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Abstract

The tremendous ongoing growth of wireless digital communications has raised

spectrum shortage and security issues. In particular, the need for new spectrum

is the main obstacle in continuing this growth. Recent studies on radio spec-

trum usage have shown that pre-allocation of spectrum bands to specific wireless

communication applications leads to poor utilization of those allocated bands.

Therefore, research into new techniques for efficient spectrum utilization is be-

ing aggressively pursued by academia, industry and government. Such research

efforts have given birth to Cognitive Radio (CR). CR is the new key enabling

technology that is presented as a solution to the spectrum scarcity. CRs are un-

licensed devices that, through their most important functionality, i.e. spectrum

sensing, sense the spectrum and they transmit without interfering with the li-

censed users. In order to do that, they use several spectrum sensing techniques.

These techniques are used to detect the presence or absence of the primary user’s

signal. Spectrum sensing for one CR user has many challenges to overcome, such

as multipath fading or shadowing. Thus, in that occasion we can utilize coop-

erative spectrum sensing. This type of sensing is realized in a CR network and

the presence or absence of the primary user’s signal is decided by many users or

a base station. In this thesis, we are giving important background information

about CRs and how we were lead to that technology. Moreover, we are going to

describe the problem of spectrum sensing, what are the spectrum holes and the

challenges that a CR must face in order to sense the RF spectrum efficiently. A

big part of this thesis is the profound study of the most important techniques for

sensing the spectrum and the comparison among them. Finally, we are discussing

Cooperative Spectrum Sensing; the way it can be implemented and the problems

that it can solve.
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Περίληψη

Η τεράστια συνεχιζόμενη ανάπτυξη των ασύρματων ψηφιακών επικοινωνιών έχει

προκαλέσει έλλειψη στις ελεύθερες συχνότητες του ραδιοφάσματος αλλά επίσης και

σε θέματα ασφαλείας. Ειδικότερα, η ανάγκη για νέες ζώνες συχνοτήτων στο ρα-

διοφάσμα είναι το κύριο εμπόδιο στην συνέχιση αυτής της ανάπτυξης. Πρόσφατες

μελέτες σχετικά με τη χρήση του ραδιοφάσματος έχουν δείξει ότι η εκ των προτέρων

κατανομή των ζωνών του φάσματος σε συγκεκριμένες εφαρμογές ασύρματης επικοι-

νωνίας οδηγεί σε κακή χρήση αυτών των κατανεμημένων ζωνών. Ως εκ τούτου, η

ακαδημαϊκή κοινότητα, η βιομηχανία και οι κυβερνήσεις επιδιώκουν την έρευνα για

νέες τεχνικές για την αποτελεσματικότερη χρήση του φάσματος. Τέτοιες ερευνη-

τικές προσπάθειες έχουν γεννήσει την τεχνολογία των Cognitive Radios (CR). Με

τον όρο CR εννοούμε την νέα κύρια τεχνολογία που παρουσιάζεται ως λύση στην

έλλειψη φάσματος. Τα CRs είναι συσκευές οι οποίες δεν έχουν άδεια για χρήση της

συγκεκριμένης ζώνης συχνοτήτων στην οποία επιθυμούν να εκπέμψουν, ωστόσω

μέσω της πιο σημαντικής λειτουργίας τους, της αίσθησης του ραδιοφάσματος, με-

ταδίδουν χωρίς να παρεμβάλλουν τους χρήστες που έχουν πληρώσει και έχουν

άδεια να χρησιμοποιήσουν αυτή τη ζώνη συχνοτήτων. Για να το κάνουν αυτό,

χρησιμοποιούν διάφορες τεχνικές ανίχνευσης φάσματος. Αυτές οι τεχνικές χρη-

σιμοποιούνται για την ανίχνευση της ύπαρξης ή της απουσίας του σήματος του

εξουσιοδοτημένου χρήστη. Η αίσθηση του φάσματος έχει πολλές προκλήσεις να

ξεπεράσει, όπως η πολλαπλή όδευση του σήματος ή η επισκίαση ενός χρήστη. ΄Ε-

τσι, με την ευκαιρία αυτή μπορούμε να χρησιμοποιήσουμε τη συνεργατική αίσθηση

φάσματος. Αυτό το είδος της αίσθησης πραγματοποιείται σε ένα δίκτυο με πολ-

λούς χρήστες CRs και η ύπαρξη ή η απουσία του σήματος του εξουσιοδοτημένου

χρήστη αποφασίζεται από πολλούς χρήστες ή έναν σταθμό βάσης με τον οποίο συ-

νεργάζονται οι δευτερεύοντες χρήστες. Στην παρούσα εργασία, δίνουμε σημαντικές

πληροφορίες σχετικά με τα CRs και πώς έχουμε οδηγηθεί σε αυτή την τεχνολογία.

Επιπλέον, πρόκειται να περιγράψουμε το πρόβλημα της ανίχνευσης φάσματος, τι είναι

και πως δημιουργούνται οι τρύπες του φάσματος και οι προκλήσεις που πρέπει να

αντιμετωπίσει το CR προκειμένου να γίνει η λειτουργία της αίσθησης του φάσματος

ραδιοσυχνοτήτων αποτελεσματικά. ΄Ενα μεγάλο μέρος αυτής της διπλωματικής ερ-

γασίας είναι η εις βάθος μελέτη των πιο σημαντικών τεχνικών για την ανίχνευση του

φάσματος και η σύγκριση μεταξύ τους. Τέλος, συζητάμε τη συνεργατική αίσθηση

φάσματος, τον τρόπο με τον οποίο μπορεί να εφαρμοστεί και τα προβλήματα που

μπορεί να επιλύσει.



Konstantinos E. Bountouris iv September 2013



Acknowledgements

First of all, I would like to thank my family, Evangelos, Androniki, Athina, for

their support and encouragement in all these years. Without them I am not sure

if I could manage to receive my diploma.

I, also, would like to thank my friends in Chania, Christos, Dimitris, Dim-

itris, Dimosthenis, Giorgos, Manos, Nikos, Stathis, Vag, Vassilis, Viky for their

support and for the great moments that we had the last years.

Finally, I wish to thank my supervisor, professor Athanasios Liavas, for his

guidance and the choice of this challenging topic. Whenever I had questions he

was there to answer to me and I am grateful to him because I learned many

things.



Konstantinos E. Bountouris vi September 2013



Contents

1 Introduction 1

1.1 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Cognitive Radios 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 The vision of Cognitive Radios . . . . . . . . . . . . . . . . . . . . 5

2.3 Definitions of Cognitive Radios . . . . . . . . . . . . . . . . . . . 9

2.3.1 Software-Defined Radio . . . . . . . . . . . . . . . . . . . . 10

2.4 Functions of Cognitive Radios . . . . . . . . . . . . . . . . . . . . 10

2.5 Applications of Cognitive Radios . . . . . . . . . . . . . . . . . . 12

2.6 IEEE 802.22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Spectrum Sensing and Analysis 17

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Spectrum Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Spectrum Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3.1 Temporal Spectrum Holes . . . . . . . . . . . . . . . . . . 19

3.3.2 Spatial Spectrum Holes . . . . . . . . . . . . . . . . . . . . 19

3.4 Challenges of Spectrum Sensing . . . . . . . . . . . . . . . . . . . 21

3.5 Classification of Spectrum Sensing Techniques . . . . . . . . . . . 22

4 Spectrum Sensing Techniques 25

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Neyman-Pearson Theorem . . . . . . . . . . . . . . . . . . . . . . 25

4.3 Matched Filter Detection . . . . . . . . . . . . . . . . . . . . . . . 28

4.3.1 Generalized Matched Filter . . . . . . . . . . . . . . . . . 33

Konstantinos E. Bountouris vii September 2013



CONTENTS

4.3.2 Pilot-Based Detection . . . . . . . . . . . . . . . . . . . . 37

4.4 Energy Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.5 Covariance-Based Detection . . . . . . . . . . . . . . . . . . . . . 45

5 Comparison 51

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 Energy Detection vs Matched Filter Detection . . . . . . . . . . . 51

5.3 Energy Detection vs Matched Filter Detection vs Covariance Based

Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6 Cooperative Spectrum Sensing 57

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.2 General Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.2.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.3 Methods of Cooperative Spectrum Sensing . . . . . . . . . . . . . 59

6.3.1 Centralized Sensing . . . . . . . . . . . . . . . . . . . . . . 60

6.3.2 Distributed Sensing . . . . . . . . . . . . . . . . . . . . . . 63

6.3.3 External Sensing . . . . . . . . . . . . . . . . . . . . . . . 64

6.4 Practical Considerations about Cooperative Sensing . . . . . . . . 65

7 Conclusion 67

7.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

References 70

Konstantinos E. Bountouris viii September 2013



List of Figures

2.1 Bar Graph of the Spectrum Occupancy in Each Band in New York

City and Chicago, USA. . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Spectrum Occupancy Measured in Each Band at Commission for

Communications Regulation Building, Dublin, Ireland. . . . . . . 7

2.3 Cognitive Radio duty cycle [“Advances in CR Networks: A sur-

vey”, Beibei Wang, K.J. Ray Liu] . . . . . . . . . . . . . . . . . . 11

2.4 Example of public safety and emergency responder teams within

the same geographical area operating on different center frequen-

cies and potentially using different communication standards. [“Cog-

nitive Radios Communications and Networks, p.10”] . . . . . . . . 14

2.5 IEEE 802.22 WRAN service topology . . . . . . . . . . . . . . . . 15

3.1 Various aspects of spectrum sensing for Cognitive Radio. [Yucek

and Arslan: “A survey of spectrum sensing algorithms for cognitive

radio applications”] . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Spectrum holes for secondary communication. (a) Temporal spec-

trum holes and (b) spatial spectrum holes. [“Signal Processing in

Cognitive Radio”, J. Ma, G.Y. Li, B.H. Juang] . . . . . . . . . . . 20

3.3 The hidden licensed user problem in cognitive radio systems. . . . 22

4.1 PDFs for hypothesis testing problem. . . . . . . . . . . . . . . . . 26

4.2 Neyman-Pearson detector for deterministic signals (replica corre-

lator). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 Right tail probability for standard normal PDF. . . . . . . . . . . 32

