
Technical University of Crete
Electronic and Computer Engineering

“Using crowdsourcing for grammar induction with
application to spoken dialogue systems”

by

Elisavet Palogiannidi

thesis committee

Thesis supervisor: Assistant Professor Polychronis Koutsakis
Committee member: Associate Professor Alexandros Potamianos
Committee member: Professor Euripides Petrakis

Chania, Crete
July 2013



Abstract

Spoken Dialogue Systems are becoming even more common in daily life, supporting
information access to the masses in a plethora of domains, such as flight information,
restaurant guide, and others. At early stages of the development of a Spoken Dialogue
System, there is a chicken-and-egg problem, whereby good quality user data cannot be
obtained without a reasonably robust system. Thus, many other ways of mining good
quality data for such systems, are used during the development stage.

The data are necessary during the development stage, because they can be used in data-
driven grammar induction algorithms, in order to introduce new rules to the grammars that
are incorporated to the system for understanding what the users need. This is important,
because the performance of Spoken Dialogue Systems, is influenced by the variety of
grammar rules that constitute the speech understanding grammar.

One novel way for data acquisition is a new method, called Crowdsourcing. According
to its definition Crowdsourcing is “the act of taking a job traditionally performed by a
designated agent and outsourcing it to an undefined, generally large group of people in
the form of an open call”. In Crowdsourcing jobs, a large group of people give answers to
tasks that are easy for humans but difficult for computers, in exchange for a small amount
of money.

In this thesis the Crowdsourcing method is used, for gathering appropriate for the
induction of new grammar rules, relevant to travel flight domain data. Using the Crowd-
sourcing method, we design both the User Interface and the content of the tasks. Then,
the Crowdsourcing workers have to complete the tasks. The major problem in this method
is that many Crowdsourcing workers prefer to “cheat”, with various ways, for saving time
and money. Thus, during the Crowdsourcing process, we use various techniques, in order
to reach the best possible quality for the data that we collect and reject users who intent
to “cheat”.

After the data acquisition, numerous metrics are implemented, in an attempt to quan-
tify data quality and find out whether we achieved our goal. Finally, we reached the
conclusions that the data collected using Crowdsourcing method, can be used for gram-
mar induction, but the performance achieved is lower compared with the data collected
using web harvesting method. We believe that if we succeed in rejecting “cheaters” in time,
the performance of grammar induction will be increased. Moreover, we introduce a kind
of methodology for designing Natural Language tasks, based on an array of parameters.
Further goal is to deal with an automatic sentences generator applied in the design process.

Keywords: Crowdsourcing, Spoken Dialog Systems, Grammar Induction, Crowd-
sourcing task



Acknowledgments

Foremost, I would like to express my sincere appreciation and gratitude to my super-
visor Alexandros Potamianos, for all I learned from him during this year. His continuous
support and encouragement in all stages of this thesis, as well as, his suggestions, ideas
and comments were invaluable. Also, I would like to thank my committee members Poly-
chronis Koutsakis and Euripides Petrakis for reviewing my work.

Next, I’d like to thank all the people who contributed to the successful completion of
this thesis: Giannis Klassinas for his help and guidance, Dr. Elias Iosif for his guidance,
and the participants of the pilot evaluation for their time.

This thesis completion, implies the end of an important part of my life and I don’t even
know if I would be here today if I hadn’t by my side some special persons. So, I thank my
best friends, who I met in Chania, for sharing with them beautiful and carefree memories,
and for being by my side in the difficult moments. My greatest thanks go to the persons
that I could talk about my problems and excitement, and share with them my worries and
ideas: Konstantinos Maragos, Georgia Athanasopoulou and Christina Ioannou. Special
thanks to Konstantinos for helping me think rationally.

Last but not least, I have no words to thank my family, and especially my parents,
Eleftherios and Vasiliki, and my sister Anastasia, for believing in me and supporting my
choices.

This work is dedicated to my grandparents, Ioannis and Elisavet Palogiannidi, who
wanted so much to see me achieving this goal. Also, to my grandparents Ioannis and
Anastasia Kontogianni who, unfortunately, can’t see me, but I know that they would be
full of pride.

2



“In God we trust. All others must bring data.”

W. Edwards Deming



Contents

Page

List of Figures 5

List of Tables 7

List of abbreviations 8

1 Introduction 10
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 The task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Theoretical Background 13
2.1 Human Computer Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Language modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Context - free Grammars . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Natural Language Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Previous Work 20
3.1 Spoken Dialogue Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.2 Characteristics of a SDS . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.3 Previous works on Spoken Dialogue Systems . . . . . . . . . . . . . 22
3.1.4 Comparison with this thesis work . . . . . . . . . . . . . . . . . . . . 23

3.2 Crowdsourcing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.2 Crowdflower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.3 Quality control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.4 NLP tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Spoken Dialogue Systems & Crowdsourcing . . . . . . . . . . . . . . . . . . 29
3.3.1 Comparison with this thesis work . . . . . . . . . . . . . . . . . . . . 30

3.4 Grammar Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.2 Previous work in Grammar Induction . . . . . . . . . . . . . . . . . 31
3.4.3 Comparison with this thesis work . . . . . . . . . . . . . . . . . . . . 32

4



3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Definition of Crowdsourcing tasks & Pilot study 34
4.1 Introduction to the design of Crowdsourcing tasks . . . . . . . . . . . . . . 34
4.2 Design of Crowdsourcing tasks . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 Pilot process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.2 Analysis of collected data . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Design 43
5.1 User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Design of the questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2.1 Parameter definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2.2 Sentences generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6 Data Collection and Data Analysis 51
6.1 Collection process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.2.1 Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2.2 Grammar Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.2.3 Parser analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.2.4 Perplexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.2.5 Design success metric . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.2.6 Meta-data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7 Conclusions and Future Work 66
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

A Initial Questions designed per task 69

B Distribution of the Parameters 75

C Crowdflower and UI 86

List of Figures

2.1 Model Human Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Venn diagram of languages in Chomsky Hierarchy . . . . . . . . . . . . . . 17

5



LIST OF FIGURES

2.3 Rules of the context-free grammar for the language L and context-free parse
tree for “aabb” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 example of a part of an ABNF grammar . . . . . . . . . . . . . . . . . . . . 18
2.5 Hypothetical grammar and test text for a parser . . . . . . . . . . . . . . . 18
2.6 Parser trees for the test sentences based on the hypothetical parser . . . . . 19

3.1 Diagram of SDS’s basic modules . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Example of a finite-state automaton, from [37], that a DM can use . . . . . 22
3.3 Auto-induced semantic classes system from [41] . . . . . . . . . . . . . . . . 32
3.4 Grammar Induction’s algorithm basic steps . . . . . . . . . . . . . . . . . . 32
3.5 Example of agglomerative clustering . . . . . . . . . . . . . . . . . . . . . . 33

4.1 Abstract format of a Crowdsourcing task . . . . . . . . . . . . . . . . . . . 35
4.2 The form of the tasks that were designed . . . . . . . . . . . . . . . . . . . 36

5.1 Example of sentences in various levels . . . . . . . . . . . . . . . . . . . . . 46
5.2 Example of sentences in various Noc values . . . . . . . . . . . . . . . . . . 46

6.1 Fmeasure for initial corpus and corpus after flag filter for various number
of clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.2 Fmeasure for domain corpora for various number of clusters . . . . . . . . . 57
6.3 Fmeasure for task corpora for various number of clusters . . . . . . . . . . . 57
6.4 Fmeasure for Qs corpora values for various number of clusters . . . . . . . . 57
6.5 Fmeasure for Ql corpora for various number of clusters . . . . . . . . . . . . 58
6.6 Fmeasure for Noc corpora for various number of clusters . . . . . . . . . . . 58
6.7 Fmeasure for Qp corpora for various number of clusters . . . . . . . . . . . 58

B.1 Qs distribution for the“Answers” task . . . . . . . . . . . . . . . . . . . . . 76
B.2 Ql distribution for the “Answers” task . . . . . . . . . . . . . . . . . . . . . 76
B.3 Noc distribution for the “Answers” task . . . . . . . . . . . . . . . . . . . . 77
B.4 Qp distribution for the “Answers” task . . . . . . . . . . . . . . . . . . . . . 77
B.5 Qs distribution for the “Prompts” task . . . . . . . . . . . . . . . . . . . . . 78
B.6 Ql distribution for the “Prompts” task . . . . . . . . . . . . . . . . . . . . . 78
B.7 Noc distribution for “Prompts” task . . . . . . . . . . . . . . . . . . . . . . 79
B.8 Qp distribution for the “Prompts” task . . . . . . . . . . . . . . . . . . . . 79
B.9 Qs distribution for the “Paraphrasing” task . . . . . . . . . . . . . . . . . . 80
B.10 Ql distribution for the “Paraphrasing” task . . . . . . . . . . . . . . . . . . 80
B.11 Noc distribution for the “Paraphrasing” task . . . . . . . . . . . . . . . . . 81
B.12 Qp distribution for the “Paraphrasing” task . . . . . . . . . . . . . . . . . . 81
B.13 Qpl distribution for the “Paraphrasing” task . . . . . . . . . . . . . . . . . 82
B.14 Qep distribution for the “Paraphrasing” task . . . . . . . . . . . . . . . . . 82
B.15 Qs distribution for the “Fill in” task . . . . . . . . . . . . . . . . . . . . . . 83
B.16 Ql distribution for the “Fill in” task . . . . . . . . . . . . . . . . . . . . . . 83
B.17 Noc distribution for the “Fill in” task . . . . . . . . . . . . . . . . . . . . . 84
B.18 Qp distribution for the “Fill in” task . . . . . . . . . . . . . . . . . . . . . . 84
B.19 Qep distribution for the “Fill in” task . . . . . . . . . . . . . . . . . . . . . 85
B.20 Df distribution for the “Free dialogues” task . . . . . . . . . . . . . . . . . . 85

C.1 “Answers” and “Prompts” task on pilot (a) . . . . . . . . . . . . . . . . . . 87

6



C.2 “Answers” and “Prompts” task on pilot (b) . . . . . . . . . . . . . . . . . . 88
C.3 “Answers” task on Crowdflower . . . . . . . . . . . . . . . . . . . . . . . . 89
C.4 “Prompts” task on Crowdflower . . . . . . . . . . . . . . . . . . . . . . . . 90
C.5 “Paraphrasing” task on pilot . . . . . . . . . . . . . . . . . . . . . . . . . . 91
C.6 “Paraphrasing” task on Crowdflower . . . . . . . . . . . . . . . . . . . . . . 92
C.7 “Free dialogue” task on pilot . . . . . . . . . . . . . . . . . . . . . . . . . . 93
C.8 “Free Dialogs” task on Crowdflower . . . . . . . . . . . . . . . . . . . . . . 94
C.9 “Fill in” task on pilot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
C.10 “Fill in” task on Crowdflower . . . . . . . . . . . . . . . . . . . . . . . . . . 96

List of Tables

3.1 Public information about crowdsourcing on Crowdflower . . . . . . . . . . . 25

4.1 Examples of System Prompts and User Responses . . . . . . . . . . . . . . 36
4.2 Examples of grammar rules about date and departure city . . . . . . . . . . 37
4.3 Examples of Top-level prompts and corresponding responses . . . . . . . . . 37
4.4 Corpora that created after pilot process . . . . . . . . . . . . . . . . . . . . 38
4.5 Ratio of reading instructions time to task completion time . . . . . . . . . . 39
4.6 Relevance metrics for the data collected from pilot . . . . . . . . . . . . . . 40
4.7 Design success metric for the data collected from pilot . . . . . . . . . . . . 40
4.8 Perplexity statistics for the various tasks using unigram LM . . . . . . . . 41
4.9 Perplexity statistics for the various tasks using bigram LM . . . . . . . . . 41

5.1 Crowdsourcing tasks in decreasing freedom order . . . . . . . . . . . . . . . 45
5.2 Tasks with their parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.3 Assignment of parameter values to a freedom category . . . . . . . . . . . . 50

6.1 Corpora that created from Crowdsourcing . . . . . . . . . . . . . . . . . . . 53
6.2 Comparison of the corpus we collected and the corpora created after filtering 54
6.3 Parser success and percentages of garbage data and answers from flagged

users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.4 Grammar Induction performance metrics (using a subset of the grammar) . 55
6.5 Grammar Induction performance metrics (using a subset of the grammar

:only Date) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.6 Parser analysis performance metrics using a subset of the grammar . . . . 60
6.7 Perplexity statistics for the various corpora, for Bigram LM . . . . . . . . . 61
6.8 Correlation per task, based on perplexity and calculated between the data

that we provide and the data that are provided by the contributors . . . . . 63
6.9 Percentages of the answers that target to collect data that belong to each

domain, per task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.10 Data that belong to Date and Depar-city domain and were provided as

answers to questions that were targeted in the corresponding domains . . . 63

7



LIST OF TABLES

6.11 Various statistics about contributors per task . . . . . . . . . . . . . . . . . 64
6.12 Percentages of contributors that submitted a number of units per task, that

belongs to a specific range . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

A.1 Initial Questions for the“Answers” task . . . . . . . . . . . . . . . . . . . . 70
A.2 Initial Questions for the “Prompts” task . . . . . . . . . . . . . . . . . . . . 70
A.3 Initial Questions for the “Paraphrasing” task . . . . . . . . . . . . . . . . . 71
A.4 Initial Questions for the “Fill in” task . . . . . . . . . . . . . . . . . . . . . 72
A.5 Initial Questions for the “Free dialogues” task (a) . . . . . . . . . . . . . . . 73
A.6 Initial Questions for the “Free dialogues” task(b) . . . . . . . . . . . . . . . 74

C.1 Crowdsourcing tasks’s titles . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

8



List of abbreviations

SDS Spoken Dialogue System
NLP Natural Language Processing
SU Speech Understanding
UI User Interface
HIT Human Intelligent Task
AMT Amazon Mechanical Turk
MT Machine Translation
LM Language Model
OOD Out of Domain
HCI Human Computer Interaction
MHP Model Human Processor

9



Chapter 1

Introduction

1.1 Motivation

Interactive Spoken Dialogue Systems, (SDS) are becoming increasingly pervasive in
daily life. To be more specific, in the last years they have moved from research prototypes
to real-life commercial applications ( [21, 34, 36, 47, 59, 60]). However, there are two key
issues for improvement. Firstly, the evaluation of a SDS is an open research problem,
which can be categorized into component-based perspective and holistic-based perspective
( [20,22,54,58]). The first covers the performance of individual components, in contrast to
the second that involves the perceived level of system usability. Still, a major roadblock in
SDS prototyping, is the difficulty not only on the development, but also on porting a SDS to
new domains or languages. This porting is time-consuming and the Speech Understanding
(SU) grammars require expertise in NLP and in-domain data as well ( [31]). By now, some
of the technologies that make SDS’s porting easier and have not penetrated through to
the commercial systems yet are ontology enrichment, automatic grammar induction and
others.

The main issue that arises when deciding to port a SDS to a new domain or language,
is the acquisition of in-domain data. There are several methods for gathering data, such as
web data harvesting, crowdsourcing, transcription, and each of them has various benefits
and drawbacks. Crowdsourcing is a new and widely growing area of research, based on the
idea of the wisdom of the crowds and, actually, tasks that would normally be reserved for
experts, are provided to a crowd, consisting of non-experts (usually) ( [25]). Consequently,
using Crowdsourcing for data acquisition is a challenge, which becomes greater and more
interesting because of the presence of the human element.

Moreover, data-driven approaches to grammar induction rely solely on corpora ( [41,
48]). Thus, using grammar induction as the technology that will make SDS’s porting
easier is an extra challenge, because its performance will mirror the usefulness of the data
that were collected.

1.2 Background

The current thesis is most highly related to previous work falling into three main
areas: the development of SDSs, the induction of SU grammars, and data acquisition with
Crowdsourcing method.

10



1.3. THE TASK

To begin with, SDS development, in the last decades proved to be growing by leaps and
bounds. It is worth to study the “philosophy”, the system architecture and the different
approaches to the development of SDSs as well. This study offers a better understanding
of the main “object” of the present research, posing, at the same time, a strong basis
thinking of new ideas in an effort to evolve or improve the existing.

Still, Crowdsourcing, a new method, used for data collection with the use of various
micro tasks such as image annotation, transcription, translations and others. Crowdsourc-
ing background work review, provides, not only a better understanding of the method,
but a clear image of what is done, as well.

Finally, Grammar Induction, is the part of SDS development that this thesis focuses
on. It is useful to research the various grammar induction algorithms and the corpora
that were used for this purpose.

On the whole, our background work research, poses a basis of comparison between this
thesis’s work and previous works. This research is described with more details in chapter
3.

1.3 The task

The main topic of this thesis is the employment of Crowdsourcing for the collection of
data for SSDs, that provide travel information, and especially information about flights.
More specifically, the aim of this thesis is to collect data in order to use them for inducing
new grammar rules. Therefore, the core of this work, is the design of the Crowdsourcing
tasks, in such a way that Crowdsourcing workers will be motivated to provide useful
responses, related to travel domain. The design of Crowdsourcing tasks contains the
generation of a plethora of questions that are part of the Crowdsourcing tasks, and the
design of the User Interface (UI). The first is a more theoretical part, while the second part
is technical, including the implementation of the UI and the upload of the questions. In
addition, when the collection procedure is over, a number of corpora, subset of the corpus
that was collected, are going to be created, in an attempt to select the corpus for which the
best grammar induction performance is achieved. Apart from grammar induction, various
metrics are going to be used, providing an image about the effectiveness of Crowdsourcing
tasks’s design.

1.4 Contribution

Within the present work, we illustrate that Crowdsourcing can be used for collecting
appropriate data for the induction of new grammar rules. It is sufficient to have an
initial grammar, and focus on specific parts for collecting in-domain data. This provides a
solution to the chicken-and-egg problem that appears during the development or porting
phase.

Additionally, we introduce a kind of methodology for designing Crowdsourcing tasks
about SDSs, defining the parameters that influence the quality of the collected data. This
is important, because we reach conclusions about the characteristics that a Crowdsourcing
task should have for achieving an efficient outcome.

Moreover, due to the nature of the tasks, it was impossible to use the quality con-
trol mechanism of the crowdsourcing platform. Thus, we explain the way that we took

11



1.5. THESIS OUTLINE

advantage of all the available options of the platform, trying to collect as good data as
possible.

1.5 Thesis outline

The next chapters of this thesis address the following issues:
Chapter 2 describes in brief the necessary theoretical background that reader needs

to know.
Chapter 3 presents the previous work that has been done on SDS porting and devel-

opment, Crowdsourcing tasks and Grammar Induction.
Chapter 4 describes the first approach to the task that we had to complete. The

most important steps are the definition of the problem with its particularities and the
brainstorming phase, which includes the basic design of Crowdsoucing tasks. Also, we
describe the pilot process, that took place, mostly, for getting feedback about the design.

In chapter 5, the procedure of the final design of the tasks is described.
Chapter 6, refers to the data collection procedure and the data analysis.
Finally, chapter 7 summarizes all the available information and final conclusions are

extracted. Besides, future work is the ending part of the thesis.

12



Chapter 2

Theoretical Background

In this chapter, we present the theoretical background that reader needs to know in
order to better understand the practical aspects of this thesis. Thus, we divide this chapter
in three sections: Human Computer Interaction (HCI), language modeling and grammar
analysis.

2.1 Human Computer Interaction

HCI is a research area, emerged in the later 1970s, with the emergence of personal
computing, and initially, was a specialty area relevant to cognitive science and human
factors engineering. Personal computing, made every human a potential computer user,
and highlighted deficiencies relevant to usability.( [10], [16])

During the interaction of a human and a computer, the human input is the output
of the computer and vice versa ( [16]). A model that describes the human’s side in this
interaction is described in [9], and it is introduced with the name Model Human Processor
(MHP). In essence, MHP is used for representing the different stages of the processing
that a human makes during the interaction with a system. Humans use the perceptual
processor for perceiving the various stimuli from the computer, the cognitive processor for
more complex tasks, e.g. for solving a problem, and the motor processor, which is the
final part of the interaction from the humans’ side and it is responsible for the movement
response (arms, mouth e.t.c.), for providing the input to the computer. The MHP model,
from [9], is depicted in figure 2.1

In [8] the various performance metrics and user kinds of a user - computer interaction
system are described. The performance of the user - computer system is based on the
following quantities : time (that takes a user to complete a task using the system), the
errors (during the interaction and how serious are they), learning (the time that takes a
user to learn how to use the system), functionality (the range of the tasks that a user can
accomplish within the system), recall(how easy is to recall how to use a system that the
user has used in the past), concentration (how many things has the user to keep in mind
during the interaction with the system), fatigue (after interacting with the system for an
extended period), and acceptability (that comes from users’ subjective evaluation of the
system). Regarding the users, it is mentioned that they have different experiences and
knowledge of other tasks and systems, motor skills (such as typing speed) and technical
abilities from each other.

