
Technical University of Crete, Greece

School of Electronic and Computer Engineering

Robust Localization

for the RoboCup Standard Platform League

Nikolaos Kargas

Thesis Committee

Associate Professor Michail G. Lagoudakis (ECE)

Professor Minos Garofalakis (ECE)

Assistant Professor Aggelos Bletsas (ECE)

Chania, September 2013

http://www.tuc.gr
http://www.ece.tuc.gr

Nikolaos Kargas ii September 2013

Πολυτεχνειο Κρητης

Σχολη Ηλεκτρονικων Μηχανικων και Μηχανικων Υπολογιστων

Αξιόπιστος Εντοπισμός Θέσης

για το Πρωτάθλημα Standard Platform

του RoboCup

Νικόλαος Κάργας

Εξεταστική Επιτροπή

Αναπληρωτής Καθηγητής Μιχαήλ Γ. Λαγουδάκης (ΗΜΜΥ)

Καθηγητής Μίνως Γαροφαλάκης (ΗΜΜΥ)

Επίκουρος Καθηγητής ΄Αγγελος Μπλέτσας (ΗΜΜΥ)

Χανιά, Σεπτέμβριος 2013

http://www.tuc.gr
http://www.ece.tuc.gr

Nikolaos Kargas iv September 2013

Abstract

RoboCup is an international competition that promotes research in the field of Robotics

and Artificial Intelligence and focuses mainly on the game of soccer. In the Standard Plat-

form League (SPL) all teams use identical robots, namely the Aldebaran NAO humanoid

robots and focus on software development aiming to develop fully autonomous robots. A

key aspect of robot autonomy is the ability of self-localization. Robot localization is the

process of determining the pose (position and orientation) of a robot relative to a given

map of the environment with known static landmarks. Robots operating in the SPL

league compete on a symmetric field of fixed size with same-colored goals and field lines.

Localization can be quite challenging, because of the high uncertainty in locomotion,

due to hardware failures, as well as in object recognition, due to landmark ambiguities.

This thesis addresses the problem of self-localization in SPL relying on extended Kalman

filtering. Our localization algorithm uses observations corresponding to field landmarks

and odometry information and provides an estimate for the robot’s pose in the field. To

deal with the problem of data association, a multiple-hypothesis tracking approach has

been applied along with a merging procedure to avoid excessive growth of hypotheses.

An augmented state with three odometry error parameters is used to cope with odometry

errors; the error parameters are estimated dynamically and individually for each robot

along with its pose, as part of the filtering process. The proposed localization approach

offers more accurate results and is computationally more efficient compared to a previous

approach based on particle filters. The output of our localization module is used in our

RoboCup team “Kouretes” as input to the module estimating the global game state,

which in turn is used for developing game strategies and assigning appropriate roles to

each robot in the team.

Nikolaos Kargas vi September 2013

Περίληψη

Το RoboCup είναι ένας διεθνής ρομποτικός διαγωνισμός ο οποίος προωθεί την έρευνα

στους τομείς της ρομποτικής και της τεχνητής νοημοσύνης και επικεντρώνεται κυρίως στο

παιχνίδι του ποδοσφαίρου. Στο πρωτάθλημα Standard Platform League (SPL) όλες οι

ομάδες χρησιμοποιούν πανομοιότυπα ρομπότ, τα ανθρωποειδή ρομπότ Aldebaran Nao και

επικεντρώνονται στην ανάπτυξη λογισμικού με σκοπό την δημιουργία πλήρως αυτόνομων

ρομπότ. Βασική προϋπόθεση για την δημιουργία αυτόνομων ρομπότ είναι η δυνατότητα εν-

τοπισμού θέσης (συντεταγμένες και προσανατολισμός), δηλαδή η διαδικασία καθορισμού της

θέσης του στο περιβάλλον βάσει κάποιων γνωστών σταθερών αντικειμένων. Τα ρομπότ στο

πρωτάθλημα SPL αγωνίζονται σε ένα συμμετρικό γήπεδο καθορισμένου μεγέθους, το οποίο

περιέχει δύο τέρματα ίδιου χρώματος και διαγράμμιση με λευκές γραμμές. Το πρόβλημα του

εντοπισμού θέσης είναι αρκετά απαιτητικό λόγω της αβεβαιότητας στην κίνηση (αστοχία υ-

λικού) και στην αναγνώριση αντικειμένων (αμφισημία σταθερών αντικειμένων). Η παρούσα

διπλωματική εργασία ασχολείται με το πρόβλημα του αυτο-εντοπισμού θέσης βασιζόμενη σε

εκτεταμένα φίλτρα Kalman (extended Kalman filters). Ο αλγόριθμος που υλοποιήθηκε

δέχεται ως είσοδο πληροφορίες για τα αντικείμενα που έχουν αναγνωρισθεί (παρατηρήσεις)

και πληροφορίες για την μετακίνηση του ρομπότ (οδομετρία) και παρέχει μία εκτίμηση για την

θέση του στο γήπεδο. Για την αντιμετώπιση του προβλήματος της συσχέτισης αντικειμένων

και παρατηρήσεων έχει προστεθεί η δυνατότητα παρακολούθησης πολλαπλών υποθέσεων

(multiple hypotheses tracking) σε συνδυασμό με μια διαδικασία συγχώνευσης για την α-

ποφυγή της υπερβολικής αύξησης των παραγόμενων υποθέσεων. Η εκτιμώμενη κατάσταση

επαυξάνεται με τρεις μεταβλητές που μοντελοποιούν τα συστηματικά σφάλματα στο σύστημα

οδομετρίας του ρομπότ. Αυτές εκτιμώνται δυναμικά και ατομικά για κάθε ρομπότ παράλληλα

με τη θέση του, ως μέρος της διαδικασίας εκτίμησης. Η προτεινόμενη μέθοδος προσφέρει

πιο ακριβή αποτελέσματα και έχει καλύτερη υπολογιστική απόδοση σε σύγκριση με μια

προηγούμενη μέθοδο που βασιζόταν σε φίλτρα σωματιδίων. Η εκτίμηση του αλγορίθμου

μας χρησιμοποιείται στην ομάδα «Κουρήτες» ως είσοδος για την από κοινού εκτίμηση της

καθολικής κατάστασης του παιχνιδιού, η οποία με την σειρά της χρησιμοποιείται για την

ανάπτυξη στρατηγικών και την ανάθεση ρόλων σε κάθε ρομπότ της ομάδας.

Nikolaos Kargas viii September 2013

Acknowledgements

First, I would like to thank my advisor Michail G. Lagoudakis for his trust and

guidance during the course of this thesis.

Next, I would like to thank the members of team “Kouretes”, namely Lefteris Chatzi-

laris, Manolis Orfanoudakis, Nikos Kofinas, Nikos Pavlakis, Stelios Piperakis, and Vagelis

Michelioudakis, who supported and shared with me some great ideas.

My friends from Chania and Irakleio, Eleni (Bouklou), George (E-Senin), Eleni (Paoki),

Katerina (Chan...), Kostas (Bouclas), Marinio , Nikolas, and Billy. Together we had some

amazing moments during the last six years.

Last, but not least, I would like to thank my family for their love, support, and

constant encouragement.

Nikolaos Kargas x September 2013

Contents

1 Introduction 1

1.1 Thesis Contribution . 2

1.2 Thesis Outline . 3

2 Background 5

2.1 RoboCup . 5

2.1.1 Standard Platform League . 6

2.1.2 Aldebaran Nao Humanoid Robot 7

2.2 RoboCup SPL Team Kouretes . 10

2.2.1 Monas Software Architecture . 11

2.3 Mobile Robot Localization . 14

2.3.1 Robot Pose . 15

2.3.2 Motion Model . 15

2.3.3 Sensor Model . 17

2.4 Pose Estimation . 17

2.4.1 Bayes Filter . 17

2.4.2 Particle Filter . 18

2.4.3 Kalman Filter . 20

2.4.4 Extended Kalman Filter . 21

3 Problem Statement 25

3.1 Robot Localization in RoboCup . 25

3.2 Related Work . 27

3.2.1 Kalman Filter Approaches . 27

3.2.2 Particle Filter Approaches . 29

3.2.3 Constraint Localization Approaches 29

Nikolaos Kargas xi September 2013

CONTENTS

3.2.4 Hybrid Approaches . 29

4 Our Approach 31

4.1 Prediction Step . 32

4.2 Update Step . 34

4.3 Multiple Hypothesis Tracking . 36

4.3.1 Hypothesis Representation . 37

4.3.2 Initialization . 38

4.3.3 Incorporating Odometry . 39

4.3.4 Incorporating Observations . 40

4.4 Merging Hypotheses . 42

4.5 Odometry Calibration . 44

4.6 The Proposed Algorithm . 47

5 Results 51

5.1 Algorithm Accuracy . 52

5.2 Algorithm Performance . 54

5.3 Multi-Hypothesis Tracking Results . 55

5.4 Odometry Calibration Results . 56

6 Conclusion 59

6.1 Conclusion . 59

6.2 Future Work . 59

6.2.1 Additional Landmarks . 59

6.2.2 Vision System Calibration . 60

References 65

Nikolaos Kargas xii September 2013

List of Figures

2.1 Standard Platform League at RoboCup 2013 7

2.2 Aldebaran Nao v3.3 (Academic edition) components 8

2.3 Embedded and desktop software for the Nao robot 9

2.4 The NAOqi process . 10

2.5 Team Kouretes at RoboCup 2013 in Eindhoven, The Netherlands 11

2.6 The pose of a mobile robot in a planar environment 16

3.1 Specifications of the SPL 2013 field and dimensions in mm 26

4.1 Actual robot trace and reported odometry for a straight walk command . 32

4.2 Odometry motion model . 33

4.3 Observation of landmark at (lx, ly) from robot at pose (x, y, θ) 35

4.4 Hypotheses splitting after two ambiguous observations 37

4.5 Belief initialization for one robot in Ready state 39

4.6 Predetermined positions for manual placement of both teams in Set state 40

4.7 Initial (left) and resulting (right) hypotheses with an ambiguous goalpost 42

4.8 Hypotheses before (left) and after (right) merging 44

5.1 Estimated traces of MHT-EKF and MCL algorithm 52

5.2 Sequence of walk commands for comparing MHT-EKF and MCL estimates 53

5.3 Final poses of four representative executions 53

5.4 Execution times of MHT-EKF and MCL algorithms during a run 54

5.5 Estimated robot pose after 8 update steps with a single-hypothesis EKF 55

5.6 Estimated robot pose after 8 update steps with a multi-hypothesis EKF . 56

5.7 Estimated pose traces with and without odometry calibration 57

5.8 Evolution of estimated values of odometry error parameters 58

Nikolaos Kargas xiii September 2013

LIST OF FIGURES

Nikolaos Kargas xiv September 2013

List of Algorithms

1 Bayes Filter Algorithm . 18

2 Monte-Carlo Localization Algorithm . 20

3 Kalman Filter Algorithm . 21

4 Extended Kalman Filter Algorithm . 22

5 MHT-EKF robot localization algorithm 48

Nikolaos Kargas xv September 2013

LIST OF ALGORITHMS

Nikolaos Kargas xvi September 2013

Chapter 1

Introduction

The RoboCup Competition is an international annual robotics competition which aims to

promote Robotics and Artificial Intelligence research. RoboCup Soccer is one of the five

RoboCup divisions and focuses mainly on the game of soccer. The research goals involve

cooperative multi-robot and multi-agent systems in dynamic adversarial environments.

All the participating teams have to find real-time solutions to some of the most challenging

problems in robotics, such as perception, cognition, action, and coordination.

The Standard Platform League (SPL) constitutes one of the RoboCup Soccer leagues.

The participating teams are restricted to use the same hardware platform, the Aldebaran

Nao humanoid robot, and therefore concentrate on software development. They aim to

build a fully autonomous team of robots that are able to plan and act without any human

interaction in order to achieve their common goal. One of the main problems that needs

to be addressed in this context is robot self-localization. Localization is a problem of state

estimation, where the robot has to estimate its pose (state) relative to the environment.

To accomplish this task, the robot has to exploit information provided by its perceptions

and actions.

In RoboCup Soccer competitions it is essential for a robot to know its pose as most

of the decisions that has to make depend on it. A simple example would be the correct

positioning to support a teammate, defend its own half of the field, or kick the ball

into the right direction, i.e. towards the opponent goal. The localization task must be

performed on-board, in real time, on the limited robot CPU and robustly, dealing with

noisy, and even incorrect, sensing.