4.4 Detection performance of matched filter for target PFA = 10−1 and

PFA = 10−3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Konstantinos E. Bountouris ix September 2013



LIST OF FIGURES

4.5 Detection performance of matched filter for target PFA = 10−5 and

PFA = 10−7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.6 ROC curves for MF detector under different values of SNRdB. . . 35

4.7 Performance of detection for the generalized MF for a variety of

target PFA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.8 ROC for the generalized MF for a variety of values of ENRdB. . . 39

4.9 PDF for central chi-squared random variable. . . . . . . . . . . . 41

4.10 PDF for non central chi-squared random variable with varying de-

grees of freedom (ν) and noncentrality parameter λ = 4. . . . . . 41

4.11 ROC curves for coherent detection for different values of SNRdB. 42

4.12 Performance of detection for the ED for a variety of target PFA. . 46

4.13 ROC for the ED for a variety of values of SNRdB. . . . . . . . . . 47

4.14 ROC for the MME detection for different values of the SNR in dB. 49

5.1 Comparison of Energy Detector and Matched Filter Detector for

SNR = −6 dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2 Comparison of Energy Detector and Matched Filter Detector for

SNR = 0 dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3 Comparison of Energy Detector and Matched Filter Detector for

SNR = 2 dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.4 Comparison of Energy Detector, Matched Filter Detector and Max-

Min Eigenvalue Detection for SNR = −2.4 dB. . . . . . . . . . . 55

5.5 Comparison of Energy Detector, Matched Filter Detector and Max-

Min Eigenvalue Detection SNR = 3 dB. . . . . . . . . . . . . . . 55

6.1 Cooperative spectrum sensing in CR networks. CR1 is shadowed

over the reporting channel and CR3 is shadowed over the sensing

channel. [Letaief and Zhang: “Cooperative Communications for

Cognitive Radio Networks”] . . . . . . . . . . . . . . . . . . . . . 58

6.2 ROC curves for fusion rules in centralized cooperative spectrum

sensing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.3 Complementary ROC curves for fusion rules in centralized coop-

erative spectrum sensing. . . . . . . . . . . . . . . . . . . . . . . . 63

Konstantinos E. Bountouris x September 2013



LIST OF FIGURES

6.4 Principles of hard combination schemes (a) One-bit counting scheme

and (b) two-bit hard combination scheme. [Ma et al.: “Signal Pro-

cessing in Cognitive Radio”] . . . . . . . . . . . . . . . . . . . . . 64

6.5 Schematic representation of the AF cooperation scheme in a decen-

tralized CR network. [Ma et al.: “Signal Processing in Cognitive

Radio”] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Konstantinos E. Bountouris xi September 2013



LIST OF FIGURES

Konstantinos E. Bountouris xii September 2013



Chapter 1

Introduction

As wireless digital communications continue to grow driven by consumers’ inter-

est in wireless services, more and more spectrum resources will be needed. On

the one hand, the increased diversity (voice, short message, Web, multimedia

etc) and demand of high quality-of-service (QoS) applications have resulted in

overcrowding of the officially allocated spectrum bands which leads to poor user

satisfaction. On the other hand, major licensed bands, such as those allocated for

television broadcasting, amateur radio and telemetry data, have been found to

be largely underutilized, resulting in spectrum wastage. The above were derived

by a survey of spectrum utilization made by the Federal Communications Com-

mission (FCC) and published in November 2002 [1]. FCC is the main regulatory

body for distributing spectrum bands to licensed users in USA. To overcome these

problems, the FCC has been considering more flexible and comprehensive uses of

the available spectrum, through the use of the Cognitive Radio (CR) technology.

CRs are wireless devices that are used for the improvement of spectrum uti-

lization. They achieve that by letting a secondary user (SU), also referred as an

unlicensed user, to exploit a spectrum band when it is not used by a primary

user (PU), also referred as a licensed user. PUs have higher priority than SUs or

legacy rights on the usage of a specific part of the spectrum. The spectrum bands

that are not used by the PUs are called spectrum holes. CRs have the ability to

sense and adapt to the environment continuously in order to detect the presence

of the PUs’ signal. Once they detect the PUs’ signal, they stop transmitting in
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1. INTRODUCTION

that spectrum band and they continue to sense the spectrum in order to find

another spectrum hole for their transmission.

Among the many functionalities of a CR (they will be discussed later in more

details), the most important is spectrum sensing, as mentioned above. It is the

most important functionality because if a CR senses well its environment, the

spectrum will be utilized more efficiently, as well as there will be high QoS for

the PUs (no collisions, interference etc). The problem of spectrum sensing is to

decide whether there is PU’s signal or not. The detection or not of the primary

signal (the signal of the PU) can be realized from the CR by using the spectrum

sensing techniques. There are several algorithms for the detection of the primary

signal, but in this thesis we focus on “Matched Filter Detection” (MF), “Energy

Detection” (ED) and, finally, “Covariance Based Detection” and a variation of

it.

Traditional wireless networks have predominantly used direct point-to-point

or point-to-multipoint (e.g., cellular) topologies. The difference between these

traditional methods and cooperative spectrum sensing is that the latter method

allows different users or nodes in a wireless network to share resources and to

create collaboration through distributed transmission and processing, in which

each user’s information is sent out not only by the user but also by the collab-

orating users. This method promises significant capacity and multiplexing gain

increase in wireless networks as well as a new form of space diversity to combat

the detrimental effects of severe fading and shadowing.

1.1 Thesis Outline

The rest of the thesis is organized as follows: in Chapter 2 we are giving important

background information about CRs and how we were lead to that technology.

Furthermore, the different definitions, the applications, the functionalities of CR

and a brief description of IEEE 802.22 are going to be discussed. In Chapter 3

we are going to describe the problem of spectrum sensing, what are the spectrum

holes and the challenges that a CR must face in order to sense the RF spectrum

efficiently. In Chapter 4 we are going to discuss in depth the most important

techniques for sensing the spectrum. We are analyzing the model, the decision
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1.1 Thesis Outline

statistic and we are deriving the performance of these techniques. Moreover, we

are giving in figures the performance of the detectors. In Chapter 5 we are going

to compare the different spectrum sensing techniques and the findings are going

to be discussed. In Chapter 6 Cooperative Spectrum Sensing, the way it can be

implemented and the problems that it can solve are going to be briefly discussed.

Chapter 7 serves as an epilogue to this thesis.
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Chapter 2

Cognitive Radios

2.1 Introduction

In this chapter we shall give some background information about the Cognitive

Radios. In section 2.2, we discuss the background of CRs and the reasons which

lead to the capturing of that idea. In section 2.3, we show the different definitions

for CRs and in section 2.4 we are discussing the main functionalities of a CR. In

section 2.5, we point out the most important applications of the CRs. Finally,

the working group that has been formed by IEEE (802.22 WRAN) is going to be

discussed briefly in section 2.6.

2.2 The vision of Cognitive Radios

The need for higher data rates is increasing as a result of the transition from

voice-only communications to multimedia type applications. The requirements

for this heavy load of data are large and it is obvious that the current static

frequency allocation schemes cannot accommodate them. As a result, we must

find new techniques for exploiting the available spectrum more efficiently.

Cognitive radio is the new key enabling technology that enables next gen-

eration communication networks to utilize the spectrum more efficiently in an

opportunistic way without interfering with the PUs. In a report by the Shared

Spectrum Company (SSC) in 2007 it was shown that the spectrum was not used
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2. COGNITIVE RADIOS

Figure 2.1: Bar Graph of the Spectrum Occupancy in Each Band in New York

City and Chicago, USA.

effectively in almost all currently deployed frequency bands in USA (the same

results were derived from measurements in other countries as well). Figures 2.1

and 2.2 show the spectrum occupancy for the region of bands in the 30 MHz to 3

GHz with the measurements taken in New York City and Chicago (USA) and in

Dublin, Ireland (EU) for the period 16-18 April 2007; these results are from the

report of SSC. The spectrum occupancy in Dublin, Ireland is similar to the ones

in Chicago and New York. This proves that the inefficient usage of frequency

spectrum is a problem not only in USA, but also in European countries. Thus,

CRs is a solution to spectrum scarcity.

The term Cognitive Radio was first introduced in the pioneering work of
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2.2 The vision of Cognitive Radios

Figure 2.2: Spectrum Occupancy Measured in Each Band at Commission for

Communications Regulation Building, Dublin, Ireland.

Konstantinos E. Bountouris 7 September 2013



2. COGNITIVE RADIOS

Joseph Mitola III [2]. In Mitola’s dissertation (KTH Royal Institute of Technol-

ogy, Stockholm, Sweden, 2000 ) and a number of publications [3], he envisioned

such a self-reconfiguring radio and dubbed the term Cognitive Radio for it. Ac-

cording to Mitola’s early vision, a CR would be realized through the integration

of model-based reasoning with software radio and would be trainable in a broad

sense, instead of just programmable. In analogy with the mental process of

cognition, Mitola also outlined a cognitive cycle through which such radio can

reconfigure itself through an ongoing process of awareness (both of itself and

the outside world), perception, reasoning, and decision making (Fig. 2.3). The

concept of CR emphasizes enhanced quality of information and experience for

the user, with cognition and reconfiguration capabilities as a means to this end.

Today, however, CR has become an all-encompassing term for a wide variety of

technologies that enable radios to achieve various levels of self-configuration, and

with an emphasis on different functionalities, ranging from ubiquitous wireless

access, to automated radio resource optimization, to dynamic spectrum access

for a future device-centric interference management, to the vision of an ideal CR.