Additionally it is mentioned that a user, in order to manipulate large tasks, breaks

13



2.1. HUMAN COMPUTER INTERACTION

Figure 2.1: Model Human Processor

them into small tasks that are cognitively manageable, called unit tasks. (Note that
Crowdsourcing is based on this idea). Unit tasks, consist of two basic parts: acquisition,
in which the user builds a mental model and execution, in which the user utilizes the
facilities of the system for completing the task. The total time a user spends to complete
a task, is the sum of the time that he dedicates to each of the above parts. According
to the difficulty of the task the acquisition time may be higher, beginning from 2 to 3
seconds. The execution time of a unit should be around 20 seconds, but if it is higher, the
user, likely, breaks it into smaller units.

It is worth to say that the designer of the system, also builds a mental model and
if the mental model of the user meets the mental model of the designer, then there is a
successful interaction, which means success of the task design.

In the Crowdsourcing system that we are going to create, we design tasks for users,
whose majority wants to complete them fast, so we need high performance in time and
learning, while performance in functionality, recall and fatigue is not important for us,
since for each task we have an independent system and it is available for a small time
period. Performance in concentration is also important, because we want to create simple
and not complex tasks for the users. Acceptability was the basic performance metric in
pilot process, which is described in chapter 4. Regarding the users that we address, the
majority of them has Crowdsourcing experience and satisfactory motor abilities.

14



2.2. LANGUAGE MODELING

The design that we create is based on the principles described in this section.

2.2 Language modeling

A statistical model of word sequences is known as language model. A LM can be
used for giving the probability P(s) of a sentence s. The majority of the language models
decomposes the sentence probability, P(s), into a product of conditional probabilities. In
the simplest possible model, any word can follow any other word and this makes all the
words to have equal probability to follow any other word. In a more complex LM we take
into account the frequency, with which a word appears. However, for specific sequences,
words with lower frequency may be more reasonable than words with higher frequency and
this observation considers the conditional probability of words given the previous words
instead of the relative frequency.

The N-gram language model considers the language as a Markov process of order N−1.

P (wi|hi) = P (wi | wi−N+1, . . . , wi−1) ≈ P (wi | wi−1i−N+1) (2.1)

Equation 2.1 states that the probability of word wi given all the previous words of the
sentence can be approximated by the probability given only the previous N − 1 words.

In bigram LM, the probability of a word given the previous is approximated by the
probability given the preceding word. Trigram is the same as bigram instead of that the
condition goes on two previous words, and so forth as the N increases.

The major problem of LM is that they must be trained from a corpus, and since there
aren’t infinite corpora, some N-grams is possible to miss from the LM, and this means that
they have zero probability. Smoothing is one technique that assigns a non zero probability
to a zero probability, for avoiding calculating problems. Backoff is an other technique that
is used, in which, if we meet a zero probability for an N-gram, we “back-off” to lower
N-grams.

For understanding better what we described, consider the sentences “I want to travel
all over the world”, “I like traveling with airplanes”. The total number of these words is
13 and according to the simplest model, the probability of each word is 1

13 . But taking
into account the relative frequency of each word, the probability of each word is different,
according to the number of appearance, e.g. p(I) = 2

13 , p(like) = p(world) = 1
13 .

The probabilities of the sentences according to the bigram and the trigram, is nothing
else than the multiplication of the appropriate probabilities. We show one example for
bigram and one for trigram with each of the sentences, beginning with the first sentence
and the bigram.

· p(I want to travel all over the world) = p(I| < s > 1) · p(want|I) · p(to|want) ·
p(travel|to) · p(all|travel) · p(over|all) · p(the|over) · p(world|the)

· p(I like traveling with airplanes) = p(I| < s1 >< s2 >) · p(like| < s2 > I) ·
p(traveling|I like) · p(with| like traveling) · p(airplanes|traveling with)

Perplexity

Perplexity and entropy are the most common metrics used for evaluating N-gram
systems. Entropy is a measure of information and it can be computed after establishing

1means the start of new sentence

15



2.3. CONTEXT - FREE GRAMMARS

a random variable X that ranges over what we are predicting which has a probability
function p(x). Entropy of a random variable X is shown in equation 2.2.

H(X) = −
∑
x∈χ

p(x)log2p(x) (2.2)

Intuitively, we can think of entropy as the lower bound of the bits that we need for
encoding a piece of information. Moreover perplexity, which is defined in equation 2.3,
can be thought as the weighted average number of choices a random variable has to make
( [37]) and is a metric for expressing how well a statistical model matches to a test corpus.
The higher the N the lower the perplexity and this is logical because, the language model
has less possible choices, since it takes into account higher tuples of words.

perplexity := 2H(X) (2.3)

For calculating perplexity in practice, we need a LM and a test corpus and we can use
the SRILM toolkit [51] . It is important to build the LM without any knowledge of the
test corpus, because this will lead to very low perplexity.

The perplexity is calculated from SRILM toolkit by the following formula:

ppl = 10(
−logprob

words−OOV s+sentences
) (2.4)

where

1. sentences is the total number of sentences (in perplexity per sentence calculation is
1 )

2. logprob gives the total logprob, ignoring OOV word tokens.

3. words is the total number of words

4. OOV is the number of unknown word tokens, i.e. tokens that appear in test corpus
but not in train corpus from which the language model was generated.

5. ppl is the geometric average of 1/probability of each token, i.e., perplexity.

2.3 Context - free Grammars

In 1956 Chomsky introduced in [12] the hierarchy of the languages which are depicted
in figure 2.2.

Context-free grammars belong to the realm of formal languages - they sprang out from
linguistics as a way of understanding the syntactic regularities of natural languages. In
equation 2.5 we view the definition of a context free grammar with its basic components.

G = (V,Σ, R, s) (2.5)

where

1. V is the non-terminal vocabulary and each of its elements represents a different type
of phrase or clause in the sentence.

2. Σ is the set of terminals, from which the actual content of the sentence consists of.

16



2.3. CONTEXT - FREE GRAMMARS

Regular

Context-free

Context-sensitive

Recursively enumerable

Figure 2.2: Venn diagram of languages in Chomsky Hierarchy

3. R is the set of rules of the grammar and, in essence, is a finite relation from V to
(V ∪ Σ)∗.

4. S is the start symbol.

We can see an example from [37] of a context-free grammar in figure 2.3 for the
context-free language L : anbn

S → aSb
S → e

S

��

��


























��333333333333333333333333

S

��

�����������������

��..............

S

��
a a e b b

Figure 2.3: Rules of the context-free grammar for the language L and context-free parse
tree for “aabb”

ABNF grammar format

Augmented Backus–Naur Form (ABNF) is a format used for representing context-free
grammars, based on BNF, and consists of its own syntax and derivation rules. In ABNF
format a rule is a set of characters that can be letters, numbers or hyphens enclosed in
brackets. Some of the useful operations that are defined between the rules are concate-
nation, for a rule that is defined from a sequence of rules, alternative for a rule that is
defined from a sequence of alternative rules and incremental alternatives for adding to a
rule more alternatives. Also, numeric values can be used in a rule, enclosed in “, ”. We

17



2.4. NATURAL LANGUAGE PARSING

can see an example of a grammar in ABNF format, used in real applications in figure 2.4,
where the brackets [ ] mean that the rule that they enclose can used optionally.

<TIME>= <HOUR>[<MINUTE>/<O’CLOCK>] [<ampm>]
<TIME>=/ <HOUR><MINUTE><O’CLOCK>[<ampm>]
<TIME>=/ <HOUR>“HUNDRED” [“HOUR”/“HOURS”]

Figure 2.4: example of a part of an ABNF grammar

2.4 Natural Language Parsing

A parser is a program used as a first step on working out the meaning of an input
text and, actually, reveals the grammatical structure of the text. There are two methods
for parsing, bottom-up, in which the text’s lowest-level details are identified first and the
highest level is identified last, and top-down, that uses the opposite approach. The parser
that we are going to use for the data analysis is bottom-up and it is better to understand
its functionality though an example.

Suppose that we have a parser with an incorporated grammar, and test text file that
we want to find its parse tree. In figure 2.5 we show the grammar that the parser uses
and the text which we want to find its grammatical structure and in figure 2.6 the parse
trees that are created for each sentence.

Grammar
<CITY-DAY>→ <city>“on”<day >
<city>→ ATHENS / CHANIA
<day >→ MONDAY / TUESDAY / WEDNESDAY

Text for parsing
Sentence 1: I go to Athens
Sentence 2: I go to Athens on Monday
Sentence 3: I leave at eight o’clock

Figure 2.5: Hypothetical grammar and test text for a parser

In figure 2.6, we depict the parse tree for beginning from the sentence 1 and ending in
sentence 3. Note that sentence 3 does not have a parse tree, because there isn’t a grammar
concept for assigning any word of the sentence. We consider this case as a failure, while
the other sentences were parsed with success.

2.5 Summary

In this chapter we introduced, in brief, some special issues from the theoretical back-
ground that the reader needs to know for the remainder of the thesis. HCI is necessary for
the part of the design and the interaction of the humans with the system that we are going

18



2.5. SUMMARY

I

��

go

��

to

��

Athens

��
I go to <city>

I

��

go

��

to

��

Athens

��

on

��

Monday

��
I

��

go

��

to

��

<city>

��

on

wwooooooooooooo <day>

tthhhhhhhhhhhhhhhhhhh

I go to <CITY −DAY >

I

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY leave

++WWWWWWWWWWWWWWWWWWWWWWWWWWW at

))SSSSSSSSSSSSSSSSSSSS eight

$$JJJJJJJJJJ o′clock

��
X

Figure 2.6: Parser trees for the test sentences based on the hypothetical parser

to build, while LM and NT parsing are necessary for the analysis phase, after collecting
the data.

19



Chapter 3

Previous Work

3.1 Spoken Dialogue Systems

3.1.1 Introduction

Looking back in 1950, Alan Turing in [53] considered the question “Can machines
think?”. However, due to the ambiguity of the terms “machine” and “think”, for the com-
puter, it was not possible to give an answer, thus he introduced an empirical test, played
from two people and one machine, in which language is used for determining whether a
machine can think. If the machine could win the game, which means that it could fool the
people and make them believe that is human, then it would be characterized as intelligent
and this is known as the famous Turing test. According to Turing, it is sufficient to make
machines use the language as the humans do, as an operational test for intelligence.

Nowadays, SDS, are being developed with rapid rhythms. We can consider the de-
velopment of a SDS as an attempt to grant “intelligence” to a machine. An intelligent
machine, should act in a dialogue like a human would do, viz., to understand language,
use language and interact with a human in a dialogue.

To begin with, as it is expressed in [37] a dialogue is a conversation between at least two
participants, taking the roles of hearer and speaker, who alternate periodically, and consists
of communication types such as asking questions or giving answers. A dialogue differs from
a common monologue, due to the turn-taking of the dialogue, and the critical point is for
each participant to know when is the proper time to contribute his turn. Besides, dialogue
is a collective act between hearer and speaker, with the need of establishing common
ground, and acknowledge the other user’s utterances. The final big difference, is that, in
many cases the participant does not answer clearly to an utterance, but the semantics of
this statement are produced from a semantic interpreter.

A dialogue between humans is an easy issue, in contrast to a dialogue between a human
and a computer. What SDSs try to achieve is to provide to humans natural conversations
during the interaction with the systems.

3.1.2 Characteristics of a SDS

Spoken Dialogue Systems are automatic systems, derove on the grammar induction
module to take advantage of bootstrap grammars if available (in addition to web data),
and 3) combine parsing with statistical semantic relatedness metrics to aling, usually, with
the dialogue of a user and a machine. The majority of SDS is telephone-based and enable

20



3.1. SPOKEN DIALOGUE SYSTEMS

users to conduct transactions or ask information about the kind of application that SDS
is about. The different purposes that a SDS can be used for and the different languages,
make SDS a constantly growing area of research. Figure 3.1 (from [28]) depicts the
basic modules that constitute a SDS and the interconnection with each other. As we
observe, SDSs are the integration of various aspects from the fields of speech recognition
and synthesis, NLP, information retrieval and dialog modeling.

Figure 3.1: Diagram of SDS’s basic modules

Automatic Speech Recognizer (ASR)

The role of ASR as a module of SDSs is to translate spoken words, that take as input
from the users, into text. Speech recognition is a very complex problem, since different
pronunciation, accent, articulation, roughness, nasality, pitch, volume, and speed can can
lead to low performance outcomes easily. Likewise, background noise can incommode
speech recognition process. These are some of the reasons that lead to various types of
recognition errors.

Natural Language Processor (NLP)

Input of NLP is the outcome of ASR, and its basic process is to extract the mean-
ing/keywords of the user through the semantic and syntactic analysis, taking domain
information into account. It is a very sensitive component, since different wordings of
saying the same thing to the user will yield very different results.

Dialog Manager (DM)

DM has been assigned to establish the connection between the parts of the dialogue
system. In other words, it controls the data flow, taking as input the NLP’s outcome,
getting the corresponding user information from the database and sending the dialogue
response to to TTS. In figure 3.2 a finite-state automaton architecture for a DM is
depicted.

Text to Speech Synthesizer (TTS)

During this process artificial human speech is produced. In this case, the response
that DM has decided to give as answer to user’s input is converted into acoustical signal
and played back to humans.

21



3.1. SPOKEN DIALOGUE SYSTEMS

Figure 3.2: Example of a finite-state automaton, from [37], that a DM can use

3.1.3 Previous works on Spoken Dialogue Systems

In [33] a stochastic model for SDS using Markov Decision processes is introduced. A
strategy is defined as good if, given a current state of the system, the next action can
be invoked. The main assumption that this research is based on is that a good strategy
minimizes the costs of all the important dialogue dimensions. [47] describes the use of
reinforcement learning for the automatic design of dialogue strategies between human and
computer, using an error simulation tool and a detailed user. The PARADISE general
framework for evaluating SDS is presented in [54]. It is used for evaluating dialog strategies
and allows comparisons among different tasks, agents that perform different tasks and
performance calculation over sub-dialogues and whole dialogues as well, as a function of
tasks success and dialogue cost. The research in [44] exposes a probabilistic framework used
for realistic simulation of SDS, whose components are modeled with respect to independent
data or expert knowledge aiming to evaluate the dialogues and learning optimal strategies.
Also, an automatic speech recognition model and a user model were developed while
the experiments were done for two different tasks and indicated potentially problematic
scenarios.

Except from the works that aim for the best strategies, many researches have been
done for the development of SDS. SpeechBuilder is a utility described in [21] and its
purpose is to facilitate the development process of a SDS. More specifically it is used for
creating domains by accessing structured information from a database, and create spoken
language interfaces. Also, [49] represents the CSLU tooklit, which provides an interface
for spoken language technology, and supports all stages of development, from prototyping
to evaluation.

Jupiter is described in [59], and it is a conversational interface for weather information,
based on telephone interaction. It can provide weather information for a large number of
countries all over the world and sources for finding information. An attempt for content
processing and information selection is described as well. Another SDS, named August (the

22



3.1. SPOKEN DIALOGUE SYSTEMS

name of an animated talking agent) is used in [23] for the collection of spontaneous speech
data, with one of its aims to try to semi-automate the extension of the system according
to the user’s needs. However the main aim of this system was to study the interaction
of näıve users with spoken language technologies with several domain. Thus the specialty
of this system is that is uses numerous domains instead of one and more complex as the
majority of SDS does. In addition, the SDS described in [34], ITSPOKE, has tutoring
purposes. A student interacts via natural language text with the system, and its basic
purpose is to create an empirical understanding of the branches of adding spoken language
capabilities to dialogue tutors based on text. PEGASUS, a spoken language interface that
provides the users with the capability of planning travels on line, is described in [60].
In [36] a SDS that developed for dealing with fast-food orders is described, and consists
of a dialogue system and a voice interface.

The problem of evaluating SDS, is studied in [58] from a different point of view. More
specifically, this study proposes and presents a novel evaluation framework with Finite
State Machines (FSMs), that can evaluate SDS in different domains, in which FSM states
can be regarded as efficiency measurements. Data were collected from the“Let’s Go!”
dialog system, keeping dialogs with more than 6 turns and classifying them into three
categories. The state in an FSM captures the key information contained in each turn and
each dialog can be modeled as a state transition path in the FSM. The key idea about an
FSM is that a dialog with a long path and few state transitions reveals low efficiency. The
evaluation of SDSs is based on regression models built on the efficiency measurements.
The results showed that SDS evaluation with FSMs can be utilized for enhancing dialog
system’s evaluation methods.

[20] describes data collection and performance evaluation infrastructure in support
of spoken dialogue system development. The data were collected from a toll-free phone
line from a flight information system1, which allows users to plan their travels all over the
world. Finally, about eleven thousand utterances were collected, and a subset of them
was used during the evaluation process, which is based on two understanding metrics, one
metric defined per utterance and one defined per dialog. According to the investigation
that was done, one outcome was that making the system available to real users is a crucial
aspect of system development.

In [43], the main differences of commercial and research SDS development are men-
tioned. The goals of each are different and the usability needs as well.

Up to now we have presented only some of the existing works in literature, since the
relevant list wof research contributions on SDS is too large to be presented.

3.1.4 Comparison with this thesis work

In the last decades, SDSs’s development has become an increasingly growing area
of research and a part of daily life. Corollary of this, is the development of many SDS
that lean on a plethora of daily occupations. The previous works that were represented,
were about the SDSs’ evaluation and data collection process. The current work, like some
of the previous and in contrast to some others, aims to collect data, for the purpose of
developing a SDS. Likewise with the majority of the previous works, the SDS belongs to
a specific domain, and especially the travel - flight domain.

The main difference, between the previous works that used crowdsourcing for data

1called MERCURY

23



3.2. CROWDSOURCING

collection for SDSs, and the present thesis, is that in the current work we don’t use
dialogs that come from SDS. In fact, we get inspiration from utterances collected from
SDSs for creating potential scenarios of interaction during the design of the tasks.

3.2 Crowdsourcing

3.2.1 Introduction

The term Crowdsourcing was introduced for the first time in 2006, by Jeff Howe and it
is “the act of taking a Job traditionally performed by a designated agent and outsourcing
it to an undefined, generally large group of people in the form of an open call”. It is
based on the “Wisdom of the Crowds” idea and in each Crowdsourcing task there are two
distinguishable roles. People who design and people who perform the tasks, that are easy
for humans but difficult for computers. Quid pro quo for the people who perform tasks is
a small amount of money.

The rapid development of Crowdsourcing led to the creation of a plethora of crowd-
sourcing platforms, some of which are specialized on certain tasks, while some others allow
the designers to create any desirable kind of task. The platforms that belong in the second
case are of greater interest, since they can be used for a large variety of tasks. Actually,
these platforms act as the mediator between the designers and the crowd.

One major drawback of crowdsourcing, is that some people try to cheat with various
methods, in an attempt to save time and earn money. This action leads to the collection of
useless data. Thus, an integral part of crowdsourcing is the assurance of the best possible
quality of the collected data. Methods that tried to achieve this led to sense of Quality
Control.

The historical hoax

One of the most famous and reliable platforms is the Amazon Mechanical Turk (AMT)
platform (launched on 2005 ), the name of which refers to a historical hoax from the 18th
century. The hoax is about a chess-playing machine, invented by the Hungarian inventor
Wolfgang von Kempelen, that appeared to be able to beat human opponents. In fact, the
machine was fake, since it was controlled by a puny Turk, hiding inside it. Likewise, the
AMT web service allows humans to help the machines of today perform tasks, for which
they are not suited.