Nikolaos Kargas 1 September 2013

1. INTRODUCTION

1.1 Thesis Contribution

This thesis describes a new approach developed for localization in our RoboCup team

based on an Extended Kalman Filter (EKF) that replaced our previously Monte-Carlo

localization, also known as particle filter localization.

Our localization module integrates odometry and observations information, estimat-

ing the pose of the robot at any time. The initial pose of the robot in the field is approx-

imately known, as it is limited to a small number of candidate field areas. Therefore, the

robot must disambiguate its hypotheses about these initial poses and track afterwards

its pose maintaining a reliable belief using all the available information. At each time

step a prediction and an update process are executed; the former estimates the new pose

of the robot based on the previous pose and the information about the actions taken in

that time step, while the latter refines this estimate using information provided by the

observations made in that time step. The prediction step requires a motion model, while

the update step requires a sensor model.

The colors of the two goals in the SPL field used to be distinct (cyan and yellow),

however, since 2012, it was decided that they will be uniformly colored yellow, leading to a

fully symmetric field and thus to ambiguous landmark observations. This ambiguity leads

to landmark association issues during the update step. In our approach, multiple filters

are used to track different hypotheses dealing with the landmark association problem.

To overcome the exponential growth of these filters, the ones with similar estimations are

merged based on a Mahalanobis distance metric to ensure that their number does not

exceed a predefined threshold.

The locomotion actions are taken into account in the prediction step through open-

loop computations within the motion model, known as odometry, which estimate changes

in robot pose. The rather inaccurate estimates provided by odometry led us into investi-

gating ways of calibrating robot odometry individually for each robot, so that the robot

can predict poses over longer periods of time, especially when observation information

is not available. The state to be estimated, apart from robot pose, was augmented with

three more state variables related to tunable parameters of the motion model; their values

are estimated online in real time and are used within the motion model in the prediction

step of the algorithm for accurate odometry computations.

Nikolaos Kargas 2 September 2013

1.2 Thesis Outline

The new localization module yields more accurate results compared to the previous

approach and is computationally efficient for on-board execution. In addition, it enables

the easier integration of the individual robot beliefs into a global, shared world model,

which is used to support the development of team strategies.

1.2 Thesis Outline

In Chapter 2 we present all the background information needed for this thesis. We give

an overview of the RoboCup Soccer competition, the Aldebaran Nao humanoid robot,

team Kouretes, and our software architecture Monas. Furthermore, we provide basic

information about localization and filtering. In Chapter 3 we state our robot localization

problem related to the RoboCup competition and the SPL and we refer to different

approaches that have been used by other teams. In Chapter 4 we describe our robust self-

localization method which is based on extended Kalman filtering and augmented states.

In Chapter 5 the performance of the proposed approach is evaluated and compared with

our previous localization method. Finally, Chapter 6 acts as an epilogue for this thesis,

presenting our conclusions along with future improvements.

Nikolaos Kargas 3 September 2013

1. INTRODUCTION

Nikolaos Kargas 4 September 2013

Chapter 2

Background

2.1 RoboCup

The RoboCup competition is an international annual robotics competition inspired by

Hiroaki Kitano in 1993 [1] and established in 1997. Its goal is to promote the research

fields of artificial intelligence, multi-agent systems, and robotics. Participating teams

focus on developing fully autonomous agents capable of operating into dynamic envi-

ronments. The official goal of the project as stated by the RoboCup Federation is as

follows:

“By mid-21st century, a team of fully autonomous humanoid robot soccer

players shall win the soccer game, complying with the official rule of the FIFA,

against the winner of the most recent World Cup”.

While this ambitious objective remains open, RoboCup has since expanded into other

relevant application domains based on the needs of modern society. Today, RoboCup

covers the following themes:

RoboCup Soccer: The main focus of the RoboCup competitions is the game of

football/soccer, where the research goals concern cooperative multi-robot and multi-

agent systems in dynamic adversarial environments. All robots in this league are fully

autonomous.

RoboCup Rescue: The intention of the RoboCup Rescue division is to promote

research and development of highly mobile, dexterous, and fully- or semi- autonomous

robots for search and rescue missions.

Nikolaos Kargas 5 September 2013

2. BACKGROUND

RoboCup @Home: This division aims at designing autonomous and naturally in-

teractive assistant robots that can help people in their daily lives at home and in public.

RoboCup @Work: It is a new competition in RoboCup that targets the use of

robots in work-related scenarios. It aims to foster research and development that enables

use of innovative mobile robots equipped with advanced manipulators for current and

future industrial applications.

RoboCup Junior: It is designed to introduce RoboCup to primary and secondary

school children, as well as undergraduates who do not have the resources to get involved

in the senior leagues of RoboCup. The focus of the Junior League lies on education.

2.1.1 Standard Platform League

RoboCup Soccer consists of five different leagues (Humanoid, Middle Size, Simulation,

Small Size, and Standard Platform). In the Standard Platform League (SPL) all the

teams use identical robots, the Aldebaran Nao humanoid robot. The teams are prohibited

to make any changes to the hardware of the robot, neither can they interact with the

robots during the games, therefore they concentrate on algorithm design and software

development aiming at developing fully autonomous robots. The only interaction allowed

is among the robots in the field through the wireless network and between the robots

and the Game Controller, a computer that broadcasts information about the state of the

game (score, time, penalties, etc.).

Currently, the SPL games are conducted on a field with dimensions 6m × 9m (Fig-

ure 2.1). The field consists of a green carpet marked with white lines and two yellow

goals. The appearance of the field is similar to a real soccer field, but it is scaled to the

size of the robots. The ball is an orange street hockey ball. Each team consists of five

robots, one goal keeper and four field players. Each robot wears a colored jersey shirt

as team marker; jerseys are blue for one team and red for the other. The total game

time is 20 minutes and is broken in two halves; each half lasts 10 minutes. There are

strict rules about player pushing, ball holding, leaving the field, etc. enforced by human

referees; violation of theses rules results in player penalizations. The complete rules of

the SPL games are stated in detail in the RoboCup Standard Platform League (Nao)

Rule Book [2].

Nikolaos Kargas 6 September 2013

2.1 RoboCup

Figure 2.1: Standard Platform League at RoboCup 2013

2.1.2 Aldebaran Nao Humanoid Robot

The hardware platform that is currently used for the standard platform league is Nao,

an integrated, programmable, medium-sized humanoid robot developed by Aldebaran

Robotics in Paris, France. The robot’s development began with the launch of Project

Nao [3] in 2004. In August 2007, Nao officially replaced Sony’s Aibo quadruped robot

in the RoboCup SPL. In the past few years Nao has evolved over several designs and

several versions.

Nao (version 3.3), shown in Figure 2.2, is a 58cm, 5kg humanoid robot. The Nao robot

carries a fully capable computer on-board with an x86 AMD Geode processor at 500 MHz,

256 MB SDRAM, and 2 GB flash memory running an Embedded Linux distribution. It is

powered by a 6-cell Lithium-Ion battery which provides about 30 minutes of continuous

operation and communicates with remote computers via an IEEE 802.11g wireless or a

wired ethernet link.

Nao RoboCup edition has 21 degrees of freedom; 2 in the head, 4 in each arm, 5

in each leg and 1 in the pelvis (there are two pelvis joints which are coupled together

Nikolaos Kargas 7 September 2013

2. BACKGROUND

Figure 2.2: Aldebaran Nao v3.3 (Academic edition) components

on one servo and cannot move independently). Nao, also, features a variety of sensors.

Two cameras are mounted on the head in vertical alignment providing non-overlapping

views of the lower and distant frontal areas, but only one is active each time and the

view can be switched from one to the other almost instantaneously. Each camera is a

640× 480 VGA devise operating at 30fps. Four sonars (two emitters and two receivers)

on the chest allow Nao to sense obstacles in front of it. In addition, the Nao has a rich

inertial unit, with one 2-axis gyroscope and one 3-axis accelerometer, in the torso that

provides real-time information about its instantaneous body movements. Two bumpers

located at the tip of each foot are simple ON/OFF switches and can provide information

on collisions of the feet with obstacles. Finally, an array of force sensitive resistors on

each foot delivers feedback of the forces applied to the feet, while encoders on all servos

record the actual values of all joints at each time.

Aldebaran Robotics has equipped Nao with both embedded and desktop software [4]

to be used as a base for further development (Figure 2.3). The embedded software,

Nikolaos Kargas 8 September 2013

2.1 RoboCup

Figure 2.3: Embedded and desktop software for the Nao robot

running on the motherboard located in the head of the robot, includes an embedded

GNU/Linux distribution and NAOqi, the main proprietary software that runs on the

robot and controls it. Nao’s desktop software includes Choregraphe, a visual program-

ming application which allows the creation and the simulation of animations and behav-

iors for the robot before the final upload to the real Nao, and Telepathe which provides

elementary feedback about the robot’s hardware and a simple interface to accessing its

camera settings.

As far as the NAOqi framework is concerned, it is cross-platform, cross-language,

and provides introspection which means that the framework knows which functions are

available in the different modules and where. It provides parallelism, resources, synchro-

nization, and events. NAOqi, also, allows homogeneous communication between different

modules (motion, audio, video), homogeneous programming, and homogeneous informa-

tion sharing. Software can be developed in C++, Python, and Urbi. The programmer

can state which libraries have to be loaded when NAOqi starts via a preference file called

autoload.ini. The available libraries contain one or more modules, which are typically

classes within the library and each module consists of multiple methods (Figure 2.4).

Nikolaos Kargas 9 September 2013

2. BACKGROUND

Figure 2.4: The NAOqi process

2.2 RoboCup SPL Team Kouretes

Team Kouretes is the RoboCup team of the Technical University of Crete and currently

the only RoboCup SPL team founded in Greece. The team was founded in 2006 and par-

ticipates in the main RoboCup competition ever since in various leagues (Four-Legged,

Standard Platform, MSRS, Webots), as well as in various local RoboCup events (German

Open, Mediterranean Open, Iran Open, RC4EW, RomeCup) and RoboCup exhibitions

(Athens Digital Week, Micropolis, Schoolfest). Distinctions of the team include: 2nd

place in MSRS at RoboCup 2007; 3rd place in SPL-Nao, 1st place in SPL-MSRS, among

the top 8 teams in SPL-Webots at RoboCup 2008; 1st place in RomeCup 2009; 6th place

in SPL-Webots at RoboCup 2009; 2nd place in SPL at RC4EW 2010; and 2nd place

in SPL Open Challenge Competition at RoboCup 2011 (joint team Noxious-Kouretes).

In the RoboCup 2012 competition, the team succeeded to proceed to the second round-

robin round and rank among the top-16 SPL teams in the world. Recently, the team

participated in AutCup 2012, in RoboCup Iran Open 2013, and in the RoboCup 2013

competition in Eindhoven (Figure 2.5). The members of the team are senior undergrad-

uate and postgraduate ECE students of the Technical University of Crete working on

Nikolaos Kargas 10 September 2013

2.2 RoboCup SPL Team Kouretes

Figure 2.5: Team Kouretes at RoboCup 2013 in Eindhoven, The Netherlands

their diploma thesis on RoboCup-related topics.

Kouretes started developing their own robotic software framework in 2008 and the

code is constantly growing and gets maintained ever since. The team’s publicly-available

code repository1 includes a custom software architecture, a custom communication frame-

work, a graphical application for behavior specification, and modules for object recog-

nition, state estimation, obstacle avoidance, behavior execution, and team coordination,

which are briefly described below.

2.2.1 Monas Software Architecture

Monas [5] is a flexible software architecture which provides an abstraction layer from

the hardware platform and allows the synthesis of complex robot software as XML-

specified Monas modules, Provider modules, and/or Statechart modules. Monas modules,

the so-called agents, focus on specific functionalities and each one of them is executed

independently at any desired frequency completing a series of activities at each execution.

1https://github.com/kouretes/Monas

Nikolaos Kargas 11 September 2013

https://github.com/kouretes/Monas

2. BACKGROUND

The base activities, that an agent may consist of, are described briefly below:

• Vision [6] is a light-weight image processing method for humanoid robots, via which

Kouretes team has accomplished visual object recognition. The vision module

determines the exact camera position in the 3-dimensional space and subsequently

the view horizon and the sampling grid, so that scanning is approximately uniformly

projected over the ground (field). The identification of regions of interest on the

pixels of the sampling grid follows next utilizing an auto-calibrated color recognition

scheme. Finally, detailed analysis of the identified regions of interest seeks potential

matches for corresponding target objects. These matches are evaluated and filtered

by several heuristics, so that the best match (if any) in terms of color, shape, and

size for a target object is finally extracted. Then, the corresponding objects are

returned as perceived, along with an estimate of their current distance and bearing.

