLOUO 600 Xl PE TN Uddnon xAUTadEVOOUY OTL 1) TEOCEYYLOT TOU ETAEYUTXE
otnewlouevn oto CSFR povtélo eivon o Véon va yelploTel anoteheopatind Tar TEoBAR T
ATOXUTACTACNC OXTUOU. D€ UPXETEC TEPLTTWOELS, O TROTEWOUEVOS ahyOpLi0C GYEDLIGUOD
UE TO minimax xpLtrpto amod{deL UEYIGTO TEAUYUATIXG XOCTOS AMOXATAG TUOTS, TO OTolo Elvol
YOUUNAOTERO GE GYEOT UE TO PEYLOTO TEayHaTixd x6cT0¢ Tou apyixol CSEFR alyopiiuou

OYEBLUCUOU TIOU EYEL WG XELTAPLO TO EASYIGTO AVUUEVOUEVO KOG TOG.

Aggelos Aggelidakis viii February 2013

Acknowledgements

[would like to take this opportunity to sincerely thank my thesis supervisor, Prof. Michail
G. Lagoudakis for his support and guidance towards the completion of my diploma. I
really appreciate his valuable help and understanding, and I am deeply thankful due
to the fact that he has always spared his time to discuss and solve problems that pre-
sented during my implementation. Special thanks is also extended to Prof. Polychronis
Koutsakis and Prof. Georgios Chalkiadakis for their valuable advice, suggestions and
support to solve the problems arising during implementation. Furthermore I would like
to express my gratitude to my parents for their continuous support, endless encourage-
ment and confidence especially during my studies. Many thanks to my friends, who have
been very helpful in giving me suggestions and moral support towards my studies and

implementation of my diploma.

Euyopiotieg

Oa Hleho vo euyopiloThHow Tov emPBAEnovTa xodnyNnTh wou Muyorh I'. Aayouddmn yio
NV LTOCTHEEN ot TNV %xadoBHYNoT TOU XaTd TN OLdEXEL TNG BIMAWUATIXTC Hou epyaoiog.
Extiue mporypotind tn moAdTiun Borideio xan xatavonon Tou xou ot TEory T EVY VOUOY
yrott mévtor SiEdeTe ypdvo yior vor culNTACOUPE ot Vo AOGOUUE TUYOV TROBAY|UOTO TTOU
Topouctaloviay xotd Tn Sidexela Tng vhonolnong. "Eva yeydho vy oplo T atoug xardnyntég
Iohuyedvn Koutodnn xa I'ewpyio Xodxoaddnrn yior Tig TOAITIES CUPBOUALS, TIC TEOTACELS
TOUG X0t TNV UTooTARIEN Toug oTo TeolAruaTa Tou eugaviCovtay xoTd TN OWdEXELd TNG
vhoroinone. Emmhéov do Aleko var expedow TNy eVyVoUOGUVN HOU GTOUS YOVEIC Hou yia
NV aBIGAELITTN LTOo THRLEY, TNY EVIdopUVOT oL TNY EUTIGTOCUVY TTOL Uou £0Et&ay OAa auTd
Ta YEOVIOL XATE TN DLdEXEL TV OTOLdWY pou. 'Eva yeydio suyopiote) 6Toug Glhoug uou
yioe T Borjdela Toug, TIC TEOTAGELS TOUS Xou TNV Mo ToUC UTOGTHELEN XoTd TN DldpXeLld

TWV GTOLOWY LOU XAl TNV EXTOVNOT) TNG OLTAWUATIXNS UOU.

Aggelos Aggelidakis X February 2013

Contents

1 Introduction 1
1.1 Thesis Contribution 3
1.2 Thesis Layout 4

2 Cost-Sensitive Fault Remediation 7
2.1 CSFR Fault Manager 7
2.2 CSFR Model 8
2.3 CSFR Planning 9
24 CSFR Learning 13

3 MiniMax CSFR 17
3.1 MiniMax CSFR Planning 18
3.2 MiniMax CSFR Repair Action Ordering 20
3.3 MiniMax CSFR Learning, 23

4 Network Repair 25
4.1 Network Repair 25
4.2 Network Simulation oo L 26

5 CSFR Planning for Network Repair 31
5.1 CSFR Model for Network Repair 31
5.2 CSFR Planning Solution for Network Repair 33

6 CSFR Learning for Network Repair 41
6.1 Learned CSFR Model for Network Repair 41
6.2 CSFR Learning Solution for Network Repair 42

Aggelos Aggelidakis xi February 2013

CONTENTS

7 Results

8 Conclusion
8.1 Future Work

References

Aggelos Aggelidakis

xii February 2013

List of Figures

1.1
1.2

2.1

4.1

0.1
5.2
5.3
5.4
5.9

6.1
6.2
6.3
6.4

7.1
7.2
7.3

Network exampleo

Autonomous Agent

Planning fault manager (left) and Learning fault manager (right) 8
An example of the networks considered in this thesis 27
Network example for planning simulator 33

Original CSFR planning for the example in Figure 5.1 when WS1 is faulty 36
MiniMax CSFR planning for the example in Figure 5.1 when WS1 is faulty 37
Original CSFR planning for the example in Figure 5.1 when WS6 is faulty 38
MiniMax CSFR planning for the example in Figure 5.1 when WS6 is faulty 38

Network example for rl simulator 43
Belief Schematic of CSFR Learning for example 6.1 46
Belief Schematic of CSFR Learning — adding episode e for example 6.1 . 47
Belief Schematic of MiniMax CSFR Learning for example 6.1 50
Network example for Planning experiments 52
Network second example for Planning experiments 54
Network example for Learning experiments 56

Aggelos Aggelidakis xiii February 2013

LIST OF FIGURES

Aggelos Aggelidakis xiv February 2013

List of Tables

5.1 Prior probabilities of states in example shown in Figure 5.1 33
5.2 Cost function for the example shown in Figure 5.1 35
5.3 Observation model for the example shown in Figure 5.1 35
5.4 Actual costs for the example shown in Figure 5.1 35
6.1 Prior Probabilities oo 43
6.2 Cost Function RL o 44
6.3 Observe Function RL 45
6.4 Cost Function RL with Additional Episode 48
6.5 Observe Function RL with Additional Episode 48
6.6 Prior Probabilities oo 49
6.7 Cost Function RL 49
6.8 Observe Function RL 50
7.1 Planning with correct priors and uniform dist for network 7.1. 52
7.2 Planning with correct priors and nonuniform dist for network 7.1. 52
7.3 Learning with uniform dist for network 7.1 53
7.4 Learning with nonuniform dist for network 7.1 53
7.5 Planning with wrong priors and uniform dist for network 7.1 53
7.6 Planning with wrong priors and nonuniform dist for network 7.1 54
7.7 Planning with correct priors and uniform dist for network 7.2 for 1000 faults 54
7.8 Planning with correct priors and nonuniform dist for network 7.2 for 1000
faults 55
7.9 Learning with uniform dist for network 7.2 for 1000 faults 55
7.10 Learning with nonuniform dist for network 7.2 for 1000 faults 55

7.11 Planning with wrong priors and uniform dist for network 7.2 for 1000 faults 56

Aggelos Aggelidakis XV February 2013

LIST OF TABLES

7.12 Planning with wrong priors and nonuniform dist for network 7.2 for 1000

faults o 56
7.13 Learning with uniform dist for network 7.3 57
7.14 Learning with nonuniform dist for network 7.3 57

Aggelos Aggelidakis xvi February 2013

List of Algorithms

1 CSFR Value Computation Algorithm 11
2 CSFR Planning Agent 12
3 CSFR Learning Agent 14
4 MiniMax CSFR Value Computation Algorithm 19
5 MiniMax CSFR Value Computation Algorithm with Repair Ordering . . 21
6 Heuristics for Repair Action Selection 22
7 Ping/Test Action - Modified Breadth First Search 28

Aggelos Aggelidakis xvii February 2013

LIST OF ALGORITHMS

Aggelos Aggelidakis xviii February 2013

Chapter 1

Introduction

Organizations and individuals are becoming more dependent on computer networks to
accomplish their daily tasks. This fact implies that faults and time delays induce a
significant cost. New technologies, applications, and service providers need a high level
of services to maintain proper operation. As the number of users constantly increases, the
stability and proper service of a network becomes a challenging task. Fault management
is an important functional area in the Open Systems Interconnection (OSI) model of
network management. The purpose of fault management is to detect and resolve faults
occurring at nodes of the network. Fault detection is a domain of critical importance due
to the fact that correct detection and diagnosis of a fault narrows the range of actions
required in order to resolve the problem.

This thesis focuses on network fault detection and remediation. What exactly is
a network and what does it consist of? A network can be described as a collection of
workstations (computers) and other hardware interconnected by communication channels
(links) that allow sharing of services, data, and information. The basic operation of each
workstation is sending and receiving data to and from another device. The type of
network considered in this thesis includes workstations, servers, hubs, and switches. A
workstation is a high-end single-user computer designed to run technical or scientific
applications. A server is a physical computer dedicated to run one or more services
(as a host) to serve the needs of multiple users of other computers on the network. A
suitch is a networking device that links several workstations with each other and allows
connections to other parts of a network through hubs. A hub is a networking device for

connecting multiple Ethernet devices (servers, other hubs) together and making them

Aggelos Aggelidakis 1 February 2013

1. INTRODUCTION

Figure 1.1: Network example

act as a single segment in the network. A schematic that gives an explicit view of the
network type used in this thesis is shown in Figure 1.1.

The fault manager proposed in this research is an autonomous agent. An autonomous
agent is anything that can be viewed as perceiving its environment through sensors and

acting upon that environment through effectors [1]. The structure of an agent includes:
(a) Percepts: the information received by the sensors at each time.

(b) Percept Sequence: the complete history of everything the agent has ever perceived.
(c) Actions: actuation of the effectors (decisions) at each time.

(d) Agent Function: mapping from percept sequences to actions

Figure 1.2 shows how an agent interacts with the environment and receives feedback.
The benefits of viewing a fault manager as an autonomous agent are studied in this

thesis in order to provide a method for efficient and dynamic network fault detection and

remediation. Consider a network that includes switches, hubs, servers, and workstations.

In such a network, workstations can communicate, through hubs and switches, with

Aggelos Aggelidakis 2 February 2013

1.1 Thesis Contribution

Agent Percept

A

Sensors

) Environment

|

Effectors

A/

Action

Figure 1.2: Autonomous Agent

servers or with each other. Occasionally, problems occur and nodes break down. A
faulty node cannot participate in any communication activity in the network, nor can
it relay any messages to the network. Detecting and identifying a fault is naturally a
difficult task due to unordered arrival of information, topologies of networks, varying
link sizes, and package congestion [2]. Intelligent systems are lately developed using
techniques from Artificial Intelligence and Machine Learning towards dynamic, robust,
and optimized network fault management. This research, in particular, uses planning
under uncertainty [3] and reinforcement learning [4] techniques to cope effectively with

the challenges of network fault detection and remediation.

1.1 Thesis Contribution

The purpose of this research is to provide an intelligent agent for detecting and repairing
network faults. This agent overviews a network and has access to each node of the
network. If the occurrence of a fault is signaled, the agent tries to determine the fault
using a sequence of test actions. Finally, the agent remedies the fault by taking one or
more repair actions. The architecture of the agent is based on the Cost-Sensitive Fault
Remediation (CSFR) model. The original CSFR model has its own limitations, as it

Aggelos Aggelidakis 3 February 2013

1. INTRODUCTION

relies on the criterion of expected cost minimization. For certain domains, where safe
repair policies are preferable, this criterion may not be appropriate; in such domains, the
agent could rely on the criterion of maximum cost minimization. The following objectives

summarize the contribution of this research:

(a) Extend the CSFR planning algorithm to optimize a minimax criterion

(b) Enhance the minimax CSFR planning algorithm with repair action ordering heuristics
(c¢) Implement a simulated network environment, a flexible platform for experimentation

(d) Implement a CSFR planning algorithm in order to determine an optimal decision

policy for diagnosis of network faults

(e) Implement an instance-based learning algorithm to learn a decision policy for diag-

nosis of network faults that improves with experience

(f) Evaluate the applicability and efficiency of the planning and learning algorithms

1.2 Thesis Layout

This thesis is organized into the following chapters:

Chapter 2 presents the original Cost-Sensitive Fault Remediation (CSFR) model, as
well as the original planning and learning algorithms based on the expected cost criterion
for total repair cost.