The main characteristics of CRs are reconfigurability and intelligent adaptive

behavior. Here by intelligent adaptive behavior we mean the ability to adapt

without being a priori programmed to do this; that is, via some form of learn-

ing. From this it follows that cognitive radio functionality requires at least the

following capabilities:

• Flexibility and agility, the ability to change the waveform and other radio

operational parameters on the fly. In contrast, there is a very limited ex-

tent that the current multichannel multiradio (MC-MR) can do this. Full

flexibility becomes possible when CRs are built on top of SDRs (2.3.1). An-

other important requirement to achieve flexibility, which is less discussed,

is reconfigurable or wideband antenna technology.

• Sensing, the ability to observe and measure the state of the environment,

including spectral occupancy. Sensing is necessary if the device is to change

its operation based on its current knowledge of RF environment.
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2.3 Definitions of Cognitive Radios

• Learning and adaptability, the ability to analyze sensory input, to recognize

patterns, and modify internal operational behavior based on the analysis of

a new situation, not only based on precoded algorithms but also as a result

of a learning mechanism.

2.3 Definitions of Cognitive Radios

CR has drawn great attention due to its potential for solving current spectrum

shortage problems and enhancing radio communication performance. These re-

sult in many academic institutions and industries generating various definitions

for CR, according to their own needs, based on the original definition by Mitola

in 1999. In this section we are going to point out the most popular definitions

for CR:

By Joseph Mitola “A radio that employs model based reasoning to achieve a

specified level of competence in radio-related domains.”

By Simon Haykin “Cognitive Radio is an intelligent wireless communication

system that is aware of its surrounding environment and uses the methodol-

ogy of understanding-by-building to learn from the environment and adapt

its internal states to statistical variations in the incoming RF stimuli by

making corresponding changes in certain operating parameters (e.g. trans-

mit power, carrier-frequency and modulation strategy) in real time, with two

primary objectives in mind

• highly reliable communications whenever and wherever needed;

• efficient utilization of the radio spectrum”.

By FCC “A cognitive radio is a radio that can change its transmitter parameters

based on interaction with the environment in which it operates”.

From the first and the second definition six words stand out: awareness, intel-

ligence, learning, adaptability, reliability and efficiency. These are the cognitive

capabilities that a CR must have and thanks to the advances of digital signal

processing (DSP), networking, machine learning, computer software (SW) and
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computer hardware (HW). Except of these cognitive capabilities, a CR has an-

other one which is borrowed from by a platform known as Software-Defined Radio

(SDR). On this platform the CR is built.

In the subsection 2.3.1 we give a brief description of what an SDR is.

2.3.1 Software-Defined Radio

A SDR is a radio in which the properties of carrier frequency, signal bandwidth,

modulation and network access are defined by SW. It is a general-purpose device

in which the same radio tuner and processors are used to implement many wave-

forms at many frequencies. The advantage of this approach is that the equipment

is more versatile and cost-effective. Additionally, it can be upgraded with new

SW for new waveforms and new applications after sale, delivery and installation.

2.4 Functions of Cognitive Radios

A typical duty cycle of CR, as illustrated in Figure 2.3, includes detecting spec-

trum white space, selecting the best frequency bands, coordinating spectrum

access with other users and vacating the frequency when a primary user appears.

Such a cognitive cycle is supported by the following functions:

• spectrum sensing and analysis,

• spectrum management and handoff,

• spectrum allocation and sharing.

Through spectrum sensing and analysis, CR can detect the spectrum white

space, i.e. a portion of frequency band that is not being used by the primary users,

and utilize the spectrum. On the other hand, when primary users start using the

licensed spectrum again, CR can detect their activity through sensing, so that no

harmful interference is generated due to SUs’ transmission. After recognizing the

spectrum white space by sensing, spectrum management and handoff function

of CR enables SUs to choose the best frequency band and hop among multiple

bands according to the time varying channel characteristics to meet various QoS
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Figure 2.3: Cognitive Radio duty cycle [“Advances in CR Networks: A survey”,

Beibei Wang, K.J. Ray Liu]

requirements. For instance, when a PU reclaims his/her frequency band, the SU

that is using the licensed band can direct his/her transmission to other available

frequencies, according to the channel capacity determined by the noise and inter-

ference levels, path loss, channel error rate, holding time, and etc. In dynamic

spectrum access, a SU may share the spectrum resources with PUs, other SUs,

or both. Hence, a good spectrum allocation and sharing mechanism is critical

to achieve high spectrum efficiency. Since PUs own the spectrum rights, when

SUs co-exist in a licensed band with PUs, the interference level due to secondary

spectrum usage should be limited by a certain threshold. When multiple SUs

share a frequency band, their access should be coordinated to alleviate collisions

and interference.
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2.5 Applications of Cognitive Radios

Because CRs are able to sense, detect and monitor the surrounding RF envi-

ronment such as interference and access availability and reconfigure their own

operating characteristics to best match outside situations, cognitive communi-

cations can increase spectrum efficiency and support higher bandwidth service.

Thus, there are many application in which a CR can be employed. The most

popular and useful are discussed:

For military communications The capacity of military communications in

limited by radio spectrum scarcity because static frequency assignments

freeze bandwidth into unproductive applications, where a large amount of

spectrum is idle. CR using dynamic spectrum access can relieve the spec-

trum congestion through efficient allocation of bandwidth and flexible spec-

trum access. Therefore, CR can provide military with adaptive, seamless

and secure communication.

Public safety A CR can be implemented to enhance public safety and homeland

security. A natural disaster or terrorist attack can destroy existing commu-

nication infrastructure, so an emergency network becomes indispensable to

aid the search and rescue. As a CR can recognize spectrum availability and

reconfigure itself for much more efficient communication, this provides pub-

lic safety staff with dynamic spectrum selectivity and reliable broadband

communication to minimize information delay. Moreover, CR supports in-

teroperability between various communication systems. By adaptation to

the different network, CR can sustain multiple service types.

In Figure 2.4, an example of public safety teams is shown. Members of Team

A employ a communications standard operating on a carrier frequency that

is different from the communication equipment employed by both Teams

B and C. Thus, unless these teams are coordinated with respect to oper-

ating parameters and communication standards, effective communications

between them would be nearly impossible.
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Commercial purposes Finally, another very promising application of CR is

in the commercial markets for wireless technologies. Since CR can intelli-

gently determine which communication channels are in use and automati-

cally switches to an unoccupied channel, it provides additional bandwidth

and versatility for rapidly growing data applications. Moreover, the adap-

tive and dynamic channel switching can help avoid spectrum conflict and

expensive redeployment. As CR can utilize a wide range of frequencies,

some of which has excellent propagation characteristics, CR devices are

less susceptible to fading related to growing foliage, buildings, terrain and

weather. When frequency changes are needed due to conflict or interfer-

ence, the CR frequency management software will change the operating

frequency automatically even without human intervention. Additionally,

the radio software can change the service bandwidth remotely to accom-

modate new applications. As long as no end-user hardware needs to be

updated, product upgrades or configuration changes can be completed sim-

ply by downloading newly released radio management software. Thus, CR

is viewed as the key enabling technology for future mobile wireless services

anywhere, anytime and with any device.

2.6 IEEE 802.22

IEEE 802.22 standard is known as cognitive radio standard because of the cogni-

tive features it contains. The standard is still in the development stage. One of

the most distinctive features of the IEEE 802.22 standard is its spectrum sensing

requirement. IEEE 802.22 based wireless regional area network (WRAN) devices

sense TV channels and identify transmission opportunities. The functional re-

quirements of the standard require at least 90% probability of detection and at

most 10% probability of false alarm for TV signals with - 116 dBm power level

(approximately 0.001 pW ) or above. The sensing is envisioned to be based on

two stages: fast and fine sensing. In the fast sensing stage, a coarse sensing algo-

rithm is employed, e.g. energy detector. The fine sensing stage is initiated based

on the fast sensing results. Fine sensing involves a more detailed sensing where
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Figure 2.4: Example of public safety and emergency responder teams within the

same geographical area operating on different center frequencies and potentially

using different communication standards. [“Cognitive Radios Communications

and Networks, p.10”]

more powerful methods are used. Several techniques that have been proposed

and included in the draft standard include energy detection, waveform-based

sensing (PN511 or PN63 sequence detection and/or segment sync detection), cy-

clostationary feature detection, and matched filtering. A base station (BS) can

distribute the sensing load among subscriber stations (SSs). The results are re-

turned to the BS which uses these results for managing the transmissions. Hence,

it is a practical example of centralized collaborative sensing. Another approach

for managing the spectrum in IEEE 802.22 devices is based on a centralized

method for available spectrum discovery. The BSs would be equipped with a

global positioning system (GPS) receiver which would allow its position to be

reported. The location information would then be used to obtain the information

about available TV channels through a central server. For low-power devices

operating in the TV bands, e.g. wireless microphone and wireless camera, exter-

nal sensing is proposed as an alternative technique. These devices periodically

transmit beacons with a higher power level. These beacons are monitored by

IEEE 802.22 devices to detect the presence of such low-power devices which are

otherwise difficult to detect due to the low-power transmission. Figure 2.5 shows
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Figure 2.5: IEEE 802.22 WRAN service topology

the service topology for the IEEE 802.22 WRAN.
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Chapter 3

Spectrum Sensing and Analysis

3.1 Introduction

Through spectrum sensing, CRs can obtain useful information about their sur-

rounding radio environment, such as the presence of PUs and appearance of

spectrum holes. Only with this information a CR can adapt its transmitting and

receiving parameters, like transmission power, frequency, modulation schemes

etc., in order to achieve efficient spectrum utilization and avoid interference to

the PUs’ signals. Therefore, spectrum sensing and analysis is a critical step to-

wards dynamic spectrum management.

3.2 Spectrum Sensing

Spectrum sensing enables the capability of a CR to measure, learn and be aware of

the radio’s operating environment, such as the spectrum availability and power,

noise temperature, interference status etc. When a certain frequency band is

detected as not being used by the primary licensed user of the band at a partic-

ular time in a particular position (spectrum hole), SUs can utilize the spectrum,

i.e. there exists a spectrum opportunity. Therefore, spectrum sensing can be

performed in the time, frequency, space and code dimensions. With the recent

development of transmit beamforming, multiple users can utilize the same chan-

nel/frequency at the same time in the same geographical location. Thus, in the
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case that a PU does not transmit in all directions, extra spectrum opportunities

can be created for SUs in the directions where the PU is not operating.