Currently the detectable objects are the ball and the field goals.

• LocalWorldState is the end product of this thesis; it is responsible for estimating

and providing the local belief of each robot and operates on the outcomes of the

Vision activity. Details will be provided in Chapters 4 and 5.

• SharedWorldModel [7] is the activity which combines the local beliefs of all robots

to create a common and shared estimation of the current state of the world (robot

poses within the field, location of the ball, etc.) consistent with these local beliefs.

The communication between the robots is accomplished through our communica-

tion framework, Narukom.

• PathPlanning [8] is the activity which accomplishes path planning with obstacle

avoidance by first building a local, polar, obstacle occupancy map, which is updated

constantly with real-time sonar information, taking into consideration the robot’s

locomotion. Afterwards, an A* search algorithm is used for path planning, the

outcome of which suggests an obstacle-free path for guiding the robot to a desired

destination. The way-points of the planned path are finally translated into walk

commands to guide the robot along the path.

• Behavior is the activity which implements the desired robotic behavior. It oper-

ates on the outcomes of the Vision, LocalWorldState, ObstacleAvoidance and

Nikolaos Kargas 12 September 2013

2.2 RoboCup SPL Team Kouretes

SharedWorldModel activities and decides which one is the most appropriate ac-

tion to be executed next (walk, kick, etc.). Locomotion actions are passed to the

PathPlanning activity for obstacle-free navigation, while motion actions are sent

to the MotionController activity for execution. Behavior also includes a separate

module which is responsible for determining a team strategy and assigning a role

to each robot in the team [9]. This coordination mechanism dynamically selects

the most appropriate roles depending on the robots’ belief about the global world

state, provided by the SharedWorldModel activity.

• HeadController manages the movements of the robot head (camera). It receives

the desired commands from the Behavior activity.

• MotionController is used for managing and executing robot locomotion commands

and special actions.

• RobotController handles external signals on the game state.

• LedHandler controls the robot LEDs (eyes, ears, chest button, feet).

Provider modules accomplish the complete decoupling of the robotic hardware by

collecting and filtering measurements from the robot sensors and cameras and forming

them as messages in order to be utilized as input data by any interested Monas agents.

Each provider module can be executed independently and at any desired frequency.

Custom Forward and Inverse Kinematics [10, 11], designed specifically for the Nao

humanoid robot, have been implemented as an independent software library optimized

for speed and efficiency. The library is currently being used in other team projects, such

as omni-directional walk engine and dynamic kick engine.

Statechart modules, which offer an alternative intuitive graphical specification of

robot behavior, have also been integrated into Monas [12]. Kouretes Statechart En-

gine (KSE) [13, 14] is our own graphical tool for designing and editing statecharts for

robot behavior. Statecharts are automatically transformed into code and are executed

on-board using a generic multi-threaded statechart engine, which provides the required

concurrency and meets the real-time requirements of the activities on each robot.

Nikolaos Kargas 13 September 2013

2. BACKGROUND

Robot communication is accomplished through Narukom [15], the communication

framework developed for the needs of the team’s code and it is based on the publish/-

subscribe messaging pattern. Narukom supports multiple ways of communication, in-

cluding local communication among the Monas modules, the Providers modules, and the

Statechart modules that constitute the robot software, and remote communication via

multicast connection among multiple robot nodes and among robot and external com-

puter nodes. The information that needs to be communicated between nodes is formed

as messages which are tagged with appropriate topics and host IDs.

KMonitor [16] is a debugging tool created specifically for the Monas architecture that

takes advantage of the modularity of Kouretes code and helps in finding errors or verifying

that newly implemented features work correctly. It also allows for the easy creation of

colortables, the transmission of remote commands over the network, etc.

2.3 Mobile Robot Localization

Localization is one of the most fundamental problems in mobile robot navigation. Robot

localization is the process of determining the position of a robot relative to a given map

of the environment exploiting information based on sensor readings. This information

typically comes from two different sources; motion sensors and perception sensors. Mo-

tion sensors provide data related to robot displacements (e.g odometer readings), while

perception sensors provide information related to the environment (e.g camera images).

The localization problem of a mobile robot can be divided into three main categories;

pose tracking, global localization, and kidnapped robot problem [17] with an

increasing degree of difficulty.

• Pose Tracking

Pose tracking is defined as the problem of localization of a moving robot, when the

initial pose of the robot is known. The goal is to compensate incremental errors

in odometry and maintain a reliable estimate about its pose. Therefore, external

sensors are needed to provide additional information related to the environment.

• Global Localization

Nikolaos Kargas 14 September 2013

2.3 Mobile Robot Localization

The problem when the robot has no information about its initial pose and has to

place itself to the map is known as global localization or absolute positioning. Ini-

tially, the robot must exploit multiple observations from the environment, possibly

while moving, to infer its current pose within the map. Once this is achieved, the

problem is reduced to pose tracking.

• Kidnapped robot problem

A variant of the global localization problem is the kidnapped robot problem. The

robot can be moved at any time, while it operates, and placed to a different location

in the map without any notification. It must have the ability to recognize such

changes and adapt accordingly.

Due to high uncertainty in motion and perception, often a probabilistic framework is

used, thus formulating localization as a Bayesian estimation problem.

2.3.1 Robot Pose

The state of a mobile robot in a planar environment at any given time step can be

described by a three-dimensional vector and is known as robot’s pose. The pose consists

of the two-dimensional planar coordinates x and y and its heading direction (orientation,

bearing) θ forming the following vector (at time step k):

xk =

xy
θ

 (2.1)

Robot poses, in general, are depicted with a circle, which denotes the coordinates (x, y),

and a small line, which denotes the orientation θ, as shown graphically in Figure 2.6. The

belief, which reflects the robot’s internal knowledge about its pose (state), is represented

by a probability distribution (belief) to express the uncertainty related to it denoted as

bel(xk).

2.3.2 Motion Model

A mobile robot needs locomotion mechanisms to be able to move around its environment.

There are several mechanisms to accomplish this, including two, four, and six legged

Nikolaos Kargas 15 September 2013

2. BACKGROUND

Figure 2.6: The pose of a mobile robot in a planar environment

locomotion and many configurations of wheeled locomotion. The way the robot moves

is directly connected to the localization problem, as it contains valuable information for

estimating its current pose.

Robots are usually aware of the controls (velocities, torques, currents, etc.) they

issue at any time, however their connection to the actual locomotion may be complex.

In some cases, this connection can be computed analytically. Alternatively, robots are

equipped with internal sensors that measure relative displacements and together with the

type of the locomotion mechanism give a strong indication of what kind of locomotion

action took place regardless of the actual control. This information about the locomotion

action that took place at any time step is available at the end of each time step (after

issuing controls) but is uniformly treated as the control input u whether it was computer

or measured. Given the current state of the robot and the current control input, the

robot makes a transition to a new state. The probabilistic model that describes these

transitions is called the motion model and is written as

P (xk|xk−1,uk) (2.2)

where x is the state of the robot. This model describes the posterior distribution of the

robot pose xk at time step k given that at time step k − 1 the robot was at pose xk−1

Nikolaos Kargas 16 September 2013

2.4 Pose Estimation

and performed the action uk. Note that this model adopts the Markov property, namely

transitions are independent of history given the latest state and control input.

2.3.3 Sensor Model

Motion sensors alone are insufficient for reliable localization. The robot must also be

equipped with external sensors that can provide additional information about features

or landmarks of the environment. These may include range finders, magnetic compasses,

cameras, or global positioning systems. Due to sensor uncertainty, the sensing of the

robot can also be described in probabilistic terms and is called sensor (or perceptual)

model.

P (zk|xk) (2.3)

where x is the state of the robot and z is the perceptual information (observation). The

sensor model describes the likelihood of making the observation zk at time step k given

the pose xk at the same time step. Again, this model adopts the Markov property, namely

observations are independent of history given the latest state.

2.4 Pose Estimation

The general localization problem can be described as a Bayesian estimation problem,

where the robot seeks to estimate a posterior distribution over the space of possible

poses conditioned on the available data (control inputs and observations). The method

that one should apply may differ depending on the environment the robot moves in,

the available resources (e.g. computational power, sensors), etc. In this section we will

describe the general estimation algorithm (Bayes filter) and three popular instantiations

used for mobile robot localization, namely particle, Kalman, and extended Kalman filters.

2.4.1 Bayes Filter

Probabilistic localization algorithms are variants of the Bayes filter [18]. The Bayes filter

recursively estimates the robot’s belief from the previous belief and the latest control in-

put and observations. The key idea is that the whole problem is to estimate a probability

Nikolaos Kargas 17 September 2013

2. BACKGROUND

density function over the state xk conditioned on data collected up to that time:

bel(xk) = p(xk|u1:k, z1:k) (2.4)

assuming some belief bel(x0) about the initial state. The data u1,u2, . . . ,uk denote the

control inputs (or odometer readings) and z1, z2, . . . , zk the observations at the corre-

sponding time steps. Applying Bayes rule, Equation 2.4 can be written as follows:

bel(xk) = p(xk|u1:k, z1:k)

=
p(zk|xk,u1:k, z1:k−1)p(xk|u1:k, z1:k−1)

p(zk|u1:k, z1:k−1)

= ηp(zk|xk,u1:k, z1:k−1)p(xk|u1:k, z1:k−1) (2.5)

where η is a normalization term to ensure that bel(xk) integrates to one. Bayes filters

assume that the environment is Markov, that is, past and future data are conditionally

independent, if one knows the current state. Making use of the Markov assumption,

Algorithm 1, which makes use of the motion and sensor models, is derived.

Algorithm 1 Bayes Filter Algorithm

1: for k = 1, 2, . . . , n do

2: bel(xk|k−1) =
∫
p(xk|xk−1,uk)bel(xk−1)dx

3: bel(xk|k) = p(zk|xk)bel(xk|k−1)
4: end for

5: return bel(xn|n)

The algorithm has two essential steps. The first step, called prediction, computes

the distribution of the current state after integrating the control information uk (Line

2). The second step, called update, corrects the predicted distribution using the latest

observation zk (Line 3). To implement the Bayes filter algorithm, one needs to know

the probability densities p(xk|xk−1,uk) and p(zk|xk) of the motion and sensor models

respectively, mentioned in Sections 2.3.2 and 2.3.3. Instantiations of the Bayes filter are

derived by choosing appropriate representations for the beliefs and the two models.

2.4.2 Particle Filter

The implementation of the Bayes filter in the continuous state space of mobile robot

localization may be challenging, if one cares about efficiency. The particle filter is a non-

Nikolaos Kargas 18 September 2013

2.4 Pose Estimation

parametric implementation of the Bayes filter. The first application of particle filters

in robot localization problem was introduced by W. Burgard and S. Thrun in 1999 and

became known as Monte Carlo Localization [17]. Monte Carlo localization is one of the

most popular algorithms in robotics, as it is able to solve both pose tracking and the

global localization problem and in some cases the kidnapped robot problem. The key

idea is the representation of the probability density using a set of N weighted samples

(particles).

Xk = {x1
k,x

2
k, . . . ,x

N
k } (2.6)

Each sample is represented by a tuple (x, y, θ, w) where x, y, θ is the robot pose (state)

and p a non-negative factor called importance factor (weight) denoting the probability

of a specific particle to be correct. The belief of the robot at time step k, bel(xk|k) is

constructed recursively from the belief bel(xk−1|k−1) one time step earlier and just like

the Bayes filter algorithm, Monte-Carlo localization proceeds in two steps. When the

robot moves, the N samples are propagated according to the motion model (prediction

step) and the resulting set represents the prior belief bel(xk|k−1). When an observation is

acquired, the importance factor of each sample is weighted by the sensor model (update

step) and the resulting set represents the updated belief bel(xk|k).

The last step of the algorithm implements what is called resampling or sequential

importance resampling [19]. The old set of particles is replaced by a new one formed by

sampling particles with replacement in accordance to their weights. Only the samples

with the highest weights are therefore more likely to be part of the next set. Resampling is

essential for keeping particles near the true state. After the resampling step, the weights

of all samples are reset to 1
N

. By adjusting the number of samples the desired balance

between accuracy and computational cost can be succeeded. The entire Monte Carlo

localization algorithm is shown in Algorithm 2.