Chapter 3 presents our minimax version of CSFR and, more specifically, the minimax
CSFR planning and learning algorithms based on the minimax criterion for total repair
cost along with the repair action ordering heuristics.

Chapter 4 presents the problem of network fault repair and the details of our im-
plementation for the network simulation and the platform used to test the CSFR-based
approaches. The formation of states is described, as well as, the implementation of test
and repair actions.

Chapter 5 shows how the CSFR model applies to the network fault detection and
remediation problem. In particular, the full CSFR model (fault states, test and repair
actions, cost function, observation model) for this domain is defined. Subsequently, the

original and our extended CSFR planning algorithms are applied to find decision policies.

Aggelos Aggelidakis 4 February 2013

1.2 Thesis Layout

The entire procedure of fault detection and remediation is illustrated through detailed
examples.

Chapter 6 describes a reinforcement learning approach to decision making within the
CSFR model for network fault detection and remediation. According to this instance-
based approach, a CSFR model is learned from experience. The difference between the
true and the learned CSFR models lies mainly in the set of faulty states; in the learning
approach the set of faulty states is formed dynamically through experience by storing
past instances of fault detection and remediation.

Chapter 7 presents our experimental results highlighting the strengths and weaknesses
of the proposed network fault detection and remediation approach. The chapter describes
the experimental setup and presents experiments with both planning and learning under
both criteria (expected and minimax cost) to make comparisons and draw conclusions.

Chapter 8 summarizes the results of this research, gives an evaluation of the achieve-
ment of our objectives, and describes the advantages and disadvantages of our method.
Finally, it proposes directions for future work in the field of network repair from the

perspective of planning and learning.

Aggelos Aggelidakis 5 February 2013

1. INTRODUCTION

Aggelos Aggelidakis 6 February 2013

Chapter 2

Cost-Sensitive Fault Remediation

The Cost-Sensitive Fault Remediation (CSFR) model [3, 5, 6] is a modeling framework
for partially-observable environments capturing diagnosis-and-repair situations. Under
the CSFR model, an agent is able to detect the monitored system has entered a failure
mode, execute a sequence of test actions to diagnose the fault, attempt to repair the fault
by executing repair actions, and finally detect if the monitored system has been restored
to normal operation. A CSFR model is defined by a set of fault states, a set of test and
a set of repair actions, a cost function, and an observation model. The CSFR planning
algorithm for optimal decision policies is implemented via dynamic programming and
calculates a minimum-cost repair policy to detect and remedy the fault. On the other
hand, the reinforcement learning approach to decision making within the CSFR model
forms the set of faulty states dynamically through experience by storing past instances

of fault detection and remediation.

2.1 CSFR Fault Manager

Fault detection and remediation within the CSFR approach can be more comprehensible
in terms of some basic components, as shown in Figure 2.1. The environment gives
information to the CSFR-based fault manager and the manager eventually gives feedback
to the environment by commanding actions, one at a time. In fact, the fault manager
is an agent that operates on behalf of the user and aims to identify and repair faults of
the system by deciding which test or repair action to execute. By assumption, according

to the CSFR approach, only one fault is present at each time; whenever a fault occurs,

Aggelos Aggelidakis 7 February 2013

2. COST-SENSITIVE FAULT REMEDIATION

Agent - Percept Agent 5 Percept
Based
CSFR Learning
Model
¥
Learned
Environment CSFR Environment
Model
CSFR CSFR
Planning Planning
Action Action

Figure 2.1: Planning fault manager (left) and Learning fault manager (right)

the manager is signaled to initiate a repair procedure without knowing where the fault
is. After the system is restored to normal operation, another fault may occur at a later
time signaling the manager and so on.

The fault manager has two alternative modes of operation: planning and learning.
Planning uses the CSFR planning algorithm on the true CSFR model to calculate an
optimal-cost repair policy in order to diagnose and repair the fault. On the other hand,
learning uses an instance-based learning approach to form a learned CSFR model. In
fact, the manager runs episodes without initially knowing the kinds of faults that occur
in the environment. Each one of the collected episodes is stored in the learned model,
so that it can be used in the future as a representative instance of some kind of fault
for which the stored repair action can be re-used, if that instance is identified again.
In that sense, the manager based on learning improves its effectiveness over time, while
avoiding to consider the entire range of all possible faults as done by the manager based

on planning. This difference will become clear in the rest of this chapter.

2.2 CSFR Model

The full definition of a CSFR model is given by the following items:
- 9, the set of fault states, representing all possible faults that may occur

- Pr(s), a prior probability for each fault state s € S. These probability values are

provided by the user and can be extracted by observation of the environment.

Aggelos Aggelidakis 8 February 2013

2.3 CSFR Planning

- Ar, the set of test actions, which are used to gain information in order to detect

and diagnose the current fault in the environment.

- Ag, the set of repair actions, which are used to resolve specific faults in the envi-

ronment, if present.

- a cost function c(s,a) over actions a € Ar U A and states s € S. The numeric cost
of an action depends on the state it is taken in. This cost is typically related to
time, however this is not restricted as the model could adjust to a large range of

problems.

- a deterministic observation model o(s,a) over actions a € Ar U Ar and states s € S.
The output of the observation model is binary, 0 or 1. For repair actions, 0 is in-
terpreted to mean that the repair is unsuccessful in state s and the fault remains,
while 1 means that the repair action resolves the problem in state s and the fault
is eliminated. For test actions, the outcome, 0 or 1, depends on the current state
s, is defined by the user according to the nature of the problem, and can be used

to identify the actual current state.

It is clear from the model, that a cost is incurred for any action performed, either test
or repair action. Apparently, the total cost during a detection and repair case will be
the main decision parameter. The goal is to detect and eliminate the fault and restore
normal operation, while paying the lowest possible cost. To this end, test and/or repair
actions must be chosen carefully. The fault manager acts as a decision-maker facing a
sequential decision making problem. Initially, a sequence of test actions will help pinpoint
the fault followed by some repair action to restore operation. These actions will be chosen
by a minimum-cost policy. The original CSFR model assumes that the test actions are

indicative enough to uniquely identify the fault.

2.3 CSFR Planning

Since the true fault state is unknown the agent has to reason over sets of possible fault
states, known as beliefs. If S is the set of possible fault states, the beliefs over fault states
is the power set of S, 2°. Let Q(b, a) be the expected total cost until the fault is repaired,

when the current belief is b € 2° and the action taken at the current step is a € ApU Ap.

Aggelos Aggelidakis 9 February 2013

2. COST-SENSITIVE FAULT REMEDIATION

An optimal repair policy in a CSFR model can be extracted by taking at each step those
actions that minimize the expected total cost for the current belief. The expected total
cost function @) can be computed via dynamic programming using the following recursive

equation [5]:

Prb) (C(bha) + V(b1)), if Pr(by) >0, Pr(b;) >0

or Pr(by) >0,a € Ag

0, otherwise

where b; = {s € b | o(s,a) = i} is the belief state resulting from taking action a in
belief state b and obtaining outcome ¢ € {0,1}. V(b) is the minimum expected total cost
until the fault is repaired, when the current belief is b € 2°. If a € Ap, for i = 1 we
define V' (by) = 0, as there is no additional cost incurred once a repair action is successful.
Essentially, belief b; becomes an empty set in this case. In all other cases, the value of a
belief state is the minimum action value taken over all available action choices:

V(b) = min Q(b,a)

a€ATUAR

Pr(b) and c(b, a) are the prior probability and the cost function extended to belief states.

More specifically, Pr(b) = > Pr(s), therefore the prior probability of a belief b is the
s€b
sum of the prior probabilities of the states it contains. Also, ¢(b,a) = > Pr(s) c(s,a),
scbh
therefore the cost of taking some action a in some belief b is computed by the costs of

taking action a in each of the states contained in b weighted by the corresponding prior

probabilities of those states. The condition
(Pr(bo) > 0 and Pr(b) > 0) or <Pr(b1) >0andae AR)

in the recursion ensures that the recursion eventually ends, since no quantity is defined
in terms of itself. This restriction rules out only clearly suboptimal policies that include
actions that do not alter the belief state and guarantees that the algorithm can be imple-

mented without considering cyclic dependencies. In other words, the condition is satisfied

Aggelos Aggelidakis 10 February 2013

2.3 CSFR Planning

Algorithm 1 CSFR Value Computation Algorithm

1:
2
3
4:
5:
6
7
8
9

10:
11:

12:

13:
14:
15:
16:
17:
18:
19:
20:

21:

22:
23:
24:
25:
26:
27:
28:
29:
30:
31:

function GETVALUE(environment env, belief b)
Returns: best value Vi, best action apest
if b = () then

‘/best — 0

Vi)est — 0
for all a € Ar U A do

bo < {s€b|o(s,a)=0
b1<—§3€b|0(5,a :1%
Pr(bo) < > sep, Pr(s)
Prby) < 3 e, Pr(s)

> empty belief

> check all actions

if ((Pr(bo) > 0) & (Pr(b) > 0)) (((Pr(bl) > 0) & (a € AR)) then

Pr(b) < > ., Pr(s)

c(bo, @) < Doy, Pr(s) c(s,a)
c(br,a) < 3., Pr(s) c(s,a)
V' (by) <~ GETVALUE(env, by)
if a € Ar then

by « {} > the repair action fixes these fault states

end if
V(b1) < GETVALUE(env, by)

PT(bo)

Pr
Q(b,a) « T(b)(c(bo,a) + V(b)) +

else
Q(b,a) < oo
end if
if Q(b,a) < Vies; then

(c(bl, a) + V(b1)>

Apest < @ > action that minimizes the expected cost

%est — Q(b7 CL)
end if

end for

return Vi, Gpest

32: end function

> minimum expected cost

only when an action splits the current belief into two beliefs with non-zero probability

or a repair action yields a belief b; with a non-zero probability, therefore it fixes at least

one state in the current belief. Due to the nature of this condition, there is an implicit

assumption in CSFR that the prior probabilities of fault states cannot be zero, since a

Aggelos Aggelidakis 11

February 2013

2. COST-SENSITIVE FAULT REMEDIATION

Algorithm 2 CSFR Planning Agent

function CSFRPLANNING (environment env)
Returns: total repair cost totalCost

1:

2

3

4: totalCost < 0

5: belief < S

6 while belief # 0 do

7 {Vhests Gbest } <— GETVALUE(env, belief)

8 [outcome, cost] <— EXECUTEACTION(env, apest)
9 totalCost < totalCost + cost

10: if (apest € Ar) & (outcome = 1) then > fault was successfully removed
11: belief < ()

12: else if apey € A7 then

13: belief < {5 € belief | o(s, pest) = outcome}

14: else if ap.y € Ar then

15: belief <« {s € belief | o(s, apest) = O}

16: end if

17: end while

18: return totalCost

19: end function

fault that never occurs is not a fault! However, if zero prior probabilities are given for
any reason, the condition above may fail to get satisfied. Algorithm 1 shows the main
CSFR function that computes expected costs (V' values) recursively for any belief state.

