
INVESTIGATING PARAPHRASING ALGORITHMS WITH

APPLICATION TO SPOKEN DIALOGUE SYSTEMS

By

Arodami Chorianopoulou

DIPLOMA THESIS

TECHNICAL UNIVERSITY OF CRETE

CHANIA, GREECE

OCTOBER 2013

c© Copyright by Arodami Chorianopoulou, 2013

Supervisor:
Assist. Prof. Polychronis Koutsakis

Readers:
Assoc. Prof. Alexandros Potamianos

Prof. Evripidis Petrakis

ii

To Manolis and Maria

iii

Table of Contents

Table of Contents iv

List of Tables vi

List of Figures ix

Abstract x

Acknowledgements xi

1 Introduction 1
1.1 Applications . 1
1.2 Classification of the methods . 2
1.3 Purpose of the Thesis . 3

2 Related Work 4
2.1 Problem Statement . 4
2.2 Semantic Textual Similarity . 5

2.2.1 Similarity Measures . 5
2.2.2 Alignment . 6
2.2.3 Machine Learning . 7
2.2.4 Evaluation . 9

2.3 Paraphrase Detection & Recognition . 9
2.3.1 Logic-based . 9
2.3.2 Vector Space Models of Semantics 9
2.3.3 Surface String Similarity . 10
2.3.4 Syntactic Similarity . 10
2.3.5 Similarity Measures Operating on Symbolic Meaning Represen-

tations . 10
2.3.6 Employ Machine Learning . 11
2.3.7 Decoding . 11
2.3.8 Evaluation . 11

2.4 Paraphrase Generation . 13
2.4.1 Inspired by Statistical Machine Translation 13
2.4.2 Bootstrapping . 14

iv

2.4.3 Evaluation . 15
2.5 Paraphrase Extraction . 15

2.5.1 Distributional Hypothesis . 16
2.5.2 Bootstrapping . 16
2.5.3 Alignment . 17
2.5.4 Evaluation . 18

2.6 Summary . 18

3 Our Approach 19
3.1 The idea . 19
3.2 String Similarity Metrics . 20
3.3 Algorithm for Paraphrase Detection and Semantic Textual Similarity . . 21
3.4 Algorithm for Paraphrase Recognition and Generation 22

3.4.1 Baseline . 23
3.4.2 Word-order sensitive . 24

4 Experimental Procedure & Evaluation 29
4.1 Evaluation on Paraphrase Detection . 29
4.2 Evaluation on Semantic Textual Similarity 31

4.2.1 Datasets . 31
4.2.2 Evaluation Results . 32

4.3 Experiments on Paraphrasing Prompts 36
4.3.1 Data Collection . 36
4.3.2 Results on Crowdsourcing Data 38
4.3.3 Results on Web Documents . 40
4.3.4 Objective Evaluation . 42

5 Conclusions and Future Work 45
5.1 Conclusions . 45
5.2 Future Work . 46

5.2.1 Similarity Features . 46
5.2.2 FSM-based alignment . 46
5.2.3 Data Collection . 46

A The FSM Toolkit 47

B Results for Paraphrase Detection and STS 51

C Results for Paraphrasing Prompts 65
C.1 Crowsourcing data . 65
C.2 Web documents . 70

