
Technical University of Crete, Greece

Department of Electronic and Computer Engineering

Learning Strategies

for Network Fault Detection and Remediation

Aggelos Aggelidakis

Thesis Committee

Assistant Professor Michail G. Lagoudakis (ECE)

Assistant Professor Georgios Chalkiadakis (ECE)

Assistant Professor Polychronis Koutsakis (ECE)

Chania, February 2013

http://www.tuc.gr
http://www.ece.tuc.gr

Aggelos Aggelidakis ii February 2013

Πολυτεχνειο Κρητης

Τμημα Ηλεκτρονικων Μηχανικων και Μηχανικων Υπολογιστων

Μάθηση Στρατηγικών

για Εντοπισμό και Αποκατάσταση Βλαβών

Δικτύου

΄Αγγελος Αγγελιδάκης

Εξεταστική Επιτροπή

Επίκουρος Καθηγητής Μιχαήλ Γ. Λαγουδάκης (ΗΜΜΥ)

Επίκουρος Καθηγητής Γεώργιος Χαλκιαδάκης (ΗΜΜΥ)

Επίκουρος Καθηγητής Πολυχρόνης Κουτσάκης (ΗΜΜΥ)

Χανιά, Φεβρουάριος 2013

http://www.tuc.gr
http://www.ece.tuc.gr

Aggelos Aggelidakis iv February 2013

Abstract

Network repair is a domain of growing significance. Viewing the network repair problem

as a sequential decision problem, offers the opportunity to design autonomous agents

able to implement minimum-cost fault detection and remediation policies through the

execution of appropriate test and repair actions on the network. A repair policy consists

of a sequence of test actions that help diagnose the faulty node of the network, followed

by repair actions to restore it to proper operation with minimum cost. This thesis

extends the Cost-Sensitive Fault Remediation (CSFR) model developed for such problems

by introducing a minimax criterion for planning and learning and applies the extended

CSFR model and algorithms to the problem of network repair. The minimax criterion, in

contrast to the minimum expected cost criterion of the original CSFR planning algorithm,

aims to deliver safer policies which keep the maximum (worst) cost low. Planning with

the minimax criterion is complemented with three heuristics for resolving possible repair

action ordering issues. The original planning algorithm and the three variations of the

proposed planning algorithm were applied on fault detection and remediation problems

in simulated networks of various sizes. To account for the computational limitations

of the planning agent, another agent was developed using instance-based reinforcement

learning. While the learning agent cannot guarantee optimality, it can handle much

larger problems by exploiting data collected through interaction with the environment.

Our results with both planning and learning indicate that the CSFR-based approach is

able to handle network repair problems effectively. In several cases, the proposed minimax

criterion yields a maximum actual repair cost which is lower compared to the maximum

actual cost of the minimum expected cost criterion.

Aggelos Aggelidakis vi February 2013

Περίληψη

Η αποκατάσταση δικτύων είναι ένας τομέας αυξανόμενης σημασίας. Βλέποντας το πρόβλημα

αποκατάστασης δικτύου ως ένα πρόβλημα διαδοχικών αποφάσεων, δίνεται η ευκαιρία για

το σχεδιασμό ενός αυτόνομου πράκτορα, ο οποίος είναι ικανός να υλοποιήσει πολιτικές ε-

λαχίστου κόστους, οι οποίες στοχεύουν στην ανίχνευση της βλάβης και στην αποκατάσταση,

μέσω της εκτέλεσης κατάλληλων ενεργειών διάγνωσης και επιδιόρθωσης στο δίκτυο. Μια

πολιτική αποκατάστασης αποτελείται από μια σειρά ενεργειών διάγνωσης, που βοηθούν στον

εντοπισμό του εσφαλμένου κόμβου του δικτύου, και από ενέργειες επιδιόρθωσης για να α-

ποκατασταθεί η σωστή λειτουργία με το ελάχιστο δυνατό κόστος. Η παρούσα διπλωματική

εργασία επεκτείνει το μοντέλο Cost-Sensitive Fault Remediation (CSFR), το οποίο ανα-

πτύχθηκε για τέτοιου είδους προβλήματα, με την προσθήκη ενόςminimax κριτηρίου για σχε-

διασμό και μάθηση και εφαρμόζει το νέο CSFR μοντέλο και τους αντίστοιχους αλγορίθμους

στο πρόβλημα της αποκατάστασης δικτύου. Το minimax κριτήριο, σε αντίθεση με το

κριτήριο ελαχίστου αναμενόμενου κόστους του αρχικού CSFR αλγορίθμου σχεδιασμού,

έχει ως στόχο να προσφέρει μία ασφαλέστερη πολιτική που διατηρεί το μέγιστο (χειρότερο)

κόστος σε χαμηλά επίπεδα. Ο σχεδιασμός με το minimax κριτήριο συμπληρώνεται με τρεις

ευρετικές μεθόδους για την επίλυση πιθανών προβλημάτων κατά τη διάταξη των ενεργειών ε-

πιδιόρθωσης. Ο αρχικός αλγόριθμος σχεδιασμού και οι τρεις παραλλαγές του προτεινόμενου

αλγορίθμου εφαρμόστηκαν σε προβλήματα εντοπισμού και αποκατάστασης βλαβών σε προ-

σομοιωμένα δίκτυα διαφορετικών μεγεθών. Λαμβάνοντας υπόψη τους υπολογιστικούς περιο-

ρισμούς του πράκτορα σχεδιασμού, αναπτύχθηκε ένας επιπλέον πράκτορας με χρήση ενισχυ-

τικής μάθησης στηριζόμενη σε στιγμιότυπα. Ο πράκτορας μάθησης δεν μπορεί να εγγυηθεί

βελτιστότητα, όμως μπορεί να χειριστεί πολύ μεγαλύτερα προβλήματα αξιοποιώντας τα δε-

δομένα που συλλέγει κατά την αλληλεπίδραση με το περιβάλλον. Τα αποτελέσματά μας τόσο

με το σχεδιασμό όσο και με τη μάθηση καταδεικνύουν ότι η προσέγγιση που επιλέχθηκε

στηριζόμενη στο CSFR μοντέλο είναι σε θέση να χειριστεί αποτελεσματικά τα προβλήματα

αποκατάστασης δικτύου. Σε αρκετές περιπτώσεις, ο προτεινόμενος αλγόριθμος σχεδιασμού

με τοminimax κριτήριο αποδίδει μέγιστο πραγματικό κόστος αποκατάστασης, το οποίο είναι

χαμηλότερο σε σχέση με το μέγιστο πραγματικό κόστος του αρχικού CSFR αλγορίθμου

σχεδιασμού που έχει ως κριτήριο το ελάχιστο αναμενόμενο κόστος.

Aggelos Aggelidakis viii February 2013

Acknowledgements

I would like to take this opportunity to sincerely thank my thesis supervisor, Prof. Michail

G. Lagoudakis for his support and guidance towards the completion of my diploma. I

really appreciate his valuable help and understanding, and I am deeply thankful due

to the fact that he has always spared his time to discuss and solve problems that pre-

sented during my implementation. Special thanks is also extended to Prof. Polychronis

Koutsakis and Prof. Georgios Chalkiadakis for their valuable advice, suggestions and

support to solve the problems arising during implementation. Furthermore I would like

to express my gratitude to my parents for their continuous support, endless encourage-

ment and confidence especially during my studies. Many thanks to my friends, who have

been very helpful in giving me suggestions and moral support towards my studies and

implementation of my diploma.

Ευχαριστίες

Θα ήθελα να ευχαριστήσω τον επιβλέποντα καθηγητή μου Μιχαήλ Γ. Λαγουδάκη για

την υποστήριξη και την καθοδήγηση του κατά τη διάρκεια της διπλωματικής μου εργασίας.

Εκτιμώ πραγματικά τη πολύτιμη βοήθεια και κατανόηση του και είμαι πραγματικά ευγνώμων

γιατί πάντα διέθετε χρόνο για να συζητήσουμε και να λύσουμε τυχόν προβλήματα που

παρουσιάζονταν κατά τη διάρκεια της υλοποίησης. ΄Ενα μεγάλο ευχαριστώ στους καθηγητές

Πολυχρόνη Κουτσάκη και Γεώργιο Χαλκιαδάκη για τις πολύτιμες συμβουλές, τις προτάσεις

τους και την υποστήριξη τους στα προβλήματα που εμφανίζονταν κατά τη διάρκεια της

υλοποίησης. Επιπλέον θα ήθελα να εκφράσω την ευγνωμοσύνη μου στους γονείς μου για

την αδιάλειπτη υποστήριξη, την ενθάρρυνση και την εμπιστοσύνη που μου έδειξαν όλα αυτά

τα χρόνια κατά τη διάρκεια των σπουδών μου. ΄Ενα μεγάλο ευχαριστώ στους φίλους μου

για τη βοήθεια τους, τις προτάσεις τους και την ηθική τους υποστήριξη κατά τη διάρκεια

των σπουδών μου και την εκπόνηση της διπλωματικής μου.

Aggelos Aggelidakis x February 2013

Contents

1 Introduction 1

1.1 Thesis Contribution . 3

1.2 Thesis Layout . 4

2 Cost-Sensitive Fault Remediation 7

2.1 CSFR Fault Manager . 7

2.2 CSFR Model . 8

2.3 CSFR Planning . 9

2.4 CSFR Learning . 13

3 MiniMax CSFR 17

3.1 MiniMax CSFR Planning . 18

3.2 MiniMax CSFR Repair Action Ordering 20

3.3 MiniMax CSFR Learning . 23

4 Network Repair 25

4.1 Network Repair . 25

4.2 Network Simulation . 26

5 CSFR Planning for Network Repair 31

5.1 CSFR Model for Network Repair . 31

5.2 CSFR Planning Solution for Network Repair 33

6 CSFR Learning for Network Repair 41

6.1 Learned CSFR Model for Network Repair 41

6.2 CSFR Learning Solution for Network Repair 42

Aggelos Aggelidakis xi February 2013

CONTENTS

7 Results 51

8 Conclusion 59

8.1 Future Work . 60

References 61

Aggelos Aggelidakis xii February 2013

List of Figures

1.1 Network example . 2

1.2 Autonomous Agent . 3

2.1 Planning fault manager (left) and Learning fault manager (right) 8

4.1 An example of the networks considered in this thesis 27

5.1 Network example for planning simulator 33

5.2 Original CSFR planning for the example in Figure 5.1 when WS1 is faulty 36

5.3 MiniMax CSFR planning for the example in Figure 5.1 when WS1 is faulty 37

5.4 Original CSFR planning for the example in Figure 5.1 when WS6 is faulty 38

5.5 MiniMax CSFR planning for the example in Figure 5.1 when WS6 is faulty 38

6.1 Network example for rl simulator . 43

6.2 Belief Schematic of CSFR Learning for example 6.1 46

6.3 Belief Schematic of CSFR Learning – adding episode e for example 6.1 . 47

6.4 Belief Schematic of MiniMax CSFR Learning for example 6.1 50

7.1 Network example for Planning experiments 52

7.2 Network second example for Planning experiments 54

7.3 Network example for Learning experiments 56

Aggelos Aggelidakis xiii February 2013

LIST OF FIGURES

Aggelos Aggelidakis xiv February 2013

List of Tables

5.1 Prior probabilities of states in example shown in Figure 5.1 33

5.2 Cost function for the example shown in Figure 5.1 35

5.3 Observation model for the example shown in Figure 5.1 35

5.4 Actual costs for the example shown in Figure 5.1 35

6.1 Prior Probabilities . 43

6.2 Cost Function RL . 44

6.3 Observe Function RL . 45

6.4 Cost Function RL with Additional Episode 48

6.5 Observe Function RL with Additional Episode 48

6.6 Prior Probabilities . 49

6.7 Cost Function RL . 49

6.8 Observe Function RL . 50

7.1 Planning with correct priors and uniform dist for network 7.1 52

7.2 Planning with correct priors and nonuniform dist for network 7.1 52

7.3 Learning with uniform dist for network 7.1 53

7.4 Learning with nonuniform dist for network 7.1 53

7.5 Planning with wrong priors and uniform dist for network 7.1 53

7.6 Planning with wrong priors and nonuniform dist for network 7.1 54

7.7 Planning with correct priors and uniform dist for network 7.2 for 1000 faults 54

7.8 Planning with correct priors and nonuniform dist for network 7.2 for 1000

faults . 55

7.9 Learning with uniform dist for network 7.2 for 1000 faults 55

7.10 Learning with nonuniform dist for network 7.2 for 1000 faults 55

7.11 Planning with wrong priors and uniform dist for network 7.2 for 1000 faults 56

Aggelos Aggelidakis xv February 2013

LIST OF TABLES

7.12 Planning with wrong priors and nonuniform dist for network 7.2 for 1000

faults . 56

7.13 Learning with uniform dist for network 7.3 57

7.14 Learning with nonuniform dist for network 7.3 57

Aggelos Aggelidakis xvi February 2013

List of Algorithms

1 CSFR Value Computation Algorithm . 11

2 CSFR Planning Agent . 12

3 CSFR Learning Agent . 14

4 MiniMax CSFR Value Computation Algorithm 19

5 MiniMax CSFR Value Computation Algorithm with Repair Ordering . . 21

6 Heuristics for Repair Action Selection . 22

7 Ping/Test Action - Modified Breadth First Search 28

Aggelos Aggelidakis xvii February 2013

LIST OF ALGORITHMS

Aggelos Aggelidakis xviii February 2013

Chapter 1

Introduction

Organizations and individuals are becoming more dependent on computer networks to

accomplish their daily tasks. This fact implies that faults and time delays induce a

significant cost. New technologies, applications, and service providers need a high level

of services to maintain proper operation. As the number of users constantly increases, the

stability and proper service of a network becomes a challenging task. Fault management

is an important functional area in the Open Systems Interconnection (OSI) model of

network management. The purpose of fault management is to detect and resolve faults

occurring at nodes of the network. Fault detection is a domain of critical importance due

to the fact that correct detection and diagnosis of a fault narrows the range of actions

required in order to resolve the problem.