Initially, the belief state includes all possible fault states. The agent chooses the
actions that minimize the expected total cost V at each step. These are typically test
actions, which help reduce the size of the belief state to locate the fault, however repair
actions may be executed in early steps, if they are likely to succeed. The reduced belief
state at each step will be determined by the outcome of most recent action. As the
belief state of the agent shrinks gradually, eventually the correct repair action will be
executed restoring the system to normal operation. The correct repair action may be
executed after a series of actions have brought the belief state down to a singleton set
and the fault state has been precisely identified, but this is not always the case. Early
repair is possible, if the correct repair action is picked because it minimizes the expected
cost in some non-singleton belief. If the agent ever reaches a non-singleton belief state

where no splits are possible by further test actions and therefore repair actions must be

Aggelos Aggelidakis 12 February 2013

2.4 CSFR Learning

applied, the ordering of these repair actions will be determined by a balancing of cost
and likelihood (prior probabilities) in the sense of expect cost. Algorithm 2 summarizes
the internal functionality of the CSFR planning agent. It should noted that the best
values and actions can either be computed once and stored explicitly in memory or be
computed again and again using function GETVALUE on the current belief state at each

step of an episode.

2.4 CSFR Learning

Apart from planning, CSFR offers an instance-based reinforcement learning approach
which creates and manipulates a CSFR model based on unstructured interaction with
the environment. More specifically, the set of fault states is constructed gradually from
examples of complete repair episodes. Each complete repair episode contains a number
of test and repair actions taken during the episode along with their outcomes and costs
and ends with a successful repair action that fixed the fault. Due to the nature of the
CSFR model, the exact ordering of actions tried during the episode has no significant
meaning. Likewise, due to the deterministic nature of costs and observations, there is no
repetition of actions. In a sense, each such episode represents a particular type of fault
(a fault state), which can remedied by executing the stored successful repair action from
that episode. In practice, in CSFR learning, the set of faulty states S is replaced by a
set of episodes E.

Initially, before any repair attempt, the set of episodes E may be empty, but new
episodes may be added at any time, especially when facing a type of fault which cannot
be matched to any of the stored episodes. If the presence of fault is signaled, the learning
fault manager will try to fix the fault by running CSFR planning on the existing set of
episodes. If the current fault is matched against some stored episode (fault state) and
the fault is fixed, then the set of episodes E remains unchanged. If, however, CSFR
planning ends with an empty belief and the fault has not been fixed, a new episode has
to be added. This new episode contains already the actions tried during the failed CSFR
planning attempt and will be extended by additional random action selection (over the
actions that have not been tried already) until the fault is fixed. Actions should not be
repeated during an episode, since observations and costs are deterministic. In the worst

case, all actions will be tried, but it is guaranteed that the fault will eventually be fixed.

Aggelos Aggelidakis 13 February 2013

2. COST-SENSITIVE FAULT REMEDIATION

Algorithm 3 CSFR Learning Agent

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:

35:

36:

function CSFRLEARNING (environment enwv, set of episodes F)

Returns: total repair cost totalCost, updated set of episodes F

fixed <+ false
totalCost < 0
e+ 0
Va € Ar UAR: c(e,a) <0
Va € ArUAR: o(e,a) <7
belief <+ F
while fived = false do
if belief # () then
{Vhests Gbest } <— GETVALUE(env, belief)
else
apesy <— choose randomly from {a € Apr U Ag : o(e,a) = 7}
end if
[outcome, cost] <— EXECUTEACTION(env, apest)
totalCost < totalCost + cost
€ < e U {apest }
c(e, apest) < cost
o(e, apest) <— outcome
if (apess € Ag) & (outcome = 1) then > fault was successfully fixed
if belief # () then > fixed by existing episode
Ves € belief : count(es) < count(es) + 1
else > fixed by the new episode
count(e) + 1
E <+ EUe > add the new episode to F
end if
fired < true
else if ape¢ € A7 then
belief < {es € belief | o(es, Apes;) = outcome or ?}
else if ap.y € Ar then
belief + {65 € belief | o(es, apest) = 0 or ’?}

end if
end while
count(e)
Vee E: Pr(e) =
ZESGE count(e)

return totalCost, E

37: end function

Aggelos Aggelidakis 14 February 2013

2.4 CSFR Learning

The observation model and the cost function for each new episode are defined implicitly
by the outcomes and the costs observed and recorded during the course of the episode.
Note that since not all actions may be tried during an episode, the gaps in the observation
model and the cost function are filled with the wildcard ? (matching both observations
0 and 1) and a numeric value of 0 respectively. Finally, the prior probabilities over the
stored episodes are formed by the frequency they are matched and lead to successful
repair over multiple cycles of fault occurrence and repair. Algorithm 3 shows the details
of the learning agent.

Given the above learned (estimated) CSFR model, decision making boils down to
CSFR planning on the estimated model and the learning fault manager proceeds similarly
to the planning one. The belief states are now formed by subsets of instances (episodes).
While optimal decision policies cannot be guaranteed in this case, it is expected that the
actual episodes encountered and stored during the course of learning will be much smaller
compared to the set of all possible faulty states in the corresponding planning problem.

Thus, the lack of optimality is counterbalanced by significant savings in execution time.

Aggelos Aggelidakis 15 February 2013

2. COST-SENSITIVE FAULT REMEDIATION

Aggelos Aggelidakis 16 February 2013

Chapter 3

MiniMax CSFR

The planning algorithm for the CSFR model presented in Chapter 2 focuses on the
minimum expected cost optimality criterion, which aims to find an optimal policy for the
average case. In practice, this means that the performance of the agent will be optimal,
if viewed as the average repair cost over many fault remediation episodes. This expected
cost criterion, however, suffers from two facts. First, it depends highly on the accuracy of
the prior probabilities; if the true probabilities are significantly different, then the agent
will optimize its choices for a non-existent average case. Second, if the fault remediation
episodes are scarce, it may be preferable to follow a safe policy regardless of what the
true or estimated average case is. Such safe, yet conservative, policies may be obtained
by the well-established minimaz criterion, which focuses on the worst case. In practice,
this means that the agent will try to keep the worst-possible total repair cost low, even
during a single remediation episode.

In this chapter we describe a minimax version version of CSFR planning and learning,
which utilizes the same CSFR model described already in Section 2.2, but alters the
optimality criterion for decision making. Since the minimax version of CSFR uses the
same CSFR model definition, we focus only on decision making through planning or
learning. In addition to the minimax formulation, we offer three heuristics for ordering
repair actions in situations where the minimax criterion gives no preference. The minimax
criterion for fault remediation may be more appropriate in certain applications, where it

is critical to guarantee that the total repair cost will remain below certain levels.

Aggelos Aggelidakis 17 February 2013

3. MINIMAX CSFR

3.1 MiniMax CSFR Planning

Once again, since the true fault state is unknown, the agent has to reason over sets of
possible fault states or beliefs. Let @(b, a) be the minimax total cost until the fault is
repaired, when the current belief is b € 2% and the action taken at the current step is
a € Ar U Ar. An optimal repair policy in a minimax CSFR model can be extracted
by taking at each step those actions that minimize the maximum (worst) total cost for
the current belief. The maximum total cost function @ can be computed via dynamic

programming using the following recursive equation:

max{(E(bo,a) +V (b)), (€lby, a) + ?(bl))}, if bo| > 0, |by| > 0

~

Q(b,a) = 4 or |by| > 0,a € Ag

0, otherwise
\

where b; = {s € b | o(s,a) =i} is the belief state resulting from taking action a in belief
state b and obtaining outcome i € {0,1}. V(b) is the minimax total cost until the fault
is repaired, when the current belief is b € 2°. If a € Ag, for i = 1 we define \7(171) =0, as
there is no additional cost incurred once a repair action is successful. Essentially, belief
by becomes an empty set in this case. In all other cases, the value of a belief state is the
minimum action value taken over all available action choices:
V(b)) = min Q(ba)

As before, ¢(b, a) is the cost function extended to belief states, however this time in the
minimax sense. More specifically, ¢(b, a) = max (s, a), therefore the cost of taking some
action a in some belief b is computed by the maximum cost of taking action a over all

states contained in b. The condition
(|b0\ > 0 and |by| > 0) or (yb1| >0andae AR)

in the recursion ensures that the recursion eventually comes to an end, since no quantity
is defined in terms of itself. In other words, the condition is satisfied only when an action

splits the current belief into two non-empty (smaller) beliefs or a repair action fixes at

Aggelos Aggelidakis 18 February 2013

3.1 MiniMax CSFR Planning

Algorithm 4 MiniMax CSFR Value Computation Algorithm

1: function GETMINIMAXVALUE(environment env, belief b)

2 Returns: best value YA/beSt, best action apegt

3 if b = () then > empty belief
4: Viest < 0

5: else

6 Viyest < 00

7 for all « € Ar U Ay do > check all actions
8 bo < {s€b|o(s,a)=0

9: b1<—§3€b|o(s,a):1%

10: Pr(bo) < > sep, Pr(s)

11: Pr(by) «+ Zsebl Pr(s)

12: if (o] > 0) & (] > 0)) | (1] > 0) & (a € An)) then

13: c(bo, a) < maxgep, (s, a)

14: c(by, a) < maxgep, (s, a)

15: V (by) +— GETMINIMAXVALUE(env, b)

16: if a € A then

17: by + {} > the repair action fixes these fault states
18: end if

19: V(b1) <= GETMINIMAXVALUE(env, by)

20: Qlb, a) « max { @bo, @) + V (1)), (@br,a) + V(b)) }

21: else

22: Q(b,a) + oo

23: end if R

24: if Q(b,a) < Viest then

25: Apest — @_ > action that minimizes the expected cost
26: Viest < Q(b,a) > minimum expected cost
27: end if

28: end for

29: end if
30: return Vi, apest

31: end function

least one state in the current belief and therefore yields a smaller belief in the next step.
Note the slightly different formulation of this condition compared to the original CSFR
algorithm. We check the sizes of the resulting beliefs as opposed to their probabilities;
this choice was preferred to avoid singularities occurring when a belief b; is non-empty,

yet it has a zero probability Pr(b;) due to a possible wrong set of prior probabilities that

Aggelos Aggelidakis 19 February 2013

3. MINIMAX CSFR

assigns zero probability values to some fault states. Algorithm 4 shows the main minimax
CSFR function that computes minimax costs (‘7 values) recursively for any belief state.

The minimax CSFR fault manager proceeds exactly as the original one presented in
Algorithm 2; the only difference is the call to function GETMINIMAXVALUE instead of
GETVALUE in Line 7. Initially, the belief state includes all possible fault states, the entire
set S. The agent chooses the actions that minimize the maximum total cost V at each
step. These are typically actions, which help reduce the size of the belief state to locate
the fault in ways that guarantee that the worst cost will remain small. The reduced
belief state at each step is determined by the outcome of the most recent action. As
the belief state of the agent shrinks gradually, eventually the correct repair action will
be executed restoring the system to normal operation. The correct repair action may be
executed after a series of actions have brought the belief state down to a singleton set
and the fault state has been precisely identified, but this is not always the case. Early
repair is possible, if the correct repair action is picked earlier, because it minimizes the
maximum cost in some non-singleton belief. As in the original CSFR, it should noted
that the function V can either be computed once and stored explicitly in memory or be

computed again and again recursively for the current belief state during an episode.

3.2 MiniMax CSFR Repair Action Ordering

If the agent during a remediation episode ever reaches a non-singleton belief state where
no further belief splits are possible by test actions and therefore repair actions must be
applied, the ordering of these repair actions is indifferent under the minimax criterion.
Any ordering of the appropriate repair actions yields the same maximum cost. We call
such beliefs repair-only beliefs. While any ordering of repair actions in a repair-only
belief guarantees the same maximum cost, in practice it makes sense to impose some
heuristic ordering which is likely to reduce the actual cost. Repair-only beliefs can be
easily identified, since all test actions in such beliefs induce an infinite cost as they cannot
offer a split. Algorithm 5 shows the variation of minimax CSFR (see lines 27-29) that
incorporates the detection of repair-only beliefs and calls another function that determines
the ordering of repair actions to figure out which repair action will be executed first in

the current belief.