In [30] two experiments were conducted to test the utility of AMT as a user study
platform. In the first, users had to rate articles from Wikipedia, according to a set of
factors such as how well written, structured, e.t.c., they were and additionally they had
to describe what improvements were necessary for the article’s improvement according to
their opinion. The second experiment, was the same with the first, including an extra pro-
cedure before rating, in which users had to complete four verifiable, quantitative answers.
The results showed that the correlation between AMT user ratings and Wikipedia admin
ratings was marginally significant, providing only weak support for the utility of AMT
rating mirroring expert ratings. On the other hand, results from experiment 2, showed
that the correlation between AMT and expert ratings was higher, and the fewer responses
appeared invalid. The conclusion of this research is that the design of crowdsourcing tasks
must be done with special care, and some design ideas are recommended as well.

24



3.2. CROWDSOURCING

3.2.2 Crowdflower

Crowdflower is a crowdsourcing service founded in 2009 that has over 50 labor channel
partners, one of which is AMT. Since officially only people or institutions located in the
US can post work on MTurk, Crowdflower can be used as an interface to AMT workers.
Crowdflower offers a number of enterprise solutions, using the largest virtual workforce,
consisting from people all over the world, such as categorization, where crowd matches
items to their corresponding category, or transcription where images of handwritten text
must be converted into digital forms.

Besides, Crowdflower’s Builder solution, is a general purpose crowdsourcing platform,
where individual tasks can be created, according to the needs of the clients. Clients have
to design the tasks’s UI, upload data, create instructions, order judgments and collect
data. In table 3.1 we list some of the Crowdflower’s terms, because we are going to use
them in the following parts of the thesis.

Field Description

Unit The smallest autonomous module of a
crowdsourcing task

Judgment A single record that a contributor submits
Page The number of units that a contributor must

complete before submitting
Job The total units that are uploaded
Contributor One person from the crowd that participates in

crowdsourcing
Requester The designer of crowdsourcing Jobs

Table 3.1: Public information about crowdsourcing on Crowdflower

Crowdflower has been used for the development of many crowdsourcing Jobs. In one of
them, it was used for the design of HITs for quality control [7], by the mechanism “Gold
Standard”. The idea is that in one phase of the design, the Requester can input gold
standard data, that include, except the others, all the possible right answers to a unit that
a contributor could provide. Then, units that come from gold standard are mingled with
the rest of the units and the contributors who fail in a number of gold standard units can
be blocked. In brief, contributors come from a training phase when a score is generated
according to their judgments, for giving them feedback on how well they are doing.

In [5] Crowdflower is used for creating preference tests for detecting cheating. In this
work, except from Gold standard data, additional information and intrinsic metrics are
used for assuring quality control. Intrinsic metrics, use information about which worker
answered what to which item. In additional information, pages that were submitted
too quickly to have been listened to, are rejected (listen to speech tests). Moreover, IP
addresses can be used as additional information for cheater exclusion.

3.2.3 Quality control

Since gathering good quality data is the major issue for crowdsourcing, a number of
previous works investigate, the way good quality can be assured and how cheaters can be

25



3.2. CROWDSOURCING

detected.
Apart from [7] and [5], [19] is one of these works, in which speech transcription is

used for the development of acoustic models for under-resourced languages, and proves
that it is possible to acquire quality transcriptions from the crowd. The languages that
were used were African and specifically Amharic and Swahili. The corpora creation proce-
dure, includes text extraction from news websites and its segmentation by sentences. Then
recording was made by native speakers, reading sentence by sentence. For ensuring quality
control, descriptions and instructions were given in respective languages, while the sen-
tences read by native speakers were used as gold standard to compare with transcriptions
obtained from AMT.

Also, a two-stage transcription task with automatic quality control in each stage was
proposed in [32]. Goal of this work is to find an efficient approach for generating high-
quality transcripts for long audio recording. In crowdsourcing HITs, workers had to listen
to short audio clips and transcribe them (first phase). Many transcripts had poor quality,
and in an attempt to reduce their number, an automatic classifier that could distinguish
between them and good quality transcripts was designed. A benefit of this procedure is
that whenever a worker attempts to submit a poor quality transcript, he is warned and
asked to improve it. In the second phase, the short audio clips were merged to form
longer audio segments, and workers were asked to correct transcript errors. A submitted
HIT from this phase will be accepted if the number of changes is more than 80% of the
estimated number of errors for the HIT. This estimation is, also, used to provide feedback
to workers.

3.2.4 NLP tasks

Many of the crowdsourcing tasks belong to NLP area, including knowledge extraction,
textual entailment, word sense disambiguation and others. These tasks, can be used during
the building of MT corpora, a procedure that becomes increasingly desired for more and
more language pairs and domains.

In the study represented in [55], various performance measures of crowdsourcing pro-
cess are discussed and semantic correctness, naturalness and biases of the collected data
are analyzed, focusing on the problem of collecting natural language expressions that
correspond to a given semantic form. The crowdsourcing tasks present three alternative
elicitation methods: sentences, scenarios, list-based descriptions, in which workers have to
rephrase in their own words.

Machine Translation

In [18], AMT is used for the collection of bilingual(Chinese - English) word alignment
data to assist automatic word alignment. The AMT workers are given a sentence pair and
they have to link words in source sentence in one, or more, or the empty word in target
sentence. For quality control, answers are filtered out based on the consensus. Also two
pricing strategies were tried, but even after the price raised, the number of workers wasn’t
high enough, event that indicates the limited workers base of Chinese speakers.

Moreover, [1] explores the effectiveness of AMT for the creation of parallel corpora.
The corpora are created with 100 sentences and three translations per sentence for all the
language pairs between English, Urdu, Spanish and Telugu. This demonstrates the feasi-
bility of cheap corpora for high and low resource languages. From the received datasets,

26



3.2. CROWDSOURCING

two basic problems were apparent. Firstly, problems that are easy to identify like blank
annotations, copy-paste and misspellings and secondly, problems hard to identify, in which
AMT workers who don’t understand the task but attempt it anyway. Computation of ma-
jority consensus translation using fuzzy matching, is agreed to be an effective solution to
detect low quality translations.

Apart from the above work, [3] explores the potential of AMT in the creation of MT
parallel corpora, too. This work succeeds to buck the trend of diminishing returns and im-
proving translation quality, keeping, at the same time, annotation costs low. The method
used for collecting translations, includes only asking n-grams and not entire sentences.
One reason that this happens is because translation model learned from the so-far labeled
data will be able to translate correctly the rest words in the sentence.

Work [4] proves that it is feasible to use AMT for reducing MT test sets cost. A
previous collected Urdu - English MT test set was replicated, paying $0.10 a sentence
(lower price than the typical annotator cost). Handling of undesirable behaviors, includes
the manually blocking of the AMT users, while simple mistakes such as misspellings were
uploaded for correction from the AMT users, with a total cost of $44.80.

Goal of [27] was the use AMT for annotating translation lexicons between English and
a large set of less commonly used languages. First, small existing dictionaries were used
to induce additional lexical translation pairs, and the AMT users were payed for checking
and correcting the system’s output. Then, the same procedure continues with the updated
lexicons and so on. In the AMT tasks, for each English word within a HIT, ten candidate
translations in the foreign languages were posted and AMT workers were asked to check
the boxes beside any and all of the words that were translation of the English word. For
ensuring the quality of the answers, positive and negative controls were used, if the seed
dictionary included an entry for the English word, or with a random word in the foreign
language, respectively.

Furthermore, [24] investigates whether undiscovered nicknames could be successfully
collected with AMT to added to existing Name Entity Lexicons. First nicknames are
gathered from AMT, by asking users to enter an Arabic nickname that they have heard,
where they heard it and their country of residence, using a variety of payments. Then
they are validated, with the help of five AMT users, three experts and a Google check.
Finally, the verified names are compared against the available list of names in the database
of Arabic names, to determine if they represent new additions to the lexicon. The goal of
this work was achieved, and extra conclusions were that increasing pay improves collection
speed and using bilingual directions and requiring typing in Arabic, participation from
Arabic speaking countries was able to be increased.

Also, [57] explored how AMT could be used to improve a MT grammar. The collecting
procedure relies on the comparison of candidate translation pairs, that are generated based
on a number of features. This approach was applied to an Urdu - to - English translation
task, where 12 features were used for characterizing each grammar rule. AMT users were
provided examples and their feedback was used to re-score grammar productions.

Paraphrasing

The following works use a very common NLP task, named “Paraphrasing”, which is
nothing else, than the recast of a phrase or a sentence, using different words but main-
taining the initial meaning.

27



3.2. CROWDSOURCING

In [15], a semi-automatic paraphrasing technique for creating additional reference
translations (English-Arabic) is presented. Paraphrases are automatically extracted from
a large parallel corpus. AMT users are shown an original phrase and its paraphrase and
are asked to answer with “yes” or “no”, if the two phrases have the same meaning or not,
respectively. Then, they are shown the original sentence and its paraphrase, and they are
asked the same question. The key idea is that the users who assign “yes” to the sentence
pair should always assign “yes” to the phrase pair. After the end of data collection, a
revised version of the task was designed, containing positive and negative controls. Result
of this research was 728 paraphrases for Arabic - English translation, that can also be used
for other tasks in MT and NLP.

One other crowdsourcing task that uses paraphrasing is [6], in which paraphrases are
used to simplify, potentially, segments of text that are difficult to translate. Paraphrases
are being obtained only for the parts that seem to be problematic for the translation
system. During the paraphrases obtaining phase, if it was impossible for AMT workers
to think of a paraphrase, they had the opportunity to mark an “Unable to paraphrase”
checkbox. Totally, from the 1780 errors, 4821 responses contained actual paraphrase data,
out of the 5340 that were collected. Next is the verification phase, in which the workers
are given an original sentence and they are asked to compare it with five alternatives. The
results show that good paraphrases of the problematic spans of translation could improve
translation performance.

Speech related tasks

One other widespread area of crowdsourcing tasks, is speech area. Famous speech
related tasks are speech acquisition, transcription, annotation as well as the assessment of
speech technology.

In [38], a photo annotation HIT was created, and AMT workers were asked to record
a spoken description of photos. This, in conjunction to a transcription task is used to
grow a spoken language interface. WAMI toolkit is used in order to provide all the
necessary plumbing to get audio from client side to a recognizer running server side. The
transcriptions in this tasks are iterative procedures, continuing with a maximum number
of five workers per utterance. In addition, photo annotation and photo search HITs were
created and workers must meet some requirements in order to work on a task. This work
proved the feasibility of analyzing a dynamic spoken language system deployed on AMT.
Growing trigram models were explored and shown that improvements can be achieved
without expert guidance.

[2] asks multiple workers to transcribe speech, and use the audio for acoustic model
adaptation. More specifically, this work’s goal is the development of a speech - to - speech
translation system for a doctor - patient interaction scenario, where both are proficient in
different languages. The AMT task requests workers to hear a set of the two languages
audio files and transcribe whatever they hear, while they had to answer some verification
and personal questions, too. The contribution of this work is the evaluation of the effect
of incorporating transcription information reliability information on the Word Error Rate
(WER) of an automatic speech recognition system with adapted acoustic models.

The study in [13] aimed to compare the outcomes of traditional and web-based percep-
tion tests in which listeners identify words in noise. During the web experiment, listeners
heard monosyllabic English words in 12 different types of noise. The performance of a
selected subset of listeners is being explored, based on subjective and objective criteria as

28



3.3. SPOKEN DIALOGUE SYSTEMS & CROWDSOURCING

well. Finally, a list with the confusions during the crowdsourcing procedure is represented.
In [17] näıve annotators are asked to provide prosodic annotation of non-native speech,

and this attempt proved to be a cost-efficient way for obtaining such data. Workers had
to reach a specific performance limit before participating in the two-phase final experi-
ment, with the second phase being the same with the first and taking place for potential
performance improvement. An additional outcome of this study is that extra training is
able to improve the performance of näıve annotators.

Annotation methods for collecting data and traditionally-collected corpora, for training
LM for speech recognizer, are compared in [35], resulting that crowdsourcing users can
be used in several aspects of a SDS’s development. A crowdsourcing task for obtaining
speech data takes place, in which, AMT workers generated potential interaction scenarios
of actual spoken interactions.

The research conducted in [22], investigates how far the performance of a of speech
recognition and full-text search can be improved by getting recognition errors corrected
through the cooperative efforts of many workers. Apart from that it demonstrates how
speech recognition can be put to use in situations where a speech corpus is almost impossi-
ble to be prepared in advance. Anonymous users are enabled to correct recognition errors,
through the PodCastle2 web service, which provides the full text of speech recognition
results, and the audio files.

Other crowdsourcing tasks

Apart from the above described types of crowdsourcing tasks, one can meet crowd-
sourcing in games, too. One example of Crowdsourcing through games is represented
in [11], where a novel data - driven approach to behavior generation for interactive robots
based on a data collection method is proposed.

Moreover, crowdsourcing is used for gathering data for the development of SDSs. The
reason why many crowdsourcing tasks related to SDS, take place is either the development
of a SDS where data are necessary to be collected, or the evaluation phase where utility
of SDS is checked. Previous works about crowdsourcing and SDS are described in the
following section.

3.3 Spoken Dialogue Systems & Crowdsourcing

The research areas of SDSs and Crowdsourcing can be combined, leading to some
interesting results. The relationship between the two areas is that the second is used
during the development procedure of the first. Specifically, when the development of a
system begins, a classic chicken-and-egg problem appears: training data are necessary
for building the system, but collecting in-domain training data needs the system. Thus,
crowdsourcing can be used for simulating the system in order to collect in-domain data.
Furthermore, data used for utility evaluation of SDSs can be gathered using crowdsourcing.

In [56] crowdsourcing is used for the collection of user judgments on SDSs through
AMT. In this study, two types of HITs were designed, the first targets to collect fast
ratings from a large number of dialogs, while the second aims at assess the reliability of
the AMT users. Additionally, a set of approval rules developed to take care of the quality
of rating from AMT. The results showed that crowdsourcing is a suitable and effective

2Podcastle is a social annotation web service that supports searching, reading and annotating.

29



3.4. GRAMMAR INDUCTION

method for collecting such data, however, AMT workers are not the real users of the SDS
and this is a main drawback. The input for the evaluation procedure transcribed from
ASR of “Let’s Go” dialog system ( [45]) and next, the dialogs were classified into five
categories, according to dialog’s characteristics. Then, the evaluation of the dialogs is
based on some questions and selection of the desired from predefined answers, and for
assurance of the quality of ratings, which impacts on the credibility of SDS evaluation, an
approval mechanism was developed.

One more study in [29] describes a framework of spoken dialogue systems and compares
the obtained results with a trial in which the systems were tested by locally recruited
users, in a controlled environment, that did a series of task in one hour. The framework
combines a telephone infrastructure used for connecting users with the dialogue systems
and a web interface for presenting tasks and collecting users’s feedback. The comparison
of the results showed that ranking between the two populations was consistent, resulting
that the use of Crowdsourcing was more efficient, because less effort and cost was needed
in contrast to the controlled test. The drawback, as in the previous described study, is
that the crowdsourcing workers are not real users of the system.

3.3.1 Comparison with this thesis work

Crowdsourcing, as it is obvious from previous work, has become an accepted method
for gathering data. Crowdsourcing’s peculiarity is that its main advantage, which is the
great diversity of people groups that participating is, also, its main disadvantage. This
happens, because humans have the tendency to cheat, whenever it is possible, especially if
anonymity is preserved. However, a number of previous works, aim to find efficient ways
of Crowdsourcing design in order to collect useful data.

The innovative element that the current work introduces, is the definition of an array
of parameters that are used during the design process, in an attempt to quantify senses
such as freedom, politeness, specificity, e.t.c.. If we manage to find a correlation between
these metrics and the quality of the workers’ responses we will be able to design tasks that
will yield higher quality corpora.

3.4 Grammar Induction

3.4.1 Introduction

The term “Grammar” is used for expressing the set of the rules that are used for
producing all the admissible compositions of words or phrases that belong to a specific
natural language. Admitting that a language has a specific structure, grammar can be
viewed as a theory of this structure ( [12]).

Speech understanding grammar is a necessary module of a SDS, used for understanding
what a human says. In this case, we need grammars that understand a specific natural
language such as English, Greek, e.t.c., and their development is difficult because of the
huge size of all possible phrases that can be used in these languages. This is one of the
reasons that SDS are used for specific domains and purposes. However, talking about
natural language understanding of a human’s input from a machine, we can never say
that we have enough grammar rules. For this reason grammar induction is a process used
for introducing new rules for an existing grammar. The grammar induction principle is
a machine learning process and an important part of natural language understanding.

30



3.4. GRAMMAR INDUCTION

Moreover, the number of rules that a grammar contains can be one of the factors that are
reliable for the performance of a SDS.

History

Etymologically, the word grammar derives from the greek phrase “γραμματική τέχνη”
which means “grammatical art”. The first grammar that was created and is still saved
today, is originated in Iron Age India, with Yaska (6th century BC ), Pãn. ini (4th century
BC ), a Sanskrit grammarian, with most famous the ASt. ādhyāȳi (“Eight Chapters”), where
the morphology rules of Sanskrit are coded up to 3959.

3.4.2 Previous work in Grammar Induction

The area of research relevant to Grammar Induction counts a plethora of works. Most
relevant to this thesis is the work presented in [31] where a data-driven approach for
grammar induction is used. The data that they used have been harvested from the Web,
and numerous filters are applied to the collected corpus, in an attempt to find the corpora
with the best performance. Finally, they reached the conclusion that unsupervised web
harvesting can be as good as manually collected corpora.

Another work is presented in [41], in which an unsupervised, iterative procedure for
inducing semantic classes was proposed. The suggested system consists of a lexical phraser,
that identifies frequently co-occurring words by applying a weighted point-wise mutual
information measure (e.g., consecutive words such as “New York” are chunked into the
entry “New York” ), a semantic generalizer, which generates rules that map words (or
previously induced classes) to semantic classes and a corpus parser. The core idea of
semantic generalizer is the distributional hypothesis of meaning. The similarity between
two words is computed according to their contextual distributions. In this work they
experimented with four different metrics: (a) Kullback-Leibler, (b) Information-radious,
(c) Manhattan-norm, and (d) Cosine similarity. A comparative study of these metrics
about automatic induction can be found in [42]. During a system iteration a metric
outputs an ordered list of pairs that is ranked according to semantic similarity. Each pair
is assumed to form a semantic class. A predefined, fixed number of top pairs are used for
the induction of semantic classes during for every system iteration. After every generation
of induction classes the module of corpus parser is run. All instances of the generated
classes are substituted in the corpus with the corresponding semantic label. It should be
noted that the class labels are artificial tags, without denoting the class concept. The
generated by the lexical phraser chunks are retained if they were assigned to an induced
class by the semantic generalizer. In 3.3 the whole process is depicted.

In addition, in [39], an algorithm for unsupervised semantic class induction which
is based on the hypothesis that similarity of context implies similarity of meaning, is
described. Two semantic similarity metrics that are variations of the cosine similarity
distance were used in order to measure the semantic distance between words and to auto-
matically generate semantic classes. The first metric computes “wide-context” similarity
between words using a “bag-of-words” model, while the second metric computes “narrow-
context” similarity using a bigram LM. A hybrid metric was proposed as the linear com-
bination of the wide and narrow-context metrics, using fixed weights, estimated over held
out data during an a priori experimental procedure.

31



3.4. GRAMMAR INDUCTION

Figure 3.3: Auto-induced semantic classes system from [41]

3.4.3 Comparison with this thesis work

The approach that is followed in [31] for grammar induction, is the same with this
that is used in this thesis. The main steps that are followed are the named entity
recognition (“Athens”), induction of semantic classes (concepts) of terminals (<CITY
>= (“Athens”,“Chania”,..)), extraction of grammar fragments (chunks e.g. “depart-
ing”<CITY >or “leaving”<CITY >) and induction of grammar rules (<DEP CITY >=
(“departing”—“leaving”)<CITY >). The basic idea is the automatic creation of clusters
that include semantically similar terminals. In more details, we depict the basic steps of
the algorithm in figure 3.4.

As we can see in figure 3.4 the algorithm used begins from a corpus, which does not
have any linguistic information, and the only hypothesis that it takes into account is that
the named entities (multi-word, e.g. New York → “New York”) are known.