Bibliography 73

v

List of Tables

2.1 Paraphrase recognition results on the MSR corpus 12

2.2 Main ideas discussed and tasks they have mostly been used in. R: recog-

nition, G: generation, E: extraction, P: paraphrasing 18

4.1 Paraphrase Detection results, using a Naive Bayes classifier, without

stemming implementation . 30

4.2 Paraphrase Detection results, using a Naive Bayes classifier, with stem-

ming implementation . 31

4.3 Evaluation of string similarity measures on the test datasets of SemEval

2012 using a Linear Regressor . 33

4.4 Evaluation of string similarity measures on the test datasets of SemEval

2013 using a Linear Regressor . 33

4.5 Evaluation of string similarity measures on the test datasets of SemEval

2012 using a Bagging classiffier . 34

4.6 Evaluation of string similarity measures on the test datasets of SemEval

2013 using a Bagging classiffier . 34

4.7 Evaluation of string similarity measures on the test datasets of SemEval

2012 using an M5P classiffier . 34

4.8 Evaluation of string similarity measures on the test datasets of SemEval

2013 using an M5P classiffier . 35

4.9 The results show the correlation of ”All measures” as described abobe

among all datasets (both SemEval 2012 and 2013) and all the classifiers 35

4.10 Categories of prompts and examples . 37

4.11 Size of each web dataset . 38

4.12 Candidate paraphrases for the input prompt: WHAT DATE WOULD

YOU LIKE TO TRAVEL. 38

vi

4.13 Candidate paraphrases for the input prompt: WILL YOU NEED A

HOTEL. 40

4.14 Evaluation scores of the baseline system 42

4.15 Pearson correlation coefficient on the datasets of the SemEval workshop

of 2012. Experimenting on the two parameters, number of synonyms

(N) and cost of the epsilon transition (e). 43

4.16 Correlation on the datasets of SemEval 2012 after combining systems

with different parameters, using a Linear Regressor, a Bagging and an

M5P classifier. 44

4.17 Correlation on the SMTnews dataset of SemEval after increasing the

number of synonyms to N = 250 and N = 500 44

B.1 Evaluation on paraphrase detection, using a Naive Bayes classifier. No

stemming has been employed while 10 fold-cross-validation has been used 53

B.2 Evaluation on paraphrase detection, using a SVM classifier. No stem-

ming has been employed while 10 fold-cross-validation has been used) . 54

B.3 Evaluation on paraphrase detection, using a Naive Bayes classifier. Stem-

ming has been employed while 10 fold-cross-validation has been used . . 55

B.4 Evaluation on paraphrase detection, using a SVM classifier. Stemming

has been employed while 10 fold-cross-validation has been used 56

B.5 Evaluation on paraphrase detection, using a Naive Bayes classifier. No

stemming has been employed while we use 70% of the dataset as a train-

ing sample and 30% as testing . 57

B.6 Evaluation on paraphrase detection, using a SVM classifier. No stem-

ming has been employed while we use 70% of the dataset as a training

sample and 30% as testing . 58

B.7 Evaluation on paraphrase detection, using a Naive Bayes classifier. Stem-

ming has been employed while we use 70% of the dataset as a training

sample and 30% as testing . 59

B.8 Evaluation on paraphrase detection, using a SVM classifier. Stemming

has been employed while we use 70% of the dataset as a training sample

and 30% as testing . 60

vii

B.9 Evaluation on Semantic Textual Similarity by calculating Pearson and

Spearman Correlation on the concatenation of Test Datasets of SemEval

2012 . 61

B.10 Evaluation on Semantic Textual Similarity by calculating Mean Pearson

and Spearman on Test Datasets of SemEval 2012 62

B.11 Evaluation on Semantic Textual Similarity by calculating Pearson and

Spearman Correlation on the concatenation of Test Datasets of SemEval

2013 . 63

B.12 Evaluation on Semantic Textual Similarity by calculating Mean Pearson

and Spearman Correlation on Test Datasets of SemEval 2013 64

C.1 Candidate paraphrases for the input prompt: WHAT CITY DO YOU

WANT TO FLY TO . 65

C.2 Candidate paraphrases for the input prompt: WHERE WOULD YOU

LIKE TO GO . 66

C.3 Candidate paraphrases for the input prompt: WHAT TIME DO YOU

NEED TO DEPART . 66

C.4 Candidate paraphrases for the input prompt: DO YOU KNOW WHAT

AIRPORT . 70

C.5 Candidate paraphrases for the input prompt: WILL YOU NEED A CAR 70

C.6 Candidate paraphrases for the input prompt: WHAT DATE WOULD

YOU LIKE TO TRAVEL . 71

C.7 Candidate paraphrases for the input prompt: WHAT DAY WOULD

YOU LIKE TO DEPART . 71

C.8 Candidate paraphrases for the input prompt: WHAT CITY DO YOU

WANT TO FLY TO . 71

C.9 Candidate paraphrases for the input prompt: WHAT TIME DO YOU

NEED TO DEPART . 72

viii

List of Figures

2.1 Generating paraphrases of ”X wrote Y” by bootstrapping ([2]). 14

3.1 System architecture for Paraphrase detection and STS 22

3.2 System architecture for Paraphrasing Prompts 23

3.3 Example of FSAs for the baseline system 24

3.4 Acceptor, A.fsa, for the input sentence s1 containing word and epsilon

transitions. 26

3.5 Acceptor, B.fsa, for the input sentence s2 containing word and epsilon

transitions. 26

3.6 Example of a transducer, C.fst, for the input sentences s1 and s2, for a

small number of synonyms (N). 27

3.7 Resulting acceptor, D.fsa, after projecting and minimizing the composi-

tion A.fsa ◦ C.fst ◦B.fsa . 28

3.8 Language model, LM.fsa, produced from the sentence s3 28

4.1 Candidate Paraphrases for input prompt “WHAT DATE WOULD YOU

LIKE TO TRAVEL” . 39

4.2 Candidate Paraphrases for input prompt “WILL YOU NEED A HOTEL” 41

C.1 Candidate Paraphrases for input prompt “WHAT CITY DO YOU WANT

TO FLY TO” . 67

C.2 Candidate Paraphrases for input prompt “WHERE WOULD YOU LIKE

TO GO” . 68

C.3 Candidate Paraphrases for input prompt “WHAT TIME DO YOU NEED

TO DEPART” . 69

ix

Abstract

The task of paraphrasing is an important part of natural language processing (NLP) and
is being employed in several NLP applications. A paraphrase is an alternative surface
form in the same language expressing the same semantic content as the original form.
In this thesis, we investigate paraphrase recognition and generation via a composition
of Finite State Machines (FSMs) combined with english resources. Additionally, we
propose several string similarity measures for paraphrase recognition of sentences.