Aggelos Aggelidakis 20 February 2013

3.2 MiniMax CSFR Repair Action Ordering

Algorithm 5 MiniMax CSFR Value Computation Algorithm with Repair Ordering

1:
2
3
4:
5:
6
7
8
9

10:

11:
12:
13:
14:
15:
16:
17:

18:

19:
20:

21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:

function GETMINIMAXVALUE(environment env, belief b)

Returns: best value Vi, best action apest

if b = () then > empty belief
‘/best — 0

else
Viyest — 0
for all « € Ar U Ay do > check all actions

bo < {s€b|o(s,a)=0
by < {s€blo(s,a)=1
if ((\bo\ > 0) & (|by] > 0)) ‘ ((\bll >0) & (a € AR)) then

c(bo, a) < maxgep, (s, a)

c(by, a) < maxgep, (s, a)

V(by) < GETMINIMAXVALUE(env, by)

if a € A then

by + {} > the repair action fixes these fault states
end if

~

V(b1) <= GETMINIMAXVALUE(env, by)
Qlb, a) « max { @(bo, @) + V(1)) (@br,a) + V(b)) }
elseA
Q(b,a) < oo
en(i if R
if Q(b,a) < Viest then
Apest < @_ > action that minimizes the expected cost
Vhest < Q(b, a) > minimum expected cost
end if
end for R
if Va € Ar: Q(b,a) = oo then > a repair-only belief has been reached
(pest = CHOOSEREPAIRACTION (env, b)
end if
end if

return Vies, Gbest

32: end function

Two heuristics that can be applied in repair belief states to impose some good ordering

are the cheapest-first heuristic (the repair action with the minimum cost is applied first)

and the likeliest-first heuristic (the repair action fixing the fault state with the highest

prior probability goes first). These two heuristic focus exclusively on cost or probability.

Aggelos Aggelidakis 21 February 2013

3. MINIMAX CSFR

Algorithm 6 Heuristics for Repair Action Selection

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:

Returns: chosen action agpst

/* Cheapest-First Heuristic */

/C\min — OO
for all « € Ar do
by« {s€blo(s,a) =1}
if [b1] > 0 then
c(by, a) < maxgep, (s, a)
if /C\(bl, CL) < /C\min then
Qfirst, € @
/c\min <— /C\(bl, CL)
end if
end if
end for

/* Likeliest-First Heuristic */
J/D\Tmax 0
for all « € Ar do
by« {s€blo(s,a) =1}
if |b1| > 0 then
Pr(by) « 3, Pr(s)
if Pr(b;) > Pruax then
Cifgst —a
Prjax < Pr(by)
end if
end if
end for

function CHOOSEREPAIRACTION (environment env, belief b)

> check all repair actions

> consider only those that fix some fault(s)

> choose an action that minimizes cost

> check all repair actions

> consider only those that fix some fault(s)

> choose an action that maximizes likelihood

/* Least-Expected-Cost-First Heuristic */

(V, afirst) < GETVALUE(enw, b)

return ag.s

34: end function

> choose action using the original CSFR

Yet another choice that balances these two parameters is to resort on the expected cost

criterion of the original CSFR which balances cost and probability. According to this

least-expected-cost-first heuristic the action that minimizes the expected (repair) cost

Aggelos Aggelidakis

22 February 2013

3.3 MiniMax CSFR Learning

goes first. All three heuristics are shown in Algorithm 6 within the same function for

completeness; in practice only one of them should be used.

3.3 MiniMax CSFR Learning

Since learning in the context of CSFR is model-based, the minimax version of the CSFR
learning agent will be identical the original CSFR learning agent shown in Algorithm 3
the only difference being the call to function GETMINIMAXVALUE instead of GETVALUE

in Line 12.

Aggelos Aggelidakis 23 February 2013

3. MINIMAX CSFR

Aggelos Aggelidakis 24 February 2013

Chapter 4

Network Repair

This chapter introduces the domain of network fault repair (detection and remediation)
and describes our network simulation which supports the definition of fault states and

the execution of test and repair actions.

4.1 Network Repair

A computer network is a collection of computers and other hardware devices intercon-
nected by communication channels (links) that allow sharing of services, data, and in-
formation. The basic operation of each workstation is sending and receiving data to and
from another device. The type of network considered in this thesis includes the following

types of devices:

workstation (WS) a high-end computer designed to run technical or scientific appli-

cations typically for a single user

server (SRV) a physical computer dedicated to run one or more services (as a host) to

serve the needs of multiple users of other computers on the network

switch (SW) a networking device that links several workstations with each other and

allows connections to other parts of a network through hubs

hub (HB) a networking device for connecting multiple Ethernet devices (servers, other

hubs) together and making them act as a single segment in the network

Aggelos Aggelidakis 25 February 2013

4. NETWORK REPAIR

Consider a network that includes switches, hubs, servers, and workstations such as
the one shown in Figure 4.1. In such a network, workstations can communicate, through
hubs and switches, with servers or with each other. Occasionally, problems occur and
nodes break down. A faulty node cannot participate in any communication activity
in the network, nor can it relay any messages to the network. Such faults may cause
communication failures, especially if they appear on critical nodes that break unique
communication paths in the network. A system administrator typically repairs a faulty
node by initiating a node reboot which restores the node to normal operation paying
a time cost proportional to the time of initiating and completing the boot operation.
Detecting and identifying a faulty node is a difficult task and may require the execution
of several tests over the network to determine which parts of the network are functional
and which parts fail. The most common test for network connectivity is the execution of a
ping command between two computer nodes (workstation or server). The ping initiates
from one node and gets a reply back from the other node, if a functional communication
path between the two nodes exists and its (time) cost in this case is proportional to the
distance of the two nodes in the network in terms of network hops. If the communication
path between the two nodes is broken, the ping initiates from one node, but fails to get
a reply from the other node and its (time) cost is partly proportional to the distance of
the two nodes in the network and partly proportional to a timeout for no reply which
may depend on the the type of the broken node. In our implementation, we assume that
this timeout is equal to the boot time of the broken device.

Our goal in this thesis is to automate the procedure of network fault detection and
remediation through the use of an intelligent agent able to execute carefully-selected test
and repair actions aiming to restore the network to normal operation while minimizing the
total cost for repair. To this end we are using the CSFR framework to cope effectively with

the challenges of sequential decision making for network fault detection and remediation.

4.2 Network Simulation

Any virtual network specified by the user of the type described above can be simulated
for the needs of this thesis. Our simulation framework was developed using the C++ pro-

gramming language. Nodes of the network are represented using structures of different

Aggelos Aggelidakis 26 February 2013

4.2 Network Simulation

Figure 4.1: An example of the networks considered in this thesis

type for servers, workstations, switches, and hubs. These structures include several fea-
tures: a unique ID to identify the node, a vector indicating the links of that node to other
nodes, and a boolean variable indicating the operational status of the node (false:node
broken down, true:node working properly). These structures are critically useful, as they
are the main components of the network and can be used to create any desired network
as an undirected graph. Users can create a new network or modify an existing one just
by providing or modifying the text file that specifies the network.

The agent implementing the fault manager overviews the network and can be informed
about the presence (or the elimination) of a fault in the network, as well as initiate any
test or repair action on the network. It is assumed that faults occur only on nodes, not
links. Signaling the presence of a fault contains no identifying information about the
faulty node. One way to automatically detect that there is a fault in the network is to
test if all ping commands between pairs of workstations/servers are successful. While
this is sufficient in acyclic networks (all nodes along any path must operate normally), it
fails in networks with cycles. In the example shown in Figure 4.1, if HB 8 is faulty, the
ping between WS1 and WS3 will still be successful due to the alternative path through

HB7 and the presence of a fault may not be detected. Therefore, in networks containing

Aggelos Aggelidakis 27 February 2013

4. NETWORK REPAIR

Algorithm 7 Ping/Test Action - Modified Breadth First Search

1: for allu € V — {s} do > initialize all vertices in V[G] except source
2: colorju] <~ WHITE

3: depthlu] < oo

4: pathlu] <~ NULL

5. end for

6: color[s] + GRAY > initialize the source vertex
7. depth[s] < 0

8: path[s] <~ NULL

9: Q «+ {} > Clear queue Q
10: Enqueue(Q, s) > begin with the source
11: while @ is non-empty do
12: u < DEQUEUE(Q)
13: for all v adjacent to u do
14: if color[v] = WHITE then
15: color[v] < GRAY
16: depth[v] < depth[u] + 1
17: path[v] < u
18: if operational status of v is true then
19: Enqueue(Q, v)
20: end if
21: end if
22: end for
23: DEQUEUE(Q)

24: colorju] <~ BLACK
25: end while

cycles, the presence of a fault must be signaled by another “omni-present” mechanism
which essentially computes the AND of all node status variables and informs the fault
manager if the result is false.

Faults are easily simulated in our network; the operational status of a node simply
changes from true to false. Our simulator supports the repetitive (sequential) intro-
duction of faults according to any given distribution. Similarly, the execution of reboot
commands boils down to changing the operational status of a node from false to true.
The simulation of ping commands is a little mode involved and is implemented using
a modified Breadth First Search (BFS) algorithm. The BFS search begins at the node

initiating the ping and proceeds towards all available directions in a breadth-first manner

Aggelos Aggelidakis 28 February 2013

4.2 Network Simulation

using the time cost per hop as cost function and making sure that no cycles are explored.
The modification introduced relates to fault node. Faulty nodes are not enqueued in the
priority queue and therefore paths stop there. If there exists a path between the initiating
and the target node of the ping, the search algorithm will return the shortest (in terms
of ping time cost) of these paths. If no such path exists (due to some fault), the search
algorithm returns only a partial shortest path which ends at the faulty node. The details
of the modified BFS algorithm are shown in Algorithm 7.

Aggelos Aggelidakis 29 February 2013

4. NETWORK REPAIR

Aggelos Aggelidakis 30 February 2013

Chapter 5

CSFR Planning for Network Repair

In this chapter, we discuss how CSFR planning is applied to the problem of network fault
detection and remediation. A definition of the CSFR model for this problem is important.
Additionally,an example along with a description of the solution given unravels the way
CSFR is applied to our problem. Assume a network that contains hubs, switches, servers,
and workstations. Each of workstations and servers can communicate through hubs and
switches, with each other. The communication is achieved by the network operation
“ping”. Occasionally, a node of the network breaks down. As a result of that, the node
cannot communicate with other nodes or even worse, other nodes cannot communicate
with each other through the fault node. The agent, designed for such circumstances,
based on Cost-Sensitive Fault Remediation model. The agent declares each fault node
as distinguished fault state and uses pings as test actions and reboots of nodes as repair

actions in order to diagnose and remedy the fault node of the network respectively.

5.1 CSFR Model for Network Repair

The full definition of a CSFR model for the network fault detection and remediation

problem takes the following form:

- S, the set of fault states. Each node in the network can possibly break down. Hence,

the total number of fault states is the total number of nodes in the network:

|S| = |workstations| + |servers| + |switches| + |hubs|

Aggelos Aggelidakis 31 February 2013

5. CSFR PLANNING FOR NETWORK REPAIR

- Pr(s), a prior probability for each fault state s € S. This is the probability of a
network node to fail based on prior knowledge or statistics about the domain. The

distribution over nodes may be uniform or arbitrary.