Spectrum sensing helps CRs to gain awareness of their radio environment, in

a manner that they know if a band is used by a PU in a geographical area. This

awareness can be obtained by using beacons, by using geolocation and databases

or by performing local spectrum sensing at cognitive radios. Recently, the latter

method is used more than the others because of its broader application and lower

infrastructure requirement.

Figure 3.1 shows the various aspects of spectrum sensing for CRs. In this chap-

ter, we are going to analyze the phenomenon of spectrum holes in section 3.3, the

challenges of spectrum sensing for CRs in section 3.4 and, finally, a classification

according to the requirements that each method needs in order to be implemented

will be discussed in section 3.5.

Figure 3.1: Various aspects of spectrum sensing for Cognitive Radio. [Yucek and

Arslan: “A survey of spectrum sensing algorithms for cognitive radio applica-

tions”]

3.3 Spectrum Holes

Spectrum Hole is defined as a licensed spectrum band that can be used by Cog-

nitive Radio users without interfering the primary users.
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In general, spectrum holes can be divided into two categories: temporal and

spatial spectrum holes. A further analysis is following and Figure 3.2 shows

temporal (a) and spatial (b) spectrum holes.

3.3.1 Temporal Spectrum Holes

A temporal spectrum hole means that there is no transmission over the spectrum

band of interest during the time of sensing. Thus, this band can be utilized by

CR in the current time slot. The PUs and the SUs are located in the same area,

in the sense that there can be interference between them. The CR avoids that by

exploiting the spectrum holes in time, in order not to interfere the licensed user.

Consequently, it is relatively easy to detect the presence or absence of the primary

user activity since CRs only need to have a similar detection sensitivity as regular

primary receivers and the only thing that is mandatory to do is to identify the

presence of the primary signal, rather than demodulating and decoding it. So,

there is no need for high complexity in signal processing.

3.3.2 Spatial Spectrum Holes

A spatial spectrum hole exists when the spectrum band of interest is occupied by

the primary transmission only in a restricted geographical area. Thus, this band

can be utilized by CRs only when they appear outside of this area. The difference

between temporal and spatial holes is that for the CRs to be able to use the latter

they must be outside of the transmission coverage area of the PUs. Since there

are no PUs outside the coverage area, secondary communication over the licensed

band is allowed if and only if the CR does not interfere with the operation of the

PU inside the coverage area. In this case, the detection of the PU’s signal from

the SU is a difficult task, because the SU falls out of the coverage area of the PU’s

transmission. Therefore, it is comprehensible that the CR needs high complexity

in signal processing, because is it obligatory that the PU’s transmission will be

detected at any location where there would be interference.
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Figure 3.2: Spectrum holes for secondary communication. (a) Temporal spectrum

holes and (b) spatial spectrum holes. [“Signal Processing in Cognitive Radio”, J.

Ma, G.Y. Li, B.H. Juang]
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3.4 Challenges of Spectrum Sensing

In this section we are about to point out some challenges and other issues that

spectrum sensing must face so as the CR to have a proper operation.

Hardware Requirements Spectrum sensing for CR applications requires high

sampling rate, high resolution analog-to-digital converters (ADC) with large

dynamic range and high speed signal processors. On the one hand, the noise

interference problem is easier for these purposes as receivers are tuned to

receive signals that are transmitted over a desired bandwidth. Moreover,

simple receivers are capable of processing narrowband baseband signals with

low complexity and power consumption. On the other hand, CR terminals

are required to process transmission over a much wider band for utilizing

any opportunity. Hence, CR should be able to capture and analyze a rela-

tively larger band for identifying spectrum opportunities. Thus, additional

requirements on the components in radio frequency (RF) bands, such as

antennas and power amplifiers, are needed and they must operate in a wide

range of frequencies. Also, high speed processors (DSPs or FPGAs) with

low computationally complexity are necessary.

Hidden Primary User Problem This is a very serious problem for a CR user

and it can be caused by many factors including severe multipath fading and

shadowing observed by secondary users while scanning for primary users’

transmissions. Figure 3.3 shows an illustration of a hidden node problem

where the dashed circles show the operating ranges of the primary user and

the cognitive radio device. In this example, the CR causes unwanted inter-

ference to the PU because the CR is outside of the transmission coverage

area of the PU. We can tackle this problem by applying Cooperative Spec-

trum Sensing. In Chapter 6 we discuss the Cooperative Spectrum Sensing.

Sensing Periodicity While utilizing a white space, the SU should continue to

periodically sense the desired band (e.g. every Tp) in case a PU starts to

transmit. The sensing period, Tp, determines the maximum time during

which the CR will not be aware of a reappearing PU and may interfere

with it. Therefore, Tp plays a key role for the QoS of the licensed user.
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Figure 3.3: The hidden licensed user problem in cognitive radio systems. [Yucek

and Arslan: “A survey of spectrum sensing algorithms for cognitive radio appli-

cations”]

The CR cannot simultaneously sense the band and transmit, so secondary

transmission and sensing of the band must be combined properly. While

from the regulator’s perspective it suffices for the SU to monitor the band

and make a decision whether there is or not a PU signal once every Tp, for

the CR it is desired to maintain sensing time well below Tp, in order to have

time for its transmission.

Noise Uncertainty It is not always available for a CR to know a priori the noise

power, so the receiver must estimate it by itself. Unfortunately, calibration

errors as well as changes in thermal noise caused by temperature variations

limit the accuracy with which noise power can be estimated. Thus, the

detection sensitivity, defined as the minimum SNR at which the PU’s signal

can be accurately detected, must be calculated with the worst case noise

assumption which leads to a more sensitive detector.

3.5 Classification of Spectrum Sensing Techniques

Several techniques have been proposed for a CR to detect the primary signal

in order to utilize in an efficient way the spectrum and each one has different
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requirements so as to be implemented. These methods can be classified into

three general categories: (a) methods requiring both primary signal and noise

power information, (b) methods requiring only noise power information (semiblind

detection) and (c) methods requiring no information on primary signal or noise

power (blind detection). For example, Likelihood Ratio Test (LRT), Matched

Filter (MF) and Cyclostationary Detection (CSD) belong to category (a); Energy

Detection (ED) and Wavelet-Based Detection are semiblind methods and belong

to category (b) and finally blind methods are the Eigenvalue-Based Detection,

Covariance-Based Detection and Blindly Combined ED and belong to category

(c).

In chapter 4 we shall show the characteristics as well as the performance of

some of the above methods; for the MF detection and a variation of it, the ED

and finally the Covariance-Based detection and a variation of that method.
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Chapter 4

Spectrum Sensing Techniques

4.1 Introduction

In this section we are going to present the most important and widely used sensing

methods for the CRs. The presentation is relative to the information that each

method is needed so as to be implemented, i.e. first the method that needs both

PU’s signal and noise information (4.3), then the semiblind detection (4.4) and

finally the blind detection (4.5). But first of all we are discussing the Neyman-

Pearson theorem (4.2) which is the basis for the design of detectors of signals in

noise.

4.2 Neyman-Pearson Theorem

A common approach to simple hypothesis testing is based on the Neyman-Pearson

(NP) theorem. The simple hypothesis testing arises when the Probability Density

Function (PDF) of each assumed hypothesis is completely known. NP theorem

is used typically in sonar and radar systems.

The NP theorem Before continuing to the spectrum sensing techniques, it is

mandatory to explain how the NP theorem works. An example will give us

a good explanation.

Assume that we have a random variable (RV) whose PDF is either N(0, 1)

or N(1, 1). By the notation N(µ, σ2) we mean that this random variable
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Figure 4.1: PDFs for hypothesis testing problem.

has a Gaussian (Normal) distribution with mean µ and variance σ2. So, we

have only one observation of that RV, i.e. x[0] and we must determine if

its mean is 0 or 1. Thus, we have to choose among two hypothesis:

H0 : µ = 0

H1 : µ = 1
(4.1)

where H0 is the null hypothesis and H1 is the alternative hypothesis. This

problem is known as the binary hypothesis test and in detection theory for

signals is a key problem. The PDFs under each hypothesis are shown in

Figure 4.1, with the difference in means causing the PDF under H1 to be

shifted to the right.

Now, we must decide one in favor of the two hypotheses. It is difficult to

decide based in only one sample but a good approach would be to decide

H1 if x[0] > 1/2 because if this is happening then the observed sample is

more likely if H1 is true. We call the value 1/2 as our threshold (usually

referred as γ) in this example with which we compare our observed data

in order to decide one of the two hypothesis. We can make two types of

errors. If we decide H1 but H0 is true we make a false alarm error. In

the other hand, if we decide H0 while H1 is true we make a miss detection
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error. The threshold is a very important feature of the detection theory as

it determines the performance of the detection method.

We can convert the binary hypothesis problem (4.1) to the signal detection

problem, which will occupy us in the next sections:

H0 : x[0] = w[0]

H1 : x[0] = s[0] + w[0],
(4.2)

Deciding H1 when H0 is true can be thought of as a false-alarm. Generally,

in the implementation of the detectors we want very small values of proba-

bility of false-alarm (PFA) or Pr{H1|H0}. On the other hand, we wish to

maximize the probability of detection (PD) or Pr{H1|H1}. NP approach

maximizes the PD for a fixed PFA. By writing Pr{Hi|Hj} we mean that

we choose the hypothesis Hi when the hypothesis Hj is true.