Corpus −→ Similarity Computation −→ Clustering Algorithm

Figure 3.4: Grammar Induction’s algorithm basic steps

Next step is the similarity computation between all words of the corpus. In 3.4.2 we
mentioned four metrics used for similarity computation: Kullback Leibler, Information-
radious, Manhattan-norm and cosine similarity.

The Manhattan-norm (MN) metric, which is used in our approach, can be considered
as a geometric distance (it is closely related with Euclidean distance) and is, also, a true
distance metric as the term “norm” indicates. It is computed as

DMN (P‖Q) =
∑
y∈Y
| P (y)−Q(y) | (3.1)

The MN metric computes the absolute difference between the bigram conditional proba-
bilty distributions W1 and W2. Due to the absolute function the MN metric is symmetric:

DMN (P‖Q) ≡ DMN (Q‖P )

32



3.5. SUMMARY

The contextual distance between the bigram conditional probability distributions W1 and
W2 is

DR
MN (W1‖W2) ≡ DR

MN (w1, w2) =
∑

v1,R∈V
| P (v1,R | w1)− P (v1,R | w2) | (3.2)

for the right contexts. In similar manner, the distribution distance for the left context is
defined as

DL
MN (W1‖W2) ≡ DL

MN (w1, w2) =
∑

v1,L∈V
| P (v1,L | w1)− P (v1,L | w2) | (3.3)

Last, the left and right contextual distance (hence, dissimilarity) between words w1 and
w2 is calculated as

DL,R
MN (w1, w2) = DL

MN (w1, w2) + DR
MN (w1, w2) (3.4)

Each of both terms of Equation 3.4 has a lower and upper bound of zero and two, respec-
tively. Thus, two words of identical contextual distributions will have a zero value of MN
distance, while a distance score equal to 4 indicates absolute dissimilarity.

Next, the induction of semantic classes is performed by applying agglomerative clus-
tering, which is fed with the number of clusters and the pairwise semantic distances of
the words of interest, using the CLUTO toolkit ( [50]). The algorithm of agglomerative
clustering, belongs to the the realm of hierarchical clustering, and forms clusters in a
bottom-up manner. Initially each word is putted in its own cluster. Next, among all
current clusters, the two with the smallest distance are picked and replaced with a new
cluster, formed by merging the two original ones. This process is repeated until there is
only one remaining cluster.

Figure 3.5: Example of agglomerative clustering

3.5 Summary

In this chapter we introduced to the reader the three basic areas of research that this
thesis is based on. It includes a brief description of previous works and a comparison of
them with this thesis’s work. Its aim is to make the reader familiar with the state-of-the-
art, and help him comprehend the contribution of this thesis. 3

3Also used : [25], [40], [52], [26]

33



Chapter 4

Definition of Crowdsourcing tasks
& Pilot study

The first approach to this thesis’s task, consists of two phases. The first one is about
the selection of the tasks that are going to be used and their abstract design, while the
second is a pilot process for getting the necessary feedback from the users, before continuing
with the final design.

The goal of this first approach is to help designers comprehend the purpose of the tasks
and, consequently, succeed in an effective design. An effective design should provide the
users with a usable interface, and achieve its basic goal, which is the collection of useful
data from the users.

4.1 Introduction to the design of Crowdsourcing tasks

As we mentioned in 3.2 there are plenty of ways for collecting data through Crowd-
sourcing. The common characteristics among all these methods is that they should be
accompanied with the appropriate background information, in order to help users to com-
plete each task with success. According to [14] a task should minimize cost and completion
time and maximize quality. In other words, a task should be cheap, fast and good. The
payment of each task defines whether it is cheap or expensive. There is a trade-off among
the high and low payment, because tasks with low payment are completed slower, but
they do not attract contributors that want to “cheat”, and on the other hand, tasks with
high payment are completed faster, but they attract contributors that want to cheat.

Also, a crowdsourcing task has specific form that must be followed during the design.
Firstly, every crowdsourcing task has a title, which must be descriptive and attractive
to the contributors. Title and payment are the first information that contributors take
for a task before deciding to complete it, thus the more attractive these information are,
the larger the number of the contributors that want to complete it. Secondly, a task
should have instructions, for helping users to understand exactly what they have to do for
completing it with success. The instructions should provide all the necessary background
information in clear and concise way. Thirdly, the main part of the task that is used for
collecting data, must be driven of the nature of the data that we want to acquire.

Starting with the design of the tasks, we must consider a number of intermediate steps
( [14]) before ending up with the final design. First and foremost, the reason for using
Crowdsourcing e.g., what type of data we want to collect. Secondly, the way of obtaining

34



4.2. DESIGN OF CROWDSOURCING TASKS

these data. Last but not least, the way we present the tasks, including the information
that we are going to provide them. We must keep in mind, that, these tasks are intended
for humans. This makes their design more interesting and difficult at the same time,
because of the subjectivity introduced by the human element. In figure 4.1 we depict the
abstract format of each Task.

title

Instructions

HITs

Figure 4.1: Abstract format of a Crowdsourcing task

4.2 Design of Crowdsourcing tasks

Bearing in mind all we described up to now, we have to define the content of the tasks.
The data we want to collect are queries and answers that could be part of a real dialog
during the interaction of a user and a SDS about travel-flight information. Furthermore,
since a conversation for traveling with flights has a large range of concepts, it was more
feasible to focus on a low number of concepts, in order to collect enough data for each of
them.

Therefore, the tasks that were created should reflect the environment of a SDS, in
order to help users provide more realistic and useful data. When we think of a SDS, the
first that comes in mind, is the interaction between the system and the user and in table
4.1 we can see some examples of the data that we want to collect. Thus, we decided to
create Question - Answer tasks. Furthermore, since we want to collect specific parts of
travel domain, it was meaningful to create tasks, that the contributors were able to give
only a part of a sentence, according to the context that they were given. Finally, we ended
with five Crowdsourcing tasks.

The first task, whose name is “Answer the questions” is composed of questions that we
give as input, and empty fields, where humans must fill in with a suitable answer. In the
second task, “Provide questions for the given answers”, we give as input answers and ask
people to give a corresponding question. “Provide phrases with the same meaning with the
underlined”, is a paraphrasing task, where we give as input a sentence with an underlined
phrase and ask humans to give a phrase with the same meaning with the underlined. We
selected to underline only a phrase and not the whole sentence, because it is more useful,
since the workers will paraphrase only the parts of the sentence that we want to collect.
The fourth task, with name “Complete the dialogues”, is a kind of free task, where we
have a dialogue with 3 turns1 of user and system. Some of the system prompts and the
user responses are given, and people have to complete the rest, in order to conclude to
a dialogue that makes sense. In the last task, “Fill in the empty fields with the most
appropriate word(s)”, we give a sentence with a missing part and people have to fill in

1Each turn consist of a system prompt and a user response

35



4.2. DESIGN OF CROWDSOURCING TASKS

this part. For the next document we are referring to the tasks described above with the
following names: “Answers”, “Prompts”, “Paraphrasing”, “Free Dialogs” and “Fill in”
respectively. Figure 4.2 depicts an example for each task, where the users must put their
response in the empty boxes.

Examples of data that we want to collect

SYSTEM: And What Day In May Did You Want To Travel?
SYSTEM: Traveling On What Date?
SYSTEM: And You Said Returning On May Fifteenth?

USER: Okay I Need To Be There For A Meeting
That’s From The Twelfth To The Fifteenth

USER: Leaving On February The Second
USER: Yeah At The End Of The Day

Table 4.1: Examples of System Prompts and User Responses

Question: How may I help you?
Answer:

Answers

Answer: I want to book a flight.
Question:

Prompts

Sentence: I want to depart on Sunday.

Sentence: I want to depart .
Paraphrasing

System: Welcome to Air Travel System.
User:

System:
User:

System: This date is not available
User:

Free Dialogs

Sentence: I want to depart on .
Fill in

Figure 4.2: The form of the tasks that were designed

36



4.3. PILOT PROCESS

Parts of Grammar that we focus on

As we have already mention, we should apply our approach to a whole grammar about
travel domain, but this is not feasible with one crowdsourcing procedure. The parts of the
grammar that were selected are Date rules, Departure-city rules and top-level Prompts
(at the beginning of the dialog). Date rules are used for expressing the possible ways that
someone can describe a date. Departure-city rules, are used for describing the possible
ways that someone can express the city that he is departing from. In Table 4.2 we
represent a part of the grammar Date and Departure-city and in Table 4.3 some top-level
prompts and the corresponding user-responses.

Examples of grammar rules

<DATE> [“ON”/“ON THE”/“ON A”]<day><month >[<year>]

<DEPAR.CITY> <attribute departcity>“IS”<CITY>

Table 4.2: Examples of grammar rules about date and departure city

System prompts and corresponding user responses

Hello! this is Air Travel system, how may I help you?
Welcome to Air Travel system!Please give me your trip information.
Welcome to Air Travel system!Where would you like to fly to?

Hello I would like to make a reservation I’d like to leave Sunday.
February eighth and I would like a round trip to Dulles.
I’d like to fly to Seattle.

Table 4.3: Examples of Top-level prompts and corresponding responses

4.3 Pilot process

Before launching the on-line crowdsourcing process, and since we had no previous
experience, it was necessary to begin the implementation phase with a pilot process. The
feasibility of this process is that errors or ambiguous parts of the design can be detected
and be corrected. Also, one outcome of this process is a dataset that can be used for
applying several metrics, and be prepared when the final corpus will be collected.

4.3.1 Method

The pilot process was nothing else than an internal Crowdsourcing experiment that
took place in Technical University of Crete. The participants were sixteen undergraduate
and graduate students, with one of them being an expert user of English language(resident
of England). Most of them were coming to the lab and were given sheet of papers with
the tasks. They had as time as they needed for completing all five tasks and the order
that they were given the tasks was random. The initial intention was to explain them the

37



4.3. PILOT PROCESS

Crowdsourcing process, and then let them complete the tasks without extra help, but, in
some cases they were given a help clue, if they were really confused with the task. This,
introduces a kind of discrepancy among the pilot and the real experiment, but the main
purpose of the pilot was the evaluation from the users, and as a result this is not a big
problem. The users except from the answers that they were requested to give, they also
had to write down comments about the fuzzy parts or proposals for improvement.

4.3.2 Analysis of collected data

When the data collection phase of the pilot was over, we continued with the analysis of
the dataset that had been collected. At first glance, we observed that the data that were
collected from each task had some special characteristics. More specifically, it is worth to
refer that in the “Paraphrasing” task the data that we collect depend completely from the
data that we give as input, while with the “Free Dialogs” task we can collect data from
various dialog parts. Next, we forwarded with the analysis of these data.

The main purpose of this analysis is to find out whether we achieved our goal, collecting
utterances relevant to travel-flight domain and belong to specific dialog parts. Thus, we
continued with an automatic evaluation which includes relevance metrics and a manual
analysis that has the role of an authentication metric for being sure that the automatic
analysis works correctly.

Corpora

The data we collected were organized into various corpora. The classification that we
used was one corpus per task. As we observe from table 4.4 the corpora are too small, to
do further classification, since we will not have enough data for extracting conclusions.

Corpus Words Sentences

Answers 716 127
Prompts 911 128
Paraphrasing 2119 236
Free Dialogs 3464 489
Fill in 1415 160

Table 4.4: Corpora that created after pilot process

The corpora have different size from each other and this happens because we designed
different number of questions in each task. We decided to do so, because the tasks belong
to different difficulty levels and we wanted to normalize this dissimilarity. We followed
an approximate design in which we wanted to achieve a ratio of the time reading the
instructions to completing the task(acquisition and execution time respectively) almost
0.1. This ratio means that the users spend the most of their time for completing the task,
and not learning how to do it. Since we want to create “fast” tasks, the instructions should
be proportional to task’s difficulty and help users understand with clear and concise way
what they have to do. Remember from 2.1 that a unit with acquisition time around 2
seconds has execution time around 20 seconds.

During the pilot process we collected these time measurements per user and we calcu-
lated the above ratio, whose value inform us how time-consuming was each task for the

38



4.3. PILOT PROCESS

users. Tasks with ratio bigger than 0.1 were less time-consuming than tasks with ratio
smaller than 0.1. We calculated the average for all users and we list the results in table
4.5 and the conclusions that we extract is that tasks “Answers”, “Prompts” and “Para-
phrasing”, which are close to 0.1. On the other hand, the “Free dialogs” task was the most
time consuming, thus the number of dialogs in the task should be smaller. In contrast to
the “Free dialogs”, the “Fill in” task was the less time consuming, and according to the
ratio, the users could bear almost the double number of HITs.

Task Ratio

Answers
0.12

Prompts
Paraphrasing 0.09
Free Dialogs 0.06
Fill in 0.22

Table 4.5: Ratio of reading instructions time to task completion time

Relevance metrics

The purpose of relevance metrics is to help us find out how relevant the gathered data
are with travel-flight domain. One of the relevance metrics is a parser’s success percentage.

We parsed the corpora created from each task, and we list the success percentages in
table 4.6. We want the success percentage to be the highest possible, because this means
that the data we collected, can be produced from parser’s grammar. As a result, the data
we collected are relevant to travel-flight domain.

Next, we used another metric, in order to find out how many from the sentences that
were parsed, were about the grammar parts that we are interested in, in this case Date,
Departure-city and prompts. The implementation of this metric takes as input the output
of the parser that contains the parser tree of each sentence of the corpus that was parsed
and finds how many of them were about the grammar parts that we focus on.

In manual evaluation, we examined all the answers that pilot participants provide us
and we rejected some of the answers. Then we counted all the answers that were about
Date or Departure-city or Prompts. It is the same metric with the previous one, with the
deference that in this case the process is done manually. The results with manual and
automatic evaluation have a divergence, because, the assumptions that were taken in the
two cases were different. For example, in the automatic analysis it is not possible to find
out if a prompt is top level. Also, the automatic analysis introduces errors in contrast to
the manual.

From table 4.6 we observe that all the tasks collected in domain data. Also, the Date-
Depar.city-Prompts metric provide a clue about the success of each task. It is obvious
that the “Prompts” task has greater success collecting data that belong to specific parts of
the grammar, possibly, because this task collects prompts. Also, the “Free dialogs” task
produce the smallest percentage of utterances about the grammar parts that we want.
The same happens to the “Answers” task, because users have the freedom to provide any
utterance they think that is a logical answer, in contrast to the “Paraphrasing” and the
“Fill in” task in which users’ answers are restricted from the parts of the answers that are
already given.

39



4.3. PILOT PROCESS

Task Parser Success %
Sentences about Date-
Depar.city-Prompts%

(Manually)

Sentences about Date-
Depar.city-Prompts%

(Automatically)

Answers 89
70

76
Prompts 95 89
Paraphrasing 96 91 83
Free Dialogs 87 37 66
Fill in 99 75 86

Table 4.6: Relevance metrics for the data collected from pilot

Next, we measured in-domain success with a more specific way for each task. We
separated the questions from which we expected to get answers about date and measured
how many of the answers were date. We did the same for Departure-city and Prompts.
The results are shown in table 4.7. This metric quantifies the success of task’s design.

Task Date % Depar.city Top-level Prompts %

Answers 70 54 25
Prompts n.a n.a 52
Paraphrasing 83 62 81
Free Dialogs n.a n.a n.a
Fill in 56 44 63

Table 4.7: Design success metric for the data collected from pilot

We have to mention that in the “Prompts” task we have no results for Date and
Departure-city. The reason is because with this task we only collect prompts. Furthermore,
this metric cannot defined for the “Free dialogs” task, due the free form of the task. We
have satisfactorily success percentages, and this means that the design of the tasks is good
enough to give as answers in the domain that we want. As we observe, the “Paraphrasing”
task has the greater in-domain percentages, and this happens because in this task we show
to the users what we want type of data we want to collect.

Language richness metrics

Next step in data analysis, was perplexity metric. Perplexity inform us how well a
language model matches to a test corpus and how rich (linguistically) is. Thus, it can be
used as a language richness measure, expressing how “interesting” an utterance is.

When the perplexity value is low, the sentence is close to the language model, and
consequently, this sentence, doesn’t appear extra interest, since, it doesn’t provide new
information.

Perplexity is computed per sentence, so maximum and minimum perplexity belongs
to a sentence, average perplexity is computed over all the sentences (a mean value) and
total perplexity is computed from the toolkit over all sentences of the test set.

In tables 4.8, 4.9 we list perplexity statistics for unigram and bigram LMs. Note
that maximum, minimum and mean perplexity is calculated per sentence, while total

40



4.4. CONCLUSIONS

perplexity is calculated per corpus. We observe that bigram LM has lower perplexity than
unigram LM, because it takes into account pairs of words which is an closer approximation
to language. Thinking with the same way, bigger N-grams are expected to have lower
perplexity.

High perplexity introduces suspicions for OOD, and this can be verified by examining
mean and median perplexity, because mean metric is sensitive to the outliers. For example,
in “Prompts”, for the bigram LM, median metric is almost the 1/4 of the corresponding
mean metric.

Corpus Maximum Minimum Mean Median Total

Answers 2585 7.2 363.8 265 276.4
Prompts 8659 50.1 475.1 309 338.9
Paraphrasing 2205 37.8 397.1 261 296.5
Free Dialogs 3790 7.2 384.9 266 322.5
Fill in 1426 51.06 355.4 224 256.8

Table 4.8: Perplexity statistics for the various tasks using unigram LM

Corpus Maximum Minimum Mean Median Total

Answers 9804 5.6 426.1 103 118.5
Prompts 25035 6.8 474.5 97 111.1
Paraphrasing 10882 6.0 561.6 116 113.7
Free Dialogs 10794 4.6 410.8 110 130.5
Fill in 6071 5.5 654.3 86 122.9

Table 4.9: Perplexity statistics for the various tasks using bigram LM

4.4 Conclusions

The pilot process can be characterized as a successful experiment since we collected
numerous comments. Most users found the “Free Dialogs” task the most difficult and time
consuming, in contrast to the“Fill in” task. The majority of the participants found the
“Free Dialogs” task the most difficult among all the others, due to the many things that
they had to write and the creation of large dialogs. One more difficulty, was that they
had to think both from system’s and user’s side, and in some cases they had not only to
provide answers or prompts, but also to create the concept of the dialog. The difficulty
becomes higher counting in the need of imagination and the freedom that they were given
in this task. Besides, one major problem is that if users have the ability, they write the
same dialog turns. This problem can be solved be reducing the freedom that we allow
to the users to have. On the other hand, the “Fill in” task, was the easiest for the most
users, because it requires short answers and more specifically, only a part of a sentence.
The rest tasks were almost in the same level of difficulty.

Moreover, the participants gave us some very helpful comments about fuzzy parts of the
tasks and they were used for creating more useful and specific instructions. Furthermore,
we observed, (by examining the answers, and without quantified this observation in some

41



4.5. SUMMARY

way) that the users were influenced from the answers that they had already seen, and
they could not give enough variety. One additional problem, that shows the need of better
instructions, was that they were given some answers relative to travel domain, but out of
flight domain. However, the biggest drawback of the pilot process was that the majority
of the participants are not expert users of English language.

By examining all the results, the appearance of trade - off, relevant to the freedom
that we allow the users to have is obvious. More specifically, we notice tasks with almost
the same behavior, had as a common characteristic the freedom that users were allowed
to have. With the sense freedom, we mean the information that we give to the users in a
HIT. When we give enough information the freedom of the task is low, because we restrict
the possible answers that a user can give, in contrast to the tasks with high freedom, where
the HITs have not enough information.

In both cases the data that we collect have advantages and disadvantages. When we
give freedom to the users we get some interesting responses, but also many duplicates,
because the users prefer to complete the task with the less possible effort. On the other
hand, when we do not give freedom we get some “boring” responses, that don’t contain
some new information, but we do not have duplicates. In an attempt to design a task
in which the advantages will predominate over disadvantages, we should find a middle
ground, to the freedom that we allow in each task. So, in the final design, we have to
experiment with the information that we give in each task.

To sum up, the pilot results show that with low freedom we collect accurate data,
but with high freedom we collect more “interesting” data but OOD as well. However, we
can’t be sure, because of two drawbacks of the pilot process. The first is that the users
were not native users of English and this means that they can’t think variety of ways
of expressing their selves. The second is that it was not a representative experiment of
Crowdsourcing, due the method that we followed and because the users hadn’t the the
motivation of payment and, definitely, their motivation was in every aspect different than
this of the Crowdsourcing workers.