- Ar, the set of test actions. The test actions in this research examine if there is an
active communication between any pair of nodes. The test is based on the success
or failure of a ping command between two nodes. Only workstations and servers

are involved in these ping test actions, therefore, their total number is

|workstations| + |servers|
|Ar| = 5

- Ag, the set of repair actions. Each repair action restores a node by rebooting the
device at the node. Therefore, the total number of repair actions is the total number

of nodes in the network:

|Ag| = |workstations| + |servers| + |switches| 4 |hubs|

- a cost function c(s,a) over actions a € Ay U Ag and states s € S. The cost of ac-
tions in the network domain relates to time. Each action, whether test or repair,
incurs a cost equal to the number of seconds it takes to complete in the current
state. More specifically, the cost of a test action (ping) depends on the number
of hops and the integrity of the path(s) between the corresponding nodes. The
cost of repair actions differs depending on the type of node and increases along the

following ordering: hub reboot, switch reboot, workstation reboot, server reboot.

- a deterministic observation model o(s,a) over actions a € Ar U A and states
For each test action a, the observation model indicates whether the ping command
between the corresponding nodes was successful in the current state s. For each
repair action a, the observation model indicates whether the reboot command on

the corresponding node was successful in repairing the fault in the current state s.

Aggelos Aggelidakis 32 February 2013

seS.

5.2 CSFR Planning Solution for Network Repair

Figure 5.1: Network example for planning simulator

Fault states
S1 So S3 S4 S5 S6
0.167 | 0.167 | 0.167 | 0.167 | 0.167 | 0.167 | Prior Probabilities ‘

Table 5.1: Prior probabilities of states in example shown in Figure 5.1

5.2 CSFR Planning Solution for Network Repair

The most critical decision parameter is the total cost of detecting and repairing a faulty
node. The expected value of this cost is computed dynamically by the recursive equation
presented in Chapter 2. The less this value is, the better the decision policy followed.
In order to give the opportunity to the reader to fully understand the generation of the
optimal CSFR policy and the safe MiniMax CSFR policy, an example follows. Figure 5.1
shows a simple network with 3 workstations (WS), 2 switches (SW), and 1 hub (HB);
each node also carries a unique numeric ID. The complete CSFR model for this example

is the following:
- Fault states S = {sy, s2, $3, 54, S5, S}, |S| = 6

- Prior probabilities Pr(s) The prior probabilities are based on a uniform distribution,
therefore, as a result, the prior probability of each node to break down is 1/6 (see
Table 5.1).

- Test actions A7 The number of test actions is (3;0) =3:

e ping from node WS1 to node WS2

Aggelos Aggelidakis 33 February 2013

5. CSFR PLANNING FOR NETWORK REPAIR

e ping from node WS1 to node WS6
e ping from node WS2 to node WS6

- Repair actions Agr The number of repair actions is 6:

e reboot/repair of node WS1
e reboot/repair of node WS2
e reboot/repair of node SW3
e reboot/repair of node SW4
e reboot/repair of node HB5

e reboot/repair of node WS6

- Cost function c(s,a) Table 5.2 shows the complete cost function. The columns of
the table refer to fault states and the rows of the table refer to (test and repair)
actions. When the communication path is not interrupted by the fault node, the
cost of a test action is the number of hops between the participating nodes times
a constant time cost (default=100ms) for the ping along a single hop. When the
communication path is interrupted by the fault node, the cost of a test action is the
number of hops from the originating node up to the fault (interrupting) node times
the constant time cost for the ping along a single hop augmented by the repair
cost of the faulty node. For example, the cost of the first test action (ping between
nodes WS1 and WS2) is 100 x 2 = 200, when the fault state is s3, whereas the cost
of the same action is 100 x 2 + 1800 = 2000, when the fault state is s5. Observe
that the last six actions (repair actions) have the same value across columns, due to
the fact that the cost of repairing a fault node is constant regardless of the current

fault state.

- Observation model o(s,a) Table 5.3 shows the complete observation model. Recall
that 1 indicates success, whereas 0 indicates failure of the corresponding action in

each fault state.

Table 5.4 presents the actual costs of the original CSFR algorithm and the Mini-
Max CSFR algorithm with the addendum of three different heuristics. Furthermore, the

average and maximum costs are presented for all four algorithms. Let us have a look

Aggelos Aggelidakis 34 February 2013

5.2 CSFR Planning Solution for Network Repair

Fault states
S1 S9 S3 S4 Sy Sg Actions
1800 | 2000 | 200 | 200 | 200 | 200 | ping WSI to WS2
1800 | 200 | 1500 | 200 | 200 | 2000 | ping WS1 to WS6
200 | 1800 | 1500 | 200 | 200 | 2000 | ping WS2 to WS6
1800 | 1800 | 1800 | 1800 | 1800 | 1800 reboot WS1
1800 | 1800 | 1800 | 1800 | 1800 | 1800 reboot WS2
1400 | 1400 | 1400 | 1400 | 1400 | 1400 reboot SW3
1400 | 1400 | 1400 | 1400 | 1400 | 1400 reboot SW4
1000 | 1000 | 1000 | 1000 | 1000 | 1000 reboot HB5
1800 | 1800 | 1800 | 1800 | 1800 | 1800 reboot WS6

Table 5.2: Cost function for the example shown in Figure 5.1

Fault states

S1 | S9 | S3 | 84| S5 | Sg Actions
0101]1]1]1]ping WS1to WS2
0O 10110 |ping WS1 to WS6
117010 1]1]0|ping WS2to WS6
1/010[0]071]O0 reboot WS1

0O/ 1]0]0J0]O0 reboot WS2
0O/0]1]010]O0 reboot SW3
Oj]o0oj0]1]0]0 reboot SW4
Oj]o0oj0O0lO0O|1]O0 reboot HBbH
0Oj]0]0]0]O0]|1 reboot WS6

Table 5.3: Observation model for the example shown in Figure 5.1

S1 So S3 S4 S5 s¢ | Average | Max
3600 | 5600 | 3100 | 2800 | 1400 | 5400 3650 5600 original CSFR
5400 | 4000 | 4900 | 4600 | 3200 | 2000 4016 5400 | minimax CSFR Least Expected
5400 | 4000 | 4900 | 4600 | 3200 | 2000 4016 5400 minimax CSFR Cheapest
5400 | 4000 | 4900 | 3600 | 4600 | 2000 4083 5400 minimax CSFR Likeliest

Table 5.4: Actual costs for the example shown in Figure 5.1

at states s; and s¢. The original CSFR algorithm gives an actual cost which is worse
than the actual cost of any MiniMax CSFR algorithm at state sq and better at state
s1. Figures 5.2 and 5.3 present the management of beliefs by the original CSFR and the
MiniMax CSFR algorithms respectively. On one hand, both models conclude successfully

Aggelos Aggelidakis 35 February 2013

5. CSFR PLANNING FOR NETWORK REPAIR

a,: ping WS1 to WS2
a2: reboot WS1

V(b,)=min Q(b,,a)=888.889 V(b,) = minQ(b,8)=450

Figure 5.2: Original CSFR planning for the example in Figure 5.1 when WS1 is faulty

with the detection of the faulty state s;, but on the other hand the final actual cost is
different due to the different policies they follow.

Suppose that node WS1 breaks down. If WS1 tries to communicate with WS2, the
ping command will be unsuccessful, since the starts from WS1: (WS1, SW3, WS2). On
the other hand, if WS2 makes an attempt to communicate with WS6, the communication
will be successful, since the path is: (WS2, SW3, WS6); in this case, the fault node is
not included in the path.Figure 5.2 shows a schematic that illustrates the policy of CSFR
planning in this case. The belief state is initialized to S (it contains all possible faults)
and reduces gradually. The policy allows the agent to find action a; that minimizes the
expected value in belief b;. Action ay is chosen to be a ping from WS1 to WS2 and
the resulting observation is 0, which means that the ping was unsuccessful. As a result,
states s; and sy are remained in the belief, due to the fact that only their outcomes
concur with the observed one. Then, the agent decides to take a repair action . The
expected cost weighted by the probabilities of the two remaining states are exactly the
same, because both the prior probabilities of state s; and ss to be fault (see definition of
Prior Probabilities at the begin of the section 5.2) and the repair cost of each state are
the same respectively. The agent decided to repair the states in turn. At this point, the
fault manager repairs s1 which leads to repair the actual faulty state. The remediation
finished successfully and the manager clears its belief.

Figure 5.3 shows a schematic that illustrates the policy of MiniMax CSFR planning
in the same case, using least expected cost heuristic. The belief state is initialized to
S (it contains all possible faults) and reduces gradually. The policy allows the agent to
find action a; that minimizes the expected value in belief b;. Action a; is chosen to be
a ping from WS1 to WS2 and the resulting observation is 0, which means that the ping

was unsuccessful. As a result, states s; and s, are remained in the belief, due to the fact

Aggelos Aggelidakis 36 February 2013

5.2 CSFR Planning Solution for Network Repair

a,: ping WS1 to WS2

a2: ping WS1 to WS6
o(b,,a,)=0

V(b,)=min Q(b,a)=5600 V(b,)=min Q(b,,a)=360p

(b,)=min_Q(b,a)=1800

Figure 5.3: MiniMax CSFR planning for the example in Figure 5.1 when WS1 is faulty

that only their outcomes concur with the observed one. The next action is chosen to be a
pingfrom WS1 to WS6, instead of a repair action that is chosen from the original CSFR
model at the corresponding situation. The outcome is 0, outcome of s5 does not concur
with the observed one, therefore, state s, is removed from the belief. At this point, the
fault manager repairs s1 with the straightforward action reboot WSI.

Figures 5.4 and 5.5 present the different policies which the original CSFR and the
MiniMax CSFR follow for state sg. Figure 5.4 shows a schematic that illustrates the
policy of CSFR planning in the case of faulty state sq. The belief state is initialized to
S (it contains all possible faults) and reduces gradually. The policy allows the agent to
find action a; that minimizes the expected value in belief b;. Action a; is chosen to be
a ping from WS3 to WS4 and the resulting observation is 1, which means that the ping
was successful. States s; and s, are removed from the belief, due to the fact that their
outcomes do not concur with the observed one. The next action ay is chosen to be a

ping from WS1 to WS6 and the resulting observation is 0, which means that the ping

Aggelos Aggelidakis 37 February 2013

5. CSFR PLANNING FOR NETWORK REPAIR

a,: ping WS3tows4 _ 2 a2: ping WS1 to WS6
o(b,,a,)=0

V(b,)=min_Q(b,,a)=658.333

V(b,)=min Q(b,,a)=888.889

b5

b, b,
a5: reboot WS6 a,: reboot WS3
Q(b,a,)=300
V(b,)=min Q(b,a)=383.333

Figure 5.4: Original CSFR planning for the example in Figure 5.1 when WS6 is faulty

b b
_a,;pingWS1toWS2 __2 b,

6 a2: reboot WS6
V(b,)=min Q(b,,a)=4700

V(b,)=min Q(b,,a)=5600

Figure 5.5: MiniMax CSFR planning for the example in Figure 5.1 when WS6 is faulty

was unsuccessful. States s, and s5 are removed from the belief, due to the fact that their
outcomes do not concur with the observed one. The following action as is chosen to be
the repair action reboot WS3. The fault remains but the state s3 is removed from the
belief. Eventually, it is chosen the straightforward action reboot WS6 for the singleton
belief.