This thesis focuses on network fault detection and remediation. What exactly is

a network and what does it consist of? A network can be described as a collection of

workstations (computers) and other hardware interconnected by communication channels

(links) that allow sharing of services, data, and information. The basic operation of each

workstation is sending and receiving data to and from another device. The type of

network considered in this thesis includes workstations, servers, hubs, and switches. A

workstation is a high-end single-user computer designed to run technical or scientific

applications. A server is a physical computer dedicated to run one or more services

(as a host) to serve the needs of multiple users of other computers on the network. A

switch is a networking device that links several workstations with each other and allows

connections to other parts of a network through hubs. A hub is a networking device for

connecting multiple Ethernet devices (servers, other hubs) together and making them

Aggelos Aggelidakis 1 February 2013

1. INTRODUCTION

Figure 1.1: Network example

act as a single segment in the network. A schematic that gives an explicit view of the

network type used in this thesis is shown in Figure 1.1.

The fault manager proposed in this research is an autonomous agent. An autonomous

agent is anything that can be viewed as perceiving its environment through sensors and

acting upon that environment through effectors [1]. The structure of an agent includes:

(a) Percepts: the information received by the sensors at each time.

(b) Percept Sequence: the complete history of everything the agent has ever perceived.

(c) Actions: actuation of the effectors (decisions) at each time.

(d) Agent Function: mapping from percept sequences to actions

Figure 1.2 shows how an agent interacts with the environment and receives feedback.

The benefits of viewing a fault manager as an autonomous agent are studied in this

thesis in order to provide a method for efficient and dynamic network fault detection and

remediation. Consider a network that includes switches, hubs, servers, and workstations.

In such a network, workstations can communicate, through hubs and switches, with

Aggelos Aggelidakis 2 February 2013

1.1 Thesis Contribution

Figure 1.2: Autonomous Agent

servers or with each other. Occasionally, problems occur and nodes break down. A

faulty node cannot participate in any communication activity in the network, nor can

it relay any messages to the network. Detecting and identifying a fault is naturally a

difficult task due to unordered arrival of information, topologies of networks, varying

link sizes, and package congestion [2]. Intelligent systems are lately developed using

techniques from Artificial Intelligence and Machine Learning towards dynamic, robust,

and optimized network fault management. This research, in particular, uses planning

under uncertainty [3] and reinforcement learning [4] techniques to cope effectively with

the challenges of network fault detection and remediation.

1.1 Thesis Contribution

The purpose of this research is to provide an intelligent agent for detecting and repairing

network faults. This agent overviews a network and has access to each node of the

network. If the occurrence of a fault is signaled, the agent tries to determine the fault

using a sequence of test actions. Finally, the agent remedies the fault by taking one or

more repair actions. The architecture of the agent is based on the Cost-Sensitive Fault

Remediation (CSFR) model. The original CSFR model has its own limitations, as it

Aggelos Aggelidakis 3 February 2013

1. INTRODUCTION

relies on the criterion of expected cost minimization. For certain domains, where safe

repair policies are preferable, this criterion may not be appropriate; in such domains, the

agent could rely on the criterion of maximum cost minimization. The following objectives

summarize the contribution of this research:

(a) Extend the CSFR planning algorithm to optimize a minimax criterion

(b) Enhance the minimax CSFR planning algorithm with repair action ordering heuristics

(c) Implement a simulated network environment, a flexible platform for experimentation

(d) Implement a CSFR planning algorithm in order to determine an optimal decision

policy for diagnosis of network faults

(e) Implement an instance-based learning algorithm to learn a decision policy for diag-

nosis of network faults that improves with experience

(f) Evaluate the applicability and efficiency of the planning and learning algorithms

1.2 Thesis Layout

This thesis is organized into the following chapters:

Chapter 2 presents the original Cost-Sensitive Fault Remediation (CSFR) model, as

well as the original planning and learning algorithms based on the expected cost criterion

for total repair cost.

Chapter 3 presents our minimax version of CSFR and, more specifically, the minimax

CSFR planning and learning algorithms based on the minimax criterion for total repair

cost along with the repair action ordering heuristics.

Chapter 4 presents the problem of network fault repair and the details of our im-

plementation for the network simulation and the platform used to test the CSFR-based

approaches. The formation of states is described, as well as, the implementation of test

and repair actions.

Chapter 5 shows how the CSFR model applies to the network fault detection and

remediation problem. In particular, the full CSFR model (fault states, test and repair

actions, cost function, observation model) for this domain is defined. Subsequently, the

original and our extended CSFR planning algorithms are applied to find decision policies.

Aggelos Aggelidakis 4 February 2013

1.2 Thesis Layout

The entire procedure of fault detection and remediation is illustrated through detailed

examples.

Chapter 6 describes a reinforcement learning approach to decision making within the

CSFR model for network fault detection and remediation. According to this instance-

based approach, a CSFR model is learned from experience. The difference between the

true and the learned CSFR models lies mainly in the set of faulty states; in the learning

approach the set of faulty states is formed dynamically through experience by storing

past instances of fault detection and remediation.

Chapter 7 presents our experimental results highlighting the strengths and weaknesses

of the proposed network fault detection and remediation approach. The chapter describes

the experimental setup and presents experiments with both planning and learning under

both criteria (expected and minimax cost) to make comparisons and draw conclusions.

Chapter 8 summarizes the results of this research, gives an evaluation of the achieve-

ment of our objectives, and describes the advantages and disadvantages of our method.

Finally, it proposes directions for future work in the field of network repair from the

perspective of planning and learning.

Aggelos Aggelidakis 5 February 2013

1. INTRODUCTION

Aggelos Aggelidakis 6 February 2013

Chapter 2

Cost-Sensitive Fault Remediation

The Cost-Sensitive Fault Remediation (CSFR) model [3, 5, 6] is a modeling framework

for partially-observable environments capturing diagnosis-and-repair situations. Under

the CSFR model, an agent is able to detect the monitored system has entered a failure

mode, execute a sequence of test actions to diagnose the fault, attempt to repair the fault

by executing repair actions, and finally detect if the monitored system has been restored

to normal operation. A CSFR model is defined by a set of fault states, a set of test and

a set of repair actions, a cost function, and an observation model. The CSFR planning

algorithm for optimal decision policies is implemented via dynamic programming and

calculates a minimum-cost repair policy to detect and remedy the fault. On the other

hand, the reinforcement learning approach to decision making within the CSFR model

forms the set of faulty states dynamically through experience by storing past instances

of fault detection and remediation.

2.1 CSFR Fault Manager

Fault detection and remediation within the CSFR approach can be more comprehensible

in terms of some basic components, as shown in Figure 2.1. The environment gives

information to the CSFR-based fault manager and the manager eventually gives feedback

to the environment by commanding actions, one at a time. In fact, the fault manager

is an agent that operates on behalf of the user and aims to identify and repair faults of

the system by deciding which test or repair action to execute. By assumption, according

to the CSFR approach, only one fault is present at each time; whenever a fault occurs,

Aggelos Aggelidakis 7 February 2013

2. COST-SENSITIVE FAULT REMEDIATION

Figure 2.1: Planning fault manager (left) and Learning fault manager (right)

the manager is signaled to initiate a repair procedure without knowing where the fault

is. After the system is restored to normal operation, another fault may occur at a later

time signaling the manager and so on.

The fault manager has two alternative modes of operation: planning and learning.

Planning uses the CSFR planning algorithm on the true CSFR model to calculate an

optimal-cost repair policy in order to diagnose and repair the fault. On the other hand,

learning uses an instance-based learning approach to form a learned CSFR model. In

fact, the manager runs episodes without initially knowing the kinds of faults that occur

in the environment. Each one of the collected episodes is stored in the learned model,

so that it can be used in the future as a representative instance of some kind of fault

for which the stored repair action can be re-used, if that instance is identified again.

In that sense, the manager based on learning improves its effectiveness over time, while

avoiding to consider the entire range of all possible faults as done by the manager based

on planning. This difference will become clear in the rest of this chapter.

2.2 CSFR Model

The full definition of a CSFR model is given by the following items:

· S, the set of fault states, representing all possible faults that may occur

· Pr(s), a prior probability for each fault state s ∈ S. These probability values are

provided by the user and can be extracted by observation of the environment.

Aggelos Aggelidakis 8 February 2013

2.3 CSFR Planning

· AT , the set of test actions, which are used to gain information in order to detect

and diagnose the current fault in the environment.

· AR, the set of repair actions, which are used to resolve specific faults in the envi-

ronment, if present.

· a cost function c(s, a) over actions a ∈ AT ∪ AR and states s ∈ S. The numeric cost

of an action depends on the state it is taken in. This cost is typically related to

time, however this is not restricted as the model could adjust to a large range of

problems.

· a deterministic observation model o(s, a) over actions a ∈ AT ∪ AR and states s ∈ S.

The output of the observation model is binary, 0 or 1. For repair actions, 0 is in-

terpreted to mean that the repair is unsuccessful in state s and the fault remains,

while 1 means that the repair action resolves the problem in state s and the fault

is eliminated. For test actions, the outcome, 0 or 1, depends on the current state

s, is defined by the user according to the nature of the problem, and can be used

to identify the actual current state.

It is clear from the model, that a cost is incurred for any action performed, either test

or repair action. Apparently, the total cost during a detection and repair case will be

the main decision parameter. The goal is to detect and eliminate the fault and restore

normal operation, while paying the lowest possible cost. To this end, test and/or repair

actions must be chosen carefully. The fault manager acts as a decision-maker facing a

sequential decision making problem. Initially, a sequence of test actions will help pinpoint

the fault followed by some repair action to restore operation. These actions will be chosen

by a minimum-cost policy. The original CSFR model assumes that the test actions are

indicative enough to uniquely identify the fault.

2.3 CSFR Planning

Since the true fault state is unknown the agent has to reason over sets of possible fault

states, known as beliefs. If S is the set of possible fault states, the beliefs over fault states

is the power set of S, 2S. Let Q(b, a) be the expected total cost until the fault is repaired,

when the current belief is b ∈ 2S and the action taken at the current step is a ∈ AT ∪AR.

Aggelos Aggelidakis 9 February 2013

2. COST-SENSITIVE FAULT REMEDIATION

An optimal repair policy in a CSFR model can be extracted by taking at each step those

actions that minimize the expected total cost for the current belief. The expected total

cost function Q can be computed via dynamic programming using the following recursive

equation [5]:

Q(b, a) =



Pr(b0)

Pr(b)

(
c(b0, a) + V (b0)

)
+

Pr(b1)

Pr(b)

(
c(b1, a) + V (b1)

)
, if Pr(b0) > 0, P r(b1) > 0

or Pr(b1) > 0, a ∈ AR

∞, otherwise

where bi = {s ∈ b | o(s, a) = i} is the belief state resulting from taking action a in

belief state b and obtaining outcome i ∈ {0, 1}. V (b) is the minimum expected total cost

until the fault is repaired, when the current belief is b ∈ 2S. If a ∈ AR, for i = 1 we

define V (b1) = 0, as there is no additional cost incurred once a repair action is successful.