To return to the signal detection problem (4.2) we can constrain PFA by

choosing the threshold γ since

PFA = Pr{H1|H0}
= Pr{x[0] > γ|H0}

=

∞∫
γ

1√
2π

exp

(
−1

2
t2
)

dt

= Q

(
γ − µ√
σ2

)
= Q(γ),

(4.3)

because x is a Gaussian RV and in the case of H0 µ = 0 and σ2 = 1. As an

example, if PFA = 10−3 then γ = 3, because Q−1(PFA) = 3. We therefore
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decide H1 if x[0] > 3. Furthermore, with this choice we have

PD = Pr{H1|H1}
= Pr{x[0] > γ|H1}

=

∞∫
γ

1√
2π

exp

[
−1

2
(t− 1)2

]
dt

= Q

(
γ − µ√
σ2

)
= Q(γ − 1) = Q(2) = 0.023,

(4.4)

because x is a Gaussian RV and in the case of H1 µ = 1 and σ2 = 1.

4.3 Matched Filter Detection

If SUs know information about a PU’s signal a priori, then the optimal detection

method is the matched filter since it maximizes the SNR of the received signal.

The MF correlates the already known primary signal with the received signal to

detect the presence of the PU and thus maximizes the SNR in the presence of

additive noise. The advantage of MF detection is the short time that it needs in

order to achieve a good detection performance compared to the other techniques,

such as a low probability of false alarm and missed detection, since the MF needs

less received samples. MF implementation complexity and power consumption

is too high, because that detector needs receivers for all types of signals and

corresponding receiver algorithms to be executed.

Matched filtering requires perfect knowledge of the PU’s signal, e.g. the op-

erating frequency, bandwidth, modulation type and order, pulse shape, packet

format etc. If wrong information is used for matched filtering the detection per-

formance will be degraded, which leads to malfunction of the CR concept and

from the PU’s perspective, leads to low QoS for the licensed users.

The development of the detector follows.

Model The detection problem is to distinguish between the two hypotheses:

H0 : x[n] = w[n], n = 0, 1, . . . , N − 1

H1 : x[n] = s[n] + w[n], n = 0, 1, . . . , N − 1
(4.5)
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where w[n] is White Gaussian Noise (WGN) with variance σ2 and the source

signal s[n] is assumed a known deterministic one and Gaussian distributed.

x[n] is the received signal. WGN is defined as a zero-mean Gaussian process

with constant spectral density.

Decision Statistic The NP detector decides H1 if the likelihood ratio exceeds a

threshold γ (we are going to analyze later in this section how the threshold

is calculated) or

L(x) =
p(x|H1)

p(x|H0)
> γ (4.6)

where x = [x[0] x[1] . . . x[N − 1]]T

Taking the PDFs of the two hypotheses, putting them in eq. (4.6) and after

some mathematical calculations we manage to evaluate the decision statistic

T (x) of the MF detector. Thus, the detector decides H1 if:

T (x) =
N−1∑
n=0

x[n]s[n] > γ′ (4.7)

where γ′ is a new threshold. This means that in eq. (4.7) if T (x) is greater

than the threshold, then the detector has detected a PU’s signal.

The detector in eq. (4.7) is referred to as a correlator or replica-correlator

since we correlate the received signal with a replica of the signal. In Fig-

ure 4.2 the replica-correlator detector is shown.

Performance We now determine the detection performance. Specifically, we

will derive PD for a given PFA. Using the eq. (4.7) we decide H1 if

T (x) =
N−1∑
n=0

x[n]s[n] > γ′

.

Under both hypotheses, x[n] is Gaussian and T (x) is also Gaussian as it

is a linear combination of Gaussian random variables. By E(T ;Hi) we
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Figure 4.2: Neyman-Pearson detector for deterministic signals (replica correla-

tor).

denote the expected value and by var(T ;Hi) we denote the variance under

hypothesis Hi. Then we have:

E(T ;H0) = E

(
N−1∑
n=0

w[n]s[n]

)
= 0

var(T ;H0) = var

(
N−1∑
n=0

w[n]s[n]

)
=

N−1∑
n=0

var(w[n])s2[n] = σ2

N−1∑
n=0

s2[n] = σ2E

where E is the energy of the source signal s[n].

E(T ;H1) = E

(
N−1∑
n=0

(s[n] + w[n])s[n]

)
= E

and finally the variance under hypothesis H1 is:

var(T ;H1) = var

(
N−1∑
n=0

(s[n] + w[n])s[n]

)
= σ2E

Thus, the distributions of the test statistic under either hypotheses, H0 and

H1 are, respectively:

T ∼
{
N(0, σ2E) under H0,

N(E, σ2E) under H1
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Now, we are going to calculate the performance of the MF detector, by

calculating the probability of false alarm and the probability of detection.

As the probability of false alarm (PFA) is defined when there is no signal, i.e.

only noise, and we detect signal, from the distribution of the test statistic

T under hypothesis H0 we have:

PFA = Pr{H1|H0} = Pr{T > γ′|H0} = Q

(
γ′√
σ2E

)
. (4.8)

The probability of detection (PD) is defined when in the received signal

there is source signal with noise and we detect the source signal. From the

distribution of the test statistic T under hypothesis H1 we have:

PD = Pr{H1|H1} = Pr{T > γ′|H1} = Q

(
γ′ − E√
σ2E

)
. (4.9)

Thus, equations (4.8) and (4.9) give us the theoretical performance of the

MF detector. Subsequently, we are going to calculate the threshold, which

is a very important component of the detector as, in a way, it determines

the performance of the detector.

Since we do not know if there is signal or not, it is difficult to set the

threshold based on the PD. So, we, usually, calculate it based on the PFA.

Hence, based on eq. (4.8) we have for the threshold γ′:

γ′ = Q−1(PFA)
√
σ2E. (4.10)

We can do that because Q(x) = 1 − Φ(x) and Φ(x) is monotonically in-

creasing, so Q(x) is monotonically decreasing and has an inverse Q−1(·).
Figure 4.3 shows the values of the Q(x) function.

Returning to the calculation of the performance of the MF detector, we

have from combining the equations (4.9) and (4.10) the evaluation of the

probability of detection of the MF detector. That is:

PD = Q

(√
σ2EQ−1(PFA)√

σ2E
−
√

E

σ2

)
= Q

(
Q−1(PFA)−

√
E

σ2

)
. (4.11)
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Figure 4.3: Right tail probability for standard normal PDF.

Simulation The detection performance and the Receiver Operating Characteris-

tics (ROC) are shown in figures. In Figures 4.4 and 4.5 we can see the perfor-

mance of the MF detector for different values of target PFA, for PFA = 10−1

and PFA = 10−3 in the first case and for PFA = 10−5 and PFA = 10−7 in the

second case. As we can observe from these figures, if we want to increase the

detection performance we can always increase the PFA and/or increase the

ENR, which is the energy-to-noise ratio, and we can do that by increasing

the signal energy. We define ENR as 10log10(E/σ
2) and E =

N−1∑
n=0

s2[n].

Another way to show the performance of a detector is the ROC in which

the PD is plotted versus PFA. Each point of the curve corresponds to a

value of the set (PD, PFA) for a given threshold γ. As γ increases, PD and

PFA decrease and, as γ decreases, PD and PFA increase. One characteristic

of the ROC curve is that it should be always above the 45o line. Figure 4.6

shows the ROC for the MF detector for different values of the SNR, where
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SNRdB = 10log10
σ2
s

σ2 .

4.3.1 Generalized Matched Filter

The MF is an optimal detector for a known signal in WGN. In this subsection

we model the noise as correlated noise. Thus, we now assume that w ∼ N(0,C),

where C is the covariance matrix.

Model The detection problem is to distinguish between the two hypotheses:

H0 : x[n] = w[n], n = 0, 1, . . . , N − 1

H1 : x[n] = s[n] + w[n], n = 0, 1, . . . , N − 1
(4.12)

where s[n] is the source signal and is assumed known. The covariance matrix

C is, also, assumed known.

Decision Statistic To determine the NP detector we again determine the like-

lihood ratio test (LRT) with

p(x|H1) =
1

(2π)N/2det1/2(C)
exp

[
−1

2
(x− s)T C−1(x− s)

]
(4.13)

p(x|H0) =
1

(2π)N/2det1/2(C)
exp

[
−1

2
xT C−1x

]
(4.14)

where we have noted that under H0, x ∼ N(0,C) and under H1, x ∼
N(s,C).

We decide H1 if

l(x) = ln
p(x|H1)

p(x|H0)
> lnγ. (4.15)

But

l(x) = −1

2

[
(x− s)TC−1(x− s)− xTC−1x

]
= −1

2

[
xTC−1x− 2xTC−1s + sTC−1s− xTC−1x

]
= xTC−1s− 1

2
sTC−1s

(4.16)
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Figure 4.4: Detection performance of matched filter for target PFA = 10−1 and

PFA = 10−3.

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Detection performance for a matched filter

Energy-to-noise-ratio(dB) 10log10( E
σ2 )

P
ro
b
a
b
il
it
y
o
f
d
et
ec
ti
o
n
P
D

 

 

P
D

 theoretical P
FA

=10−5

P
D

 simulation P
FA

=10−5

P
D

 theoretical P
FA

=10−7

P
D

 simulation P
FA

=10−7

Figure 4.5: Detection performance of matched filter for target PFA = 10−5 and

PFA = 10−7.
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Figure 4.6: ROC curves for MF detector under different values of SNRdB.

or by incorporating the non-data dependent term into the threshold we

decide H1 if

T (x) = xTC−1s > γ. (4.17)

The detector of eq. (4.17) is referred to as a generalized replica-correlator.

The replica is the modified signal s′ = C−1s.

Performance The generalized MF decides H1 if

T (x) = xTC−1s > γ′.