Once the particles have converged to a single location, it is not possible for the al-

gorithm to recover, if this pose happens to be incorrect. The same problem arises when

the robot is moved and placed to another location of the map. An extension which is

often applied to the MCL algorithm is the injection of random samples to the particle

set at each iteration. Various methods exist for adding samples, most of them relying on

Nikolaos Kargas 19 September 2013

2. BACKGROUND

Algorithm 2 Monte-Carlo Localization Algorithm

1: for i = 1 to N do

2: xik = motion model (xik−1,uk)

3: wik = measurement model (zik,x
i
k)

4: Xk = Xk+ < xik, w
i
k >

5: end for

6: for i = 1 to N do

7: draw i with probability ∝ wik
8: add xik to Xk

9: end for

10: return bel(xk)

the sensor readings [18, 20, 21]. A comparison between different particle filter localiza-

tion methods, including the above, tested on Sony’s Aibo robots has been performed by

Gutmann and Fox [22].

2.4.3 Kalman Filter

The Kalman filter (KF) [23] provides a solution to the problem of estimating the state

of processes described by linear stochastic dynamic models in which the system and

measurement noises are white and Gaussian. The Kalman filter model assumes the true

state at time k is evolved from the state at k − 1 according to

xk = Fkxk−1 + Bkuk + wk (2.7)

Matrix F is a n × n matrix that relates the state xk−1 of the previous time step k − 1

to the state xk at the current time step k. Matrix B is the control-input model which

is applied to the control vector u and wk ∼ N(0,Q) is the zero-mean Gaussian process

noise.

The KF assumes that the measurements are linearly related to the state of the system

zk = Hkxk + vk (2.8)

where H is the sensor model, which maps the true state space into the observed space

and vk ∼ N(0,R) is the zero-mean Gaussian observation noise.

Nikolaos Kargas 20 September 2013

2.4 Pose Estimation

Algorithm 3 Kalman Filter Algorithm

1: Predict

2: x̂k|k−1 = Fkx̂k−1|k−1 + Bkuk

3: Pk|k−1 = FkPk−1|k−1F
>
k + Q

4: Update

5: ẑk = Hkx̂k|k−1

6: Sk = HkPk|k−1H
>
k + R

7: Kk = Pk|k−1H
>
k S
−1
k

8: x̂k|k = x̂k|k−1 −Kk(zk − ẑk)

9: Pk|k = Pk|k−1 −KkHkPk|k−1

10: return x̂k|k,Pk|k

The Kalman filter is a recursive estimator and consists of an iterative prediction-

correction process, shown in Algorithm 3. Here xk|k−1 denotes the a priori estimate of

the robot pose at time step k using all measurements until time step k − 1 and Pk|k−1

the a priori estimate error covariance. Matrix Kk is the Kalman gain and Sk is the

innovation (or residual) covariance. The resulting probability distribution p(xk|z1:k,u1:k)

is a Gaussian distribution N(xk; x̂k|k,Pk|k).

2.4.4 Extended Kalman Filter

When either the motion or sensor model is non-linear, the conditional probability density

functions are no longer Gaussian. This is true for the systems we study. Hence, Kalman

filter cannot be applied directly to the problem of robot localization. The extension to

the non-linear case is called the Extended Kalman Filter (EKF) [24] and is based on the

linearization of the system around the current state estimate. The success of the EKF

depends on how well the system is approximated by the linearization. The non-linear

equations describing the robot’s motion and sensor models are the following:

xk = f(xk−1,uk) + wk (2.9)

zk = h(xk) + vk (2.10)

where f and h are non-linear functions. We assume that the control input uk is also

corrupted by Gaussian noise pk ∼ N(0,Mk).

uk = utruek + pk (2.11)

Nikolaos Kargas 21 September 2013

2. BACKGROUND

Algorithm 4 Extended Kalman Filter Algorithm

1: Predict

2: x̂k|k−1 = f(x̂k−1|k−1,uk)

3: Pk|k−1 = FxPk−1|k−1F
>
x + FuMkF

>
u + Q

4: Update

5: ẑk = h(x̂k|k−1)

6: Sk = HxPk|k−1H
>
x + R

7: Kk = Pk|k−1H
>
x S
−1
k

8: x̂k|k = x̂k|k−1 −Kk(zk − ẑk)

9: Pk|k = Pk|k−1 −KkHkPk|k−1

10: return x̂k|k,Pk|k

The EKF linearizes 2.9 and 2.10 around the current estimate x̂k−1 and the current motion

command uk. Linearizing the state transition equation we get

xk = f(x̂k−1,uk) + Fx(xk−1 − x̂k−1) + Fu(u
true
k − uk) + wk (2.12)

where Fx and Fu are the Jacobians of the function f with respect to xk and uk respec-

tively.

Fx =
∂f(x,u)

∂x

∣∣∣∣
x̂k|k−1,uk

(2.13)

Fu =
∂f(x,u)

∂u

∣∣∣∣
x̂k|k−1,uk

(2.14)

The measurement equation is linearized following the same procedure

zk = h(x̂k−1) + Hx(xk−1 − x̂k−1) + vk (2.15)

Hx =
∂h(x)

∂x

∣∣∣∣
x̂k|k−1

(2.16)

The EKF uses the linear Equations 2.12 and 2.15 to estimate xk. As these equations are

linear, one can directly use the Kalman filter equations presented before. The extended

Kalman filter algorithm is shown in Algorithm 4.

EKF gives only an approximation of the optimal estimate. Other techniques us-

ing Gaussian distributions have been proposed in the literature, such as the Unscented

Nikolaos Kargas 22 September 2013

2.4 Pose Estimation

Kalman Filter (UKF) [25] that addresses some of the approximation issues of the EKF

and has been applied by several teams in RoboCup SPL. The UKF transformation uses

a set of deterministically chosen weighted samples that parametrize the mean and co-

variance of the belief. The system function is applied to each sample, which results in a

group of transformed points. The mean and covariance of this group of points are the

propagated mean and covariance. Since there is no linearization involved in the propa-

gation of the mean and covariance, the Jacobians of the system and measurement model

do not have to be calculated.

Nikolaos Kargas 23 September 2013

2. BACKGROUND

Nikolaos Kargas 24 September 2013

Chapter 3

Problem Statement

3.1 Robot Localization in RoboCup

Localization is one of the most fundamental problems in most robotic systems. In a

dynamic adversarial environment, like RoboCup, most of the decisions a robot needs to

make depend on its location. To reliably estimate its pose, a robot, as already stated,

has to exploit information provided by its sensors.

RoboCup SPL games take place on a 9× 6 field, according to the 2013 SPL rules [2].

The field is built on a total carpet area of length 10.4m and width 7.4m and includes

a number of static features (Figure 3.1), which may be used as landmarks: two same-

colored goals, the center circle, two penalty marks, several field lines, field-line corners,

and field-line T-junctions. These static landmarks, if correctly recognized, can play an

important role in the localization process. However, there is a high degree of perceptual

aliasing, because of the field symmetry. More specifically, some of these landmarks are

not unique and/or may be perceived the same from different locations of the field. The

teams competing in the SPL have implemented various methods of recognizing these

landmarks and extracting information about their type, distance, and bearing, which

acts as input to the localization algorithm.

The hardware platform currently used in the SPL, Aldebaran’s Nao humanoid robot,

has omni-directional walk capabilities, that is, it has the ability to move in any possible

direction on the ground with or without rotation. Several teams have implemented their

own walk engine, which is responsible for determining foot and/or arm trajectories in

order for the robot to execute a specific walk command. The expected robot movement

Nikolaos Kargas 25 September 2013

3. PROBLEM STATEMENT

AA

B F
E

H

C

D

G

I

I

ID Description Length

A Field length 9000

B Field width 6000

C Line width 50

D Penalty mark size 100

ID Description Length

E Penalty area length 600

F Penalty area width 2200

G Penalty mark distance 1300

H Center circle diameter 1500

I Border strip width 700

Figure 3.1: Specifications of the SPL 2013 field and dimensions in mm

can then be computed analytically and provided as odometry. In our team we currently

make use of the walk engine provided by Aldebaran Robotics, which reports odometry

information as described above.

Nao is also equipped with two CCD cameras which provide images of 640 × 480

pixels and operate at 30 fps. An image processing system is responsible for recognizing

objects of interest in the images and extracting information about their type, distance,

and bearing. Currently, our vision module is able to detect the ball and the two goals;

only the latter can be used as landmark for localization.

Nikolaos Kargas 26 September 2013

3.2 Related Work

The localization problem in RoboCup SPL is a special case of the global localization

problem, closer to the pose tracking problem. More specifically, the robot has some prior

knowledge about its initial pose, namely that this pose is restricted to a limited number of

candidate field areas, and therefore it doesn’t have to infer this pose from scratch, neither

does it know this pose precisely. These candidate field areas include: the two sides of

the own half of the field and certain predetermined poses within the own half of the field

used at kick-off. It is important for the robot to disambiguate its initial pose quickly and

track its pose thereafter, because after the switch to same-colored goals in 2012, the field

has become fully symmetric and it is difficult to recover from failures during the game.

Apart from its own pose, a robot must be able to track and quantify the positions of

moving objects, such as the ball or other robots. Their global position in the field can be

estimated by transforming their robot-relative position to the global coordinate frame.

Clearly, the accuracy of these estimations heavily depend the accuracy of the robot own

pose estimation. This information about the global positions of other objects can benefit

the team, if it is shared among the robots towards building a comprehensive estimate of

the global state by combining the individual beliefs.

Finally, team coordination and strategies have started to play an important role in

SPL games in recent years. The strategy a team will develop depends on the global state

of the game (ball location, team robot poses, opponent robot poses, etc.). Therefore, it

is essential for our robots to employ a robust localization method and maintain a correct

local belief, so that they can build an accurate global belief and acquire appropriate roles

towards a beneficial team strategy.

3.2 Related Work

Most localization algorithms which have been applied in the domain of RoboCup are

algorithms based on the Bayes filter, such as particle or Kalman filters. Below, an

overview of the most notable localization methods used in RoboCup Soccer SPL is given.

3.2.1 Kalman Filter Approaches

Team Austin Villa uses a multi-modal 7-dimensional Unscented Kalman Filter (UKF)

for localization [26]. The 7-dimensional filter is used to track both the pose of the robot

Nikolaos Kargas 27 September 2013

3. PROBLEM STATEMENT

along with the position and velocity of the ball on the plane. A multiple hypothesis

approach has been used, representing the belief by a weighted sum of N Gaussians. Each

of the N models has its own state estimate, covariance matrix, and a weight. Other teams

that rely on UKF for robot localization are Nao Devils [27] and RoboEireann [28].

Team Bembelbots also make use of a multi-modal Kalman filter [29]. Their vision

system is capable of detecting lines, corners, and the center circle which are used for

computing all likely positions of the robot in the field. These positions act as absolute

measurements for their Kalman filter. To solve the problem of field symmetry, they have

introduced two additional measurements: the use of infrared emission by the goalkeeper

and the fused ball position. Both these measurements aid the localization of field players

by providing a strong hint about their orientation.

Team NTU RoboPAL creates an augmented state, which contains the poses of all

robots of the team and information about the ball and other moving objects [30]. Their

robots perform EKF filtering over this augmented state. In the prediction step of the

algorithm, they use the odometry motion model for the teammate robots and they apply

a multiple model tracking approach for moving objects, as there is no odometry informa-

tion, to account for the motion mode uncertainty. In the update step of the algorithm,

three types of measurements are aggregated: relative information between the teammate

robots and the map, relative information between two teammate robots, and relative

information between teammate robots and moving objects. Before updating with the in-

coming observations, the data associations must be established. A maximum likelihood

data association algorithm is applied, with a threshold gating on the Mahalanobis dis-

tance between the incoming observation and the expected observation. Finally, tracks of

moving objects are initialized when new ones have been detected and others are pruned

when they have not been observed for a long time.

Team Runswift also uses a Kalman filter-based localization technique. In 2012, they

extended their work on field-line matching by implementing a variation of the Iterative

Closest Point (ICP) algorithm which can be used together with a Kalman filter as an

alternative to maximum likelihood data association [31]. The proposed algorithm itera-

tively examines the set of observed non-unique landmarks extracted from a frame trying

to come up with a single robot pose. At each iteration a new pose is estimated rotating

and translating the prior robot pose, to approximately minimize the squared positioning

error over all observed features simultaneously. If the mean squared error is sufficiently

Nikolaos Kargas 28 September 2013

3.2 Related Work

small, the robot pose estimate can then be provided as a measurement to the localization

filter.

3.2.2 Particle Filter Approaches

Team B-Human’s self-localization is realized by a particle filter implementation [32].