Essentially, belief b1 becomes an empty set in this case. In all other cases, the value of a

belief state is the minimum action value taken over all available action choices:

V (b) = min
a∈AT∪AR

Q(b, a)

Pr(b) and c(b, a) are the prior probability and the cost function extended to belief states.

More specifically, Pr(b) =
∑
s∈b

Pr(s), therefore the prior probability of a belief b is the

sum of the prior probabilities of the states it contains. Also, c(b, a) =
∑
s∈b

Pr(s) c(s, a),

therefore the cost of taking some action a in some belief b is computed by the costs of

taking action a in each of the states contained in b weighted by the corresponding prior

probabilities of those states. The condition(
Pr(b0) > 0 and Pr(b1) > 0

)
or
(
Pr(b1) > 0 and a ∈ AR

)
in the recursion ensures that the recursion eventually ends, since no quantity is defined

in terms of itself. This restriction rules out only clearly suboptimal policies that include

actions that do not alter the belief state and guarantees that the algorithm can be imple-

mented without considering cyclic dependencies. In other words, the condition is satisfied

Aggelos Aggelidakis 10 February 2013

2.3 CSFR Planning

Algorithm 1 CSFR Value Computation Algorithm

1: function getValue(environment env, belief b)
2: Returns: best value Vbest, best action abest

3: if b = ∅ then . empty belief
4: Vbest ← 0
5: else
6: Vbest ←∞
7: for all a ∈ AT ∪ AR do . check all actions
8: b0 ←

{
s ∈ b | o(s, a) = 0

}
9: b1 ←

{
s ∈ b | o(s, a) = 1

}
10: Pr(b0)←

∑
s∈b0 Pr(s)

11: Pr(b1)←
∑

s∈b1 Pr(s)

12: if
(

(Pr(b0) > 0) & (Pr(b1) > 0)
) ∣∣∣ ((Pr(b1) > 0) & (a ∈ AR)

)
then

13: Pr(b)←
∑

s∈b Pr(s)
14: c(b0, a)←

∑
s∈b0 Pr(s) c(s, a)

15: c(b1, a)←
∑

s∈b1 Pr(s) c(s, a)
16: V (b0)← getValue(env, b0)
17: if a ∈ AR then
18: b1 ← {} . the repair action fixes these fault states
19: end if
20: V (b1)← getValue(env, b1)

21: Q(b, a)←
Pr(b0)

Pr(b)

(
c(b0, a) + V (b0)

)
+

Pr(b1)

Pr(b)

(
c(b1, a) + V (b1)

)
22: else
23: Q(b, a)←∞
24: end if
25: if Q(b, a) < Vbest then
26: abest ← a . action that minimizes the expected cost
27: Vbest ← Q(b, a) . minimum expected cost
28: end if
29: end for
30: end if
31: return Vbest, abest

32: end function

only when an action splits the current belief into two beliefs with non-zero probability

or a repair action yields a belief b1 with a non-zero probability, therefore it fixes at least

one state in the current belief. Due to the nature of this condition, there is an implicit

assumption in CSFR that the prior probabilities of fault states cannot be zero, since a

Aggelos Aggelidakis 11 February 2013

2. COST-SENSITIVE FAULT REMEDIATION

Algorithm 2 CSFR Planning Agent

1: function CSFRplanning(environment env)
2: Returns: total repair cost totalCost
3:

4: totalCost← 0
5: belief ← S
6: while belief 6= ∅ do
7: {Vbest, abest} ← getValue(env, belief)
8: [outcome, cost]← executeAction(env, abest)
9: totalCost← totalCost + cost
10: if (abest ∈ AR) & (outcome = 1) then . fault was successfully removed
11: belief ← ∅
12: else if abest ∈ AT then
13: belief ←

{
s ∈ belief | o(s, abest) = outcome

}
14: else if abest ∈ AR then
15: belief ←

{
s ∈ belief | o(s, abest) = 0

}
16: end if
17: end while
18: return totalCost
19: end function

fault that never occurs is not a fault! However, if zero prior probabilities are given for

any reason, the condition above may fail to get satisfied. Algorithm 1 shows the main

CSFR function that computes expected costs (V values) recursively for any belief state.

Initially, the belief state includes all possible fault states. The agent chooses the

actions that minimize the expected total cost V at each step. These are typically test

actions, which help reduce the size of the belief state to locate the fault, however repair

actions may be executed in early steps, if they are likely to succeed. The reduced belief

state at each step will be determined by the outcome of most recent action. As the

belief state of the agent shrinks gradually, eventually the correct repair action will be

executed restoring the system to normal operation. The correct repair action may be

executed after a series of actions have brought the belief state down to a singleton set

and the fault state has been precisely identified, but this is not always the case. Early

repair is possible, if the correct repair action is picked because it minimizes the expected

cost in some non-singleton belief. If the agent ever reaches a non-singleton belief state

where no splits are possible by further test actions and therefore repair actions must be

Aggelos Aggelidakis 12 February 2013

2.4 CSFR Learning

applied, the ordering of these repair actions will be determined by a balancing of cost

and likelihood (prior probabilities) in the sense of expect cost. Algorithm 2 summarizes

the internal functionality of the CSFR planning agent. It should noted that the best

values and actions can either be computed once and stored explicitly in memory or be

computed again and again using function getValue on the current belief state at each

step of an episode.

2.4 CSFR Learning

Apart from planning, CSFR offers an instance-based reinforcement learning approach

which creates and manipulates a CSFR model based on unstructured interaction with

the environment. More specifically, the set of fault states is constructed gradually from

examples of complete repair episodes. Each complete repair episode contains a number

of test and repair actions taken during the episode along with their outcomes and costs

and ends with a successful repair action that fixed the fault. Due to the nature of the

CSFR model, the exact ordering of actions tried during the episode has no significant

meaning. Likewise, due to the deterministic nature of costs and observations, there is no

repetition of actions. In a sense, each such episode represents a particular type of fault

(a fault state), which can remedied by executing the stored successful repair action from

that episode. In practice, in CSFR learning, the set of faulty states S is replaced by a

set of episodes E.

Initially, before any repair attempt, the set of episodes E may be empty, but new

episodes may be added at any time, especially when facing a type of fault which cannot

be matched to any of the stored episodes. If the presence of fault is signaled, the learning

fault manager will try to fix the fault by running CSFR planning on the existing set of

episodes. If the current fault is matched against some stored episode (fault state) and

the fault is fixed, then the set of episodes E remains unchanged. If, however, CSFR

planning ends with an empty belief and the fault has not been fixed, a new episode has

to be added. This new episode contains already the actions tried during the failed CSFR

planning attempt and will be extended by additional random action selection (over the

actions that have not been tried already) until the fault is fixed. Actions should not be

repeated during an episode, since observations and costs are deterministic. In the worst

case, all actions will be tried, but it is guaranteed that the fault will eventually be fixed.

Aggelos Aggelidakis 13 February 2013

2. COST-SENSITIVE FAULT REMEDIATION

Algorithm 3 CSFR Learning Agent

1: function CSFRlearning(environment env, set of episodes E)
2: Returns: total repair cost totalCost, updated set of episodes E
3:

4: fixed← false

5: totalCost← 0
6: e← ∅
7: ∀a ∈ AT ∪ AR : c(e, a)← 0
8: ∀a ∈ AT ∪ AR : o(e, a)← ?

9: belief ← E
10: while fixed = false do
11: if belief 6= ∅ then
12: {Vbest, abest} ← getValue(env, belief)
13: else
14: abest ← choose randomly from {a ∈ AT ∪ AR : o(e, a) = ?}
15: end if
16: [outcome, cost]← executeAction(env, abest)
17: totalCost← totalCost + cost
18: e← e ∪ {abest}
19: c(e, abest)← cost
20: o(e, abest)← outcome
21: if (abest ∈ AR) & (outcome = 1) then . fault was successfully fixed
22: if belief 6= ∅ then . fixed by existing episode
23: ∀es ∈ belief : count(es)← count(es) + 1
24: else . fixed by the new episode
25: count(e)← 1
26: E ← E ∪ e . add the new episode to E
27: end if
28: fixed← true

29: else if abest ∈ AT then
30: belief ←

{
es ∈ belief | o(es, abest) = outcome or ?

}
31: else if abest ∈ AR then
32: belief ←

{
es ∈ belief | o(es, abest) = 0 or ?

}
33: end if
34: end while

35: ∀e ∈ E : Pr(e) =
count(e)∑

es∈E count(es)
36: return totalCost, E
37: end function

Aggelos Aggelidakis 14 February 2013

2.4 CSFR Learning

The observation model and the cost function for each new episode are defined implicitly

by the outcomes and the costs observed and recorded during the course of the episode.

Note that since not all actions may be tried during an episode, the gaps in the observation

model and the cost function are filled with the wildcard ? (matching both observations

0 and 1) and a numeric value of 0 respectively. Finally, the prior probabilities over the

stored episodes are formed by the frequency they are matched and lead to successful

repair over multiple cycles of fault occurrence and repair. Algorithm 3 shows the details

of the learning agent.

Given the above learned (estimated) CSFR model, decision making boils down to

CSFR planning on the estimated model and the learning fault manager proceeds similarly

to the planning one. The belief states are now formed by subsets of instances (episodes).

While optimal decision policies cannot be guaranteed in this case, it is expected that the

actual episodes encountered and stored during the course of learning will be much smaller

compared to the set of all possible faulty states in the corresponding planning problem.

Thus, the lack of optimality is counterbalanced by significant savings in execution time.

Aggelos Aggelidakis 15 February 2013

2. COST-SENSITIVE FAULT REMEDIATION

Aggelos Aggelidakis 16 February 2013

Chapter 3

MiniMax CSFR

The planning algorithm for the CSFR model presented in Chapter 2 focuses on the

minimum expected cost optimality criterion, which aims to find an optimal policy for the

average case. In practice, this means that the performance of the agent will be optimal,

if viewed as the average repair cost over many fault remediation episodes. This expected

cost criterion, however, suffers from two facts. First, it depends highly on the accuracy of

the prior probabilities; if the true probabilities are significantly different, then the agent

will optimize its choices for a non-existent average case. Second, if the fault remediation

episodes are scarce, it may be preferable to follow a safe policy regardless of what the

true or estimated average case is. Such safe, yet conservative, policies may be obtained

by the well-established minimax criterion, which focuses on the worst case. In practice,

this means that the agent will try to keep the worst-possible total repair cost low, even

during a single remediation episode.

In this chapter we describe a minimax version version of CSFR planning and learning,

which utilizes the same CSFR model described already in Section 2.2, but alters the

optimality criterion for decision making. Since the minimax version of CSFR uses the

same CSFR model definition, we focus only on decision making through planning or

learning. In addition to the minimax formulation, we offer three heuristics for ordering

repair actions in situations where the minimax criterion gives no preference. The minimax

criterion for fault remediation may be more appropriate in certain applications, where it

is critical to guarantee that the total repair cost will remain below certain levels.