Under either hypotheses the test statistic is Gaussian, as it is a linear trans-

formation of x. Then, to derive the PD we do the same things as in MF

detector. We have:
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E(T |H0) = E(wTC−1s) = 0

E(T |H1) = E
[
(s + w)TC−1s

]
= sTC−1s

var(T |H0) = E
[
(wTC−1s)2

]
= E(sTC−1wwTC−1s) =

sTC−1E(wwT )C−1s = sTC−1s

and finally,

var(T |H1) = sTC−1s

This means that:

T ∼
{
N(0, sTC−1s), under H0

N(sTC−1s, sTC−1s), under H1

Thus, we have for the PFA and for the threshold γ′:

PFA = Pr{H1|H0} = Q

(
γ′√

sTC−1s

)
⇒ γ′ = Q−1 (PFA)

√
sTC−1s,

(4.18)

and the PD for a target PFA is

PD = Pr{H1|H1} = Q

(
γ′ − sTC−1s√

sTC−1s

)
(4.19)

and with the help of eq. (4.18) we can transform the eq. (4.19) into:

PD = Q
(
Q−1(PFA)−

√
sTC−1s

)
. (4.20)

So, we derived the threshold and the PD for the generalized MF detector

and now we are ready to show the detection performance of that detector

based on the above equations and on simulations.
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Simulation The detection performance of the generalized MF is summarized

in Figure 4.7 and in Figure 4.8 the ROC is shown. In the first figure, we

can see the curves that are created from the theoretical expressions of the

PD, i.e. from eq. (4.20) and the curves that are created via simulation.

We plot the PD versus the ENRdB which is defined as 10log10(s
TC−1s).

We can see that the theoretical and the simulation are matched for both

the values of PFA. Also, we can observe that when the PFA increases,

the detection probability increases as well. This happens because when a

detector throws false alarm frequently this means that it will detect the

signal properly more frequently. The first figure is derived for covariance

matrix C =

[
4 0
0 9

]
and the second figure is derived for covariance matrices

CENR1 =

[
9 0
0 16

]
, CENR2 =

[
1 0
0 4

]
, CENR3 =

[
1 0
0 1

]
.

4.3.2 Pilot-Based Detection

Most wireless communication systems exhibit certain known patterns, such as

pilot tones, preambles, midambles, spreading codes etc, which are used to assist

control, equalization, synchronization, continuity or reference purposes. These

pilot tones are transmitted periodically. Even though perfect information of a

PU’s signal may not be attainable, if a certain pattern is known from the received

signals, pilot-based detection can be used to decide whether there is the signal of

the licensed user or not. A brief description of pilot-based detection follows.

Model There are two hypotheses:

H0 : y(n) = w(n), 0 ≤ n ≤ N − 1

H1 : y(n) = hp(n) + w(n), 0 ≤ n ≤ N − 1
(4.21)

where p(n) is the pilot sequence, w(n) is the white noise, h is the unknown

quasi-static block fading channel from the PU to the CR user. If we define

Pp =
1

N

N−1∑
n=0

|p(n)|2 (4.22)
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Figure 4.7: Performance of detection for the generalized MF for a variety of target

PFA.

as the average power of the pilot signal, then the instantaneous SNR is

given by

γ =
|h|2Pp
σ2
n

(4.23)

where σ2
n is the noise power.

Decision Statistic Using the Generalized Likelihood Ratio Test (GLRT) the

NP detector decides H1 if the likelihood ratio exceeds a threshold γ or

L(y) =
p(y; ĥML|H1)

p(y|H0)
> γ (4.24)
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Figure 4.8: ROC for the generalized MF for a variety of values of ENRdB.

We, then, take the logarithms of the two PDFs and after some mathematical

calculations the test statistic of the coherent detection yields:

Y =

∣∣∣∣∣
√

2

NPpσ2
n

N−1∑
n=0

y(n)p∗(n)

∣∣∣∣∣
2

(4.25)

which under H0 and H1 becomes:

Y =



∣∣∣∣∣√ 2
NPpσ2

n

N−1∑
n=0

w(n)p∗(n)

∣∣∣∣∣
2

, under H0∣∣∣∣∣√2NPp

σ2
n
h+

√
2

NPpσ2
n

N−1∑
n=0

w(n)p∗(n)

∣∣∣∣∣
2

, under H1

and we make the decision from the above test statistic by comparing it with

a predetermined threshold γ, which is chosen that way to satisfy a target

probability of false alarm.
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Under H0, the test statistics Y of that detector follows a central chi-squared

distribution with two degrees of freedom. This happens because the ex-

pected value of Y under H0 is 0 and its variance is 2 because it is a complex

number squared, with real (Re) part and imaginary (Im) part. Re ∼ (0, 1)

and Im ∼ (0, 1) are summed, thus the test statistic under H0 has expected

value equal to 0 and variance equal to 2.

Under H1, Y has a noncentral chi-squared distribution with two degrees of

freedom and a non centrality parameter µ = 2Nγ. Summarizing the above,

we have

fY (Y ) =

{
χ2
2, under H0

χ
′2
2 (µ), under H1

The central chi-squared distribution arises as the PDF of x where x =
ν∑
i=1

x2i

where xi ∼ N(0, 1) and the xis are independent and identically distributed.

On the other hand, the noncentral chi-squared distribution arises as the

PDF of x where x =
ν∑
i=1

x2i where xi ∼ N(µi, 1). Then x has a noncentral

chi-squared PDF with ν degrees of freedom and a noncentrality parameter

λ =
ν∑
i=1

µ2
i . Figures 4.9 and 4.10 show some examples of the PDFs for

central and non central chi-squared RVs, respectively.

Performance The performance of the coherent detection is calculated experi-

mentally.

Simulation The performance and the ROCs for a variety of values of instanta-

neous SNR in db are shown in Figure 4.11 for different values of SNRdB.

As we can see from this figure when SNR increases the detection perfor-

mance of the coherent detection increases.
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Figure 4.9: PDF for central chi-squared random variable.

Figure 4.10: PDF for non central chi-squared random variable with varying de-

grees of freedom (ν) and noncentrality parameter λ = 4.
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Figure 4.11: ROC curves for coherent detection for different values of SNRdB.

4.4 Energy Detection

Energy Detection (also known as radiometry) is the simplest spectrum sensing

technique and is widely used when there is no a priori information on the source

signal. It simply treats the PU’s signal as noise and decides on the presence or

absence of the primary signal based on the energy of the observed signal. Since

it does not need any a priori knowledge of the primary signal, the ED is robust

to the variation of the primary signal. Two significant advantages of the ED is

that it does not involve complicated signal processing and has low complexity.

Despite its advantages, ED has some drawbacks. It has not good perfor-

mance under low SNR conditions and there is an inability in differentiating the

interference from other SUs sharing the same channel and the PU. This leads to

frequently triggering false-alarm. Moreover, ED is not appropriate method for

detecting spread spectrum signals.
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In section 4.3 we assumed deterministic signals. In this section, we are going

to analyze the ED assuming random signals. The analysis of the Energy Detector

follows.

Model We model the source signal s[n] as a zero mean, white, WSS Gaussian

random process with variance σ2
s and the noise w[n] is WGN with variance

σ2 and independent of the signal. That is, s ∼ N(0, σ2
s) and w ∼ N(0, σ2).

The detection problem is to distinguish between the two hypotheses:

H0 : x[n] = w[n], n = 0, 1, . . . , N − 1

H1 : x[n] = s[n] + w[n], n = 0, 1, . . . , N − 1
(4.26)

Decision Statistic The NP detector decides H1 if the likelihood ratio exceeds a

threshold γ (we are going to analyze later in this section how the threshold

is calculated) or

L(x) =
p(x|H1)

p(x|H0)
> γ (4.27)

From the above assumptions, we have for the received signal

x = [x0, x1, , . . . , , xN−1]
T under H0 x ∼ N(0, σ2I) and under H1 x ∼

N(0, (σ2
s +σ2)I). So, now, from eq. (4.27) we are going to evaluate the deci-

sion statistic for the ED taking the PDFs of the two hypotheses. Eq. (4.27)

becomes:

L(x) =

1

[2π(σ2
s+σ

2)]
N
2

exp

[
− 1

2(σ2
s+σ

2)

N−1∑
n=0

x2[n]

]
1

(2πσ2)
N
2

exp

[
− 1

2σ2

N−1∑
n=0

x2[n]

] (4.28)

and after some mathematical calculations to the eq. (4.28) the decision

statistic for the ED yields:

T (x) =
N−1∑
n=0

x2[n] > γ′ (4.29)
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Performance We can observe from eq. (4.29) that the test statistic measures

the energy of the received data and compares it to a threshold. If the signal

is present, the energy of the received data increases. By dividing the test

statistic T (x) with σ2 in the first case and with σ2 + σ2
s in the second case,

the distribution of the statistic becomes:

T (x)

σ2
∼ χ2

N under H0 (4.30)

T (x)

σ2
s + σ2

∼ χ2
N under H1 (4.31)

Hence, from (4.30), (4.31) and (4.29), for a given threshold γ′, we are able

to compute the probability of false alarm and the probability of detection of

the ED. The PFA is when there is only noise but the detector detects PU’s

signal and the PD is when there is PU’s signal and noise and the detector

detects it. Thus:

PFA = Pr{H1|H0}
= Pr{T (x) > γ′|H0}

= Pr

{
T (x)

σ2
> γ′

}
= Qχ2

N

(
γ′

σ2

) (4.32)

and
PD = Pr{H1|H1}

= Pr{T (x) > γ′|H1}

= Pr

{
T (x)

σ2
s + σ2

> γ′
}

= Qχ2
N

(
γ′

σ2
s + σ2

)
.

(4.33)

If we define the SNR as the ratio of the power of the source signal to the

power of the noise, i.e. σ2
s/σ

2, then from eq. (4.33) we can see that the

detection performance increases as the SNR increases. We show that:

PD = Qχ2
N

(
γ′/σ2

σ2
s/σ

2 + 1

)
(4.34)
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So, when σ2
s/σ

2 increases, the argument of the Qχ2
N

decreases and the prob-

ability of detection increases.

Now, we are going to evaluate the threshold. For its evaluation we use

the recursive algorithm from the Problem 5.1 in p. 176 from the book

Fundamentals of Statistical Signal Processing-Detection Theory by Steven

Kay. Then, we have

PFA = exp

(
− γ′

2σ2

)1 +

N
2
−1∑

r=1

(
γ′

2σ2

)r
r!