A number of extensions have been applied for improving localization performance such

as an efficient method for extracting robot poses from a particle set [33]. A particle

swarm optimization has also been used to optimize particle filter parameters [34]. In

recent years, different additional components have been added to their particle filter. For

achieving a higher precision, an Unscented Kalman Filter was recently implemented to

locally refine the particle filter’s estimate, a validation module compares recent landmark

observations to the estimated robot pose, and, finally, a side disambiguation method

enables self-localization to deal with the two yellow goals. Other teams that rely on a

particle filter for localization are Cerberus, DAInamite, Mi-Pal, and Northern Bites.

3.2.3 Constraint Localization Approaches

Team Humbolt investigates constraint-based techniques as alternatives to Bayesian ap-

proaches for localization [35]. The problem of localization is modeled as a constraint

satisfaction problem (CSP). The key idea is to restrict the domains of the desired vari-

ables, such as the pose of the robot, by taking the conjunction of all constraints resulting

from an image. The creation of the constraints is done as follows: constraints given by

distances to landmarks are defined as circular rings and constraints given by observed

field lines are defined by a set of rectangles and angles. Iteratively examining the con-

strains resulting from an observation, a set of possible poses that satisfy all the existing

constraints is derived. When the robot moves, the constraint boundaries are shifted to-

wards the movement direction and together with the sensor constraints at the current

time step provide a set of new possible poses.

3.2.4 Hybrid Approaches

Team SPI team combines Markov localization together with Kalman filters [36]. The

environment is divided into a probabilistic coarse grain grid and each of the cells of

Nikolaos Kargas 29 September 2013

3. PROBLEM STATEMENT

the grid has an associated probability which is updated using the available perceptual

information. This grid is used to define new locations in the environment where it

is appropriate to initialize a new extended Kalman filter. Once an extended Kalman

filter is created, it runs in parallel with the rest of the filters in the population. Each

filter independently incorporates motion and perceptual information. The robot pose is

selected among the filters by taking into account the Markovian grid. To control the

population dynamics additional operations regarding the combination and destruction of

the filters are applied.

Nikolaos Kargas 30 September 2013

Chapter 4

Our Approach

A new approach, based on Extended Kalman Filter (EKF), has been implemented for

our localization module, which replaced our previous Monte-Carlo localization approach

with particle filters. The benefit of EKF, besides being computationally more efficient,

is that it enables easier integration of robot and ball positions into a shared global state

model, which can be used for developing team strategies or informing uncertain robots

about the global state.

The localization algorithm that runs as a separate activity, called LocalWorldState,

is responsible for estimating and providing a local robot belief. This local robot belief

includes an estimate of the robot pose in the SPL field, which is described by a three-

dimensional vector:

xk =

xy
θ

 x ∈ [−5.2,+5.2]
y ∈ [−3.7,+3, 7]
θ ∈ [−π,+π]

(4.1)

where x and y are the Cartesian coordinates and θ is the orientation at time step k. The

algorithm consists of two main phases, prediction and update. In the prediction phase,

we estimate the resulting pose of the robot given its previous pose and the displacement

acquired from the odometry system. In the update phase, the robot uses information

from the observed landmarks (goals) to refine the estimate.

Given the state defined above, the system transitions and observations are described

by the following equations:

xk = f(xk−1,uk) + wk (4.2)

zk = h(xk) + vk (4.3)

Nikolaos Kargas 31 September 2013

4. OUR APPROACH

−2.5 −2 −1.5 −1 −0.5 0 0.5
−0.5

0

0.5

1

1.5

2

x [m]

y
 [

m
]

odometry

true motion

Walk command

Figure 4.1: Actual robot trace and reported odometry for a straight walk command

in which f(xk−1,uk) is a non-linear function that relates the previous pose xk−1 and the

odometry displacement uk to the current pose xk, and h(xk) is a non-linear function that

gives us the expected observation zk given the current pose estimate xk and the known

location of the landmark observed. The terms wk ∼ N(0,Q) and vk ∼ N(0,R) are the

motion and observation noise respectively. The key filtering steps (predict and update)

are described in the following sections.

4.1 Prediction Step

In this phase we calculate the pose estimate x̂k|k−1 and the covariance Pk|k−1 accord-

ing to the odometry motion model. The odometry provided by the robot is computed

based on the motion commands received without feedback from sensors, making it rather

inaccurate, thus it cannot be used alone for reliable navigation. Figure 4.1 shows the

discrepancy between the actual robot trace and the reported odometry for a straight

walk command; odometry “believes” that the robot moved on a straight line because of

the given command, whereas in reality the robot slipped to the left. Such inaccuracies

Nikolaos Kargas 32 September 2013

4.1 Prediction Step

Figure 4.2: Odometry motion model

are due to partial hardware failures, out-of-specs components, variable frictions, etc.

The robot odometry updates a pose x̄k with respect to an internal robot pose coor-

dinate system which is totally independent from and unrelated to our field coordinate

system. Therefore, we compute the change between consecutive poses x̄k−1 and x̄k in

the robot internal coordinate system to obtain the odometry displacement uk used in

our localization system. Robot movement in the interval [k − 1, k] is decomposed into

three variables; the change in distance δtrans, direction δdir, and rotation δrot (Figure 4.2).

These quantities that form the odometry displacement uk are obtained by the following

equations:

uk =

δtrans,kδdir,k
δrot,k

 =

 √
(x̄k − x̄k−1)2 + (ȳk − ȳk−1)2

atan2(ȳk − ȳk−1, x̄k − x̄k−1)− θ̄k−1
θ̄k − θ̄k−1

 (4.4)

Transforming uk into our field coordinate system, x̂k|k−1 can then be calculated as

x̂k|k−1 = f(x̂k−1|k−1,uk) = x̂k−1|k−1 +

δtrans,k cos(θ̂k−1|k−1 + δdir,k)

δtrans,k sin(θ̂k−1|k−1 + δdir,k)
δrot,k

 (4.5)

Nikolaos Kargas 33 September 2013

4. OUR APPROACH

The corresponding covariance matrix is updated according to

Pk|k−1 = FxPk−1|k−1F
>
x + FuMkF

>
u + Q (4.6)

where P is the state covariance matrix and represents the uncertainty of the estimated

state, M is the covariance matrix of the noise that corrupts the input, Q is a diagonal

matrix that represents the uncertainty of the model. Note that the diagonal form of

M and Q implies our assumption that the noise is independent in each of the three

dimensions. Matrices Fx and Fu are the Jacobians of the system. The Jacobian Fx is

the derivative of f(x,u) with respect to x evaluated at x̂k−1|k−1,uk:

Fx =
∂f(x,u)

∂x

∣∣∣∣
x̂k−1|k−1,uk

=

1 0 −δtrans,k sin(θ̂k−1|k−1 + δdir,k)

0 1 +δtrans,k cos(θ̂k−1|k−1 + δdir,k)
0 0 1

 (4.7)

The Jacobian Fu is the derivative of f(x,u) with respect to u evaluated at x̂k−1|k−1,uk:

Fu =
∂f(x,u)

∂u

∣∣∣∣
x̂k−1|k−1,uk

=

−δtrans,k sin(θ̂k−1|k−1 + δdir,k) cos(θ̂k−1|k−1 + δdir,k) 0

+δtrans,k cos(θ̂k−1|k−1 + δdir,k) sin(θ̂k−1|k−1 + δdir,k) 0
0 0 1

(4.8)

Mk =

a1δ2trans,k 0 0
0 a2δ

2
trans,k 0

0 0 a3δ
2
rot,k + a4δ

2
trans,k

 (4.9)

Q =

σ2
x 0 0

0 σ2
y 0

0 0 σ2
θ

 (4.10)

The parameters a1, a2, a3, and a4 of matrix M, as well as the values σx, σy, and σθ of

matrix Q have been estimated experimentally.

4.2 Update Step

The pose estimate made in the prediction step is updated using observations of fixed

landmarks. Each observation is represented by a vector z = [r, φ]>, where r is the

distance and φ the bearing of the observed landmark relative to robot’s local (egocentric)

coordinate frame (Figure 4.3). Each observation z is also associated with a specific

Nikolaos Kargas 34 September 2013

4.2 Update Step

Figure 4.3: Observation of landmark at (lx, ly) from robot at pose (x, y, θ)

landmark l, which is described by its fixed coordinates in the field (lx, ly). The expected

observation ẑk, given a pose estimate x̂k, is computed as follows:

ẑk = h(x̂k) =

[
r̂k
φ̂k

]
=

[√
(lxk − x̂k)2 + (lyk − ŷk)2

atan2(lyk − ŷk, lxk − x̂k)− θ̂k

]
(4.11)

The variables r̂k and φ̂k denote the expected distance and bearing to the observed land-

mark lk of observation zk made at time k. The actual observation zk is compared to the

predicted observation ẑk and used to obtain the updated state and covariance using the

Kalman gain matrix:

x̂k|k = x̂k|k−1 + Kk(zk − ẑk) = x̂k|k−1 + Kk

(
zk − h(x̂k|k−1)

)
(4.12)

Pk|k = Pk|k−1 −KkHkPk|k−1 (4.13)

The difference between the actual and the expected observation zk−ẑk is called innovation

or measurement residual. Matrix Kk is known as the optimal Kalman gain, because it

minimizes the a posteriori estimate error covariance and is computed as follows:

Kk = Pk|k−1H
>
k S
−1
k (4.14)

Nikolaos Kargas 35 September 2013

4. OUR APPROACH

where

Sk = HkPk|k−1H
>
k + R (4.15)

Hk =
∂h(x)

∂x

∣∣∣∣
x̂k|k−1

=

[
− (lxk−x̂k|k−1)√

q
− (lyk−ŷk|k−1)√

q
0

(lyk−ŷk|k−1)

q
− (lxk−x̂k|k−1)

q
−1

]
(4.16)

q = (lxk − x̂k|k−1)2 + (lyk − ŷk|k−1)2 (4.17)

R =

[
σ2
r 0

0 σ2
φ

]
(4.18)

The Jacobian matrix Hk contains the partial derivatives of the sensor model h with

respect to the state x, evaluated at the prior state estimate x̂k|k−1. Matrix R is a diagonal

matrix that represents the uncertainty of the observation, where we have assumed that

the noise is independent in each of the two dimensions. The quantities σ2
r and σ2

φ of

matrix R have been estimated experimentally.

Finally, assuming that landmark observations are conditionally independent we can

process multiple observations consecutively in case there are more than one landmark

visible in a frame.

4.3 Multiple Hypothesis Tracking

The extended Kalman filter described so far assumes that each observation made corre-

sponds to a unique landmark. However, landmark correspondences between observations

and the known map are often difficult to determine with certainty. For example, when

a robot observes only the lower part of a goalpost, it cannot determine its type (right

or left). Even if the whole post is visible it is not clear if it corresponds to the own- or

opponent- side goal of the field. The same applies to other landmarks, such as field-line

corners and field-line T-junctions. In this case the update step of the algorithm cannot

be applied without first associating the observation made to the correct landmark.

The observations currently used for localization in our team come from the two goals

in the field. When observing the upper part of a goalpost, the robot can report its type

(right or left), otherwise an ambiguous goalpost observation is reported. To cope with

Nikolaos Kargas 36 September 2013

4.3 Multiple Hypothesis Tracking

H0

H1

H3 H4

H2

H5 H6

Figure 4.4: Hypotheses splitting after two ambiguous observations

the data association problem, a Multiple Hypothesis Tracking (MHT) technique has been

applied [37].

The key idea behind MHT is to maintain a number of robot poses each one deriving

from a different measurement correspondence. More specifically, when an observation

is made, each existing hypothesis splits into multiple hypotheses, one for each possible

association. The resulting hypotheses are then split again, when new observations are

ambiguous and so on. The result is a tree structure (Figure 4.4). Each of the resulting

hypotheses is a separate extended Kalman filter, considering the corresponding pose of

the robot with a different Gaussian distribution.

4.3.1 Hypothesis Representation

Each hypothesis H(i) in the current pool of hypotheses (leaves of the tree) is defined by

a robot pose estimate x(i) and a corresponding covariance matrix, P(i). Each hypothesis

also has a weight attached to it, which measures the probability that the hypothesis is

correct, π(i).

H(i) = {x(i),P(i), π(i)} (4.19)

The Probability Density Function (PDF) of the robot pose can be approximated by a

Gaussian mixture

bel(xk) =

Nk∑
i=1

p
(
xk | H(i)

k

)
π
(i)
k (4.20)

Nikolaos Kargas 37 September 2013

4. OUR APPROACH

where Nk is the number of hypotheses at time step k and the weights satisfy

Nk∑
i=1

π
(i)
k = 1 (4.21)

The fact that the probabilities π
(i)
k at a given time step k sum up to 1 is equivalent to

assuming that one of the hypotheses is correct.