Aggelos Aggelidakis 17 February 2013

3. MINIMAX CSFR

3.1 MiniMax CSFR Planning

Once again, since the true fault state is unknown, the agent has to reason over sets of

possible fault states or beliefs. Let Q̂(b, a) be the minimax total cost until the fault is

repaired, when the current belief is b ∈ 2S and the action taken at the current step is

a ∈ AT ∪ AR. An optimal repair policy in a minimax CSFR model can be extracted

by taking at each step those actions that minimize the maximum (worst) total cost for

the current belief. The maximum total cost function Q̂ can be computed via dynamic

programming using the following recursive equation:

Q̂(b, a) =


max

{(
ĉ(b0, a) + V̂ (b0)

)
,
(
ĉ(b1, a) + V̂ (b1)

)}
, if |b0| > 0, |b1| > 0

or |b1| > 0, a ∈ AR

∞, otherwise

where bi = {s ∈ b | o(s, a) = i} is the belief state resulting from taking action a in belief

state b and obtaining outcome i ∈ {0, 1}. V̂ (b) is the minimax total cost until the fault

is repaired, when the current belief is b ∈ 2S. If a ∈ AR, for i = 1 we define V̂ (b1) = 0, as

there is no additional cost incurred once a repair action is successful. Essentially, belief

b1 becomes an empty set in this case. In all other cases, the value of a belief state is the

minimum action value taken over all available action choices:

V̂ (b) = min
a∈AT∪AR

Q̂(b, a)

As before, ĉ(b, a) is the cost function extended to belief states, however this time in the

minimax sense. More specifically, ĉ(b, a) = max
s∈b

c(s, a), therefore the cost of taking some

action a in some belief b is computed by the maximum cost of taking action a over all

states contained in b. The condition(
|b0| > 0 and |b1| > 0

)
or
(
|b1| > 0 and a ∈ AR

)
in the recursion ensures that the recursion eventually comes to an end, since no quantity

is defined in terms of itself. In other words, the condition is satisfied only when an action

splits the current belief into two non-empty (smaller) beliefs or a repair action fixes at

Aggelos Aggelidakis 18 February 2013

3.1 MiniMax CSFR Planning

Algorithm 4 MiniMax CSFR Value Computation Algorithm

1: function getMiniMaxValue(environment env, belief b)

2: Returns: best value V̂best, best action abest

3: if b = ∅ then . empty belief
4: V̂best ← 0
5: else
6: V̂best ←∞
7: for all a ∈ AT ∪ AR do . check all actions
8: b0 ←

{
s ∈ b | o(s, a) = 0

}
9: b1 ←

{
s ∈ b | o(s, a) = 1

}
10: Pr(b0)←

∑
s∈b0 Pr(s)

11: Pr(b1)←
∑

s∈b1 Pr(s)

12: if
(

(|b0| > 0) & (|b1| > 0)
) ∣∣∣ ((|b1| > 0) & (a ∈ AR)

)
then

13: ĉ(b0, a)← maxs∈b0 c(s, a)
14: ĉ(b1, a)← maxs∈b1 c(s, a)

15: V̂ (b0)← getMiniMaxValue(env, b0)
16: if a ∈ AR then
17: b1 ← {} . the repair action fixes these fault states
18: end if
19: V̂ (b1)← getMiniMaxValue(env, b1)

20: Q̂(b, a)← max
{(

ĉ(b0, a) + V̂ (b0)
)
,
(
ĉ(b1, a) + V̂ (b1)

)}
21: else
22: Q̂(b, a)←∞
23: end if
24: if Q̂(b, a) < V̂best then
25: abest ← a . action that minimizes the expected cost
26: V̂best ← Q̂(b, a) . minimum expected cost
27: end if
28: end for
29: end if
30: return V̂best, abest

31: end function

least one state in the current belief and therefore yields a smaller belief in the next step.

Note the slightly different formulation of this condition compared to the original CSFR

algorithm. We check the sizes of the resulting beliefs as opposed to their probabilities;

this choice was preferred to avoid singularities occurring when a belief bi is non-empty,

yet it has a zero probability Pr(bi) due to a possible wrong set of prior probabilities that

Aggelos Aggelidakis 19 February 2013

3. MINIMAX CSFR

assigns zero probability values to some fault states. Algorithm 4 shows the main minimax

CSFR function that computes minimax costs (V̂ values) recursively for any belief state.

The minimax CSFR fault manager proceeds exactly as the original one presented in

Algorithm 2; the only difference is the call to function getMinimaxValue instead of

getValue in Line 7. Initially, the belief state includes all possible fault states, the entire

set S. The agent chooses the actions that minimize the maximum total cost V̂ at each

step. These are typically actions, which help reduce the size of the belief state to locate

the fault in ways that guarantee that the worst cost will remain small. The reduced

belief state at each step is determined by the outcome of the most recent action. As

the belief state of the agent shrinks gradually, eventually the correct repair action will

be executed restoring the system to normal operation. The correct repair action may be

executed after a series of actions have brought the belief state down to a singleton set

and the fault state has been precisely identified, but this is not always the case. Early

repair is possible, if the correct repair action is picked earlier, because it minimizes the

maximum cost in some non-singleton belief. As in the original CSFR, it should noted

that the function V̂ can either be computed once and stored explicitly in memory or be

computed again and again recursively for the current belief state during an episode.

3.2 MiniMax CSFR Repair Action Ordering

If the agent during a remediation episode ever reaches a non-singleton belief state where

no further belief splits are possible by test actions and therefore repair actions must be

applied, the ordering of these repair actions is indifferent under the minimax criterion.

Any ordering of the appropriate repair actions yields the same maximum cost. We call

such beliefs repair-only beliefs. While any ordering of repair actions in a repair-only

belief guarantees the same maximum cost, in practice it makes sense to impose some

heuristic ordering which is likely to reduce the actual cost. Repair-only beliefs can be

easily identified, since all test actions in such beliefs induce an infinite cost as they cannot

offer a split. Algorithm 5 shows the variation of minimax CSFR (see lines 27–29) that

incorporates the detection of repair-only beliefs and calls another function that determines

the ordering of repair actions to figure out which repair action will be executed first in

the current belief.

Aggelos Aggelidakis 20 February 2013

3.2 MiniMax CSFR Repair Action Ordering

Algorithm 5 MiniMax CSFR Value Computation Algorithm with Repair Ordering

1: function getMiniMaxValue(environment env, belief b)

2: Returns: best value V̂best, best action abest

3: if b = ∅ then . empty belief
4: V̂best ← 0
5: else
6: V̂best ←∞
7: for all a ∈ AT ∪ AR do . check all actions
8: b0 ←

{
s ∈ b | o(s, a) = 0

}
9: b1 ←

{
s ∈ b | o(s, a) = 1

}
10: if

(
(|b0| > 0) & (|b1| > 0)

) ∣∣∣ ((|b1| > 0) & (a ∈ AR)
)
then

11: ĉ(b0, a)← maxs∈b0 c(s, a)
12: ĉ(b1, a)← maxs∈b1 c(s, a)

13: V̂ (b0)← getMiniMaxValue(env, b0)
14: if a ∈ AR then
15: b1 ← {} . the repair action fixes these fault states
16: end if
17: V̂ (b1)← getMiniMaxValue(env, b1)

18: Q̂(b, a)← max
{(

ĉ(b0, a) + V̂ (b0)
)
,
(
ĉ(b1, a) + V̂ (b1)

)}
19: else
20: Q̂(b, a)←∞
21: end if
22: if Q̂(b, a) < V̂best then
23: abest ← a . action that minimizes the expected cost
24: V̂best ← Q̂(b, a) . minimum expected cost
25: end if
26: end for
27: if ∀a ∈ AT : Q̂(b, a) =∞ then . a repair-only belief has been reached
28: abest = chooseRepairAction(env, b)
29: end if
30: end if
31: return V̂best, abest

32: end function

Two heuristics that can be applied in repair belief states to impose some good ordering

are the cheapest-first heuristic (the repair action with the minimum cost is applied first)

and the likeliest-first heuristic (the repair action fixing the fault state with the highest

prior probability goes first). These two heuristic focus exclusively on cost or probability.

Aggelos Aggelidakis 21 February 2013

3. MINIMAX CSFR

Algorithm 6 Heuristics for Repair Action Selection

1: function chooseRepairAction(environment env, belief b)
2: Returns: chosen action afirst

3:

4: /* Cheapest-First Heuristic */
5: ĉmin ←∞
6: for all a ∈ AR do . check all repair actions
7: b1 ←

{
s ∈ b | o(s, a) = 1

}
8: if |b1| > 0 then . consider only those that fix some fault(s)
9: ĉ(b1, a)← maxs∈b1 c(s, a)
10: if ĉ(b1, a) < ĉmin then
11: afirst ← a . choose an action that minimizes cost
12: ĉmin ← ĉ(b1, a)
13: end if
14: end if
15: end for
16:

17: /* Likeliest-First Heuristic */

18: P̂ rmax ← 0
19: for all a ∈ AR do . check all repair actions
20: b1 ←

{
s ∈ b | o(s, a) = 1

}
21: if |b1| > 0 then . consider only those that fix some fault(s)
22: Pr(b1)←

∑
s∈b1 Pr(s)

23: if Pr(b1) > P̂rmax then
24: afirst ← a . choose an action that maximizes likelihood
25: P̂ rmax ← Pr(b1)
26: end if
27: end if
28: end for
29:

30: /* Least-Expected-Cost-First Heuristic */
31: (V, afirst)← getValue(env, b) . choose action using the original CSFR
32:

33: return afirst

34: end function

Yet another choice that balances these two parameters is to resort on the expected cost

criterion of the original CSFR which balances cost and probability. According to this

least-expected-cost-first heuristic the action that minimizes the expected (repair) cost

Aggelos Aggelidakis 22 February 2013

3.3 MiniMax CSFR Learning

goes first. All three heuristics are shown in Algorithm 6 within the same function for

completeness; in practice only one of them should be used.

3.3 MiniMax CSFR Learning

Since learning in the context of CSFR is model-based, the minimax version of the CSFR

learning agent will be identical the original CSFR learning agent shown in Algorithm 3

the only difference being the call to function getMinimaxValue instead of getValue

in Line 12.

Aggelos Aggelidakis 23 February 2013

3. MINIMAX CSFR

Aggelos Aggelidakis 24 February 2013

Chapter 4

Network Repair

This chapter introduces the domain of network fault repair (detection and remediation)

and describes our network simulation which supports the definition of fault states and

the execution of test and repair actions.

4.1 Network Repair

A computer network is a collection of computers and other hardware devices intercon-

nected by communication channels (links) that allow sharing of services, data, and in-

formation. The basic operation of each workstation is sending and receiving data to and

from another device. The type of network considered in this thesis includes the following

types of devices:

workstation (WS) a high-end computer designed to run technical or scientific appli-

cations typically for a single user

server (SRV) a physical computer dedicated to run one or more services (as a host) to

serve the needs of multiple users of other computers on the network

switch (SW) a networking device that links several workstations with each other and

allows connections to other parts of a network through hubs

hub (HB) a networking device for connecting multiple Ethernet devices (servers, other

hubs) together and making them act as a single segment in the network

Aggelos Aggelidakis 25 February 2013

4. NETWORK REPAIR

Consider a network that includes switches, hubs, servers, and workstations such as

the one shown in Figure 4.1. In such a network, workstations can communicate, through

hubs and switches, with servers or with each other. Occasionally, problems occur and

nodes break down. A faulty node cannot participate in any communication activity

in the network, nor can it relay any messages to the network. Such faults may cause

communication failures, especially if they appear on critical nodes that break unique

communication paths in the network. A system administrator typically repairs a faulty

node by initiating a node reboot which restores the node to normal operation paying

a time cost proportional to the time of initiating and completing the boot operation.

Detecting and identifying a faulty node is a difficult task and may require the execution

of several tests over the network to determine which parts of the network are functional

and which parts fail. The most common test for network connectivity is the execution of a

ping command between two computer nodes (workstation or server). The ping initiates

from one node and gets a reply back from the other node, if a functional communication

path between the two nodes exists and its (time) cost in this case is proportional to the

distance of the two nodes in the network in terms of network hops. If the communication

path between the two nodes is broken, the ping initiates from one node, but fails to get

a reply from the other node and its (time) cost is partly proportional to the distance of

the two nodes in the network and partly proportional to a timeout for no reply which

may depend on the the type of the broken node. In our implementation, we assume that

this timeout is equal to the boot time of the broken device.

Our goal in this thesis is to automate the procedure of network fault detection and

remediation through the use of an intelligent agent able to execute carefully-selected test

and repair actions aiming to restore the network to normal operation while minimizing the

total cost for repair. To this end we are using the CSFR framework to cope effectively with

the challenges of sequential decision making for network fault detection and remediation.

4.2 Network Simulation

Any virtual network specified by the user of the type described above can be simulated

for the needs of this thesis. Our simulation framework was developed using the C++ pro-

gramming language. Nodes of the network are represented using structures of different

Aggelos Aggelidakis 26 February 2013

4.2 Network Simulation

Figure 4.1: An example of the networks considered in this thesis

type for servers, workstations, switches, and hubs. These structures include several fea-

tures: a unique ID to identify the node, a vector indicating the links of that node to other

nodes, and a boolean variable indicating the operational status of the node (false:node

broken down, true:node working properly). These structures are critically useful, as they

are the main components of the network and can be used to create any desired network

as an undirected graph. Users can create a new network or modify an existing one just

by providing or modifying the text file that specifies the network.