Aggelos Aggelidakis 38 February 2013

5.2 CSFR Planning Solution for Network Repair

Figure 5.4 shows a schematic that illustrates the policy of CSFR planning in ”faulty
state sg” case. The belief state is initialized to S (it contains all possible faults) and
reduces gradually. The policy allows the agent to find action a; that minimizes the
expected value in belief b;. Action a; is chosen to be a ping from WS1 to WS2 and the
resulting observation is 1, which means that the ping was successful. As a result, states
s1 and sy are removed from the belief, due to the fact that their outcomes do not concur
with the observed one. No further test actions can reduce the belief. As a result, the
agent has to take a repair action. The policy which is followed by the agent force the
agent to minimize the maximum (worst) total cost for the current belief by. The repair
action is chosen to be reboot WS6 and the faulty state is remedied. It is worth noted
that even if another heuristic function (Cheapest first / Likeliest first) is chosen, any

ordering of the appropriate repair actions yields the same maximum cost (see Table 5.4).

Aggelos Aggelidakis 39 February 2013

5. CSFR PLANNING FOR NETWORK REPAIR

Aggelos Aggelidakis 40 February 2013

Chapter 6

CSFR Learning for Network Repair

The previous section described how to create optimal repair policies via planning analy-
sis. Apart from planning analysis, CSFR offers a learning methodology that can create
and manipulate models based on unstructured interaction with the environment. CSFR
learning applies to the planning algorithm from the previous chapter 5 by replacing set
of state S, with the set of episodes E. Episodes are defined by the user, who undertakes
the responsibility to choose a number of episodes that covers a range of faults. The
number of possible history sequences is on the order of (|Ar| + |Ag|) since an episode
consists of an ordering of test actions and their outcomes, along with unsuccessful repair
actions. Also, there is no need to repeat an action twice, because action outcomes are
deterministic. The state space for planning is that of belief states formed by subsets of
instances instead of individual instances [5]. This provides a more direct approach to the

problem of taking actions to gain information.

6.1 Learned CSFR Model for Network Repair

In an attempt to adjust the solution of the problem in CSFR-learning solution, a formally

definition is made by the quantities:

- E, set of episodes , user predefines a number of episodes to run off-line or and export
results, that will be saved and used during on-line simulation. If a fault state is not
covered by the predefined episodes or user predefines zero episodes to run off-line,

its values are calculated on the fly and are stored.

Aggelos Aggelidakis 41 February 2013

6. CSFR LEARNING FOR NETWORK REPAIR

- Pr(e), a prior probability for episode state , e € E. It is based on the uniform
distribution, as a result of that, the prior probability of each episode is: 1/(E).

- Ar, set of test actions
- Agr set of repair actions

- c(e,a) cost function over actions a € A; U Ar and states e € E |, The cost of ac-

tions that are not applied on an episode state are defined as 0.

- o(e,a), an outcome or observation model over actions ,a € A,UAgr and episodes e €
E. Each test action has an outcome that is 0, 1, or ? (not yet executed), at most

one repair action can be successful, and the others have outcomes of 0 or ?.

6.2 CSFR Learning Solution for Network Repair

Planning gives us satisfied results to a redundant number of fault states. However plan-
ning has its own weaknesses, the time which is consumed at a larger state space is
discouraged. An alternative approach that can be used to develop an intelligent system
is Learning. Planning analysis would be unable to detect and remedy the fault in a short
time as learning, at most times planning consumes a forbidden time to solve the problem,
depending on the network. However, cost-sensitive fault remediation model is amenable
to implementation as a reinforcement-learning system. We are describing an instance-
based state representation, through an example. The definition above shows the critical
difference between planning analysis and learning in the framework of the CSFR model.
The basic difference is that states S replaced by episodes E. Each episode emanates from
the range of hypothesized fault states. In order to give the opportunity to the reader
to fully understand the usage of reinforcement learning, we give an example. Assume a
network 6.1 with four workstations, three switches, two hubs, and a server. Six episodes
are chosen to run off-line (for the framework of the specific example, none episodes could
be chosen as well). The selected fault nodes for the chosen episodes are: SW3, SW4,
HB7, HB8, HB9, SRV10. Each episode gives a feedback that is stored on the tables 6.2
and 6.3. We suppose that SW4 breaks down. If WS1 tries to communicate with WS5,
the procedure of ping will be unsuccessful, since the path to achieve the communication
passes through SW4: WS1, SW3, HB8, SW4, WS5. On the other hand if WS1 makes

Aggelos Aggelidakis 42 February 2013

6.2 CSFR Learning Solution for Network Repair

Figure 6.1: Network example for rl simulator

an attempt to communicate with WS2, the communication will be successful, since the
path is: WS1, SW3, WS2. As we can see the fault node is not included. Let us match

each defined term of previous section, to current example:
- E, set of episode states E = {ey,ey,€3,¢e4,€5,¢5}, |[E| =6

- Pr(e), prior probability , probability is based on the uniform distribution, as a result
of that the prior probability of each node to be damaged is: 1/6 6.6

Episode - states
€1 €9 €3 €4 €5 €6
0.167 | 0.167 | 0.167 | 0.167 | 0.167 | 0.167 | Prior Probabilities ‘

Table 6.1: Prior Probabilities

- Test actions Ar The number of test actions is (4;1) = 10:

e ping from node WS1 to node WS2

Aggelos Aggelidakis 43 February 2013

6. CSFR LEARNING FOR NETWORK REPAIR

e ping from node WS1 to node WSH

e ping from node WS5 to node WS10

e ping from node WS6 to node WS10

- Repair actions Az The number of repair actions is 10:

reboot /repair of node WS1

reboot /repair of node WS2

reboot /repair of node SW9

reboot /repair of node SW10

- c(e,a) cost function over actions a € A; U Ar and states e € E |, the table 6.2 rep-

resents the cost function.

Episode states

€1 ey es3 €4 es es Actions
1500 | ? ? | 200 | ? | 200 | ping WSI to WS2
1500 | 1700 ? ? ? ? ping WSI1 to WS5H

1500 | 1700 | 400 | 600 ? ? ping WSI1 to WS6
? 300 ? 300 | 400 | 2500 | ping WSI to SRV10
1500 | 1700 ? ? ‘ ? ping WS2 to WS5

?

1500 | 1700 | 400 | 600 ? ? ping WS2 to WS6
1500 | 300 | 300 | 300 ? ? ping WS2 to SRV10
200 | 7 | 200 | 2 ? ? | ping WS5 to WS6
300 | 1500 ? ? ? ? ping WS5 to SRV10
300 | 1500 ? 300 ? ? ping WS6 to SRV10
1800 | 1800 ? 1800 ? ? reboot WS1

? ? ? ? ? ? reboot WS2
1400 | 1400 ? 1400 ? ? reboot SW3
1400 | 1400 ? ? ? 1400 reboot SW4

? 1800 ? 1800 ? reboot WSH

1800 | 1800 ? 1800 | 1800 reboot WS6

| 0| NI |

1000 | 1000 | 1000 ? ? reboot HB7
? 1000 ? 1000 ? reboot HBS
? 1000 | 1000 ? 1000 reboot HB9

2200 | 2200 | 2200 | 2200 | 7 | 2200 reboot SRV10

Table 6.2: Cost Function RL

Aggelos Aggelidakis 44 February 2013

6.2 CSFR Learning Solution for Network Repair

Episode states
e1 | e | es|eq]|es | eg Actions
0?72 |1]7?]|1]| ping WSl to WS2
0|0 |?]|?]7?]7?| ping WSItoWS5
0|01 |1]7?]|7?]| ping WSl to WS6
7117|1110 | ping WSI to SRV10
0|0 |72 |?2]7?7]7?7]| ping WS2to WS5
0|01 |1]7?]|7?]| ping WS2to WS6
0|1 |11 7?7]| 7] ping WS2to SRV10
11?7117 7] 7| ping WS5to WS6
1707|777 ping WS5to SRVI0
170 (?2]1] 7] 7?] ping WS6 to SRV10
ojof|?2{0|?72|7? reboot WS1
o I O R RN B4 reboot WS2
110?210 7]7 reboot SW3
oOj1 (2?2?2710 reboot SW4
2100071077 reboot WSH
0|0 ?10|0]°7 reboot WS6
ojof|1|?2|?7|7? reboot HB7
10017 reboot HBS
21000000717 reboot HB9
0jojojo0|?7|1 reboot SRV10

Table 6.3: Observe Function RL

- o(e,a) observation function over actions a € A; U Ap and states e € E | the ta-
ble 6.3 represents the observation model. Columns of table 6.2 refer to episode
states, which are simulated off-line. The node which is fault can not be detected
through the table 6.2 which represents cost function, it can be detected through
the table that represents observation model 6.3. Take a look at the table 6.3, it
is obvious that the fault node at the first episode is SW3, as the repair action
reboot SW3 concurs with the outcome 1. The rest fault nodes of the remaining
five episodes are similarly in turn: SW4, HB7, HB8, HB9, and SRV 10.

At this point the schematic 6.2 will be presented in order to explain the strategy.
The first belief includes all the episodes. The system acts with a ping from WS5
to WS10 and the observation result is 0. Take a look at the test action ping WS5
to WS10 of the observation model. Candidate episodes of the new belief are: e,
with outcome 0 and es3, ey, €5, eg with outcome ?. The next action is chosen to be
ping from WS6 to WS10. The observation result is 0. The episodes of the current
belief concurs with that outcome or outcome 7 are episodes: es, €3, €5, €. As a
result, episode e, is removed from the belief. The next action is chosen to be repair

action reboot HB7, as result, e3 is removed as its outcome for the specific repair

Aggelos Aggelidakis 45 February 2013

6. CSFR LEARNING FOR NETWORK REPAIR

€,,€,,€.,€;

V(b,) = min,Q(b,a) = 71.6667 V(b,) = min Q(b,a) = 96.6667

V(b,) = min Q(b,a) = 141.667| a,: reboot HB7

a_: reboot WS4

V(b,) = min Q(b,,a) = 416.667 V(b)) = min,Q(b,a) = 188.889

Figure 6.2: Belief Schematic of CSFR Learning for example 6.1

action is 1. Finally, the next action is reboot WS4, the outcome of the action is
1 for the episode e, and the faulty node WS4 is remedied. Assume that another
fault appears on the network, the current faulty node is WS6. The fault manager
conclude to remove all the episode states, following the previous policy. However
none of them covers the current fault. Eventually, the agent adds an other episode
on fly, by applying CSFR planning to the current instance of the faulty network (see
Figure 6.3). The current forms of cost and observation tables include an additional

column, the column with the new episode state e;.

Let us use the same network in order to describe the policy of MiniMax CSFR
Learning. Four episodes are chosen to run off-line. Episode e; corresponds to fault
node WSI1, e, corresponds to fault node SW4, es corresponds to fault node HBS,
e4 corresponds to fault node SRV10. The explicit form of the terms of MiniMax

CSFR Learning is given comprehensively.