4.5 Summary

In this chapter we analyzed the first steps of our work, including decisions about the
design and the metrics of the analysis. The feedback from the pilot participants was the
main aim of this first approach. Also, we collected data that we analyzed in respect to
several metrics and this gave us an experience that we are going to use in the final design.

42



Chapter 5

Design

The next step of this thesis, is the re-design of the Crowdsourcing tasks. The re-design
includes changes to the UI and the generation of the sentences that will be provided in
each task and in each HIT.

5.1 User Interface

The UI is one of the most important parts of the Crowdsourcing tasks. The con-
tributors (Crowdsourcing workers) interact with the system through the UI, and more
specifically, the answers they submit are the data we collect. A usable UI not only makes
the interaction of the system and the contributors easier, but also guides them to provide
effective answers, and consequently, useful data. Thus, UI largely defines the success of
the task.

The UI of the tasks can be divided into three branches:

1. The title part, which is very important, because it is the first information that a
contributor gets about the task. The title should attract the contributors, in order
to make them select it among numerous other tasks. Designing a usable task with a
nasty title, should be avoided. Exaggerations must be avoided, as well.

2. The instructions part, is, maybe, the boring part of the task from the side of contrib-
utors, but, also, the most important for helping them learn the steps they have to
follow in order to complete it with success. For these reasons, instructions must be
brief but comprehensive, providing all the necessary information to the contributors
in the less possible time. Instructions’s purpose is to help contributors overtake the
disambiguation points of the HIT.

3. HIT design is the main UI of the Crowdsourcing tasks. There is not guarantee
that the instructions will be read, so the UI of the HIT should guide contributors
to provide “correct” answers. Also, it should not contain unnecessary information,
because this confuses the contributors.

The UI of the Crowdsourcing tasks

For each one of the Crowdsourcing tasks, we selected a title, which expresses the main
purpose of the task with the lowest possible number of words.

43



5.2. DESIGN OF THE QUESTIONS

The instructions we created were in the same style for all the tasks. We divided the
information into bullets, because it is easier for the contributors to read them, in contrast
to make them read the same information represented in one paragraph. Also, we classified
instructions’ content into small sections that make contributors act with a specific way,
and we assigned one representative title to each of them, in the form of a prompt, for
creating an environment characterized of immediacy, giving to the users the sense of an
interactive system (e.g. “What to do”, “What to avoid”). Also, for giving extra emphasis
and attracting users’ attention we used a coding technique based on colors. Humans are
used to correlate the colors with behaviors. More specifically, green gives a good impression
while red gives a bad impression. So, we used red, for the behavior that the contributors
should avoid and green for the behavior that contributors should adopt. Furthermore, for
the important parts of the instructions, that we wanted to be read, definitely, we increased
font size, in contrast to the extra information that were clues for awesome answers.

The HIT design was different for each task, however, some characteristics were common
for all of them. We tried to design tasks familiar to the contributors, giving the sense of a
SDS even if there is not voice interaction. First of all, we wanted to be conspicuous to the
contributors that the HITs (units) were independent of each other. For this reason, we
inserted a delimiter in each task, according to the unit type, which denotes that a new unit
begins. The unit types are: answer-question pairs, sentences and dialogs. Also, empty
fields were part of the UI, used for the contributors’ responses, with a default instruction
inside them, about what they should add into these fields (e.g. “Enter here a system
prompt”).

More specifically, in both tasks “Answers” and “Prompts”, we provide first the question
and next the answer, because for getting an answer one question must have been preceded.
In paraphrasing task, we underline the phrase that we want to be paraphrased, and the
same sentence is represented, with an empty field in the place of the underlined phrase.
In “Free Dialogs”, we represent in each dialog turn whether it comes from the system or
the user side, and finally “Fill in” task consists only of one sentence with a missing part,
represented with an empty field, that the contributor must fill in.

In Appendix C we show the titles and the UI of the tasks, as they uploaded to Crowd-
flower.

5.2 Design of the questions

The units design, including the questions and the piece of information that we are going
to provide to the contributors is equally important with the UI design. The information
that contains each unit, and especially the content of the questions, determines the quality
of the data that we are going to acquire. Thus, we have to find out what is “this” that
the input sentences have, and its change could increase or decrease the quality of the data
that we collect. Still, we have to think how we can quantify it, in order to create an array
of parameters, for each input sentence, per task, and then we have to find a correlation
among the quality of the collected data and the parameter values.

5.2.1 Parameter definition

The tasks we designed try to achieve the same goal -collect data that belong to specific
grammar parts- with different ways from each other. This means that some characteristics

44



5.2. DESIGN OF THE QUESTIONS

are common for all, while some others vary analogous the task. In essence, launching
the parameters definition, for the input sentences, means that the first we must do, is to
examine carefully the available information. Next, we take into account that each sentence
that we provide as input into a unit:

1. Could be used during an interaction between a user and a SDS.

2. Has a defined length.

3. Is expressed more or less politely.

4. Is assigned into different parts of a dialog.

5. Expresses one or numerous concepts.

Furthermore, in some tasks we can experiment with the piece of information we provide
to the units. For example, in “Free dialogs”, we can make a unit free by decreasing
the number of system prompts or user responses that we provide in each unit (as input
sentences). In general, the less information we provide in each unit, the higher the freedom
of the unit, and vice versa. Thus, the characteristics of the units (and in most cases of
the input sentences) that determine the freedom of the units, can be expressed with the
use of various parameters.

Except from the freedom of each unit, as discussed in the previous chapter, we reached
the conclusion that each task allows more or less freedom to the contributors. In table
5.1 we list the tasks with decreasing freedom order.~wwwwwwwww

High Freedom Task
Free Dialogs
Answers - Prompts
Fill in

Low Freedom Paraphrasing

x
Table 5.1: Crowdsourcing tasks in decreasing freedom order

Parameters defined for all tasks

The common, for all tasks, parameters are about the content of the sentence, in con-
trast to the parameters that are defined only for a subset of the tasks, and depend on the
form of the task and the freedom that it allows to the contributors.

� Question Specificity : Qs and its values are the layers of the question. Big value
means big specificity and value 0 means no specificity.

Qs = x : x ∈ S = {0, 1, ...., n} , n = max {levels} , levels ∈ Z (5.1)

Where the levels are defined according to the dialog part that a sentence belongs to (For
our design n was 4 ). Assuming that in the beginning of the dialog we ask more abstract
information and the specificity increases as the dialog is being continued, we express this

45



5.2. DESIGN OF THE QUESTIONS

information, with Qs parameter, where the value increases with the specificity. An example
of the level layers and representative sentences is depicted in figure 5.1.

What can I do for you? LEVEL 0

When do you want to travel? LEVEL 1

What date do you want to travel? LEVEL 2

Give me the day and month you want to travel.
LEVEL 3

Give me the month and year you want to travel.

Give me the day you want to travel.
LEVEL 4

Give me the month you want to travel.

Figure 5.1: Example of sentences in various levels

2

� Question Length : Ql its values are numbers of words of each sentence.

Ql = x : x ∈ S = {1, ...., n} , n ∈ Z (5.2)

2

� Number Of Concepts : Noc and its values are the numbers of concepts that are
expressed in each sentence.

Noc =


0 defined for “free dialogues”†
1 if one concept is expressed
2 if two concepts are expressed
10 if more than three concepts are expressed

(5.3)

Give me the date and the time you want to travel Noc = 2

I want to fly to Athens Noc = 1

I want to fly to Athens on Monday afternoon Noc = 10

This is AirTravel system. How may I help you? Noc = 10

Figure 5.2: Example of sentences in various Noc values

In figure 5.2 we can see some examples of sentences with various Noc values. Note that
Noc takes the value ten, both in third and fourth example. In the first case, the sentence
contains three concepts, but in the second case the sentence is a (top-level) system prompt.
For reasons of fairness, when we assign values to the parameters, and we meet a system
prompt, we think of a logical user response that could be an answer to the prompt and
then we assign the value to the parameter according to this response. In fourth sentence,
the value of Noc is 10 because, this prompt is too free to define what we are expecting to
get as response.
† In “Free dialogues” separating the dialogues into pairs of question and answer, if the
sentence is not given, Noc value is 0 and the same value have the rest parameters.

2

46



5.2. DESIGN OF THE QUESTIONS

� Question Politeness : Qp and its values are numbers among 0 and 5 that express the
politeness of the sentence.

Qp = x : x ∈ S = [0, 5] (5.4)

Where we can assign the cases of low, medium and high politeness to the values (0,1),
(2,3) and (4,5) respectively. 2

Parameters defined for a subset of the tasks

� Question paraphrase’s length : Qpl and its values are the numbers of words, that
the phrase we ask to be paraphrased in each sentence, contains. This parameter is defined
only for the “Paraphrasing” task.

Ql = x : x ∈ S = {1, ...., n} , n ∈ Z (5.5)

2

� Question’s empty field position : Qep and its values are the positions of the empty
field in the sentence. In the case of “Paraphrasing” task, expresses the position of the
underline phrase and in the case of the “Fill in” task, the position of the missing part of
the sentence. This parameter is not defined for the rest tasks.

Qep =


“left” if the empty field is in the beginning of the sentence
“right” if the empty field is in the end of the sentence
“center” if the empty field is between two phrases

(5.6)

2

� Dialogue’s Freedom : Df and it is defined only for the “Free dialogues” tasks. In
essence, expresses the freedom that we allow to the contributors in each dialogue.

Df =
emptyfields
totalfields

· 100 (5.7)

Where totalfields is the total number of fields in each dialog, and emptyfields is the number
of fields that contributors have to fill in. In our design totalfields is always 6, thus this
parameter takes specific values because we can provide from zero up to five dialogue fields.
Thus the possible values are {100, 83.3, 66.6, 50, 33.3, 16.6}. 2

To sum up, we depict in the next table, the parameters that are defined for each task.

Task
Parameter

Qs Ql Noc Qp Qpl Qep Df

Answers X X X X
Prompts X X X X

Paraphrasing X X X X X X
Free dialogues X X X X X

Fill in X X X X X

Table 5.2: Tasks with their parameters

47



5.2. DESIGN OF THE QUESTIONS

5.2.2 Sentences generation

In this section we analyze the process of designing a plethora of questions based on
the data that are relevant to travel - flight domain and the parameters that we described
in the previous section. In essence, we discuss how we think that each parameter can be
used for providing data with the best possible quality and we explain the choices we made.

The “Grammar domains” that the collected data should belong to

The “Grammar domains” that the collected data should belong to, are Date and
Departure-city, as well as, top level prompts. Thus, we have to define the number of
questions that target to each of them. We list the design percentages (calculated after
defining for each sentence its target grammar domain) in table 6.9, and as we observe,
the grammar domain can be defined for all the tasks except from the “Free dialogues”
because it is too free. All the questions of the “Prompts” task, as it is obvious, target
to collect prompts, and all the questions of the “Answers” task target to collect user
responses, thus half of them target to Date and the rest of them target to Departure - city.
In the “Paraphrasing” and the “Fill in” tasks, we design only a low number of questions
that target to prompts. We took this decision, because we wanted the majority of the
data that we were going collect, to be used for grammar induction and the prompts are
not suitable for this purpose.

Connection of parameters and questions

Next, we designed a number of sentences, system prompts and user responses, aiming
to collect answers that belong to the target grammar parts. The inspiration for the these
sentences were corpora collected with various ways from SDSs. (From “Human to human”
interaction, “Human to system”, “Wizard of Oz”, “Question - Answers”). We list these
questions in appendix A).

Next, we connected the initial questions with the parameters. First, we assigned values
to the parameters in each sentence and then we created four new sentences keeping some
parameter values the same and changing some others (This is not always possible, because
some parameters aren’t independent of each other). Totally we created 375 sentences and
40 dialogs.

The generation of the questions was done manually, and during this process we make
some choices, trying to reach an effective design.

Using the parameters

The various values of each parameter have different affect on each sentence. Dividing
the sentences to each parameter value uniformly, could be a way of using the parameters.
However, we decided to follow an other technique, and more specifically, to create more
questions with the values that will lead contributors to provide more effective data. The
key idea behind this technique, is to try handle the freedom that we allow users to have
in each unit. We believe that the contributors could give more effective answers when the
freedom of the unit is neither too high, nor too low. The problem of high freedom is the
collection of OOD utterances and the problem of low freedom is the collection of trivial
utterances that don’t carry new information. More specifically:

48



5.2. DESIGN OF THE QUESTIONS

· Low values of Qs allow more freedom to the contributors. The more specific the
question that we ask a contributor, the more the restriction that we introduce. Thus
we prefer to design sentences with neither low nor high values.

· In the case of the “Prompts” task, the distribution of Qs changes, because, one
characteristic of top-level prompts is that they have general concept, which means
low specificity. Thus, the number of questions decreases with the increase of Qs
value.

· For Ql parameter, we try to keep a uniform distribution, avoiding very large or
low number of words. We can’t tell with certainty if questions with large number
of words lead to answers with low or high information, because both scenarios are
possible.

· The most preffered value of Noc is 1, because, using this means that we ask contrib-
utors to focus on a specific concept. This will lead contributors to provide answers
that belong to a specific grammar rule with bigger probability.

· Furthermore, we avoid creating very polite or very rude questions, because this is
more realistic for a SDS. Thus, the Qp values we prefer are 2 and 3. In theory, we
expect from questions with high Qp to give answers expressed in formal way, due to
the positive inspiration and questions with low Qp to give more straight and sharp
responses.

· In a sentence with high Qpl parameter the contributors have to paraphrase a large
phrase. Paraphrasing the important part of the sentence, which in this case, is the
phrase that expresses either the date or the Departure - city is enough. As a result,
it is satisfactory to avoid paraphrasing phrases with large number of words.

· We can change the Qep value according to the kind of answer that we want to
collect. For example if we want to collect a greeting of the System, the most usual
position is left. If we want to collect data about Departure - city, we prefer “left”
and maybe we should give a city/country name. eg ”.......... is/to London”. This
will drive users to give in domain data with various ways. Also, we should contain
both “is” and “to”, for getting results in passive and energetic voice. On the other
hand, if we want to collect data about date “right” maybe is a better choice. eg:
“Departure date is......” or “I would like to travel (on)...”.

· Parameter Df expresses the freedom that we allow contributors in each dialogue.
Freedom is defined from the system prompts or the user responses that we provide
in each dialogue, so, the more utterances we provide the less free the dialog is. We
don’t want to end up with an answer-question task, thus we prefer to provide the
less possible utterances in order to avoid cheating and collect useful data.

In appendix B we depict the histograms of the parameters distributions, as we used them
in the design stage, and in table 5.3 we list the parameter values according to the freedom
that allow to contributors.

49



5.3. SUMMARY

Freedom category Qs Ql Noc Df

Low Freedom 3,4 >13 2 33.3
Medium Freedom 2 >6&<=12 1 50, 66.6

High Freedom 0,1 <=6 0,10 83.3

Table 5.3: Assignment of parameter values to a freedom category

5.3 Summary

In this chapter we analyzed the process of the final design. We tried to quantify with
numerous parameters, the basic characteristics of the sentences, we provide in each unit,
that influence the quality of the data the we collect. Key point during the design is the
freedom that we allow to the contributors, due to the trade - off we observed from the
pilot study. A free design leads to the collection of useful data, with large diversity, but
allows cheating behaviors as well. On the other hand a less free design, makes cheating
behavior less possible, but the data collected lack diversity.

50



Chapter 6

Data Collection and Data Analysis

Up to the previous chapter, we have completed all the necessary processes for launching
the data collection through Crowdsourcing. In this chapter we analyze the final step; the
upload of the sentences we generated and the gathering process.

6.1 Collection process

The data we collect are the answers that the contributors submit during the task
completion. At this point we must remind that contributors submit pages, and each page
contains a number of units. The number of the units per page, was selected keeping in
mind two key clues: the ratio of acquisition and execution time (which had to be around
0.1 ) and, the fact that we want contributors to provide high variety, and this means
that we wanted to allow the less possible influence from the provided units. The mixture
of these lead us to allow 5 units per page for the “Answers”, the “Prompts” and the
“Paraphrasing” task, 7 units per page for the “Fill in” task and 2 units per page for the
“Free Dialogues” task.

The uploading process, as well as, some issues regarding Crowdflower are discussed in
appendix C. The major problem that we have to face, is that we can’t use the quality
control system that Crowdflower provides. As we have already mention in previous chap-
ter, Crowdflower uses “gold standard data” and in brief, the way it works is the following:
Except from the questions we upload, we upload a few more with all the possible right
answers. Then, in each page appears one of the gold questions, and the contributor is not
allowed to continue unless he answers it correctly.

When a contributor selects a Job, he completes it in pages for a reward of some cents,
and there is not restriction to the answers. Thus we can characterize the Jobs free enough
to collect both useful and useless data. In total, 250 Crowdsourcing Jobs were ordered, 50
for each task, with total cost $454.07 and data collection began on 13-04-2013 and ended
on 27-04-2013 (not equal data collection each day).

In the case of NLP tasks, the contributors are called to create sentences, thus it is
impossible to find all the possible right answers, due to the numerous permutations. This
inserts an important problem, because there is not quality control for the data that con-
tributors provide but simultaneously it is a challenge, since we have to think of alternative
ways that could work as quality control. Finally, we ended up with two alternative meth-
ods: Crowdflower’s flagging mechanism and Crowdflower’s additional information, that
were combined for achieving the best possible outcome.

51



6.1. COLLECTION PROCESS

Flagging mechanism

In Crowdflower, the requesters can monitor the answers the contributors provide, as
soon as, one page is completed. Thus, if the answers are not what we are looking for, we
can use the flagging mechanism, with which we denote the reason why the contributor
flagged and we prevent him from completing other Jobs uploaded from us. The drawback
is that the answers that he already provided can’t be erased, and one more is that requires
the monitoring all the active Jobs, as soon as, the pages are being completed. The benefit
is that when a cheater is detected he is not allowed to complete other pages of the Jobs.

Additional information

Crowdflower has many options, that we try to take in advance for creating an alterna-
tive method for quality control. The main difference is that using additional information,
in essence, we try to decrease the possibility of cheating, and not to reject answers from
cheaters. We used the following additional information.

1. According to [14] payment, takes important role for the task completion time.
When we want a task to be completed fast, we should provide a high payment to
the workers. During our first uploading attempt we payed $0.21 for the “Answers”,
$0.23 for the “Prompts”,$0.22 for the “Paraphrasing” and the “Fill in” and $0.33
for the “Free Dialogues” task. The truth is that the completion time was extremely
low, but the data were not the expected. More than 50% of the acquired data was
irrelevant data and copy paste. Thus, the first that we thought was to decrease the
payment to the half for attracting fewer cheaters. The data we collected with this
payment had less irrelevant data, while the time was still low. We continued with
experiments and we ended up with a payment at around $0.06 per page. The final
conclusion is that with the low payment we collected better quality data than we
did with high payment. The data were collected fast enough, and with less cost.

2. Acquiring the first data we realized that cheaters were not stopping submitting pages
and as a result we were collecting more and more irrelevant data. Hence, we decided
to use the Crowdflower’s option for fixing the maximum number of submitting
pages per task to 2. We decided so, because we have two possible scenarios to
handle: either a cheater or a trusted worker submits a task. In the case of the
trusted worker, we have the drawback that he can’t provide more useful data and in
the case of the cheater the benefit of preventing him from providing garbage. The
cheater completes faster and more units instead of the trusted worker, so avoiding
cheater’s data is more important and this is the reason why we selected 2 pages.

3. The research that was done in [46], showed that the crowdsourcing workers that
come from India found AMT money necessary to make basic ends meet in much
higher percentage than Americans and the majority’s annual income was less than
$10000. Workers that depend on Crowdsourcing money, usually want to collect the
more possible, completing a large number of tasks in few hours. This could be a good
reason for cheating and as a result we selected to Exclude India from participating
in our tasks.

4. In addition, after examining the information of the first data we gathered, we noticed
that contributors from some crowdsourcing channels, were providing garbage, while

52



6.2. DATA ANALYSIS

contributors from other channels were providing useful data. This observation lead
us to exclude crowdsourcing channels that their contributors were not providing
useful data. An extra experiment was to allow the jobs only to the channel from
which we collected the most useful data, AMT in our case. The problem was that the
frequency of submitting tasks was very low, and some of these jobs never completed,
and was the reason why we used and other channels except from AMT.