The agent implementing the fault manager overviews the network and can be informed

about the presence (or the elimination) of a fault in the network, as well as initiate any

test or repair action on the network. It is assumed that faults occur only on nodes, not

links. Signaling the presence of a fault contains no identifying information about the

faulty node. One way to automatically detect that there is a fault in the network is to

test if all ping commands between pairs of workstations/servers are successful. While

this is sufficient in acyclic networks (all nodes along any path must operate normally), it

fails in networks with cycles. In the example shown in Figure 4.1, if HB 8 is faulty, the

ping between WS1 and WS3 will still be successful due to the alternative path through

HB7 and the presence of a fault may not be detected. Therefore, in networks containing

Aggelos Aggelidakis 27 February 2013

4. NETWORK REPAIR

Algorithm 7 Ping/Test Action - Modified Breadth First Search

1: for all u ∈ V − {s} do . initialize all vertices in V[G] except source
2: color[u]← WHITE
3: depth[u]←∞
4: path[u]← NULL
5: end for
6: color[s]← GRAY . initialize the source vertex
7: depth[s]← 0
8: path[s]← NULL
9: Q← {} . Clear queue Q
10: Enqueue(Q, s) . begin with the source
11: while Q is non-empty do
12: u← Dequeue(Q)
13: for all v adjacent to u do
14: if color[v] = WHITE then
15: color[v]← GRAY
16: depth[v]← depth[u] + 1
17: path[v]← u
18: if operational status of v is true then
19: Enqueue(Q, v)
20: end if
21: end if
22: end for
23: Dequeue(Q)
24: color[u]← BLACK
25: end while

cycles, the presence of a fault must be signaled by another “omni-present” mechanism

which essentially computes the AND of all node status variables and informs the fault

manager if the result is false.

Faults are easily simulated in our network; the operational status of a node simply

changes from true to false. Our simulator supports the repetitive (sequential) intro-

duction of faults according to any given distribution. Similarly, the execution of reboot

commands boils down to changing the operational status of a node from false to true.

The simulation of ping commands is a little mode involved and is implemented using

a modified Breadth First Search (BFS) algorithm. The BFS search begins at the node

initiating the ping and proceeds towards all available directions in a breadth-first manner

Aggelos Aggelidakis 28 February 2013

4.2 Network Simulation

using the time cost per hop as cost function and making sure that no cycles are explored.

The modification introduced relates to fault node. Faulty nodes are not enqueued in the

priority queue and therefore paths stop there. If there exists a path between the initiating

and the target node of the ping, the search algorithm will return the shortest (in terms

of ping time cost) of these paths. If no such path exists (due to some fault), the search

algorithm returns only a partial shortest path which ends at the faulty node. The details

of the modified BFS algorithm are shown in Algorithm 7.

Aggelos Aggelidakis 29 February 2013

4. NETWORK REPAIR

Aggelos Aggelidakis 30 February 2013

Chapter 5

CSFR Planning for Network Repair

In this chapter, we discuss how CSFR planning is applied to the problem of network fault

detection and remediation. A definition of the CSFR model for this problem is important.

Additionally,an example along with a description of the solution given unravels the way

CSFR is applied to our problem. Assume a network that contains hubs, switches, servers,

and workstations. Each of workstations and servers can communicate through hubs and

switches, with each other. The communication is achieved by the network operation

“ping”. Occasionally, a node of the network breaks down. As a result of that, the node

cannot communicate with other nodes or even worse, other nodes cannot communicate

with each other through the fault node. The agent, designed for such circumstances,

based on Cost-Sensitive Fault Remediation model. The agent declares each fault node

as distinguished fault state and uses pings as test actions and reboots of nodes as repair

actions in order to diagnose and remedy the fault node of the network respectively.

5.1 CSFR Model for Network Repair

The full definition of a CSFR model for the network fault detection and remediation

problem takes the following form:

· S, the set of fault states. Each node in the network can possibly break down. Hence,

the total number of fault states is the total number of nodes in the network:

|S| = |workstations|+ |servers|+ |switches|+ |hubs|

Aggelos Aggelidakis 31 February 2013

5. CSFR PLANNING FOR NETWORK REPAIR

· Pr(s), a prior probability for each fault state s ∈ S. This is the probability of a

network node to fail based on prior knowledge or statistics about the domain. The

distribution over nodes may be uniform or arbitrary.

· AT , the set of test actions. The test actions in this research examine if there is an

active communication between any pair of nodes. The test is based on the success

or failure of a ping command between two nodes. Only workstations and servers

are involved in these ping test actions, therefore, their total number is

|AT | =
(
|workstations|+ |servers|

2

)

· AR, the set of repair actions. Each repair action restores a node by rebooting the

device at the node. Therefore, the total number of repair actions is the total number

of nodes in the network:

|AR| = |workstations|+ |servers|+ |switches|+ |hubs|

· a cost function c(s, a) over actions a ∈ AT ∪ AR and states s ∈ S. The cost of ac-

tions in the network domain relates to time. Each action, whether test or repair,

incurs a cost equal to the number of seconds it takes to complete in the current

state. More specifically, the cost of a test action (ping) depends on the number

of hops and the integrity of the path(s) between the corresponding nodes. The

cost of repair actions differs depending on the type of node and increases along the

following ordering: hub reboot, switch reboot, workstation reboot, server reboot.

· a deterministic observation model o(s, a) over actions a ∈ AT ∪ AR and states s ∈ S.

For each test action a, the observation model indicates whether the ping command

between the corresponding nodes was successful in the current state s. For each

repair action a, the observation model indicates whether the reboot command on

the corresponding node was successful in repairing the fault in the current state s.

Aggelos Aggelidakis 32 February 2013

5.2 CSFR Planning Solution for Network Repair

Figure 5.1: Network example for planning simulator

Fault states
s1 s2 s3 s4 s5 s6

0.167 0.167 0.167 0.167 0.167 0.167 Prior Probabilities

Table 5.1: Prior probabilities of states in example shown in Figure 5.1

5.2 CSFR Planning Solution for Network Repair

The most critical decision parameter is the total cost of detecting and repairing a faulty

node. The expected value of this cost is computed dynamically by the recursive equation

presented in Chapter 2. The less this value is, the better the decision policy followed.

In order to give the opportunity to the reader to fully understand the generation of the

optimal CSFR policy and the safe MiniMax CSFR policy, an example follows. Figure 5.1

shows a simple network with 3 workstations (WS), 2 switches (SW), and 1 hub (HB);

each node also carries a unique numeric ID. The complete CSFR model for this example

is the following:

· Fault states S = {s1, s2, s3, s4, s5, s6}, |S| = 6

· Prior probabilities Pr(s) The prior probabilities are based on a uniform distribution,

therefore, as a result, the prior probability of each node to break down is 1/6 (see

Table 5.1).

· Test actions AT The number of test actions is
(

3+0
2

)
= 3:

� ping from node WS1 to node WS2

Aggelos Aggelidakis 33 February 2013

5. CSFR PLANNING FOR NETWORK REPAIR

� ping from node WS1 to node WS6

� ping from node WS2 to node WS6

· Repair actions AR The number of repair actions is 6:

� reboot/repair of node WS1

� reboot/repair of node WS2

� reboot/repair of node SW3

� reboot/repair of node SW4

� reboot/repair of node HB5

� reboot/repair of node WS6

· Cost function c(s, a) Table 5.2 shows the complete cost function. The columns of

the table refer to fault states and the rows of the table refer to (test and repair)

actions. When the communication path is not interrupted by the fault node, the

cost of a test action is the number of hops between the participating nodes times

a constant time cost (default=100ms) for the ping along a single hop. When the

communication path is interrupted by the fault node, the cost of a test action is the

number of hops from the originating node up to the fault (interrupting) node times

the constant time cost for the ping along a single hop augmented by the repair

cost of the faulty node. For example, the cost of the first test action (ping between

nodes WS1 and WS2) is 100× 2 = 200, when the fault state is s3, whereas the cost

of the same action is 100 × 2 + 1800 = 2000, when the fault state is s2. Observe

that the last six actions (repair actions) have the same value across columns, due to

the fact that the cost of repairing a fault node is constant regardless of the current

fault state.

· Observation model o(s, a) Table 5.3 shows the complete observation model. Recall

that 1 indicates success, whereas 0 indicates failure of the corresponding action in

each fault state.

Table 5.4 presents the actual costs of the original CSFR algorithm and the Mini-

Max CSFR algorithm with the addendum of three different heuristics. Furthermore, the

average and maximum costs are presented for all four algorithms. Let us have a look

Aggelos Aggelidakis 34 February 2013

5.2 CSFR Planning Solution for Network Repair

Fault states
s1 s2 s3 s4 s5 s6 Actions

1800 2000 200 200 200 200 ping WS1 to WS2
1800 200 1500 200 200 2000 ping WS1 to WS6
200 1800 1500 200 200 2000 ping WS2 to WS6
1800 1800 1800 1800 1800 1800 reboot WS1
1800 1800 1800 1800 1800 1800 reboot WS2
1400 1400 1400 1400 1400 1400 reboot SW3
1400 1400 1400 1400 1400 1400 reboot SW4
1000 1000 1000 1000 1000 1000 reboot HB5
1800 1800 1800 1800 1800 1800 reboot WS6

Table 5.2: Cost function for the example shown in Figure 5.1

Fault states
s1 s2 s3 s4 s5 s6 Actions
0 0 1 1 1 1 ping WS1 to WS2
0 1 0 1 1 0 ping WS1 to WS6
1 0 0 1 1 0 ping WS2 to WS6
1 0 0 0 0 0 reboot WS1
0 1 0 0 0 0 reboot WS2
0 0 1 0 0 0 reboot SW3
0 0 0 1 0 0 reboot SW4
0 0 0 0 1 0 reboot HB5
0 0 0 0 0 1 reboot WS6

Table 5.3: Observation model for the example shown in Figure 5.1

s1 s2 s3 s4 s5 s6 Average Max
3600 5600 3100 2800 1400 5400 3650 5600 original CSFR
5400 4000 4900 4600 3200 2000 4016 5400 minimax CSFR Least Expected
5400 4000 4900 4600 3200 2000 4016 5400 minimax CSFR Cheapest
5400 4000 4900 3600 4600 2000 4083 5400 minimax CSFR Likeliest

Table 5.4: Actual costs for the example shown in Figure 5.1

at states s1 and s6. The original CSFR algorithm gives an actual cost which is worse

than the actual cost of any MiniMax CSFR algorithm at state s6 and better at state

s1. Figures 5.2 and 5.3 present the management of beliefs by the original CSFR and the

MiniMax CSFR algorithms respectively. On one hand, both models conclude successfully

Aggelos Aggelidakis 35 February 2013

5. CSFR PLANNING FOR NETWORK REPAIR

Figure 5.2: Original CSFR planning for the example in Figure 5.1 when WS1 is faulty

with the detection of the faulty state s1, but on the other hand the final actual cost is

different due to the different policies they follow.

Suppose that node WS1 breaks down. If WS1 tries to communicate with WS2, the

ping command will be unsuccessful, since the starts from WS1: (WS1, SW3, WS2). On

the other hand, if WS2 makes an attempt to communicate with WS6, the communication

will be successful, since the path is: (WS2, SW3, WS6); in this case, the fault node is

not included in the path.Figure 5.2 shows a schematic that illustrates the policy of CSFR

planning in this case. The belief state is initialized to S (it contains all possible faults)

and reduces gradually. The policy allows the agent to find action a1 that minimizes the

expected value in belief b1. Action a1 is chosen to be a ping from WS1 to WS2 and

the resulting observation is 0, which means that the ping was unsuccessful. As a result,

states s1 and s2 are remained in the belief, due to the fact that only their outcomes

concur with the observed one. Then, the agent decides to take a repair action . The

expected cost weighted by the probabilities of the two remaining states are exactly the

same, because both the prior probabilities of state s1 and s2 to be fault (see definition of

Prior Probabilities at the begin of the section 5.2) and the repair cost of each state are

the same respectively. The agent decided to repair the states in turn. At this point, the

fault manager repairs s1 which leads to repair the actual faulty state. The remediation

finished successfully and the manager clears its belief.