Aggelos Aggelidakis 46 February 2013

6.2 CSFR Learning Solution for Network Repair

\ a:ping WS1tows2 & feboot SWa
b, b, b

a,: reboot
SRV10

V(b,) = min Q(b,,a) = V(b,) =min Q(b,a) =
98.8839 164.286

V(b,) = min,Q(b,,a) = 25| a;: reboot

A, reboot
SRV10

a,: reboot

V(b,) = min Qb,a) = V(b) =minQ(bya) = V(b)=min.Q(b,a) =
275 T 62.5 125

Figure 6.3: Belief Schematic of CSFR Learning — adding episode e for example 6.1

- E, set of episode states FE = {e1,ey,€3,e4}, |[E| =4

- Pr(e), prior probability , probability is based on the uniform distribution, as a result

of that the prior probability of each node to be damaged is: 1/4 6.6

- Test actions A7 The number of test actions is (4J2rl) = 10:

e ping from node WS1 to node WS2

ping from node WS1 to node WS5H

e ping from node WS5 to node WS10
e ping from node WS6 to node WS10

Aggelos Aggelidakis 47 February 2013

6. CSFR LEARNING FOR NETWORK REPAIR

Episode states

ey €2 es3 €y es € er Actions
1500 ? ? 200 ? 200 ? ping WS1 to WS2
1500 | 1700 ? ? ? ? 400 | ping WS1 to WS5
1500 | 1700 | 400 | 600 ? ? ? ping WS1 to WS6

? 300 ? 300 | 400 | 2500 ? ping WSI to SRV10
1500 | 1700 ? ? ? ? 400 | ping WS2 to WS5
1500 | 1700 | 400 | 600 ? ? 2200 | ping WS2 to WS6
1500 | 300 | 300 | 300 ? ? 300 | ping WS2 to SRV10
200 ? 200 ? ? ? 2000 | ping WS5 to WS6
300 | 1500 ? ? ? ? 300 | ping WS5 to SRV10
300 | 1500 ? 300 ? ? 1800 | ping WS6 to SRV10
1800 | 1800 ? 1800 ? ? 1800 reboot WS1

? ? ? ? ? ? 1800 reboot WS2
1400 | 1400 ? 1400 ? ? ? reboot SW3
1400 | 1400 ? ? ? 1400 | 1400 reboot SW4

? 1800 ? 1800 ? ? 1800 reboot WSH
1800 | 1800 ? 1800 | 1800 ? 1800 reboot WS6
1000 | 1000 | 1000 ? ? ? ? reboot HBT7

? 1000 ? 1000 ? ? 1000 reboot HB8

? 1000 | 1000 ? 1000 ? 1000 reboot HB9
2200 | 2200 | 2200 | 2200 ? 2200 ? reboot SRV10

Table 6.4: Cost Function RL with Additional Episode

Table 6.5:

Episode states

™
[l

D
M

€3

™
i

]
o

o
=3

D
NG

Actions

?

ping WSI to WS2

ping WSI1 to WSH

ping WSI1 to WS6

ping WS1 to SRV10

ping WS2 to WS5

(=] Ren) EEN] Henl Hen] Nen]

ping WS2 to WS6

ping WS2 to SRV10

ping WS5 to WS6

ping WS5 to SRV10

ping WS6 to SRV10

reboot WSI1

reboot WS2

=0 O = = =

R e N L S | e e B

N O OO O O |] |]

reboot SW3

reboot SW4

reboot WSH

(=l Rl Bl N Fel el Rl NS E=lE=IR o) Ren] V]

reboot WS6

o
]

reboot HB7

reboot HB8

reboot HB9

O| O 0| | | 0] 0| | | 0| | | | | | | | =
O N | | O O V| O | O | 0| o |] 0| |] 0] | A
0| =] | o] O 0| | 0| 0| 0|] o o 0|] o = | | o o

ool o
=] 0| o] | |

| OO O

reboot SRV10

Observe Function RL with Additional Episode

- Repair actions Az The number of repair actions is 10:

Aggelos Aggelidakis

48

February 2013

6.2 CSFR Learning Solution for Network Repair

Episode - states
€1 €9 €3 €4
0.25 [0.25 | 0.25 | 0.25 | Prior Probabilities |

Table 6.6: Prior Probabilities

reboot /repair of node WS1

reboot /repair of node WS2

reboot /repair of node SW9

reboot /repair of node SW10

- c(e,a) cost function over actions a € A, U Ar and states e € E | the table 6.7 rep-

resents the cost function.

Episode states

e e e ey Actions
1800 | 7 200 | 200 | ping WSI1 to WS2
1800 ? 600 ? ping WSI1 to WSH
1800 ? 600 | 400 ping WSI1 to WS6
1800 ? 300 | 2500 | ping WS1 to SRV10
400 ? 600 | 400 | ping WS2 to WSH
400 ? 600 | 400 | ping WS2 to WS6
300 ? ? 2500 | ping WS2 to SRV10
200 ? 200 | 200 | ping WSH to WS6

? 1500 | 300 ? | ping WS5 to SRV10
300 ? 300 | 2500 | ping WS6 to SRV10
1800 | 1800 | 1800 | 1800 reboot WS1
1800 ? 1800 | 1800 reboot WS2
1400 ? 1400 | 1400 reboot SW3
1400 | 1400 | 1400 | 1400 reboot SW4
1800 ? 1800 | 1800 reboot WS5H
1800 | 1800 | 1800 ? reboot WS6
1000 | 1000 | 1000 | 1000 reboot HB7
1000 ? 1000 | 1000 reboot HBS
1000 | 1000 ? 1000 reboot HB9
2200 ? 2200 | 2200 reboot SRV10

Table 6.7: Cost Function RL

- o(e,a) observation function over actions a € A; U Ar and states ¢ € E | the ta-

ble 6.8 represents the observation model.

Aggelos Aggelidakis 49 February 2013

6. CSFR LEARNING FOR NETWORK REPAIR

Episode states

€1

€2

€4

Actions

0

5

—_

ping WS1 to WS2

0

ping WSI1 to WS5

o

ping WS1 to WS6

o

ping WS1 to SRV10

ping WS2 to WS5

ping WS2 to WS6

ping WS2 to SRV10

ping WS5 to WS6

ping WS5 to SRV10

N O N | | 0] 0 9 o

ping WS6 to SRV10

o
o

OO | = | O = | O]]~

reboot WS1

reboot WS2

reboot SW3

ool o

reboot SW4

o

reboot WSH

reboot WS6

reboot HB7

OO OO OO O] = =

[s=] Ran) AN

reboot HB8

reboot HB9

[e] Nen)

| O O O | N 0

ol v —|lololo|lo|lolo|o| |~ R |~ Rk~ =

K=

reboot SRV10

Table 6.8: Observe Function RL

V(b,) = min Q(b,a) = 4700

a,: reboot WS1 b
3

V(b,) = min,Q(b,.a) = 3200

a,: reboot HB8

b

V(b,) = min Q(b,a) = 1400

Figure 6.4: Belief Schematic of MiniMax CSFR Learning for example 6.1

At this point, Figure 6.4 will be used in order to explain the strategy. Assume that
the faulty node is HB8. The first belief includes all the episodes. The system acts
with a ping from WS6 to SRV10 and the observation result is 1. Take a look at
the test action ping WS6 to SRV10 of the observation model. Candidate episodes

of the new belief are: e; with outcome ? and e;, e with outcome 1. No further

test actions can reduce the belief. As a result, the agent has to take a repair action.

The policy followed by the agent force the agent to minimize the maximum (worst)

total cost for the current belief by. The next action is chosen to be reboot WSI1.

Episode e; is removed from the belief b3, as its outcome for the previous repair

action is 0. Finally, the system is remedied by the repair action reboot HBS.

Aggelos Aggelidakis

20

February 2013

Chapter 7

Results

In this chapter we will demonstrate a variety of experiments in order to present original
Cost Fault Sensitive Remediation Model and MiniMax Cost Fault Sensitive Remediation
Model with the addendum of the three heuristics: ”least expected cost”, ”cheapest first”,
and "likeliest first”, applied to two different networks in order to succeed detection and
remediation of faulty nodes. The experiments are built scenarios of seven sets. The
simulation has run independently without any interference in all circumstances and at
each conclusion we collect the data we need such as: the average actual cost, the 95%
confidence interval, and max actual cost.

The first set of experiments include, original CSFR planning , and three heurestics
of MiniMax CSFR planning applied to the cyclic network 7.1. The networks consists of
three workstations, two switches, and one hub. The number of test actions is |Ar| = 3
and the number of repair actions is |[Ag| = 6. The first set of experiments are executed
twice. At first execution, faults of the network are being uniformly distributed to the
nodes with probability % and prior probabilities of the original CSFR model Pr(s;) = %,
ie (WS, W2 SW3,SW4, HB5,WS6). At second execution, faults of the network are
being nonuniformly distributed to the nodes, and the probabilities of each node to be
faulty are in turn: 0.05, 0.15, 0.3, 0.3, 0.15, 0.05. The term of the prior probabilities Pr(s)
of the original CSFR model follows the same distribution Pr(WS1) = 0.05, Pr(WS2) =
0.15, Pr(SW3) = 0.3, Pr(SW4) = 0.3, Pr(HB5) = 0.15, Pr(WWS6) = 0.05, therefore
the best average of actual costs is expected to be the average of the original CSFR
model. However, maximum actual cost of MiniMax CSFR is expected to be less than the

corresponding value of the original CSFR model. The second set of experiments include,

Aggelos Aggelidakis 51 February 2013

7. RESULTS

Information of topology

Element

Ik
o

total

workstations

switches

hubs

servers

workstations’ link

switches’ link

hubs’ link

servers’ link

maximum number of links

number of test actions

number of repair actions

ol | w| ol s o| | o] wl o2

number of total actions

Figure 7.1: Network example for Planning experiments

original CSFR learning, and three heurestics of MiniMax CSFR learning applied to the

same cyclic network 7.1. We are expected to take respective results at that case too.

AVG | 95% C.I. | MAX
3581.2 90.1541 5600 | original CSFR

4053.4 69.7095 5400 | MiniMax CSFR least expected
4053.4 69.7095 5400 | MiniMax CSFR cheapest
4112.2 67.0518 5400 | MiniMax CSFR likeliest

Table 7.1: Planning with correct priors and uniform dist for network 7.1

AVG | 95% C.I. | MAX
2929.9 74.7966 7000 | original CSFR

4189.7 46.8434 5400 | MiniMax CSFR least expected
4281.9 49.4719 5400 | MiniMax CSFR cheapest
4189.7 46.8434 5400 | MiniMax CSFR likeliest

Table 7.2: Planning with correct priors and nonuniform dist for network 7.1

The third set of experiments include, original CSFR planning, and the three heurestics
of MiniMax CSFR planning applied to the same cyclic network 7.1, using wrong prior
probabilities for fault states/nodes as input of the original CSFR model. Third set
of experiments are executed twice, for uniform and non uniform distribution of fault
to be occurred. When faults of the network are being uniformly distributed to the
nodes with probability %, the prior probabilities of the original CSFR model follows

a nonuniform distribution, due to the the nature of sampling these observed statistics

Aggelos Aggelidakis 52 February 2013

AVG | 95% C.I. | MAX
4532.9 114.195 7800 | original CSFR

5150.6 93.4443 7800 | MiniMax CSFR least expected
5258.8 103.637 8400 | MiniMax CSFR cheapest
5309.8 99.7211 8400 | MiniMax CSFR likeliest

Table 7.3: Learning with uniform dist for network 7.1

AVG | 95% C.I. | MAX
4136.5 123.873 8600 | original CSFR

5807.6 148.944 9200 | MiniMax CSFR least expected
5657.4 140.11 9200 | MiniMax CSFR cheapest
5716.8 143.302 9200 | MiniMax CSFR likeliest

Table 7.4: Learning with nonuniform dist for network 7.1

are wrong, Pr(WS1) = 0.05, Pr(WS2) = 0.15, Pr(SW3) = 0.3, Pr(SW4) = 0.3,
Pr(HB5) = 0.15, Pr(WW.S6) = 0.05. At the next execution, the two distributions are
reversed. Our expectations are better or, at worst case, the same for the maximum actual
cost of MiniMax CSFR model, we cannot guarantee the performance of the average.
Following example presents better maximum actual cost for the MiniMax CSFR model,

but a worse average.