4.3.2 Initialization

The initialization of a robot’s belief depends on the game state as communicated by

the game controller in case wireless communication is available or by the robot button

interface.

• Ready State

Right before kick-off at the beginning of each half of the game (Ready state), the

robots are placed besides the sideline, in their own half of the field, in positions

chosen by the team. Knowing the exact initial (chosen) pose of the robot, a single

hypothesis is sufficient to represent its belief. Figure 4.5 shows the initial belief of

a robot and the corresponding covariance in Ready state, when the chosen initial

pose is on the right side of the own goal. In this state, the robots walk to their legal

kick-off positions, until the head referee decides that there is no significant progress

anymore or a maximum of 45 seconds has passed.

• Set State

In the Set state that follows the Ready state, the robots stop and wait for kick-off.

If they have not reached their legal kick-off positions as specified by the rules, they

are placed manually by the assistant referees at the predetermined positions for

manually placement 4.6. In this case, a single hypothesis is sufficient to represent

each robot’s belief, because these predetermined positions are known.

• Penalized State

In the Penalized state, the robot is removed from the field for 30 seconds and its

return position depends on the current location of the ball. The robot is placed on

the own half of the field, on the side line near the point where the penalty mark

Nikolaos Kargas 38 September 2013

4.3 Multiple Hypothesis Tracking

Figure 4.5: Belief initialization for one robot in Ready state

projects, and on the left or right side of the own goal that is currently farthest from

the ball. For belief initialization, two hypotheses are generated, one at each side

(left or right) of the own half of the field having equal weight.

• No Communication

Finally, when a robot is unable to communicate with the game controller, the robot

button interface is used to indicate the game state, which includes only transitions

between Penalized and Playing states. In this case, the true game state of Set or

Penalized is viewed uniformly as Penalized. Therefore, the robot cannot distinguish

whether it comes out of a Set state or a Penalized state, when transitioning to Play-

ing state. Thus, to cover all possibilities for belief initialization, three hypotheses

are created having equal weights; one at the predetermined manual position and

two at the left and right sides of the own half of the field.

4.3.3 Incorporating Odometry

Each time the robot receives the odometry displacement uk, it incorporates the informa-

tion in each of the EKF hypotheses using the EKF prediction equations (Section 4.1).

Nikolaos Kargas 39 September 2013

4. OUR APPROACH

Figure 4.6: Predetermined positions for manual placement of both teams in Set state

x̂
(i)
k|k−1 = f(x̂

(i)
k−1|k−1,uk) (4.22)

P
(i)
k|k−1 = F(i)

x P
(i)
k−1|k−1F

(i)
x

>
+ F(i)

u MkF
(i)
u

>
+ Q (4.23)

π
(i)
k|k−1 = π

(i)
k−1|k−1 (4.24)

Note that the weights of the hypotheses remain the same during the prediction step,

because the odometry information cannot affect their correctness.

4.3.4 Incorporating Observations

There are four types of observations currently available for localization in our team:

• Left Goalpost

In this case, the left goalpost of a goal has been detected. Since there are two

left goalposts in the field, this observation is associated to two non-distinguishable

landmarks with symmetric known locations (Figure 3.1).

Nikolaos Kargas 40 September 2013

4.3 Multiple Hypothesis Tracking

• Right Goalpost

In this case, the right goalpost of a goal has been detected. Since there are two

right goalposts in the field, this observation is associated to two non-distinguishable

landmarks with symmetric known locations (Figure 3.1).

• Left and Right Goalposts

In this case, the left and the right goalposts of one goal have been detected. Due

to physical limitations, these two goalposts must belong to the same goal, meaning

that it is physically impossible for the robot to observe the left goalpost of one

goal and the right goalpost of the other goal at the same time with its camera.

Since there are two goals in the field, this observation is associated to two non-

distinguishable landmarks with symmetric known locations (Figure 3.1).

• Ambiguous Goalpost

In this case, a goalpost has been detected without any indication of being left

or right. Since there are four goalposts in total in the field, this observation is

associated to four non-distinguishable landmarks with symmetric known locations

(Figure 3.1).

When an observation zk is reported that may come from some landmark l(j) of a set of Lk

non-distinguishable landmarks, each of the Nk existing hypotheses H
(i)
k is updated using

all possible data associations, as described above, producing NkLk resulting hypotheses.

x̂
(i,j)
k|k = x̂

(i)
k|k−1 + K

(i,j)
k

(
zk − ẑ

(i,j)
k

)
(4.25)

P
(i,j)
k|k = P

(i)
k|k−1 −K

(i,j)
k H

(i,j)
k P

(i)
k|k−1 (4.26)

where (i, j) implies the resulting hypothesis from the association of the existing hypoth-

esis i with the landmark j. The EKF only updates the pose estimates of the different

hypotheses, but not their probability/weight of being the correct pose. The Lk non-

distinguishable landmarks are taken to be equal probable, therefore these weights will be

affected only by the likelihood of each landmark for different hypotheses:

π
(i,j)
k|k = αp

(
zk = l

(j)
k | H

(i)
k

)
π
(i)
k|k−1 (4.27)

Nikolaos Kargas 41 September 2013

4. OUR APPROACH

−3 −2 −1 0 1 2 3

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−3 −2 −1 0 1 2 3

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 4.7: Initial (left) and resulting (right) hypotheses with an ambiguous goalpost

where α is a normalizing factor. The likelihood of observing the unique landmark l
(j)
k

given that hypothesis H
(i)
k is correct is given by:

p
(
zk = l

(j)
k | H

(i)
k

)
=

1

2π
1
2 det

(
S
(i,j)
k

)− 1
2

e
− 1

2

(
zk−h

(
x̂
(i)
k|k−1

))>(
S
(i,j)
k

)−1(
zk−h

(
x̂
(i)
k|k−1

))
(4.28)

Figure 4.7 shows a simple example of incorporating an ambiguous goalpost observation

into a robot belief represented by two hypotheses. The true pose of the robot is near the

hypothesis on the right side of the field (shown in blue) and the observation comes from

the left goalpost of the goal on the right side of the field. Four new hypotheses will be

created for each of the two existing hypotheses yielding a total of eight hypotheses in the

resulting belief. Only three hypotheses out of eight will receive high weights, namely the

one that almost coincides with the true pose (π ≈ 0.713), the one slightly below the true

pose in the field (π ≈ 0.133), and one of the hypotheses on the left side (π ≈ 0.122). The

weights of all the other hypotheses are negligible.

4.4 Merging Hypotheses

The main drawback of MHT is the exponential growth of the hypotheses. Many hypothe-

ses acquire a very low weight and redundant ones are created. For this reason a mixture

reduction algorithm was implemented [38]. This algorithm is based on the assumption

Nikolaos Kargas 42 September 2013

4.4 Merging Hypotheses

that the hypotheses with the largest weights carry the most important information in

the pool of hypotheses. Thus, starting with the hypothesis having the largest weight,

the algorithm initially gathers all surrounding hypotheses that are in some sense close

to that dominant hypothesis to form a cluster around it. The distance measure chosen

to represent the closeness of hypothesis i to the center of the dominant hypothesis c is

defined as follows:

d(i, c) =
π(i)π(c)

π(i) + π(c)

(
x(i) − x(c)

)> (
P(c)

)−1 (
x(i) − x(c)

)
(4.29)

where π(c), x(c), and P(c) are the probability, mean, and covariance of the dominant

hypothesis and π(i), x(i) are the probability and mean of hypothesis i.

Any hypothesis i for which d < T , where T is a carefully-selected threshold, is taken

as a cluster member. The second factor in Equation 4.29 implies that the clustering

boundary would be a hyper-ellipsoid in the state space, which is a surface of constant

probability density of the dominant hypothesis. The first factor in Equation 4.29 biases

the distance measure so that hypotheses with small weights are more easily clustered.

The clustered hypotheses are then joined together to form a single hypothesis with

mean and covariance matrix taken from the dominant hypotheses and weight equal to the

sum of the weights of all hypotheses in the cluster. The newly-formed hypothesis replaces

all hypotheses in the cluster. The decision to represent the cluster with the dominant

hypothesis as opposed to some weighted mean was made to prevent small shifts in the

parameter estimates of highly-weighted hypotheses that can be caused when merging

with lowly-weighted ones which have different means.

The algorithm continues iteratively with the remaining hypotheses, always selecting

the hypothesis with the largest weight as the dominant hypothesis of each new cluster,

until all hypotheses have been examined. Clearly, when the algorithm terminates the

number of resulting hypotheses will be less or equal to the initial one. The goal is to

reduce the number of hypotheses below some threshold N . If the algorithm terminates,

but the desired amount of reduction has not been achieved, the hypotheses reduction

algorithm is repeated with a larger threshold T + δT on the set of hypotheses of the

previous repeat.

Figrue 4.8 shows the resulting set of hypotheses from merging the eight hypotheses

in the example shown in Figure 4.7 (right). Their total number exceeds the predefined

Nikolaos Kargas 43 September 2013

4. OUR APPROACH

−3 −2 −1 0 1 2 3

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−3 −2 −1 0 1 2 3

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 4.8: Hypotheses before (left) and after (right) merging

threshold N = 4. After merging only three out of eight hypotheses remain in the pool,

more specifically the ones in the pool with significant weights, which absorbed the hy-

potheses with negligible weights.

4.5 Odometry Calibration

Another issue that introduced significant errors in the robot localization belief was the

erroneous odometer information that was not always consistent with the true locomotion

actions. To overcome this problem and make the robot capable of maintaining a fairly

correct belief for a long period of time only through prediction without observing any

landmarks, the state was augmented to include three parameters related to the systematic

error of the odometry system. These parameters are used to model errors, like drift and

slippage, and are estimated online during filtering [39]. The importance of this decision

can be understood better by considering that these odometry error parameters may differ

from robot to robot, may be different for various surfaces, and may be slowly-changing

over time due to actuators’ characteristics.

Recall that the odometry displacement uk was defined in Section 4.1 as:

uk =

δtrans,kδdir,k
δrot,k

 (4.30)

Nikolaos Kargas 44 September 2013

4.5 Odometry Calibration

using the measured change in distance δtrans, direction δdir, and rotation δrot. Now, we

assume that the true odometry displacement uk is affected by three parameters e1, e2, e3

modeling systematic odometry errors:

uk =

 e1δtrans,k
δdir,k

e2δrot,k + e3δtrans,k

 (4.31)

Essentially, e1 implies a multiplicative error in translation, e2 a multiplicative error in ro-

tation, and e3 an additive error in rotation which depends multiplicatively on translation.

Note that we assume no error in direction. The parameter values (e1, e2, e3) = (1, 1, 0)

imply no error in odometry measurements. The (unknown) true values of e1, e2, e3 will

be estimated through filtering.

The augmented state xk contains the position and orientation of the robot as before

and three additional state variables for e1, e2, e3 and is described by the following six-

dimensional vector

xk =
[
x y θ e1 e2 e3

]>
(4.32)

The mean of the predicted state is now given by the following equations

x̂k = x̂k−1 + ê1,k−1δtrans,k cos(θ̂k−1 + δdir,k)

ŷk = ŷk−1 + ê1,k−1δtrans,k sin(θ̂k−1 + δdir,k)

θ̂k = θ̂k−1 + ê2,k−1δrot,k + ê3,k−1δtrans,k

ê1,k = ê1,k−1

ê2,k = ê2,k−1

ê3,k = ê3,k−1

(4.33)

The corresponding covariance is a 6× 6 matrix, updated according to

Pk|k−1 = FxPk−1|k−1F
>
x + FuMkF

>
u + Q (4.34)

The Jacobian Fx, the derivative of f(x,u) with respect to x, is now given by the following

6× 6 matrix:

Fx =

[
Fx Gx

0 I

]
(4.35)

where

Fx =

1 0 −ê1,k−1δtrans,k sin(θ̂k−1 + δdir,k)

0 1 +ê1,k−1δtrans,k cos(θ̂k−1 + δdir,k)
0 0 1

 (4.36)

Nikolaos Kargas 45 September 2013

4. OUR APPROACH

Gx =

δtrans,k cos(θ̂k−1 + δdir,k) 0 0

δtrans,k sin(θ̂k−1 + δdir,k) 0 0
0 δtrans,k δrot,k

 (4.37)

The Jacobian Fu, the derivative of f(x,u) with respect to u, is now given by the following

6× 3 matrix:

Fu =

[
Fu

0

]
(4.38)

Fu =

−ê1,k−1δtrans,k sin(θ̂k−1 + δdir,k) ê1,k−1 cos(θ̂k−1 + δdir,k) 0

+ê2,k−1δtrans,k cos(θ̂k−1 + δdir,k) ê2,k−1 sin(θ̂k−1 + δdir,k) 0
0 ê2,k−1 ê3,k−1

 (4.39)

The process noise matrix, Q, is the 6× 6 matrix

Q =

[
Q 0
0 S

]
(4.40)

where S is a diagonal 3 × 3 matrix which implies a fictitious noise injection on the

additional state variables of the augmented state to prevent them from converging to

false estimates:

S =

σ2
e1

0 0
0 σ2

e2
0

0 0 σ2
e3

 (4.41)

Matrix Q which is the covariance matrix of the noise that corrupts the input remains the

same.