Figure 5.3 shows a schematic that illustrates the policy of MiniMax CSFR planning

in the same case, using least expected cost heuristic. The belief state is initialized to

S (it contains all possible faults) and reduces gradually. The policy allows the agent to

find action a1 that minimizes the expected value in belief b1. Action a1 is chosen to be

a ping from WS1 to WS2 and the resulting observation is 0, which means that the ping

was unsuccessful. As a result, states s1 and s2 are remained in the belief, due to the fact

Aggelos Aggelidakis 36 February 2013

5.2 CSFR Planning Solution for Network Repair

Figure 5.3: MiniMax CSFR planning for the example in Figure 5.1 when WS1 is faulty

that only their outcomes concur with the observed one. The next action is chosen to be a

pingfrom WS1 to WS6, instead of a repair action that is chosen from the original CSFR

model at the corresponding situation. The outcome is 0, outcome of s2 does not concur

with the observed one, therefore, state s2 is removed from the belief. At this point, the

fault manager repairs s1 with the straightforward action reboot WS1.

Figures 5.4 and 5.5 present the different policies which the original CSFR and the

MiniMax CSFR follow for state s6. Figure 5.4 shows a schematic that illustrates the

policy of CSFR planning in the case of faulty state s6. The belief state is initialized to

S (it contains all possible faults) and reduces gradually. The policy allows the agent to

find action a1 that minimizes the expected value in belief b1. Action a1 is chosen to be

a ping from WS3 to WS4 and the resulting observation is 1, which means that the ping

was successful. States s1 and s2 are removed from the belief, due to the fact that their

outcomes do not concur with the observed one. The next action a2 is chosen to be a

ping from WS1 to WS6 and the resulting observation is 0, which means that the ping

Aggelos Aggelidakis 37 February 2013

5. CSFR PLANNING FOR NETWORK REPAIR

Figure 5.4: Original CSFR planning for the example in Figure 5.1 when WS6 is faulty

Figure 5.5: MiniMax CSFR planning for the example in Figure 5.1 when WS6 is faulty

was unsuccessful. States s4 and s5 are removed from the belief, due to the fact that their

outcomes do not concur with the observed one. The following action a3 is chosen to be

the repair action reboot WS3. The fault remains but the state s3 is removed from the

belief. Eventually, it is chosen the straightforward action reboot WS6 for the singleton

belief.

Aggelos Aggelidakis 38 February 2013

5.2 CSFR Planning Solution for Network Repair

Figure 5.4 shows a schematic that illustrates the policy of CSFR planning in ”faulty

state s6” case. The belief state is initialized to S (it contains all possible faults) and

reduces gradually. The policy allows the agent to find action a1 that minimizes the

expected value in belief b1. Action a1 is chosen to be a ping from WS1 to WS2 and the

resulting observation is 1, which means that the ping was successful. As a result, states

s1 and s2 are removed from the belief, due to the fact that their outcomes do not concur

with the observed one. No further test actions can reduce the belief. As a result, the

agent has to take a repair action. The policy which is followed by the agent force the

agent to minimize the maximum (worst) total cost for the current belief b2. The repair

action is chosen to be reboot WS6 and the faulty state is remedied. It is worth noted

that even if another heuristic function (Cheapest first / Likeliest first) is chosen, any

ordering of the appropriate repair actions yields the same maximum cost (see Table 5.4).

Aggelos Aggelidakis 39 February 2013

5. CSFR PLANNING FOR NETWORK REPAIR

Aggelos Aggelidakis 40 February 2013

Chapter 6

CSFR Learning for Network Repair

The previous section described how to create optimal repair policies via planning analy-

sis. Apart from planning analysis, CSFR offers a learning methodology that can create

and manipulate models based on unstructured interaction with the environment. CSFR

learning applies to the planning algorithm from the previous chapter 5 by replacing set

of state S, with the set of episodes E. Episodes are defined by the user, who undertakes

the responsibility to choose a number of episodes that covers a range of faults. The

number of possible history sequences is on the order of (|AT | + |AR|) since an episode

consists of an ordering of test actions and their outcomes, along with unsuccessful repair

actions. Also, there is no need to repeat an action twice, because action outcomes are

deterministic. The state space for planning is that of belief states formed by subsets of

instances instead of individual instances [5]. This provides a more direct approach to the

problem of taking actions to gain information.

6.1 Learned CSFR Model for Network Repair

In an attempt to adjust the solution of the problem in CSFR-learning solution, a formally

definition is made by the quantities:

· E, set of episodes , user predefines a number of episodes to run off-line or and export

results, that will be saved and used during on-line simulation. If a fault state is not

covered by the predefined episodes or user predefines zero episodes to run off-line,

its values are calculated on the fly and are stored.

Aggelos Aggelidakis 41 February 2013

6. CSFR LEARNING FOR NETWORK REPAIR

· Pr(e), a prior probability for episode state , e ∈ E. It is based on the uniform

distribution, as a result of that, the prior probability of each episode is: 1/(E).

· AT , set of test actions

· AR set of repair actions

· c(e,a) cost function over actions a ∈ At ∪ AR and states e ∈ E , The cost of ac-

tions that are not applied on an episode state are defined as 0.

· o(e,a), an outcome or observation model over actions , a ∈ At∪AR and episodes e ∈
E. Each test action has an outcome that is 0, 1, or ? (not yet executed), at most

one repair action can be successful, and the others have outcomes of 0 or ?.

6.2 CSFR Learning Solution for Network Repair

Planning gives us satisfied results to a redundant number of fault states. However plan-

ning has its own weaknesses, the time which is consumed at a larger state space is

discouraged. An alternative approach that can be used to develop an intelligent system

is Learning. Planning analysis would be unable to detect and remedy the fault in a short

time as learning, at most times planning consumes a forbidden time to solve the problem,

depending on the network. However, cost-sensitive fault remediation model is amenable

to implementation as a reinforcement-learning system. We are describing an instance-

based state representation, through an example. The definition above shows the critical

difference between planning analysis and learning in the framework of the CSFR model.

The basic difference is that states S replaced by episodes E. Each episode emanates from

the range of hypothesized fault states. In order to give the opportunity to the reader

to fully understand the usage of reinforcement learning, we give an example. Assume a

network 6.1 with four workstations, three switches, two hubs, and a server. Six episodes

are chosen to run off-line (for the framework of the specific example, none episodes could

be chosen as well). The selected fault nodes for the chosen episodes are: SW3, SW4,

HB7, HB8, HB9, SRV10. Each episode gives a feedback that is stored on the tables 6.2

and 6.3. We suppose that SW4 breaks down. If WS1 tries to communicate with WS5,

the procedure of ping will be unsuccessful, since the path to achieve the communication

passes through SW4: WS1, SW3, HB8, SW4, WS5. On the other hand if WS1 makes

Aggelos Aggelidakis 42 February 2013

6.2 CSFR Learning Solution for Network Repair

Figure 6.1: Network example for rl simulator

an attempt to communicate with WS2, the communication will be successful, since the

path is: WS1, SW3, WS2. As we can see the fault node is not included. Let us match

each defined term of previous section, to current example:

· E, set of episode states E = {e1, e2, e3, e4, e5, e6}, |E| = 6

· Pr(e), prior probability , probability is based on the uniform distribution, as a result

of that the prior probability of each node to be damaged is: 1/6 6.6

Episode - states
e1 e2 e3 e4 e5 e6

0.167 0.167 0.167 0.167 0.167 0.167 Prior Probabilities

Table 6.1: Prior Probabilities

· Test actions AT The number of test actions is
(

4+1
2

)
= 10:

� ping from node WS1 to node WS2

Aggelos Aggelidakis 43 February 2013

6. CSFR LEARNING FOR NETWORK REPAIR

� ping from node WS1 to node WS5

� . . .

� ping from node WS5 to node WS10

� ping from node WS6 to node WS10

· Repair actions AR The number of repair actions is 10:

� reboot/repair of node WS1

� reboot/repair of node WS2

� . . .

� reboot/repair of node SW9

� reboot/repair of node SW10

· c(e,a) cost function over actions a ∈ At ∪ AR and states e ∈ E , the table 6.2 rep-

resents the cost function.

Episode states
e1 e2 e3 e4 e5 e6 Actions

1500 ? ? 200 ? 200 ping WS1 to WS2
1500 1700 ? ? ? ? ping WS1 to WS5
1500 1700 400 600 ? ? ping WS1 to WS6

? 300 ? 300 400 2500 ping WS1 to SRV10
1500 1700 ? ? ? ? ping WS2 to WS5
1500 1700 400 600 ? ? ping WS2 to WS6
1500 300 300 300 ? ? ping WS2 to SRV10
200 ? 200 ? ? ? ping WS5 to WS6
300 1500 ? ? ? ? ping WS5 to SRV10
300 1500 ? 300 ? ? ping WS6 to SRV10
1800 1800 ? 1800 ? ? reboot WS1

? ? ? ? ? ? reboot WS2
1400 1400 ? 1400 ? ? reboot SW3
1400 1400 ? ? ? 1400 reboot SW4

? 1800 ? 1800 ? ? reboot WS5
1800 1800 ? 1800 1800 ? reboot WS6
1000 1000 1000 ? ? ? reboot HB7

? 1000 ? 1000 ? ? reboot HB8
? 1000 1000 ? 1000 ? reboot HB9

2200 2200 2200 2200 ? 2200 reboot SRV10

Table 6.2: Cost Function RL

Aggelos Aggelidakis 44 February 2013

6.2 CSFR Learning Solution for Network Repair

Episode states
e1 e2 e3 e4 e5 e6 Actions
0 ? ? 1 ? 1 ping WS1 to WS2
0 0 ? ? ? ? ping WS1 to WS5
0 0 1 1 ? ? ping WS1 to WS6
? 1 ? 1 1 0 ping WS1 to SRV10
0 0 ? ? ? ? ping WS2 to WS5
0 0 1 1 ? ? ping WS2 to WS6
0 1 1 1 ? ? ping WS2 to SRV10
1 ? 1 ? ? ? ping WS5 to WS6
1 0 ? ? ? ? ping WS5 to SRV10
1 0 ? 1 ? ? ping WS6 to SRV10
0 0 ? 0 ? ? reboot WS1
? ? ? ? ? ? reboot WS2
1 0 ? 0 ? ? reboot SW3
0 1 ? ? ? 0 reboot SW4
? 0 ? 0 ? ? reboot WS5
0 0 ? 0 0 ? reboot WS6
0 0 1 ? ? ? reboot HB7
? 0 ? 1 ? ? reboot HB8
? 0 0 ? 1 ? reboot HB9
0 0 0 0 ? 1 reboot SRV10

Table 6.3: Observe Function RL

· o(e,a) observation function over actions a ∈ At ∪ AR and states e ∈ E , the ta-

ble 6.3 represents the observation model. Columns of table 6.2 refer to episode

states, which are simulated off-line. The node which is fault can not be detected

through the table 6.2 which represents cost function, it can be detected through

the table that represents observation model 6.3. Take a look at the table 6.3, it

is obvious that the fault node at the first episode is SW3, as the repair action

reboot SW3 concurs with the outcome 1. The rest fault nodes of the remaining

five episodes are similarly in turn: SW4, HB7, HB8, HB9, and SRV10.

At this point the schematic 6.2 will be presented in order to explain the strategy.

The first belief includes all the episodes. The system acts with a ping from WS5

to WS10 and the observation result is 0. Take a look at the test action ping WS5

to WS10 of the observation model. Candidate episodes of the new belief are: e2

with outcome 0 and e3, e4, e5, e6 with outcome ?. The next action is chosen to be

ping from WS6 to WS10. The observation result is 0. The episodes of the current

belief concurs with that outcome or outcome ? are episodes: e2, e3, e5, e6. As a

result, episode e4 is removed from the belief. The next action is chosen to be repair

action reboot HB7, as result, e3 is removed as its outcome for the specific repair

Aggelos Aggelidakis 45 February 2013

6. CSFR LEARNING FOR NETWORK REPAIR

Figure 6.2: Belief Schematic of CSFR Learning for example 6.1

action is 1. Finally, the next action is reboot WS4, the outcome of the action is

1 for the episode e2, and the faulty node WS4 is remedied. Assume that another

fault appears on the network, the current faulty node is WS6. The fault manager

conclude to remove all the episode states, following the previous policy. However

none of them covers the current fault. Eventually, the agent adds an other episode

on fly, by applying CSFR planning to the current instance of the faulty network (see

Figure 6.3). The current forms of cost and observation tables include an additional

column, the column with the new episode state e7.