AVG | 95% C.I. | MAX

3869.2 106.949 7000 | original CSFR

4073.6 68.5294 5400 | MiniMax CSFR least expected
4002 70.9756 5400 | MiniMax CSFR cheapest

4073.6 68.5294 5400 | MiniMax CSFR likeliest

Table 7.5: Planning with wrong priors and uniform dist for network 7.1

The fourth set of experiments include, original CSFR planning , and three heurestics
of MiniMax CSFR planning applied to the cyclic network 7.2. Network 7.2 offers the
opportunity to present some different cases which affects the average and maximum
actual cost. The networks consists of four workstations, two switches, and two hubs.
The number of test actions is |Ar| = 6 and the number of repair actions is |[Ag| = 8. The
first set of experiments are executed twice. At first execution, faults of the network are

being uniformly distributed to the nodes with probability % and prior probabilities of the

Aggelos Aggelidakis 53 February 2013

7. RESULTS

AVG | 95% C.I. | MAX
3297.2 80.7423 5600 | original CSFR

4261.2 52.5597 5400 | MiniMax CSFR least expected
4261.2 52.5597 5400 | MiniMax CSFR cheapest
4180.8 50.586 5400 | MiniMax CSFR likeliest

Table 7.6: Planning with wrong priors and nonuniform dist for network 7.1

Information of topology

Element

=
Z,
°

total

workstations

switches

hubs

servers

workstations’ link

switches’ link

hubs’ link

servers’ link

maximum number of links

DO D | DN = N D[N D] =] o

number of test actions

number of repair actions

Figure 7.2: Network second example for Planning experiments [tumber of total actions

—
S

original CSFR model Pr(s;) = %, i€ (WS1,W2,SW3,SW4, WS5 WS6, HBT, HBS).
At second execution, faults of the network are being nonuniformly distributed to the
nodes, and the probabilities of each node to be faulty are in turn: 0.05, 0.1, 0.15, 0.2,
0.2, 0.15, 0.1, 0.05. The term of the prior probabilities Pr(s) of the original CSFR model
follows the same distribution Pr(W.S1) = 0.05, Pr(WS2) = 0.1, Pr(SW3) = 0.15,
Pr(SW4) =0.2, Pr(WS5) =0.2, Pr(WS6) =0.15, Pr(HB7) = 0.1, Pr(HB8) = 0.05,
therefore the best average of actual costs is expected to be the average of the original
CSFR model. However, maximum actual cost of MiniMax CSFR is expected to be less
than the corresponding value of the original CSFR model. The second set of experiments
include, original CSFR learning, and three heurestics of MiniMax CSFR learning applied
to the same cyclic network 7.2. We are expected to take respective results at that case

too.

AVG | 95% C.I. | MAX
3887.5 84.6744 5600 | original CSFR

4090.9 69.1644 5600 | MiniMax CSFR least expected
4083.4 68.5474 5600 | MiniMax CSFR cheapest
4141.3 64.0875 5600 | MiniMax CSFR likeliest

Table 7.7: Planning with correct priors and uniform dist for network 7.2 for 1000 faults

Aggelos Aggelidakis 54 February 2013

AVG 95% C.I. | MAX
3577.74 76.8742 5600 | original CSFR

3871.12 74.7681 5600 | MiniMax CSFR least expected
3912.94 74.1027 5600 | MiniMax CSFR cheapest
3871.12 74.7681 5600 | MiniMax CSFR likeliest

Table 7.8: Planning with correct priors and nonuniform dist for network 7.2 for 1000
faults

AVG | 95% C.I. | MAX
6300 199.066 | 12400 | original CSFR

6620.4 192.314 | 11100 | MiniMax CSFR least expected

5293.6 142.615 | 12000 | MiniMax CSFR cheapest

5821.4 171.364 9800 | MiniMax CSFR likeliest

Table 7.9: Learning with uniform dist for network 7.2 for 1000 faults

AVG 95% C.I. | MAX

6589.79 181.564 | 10400 | original CSFR

6950.93 229.335 | 12000 | MiniMax CSFR least expected
4547.2 87.3459 8800 | MiniMax CSFR cheapest
7117.18 241.885 | 12000 | MiniMax CSFR likeliest

Table 7.10: Learning with nonuniform dist for network 7.2 for 1000 faults

The sixth set of experiments include, original CSFR planning, and the three heurestics
of MiniMax CSFR planning applied to the same cyclic network 7.2, using wrong prior
probabilities for fault states/nodes as input of the original CSFR model. Third set
of experiments are executed twice, for uniform and non uniform distribution of fault
to be occurred. When faults of the network are being uniformly distributed to the
nodes with probability %, the prior probabilities of the original CSFR model follows
a nonuniform distribution, due to the the nature of sampling these observed statistics
are wrong, Pr(WS1) = 0.05, Pr(WS2) = 0.1, Pr(SW3) = 0.15, Pr(SW4) = 0.2,
Pr(WsSh) = 0.2, Pr(WS6) = 0.15, Pr(HBT7) = 0.1, Pr(HB8) = 0.05. At the next
execution, the two distributions are reversed. Our expectations are better or, at worst
case, the same for the maximum actual cost of MiniMax CSFR model, the MiniMax

CSFR model cannot guarantee anything about the average, however following examples

Aggelos Aggelidakis 55 February 2013

7. RESULTS

Information of topology

Element #No.

total 36

workstations 18

switches 9

hubs 8

servers 1

workstations’ link 1

switches’ link 4

hubs’ link 4

servers’ link 1

maximum number of links 4
number of test actions 171
number of repair actions 36
number of total actions 207

Figure 7.3: Network example for Learning experiments

presents some cases in which the average of the MiniMax CSFR model is better than the
average of the original CSFR model, but the maximum actual cost of the two models is

equal.

AVG | 95% C.I. | MAX
4088.4 75.0541 5600 | original CSFR

4021.7 70.3242 5600 | MiniMax CSFR least expected
4141.3 67.8437 5600 | MiniMax CSFR cheapest
4021.7 70.3242 5600 | MiniMax CSFR likeliest

Table 7.11: Planning with wrong priors and uniform dist for network 7.2 for 1000 faults

AVG 95% C.I. | MAX
3957.27 82.3303 5600 | original CSFR

3962.32 73.8436 5600 | MiniMax CSFR least expected
3905.69 74.3051 5600 | MiniMax CSFR cheapest
4152.59 71.6135 5600 | MiniMax CSFR likeliest

Table 7.12: Planning with wrong priors and nonuniform dist for network 7.2 for 1000
faults

The seventh set of experiments include, original CSFR learning, and three heurestics
of MiniMax CSFR learning applied to the larger non cyclic network 7.3. The networks

consists of eighteen workstations, nine switches, eight hubs, and 1 server. The test actions

Aggelos Aggelidakis 56 February 2013

are |Ar| = 171 in total and repair actions are |Ag| = 36. Fourth set is executed twice,
for uniform and non uniform distribution of fault to be occurred. Given a sampling of
the observed faulty nodes, some nodes break down with zero probability and SW15,
HB20, WS25, WS30, HB35 with probabilities Pr(SW15) = 0.1, Pr(HB20) = 0.2,
Pr(WS25) = 0.4, Pr(WS30) = 0.2, Pr(HB35) = 0.1. The next execution is occurred
with uniformly distributed probabilities.

AVG 95% C.I. | MAX
4639.19 80.1208 6100 | original CSFR

4222.02 52.3757 5700 | MiniMax CSFR least expected
4222.02 52.3757 5700 | MiniMax CSFR cheapest
4222.02 52.3757 5700 | MiniMax CSFR likeliest

Table 7.13: Learning with uniform dist for network 7.3

AVG 95% C.I. | MAX

4135.94 197.385 7500 | original CSFR

3723.35 155.68 5800 | MiniMax CSFR least expected
3723.35 155.68 5800 | MiniMax CSFR cheapest
3723.35 155.68 5800 | MiniMax CSFR likeliest

Table 7.14: Learning with nonuniform dist for network 7.3

Aggelos Aggelidakis 57 February 2013

7. RESULTS

Aggelos Aggelidakis 58 February 2013

Chapter 8

Conclusion

This chapter demonstrates our basic findings of this research and its contribution. Fur-

thermore, limitations of the system are highlighted and a proposal for future work is

provided. The limitations of the model as well as its assumptions could be revisited and

eliminated, so a safe as well as an optimal decision making system could be presented in

the near future. Using planning with the MiniMax criterion complemented by the three

heuristics, presented in Chapter 3, better decisions could be taken in the field of auto-

nomic repair systems. The intelligent system created by this research puts the sequential

decisions for diagnosis and repairing on a firmer and safer footing. The basic conclusions

of this research summarize as follows:

(a)

The Cost-sensitive Fault Remediation (CSFR) technique can make sequential de-
cisions suitable for diagnosis and repair systems. The CSFR model monitors an
environment and takes actions based on the current state. These actions are both
test and repair. Test actions aim to detect the fault state of the environment and
repair actions aim to restore the environment to its proper functionality. The policy
that CSFR follows is based on the cost of each action, either test or repair. The
CSFR algorithm accomplishes its goal by discovering a repair policy that achieves an

optimal total cost.

The planning algorithm, proposed in this research, optimizes a minimax criterion,
which is in most cases safer than the original CSFR criterion. The original CSFR

criterion yields an upper bound value for the actual costs which in several cases is

Aggelos Aggelidakis 59 February 2013

8. CONCLUSION

higher than the corresponding bound of the MiniMax CSFR criterion. The worst

case for the MiniMax CSFR criterion is the two values of the bounds to be equal.

(¢) The experimental results indicate that the system acts in safe on behalf of the user by
following the minimax criterion. Moreover, the fault manager handles weaknesses of
the MiniMax CSFR model successfully, while it uses the heuristics (“least expected
cost”, “cheapest first”, “likeliest first”) described in Chapter 3.

8.1 Future Work

A possible future research direction is to apply the CSFR model with the minimax crite-
rion in another environment apart from network repair and evaluate the efficiency of the
extended model. Furthermore, the application of the model on a real network would re-
veal advantages and disadvantages in practice. An adjustment to a real network would set
the stages for a real contribution of learning domain to the field of network repair. Last,

but not least, the investigation of other criteria, would be an important contribution.

Aggelos Aggelidakis 60 February 2013

References

[1] Franklin, S., Graesser, A.: Is it an agent, or just a program?: A taxonomy for
autonomous agents. In: Proceedings of the Workshop on Intelligent Agents 111, Agent
Theories, Architectures, and Languages. ECAI 96, London, UK, UK, Springer-Verlag
(1997) 21-35 2

[2] Oates, T.: Fault identification in computer network: A review and a new approach.
Technical report, University of Massachusetts, Amherst, MA, USA (1995) 3

[3] Littman, M.L., Nguyen, T., Hirsh, H.: Cost-sensitive fault remediation for autonomic
computing. In: In Proc. of [JCAI Workshop on Al and Autonomic Computing. (2003)
3,7

[4] Sutton, R.S., Barto, A.G.: Introduction to reinforcement learning (1998) 3

[5] Littman, M.L., Ravi, N.: An instance-based state representation for network repair.
In: in Proceedings of the Nineteenth National Conference on Artificial Intelligence
(AAAT). (2004) 287292 7, 10, 41

[6] Littman, M.L., Ravi, N., Fenson, E., Howard, R.: Reinforcement learning for auto-
nomic network repair. In: ICAC, IEEE Computer Society (2004) 284-285 7

Aggelos Aggelidakis 61 February 2013

	1 Introduction
	1.1 Thesis Contribution
	1.2 Thesis Layout

	2 Cost-Sensitive Fault Remediation
	2.1 CSFR Fault Manager
	2.2 CSFR Model
	2.3 CSFR Planning
	2.4 CSFR Learning

	3 MiniMax CSFR
	3.1 MiniMax CSFR Planning
	3.2 MiniMax CSFR Repair Action Ordering
	3.3 MiniMax CSFR Learning

	4 Network Repair
	4.1 Network Repair
	4.2 Network Simulation

	5 CSFR Planning for Network Repair
	5.1 CSFR Model for Network Repair
	5.2 CSFR Planning Solution for Network Repair

	6 CSFR Learning for Network Repair
	6.1 Learned CSFR Model for Network Repair
	6.2 CSFR Learning Solution for Network Repair

	7 Results
	8 Conclusion
	8.1 Future Work

	References