The updated state and covariance are computed using the Kalman gain matrix Kk

as described in Section 4.2:

x̂k|k = x̂k|k−1 + Kk(zk − ẑk) (4.42)

Pk|k = Pk|k−1 −KkHkPk|k−1 (4.43)

The Kalman gain matrix Kk is a 6× 2 matrix given by:

Kk = Pk|k−1H
>
k S
−1
k (4.44)

where

Sk = HkPk|k−1H
>
k + R (4.45)

Nikolaos Kargas 46 September 2013

4.6 The Proposed Algorithm

The observations aren’t directly related to the additional state variables, therefore matrix

H, which is the derivative of the sensor model h with respect to the state x, is a 2 × 6

matrix given by:

Hk =
[
Hk 0

]
(4.46)

4.6 The Proposed Algorithm

In this section we summarize our approach and describe the proposed localization algo-

rithm. Our localization approach is based on a multi-hypotheses extended Kalman filter

(MHT-EKF) on a six-dimensional state space (Equation 4.32), which includes the three

robot pose variables and the three odometry error parameters. Note that, during local-

ization, each robot tracks not only its pose, but also its own odometry error parameters.

Algorithm 5 outlines our belief update from time step k−1 to time step k, while Table 4.1

lists all algorithm parameters along with the values we have adopted.

Nikolaos Kargas 47 September 2013

4. OUR APPROACH

Algorithm 5 MHT-EKF robot localization algorithm

1: for i = 1 to Nk−1 do

2: Predict new hypothesis H
(i)
k from H

(i)
k−1 (Eqs 4.22, 4.23, 4.24)

3: end for

4: for i = 1 to Nk−1 do

5: for j = 1 to Lk do

6: Generate H
(i,j)
k from hypothesis H

(i)
k and landmark l(j) (Eqs 4.25, 4.26, 4.27)

7: end for

8: end for

9: while Nk > N do

10: Sort hypotheses in accordance to their weights

11: Create a new empty set S of hypotheses

12: while current hypotheses pool is not empty do

13: Select dominant hypothesis H
(c)
k in current pool

14: for all the remaining hypothesis H
(i)
k in current pool do

15: Compute similarity measure d(c, i) (Eq 4.29)

16: if d(c, i) < T then

17: Select hypothesis H
(i)
k as a member of cluster c

18: end if

19: end for

20: Merge clustered hypotheses into a single new hypothesis and add it to S

21: Remove clustered hypotheses from the current pool

22: end while

23: Make S the current pool of hypotheses

24: Increment threshold T by δT

25: end while

26: return hypothesis with the largest weight

Nikolaos Kargas 48 September 2013

4.6 The Proposed Algorithm

Table 4.1: Parameter values of localization algorithm

Parameter Proposed Value Description

a1 0.3 Control input noise

a2 0.3 Control input noise

a3 0.09 Control input noise

a4 0.1 Control input noise

σx 0.002 Motion model noise

σx 0.002 Motion model noise

σθ 0.002 Motion model noise

σr 1.5 Observation model noise

σφ 0.35 Observation model noise

N 4 Maximum number of hypotheses

T 0.07 Hypotheses merging threshold

δT 0.05 Hypotheses merging threshold increment

σe1 0.002 Fictitious noise of odometry error variables

σe2 0.002 Fictitious noise of odometry error variables

σe3 0.0002 Fictitious noise of odometry error variables

Nikolaos Kargas 49 September 2013

4. OUR APPROACH

Nikolaos Kargas 50 September 2013

Chapter 5

Results

In this chapter we present the results of our work. First, we need to clarify that our

approach gives accurate estimates about the robot’s position. The standard way of

showing that a localization method works well is to compare the estimated state to the

true state of the robot obtained by a “ground truth” source. This way an objective

evaluation of localization accuracy is obtained. Unfortunately, in lack of a ground truth

source, this comparison cannot be performed.

Instead, an experiment was performed in which the robot was given a specific sequence

of motion commands and the final poses were measured manually on the field and com-

pared to the localization algorithm output. In addition, we needed to test whether our

solution could be executed fast enough in real game scenarios along with the other ac-

tivities of the Monas architecture of our team. Finally, to illustrate the effect that the

augmentation of state and the MHT approach have in our implementation we performed

two additional experiments.

The experiments reported in this chapter were conducted on the SPL 2012 field

4m × 6m, which is smaller than the 2013 one, because of the setup in our robot lab.

Nevertheless, the two field are proportionally the same. In addition, our localization

approach can be customized to any field of arbitrary dimensions by simply changing an

.xml file.

Nikolaos Kargas 51 September 2013

5. RESULTS

Figure 5.1: Estimated traces of MHT-EKF and MCL algorithm

5.1 Algorithm Accuracy

In the first experiment the robot was placed on the middle of the bottom-left side line

of the field and a specific sequence of locomotion commands was given to it. As the

robot moved, we executed simultaneously and independently two localization modules:

the old one based on particle filters and the new one proposed in this thesis. This way

both modules were given the exact same input in terms of initialization, controls, and

observations. The number of particles in the MCL algorithm was set to 120, while the

maximum number of hypothesis in our MHT-EKF approach was set to 6. Figure 5.1

shows an example of the estimated traces provided by the two algorithms during a single

run.

The entire experiment was repeated fifteen times (to obtain average results) using

the predetermined sequence of commands shown in Figure 5.2. The arguments represent

velocities in the x, y, and θ axes respectively. The duration of each run was approximately

80 seconds. Despite the fact that the robot was given the same motion commands,

the routes in different runs differ significantly. Figure 5.3 shows some of the final pose

estimates reported by the two localization algorithms. The true state is represented by

the yellow circle, the MHT-EKF estimate by the red circle, and the MCL estimate by the

blue circle. The MHT-EKF algorithm gave an average error of 18cm in distance between

Nikolaos Kargas 52 September 2013

5.1 Algorithm Accuracy

veloc i tyWalk (1 . 0 , 0 . 0 , 0 . 0) ; (10 seconds)

ve loc i tyWalk (1 . 0 , 0 . 0 , −1.0) ; (3 seconds)

ve loc i tyWalk (1 . 0 , 0 . 0 , 0 . 0) ; (10 seconds)

ve loc i tyWalk (0 . 0 , 0 . 0 , −1.0) ; (3 seconds)

ve loc i tyWalk (1 . 0 , 0 . 0 , 0 . 0) ; (19 seconds)

ve loc i tyWalk (0 . 0 , −1.0 , 0 . 0) ; (3 seconds)

ve loc i tyWalk (1 . 0 , 0 . 0 , 0 . 0) ; (19 seconds)

ve loc i tyWalk (0 . 0 , −1.0 , 0 . 0) ; (6 seconds)

ve loc i tyWalk (1 . 0 , 0 . 0 , 0 . 0) ; (7 seconds)

Figure 5.2: Sequence of walk commands for comparing MHT-EKF and MCL estimates

−3 −2 −1 0 1 2 3

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−3 −2 −1 0 1 2 3

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−3 −2 −1 0 1 2 3

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−3 −2 −1 0 1 2 3

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 5.3: Final poses of four representative executions

Nikolaos Kargas 53 September 2013

5. RESULTS

50 100 150 200 250 300 350 400 450 500 550
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

steps

tim
e[

m
s]

MHT−EKF
MCL

Figure 5.4: Execution times of MHT-EKF and MCL algorithms during a run

the final true and estimated poses, while the MCL algorithm game an average error of

41cm. The average error in orientation was 23 degrees for the MHT-EKF algorithm

and 52 degrees for the MCL. Clearly, the estimate of MHT-EKF is much more accurate

compared to the estimate of MCL.

5.2 Algorithm Performance

Figure 5.4 shows the execution time of our old MCL and the new MHT-EKF algorithms,

as measured during a single experiment, where the robot moved around the field localizing

itself. The graph shows the execution time of both algorithms over all execution steps

of our Monas software architecture during this experiment. The average execution time

over all steps was 0.3295ms for the MHT-EKF and 1.2425ms for the MCL algorithm.

The spikes shown in the figure correspond to steps where an observation was reported

and the update procedure took place. Note that the prediction procedure takes place at

all steps.

Nikolaos Kargas 54 September 2013

5.3 Multi-Hypothesis Tracking Results

Figure 5.5: Estimated robot pose after 8 update steps with a single-hypothesis EKF

5.3 Multi-Hypothesis Tracking Results

To illustrate the effect of Multi-Hypothesis Tracking (MHT) on our implementation a

specific experiment was carried out. The robot was placed statically (no move) at a

specific pose (0.8, 1.2,−0.09) inside the field (shown in blue in Figures 5.5 and 5.6), but

its belief was erroneously initialized to a different pose (0.5, 1.3, 1.75). Then, the robot

performed a head scan, acquiring a total of eight observations, which were provided as

input to two filters that run simultaneously: a multi-hypotheses EKF limited to four hy-

potheses and a single-hypothesis EKF, in which the most likely association of observation

and landmark is selected (Maximum Likelihood).

Figure 5.5 shows the evolution of the estimated state of the single-hypothesis EKF

algorithm, as it was updated with the eight observations. The robot associated the first

observation (ambiguous goalpost) to the right post of the goal on left half of the field.

Nikolaos Kargas 55 September 2013

5. RESULTS

Figure 5.6: Estimated robot pose after 8 update steps with a multi-hypothesis EKF

As a consequence, the pose estimate drifted towards the symmetric pose, after taking

into account the remaining seven observations. Figure 5.6 shows the evolution of the

estimated state of the multi-hypotheses EKF algorithm, after updates with the eight

observations. The circles denote the robot’s pose hypotheses; green is the one with the

largest weight reported by the localization module. After the wrong association of the

first observation (ambiguous goalpost) to the right post of the goal on left half of the

field, the algorithm is able to recover and finally estimate a pose close to the true one.

5.4 Odometry Calibration Results

To illustrate the effect of the additional state variables on our localization approach, the

following experiment was performed. The robot was placed at the center of the field and

was given a locomotion command corresponding to a straight-ahead walk towards the goal

Nikolaos Kargas 56 September 2013

5.4 Odometry Calibration Results

Figure 5.7: Estimated pose traces with and without odometry calibration

on the right side of the field (Figure 5.7). Two variations of our localization algorithm

were run in parallel, receiving the same observations and odometry information. The

first variation did not account for systematic odometry errors and represented the state

of the robot with a three-dimensional vector, as described in Section 4.1. The state of the

robot in the second variation was augmented with the three odometry error parameters,

as described in Section 4.5. The three parameters (e1, e2, e3) were initialized to (1, 1, 0),

implying that initially no odometry error is assumed.

Figure 5.7 shows the estimated robot traces of both localization variations. The

robot in reality performed a cyclic path, due to error related to drift, shown with a black

dotted line in the figure. The first variation did not estimate the robot pose correctly

but instead estimated a path that was consistent (more or less) with the command given,

since the odometry is directly extracted from the motion commands and assumes no

error. Without some feedback concerning the true trajectory of the robot, the algorithm

failed to identify the true motion. Note that the goalpost observations coming from the

goal on the left side of the field during the second half of the experiment could not correct

the erroneous pose estimate, but only managed to push it back towards the center of the

Nikolaos Kargas 57 September 2013

5. RESULTS

50 100 150 200 250 300 350 400 450
0

0.5

1

1.5

steps

va
lu

e

e1
e2
e3

Figure 5.8: Evolution of estimated values of odometry error parameters

field due to the long observation distances. The second variation, in contrast, succeeded

in maintaining a correct robot pose at least in the second half of the experiment, as it

took some time to estimate the odometry error parameters in the first half. Figure 5.8

shows the evolution of the estimated values of e1, e2, e3 during the entire experiment.