Let us use the same network in order to describe the policy of MiniMax CSFR

Learning. Four episodes are chosen to run off-line. Episode e1 corresponds to fault

node WS1, e2 corresponds to fault node SW4, e3 corresponds to fault node HB8,

e4 corresponds to fault node SRV10. The explicit form of the terms of MiniMax

CSFR Learning is given comprehensively.

Aggelos Aggelidakis 46 February 2013

6.2 CSFR Learning Solution for Network Repair

Figure 6.3: Belief Schematic of CSFR Learning – adding episode e for example 6.1

· E, set of episode states E = {e1, e2, e3, e4}, |E| = 4

· Pr(e), prior probability , probability is based on the uniform distribution, as a result

of that the prior probability of each node to be damaged is: 1/4 6.6

· Test actions AT The number of test actions is
(

4+1
2

)
= 10:

� ping from node WS1 to node WS2

� ping from node WS1 to node WS5

� . . .

� ping from node WS5 to node WS10

� ping from node WS6 to node WS10

Aggelos Aggelidakis 47 February 2013

6. CSFR LEARNING FOR NETWORK REPAIR

Episode states
e1 e2 e3 e4 e5 e6 e7 Actions

1500 ? ? 200 ? 200 ? ping WS1 to WS2
1500 1700 ? ? ? ? 400 ping WS1 to WS5
1500 1700 400 600 ? ? ? ping WS1 to WS6

? 300 ? 300 400 2500 ? ping WS1 to SRV10
1500 1700 ? ? ? ? 400 ping WS2 to WS5
1500 1700 400 600 ? ? 2200 ping WS2 to WS6
1500 300 300 300 ? ? 300 ping WS2 to SRV10
200 ? 200 ? ? ? 2000 ping WS5 to WS6
300 1500 ? ? ? ? 300 ping WS5 to SRV10
300 1500 ? 300 ? ? 1800 ping WS6 to SRV10
1800 1800 ? 1800 ? ? 1800 reboot WS1

? ? ? ? ? ? 1800 reboot WS2
1400 1400 ? 1400 ? ? ? reboot SW3
1400 1400 ? ? ? 1400 1400 reboot SW4

? 1800 ? 1800 ? ? 1800 reboot WS5
1800 1800 ? 1800 1800 ? 1800 reboot WS6
1000 1000 1000 ? ? ? ? reboot HB7

? 1000 ? 1000 ? ? 1000 reboot HB8
? 1000 1000 ? 1000 ? 1000 reboot HB9

2200 2200 2200 2200 ? 2200 ? reboot SRV10

Table 6.4: Cost Function RL with Additional Episode

Episode states
e1 e2 e3 e4 e5 e6 e7 Actions
0 ? ? 1 ? 1 ? ping WS1 to WS2
0 0 ? ? ? ? 1 ping WS1 to WS5
0 0 1 1 ? ? ? ping WS1 to WS6
? 1 ? 1 1 0 ? ping WS1 to SRV10
0 0 ? ? ? ? 1 ping WS2 to WS5
0 0 1 1 ? ? 0 ping WS2 to WS6
0 1 1 1 ? ? 1 ping WS2 to SRV10
1 ? 1 ? ? ? 0 ping WS5 to WS6
1 0 ? ? ? ? 1 ping WS5 to SRV10
1 0 ? 1 ? ? 0 ping WS6 to SRV10
0 0 ? 0 ? ? 0 reboot WS1
? ? ? ? ? ? 0 reboot WS2
1 0 ? 0 ? ? ? reboot SW3
0 1 ? ? ? 0 0 reboot SW4
? 0 ? 0 ? ? 0 reboot WS5
0 0 ? 0 0 ? 1 reboot WS6
0 0 1 ? ? ? ? reboot HB7
? 0 ? 1 ? ? 0 reboot HB8
? 0 0 ? 1 ? 0 reboot HB9
0 0 0 0 ? 1 ? reboot SRV10

Table 6.5: Observe Function RL with Additional Episode

· Repair actions AR The number of repair actions is 10:

Aggelos Aggelidakis 48 February 2013

6.2 CSFR Learning Solution for Network Repair

Episode - states
e1 e2 e3 e4

0.25 0.25 0.25 0.25 Prior Probabilities

Table 6.6: Prior Probabilities

� reboot/repair of node WS1

� reboot/repair of node WS2

� . . .

� reboot/repair of node SW9

� reboot/repair of node SW10

· c(e,a) cost function over actions a ∈ At ∪ AR and states e ∈ E , the table 6.7 rep-

resents the cost function.

Episode states
e1 e2 e3 e4 Actions

1800 ? 200 200 ping WS1 to WS2
1800 ? 600 ? ping WS1 to WS5
1800 ? 600 400 ping WS1 to WS6
1800 ? 300 2500 ping WS1 to SRV10
400 ? 600 400 ping WS2 to WS5
400 ? 600 400 ping WS2 to WS6
300 ? ? 2500 ping WS2 to SRV10
200 ? 200 200 ping WS5 to WS6
? 1500 300 ? ping WS5 to SRV10

300 ? 300 2500 ping WS6 to SRV10
1800 1800 1800 1800 reboot WS1
1800 ? 1800 1800 reboot WS2
1400 ? 1400 1400 reboot SW3
1400 1400 1400 1400 reboot SW4
1800 ? 1800 1800 reboot WS5
1800 1800 1800 ? reboot WS6
1000 1000 1000 1000 reboot HB7
1000 ? 1000 1000 reboot HB8
1000 1000 ? 1000 reboot HB9
2200 ? 2200 2200 reboot SRV10

Table 6.7: Cost Function RL

· o(e,a) observation function over actions a ∈ At ∪ AR and states e ∈ E , the ta-

ble 6.8 represents the observation model.

Aggelos Aggelidakis 49 February 2013

6. CSFR LEARNING FOR NETWORK REPAIR

Episode states
e1 e2 e3 e4 Actions
0 ? 1 1 ping WS1 to WS2
0 ? 1 ? ping WS1 to WS5
0 ? 1 1 ping WS1 to WS6
0 ? 1 0 ping WS1 to SRV10
1 ? 1 1 ping WS2 to WS5
1 ? 1 1 ping WS2 to WS6
1 ? ? 0 ping WS2 to SRV10
1 ? 1 1 ping WS5 to WS6
? 0 1 ? ping WS5 to SRV10
1 ? 1 0 ping WS6 to SRV10
1 0 0 0 reboot WS1
0 ? 0 0 reboot WS2
0 ? 0 0 reboot SW3
0 1 0 0 reboot SW4
0 ? 0 0 reboot WS5
0 0 0 ? reboot WS6
0 0 0 0 reboot HB7
0 ? 1 0 reboot HB8
0 0 ? 0 reboot HB9
0 ? 0 1 reboot SRV10

Table 6.8: Observe Function RL

Figure 6.4: Belief Schematic of MiniMax CSFR Learning for example 6.1

At this point, Figure 6.4 will be used in order to explain the strategy. Assume that

the faulty node is HB8. The first belief includes all the episodes. The system acts

with a ping from WS6 to SRV10 and the observation result is 1. Take a look at

the test action ping WS6 to SRV10 of the observation model. Candidate episodes

of the new belief are: e2 with outcome ? and e1, e3 with outcome 1. No further

test actions can reduce the belief. As a result, the agent has to take a repair action.

The policy followed by the agent force the agent to minimize the maximum (worst)

total cost for the current belief b2. The next action is chosen to be reboot WS1.

Episode e1 is removed from the belief b3, as its outcome for the previous repair

action is 0. Finally, the system is remedied by the repair action reboot HB8.

Aggelos Aggelidakis 50 February 2013

Chapter 7

Results

In this chapter we will demonstrate a variety of experiments in order to present original

Cost Fault Sensitive Remediation Model and MiniMax Cost Fault Sensitive Remediation

Model with the addendum of the three heuristics: ”least expected cost”, ”cheapest first”,

and ”likeliest first”, applied to two different networks in order to succeed detection and

remediation of faulty nodes. The experiments are built scenarios of seven sets. The

simulation has run independently without any interference in all circumstances and at

each conclusion we collect the data we need such as: the average actual cost, the 95%

confidence interval, and max actual cost.

The first set of experiments include, original CSFR planning , and three heurestics

of MiniMax CSFR planning applied to the cyclic network 7.1. The networks consists of

three workstations, two switches, and one hub. The number of test actions is |AT | = 3

and the number of repair actions is |AR| = 6. The first set of experiments are executed

twice. At first execution, faults of the network are being uniformly distributed to the

nodes with probability 1
6

and prior probabilities of the original CSFR model Pr(si) = 1
6
,

i ∈ (WS1,W2, SW3, SW4, HB5,WS6). At second execution, faults of the network are

being nonuniformly distributed to the nodes, and the probabilities of each node to be

faulty are in turn: 0.05, 0.15, 0.3, 0.3, 0.15, 0.05. The term of the prior probabilities Pr(s)

of the original CSFR model follows the same distribution Pr(WS1) = 0.05, Pr(WS2) =

0.15, Pr(SW3) = 0.3, Pr(SW4) = 0.3, Pr(HB5) = 0.15, Pr(WS6) = 0.05, therefore

the best average of actual costs is expected to be the average of the original CSFR

model. However, maximum actual cost of MiniMax CSFR is expected to be less than the

corresponding value of the original CSFR model. The second set of experiments include,

Aggelos Aggelidakis 51 February 2013

7. RESULTS

Figure 7.1: Network example for Planning experiments

Information of topology
Element #No.

total 6
workstations 3

switches 2
hubs 1

servers 0
workstations’ link 2

switches’ link 4
hubs’ link 2

servers’ link 0
maximum number of links 4

number of test actions 3
number of repair actions 6
number of total actions 9

original CSFR learning, and three heurestics of MiniMax CSFR learning applied to the

same cyclic network 7.1. We are expected to take respective results at that case too.

AVG 95% C.I. MAX
3581.2 90.1541 5600 original CSFR
4053.4 69.7095 5400 MiniMax CSFR least expected
4053.4 69.7095 5400 MiniMax CSFR cheapest
4112.2 67.0518 5400 MiniMax CSFR likeliest

Table 7.1: Planning with correct priors and uniform dist for network 7.1

AVG 95% C.I. MAX
2929.9 74.7966 7000 original CSFR
4189.7 46.8434 5400 MiniMax CSFR least expected
4281.9 49.4719 5400 MiniMax CSFR cheapest
4189.7 46.8434 5400 MiniMax CSFR likeliest

Table 7.2: Planning with correct priors and nonuniform dist for network 7.1

The third set of experiments include, original CSFR planning, and the three heurestics

of MiniMax CSFR planning applied to the same cyclic network 7.1, using wrong prior

probabilities for fault states/nodes as input of the original CSFR model. Third set

of experiments are executed twice, for uniform and non uniform distribution of fault

to be occurred. When faults of the network are being uniformly distributed to the

nodes with probability 1
6
, the prior probabilities of the original CSFR model follows

a nonuniform distribution, due to the the nature of sampling these observed statistics

Aggelos Aggelidakis 52 February 2013

AVG 95% C.I. MAX
4532.9 114.195 7800 original CSFR
5150.6 93.4443 7800 MiniMax CSFR least expected
5258.8 103.637 8400 MiniMax CSFR cheapest
5309.8 99.7211 8400 MiniMax CSFR likeliest

Table 7.3: Learning with uniform dist for network 7.1

AVG 95% C.I. MAX
4136.5 123.873 8600 original CSFR
5807.6 148.944 9200 MiniMax CSFR least expected
5657.4 140.11 9200 MiniMax CSFR cheapest
5716.8 143.302 9200 MiniMax CSFR likeliest

Table 7.4: Learning with nonuniform dist for network 7.1

are wrong, Pr(WS1) = 0.05, Pr(WS2) = 0.15, Pr(SW3) = 0.3, Pr(SW4) = 0.3,

Pr(HB5) = 0.15, Pr(WS6) = 0.05. At the next execution, the two distributions are

reversed. Our expectations are better or, at worst case, the same for the maximum actual

cost of MiniMax CSFR model, we cannot guarantee the performance of the average.