 (4.35)

And then by letting γ′′ = γ′/2σ2 and rearranging terms we have:

γ′′ = −lnPFA + ln

1 +

N
2
−1∑

r=1

(γ′′)r

r!

 (4.36)

Finally, we can evaluate the threshold γ′ by using the fixed point iteration:

γ′′k+1 = −lnPFA + ln

1 +

N
2
−1∑

r=1

(γ′′k)r

r!

 (4.37)

and begin the iteration with γ′′0 = 1.

Simulation The detection performance of the ED for two values of target PFA

is shown in Figure 4.12. Also, in Figure 4.13 the Receiver Operating Char-

acteristic for different values of SNR in dB is shown. In the first figure we

can see the curves that are created from the theoretical types of the PD,

i.e. from eq. (4.33) and the curves that are created via simulation. We can

see that the theoretical and the simulation are matched for both values of

PFA.

4.5 Covariance-Based Detection

The key idea behind covariance-based detection is that the PU’s signal received

at the CR user is usually correlated because of the dispersive channels, the utility
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Figure 4.12: Performance of detection for the ED for a variety of target PFA.

of multiple receive antennas or even over-sampling. Such correlation can be used

by the CR user to differentiate the signal of the licensed user from white noise.

Covariance-based detector determines the presence or absence of the primary

signal based on the covariance matrix of the received signal. Specifically, based

on the ratio of maximum eigenvalue to minimum eigenvalue of the covariance

matrix of the received signal we can detect the signal existence.

The analysis of the maximum-minimum eigenvalue (MME) detection follows.

Model The detection problem is to distinguish between the two hypotheses:

H0 : x[n] = w[n], n = 0, 1, . . . , N − 1

H1 : x[n] =
N∑
k=0

h[k]s[n− k] + w[n], n = 0, 1, . . . , N − 1
(4.38)
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Figure 4.13: ROC for the ED for a variety of values of SNRdB.

where h is the channel response from source signal to the receiver, s[n] is

the PU’s signal, w[n] is the additive noise and x[n] is the received signal in

the CR receiver. Based on the received signals with little information on

the source signals, noise power and channel responses a sensing algorithm

should make a decision on the existence or the absence of the PU’s signal.

For a good detection algorithm (obviously for every algorithm discussed in

this thesis) we want the PD to be high and the PFA to be low.

Decision Statistic The next step that we must do in this algorithm is to com-

pute the covariance matrix of the received signal, that is:

R(Ns) =
1

Ns

L−1+Ns∑
n=L

x(n)x†(n) (4.39)

where Ns is the number of collected samples, L is the number of consecutive
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outputs of the received signal and the superscript † denotes the transcon-

jucate (or Hermitian) of the complex signal x(n).

After the computation of R matrix from eq. (4.39) we must find its eigen-

values and obtain the maximum and the minimum eigenvalue of the matrix.

Let λmax and λmin be the maximum and the minimum eigenvalue, respec-

tively. Subsequently, we can make our decision from the two hypotheses of

eq. (4.38) based on the ratio λmax/λmin.

Thus, if λmax > γλmin signal exists, i.e. hypothesis H1. Otherwise, signal

does not exist, i.e. hypothesis H0. In the previous cases, γ is the threshold

and we are going to show later the way that is evaluated.

Performance The threshold, theoretically, is computed from the next equation

for a given PFA:

γ =
(
√
Ns +

√
L)2

(
√
Ns −

√
L)2

(
1 +

(
√
Ns +

√
L)−2/3

(NsL)1/6
F−12 (1− PFA)

)
(4.40)

where F2(·) is the CDF of the 2nd order Tracy-Widom distribution.

Generally, it is difficult to obtain a closed form expression of the detection

probability PD = Pr{λmax > γλmin|H1}, so in the next figures the detection

performance and the ROCs are computed experimentally.

Simulation The Receiver Operating Characteristic for the MME detector for

two values of the SNR in dB is shown in Figure 4.14. From that figure

we can observe that when the SNR increases, the detection performance

increases as well. Furthermore, we can see that for low SNR the red curve

does not fall under the 45o line, which means that, still, in this case the

detection performance is satisfactory.

The values of the channel h (with dimension (N + 1, 1)) for which the

following ROC was produced are:
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Figure 4.14: ROC for the MME detection for different values of the SNR in dB.
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Chapter 5

Comparison

5.1 Introduction

In this Chapter we are going to compare the different spectrum sensing techniques

discussed in Chapter 4.

5.2 Energy Detection vs Matched Filter Detec-

tion

In this section we are comparing the performance of the ED to the one of the MF

Detector. In the experiment we create a random signal and then we use it for

the evaluation of the detection performance of each of these two methods. We

compute the threshold and the test statistic of each of the methods (with the

same signal we created before) and then we evaluate the PD and the PFA in the

same way as in Chapter 4. Visually, the comparison of ED and MF is shown in

Figure 5.1 for SNR = −6 dB, in Figure 5.2 for SNR = 0 dB and in Figure 5.3

for SNR = 2 dB.

From these figures we can observe that the MF has better detection perfor-

mance than the ED for any SNR. This is reasonable, as in the MF detection

we know information about the PU’s signal a priori and the MF correlates the

already known primary signal with the received signal to detect the presence of

the PU. On the other hand, ED has no a priori information on the source signal.
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Figure 5.1: Comparison of Energy Detector and Matched Filter Detector for

SNR = −6 dB

It simply treats the PU’s signal as noise and decides on the presence or absence

of the primary signal based on the energy of the observed signal.

5.3 Energy Detection vs Matched Filter Detec-

tion vs Covariance Based Detection

In this section we compare the performances of the ED, the MF Detector and

the Covariance-Based Detection. In the experiment we create a random signal

and then we use it for the evaluation of the detection performance of each of

these three techniques. Also, we have a channel, assumed known, and the useful

signal is the result of the convolution of the signal we created with the values of

the channel. The received signal is the summation of the useful signal plus the
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Figure 5.2: Comparison of Energy Detector and Matched Filter Detector for

SNR = 0 dB

noise. For the MF detection we assume the useful signal as known. In Figure 5.4

we show the ROCs for the three methods for SNR = −2.4dB and in Figure 5.5

for SNR = 3dB. From these figures we can observe that the MF detection has

almost excellent performance for low SNR as well as for higher SNR. This is

because we have perfect knowledge of the signal and the channel. Moreover, we

can see that the ED has better performance than the MME detector. In this case

we define SNR as 10log10

(
||h||2σ2

s

σ2

)
.
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Figure 5.3: Comparison of Energy Detector and Matched Filter Detector for

SNR = 2 dB
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Figure 5.4: Comparison of Energy Detector, Matched Filter Detector and Max-

Min Eigenvalue Detection for SNR = −2.4 dB.
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Figure 5.5: Comparison of Energy Detector, Matched Filter Detector and Max-

Min Eigenvalue Detection SNR = 3 dB.
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Chapter 6

Cooperative Spectrum Sensing

6.1 Introduction

Spectrum sensing using a single CR has a number of limitations. First of all,

the sensitivity of a single sensing device might be limited because of energy con-

straints. Furthermore, the CR might be located in a deep fade of the PU signal,

and as such might miss the detection of this PU. Moreover, although the CR

might be blocked from the PU’s transmitter, this does not mean it is also blocked

from the PU’s receiver, i.e. the hidden terminal problem which was described in

section 3.4. As a result, the PU is not detected but the secondary transmission

could still significantly interfere at the PU’s receiver. Figure 6.1 shows that CR3

is shadowed by a high building over the sensing channel (PU to the CR) and that

CR1 is shadowed over the reporting channel (CR to Base Station).

6.2 General Concept

By taking advantage of the independent fading channels (i.e., spatial diversity)

and multiuser diversity, cooperative spectrum sensing is proposed to improve the

reliability of spectrum sensing, increase the detection probability to better protect

a PU and reduce false alarm to utilize the idle spectrum more efficiently. The

concept of cooperative spectrum sensing is to use multiple sensors and combine

their measurements into one common decision.
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Figure 6.1: Cooperative spectrum sensing in CR networks. CR1 is shadowed over

the reporting channel and CR3 is shadowed over the sensing channel. [Letaief

and Zhang: “Cooperative Communications for Cognitive Radio Networks”]

The merit of cooperative spectrum sensing primarily lies in the achievable

space diversity brought by the sensing channels, namely, sensing diversity gain,

provided by the multiple CRs. Even though one CR may fail to detect the signal

of the PU, there are still many chances for other CRs to detect it. With the

increase of the number of cooperative CRs, the probability of missed detection

for all the users will be extremely small. Another merit of cooperative spectrum

sensing is the mutual benefit brought forward by communicating with each other

to improve the sensing performance. When one CR is far away from the primary

user, the received signal may be too weak to be detected by this CR. However, by

employing a CR that is located nearby the PU as a relay, the signal of the PU can

be detected reliably by the far user. There are mainly three relaying protocols:

• Amplify-and-forward (AF). In AF, the received signal is amplified and re-

transmitted to the destination. The advantage of this protocol is its sim-

plicity and low cost implementation. But the noise is also amplified at the
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relay.

• Decode-and-forward (DF). In DF, the relay attempts to decode the received

signals. If successful, it reencodes the information and retransmits it.

• Compress-and-forward (CF). CF attempts to generate an estimate of the

received signal. This is then compressed, encoded, and transmitted in the

hope that the estimated value may assist in decoding the original codeword

at the destination.

6.2.1 Challenges

There also exist several challenges on cooperative spectrum sensing. For instance,

secondary users can be low-cost devices only equipped with a limit of amount of

power, so they can not afford very complicated detection hardware and high

computational complexity. In wideband cooperative sensing, multiple secondary

users have to scan a wide range of spectrum channels and share their detection

results. This results in a large amount of sensory data exchange, high energy

consumption, and an inefficient data throughput. If the spectrum environment is

highly dynamic, the sensed information may even be stale due to user mobility,

channel fading, etc. Furthermore, another challenge in the implementation of

cooperative sensing is the issue of user reliability. For instance, a single malicious

user may prevent a cognitive radio network (CRN) from accessing a white space

by sending false reports to the band manager.