5. One extra strategy that we tried from preventing users from cheating was to put
warnings into the instructions. We based on the assumptions that some of the
workers that have the intention to cheat will not do it if they be warned about
the consequences. We selected to give emphasis on the warning for two reasons,
first, for attracting the contributors’ attention and second for giving the sense to the
contributors that this is really important and they should not ignore it.

The above were done experimentally, according to the data we were collecteing. Finally,
from the data we collected we created five corpora, one per task, and one with their union,
whose size we list in table 6.1. We have to mention that the corpora created from the
“Answers”, the “Prompts” and the “Free Dialogues” task, consist of data exclusively
created from contributors, while in the rest tasks, the entries of the corpora are a mixture
of data inserted from contributors and input sentences. In these tasks in contrast to the
previous, contributors insert only a phrase that is a part of a sentence, so the entry in the
corpus is the sentence that is being created from the part provided to the contributors
and the part provided from the contributors.

Corpus Words Sentences

Answers 16339 3435
Prompts 21721 3515
Paraphrasing 41108 4803
Free Dialogs 41500 7543
Fill in 62775 5996
Total 189443 25289

Table 6.1: Corpora that created from Crowdsourcing

6.2 Data analysis

Goal of data analysis is to find out whether the design of the Crowdsourcing tasks was
effective. An effective design leads to the collection of useful for grammar induction data.
For the data analysis we use various metrics and numerous corpora. We create corpora
according to the parameter values, the grammar domains that we focus on and the filters.
Then we observe for which of the corpora better performance is achieved.

6.2.1 Filters

In an attempt to improve the quality of the total corpus that we collected, we used
two filters. The first filter is the removing of irrelevant data (garbage: sentences that
created from words with random characters) and it is applied to the corpus manually. The

53



6.2. DATA ANALYSIS

second filter includes the automatic removing of the answers that were provided by flagged
contributors.

We parsed the corpora before and after the filters, in order to get an idea about the
filters’ influence on the corpora, and we list the results for the total corpus in table 6.2. In
table 6.3 we list the tasks with decreasing freedom order, the percentages of answers that
came from flagged contributors and the percentages of irrelevant data (garbage). Note
that, providing irrelevant to travel - flight domain answers or copy - paste answers are the
reasons for flagging users. Thus, garbage filter implies flag filter.

Corpus Size(lines) Parser Success %

Initial 25289 86
After Garbage filter 23620 90

After Flag filter 20745 91

Table 6.2: Comparison of the corpus we collected and the corpora created after filtering

Task
Size before
filters(lines)

Parcer success
before filters %

Answers from
flagged users %

Garbage %

Free Dialog 7540 78 18 9.7

Answers - Prompts 3453, 3515 83, 80 18, 22 3.9, 6.2

Fill in 5996 96 15 5.6

Paraphrasing 4803 94 19 4.9

Table 6.3: Parser success and percentages of garbage data and answers from flagged users

From the above tables, we observe that the filters increase the parser success. However,
the difference is low, especially among the corpora created from the filters. Thus, in the
analysis that follows, only the flag filter is used, since it is automatic. However, the parser
success is high enough to say that the majority of the data we collected was relevant to
travel - flight domain. In addition, we note that, the higher the freedom, the lower the
parser success. This happens because the contributors can’t always handle the freedom
that they are allowed in order to provide useful data. Therefore, we were expecting
higher parser success and lower flagged percentages for the “Paraphrasing” task. One
factor that influences these results is the order that the tasks were uploaded. The later
uploaded tasks had the benefit that some contributors had already been flagged, after
the monitoring of the previous uploaded tasks. The order most times was “Answers”,
“Prompts”, “Paraphrasing”, “Free Dialogues”, “Fill in”.

6.2.2 Grammar Induction

Grammar induction was not the object of this thesis, but the purpose it was based on.
Thus, in table 6.4 various grammar induction performance metrics are listed, and their
purpose is to help us find out whether we achieved our goal. A comparison with corpora
created using other methods, such as web harvesting ( [31]), provides a total image about
which method is preferable for collecting data for grammar induction.

54



6.2. DATA ANALYSIS

Corpus Words Precision Recall Fmeasure
Terminal
Concepts

Terminal
Instances

Initial 189443 0.51 0.38 0.44 11 167
Flag Filter 164356 0.51 0.38 0.44 11 164

“Answers” 16339 0.51 0.43 0.47 7 127
“Prompts” 21721 0.41 0.20 0.27 2 16
“Paraphrasing” 41108 0.42 0.31 0.36 8 46
“Free Dialogues” 41500 0.56 0.42 0.48 10 121
“Fill in” 62775 0.57 0.40 0.47 8 95

Date 58272 0.54 0.44 0.49 8 109
Depart-city 57048 0.45 0.38 0.41 12 123
Prompts 43194 0.41 0.25 0.31 2 26

Qs = 0 49788 0.55 0.41 0.47 7 106
Qs = 1 44303 0.46 0.37 0.41 9 125
Qs = 2 46140 0.57 0.43 0.49 9 110
Qs = 3 12449 0.53 0.42 0.47 7 75
Qs = 4 17501 0.51 0.41 0.46 7 75

Noc = 0 21813 0.58 0.40 0.47 8 88
Noc = 1 64870 0.51 0.37 0.43 11 139
Noc = 2 44542 0.53 0.42 0.47 8 100
Noc = 10 38956 0.56 0.38 0.45 7 71

Qp = 0, 1 27923 0.56 0.41 0.47 9 98
Qp = 2, 3 117769 0.51 0.37 0.43 10 147
Qp = 4, 5 24489 0.57 0.41 0.48 7 79

Ql<=6 59683 0.53 0.42 0.47 9 133
6<Ql<=12 92116 0.49 0.39 0.43 9 138
Ql>=13 18382 0.40 0.33 0.36 6 69

Qep = -1 25010 0.50 0.37 0.43 7 62
Qep = 0 47479 0.55 0.38 0.45 9 79
Qep = 1 40404 0.48 0.37 0.42 7 60

Qpl<=4 19590 0.35 0.23 0.28 8 27
Qpl>4 28577 0.45 0.30 0.36 4 30

Df>=66.6 34232 0.56 0.41 0.48 7 111
Df<66.6 7261 0.52 0.38 0.44 5 58

Table 6.4: Grammar Induction performance metrics (using a subset of the grammar)

The results of table 6.4 were produced from the grammar induction algorithm of
[31] and includes various performance metrics, assessing how easy is to mine information
from the text. An example of a terminal concept is : <cityname>and an example of
terminal instance is <cityname>→ NEW YORK. Precision expresses the accuracy, recall
the coverage of the algorithm and fmeasure is a combination of the two metrics. The
values they take belong in [0,1] and good performance is indicated from values close to
1. Terminal concepts inform as how rich are the collected data, with the sense that they
include numerous concepts. We must note that the results of grammar induction were
produced using only the parts of the grammar that the data we wanted to collect should
belong to. We observe that the more free task, “Free dialogues”, is the richest, since it

55



6.2. DATA ANALYSIS

collects the higher number of terminal concepts. Also, as we expected, the “Prompts”
task, which designed for collecting system prompts, is an outlier, because the number of
the terminal concepts that it “finds” is extremely low. The results for the Prompts corpus
confirm this state. Looking the corpora that were created from the various parameter
values, we observe that the richer outcomes were achieved for the values that allow neither
high nor low freedom, with the richest being for the corpus Noc = 1 and Qp = 2 or 3.

In table 6.5 we list the same metrics with table 6.4, but we have kept only Date
concepts. This analysis helps to examine individually the grammar induction with respect
to rules about Date. The results are similar with the results in table 6.4, but we, also,
noticed that we can extract information about the effect of the design to the grammar
induction algorithm. For the initial corpus the grammar induction algorithm found 64
terminal instances, while for the corpus about Date domain found 63. An experiment in
which we kept only concepts about Departure-city was done, and 116 terminal instances
detected in the initial corpus, while 101 were detected in Depart-city corpus. These
results indicate that the design of the tasks was successful, because the number of terminal
instances and concepts in the domain corpora is almost the same with the corresponding
numbers in the initial corpora.

Also, the grammar induction algorithm includes a clustering method, in which a num-
ber of clusters is being created and in the next figures we depict the Fmeasure as a function
of them. In figure 6.1 we observe that the difference between the initial corpus and the
corpus after flag filtering is very low. However, the best Fmeasure is achieved for the cor-
pus after flag filter. We represent the Fmeasure for various filters for some of the corpora,
in figures 6.2, 6.3, 6.4, 6.5, 6.6, 6.7. The result that we did’t expect was the low
performance of the “Paraphrasing” task.

Figure 6.1: Fmeasure for initial corpus and corpus after flag filter for various number of
clusters

56



6.2. DATA ANALYSIS

Figure 6.2: Fmeasure for domain corpora for various number of clusters

Figure 6.3: Fmeasure for task corpora for various number of clusters

Figure 6.4: Fmeasure for Qs corpora values for various number of clusters

57



6.2. DATA ANALYSIS

Figure 6.5: Fmeasure for Ql corpora for various number of clusters

Figure 6.6: Fmeasure for Noc corpora for various number of clusters

Figure 6.7: Fmeasure for Qp corpora for various number of clusters

58



6.2. DATA ANALYSIS

Corpus Words Precision Recall Fmeasure
Terminal
Concepts

Terminal
Instances

Initial 189443 0.54 0.36 0.43 6 64
Flag Filter 164356 0.58 0.34 0.43 8 59

“Answers” 16339 0.62 0.43 0.50 4 40
“Prompts” 21721 0.50 0.08 0.14 2 4
“Paraphrasing” 41108 0.41 0.25 0.31 6 28
“Free dialogues” 41500 0.62 0.40 0.49 8 55
“Fill in 62775 0.57 0.37 0.45 7 55

Date 58272 0.56 0.39 0.46 7 63
Depart-city 57048 0.41 0.23 0.30 5 24
Prompts 43194 0.40 0.10 0.16 2 6

Qs = 0 49788 0.55 0.33 0.41 6 39
Qs = 1 44303 0.55 0.36 0.44 8 52
Qs = 2 46140 0.57 0.37 0.45 6 52
Qs = 3 12449 0.61 0.34 0.44 5 31
Qs = 4 17501 0.56 0.28 0.38 5 22

Noc = 0 21813 0.54 0.31 0.40 7 35
Noc = 1 64870 0.55 0.37 0.44 5 59
Noc = 2 44542 0.55 0.33 0.41 5 42
Noc = 10 38956 0.54 0.35 0.43 6 36

Qp = 0, 1 27923 0.58 0.34 0.43 8 41
Qp = 2, 3 117769 0.52 0.34 0.41 7 56
Qp = 4, 5 24489 0.49 0.30 0.37 3 30

Ql<=6 59683 0.60 0.39 0.47 6 56
6<Ql<=12 92116 0.51 0.34 0.41 6 54
Ql>=13 18382 0.44 0.26 0.33 5 24

Qep = -1 25010 0.49 0.30 0.37 6 33
Qep = 0 47479 0.46 0.28 0.34 6 36
Qep = 1 40404 0.49 0.31 0.38 6 38

Qpl<= 4 19590 0.40 0.20 0.26 5 17
Qpl>4 28577 0.38 0.21 0.27 4 19

Df>=66.6 34232 0.63 0.39 0.48 6 52
Df<66.6 7261 0.57 0.32 0.41 7 30

Table 6.5: Grammar Induction performance metrics (using a subset of the grammar :only
Date)

6.2.3 Parser analysis

Parser based analysis assesses the information that is available in a corpus. The parser
that we use has been described in 2.4. The performance metrics of this analysis are listed in
table 6.6 and for reasons of consistency with the grammar induction performance metrics,
the analysis was done using a subset of the grammar that contains only rules about Date
and Departure-city. Grammar rules are the higher level rules like <TOCITY>and they
form grammar fragments like <ARR.CITY>→<TO <cityname>. The results are similar
with the results of grammar induction, however the less free tasks have higher percentages

59



6.2. DATA ANALYSIS

in parser success, in contrast to the more free tasks that are richer regarding the grammar
concepts, rules and fragments. From the values of the parser analysis performance metrics
we can mention that the tasks that allow less freedom to the contributors have higher parser
success comparing with the more free tasks, but they lack linguistic richness. Generally,
some of the values that we end up with, are comparable with the corresponding values
from [31].

Corpus

Sentences

Partially

Parsed

(%)

Terminal

Instances

(per word)

Grammar

Fragments

(per word)

Terminal

Instances

(unique)

Terminal

Concepts

(unique)

Grammar

Fragments

(unique)

Grammar

Rules

(unique)

Initial 67.8 0.16 0.11 425 24 108 11
Flag Filter 72.1 0.16 0.11 421 24 95 11

“Answers” 72.0 0.21 0.12 274 20 49 8
“Prompts” 44.7 0.09 0.03 71 19 22 10
“Paraphrasing” 82.2 0.17 0.12 146 23 68 11
“Free Dialogues” 53.2 0.15 0.07 280 22 73 11
“Fill in” 85.7 0.18 0.15 222 23 71 11

Date 81.8 0.19 0.13 235 23 78 11
Depart-city 85.6 0.21 0.18 304 19 55 9
Prompts 50.5 0.09 0.02 99 19 26 10

Qs = 0 57.4 0.14 0.07 246 19 62 10
Qs = 1 77.8 0.19 0.15 301 23 76 11
Qs = 2 77.5 0.18 0.12 242 23 77 11
Qs = 3 93.0 0.26 0.22 164 21 53 11
Qs = 4 72.6 0.14 0.09 173 18 39 8

Noc = 0 50.5 0.14 0.07 210 18 58 10
Noc = 1 69.6 0.15 0.08 354 24 80 11
Noc = 2 93.4 0.20 0.17 222 23 71 11
Noc >= 3 74.4 0.19 0.14 183 20 52 9

Qp = 0, 1 52.8 0.14 0.06 229 20 63 10
Qp = 2, 3 79.2 0.19 0.14 383 24 89 11
Qp = 4, 5 67.1 0.14 0.06 183 21 56 11

Ql<=6 59.8 0.15 0.08 309 23 78 11
6<Ql<=12 80.0 0.19 0.14 332 24 84 11
Ql>=13 85.8 0.18 0.13 198 22 60 10

Qep = -1 86.4 0.18 0.13 157 22 52 11
Qep = 0 87.9 0.20 0.17 189 22 67 11
Qep = 1 77.9 0.14 0.09 159 21 64 10

Qpl<= 4 85.1 0.20 0.15 111 21 47 11
Qpl>4 79.6 0.14 0.09 110 22 57 10

Df>=66.6 51.9 0.14 0.07 258 19 67 11
Df<66.6 59.5 0.17 0.09 141 21 52 9

Table 6.6: Parser analysis performance metrics using a subset of the grammar

60



6.2. DATA ANALYSIS

6.2.4 Perplexity

The perplexity as evaluation metric has been discussed in 2.2. For calculating the
perplexity, we built the language models, using a corpus consisting of four travel do-
main corpora viz.: “human to human”, “human to system”, “wizard of oz systems”1

and“questions and answers”. Then, we can calculate the N-grams and we list the various
statistics of perplexity for bigram LM in table 6.7. First, we observe that the very large
values, that indicate OOD bigrams, come from the more free tasks, or parameter values.

Corpus Size(Words) Mean Median Max Min Total

Total 189443 861 166 42751 5 222

“Answers” 16339 406 57 37283 4 72
“Prompts” 21721 1,236 520 28821 5 519
“Paraphrasing” 41108 691 167 27120 7 193
“Fill in” 41500 814 122 42751 5 191
“Free Dialogs” 62775 970 204 33161 6 248

Date 58272 281 88 37283 5 112
Depart-city 57048 624 101 37283 4 138
Prompts 43194 756 353 14886 7 346

Qs = 0 49788 931 169 42751 5 243
Qs = 1 44303 502 96 38707 5 129
Qs = 2 46140 1030 170 27120 5 261
Qs = 3 12449 483 156 18603 5 181
Qs = 4 17501 791 187 24186 5 230

Noc = 0 21813 792 114 42751 5 169
Noc = 1 64870 660 119 38707 5 163
Noc = 2 44542 1065 184 27120 7 247
Noc = 10 38956 915 272 33161 5 268

Qp = 0,1 27923 825 122 42751 5 188
Qp = 2,3 117769 752 145 38707 5 200
Qp = 4,5 24489 1029 207 33161 5 250

Ql<= 6 59683 872 158 42751 5 218
6<= Ql<= 12 92116 802 152 34261 5 213
Ql>= 13 18382 492 97 22683 5 133

Qep = -1 25010 1259 318 27120 7 353
Qep = 0 47479 545 114 33161 6 138
Qep = 1 40404 969 338 17172 7 328

Qpl<= 4 19590 610 135 27120 7 159
Qpl>4 28577 823 244 18603 7 241

Df>=66.6 34232 823 122 42751 5 189
Df<66.6 7261 769 134 21416 5 199

Table 6.7: Perplexity statistics for the various corpora, for Bigram LM
.

1In this case the users think that they interact with the system, but actually, they interact with a
human from system’s side

61



6.2. DATA ANALYSIS

Also, it is obvious (and with this metric) that the “Prompts” task is an outlier, and for
this reason it is excluded from the rest corpora. On the other hand, the “Answers” task
has the lowest median and mean perplexity. These values indicate the effect that the two
tasks have on the contributors, and it is obvious that the contributors provide more useful
data, when they take a “role” that they are familiar with (being the users), in contrast
to the case that they take the “role” of the system (in “Prompts” task). In total corpus
the very big difference between the mean and the median value, indicates the existence of
OOD, but majority of the corpora seems to be in-domain.

Correlation between input and output perplexity

The curiosity to find out whether there is correlation between the sentence we provide
as input to the tasks and the response that the contributors provide, drive us to create
a correlation metric based on perplexity. More specifically, we create two vectors with
elements the perplexity of the input sentence and the corresponding phrase provided by
the contributor. The way we continued is based on the following observations:

1. We can’t find possible correlation for “Free dialogs” task, because, many of the input
sentences are blank.

2. In the “Answers” and the “Prompts” tasks, we find the possible correlation between
the input sentence and the response provided by the contributors.

3. In the “Fill in” task we provide the contributors only a part of the sentence and they
provide us a phrase that completes the missing part. Trying to find the correlation
between the two sentences, the one with the missing part and the one that is being
created after the contributor fills in the empty field, we are going to produce a “fake”
correlation, because the first sentence is one part of the second. Thus, we find the
correlation between the sentence with the missing part, and the phrase that the user
provides. This is going to give us an idea about how the contexts influence the the
answers provided by the contributors.

4. In the “Paraphrasing” task, instead of the missing part, we had in the “Fill in” task,
we have an underlined phrase. So, we discern three cases and in each of them we
find the correlation between the phrase that the contributor provides and the whole
sentence given, the underlined phrase, and finally the context of the underlined. The
last is done for comparing with the “Fill in” task.

The correlation outputs are listed in table 6.8. The values we ended up with, prove
that there is not high correlation between the given and the output phrases. When only
the phrase that comes from the contributor is used, the correlation is much smaller. Note
that the correlation on the “Paraphrasing” task is higher between the underlined phrase
and the paraphrase. Also, in the “Fill in” task the contexts have higher correlation with
the phrase provided by the contributors, than in the “Paraphrasing” task.

6.2.5 Design success metric

This metric informs us how effective the design of the input to the tasks sentences
was. In essence, we examine how many of the questions that were designed for collecting

62



6.2. DATA ANALYSIS

Task Correlation Correlation between

Answers 0.039 given system prompt & user response provided by the contributor

Prompts 0.004 given user response & system prompt provided by the contributor

Paraphrasing

0.114 whole sentence given & paraphrase provided by the contributor

0.130 underlined phrase given & paraphrase provided by the contributor

0.022
context of the underlined phrase given & paraphrase provided

by the contributor

0.378
whole sentence given & union of the context of the underlined

phrase given and the paraphrase provided by the contributor

Fill in
0.073 part of sentence given & phrase provided by the contributor

0.591
part of sentence given& union of part of sentence given and

phrase provided by the contributor

Table 6.8: Correlation per task, based on perplexity and calculated between the data that
we provide and the data that are provided by the contributors

answers that belong to each of the target domains lead contributors to provide answers
that belong to this domain.