Following example presents better maximum actual cost for the MiniMax CSFR model,

but a worse average.

AVG 95% C.I. MAX
3869.2 106.949 7000 original CSFR
4073.6 68.5294 5400 MiniMax CSFR least expected

4002 70.9756 5400 MiniMax CSFR cheapest
4073.6 68.5294 5400 MiniMax CSFR likeliest

Table 7.5: Planning with wrong priors and uniform dist for network 7.1

The fourth set of experiments include, original CSFR planning , and three heurestics

of MiniMax CSFR planning applied to the cyclic network 7.2. Network 7.2 offers the

opportunity to present some different cases which affects the average and maximum

actual cost. The networks consists of four workstations, two switches, and two hubs.

The number of test actions is |AT | = 6 and the number of repair actions is |AR| = 8. The

first set of experiments are executed twice. At first execution, faults of the network are

being uniformly distributed to the nodes with probability 1
8

and prior probabilities of the

Aggelos Aggelidakis 53 February 2013

7. RESULTS

AVG 95% C.I. MAX
3297.2 80.7423 5600 original CSFR
4261.2 52.5597 5400 MiniMax CSFR least expected
4261.2 52.5597 5400 MiniMax CSFR cheapest
4180.8 50.586 5400 MiniMax CSFR likeliest

Table 7.6: Planning with wrong priors and nonuniform dist for network 7.1

Figure 7.2: Network second example for Planning experiments

Information of topology
Element #No.

total 8
workstations 4

switches 2
hubs 2

servers 0
workstations’ link 2

switches’ link 4
hubs’ link 2

servers’ link 0
maximum number of links 4

number of test actions 6
number of repair actions 8
number of total actions 14

original CSFR model Pr(si) = 1
8
, i ∈ (WS1,W2, SW3, SW4,WS5,WS6, HB7, HB8).

At second execution, faults of the network are being nonuniformly distributed to the

nodes, and the probabilities of each node to be faulty are in turn: 0.05, 0.1, 0.15, 0.2,

0.2, 0.15, 0.1, 0.05. The term of the prior probabilities Pr(s) of the original CSFR model

follows the same distribution Pr(WS1) = 0.05, Pr(WS2) = 0.1, Pr(SW3) = 0.15,

Pr(SW4) = 0.2, Pr(WS5) = 0.2, Pr(WS6) = 0.15, Pr(HB7) = 0.1, Pr(HB8) = 0.05,

therefore the best average of actual costs is expected to be the average of the original

CSFR model. However, maximum actual cost of MiniMax CSFR is expected to be less

than the corresponding value of the original CSFR model. The second set of experiments

include, original CSFR learning, and three heurestics of MiniMax CSFR learning applied

to the same cyclic network 7.2. We are expected to take respective results at that case

too.

AVG 95% C.I. MAX
3887.5 84.6744 5600 original CSFR
4090.9 69.1644 5600 MiniMax CSFR least expected
4083.4 68.5474 5600 MiniMax CSFR cheapest
4141.3 64.0875 5600 MiniMax CSFR likeliest

Table 7.7: Planning with correct priors and uniform dist for network 7.2 for 1000 faults

Aggelos Aggelidakis 54 February 2013

AVG 95% C.I. MAX
3577.74 76.8742 5600 original CSFR
3871.12 74.7681 5600 MiniMax CSFR least expected
3912.94 74.1027 5600 MiniMax CSFR cheapest
3871.12 74.7681 5600 MiniMax CSFR likeliest

Table 7.8: Planning with correct priors and nonuniform dist for network 7.2 for 1000
faults

AVG 95% C.I. MAX
6300 199.066 12400 original CSFR

6620.4 192.314 11100 MiniMax CSFR least expected
5293.6 142.615 12000 MiniMax CSFR cheapest
5821.4 171.364 9800 MiniMax CSFR likeliest

Table 7.9: Learning with uniform dist for network 7.2 for 1000 faults

AVG 95% C.I. MAX
6589.79 181.564 10400 original CSFR
6950.93 229.335 12000 MiniMax CSFR least expected
4547.2 87.3459 8800 MiniMax CSFR cheapest

7117.18 241.885 12000 MiniMax CSFR likeliest

Table 7.10: Learning with nonuniform dist for network 7.2 for 1000 faults

The sixth set of experiments include, original CSFR planning, and the three heurestics

of MiniMax CSFR planning applied to the same cyclic network 7.2, using wrong prior

probabilities for fault states/nodes as input of the original CSFR model. Third set

of experiments are executed twice, for uniform and non uniform distribution of fault

to be occurred. When faults of the network are being uniformly distributed to the

nodes with probability 1
8
, the prior probabilities of the original CSFR model follows

a nonuniform distribution, due to the the nature of sampling these observed statistics

are wrong, Pr(WS1) = 0.05, Pr(WS2) = 0.1, Pr(SW3) = 0.15, Pr(SW4) = 0.2,

Pr(WS5) = 0.2, Pr(WS6) = 0.15, Pr(HB7) = 0.1, Pr(HB8) = 0.05. At the next

execution, the two distributions are reversed. Our expectations are better or, at worst

case, the same for the maximum actual cost of MiniMax CSFR model, the MiniMax

CSFR model cannot guarantee anything about the average, however following examples

Aggelos Aggelidakis 55 February 2013

7. RESULTS

Figure 7.3: Network example for Learning experiments

Information of topology
Element #No.

total 36
workstations 18

switches 9
hubs 8

servers 1
workstations’ link 1

switches’ link 4
hubs’ link 4

servers’ link 1
maximum number of links 4

number of test actions 171
number of repair actions 36
number of total actions 207

presents some cases in which the average of the MiniMax CSFR model is better than the

average of the original CSFR model, but the maximum actual cost of the two models is

equal.

AVG 95% C.I. MAX
4088.4 75.0541 5600 original CSFR
4021.7 70.3242 5600 MiniMax CSFR least expected
4141.3 67.8437 5600 MiniMax CSFR cheapest
4021.7 70.3242 5600 MiniMax CSFR likeliest

Table 7.11: Planning with wrong priors and uniform dist for network 7.2 for 1000 faults

AVG 95% C.I. MAX
3957.27 82.3303 5600 original CSFR
3962.32 73.8436 5600 MiniMax CSFR least expected
3905.69 74.3051 5600 MiniMax CSFR cheapest
4152.59 71.6135 5600 MiniMax CSFR likeliest

Table 7.12: Planning with wrong priors and nonuniform dist for network 7.2 for 1000
faults

The seventh set of experiments include, original CSFR learning, and three heurestics

of MiniMax CSFR learning applied to the larger non cyclic network 7.3. The networks

consists of eighteen workstations, nine switches, eight hubs, and 1 server. The test actions

Aggelos Aggelidakis 56 February 2013

are |AT | = 171 in total and repair actions are |AR| = 36. Fourth set is executed twice,

for uniform and non uniform distribution of fault to be occurred. Given a sampling of

the observed faulty nodes, some nodes break down with zero probability and SW15,

HB20, WS25, WS30, HB35 with probabilities Pr(SW15) = 0.1, Pr(HB20) = 0.2,

Pr(WS25) = 0.4, Pr(WS30) = 0.2, Pr(HB35) = 0.1. The next execution is occurred

with uniformly distributed probabilities.

AVG 95% C.I. MAX
4639.19 80.1208 6100 original CSFR
4222.02 52.3757 5700 MiniMax CSFR least expected
4222.02 52.3757 5700 MiniMax CSFR cheapest
4222.02 52.3757 5700 MiniMax CSFR likeliest

Table 7.13: Learning with uniform dist for network 7.3

AVG 95% C.I. MAX
4135.94 197.385 7500 original CSFR
3723.35 155.68 5800 MiniMax CSFR least expected
3723.35 155.68 5800 MiniMax CSFR cheapest
3723.35 155.68 5800 MiniMax CSFR likeliest

Table 7.14: Learning with nonuniform dist for network 7.3

Aggelos Aggelidakis 57 February 2013

7. RESULTS

Aggelos Aggelidakis 58 February 2013

Chapter 8

Conclusion

This chapter demonstrates our basic findings of this research and its contribution. Fur-

thermore, limitations of the system are highlighted and a proposal for future work is

provided. The limitations of the model as well as its assumptions could be revisited and

eliminated, so a safe as well as an optimal decision making system could be presented in

the near future. Using planning with the MiniMax criterion complemented by the three

heuristics, presented in Chapter 3, better decisions could be taken in the field of auto-

nomic repair systems. The intelligent system created by this research puts the sequential

decisions for diagnosis and repairing on a firmer and safer footing. The basic conclusions

of this research summarize as follows:

(a) The Cost-sensitive Fault Remediation (CSFR) technique can make sequential de-

cisions suitable for diagnosis and repair systems. The CSFR model monitors an

environment and takes actions based on the current state. These actions are both

test and repair. Test actions aim to detect the fault state of the environment and

repair actions aim to restore the environment to its proper functionality. The policy

that CSFR follows is based on the cost of each action, either test or repair. The

CSFR algorithm accomplishes its goal by discovering a repair policy that achieves an

optimal total cost.

(b) The planning algorithm, proposed in this research, optimizes a minimax criterion,

which is in most cases safer than the original CSFR criterion. The original CSFR

criterion yields an upper bound value for the actual costs which in several cases is

Aggelos Aggelidakis 59 February 2013

8. CONCLUSION

higher than the corresponding bound of the MiniMax CSFR criterion. The worst

case for the MiniMax CSFR criterion is the two values of the bounds to be equal.

(c) The experimental results indicate that the system acts in safe on behalf of the user by

following the minimax criterion. Moreover, the fault manager handles weaknesses of

the MiniMax CSFR model successfully, while it uses the heuristics (“least expected

cost”, “cheapest first”, “likeliest first”) described in Chapter 3.

8.1 Future Work

A possible future research direction is to apply the CSFR model with the minimax crite-

rion in another environment apart from network repair and evaluate the efficiency of the

extended model. Furthermore, the application of the model on a real network would re-

veal advantages and disadvantages in practice. An adjustment to a real network would set

the stages for a real contribution of learning domain to the field of network repair. Last,

but not least, the investigation of other criteria, would be an important contribution.

Aggelos Aggelidakis 60 February 2013

References

[1] Franklin, S., Graesser, A.: Is it an agent, or just a program?: A taxonomy for

autonomous agents. In: Proceedings of the Workshop on Intelligent Agents III, Agent

Theories, Architectures, and Languages. ECAI ’96, London, UK, UK, Springer-Verlag

(1997) 21–35 2

[2] Oates, T.: Fault identification in computer network: A review and a new approach.

Technical report, University of Massachusetts, Amherst, MA, USA (1995) 3

[3] Littman, M.L., Nguyen, T., Hirsh, H.: Cost-sensitive fault remediation for autonomic

computing. In: In Proc. of IJCAI Workshop on AI and Autonomic Computing. (2003)

3, 7

[4] Sutton, R.S., Barto, A.G.: Introduction to reinforcement learning (1998) 3

[5] Littman, M.L., Ravi, N.: An instance-based state representation for network repair.

In: in Proceedings of the Nineteenth National Conference on Artificial Intelligence

(AAAI). (2004) 287–292 7, 10, 41

[6] Littman, M.L., Ravi, N., Fenson, E., Howard, R.: Reinforcement learning for auto-

nomic network repair. In: ICAC, IEEE Computer Society (2004) 284–285 7

Aggelos Aggelidakis 61 February 2013

	1 Introduction
	1.1 Thesis Contribution
	1.2 Thesis Layout

	2 Cost-Sensitive Fault Remediation
	2.1 CSFR Fault Manager
	2.2 CSFR Model
	2.3 CSFR Planning
	2.4 CSFR Learning

	3 MiniMax CSFR
	3.1 MiniMax CSFR Planning
	3.2 MiniMax CSFR Repair Action Ordering
	3.3 MiniMax CSFR Learning

	4 Network Repair
	4.1 Network Repair
	4.2 Network Simulation

	5 CSFR Planning for Network Repair
	5.1 CSFR Model for Network Repair
	5.2 CSFR Planning Solution for Network Repair

	6 CSFR Learning for Network Repair
	6.1 Learned CSFR Model for Network Repair
	6.2 CSFR Learning Solution for Network Repair

	7 Results
	8 Conclusion
	8.1 Future Work

	References