Due to the command given to the robot (zero rotational speed) only the third parameter,

which is related to drift, has changed significantly from its initial value. Yet this change

was crucial in maintaining a correct robot pose estimate.

Nikolaos Kargas 58 September 2013

Chapter 6

Conclusion

6.1 Conclusion

This thesis describes a new localization approach for the RoboCup SPL field implemented

and incorporated into the Monas software architecture of our RoboCup team Kouretes.

The localization algorithm takes as input goalpost observations and odometry informa-

tion and performs local state estimation using extended Kalman filtering. Landmark

ambiguities are handled using multi-hypotheses tracking and odometry uncertainty is

compensated by estimating the odometry error parameters using an augmented state

space. The outcome of the algorithm is used as input to our shared world model activity

to produce a global belief about the state of the game which in turn is used by our team

coordination activity to determine the roles of the robots. The proposed localization

approach gives more accurate results than our previous localization method based on

particle filters and is computationally more efficient.

6.2 Future Work

6.2.1 Additional Landmarks

The use of additional landmarks, such as the center circle or field line corners and T-

junctions, can aid significantly the localization task, considering that in the large SPL

2013 field the goals are not always visible. Our localization algorithm can easily be

extended to incorporate these new (ambiguous) landmarks, as long as their distance

Nikolaos Kargas 59 September 2013

6. CONCLUSION

and bearing is reported when recognized. Note that the inherent ambiguity of these

landmarks is automatically handled by our approach. Ongoing work in our team focuses

on the visual recognition of such landmarks.

6.2.2 Vision System Calibration

In our approach we have used an augmented state space to handle the odometry system-

atic errors. This technique essentially assumes that observations are correct and therefore

can be used to estimate correctly the odometry error parameters. In practice, however,

there is significant systematic errors in the observations. It is quite common that the

camera of our Nao robots gets displaced by some unknown horizontal and/or vertical

angle due to a fall or minor hardware differences. Even small camera displacements have

significant effect on the estimation of distance and bearing to visually recognized land-

marks. A similar approach (augmented state) to that of calibrating robot odometry could

be used to account for observation errors and calibrate the vision system. However, such

an approach would require accurate odometry to be able to estimate correctly the vision

error parameters. It remains to be seen if both odometry and vision error parameters

can be included simultaneously in an augmented state and be estimated correctly when

uncertainty is present on both sides.

Nikolaos Kargas 60 September 2013

References

[1] Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E., Matsubara, H.:

Robocup: A challenge problem for AI. AI Magazine 18(1) (1997) 73–85 5

[2] RoboCup SPL Technical Committee: RoboCup Standard Platform League (NAO)

rule book (2013) Only available online: www.tzi.de/spl/pub/Website/Downloads/

Rules2013.pdf. 6, 25

[3] Gouaillier, D., Blazevic, P.: A mechatronic platform, the Aldebaran Robotics hu-

manoid robot. In: Proceedings of the 32nd IEEE Annual Conference on Industrial

Electronics (IECON). (2006) 4049–4053 7

[4] Aldebaran Robotics: Nao documentation (2012) Only available online: www.

aldebaran-robotics.com/documentation. 8

[5] Paraschos, A.: A flexible software architecture for robotic agents. Diploma thesis,

Technical University of Crete, Greece (2010) 11

[6] Orfanoudakis, E.: Reliable object recognition for the RoboCup domain. Diploma

thesis, Technical University of Crete, Greece (2011) 12

[7] Pavlakis, N.: Cooperative global game state estimation for the RoboCup standard

platform league. Diploma thesis, Technical University of Crete, Greece (2013) 12

[8] Kyranou, I.: Path planning for NAO robots using an egocentric polar occupancy

map. Diploma thesis, Technical University of Crete, Greece (2012) 12

[9] Michelioudakis, E.: Dynamic multi-robot coordination for the RoboCup standard

platform league. Diploma thesis, Technical University of Crete, Greece (2013) 13

Nikolaos Kargas 61 September 2013

www.tzi.de/spl/pub/Website/Downloads/Rules2013.pdf
www.tzi.de/spl/pub/Website/Downloads/Rules2013.pdf
www.aldebaran-robotics.com/documentation
www.aldebaran-robotics.com/documentation

REFERENCES

[10] Kofinas, N., Orfanoudakis, E., Lagoudakis, M.G.: Complete analytical inverse kine-

matics for NAO. In: Proceedings of the 13th International Conference on Au-

tonomous Robot Systems and Competitions (ROBOTICA). (2013) 13

[11] Kofinas, N.: Forward and inverse kinematics for the NAO humanoid robot. Diploma

thesis, Technical University of Crete, Greece (2012) 13

[12] Paraschos, A., Spanoudakis, N.I., Lagoudakis, M.G.: Model-driven behavior speci-

fication for robotic teams. In: Proceedings of the 11th International Conference on

Autonomous Agents and Multiagent Systems (AAMAS). (2012) 13

[13] Topalidou-Kyniazopoulou, A., Spanoudakis, N.I., Lagoudakis, M.G.: A CASE tool

for robot behavior development. In: RoboCup 2012: Robot Soccer World Cup XVI.

Volume 7500 of Lecture Notes in Computer Science. Springer (2013) 225–236 13

[14] Topalidou-Kyniazopoulou, A.: A CASE (computer-aided software engineering) tool

for robot-team behavior-control development. Diploma thesis, Technical University

of Crete, Greece (2012) 13

[15] Vazaios, E.: Narukom: A distributed, cross-platform, transparent communication

framework for robotic teams. Diploma thesis, Technical University of Crete, Greece

(2010) 14

[16] Karamitrou, M.: KMonitor: global and local state visualization and monitoring

for the Robocup SPL league. Diploma thesis, Technical University of Crete, Greece

(2012) 14

[17] Thrun, S., Fox, D., Burgard, W., Dellaert, F.: Robust Monte Carlo localization for

mobile robots. Artificial Intelligence 128(1–2) (2001) 99–141 14, 19

[18] Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press (2005) 17, 20

[19] Gordon, N.J., Salmond, D.J., Smith, A.F.M.: Novel approach to nonlinear/non-

Gaussian Bayesian state estimation. Radar and Signal Processing, IEE Proceedings

F 140(2) (1993) 107–113 19

Nikolaos Kargas 62 September 2013

REFERENCES

[20] Lenser, S., Veloso, M.: Sensor resetting localization for poorly modelled mobile

robots. In: Proceedings of the IEEE International Conference on Robotics and

Automation (ICRA), IEEE (2000) 20

[21] Thrun, S., Fox, D., Burgard, W.: Monte Carlo localization with mixture proposal

distribution. In: Proceedings of the 17th National Conference on Artificial Intelli-

gence (AAAI), MIT Press (2000) 859–865 20

[22] Gutmann, J.S., Fox, D.: An experimental comparison of localization methods con-

tinued. In: Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS). Volume 1. (2002) 454–459 20

[23] Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans-

actions of the ASME – Journal of Basic Engineering D(82) (1960) 35–45 20

[24] Welch, G., Bishop, G.: An introduction to the Kalman filter. Technical Report TR

95-041, University of North Carolina at Chapel Hill, USA (1995) 21

[25] Julier, S.J., Uhlmann, J.K.: A new extension of the Kalman filter to nonlinear

systems. In: Proceedings of AeroSense: The 11th International Symposium on

Aerospace/Defence Sensing, Simulation, and Controls. (1997) 182–193 23

[26] Barrett, S., Genter, K., Hester, T., Khandelwal, P., Quinlan, M., Stone, P., Sridha-

ran, M.: Austin Villa 2011: Sharing is caring: Better awareness through informa-

tion sharing. Technical Report UT-AI-TR-12-01, The University of Texas at Austin

(2012) 27

[27] Jochmann, G., Kerner, S., Tasse, S., Urbann, O.: Efficient multi-hypotheses un-

scented Kalman filtering for robust localization. In: RoboCup 2011: Robot Soccer

World Cup XV. Volume 7416 of Lecture Notes in Computer Science. Springer (2012)

222–233 28

[28] Quinlan, M.J., Middleton, R.H.: Multiple model Kalman filters: A localization

technique for RoboCup soccer. In: RoboCup 2009: Robot Soccer World Cup XIII.

Volume 5949 of Lecture Notes in Computer Science. Springer (2010) 276–287 28

Nikolaos Kargas 63 September 2013

REFERENCES

[29] Meissner, M., Friedrich, H., Fürtig, A., Weis, T., Siegl, J.M., Becker, C., Michalski,

V., Ruscher, G., Kehlenbach, A., Reckers, A., Zacharias, K., Hanssen, E., Heun,

A.: Bembelbots Frankfurt team description for RoboCup 2013. Technical report,

Goethe University, Germany (2013) 28

[30] Chang, C.H., Wang, S.C., Wang, C.C.: Vision-based cooperative simultaneous

localization and tracking. In: Proceedings of the IEEE International Conference on

Robotics and Automation (ICRA). (2011) 5191–5197 28

[31] Anderson, P., Hunter, Y., Jeffrey, Hengst, B.: An ICP inspired inverse sensor

model with unknown data association. In: Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA). (2013) 28

[32] Laue, T., Röfer, T.: Particle filter-based state estimation in a competitive and uncer-

tain environment. In: Proceedings of the 6th International Workshop on Embedded

Systems. (2007) 29

[33] Laue, T., Röfer, T.: Pose extraction from sample sets in robot self-localization – a

comparison and a novel approach. In: Proceedings of the 4th European Conference

on Mobile Robots. (2009) 283–288 29

[34] Burchardt, A., Laue, T., Röfer, T.: Optimizing particle filter parameters for self-

localization. In: RoboCup 2010: Robot Soccer World Cup XIV. Volume 6556 of

Lecture Notes in Computer Science. Springer (2011) 145–156 29

[35] Gohring, D., Mellmann, H., Burkhard, H.D.: Constraint based world modeling in

mobile robotics. In: Proceedings of the IEEE International Conference on Robotics

and Automation (ICRA). (2009) 2538–2543 29

[36] Mart́ın, F., Agüero, C.E., Cañas, J.M.: Extended kalman filter populations for a

reliable real-time robot self-localization. In: Proceedings of the IEEE Intelligent

Vehicles Symposium - Workshop on Perception in Robotics. (2012) 29

[37] Roumeliotis, S., Bekey, G.A.: Bayesian estimation and Kalman filtering: a unified

framework for mobile robot localization. In: Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA). Volume 3. (2000) 2985–2992 37

Nikolaos Kargas 64 September 2013

REFERENCES

[38] Salmond, D.J.: Mixture reduction algorithms for target tracking in clutter. In:

Proceedings of the SPIE Conference on Signal and Data Processing of Small Targets.

Volume 1305. (1990) 434–445 42

[39] Martinelli, A., Siegwart, R.: Estimating the odometry error of a mobile robot during

navigation. In: Proceedings of the European Conference on Mobile Robots (ECMR).

(2003) 44

Nikolaos Kargas 65 September 2013

	1 Introduction
	1.1 Thesis Contribution
	1.2 Thesis Outline

	2 Background
	2.1 RoboCup
	2.1.1 Standard Platform League
	2.1.2 Aldebaran Nao Humanoid Robot

	2.2 RoboCup SPL Team Kouretes
	2.2.1 Monas Software Architecture

	2.3 Mobile Robot Localization
	2.3.1 Robot Pose
	2.3.2 Motion Model
	2.3.3 Sensor Model

	2.4 Pose Estimation
	2.4.1 Bayes Filter
	2.4.2 Particle Filter
	2.4.3 Kalman Filter
	2.4.4 Extended Kalman Filter

	3 Problem Statement
	3.1 Robot Localization in RoboCup
	3.2 Related Work
	3.2.1 Kalman Filter Approaches
	3.2.2 Particle Filter Approaches
	3.2.3 Constraint Localization Approaches
	3.2.4 Hybrid Approaches

	4 Our Approach
	4.1 Prediction Step
	4.2 Update Step
	4.3 Multiple Hypothesis Tracking
	4.3.1 Hypothesis Representation
	4.3.2 Initialization
	4.3.3 Incorporating Odometry
	4.3.4 Incorporating Observations

	4.4 Merging Hypotheses
	4.5 Odometry Calibration
	4.6 The Proposed Algorithm

	5 Results
	5.1 Algorithm Accuracy
	5.2 Algorithm Performance
	5.3 Multi-Hypothesis Tracking Results
	5.4 Odometry Calibration Results

	6 Conclusion
	6.1 Conclusion
	6.2 Future Work
	6.2.1 Additional Landmarks
	6.2.2 Vision System Calibration

	References