6.3 Methods of Cooperative Spectrum Sensing

Cooperation can be among cognitive radios or external sensors can be used to

build a cooperative sensing network. In the former case, cooperation can be

implemented in two fashions: centralized or distributed. These two methods and

external sensing are discussed in the following sections.
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6.3.1 Centralized Sensing

In centralized sensing, cooperative spectrum sensing consists of a base station

(BS) or an access point (AP). The BS or AP collects sensing information from

cognitive devices, identifies the available spectrum and broadcasts this informa-

tion to other CR (i.e., the presence or absence of the PU’s signal) or directly

controls the cognitive radio traffic. The goal is to mitigate the fading effects of

the channel and increase detection performance. In the case of a large number of

users, the bandwidth required for reporting becomes huge. In order to reduce the

sharing bandwidth, local observations of cognitive radios are quantized to one bit

(hard decisions). Furthermore, only the cognitive radios with reliable information

are allowed to report their decisions to the central unit. Hence, some sensors are

censored. Censoring can be implemented by simply using more threshold values

instead of one.

Generally, the sensing information combination at the BS can be categorized

by soft combination and hard combination techniques.

Soft Combination In soft combination, also known as data fusion, the CR users

send their original sensing data (measurements) to the base station without

quantization. While soft combination requires large overhead to feedback

the sensing data, it has excellent detection performance. Soft combination

can be performed as described above:

1. Every CR performs its own local spectrum sensing measurements in-

dependently.

2. All of the CRs forward their measurements (data) to AP.

3. The common receiver fuses the CR decisions and makes a final decision

to infer the absence or presence of the PU.

Hard Combination In order to minimize the communication overhead and

hence the bandwidth required for the transmission of the data from the

CRs to the AP, users may only report their final 1-bit decisions rather than

the actual measurements. In hard combination schemes, also called decision

fusion, the CR users send quantized sensing information to the BS and the
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BS deploys a fusion rule to make the final decision, i.e. whether there is or

not the PU’s signal. While local hard decision at the CR users causes in-

formation loss and performance degradation, it greatly reduces the amount

of feedback.

The simplest hard combination scheme is the one-bit counting scheme, in

which each CR user sends one-bit information to the base station regarding

its observed energy is above a predetermined threshold. Specifically, if each

user only sends one-bit decision (“1” for signal present and “0” for signal

absent) and no other information is available at the central processor, some

commonly adopted decision fusion rules are described as follows.

1. “Logical-OR (LO)” Rule: If one of the decisions is “1” the final de-

cision is “1”. Assuming that all decisions are independent, then the

probability of detection and probability of false alarm of the final deci-

sion are PD = 1−
M∏
i=1

(1−PD,i) and PFA = 1−
M∏
i=1

(1−PFA,i) respectively,

where PD,i and PFA,i are the probability of detection and probability

of false alarm for user i, respectively.

2. “Logical-AND (LA)” Rule: If and only if all decisions are “1”, the

final decision is “1”. The probability of detection and probability of

false alarm of the final decision are PD =
M∏
i=1

PD,i and PFA =
M∏
i=1

PFA,i

respectively.

3. “K out of M” Rule: If and only if K decisions or more are “1”, the final

decision is “1”. This includes “Logical-OR (LO)” (K = 1), “Logical-

AND (LA)” (K = M), and “Majority” (K =dM/2e) as special cases.

The probability of detection and probability of false alarm of the final

decision are

PD =
M−K∑
i=0

(
M

K + i

)
(1− PD,i)M−K−i(1− PD,i)K+i

and

PFA =
M−K∑
i=0

(
M

K + i

)
(1− PFA,i)M−K−i(1− PFA,i)K+i
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Figure 6.2: ROC curves for fusion rules in centralized cooperative spectrum sens-

ing.

respectively.

In the following figures we show the ROCs for the three above rules. In

Figure 6.2 we plot the probability of detection versus the probability of

false alarm and in Figure 6.3 we plot the probability of missed detection

(PMISS) versus the probability of false alarm. The probability of missed

detection is defined as PMISS = 1−PD. Our experiment is implemented for

10 CR users in the Cognitive Radio Network (CRN) and a fusion center that

collects the binary decisions from these CRs. We choose for the Majority-

Rule the value of the factor K = 6.

In the literature, a new two bit hard combination scheme has been pro-

posed [16]. With this scheme a better detection performance can be achieved.
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Figure 6.3: Complementary ROC curves for fusion rules in centralized cooperative

spectrum sensing.

Figure 6.4 shows the one-bit and two-bit hard combination schemes. We

can see that in the second case the observed energy is divided into four

regions by three thresholds λ1, λ2, λ3.

6.3.2 Distributed Sensing

In the case of distributed sensing, cognitive nodes share information among each

other but they make their own decisions as to which part of the spectrum they

can use. Distributed sensing is more advantageous than centralized sensing in

the sense that there is no need for a backbone infrastructure and it has reduced

cost.

Figure 6.5 shows a schematic representation of the AF cooperation scheme in

a decentralized CR network. In the figure, P denotes the primary user and CR

Konstantinos E. Bountouris 63 September 2013



6. COOPERATIVE SPECTRUM SENSING

Figure 6.4: Principles of hard combination schemes (a) One-bit counting scheme

and (b) two-bit hard combination scheme. [Ma et al.: “Signal Processing in

Cognitive Radio”]

user U1 is sending data to CR user U3, while CR user U2 acts as an AF relay

for U1. The AF cooperation scheme consists of two stages or time slots: in the

first time slot U1 transmits while U2 listens; in the second time slot U2 transmits

while U1 keeps silent. Thus orthogonal transmission of U1 and U2 is guaranteed.

Since continuous spectrum sensing is required during the process of secondary

communication between the CR users, actually U1 does not idle the second time

slot away. Instead, U1 listens to its partner U2 and decides whether the received

signal contains the primary signal in the second time slot.

6.3.3 External Sensing

Another technique for obtaining spectrum information is external sensing. In ex-

ternal sensing, an external agent performs the sensing and broadcasts the channel

occupancy information to CRs. External sensing algorithms solve some problems

associated with the internal sensing where sensing is performed by the cognitive

transceivers internally. The main advantages of external sensing are overcoming

hidden primary user problem and the uncertainty due to shadowing and fading.
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Figure 6.5: Schematic representation of the AF cooperation scheme in a decen-

tralized CR network. [Ma et al.: “Signal Processing in Cognitive Radio”]

Furthermore, as the cognitive radios do not spend time for sensing, spectrum

efficiency is increased. The sensing network does not need to be mobile and not

necessarily powered by batteries. Hence, the power consumption problem of in-

ternal sensing can also be addressed. External sensing is one of the methods

proposed for identifying primary users in IEEE 802.22 standard as well.

6.4 Practical Considerations about Cooperative

Sensing

Fading and Shadowing In practice, the reporting channels between the CRs

and the common receiver will also experience fading and shadowing (such as

CR 1 in Figure 6.1). This will typically deteriorate the transmission relia-

bility of the sensing results reported from the CRs to the BS. For example,

when one CR reports a sensing result “1” (denoting the presence of the

PU) to the BS through a realistic fading channel, the BS will likely detect

it to be the opposite result “0” (denoting the absence of the PU) because of

the disturbance from the random complex channel coefficient and random
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noise. Eventually, the performance of cooperative spectrum sensing will be

degraded by the imperfect reporting channels.

Trade-off Between Sensing Duration and Performance Spectrum sensing

is significant in CRs in avoiding a collision with the licensed user and im-

proving the licensed spectrum utilization efficiency. The former is character-

ized by the PD and the latter is measured by the PFA. The sensing duration

T is no doubt a key parameter to determine the sensing performance. A

longer sensing duration T can produce a better sensing performance but

results in longer waiting time for cognitive users to access the channel. An

extremely long sensing duration cannot be tolerated by an agile radio. From

the perspective of the cognitive users, a lower false alarm probability im-

plies that there will be more chances for the licensed channel to be reused.

Assuming that the protection of the primary user is of the first priority in

CR networks, we can maximize the throughput of the cognitive users in

order to find an optimal sensing duration.

Trade-off Between Cooperation and Sensing In a CR network with a large

number of CRs, cooperative spectrum sensing may become impractical be-

cause in a time slot only one CR should send its local decision to the BS so

as to separate decisions easily at the receiver end. Hence, it may make the

whole sensing time intolerantly long. Obviously the fewer CRs involved in

cooperative spectrum sensing, the shorter the sensing duration. However,

a small number of CRs in cooperative spectrum sensing results in a small

sensing diversity order. This problem can be addressed by allowing the CRs

to send the decisions concurrently. But this may complicate the receiver

design when we try to identify the decisions from different CRs. Another

potential solution is to send the decisions on orthogonal frequency bands,

but this requires a large portion of the available bandwidth.
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Conclusion

Cognitive Radio is the new key technology that serves as a solution to the spec-

trum scarcity. It is necessary that the CRs are used in wireless communications

in order to potentially improve the utilization efficiency of the radio spectrum.

By tuning the frequency to the temporarily unused licensed band and adapting

operating parameters to environment variations, CR technology provides future

wireless devices with additional bandwidth, reliable broadband communications

and versatility for rapidly growing data applications.

In this thesis we presented the fundamental concepts of CR technology and the

idea that lead us to that technology. We presented the prerequisite requirement

on deploying CR, i.e. spectrum sensing and we analyzed the basic detection

techniques in order to realize the sensing of the RF spectrum. Furthermore, we

presented cooperative spectrum sensing that serves as a solution to the challenges

that one CR user can face, i.e. multipath fading and shadowing.

7.1 Future Work

Research on spectrum sensing thus far has mainly focused on meeting the regu-

latory requirements for reliable sensing. An important venue for further research

is the interplay of spectrum sensing and higher-layer functionalities to enhance

the end user’s perceived QoS.
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