In table 6.9 we list the percentages of the questions that were designed and uploaded for
collecting data that belong to Date or Departure-city domain. Note that the “Prompts”
and the “Fill in” tasks, are not contained in this design because the first is used for
collecting prompts, and the second is too free to define what we expect to collect for each
sentence.

Task
Questions for collecting

Date % Departure-city % Date & Departure-city%

“Answers” 38 44 18
“Paraphrasing” 40 40 0
“Fill in” 35 37 9

Table 6.9: Percentages of the answers that target to collect data that belong to each
domain, per task

The implementation of this metric is based on the parser output and more specifically,
we examined the grammar rules that the parser assigned to the answers of these questions.
We assume success to assign to Date and the question to be about Date and so forth. In
table 6.10 we list the values of this metric.

Task Date % Departure-city %

Answers 21 19
Paraphrasing 49 42

Fill in 39 38

Table 6.10: Data that belong to Date and Depar-city domain and were provided as answers
to questions that were targeted in the corresponding domains

63



6.2. DATA ANALYSIS

As we observe, tasks with lower freedom have greater success in this metric, because
it is easier for strict tasks to drive contributors to provide a specific type of answers. In
addition it is easier to collect answers about Date than Departure - city, due to the form of
the tasks and some key words that bias contributors to provide specific kinds of answers.

6.2.6 Meta-data analysis

With the term Meta Data analysis, we mean the analysis of data about the data that
were collected. In this analysis we calculate some statistics about the information that
we were provided by Crowdflower, regarding the contributors who submitted the tasks.
In table 6.11 various statistics about the contributors are listed. Also, in table 6.12 the
percentages of contributors that submitted a number of units per task, that belongs to a
specific range, are listed.

“Answers”

Total units 3435
Contributors(unique) 208
Flagged Contributors 39
Cities(unique) 173
Crowdsourcing channels(unique) 28

“Prompts”

Total units 3515
Contributors(unique) 155
Flagged Contributors 43
Cities(unique) 135
Crowdsourcing channels(unique) 26

“Paraphrasing”

Total units 4803
Contributors(unique) 213
Flagged Contributors 48
Cities(unique) 179
Crowdsourcing channels(unique) 26

“Free Dialogues”

Total units 1874
Contributors(unique) 187
Flagged Contributors 45
Cities(unique) 158
Crowdsourcing channels(unique) 26

“Fill in”

Total units 5996
Contributors(unique) 204
Flagged Contributors 33
Cities(unique) 176
Crowdsourcing channels(unique) 26

Table 6.11: Various statistics about contributors per task

From table 6.12 it is obvious that the “Free dialogues” task was the more labored,

64



6.3. SUMMARY

Task

Units submitted per contributor <10
(%)

15-25
(%)

30-50
(%)

>50
(%)

Contributors of “Answers” 71 16 5 6
Contributors of “Prompts” 63 18 7 11
Contributors of “Paraphrasing” 63 19 7 6
Contributors of “Free Dialogues” 80 10 4 4
Contributors of “Fill in” 19 52 15 12

Table 6.12: Percentages of contributors that submitted a number of units per task, that
belongs to a specific range

since the majority completed up to 10 units, and the “Fill in” task was the most facile,
since the majority of contributors submitted between 15-25 units. The variety of the
contributors who submitted the tasks implies the variety of the collected data, thus we
prefer to have small percentages in the large number of units and, as we observe, this is
achieved for the majority of the tasks.

6.3 Summary

In this chapter we described the data collection process and the analysis of the data
we acquired, with respect to several metrics. In brief, all metrics ended up with the same
conclusion: the free tasks provide larger variety in the data that they collect, but the strict
tasks provide better accuracy. Creating corpora trying to balance these two limit cases,
we can collect data that combine both variety and accuracy. Also, from these metrics we
get a feedback about the success of the tasks’ design. From the corpora that were created
from the parameter values we can see the effective values of each parameter. Bearing
in mind that the tasks didn’t include an automatic quality control during the collection
phase, we can tell that we achieved a good design, and the data that were collected were
useful enough.

65



Chapter 7

Conclusions and Future Work

In this chapter we sup up the results and the conclusions of this thesis, and also, we
recommend some ideas for future work.

7.1 Conclusions

The conclusions of this thesis come from the results about the design of the Crowd-
sourcing tasks, and the performance of the grammar induction algorithm for the various
corpora. Finally, comparison with previous work, is included in order to find out which
method for collecting data works better.

Crowdsourcing tasks

Since the data we wanted to collect are going to be used for the development of a
SDS, the tasks that we designed aimed to reflect the environment of a SDS. For this
reason we designed tasks that contained system prompts and user responses, from di-
alogue parts from a potential interaction between a system and a user. These tasks
(“Answers”,“Prompts”,“Free Dialogues”) allow high freedom to the Crowdsourcing par-
ticipants, since they can provide whatever they want without restriction. Thus, we created
two more tasks, in which the users were allowed less freedom, and they had to complete
logically a part of a sentence. So, we have two basic type of tasks, classified according to
the freedom that they allow to the contributors. The results showed that the freedom of
a task influences the contributors and the corpora created have different characteristics.
The free tasks give the users the opportunity to provide variety of responses, in contrast
to the other tasks, that offer, in-domain and accurate data. The more free tasks seem to
work better, because they can provide variety of data. Also, the design of the tasks, as
we explained, was successful enough.

Also, the design of the tasks was based on a plethora of parameters. We showed that
the values of the parameters have specific affect on contributors and lead them to provide
more or less useful responses.

To sup up the conclusions we reached regarding the design decisions are the following:

1. We prefer free tasks, that allow users to express themselves.

2. We prefer questions that don’t confuse the users and don’t create conflicts about the
possible “right” answers (Noc = 1).

66



7.1. CONCLUSIONS

3. We prefer questions with medium specificity, because it seems to provide a middle
ground to the trade-off of low and high freedom in each unit (Qs = 2).

4. We prefer to keep a normal (realistic) behavior to the users. Too polite or rude
questions don’t seem to work the same well with the polite neutral questions (Qp =
2, 3).

5. We prefer questions with low or medium length (Ql <= 12). Questions with a large
number of words don’t seem to have good results.

6. Focusing on the less free tasks, we observe that the position of the phrase that they
have to provide, influences the users. Maybe it is easier to provide more useful data,
when they are given both left and right context (Qep = “center”/0 ).

7. For the “Paraphrasing” task, we can’t tell for sure, if it is better to paraphrase long
or short phrases. Maybe the most important is the content of the phrase, however
the short phrases end up with better results (Qpl <= 4).

8. Finally, for the “Free dialogues” task, dialogues that allow high freedom to the
contributors have better results regarding the variety.

Comparison with Web Harvesting

Comparing the performance metrics of grammar induction and parser analysis with
[31], we observe that the method used in this thesis for collecting data is inferior the
method used in [31]. First, we must note that the sizes of corpora are much larger than
the corpora that we created and this affects the performance of the induction algorithm,
since the approach used is data-driven. Also, the method used in [31], targets to any
rule of travel-flight domain, and not only to specific parts, like our method. From the
grammar induction results we observe that web harvesting corpus “finds” a larger number
of terminal instances than the corresponding with Crowdsourcing corpus (399 Vs 167 )
and the terminal concepts are less than the half (26 Vs 11 ). Then we ran again the
grammar induction algorithm using only the subset of the grammar rules and we noticed
that they are close to the results from Crowdsourcing: 356 and 14, the terminal instances
and the terminal concepts, respectively. Regarding the Fmeasure, we note that the values
of crowdsourcing method are comparable with web harvesting and in some cases higher,
and a possible reason that this happens is due to the design of the tasks. Regarding the
parser analysis, the crowdsourcing values are low compared with the web harvesting, and
the reasons are the sizes of the corpora, the grammar parts that the two methods target
and the cheating behavior of some of the contributors. We believe that if a better quality
control system was able to be used, the acquired data would lead to higher performance.

Quality of the acquired data

The quality of the acquired data was good enough to help us achieve our initial goal,
which was the grammar induction. We showed that we can control the quality of the
data according to a number of parameters and the use of various type tasks. However we
collected useful data even though we did not have an automatic quality control system.

67



7.2. FUTURE WORK

7.2 Future Work

The experience and the conclusions that we end up with provide us an advanced tool
for continuing with the same area of research, and improving the work presented on this
thesis.

First of all, we should continue with the analysis of the collected data by applying
various filters, in an attempt to create corpora with which the best possible performance
is achieved. The filters can be based on the parameters, or we can introduce new kinds of
filtering, e.g. filters based on the perplexity.

Moreover, we can continue with a machine learning approach. Ideal goal of this ex-
pansion is to be able to generate sentences, with semi-supervised or unsupervised way,
that lead to the collection of useful data. For the completion of this goal, maybe some
thousands of sentences, as well as a larger range of grammar domains (except from Date,
Departure-city and top-level prompts) are necessary. This implies that more Crowdsourc-
ing experiments must take place. Also, it is important to find an effective way of ensuring
quality control in the next crowdsourcing experiments. By this way we collect more useful
data spending less money.

Since we have reached accurate results about the parameter values that lead to useful
data, we can design an interface for generation of sentences for the Crowdsourcing tasks.
However, it is not easy to make an unsupervised approach since we need to design sentences
with the appropriate concept.

A future extension is to create Crowdsourcing tasks that target to other grammar
domains of travel - flight domain, e.g. time, booking tickets or arrival city. In this case we
can use the same Crowdsourcing tasks, and apply the, based on parameters, methodology
that we introduced in this thesis. Also, the generation of the sentences for each task can
be done with semi - supervised way. In essence, we can take advance of the conclusions
we reached about the parameter values, and after the design of the basic sentences (based
on concept as we described in appendix A) we can forward with an automatic generation
of the rest of the sentences.

One more expansion is the use of crowdsourcing for collecting data in other languages.
In this case, it is possible to create a design much different from the design that we used
in this thesis, since every natural language has different characteristics.

68



Appendix A

Initial Questions designed per task

In this appendix we show the first questions that we designed for each task. In each
table we have delimiters for distinguishing the questions that target to Date, Departure -
city or prompts. We tried to create questions that lead contributors to provide answers
that belong to the above domains, allowing enough freedom. The process of generating
the questions is explained with the following example from “Answers” task where

· Qs : Question specificity.

· Qp : Question politeness.

· Ql : Question length in words.

· Noc : Number of concepts expressed in a sentence.

Qs Qp Ql Noc

Initial Sentence: “When do you want to depart?” 1 2 6 1

Sentences generated by changing Qs

“What date do you want to depart?” 2 2 7 1
“Tell me details regarding your departure 0 2 6 1

Sentence generated by changing Noc

“What date and time do you want to depart?” 2 2 9 2

Sentence generated by changing Qp

“When do you want to depart please?” 1 5 7 1

Note that: Ql changes with the change of other parameters, Qs is the parameter with
the most changes, because it defines the freedom of the question.

69



Appendix A Initial Questions designed per task

No Sentence for “Answers” task For

1 When do you want to depart?

D
at

e

2 Hello, how may I help you?

3
This is AirTravel System and is a pleasure to serve you.

When does your travel begin?
4 Could you please inform me about the departing date?
5 When do you want to arrive?
6 Give me the date.
7 Have you got any preference regarding the return day?
8 Excuse me, can you repeat the date?

9 From where does your travel begin?

D
ep

a
rt

u
re

-
ci

ty

10 Give me the starting location first, please.
11 Can you tell me details about your departure?
12 Where would you like to fly to and from?
13 From where does your travel begin?

14
Are there any preferences regarding the

airport you want to leave from?

15
I cannot tell you if there is a flight to London

unless you tell me your departure place.

Table A.1: Initial Questions for the“Answers” task

No Sentence for “Prompts” task For

1 I want to book a flight.
P

ro
m

p
ts

2 On May two thousand thirteen.
3 I want to travel from Rome to London on Monday.

4
I would like you to give me some information

about afternoon flights.
5 I need to travel in the next two hours.
6 Paris.

7
From Chicago to Mexico city, on November

twenty first, in the afternoon.
8 Hello, is there an available flight to Madrid today?

9
Good evening, can you find me the cheapest

ticket to Bangladesh?
10 I need to change the ticket that I booked yesterday.
11 Oops, sorry, I got the wrong number!
12 Yes, I want to know the available flights to Tokyo.
13 I need to book tickets for a group of fifteen people.
14 I don’t want to travel, I just want to ask some questions.
15 From Athens to Istanbul

Table A.2: Initial Questions for the “Prompts” task

70



Appendix A Initial Questions designed per task

No Sentence for “Paraphrasing” task For

1 Hello, this is AirTravel System.How may I help you?

P
ro

m
p

ts

2
Welcome to AirTravel System.

Please give me your trip information.

3 Good morning! Where do you want to travel?

4 You have called AirTravel System. How can we serve you?

5 I would like to depart on November second.

D
at

e

6 I need to leave on December thirty first.

7 I want to be back on Wednesday the twenty fifth of February.

8 I prefer at the beginning of the next week.

9 I want to travel at the end of two thousand thirteen.
10 I have to be back on Monday night.

11 Middle of summer could be the best.
12 I want to begin between Friday and Sunday from Cape Town

13 Starting location is Athens, Greece.

D
ep

ar
tu

re
-c

it
y14 Last flight is leaving from Puerto Rico in an hour.

15 Please tell me the start location.
16 I want to depart from Boston to Sidney.

17 We prefer to take off from Orly Airport.
18 I would like to depart from Hawaii after two weeks.

19
I have no preference on destination airport,
but I want to depart from Athens airport

.

20 Departing city is Tokyo and destination is Ottawa.

Table A.3: Initial Questions for the “Paraphrasing” task

71



Appendix A Initial Questions designed per task

No Sentence for “Fill in” task For

1 Hello from AirTravel system. ———— ?

P
ro

m
p

ts2 Welcome to AirTravel System.How ———— ?
3 Give me ———— .
4 Hello, ———— details about your trip?
5 Welcome to AirTravel System, what ———— ?

6 I want to leave on ———— .

D
at

e

7 I want to arrive ———— .
8 I want to be back before ———— in the morning.
9 ———— is the perfect date.
10 I prefer ———— instead of weekend.
11 I must be there ———— before night.
12 My plan is to come back ———— .
13 I want to begin ———— and return after two months.
14 I need to change the existing date of my flight to ———— .

15
Neither of these dates fits me. Is

there an available flight ———— ?

16 I would like to ———— New York.
D

ep
ar

tu
re

-c
it

y
17 ———— is Dubai.
18 Hello, I would like ———— to Panama.
19 I ———— from Milan, Italy.
20 I want to ———— London to Athens.
21 I have to depart ———— before Monday night.
22 I want to ———— and return after two days.
23 I depart ———— today.
24 ———— is London and destination is Paris.
25 I want ———— from Oslo.

Table A.4: Initial Questions for the “Fill in” task

72



Appendix A Initial Questions designed per task

No Sentence for “Free dialogues” task

1

System :
User : On Friday January the third.
System :
User :
System:
User: I prefer the first.

2

System :
User :
System :
User : Is this the only available date?
System:
User:

3

System :
User : Yes, are you there?
System :
User :
System:
User : Boston.

4

System :
User :
System :
User :
System:
User: I will take the first.

Table A.5: Initial Questions for the “Free dialogues” task (a)

73



Appendix A Initial Questions designed per task

No Sentence for “Free dialogues” task

5

System :
User : I want to change the date of my flight.
System :
User : My flight number is three five double zero six.
System:
User:

6

System :
User :
System :
User :
System:
User: Any airport In Paris.

7

System : What is your starting point?
User :
System : And what date do you prefer?
User :
System:
User:

8

System : This is AirTravel System. How may I help you?
User :
System : One moment please...Yes, there is.
User :
System: Please give an alternative.
User:

Table A.6: Initial Questions for the “Free dialogues” task(b)

74



Appendix B

Distribution of the Parameters

In this appendix we depict the distribution of the parameters that we designed in each
task. Remember that:

· Qs : Question specificity.

· Qp : Question politeness.

· Ql : Question length in words.

· Noc : Number of concepts expressed in a sentence.

· Qpl : Question paraphrase’s length.

− It is defined only for the “Paraphrasing” task.

· Qep : Question’s empty field position.

− It is defined only for the “Paraphrasing” and “Fill in” task.

· Df: Dialogue’s freedom.

− It is defined only for the “Free Dialogues” task.

75



Appendix B Distribution of the Parameters

Figure B.1: Qs distribution for the“Answers” task

Figure B.2: Ql distribution for the “Answers” task

76



Appendix B Distribution of the Parameters

Figure B.3: Noc distribution for the “Answers” task

Figure B.4: Qp distribution for the “Answers” task

77



Appendix B Distribution of the Parameters

Figure B.5: Qs distribution for the “Prompts” task

Figure B.6: Ql distribution for the “Prompts” task

78



Appendix B Distribution of the Parameters

Figure B.7: Noc distribution for “Prompts” task

Figure B.8: Qp distribution for the “Prompts” task

79



Appendix B Distribution of the Parameters

Figure B.9: Qs distribution for the “Paraphrasing” task

Figure B.10: Ql distribution for the “Paraphrasing” task

80



Appendix B Distribution of the Parameters

Figure B.11: Noc distribution for the “Paraphrasing” task

Figure B.12: Qp distribution for the “Paraphrasing” task

81



Appendix B Distribution of the Parameters

Figure B.13: Qpl distribution for the “Paraphrasing” task

Figure B.14: Qep distribution for the “Paraphrasing” task

82



Appendix B Distribution of the Parameters

Figure B.15: Qs distribution for the “Fill in” task

Figure B.16: Ql distribution for the “Fill in” task

83



Appendix B Distribution of the Parameters

Figure B.17: Noc distribution for the “Fill in” task

Figure B.18: Qp distribution for the “Fill in” task

84



Appendix B Distribution of the Parameters

Figure B.19: Qep distribution for the “Fill in” task

Figure B.20: Df distribution for the “Free dialogues” task

85



Appendix C

Crowdflower and UI

Goal of this appendix is to show how the UI of the tasks was created. First the UI was
designed in LibreOffice Writer for the needs of the pilot process. Then, after the feedback
we got from the users, we continued with the on-line design on Crowdflower. The design
on Crowdflower was done with CML (Crowdflower Markup Language) and CSS when it is
necessary. CML uses numerous tags, that make us handle the information that we upload
on Crowdflower easier. In addition, a graphical tool is also available, but without allowing
extra functionality except the graphical representation.

Next step, is the upload of the questions we designed, which is done through excel files.
Each column of the excel, corresponds to a separate field of the UI. For example, in the
“Answers” task, we have an excel with only one column, where we store the questions, but
in the “Fill in” task we have two columns, one for the phrase left from the missing part,
and one for the phrase right from the missing part. We continue similarly, with the rest
tasks. Finally, the data we collect, were also returned to us stored in excel files, including
extra information about the contributors, such us their city, the crowdsourcing channel,
through which they completed the task, IP address e.t.c..

Next step was the selection of the titles of the tasks and the UI of pilot process as
well as Crowdsourcing experiment. Note that in the beginning “Answers” and “Prompts”
were one task.

Task Title of Crowdsourcing task
Answers Answer The Questions
Prompts Provide Questions For The Given Responses
Paraphrasing Provide Phrases With The Same Meaning
Free Dialogs Complete The Dialogs
Fill in Fill In The Empty Fields With The Most Appropriate Word(s)

Table C.1: Crowdsourcing tasks’s titles

86



Appendix C Crowdflower and UI

Write Answers and Questions for a Spoken Dialog System

Instructions

In each HIT you'll be provided blocks of answers and questions, that could come from a Spoken Dialog System.
This  Spoken Dialog System is used for travel information.
The questions or answers could come either from system's or from user's place of the Spoken Dialog System.

More specific: 

• In the block of questions you'll be requested to write a suitable  answer for each question.
• In the block of answers you'll be requested to write  a question that could have give this answer.
• If you have any comments you can write them in the text area that follows in order to give us feedback.
• Once you are sure about your answers press submit button.

Helpful Tips:

Feel like to express yourself and do not get influenced only by the examples. We want variety, so answers that 
appear many times with the same content will not be useful and may be rejected.
Do not hesitate to sent us comments or observations.

Write an answer for each question in that block.

 When do you want to depart?

 Hello! This is Air Travel System! How may I help you?

  Hello, can I make a reservation please?

 When is the last flight to Athens?

 
When do you want to arrive?

 
 
 What is your starting location?

 

Palogiannidi Elisavet 2012 Crowdsourcing Tasks Evaluation

TASK 1TASK 1                                                                                                                                                      Page 1 of 2                                                                                                                                                     Page 1 of 2

Figure C.1: “Answers” and “Prompts” task on pilot (a)

87



Appendix C Crowdflower and UI

  Which date do you prefer?

  From what city do you want to depart?

Write a question for each answer in that block.

  On Tuesday.

  The airport I want to leave is Dubai airport.

 I need to leave on Sunday the twenty fifth and come back on Monday the twenty eight.

  There is an available flight on May twenty three two thousand twelve.

 
 
 I'd like to fly to Paris.

 Starting city is Chania.

 On January two thousand and thirteen.

  I want to book a flight.

Palogiannidi Elisavet 2012 Crowdsourcing Tasks Evaluation

TASK 1TASK 1                                                                                                                                                      Page 2 of 2                                                                                                                                                     Page 2 of 2

Submit task

Send feedback

Figure C.2: “Answers” and “Prompts” task on pilot (b)

88



Appendix C Crowdflower and UI

Figure C.3: “Answers” task on Crowdflower

89



Appendix C Crowdflower and UI

Figure C.4: “Prompts” task on Crowdflower

90



Appendix C Crowdflower and UI

Give phrases with the same meaning

Instructions

In each HIT you'll be provided a sentence, that could come from a Spoken Dialog System.
This  Spoken Dialog System is used for travel information.
Each sentence will have an underlined phrase (or the full sentence will be underlined).

More specific:

• Read carefully the sentence and especially the underlined phrase.
• Write another phrase, that has the same meaning with the underlined. 
• If you have any comments you can write them in the text area that follows in order to give us feedback.
• Once you are sure about your answers press submit button.

Helpful Tips:

Feel like to express yourself and be as creative you can. We want variety,so answers that appear many times 
with the same content will not be useful and may be rejected.

Do not hesitate to sent us comments or observations.

For each sentence give a phrase with the same meaning with the underlined.

 Hello! This is Air Travel System! How may I help you?

 I would like to departure on November first.

  I need to leave on December thirty one.

 I want to make a reservation.

 
 
 Starting location is Athens.

 I need to leave on Wednesday the twenty fifth of February. 

Palogiannidi Elisavet 2012 Crowdsourcing Tasks Evaluation

TASK 2TASK 2                                                                                                                                                      Page 1 of 2                                                                                                                                                     Page 1 of 2

Figure C.5: “Paraphrasing” task on pilot

91



Appendix C Crowdflower and UI

Figure C.6: “Paraphrasing” task on Crowdflower

92



Appendix C Crowdflower and UI

Give potential scenarios of system-user interaction on a 
Spoken Dialog System

Instructions

In this task you are requested to write a potential scenario, about the interaction between you and a Spoken 
Dialog System. 
The Spoken Dialog System that you are going to interact with, can give you information about traveling.

More specific:

• Each HIT is a part of a dialog between a user and a spoken dialog system.
• Each dialog consists of user responses and system prompts. Some of them will be given.
• Fill in the empty fields with logical responses.
• If you have any comments you can write them in the text area that follows in order to give us feedback.
• Once you are sure about your answers press submit button.

Helpful Tips:

Feel free to express yourself and do not get influenced only by the example. We want variety,so answers that 
appear many times with the same content will not be useful and may be rejected. We don't  want to collect the  
same answers with difference only in the name of city, or in the day/time/month. For  example : I want to travel to  
London, I want to travel to Paris, I want to leave on ten fifteen,I want to leave on eleven fifteen, are not useful.

Do not hesitate to sent us comments or observations.

For each one of the following blocks write a scenario of system-user interaction 
on a Spoken Dialog System.

    Dialog 1

    System:     Welcome to Air Travel System!Where would you like to fly to?

    User:

   System:

    User:

    System:

    User:

Palogiannidi Elisavet 2012 Crowdsourcing Tasks Evaluation

TASK 3TASK 3                                                                                                                                                      Page 1 of 3                                                                                                                                                     Page 1 of 3

Figure C.7: “Free dialogue” task on pilot

93



Appendix C Crowdflower and UI

Figure C.8: “Free Dialogs” task on Crowdflower

94



Appendix C Crowdflower and UI

Fill in the empty fields with the most appropriate word(s)

Instructions

In each HIT you'll be provided a sentence, that could come from a Spoken Dialog System.
This  Spoken Dialog System is used for travel information.
The sentence will have some empty fields, which you are requested to fill in.

More specific:

• Read carefully the given sentence.
• Fill in the empty fields with the words that you think that are appropriate.
• If you have any comments you can write them in the text area that follows in order to give us feedback.
• Once you are sure about your answers press submit button.

Helpful Tips:

Feel like to express yourself and do not get influenced only by the example. We want variety,so answers that  
appear many times with the same content will not be useful and may be rejected.

Don't forget that the Spoken Dialog System can give you travel information.

Do not hesitate to sent us comments or observations.

Fill in the empty field in each sentence with the most appropriate word

     I need to leave on Wednesday 

     I want to arrive

     I' d like to                                             Athens. 

                         Is London.

     
     Hello! I would like to 

    This is air travel system. 

    I                from Rome.

Palogiannidi Elisavet 2012 Crowdsourcing Tasks Evaluation

TASK 4TASK 4                                                                                                                                                      Page 1 of 2                                                                                                                                                     Page 1 of 2

Figure C.9: “Fill in” task on pilot

95



Appendix C Crowdflower and UI

Figure C.10: “Fill in” task on Crowdflower

96



Bibliography

[1] Ambati, V., and Vogel, S. Can crowds build parallel corpora for machine trans-
lation systems? In Proceedings of the NAACL HLT 2010 Workshop on Creating
Speech and Language Data with Amazon’s Mechanical Turk (2010), Association for
Computational Linguistics, pp. 62–65.

[2] Audhkhasi, K., Georgiou, P. G., and Narayanan, S. S. Reliability-weighted
acoustic model adaptation using crowd sourced transcriptions. In INTERSPEECH
(2011), pp. 3045–3048.

[3] Bloodgood, M., and Callison-Burch, C. Bucking the trend: Large-scale cost-
focused active learning for statistical machine translation. In Proceedings of the 48th
Annual Meeting of the Association for Computational Linguistics (2010), Association
for Computational Linguistics, pp. 854–864.

[4] Bloodgood, M., and Callison-Burch, C. Using mechanical turk to build ma-
chine translation evaluation sets. In Proceedings of the NAACL HLT 2010 Workshop
on Creating Speech and Language Data with Amazon’s Mechanical Turk (2010), As-
sociation for Computational Linguistics, pp. 208–211.

[5] Buchholz, S., and Latorre, J. Crowdsourcing preference tests, and how to detect
cheating. In INTERSPEECH (2011), pp. 3053–3056.

[6] Buzek, O., Resnik, P., and Bederson, B. B. Error driven paraphrase annotation
using mechanical turk. In Proceedings of the NAACL HLT 2010 Workshop on Creating
Speech and Language Data with Amazon’s Mechanical Turk (2010), Association for
Computational Linguistics, pp. 217–221.

[7] Callison-Burch, C., and Dredze, M. Creating speech and language data with
amazon’s mechanical turk. In Proceedings of the NAACL HLT 2010 Workshop on
Creating Speech and Language Data with Amazon’s Mechanical Turk (2010), Associ-
ation for Computational Linguistics, pp. 1–12.

[8] Card, S. K., Moran, T. P., and Newell, A. The keystroke-level model for
user performance time with interactive systems. Communications of the ACM 23, 7
(1980), 396–410.

[9] Card, S. K., Moran, T. P., and Newell, A. The psychology of human computer
interaction. Routledge, 1983.

[10] Carroll, J. M. Human computer interaction (hci). The Encyclopedia of Human-
Computer Interaction, 2nd Ed. (2013).

97



[11] Chernova, S., Orkin, J., and Breazeal, C. Crowdsourcing hri through online
multiplayer games. In Proc. Dialog with Robots: AAAI fall symposium (2010).

[12] Chomsky, N. Three models for the description of language. Information Theory,
IRE Transactions on 2, 3 (1956), 113–124.

[13] Cooke, M., Barker, J., Lecumberri, M. L. G., and Wasilewski, K. Crowd-
sourcing for word recognition in noise. In INTERSPEECH (2011), pp. 3049–3052.

[14] Crowdflower. http://www.crowdflower.com.

[15] Denkowski, M., Al-Haj, H., and Lavie, A. Turker-assisted paraphrasing for
english-arabic machine translation. In Proceedings of the NAACL HLT 2010 Work-
shop on Creating Speech and Language Data with Amazon’s Mechanical Turk (2010),
Association for Computational Linguistics, pp. 66–70.

[16] Dix, A. Human computer interaction. Pearson Education, 2004.

[17] Evanini, K., and Zechner, K. Using crowdsourcing to provide prosodic annota-
tions for non-native speech. In INTERSPEECH (2011), pp. 3069–3072.

[18] Gao, Q., and Vogel, S. Consensus versus expertise: A case study of word align-
ment with mechanical turk. In Proceedings of the NAACL HLT 2010 Workshop on
Creating Speech and Language Data with Amazon’s Mechanical Turk (2010), Associ-
ation for Computational Linguistics, pp. 30–34.

[19] Gelas, H., Abate, S. T., Besacier, L., and Pellegrino, F. Quality assessment
of crowdsourcing transcriptions for african languages. In INTERSPEECH (2011),
pp. 3065–3068.

[20] Glass, J. R., Polifroni, J., Seneff, S., and Zue, V. Data collection and perfor-
mance evaluation of spoken dialogue systems: the mit experience. In INTERSPEECH
(2000), pp. 1–4.

[21] Glass, J. R., and Weinstein, E. Speechbuilder: facilitating spoken dialogue
system development. In INTERSPEECH (2001), Citeseer, pp. 1335–1338.

[22] Goto, M., and Ogata, J. Podcastle: Recent advances of a spoken document
retrieval service improved by anonymous user contributions. In INTERSPEECH
(2011), pp. 3073–3076.

[23] Gustafson, J., Lindberg, N., and Lundeberg, M. The august spoken dialogue
system. In Eurospeech (1999).

[24] Higgins, C., McGrath, E., and Moretto, L. Mturk crowdsourcing: a viable
method for rapid discovery of arabic nicknames? In Proceedings of the NAACL HLT
2010 Workshop on Creating Speech and Language Data with Amazon’s Mechanical
Turk (2010), Association for Computational Linguistics, pp. 89–92.

[25] Hirth, M., Hoßfeld, T., and Tran-Gia, P. Human cloud as emerging inter-
net application-anatomy of the microworkers crowdsourcing platform. University of
Wurzburg, Institute of Computer Science, Am Hubland, D-97074 Wurzburg, Ger-
many, Research Report, 478 (2011), 45–46.

98

http://www.crowdflower.com


[26] Iosif, E. Unsupervised induction of semantic metrics using similarity metrics, 2007.

[27] Irvine, A., and Klementiev, A. Using mechanical turk to annotate lexicons for
less commonly used languages. In Proceedings of the NAACL HLT 2010 Workshop
on Creating Speech and Language Data with Amazon’s Mechanical Turk (2010), As-
sociation for Computational Linguistics, pp. 108–113.

[28] ISLE. Spoken dialogue system design. http://www.isle.illinois.edu/

synthesis/research_dialog.html.

[29] Jurcıcek, F., Keizer, S., Gašic, M., Mairesse, F., Thomson, B., Yu, K., and
Young, S. Real user evaluation of spoken dialogue systems using amazon mechanical
turk. In Proceedings of INTERSPEECH (2011), vol. 11.

[30] Kittur, A., Chi, E. H., and Suh, B. Crowdsourcing user studies with mechanical
turk. In Proceedings of the SIGCHI conference on human factors in computing systems
(2008), ACM, pp. 453–456.

[31] Klasinas, I., Potamianos, A., Iosif, E., Georgiladakis, S., and Mameli, G.
Web data harvesting for speech understanding grammar induction. In Proceedings
Interspeec, Lyon (2013).

[32] Lee, C.-y., and Glass, J. R. A transcription task for crowdsourcing with automatic
quality control. In Interspeech (2011), pp. 3041–3044.

[33] Levin, E., Pieraccini, R., and Eckert, W. Using markov decision process
for learning dialogue strategies. In Acoustics, Speech and Signal Processing, 1998.
Proceedings of the 1998 IEEE International Conference on (1998), vol. 1, IEEE,
pp. 201–204.

[34] Litman, D. J., and Silliman, S. Itspoke: An intelligent tutoring spoken dia-
logue system. In Demonstration Papers at HLT-NAACL 2004 (2004), Association
for Computational Linguistics, pp. 5–8.

[35] Liu, S., Seneff, S., and Glass, J. A collective data generation method for
speech language models. In Spoken Language Technology Workshop (SLT), 2010
IEEE (2010), IEEE, pp. 223–228.

[36] López-Cózar, R., Garćıa, P., D́ıaz-Verdejo, J. E., and Rubio, A. J. A voice
activated dialogue system for fast-food restaurant applications. In Eurospeech (1997).

[37] Martin, J. H., and Jurafsky, D. Speech and language processing, 2000.

[38] McGraw, I., Glass, J. R., and Seneff, S. Growing a spoken language interface
on amazon mechanical turk. In INTERSPEECH (2011), pp. 3057–3060.

[39] Pangos, A., Iosif, E., Potamianos, A., and Fosler-Lussier, E. Combining
statistical similarity measures for automatic induction of semantic classes. In Auto-
matic Speech Recognition and Understanding, 2005 IEEE Workshop on (2005), IEEE,
pp. 278–283.

99

http://www.isle.illinois.edu/synthesis/research_dialog.html
http://www.isle.illinois.edu/synthesis/research_dialog.html


[40] Parent, G., and Eskenazi, M. Speaking to the crowd: Looking at past achieve-
ments in using crowdsourcing for speech and predicting future challenges. In INTER-
SPEECH (2011), pp. 3037–3040.

[41] Pargellis, A., Fosler-Lussier, E., Lee, C.-H., Potamianos, A., and Tsai,
A. Auto-induced semantic classes. Speech communication 43, 3 (2004), 183–203.

[42] Pargellis, A., Fosler-Lussier, E., Potamianos, A., and Lee, C.-H. A com-
parison of four metrics for auto-inducing semantic classes. In Automatic Speech
Recognition and Understanding, 2001. ASRU’01. IEEE Workshop on (2001), IEEE,
pp. 218–221.

[43] Pieraccini, R., and Huerta, J. Where do we go from here? research and com-
mercial spoken dialog systems. In 6th SIGdial Workshop on Discourse and Dialogue
(2005).

[44] Pietquin, O., and Dutoit, T. A probabilistic framework for dialog simulation and
optimal strategy learning. Audio, Speech, and Language Processing, IEEE Transac-
tions on 14, 2 (2006), 589–599.

[45] Raux, A., Langner, B., Bohus, D., Black, A. W., and Eskenazi, M. Let’s
go public! taking a spoken dialog system to the real world. In in Proc. of Interspeech
2005 (2005), Citeseer.

[46] Ross, J., Irani, L., Silberman, M., Zaldivar, A., and Tomlinson, B. Who are
the crowdworkers?: shifting demographics in mechanical turk. In CHI’10 Extended
Abstracts on Human Factors in Computing Systems (2010), ACM, pp. 2863–2872.

[47] Scheffler, K., and Young, S. Automatic learning of dialogue strategy using
dialogue simulation and reinforcement learning. In Proceedings of the second inter-
national conference on Human Language Technology Research (2002), Morgan Kauf-
mann Publishers Inc., pp. 12–19.

[48] Siu, K.-C., and Meng, H. M. Semi-automatic acquisition of domain-specific se-
mantic structures. In EuroSpeech (1999).

[49] Sutton, S., Novick, D. G., Cole, R., Vermeulen, P., de Villiers, J.,
Schalkwyk, J., and Fanty, M. Building 10,000 spoken dialogue systems. In
Spoken Language, 1996. ICSLP 96. Proceedings., Fourth International Conference on
(1996), vol. 2, IEEE, pp. 709–712.

[50] toolkit, C. http://glaros.dtc.umn.edu/gkhome/cluto/cluto/overview/.

[51] toolkit, S. http://www.speech.sri.com/.

[52] Traum, D. R., and Allen, J. F. Discourse obligations in dialogue processing. In
Proceedings of the 32nd annual meeting on Association for Computational Linguistics
(1994), Association for Computational Linguistics, pp. 1–8.

[53] Turing, A. M. Computing machinery and intelligence. Mind 59, 236 (1950), 433–
460.

100

http://glaros.dtc.umn.edu/gkhome/cluto/cluto/overview/
http://www.speech.sri.com/


[54] Walker, M. A., Litman, D. J., Kamm, C. A., and Abella, A. Paradise:
A framework for evaluating spoken dialogue agents. In Proceedings of the eighth
conference on European chapter of the Association for Computational Linguistics
(1997), Association for Computational Linguistics, pp. 271–280.

[55] Wang, W. Y., Bohus, D., Kamar, E., and Horvitz, E. Crowdsourcing the ac-
quisition of natural language corpora: Methods and observations. In Spoken Language
Technology Workshop (SLT), 2012 IEEE (2012), IEEE, pp. 73–78.

[56] Yang, Z., Li, B., Zhu, Y., King, I., Levow, G., and Meng, H. Collection of
user judgments on spoken dialog system with crowdsourcing. In Spoken Language
Technology Workshop (SLT), 2010 IEEE (2010), IEEE, pp. 277–282.

[57] Zaidan, O. F., and Ganitkevitch, J. An enriched mt grammar for under $100.
In Proceedings of the NAACL HLT 2010 Workshop on Creating Speech and Lan-
guage Data with Amazon’s Mechanical Turk (2010), Association for Computational
Linguistics, pp. 93–98.

[58] Zhu, Y., Yang, Z., Meng, H., Li, B., Levow, G., and King, I. Using finite
state machines for evaluating spoken dialog systems. In Spoken Language Technology
Workshop (SLT), 2010 IEEE (2010), IEEE, pp. 478–483.

[59] Zue, V., Seneff, S., Glass, J. R., Polifroni, J., Pao, C., Hazen, T. J., and
Hetherington, L. Juplter: a telephone-based conversational interface for weather
information. Speech and Audio Processing, IEEE Transactions on 8, 1 (2000), 85–96.

[60] Zue, V., Seneff, S., Polifroni, J., Phillips, M., Pao, C., Goodine, D.,
Goddeau, D., and Glass, J. Pegasus: A spoken dialogue interface for on-line air
travel planning. Speech Communication 15, 3 (1994), 331–340.

101


	List of Figures
	List of Tables
	List of abbreviations
	Introduction
	Motivation
	Background
	The task
	Contribution
	Thesis outline

	Theoretical Background
	Human Computer Interaction
	Language modeling
	Context - free Grammars
	Natural Language Parsing
	Summary

	Previous Work
	Spoken Dialogue Systems
	Introduction
	Characteristics of a SDS
	Previous works on Spoken Dialogue Systems 
	Comparison with this thesis work

	Crowdsourcing
	Introduction
	Crowdflower
	Quality control
	NLP tasks

	Spoken Dialogue Systems & Crowdsourcing
	Comparison with this thesis work

	Grammar Induction
	Introduction
	Previous work in Grammar Induction
	Comparison with this thesis work

	Summary

	Definition of Crowdsourcing tasks & Pilot study
	Introduction to the design of Crowdsourcing tasks
	Design of Crowdsourcing tasks
	Pilot process
	Method
	Analysis of collected data

	Conclusions
	Summary

	Design
	User Interface
	Design of the questions
	Parameter definition
	Sentences generation

	Summary

	Data Collection and Data Analysis
	Collection process
	Data analysis
	Filters
	Grammar Induction
	Parser analysis
	Perplexity
	Design success metric
	Meta-data analysis

	Summary

	Conclusions and Future Work
	Conclusions
	Future Work

	Initial Questions designed per task
	Distribution of the Parameters
	Crowdflower and UI 