An FSM defines a language by accepting a string of input tokens in the language
and rejecting those that are not included in the language. In our case, the tokens
are the words of the language. Our motivation was to create an alignment between
sentences by using FSMs. This linking between two sentences allows as to identify
whether or not they are paraphrases. Then, by adding a language model we manage
to generate paraphrases.

To test our idea, we experimented on domain-specific paraphrasing, and more specif-
ically, in the travel domain field, by employing paraphrase recognition and generation
on prompts. For this purpose, we have used two different types of corpora. Our first
corpus contains web documents harvested from the web while the second was created
from the CrowdFlower crowdsourcing service.

To evaluate the performance of the method we used the datasets from the SemEval
workshop of 2012, in order to estimate the semantic equivalence between sentences.
The comparison of the results at the evaluation stage with scores from string-based
similarity metrics, shows that our implementation achieves encouraging performance.

x

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my advisor, Prof.
Alexandros Potamianos for his valuable guidance and advice. His willingness to moti-
vate me contributed tremendously to my thesis.

I also wish to thank Dr. Elias Iosif, who was abundantly helpful and offered invaluable
assistance and support.

Deepest gratitude is also due to the members of the supervisory committee, Prof. Poly-
chronis Koutsakis, for his support during the last months and Prof. Euripidis Petrakis.

Finally, an honorable mention goes to my family, my parents and my sister, Elisabeth,
and my friends, Alexandros, Angeliki, Antonela, Vaggelis, Voula, Ioannis L., Ioannis
T., Irini, Kwstas, Sotiris, Stella, for their understanding and support to me while I
worked on this thesis. Without their helps, I would have faced many difficulties in
completing my work.

xi

Chapter 1

Introduction

The concept of paraphrasing is most generally defined on the basis of the principle of
semantic equivalence: A paraphrase is an alternative surface form in the same language
expressing the same semantic content as the original form. Paraphrasing may occur in
several levels.

Paraphrasing methods recognize, generate or extract phrases, sentences or longer
natural language expressions that convey almost the same information. It is a bidirec-
tional method that can be used in natural language processing applications, including
question answering, summarization, text generation, machine translation. On the other
hand, textual entailment methods recognize, generate or extract pairs of natural lan-
guage expressions, such that someone who decides that the first sentence is true would
most likely infer that the second sentence is also true. Paraphrasing can be seen as a
bidirectional textual entailment.

1.1 Applications

Paraphrasing has in many cases been developed for question answering systems. In
such a system, a question may be phrased differently so that the answer may not
correspond to the expected one. Such variations can also improve system’s performance
[2][23][28][59]. A similar application, which also uses question paraphrasing is to obtain
the most frequent questions (FAQs).

In text summarization [2][47][31], an important stage is to identify the most im-
portant sentences of the text to be summarized. The goal is to avoid sentences that
convey almost the same meaning with others that have already been selected.

Another application is sentence compression [2][37][50][21][25], in which the con-
straint is that the resulting sentence must be shorter than the original one but still
grammatically correct. In most cases sentence compression drops the less important
information of the original sentence.

Information extraction systems [2][26][52] locate text snippets that are connected to
particular types of events. In this case, paraphrasing can be used to generate additional
semantically equivalent extraction patterns.

Paraphrasing has improved machine translation [2][38] measures and processes at

1

2

the evaluation stage. Moreover, paraphrasing has enriched translation systems and
improved their performance, as it allows them to cope with words or phrases that have
not been contained at the training corpora.

In natural language generation [2][8], paraphrasing can be used to avoid repeating
the same phrasings or to produce alternative expressions. Among those applications,
paraphrasing methods can be employed to simplify texts, for example by replacing
specialized terms with non-expert expressions.

1.2 Classification of the methods

To provide a clear view of the different goals and assumptions of the methods that
have been proposed over the years, we classify paraphrasing in many dimensions [2][55].
First, we classify the methods based on whether they perform detection, recognition,
generation or extraction. This distinction, in many cases, may not be clear. The second
classification refers to where the paraphrasing has been employed. There are three
levels, lexical, phrasal and sentential. Finally, we can classify the methods depending
on the type of corpora they use. That can be a single monolingual corpus, monolingual
comparable corpora, monolingual parallel corpora and bilingual parallel corpora.

Paraphrase detection and recognition refer to the problem of assigning a measure-
ment to the semantic similarity of two phrases. The main input to a paraphrase
recognizer (detector) is a pair of expressions. The output is a judgement indicating
whether or not the input pair of sentences are paraphrases. The difference between
detection and recognition relies to the output measurement they provide. In the first
case, the annotation is either 0 or 1 for “not paraphrase” or “paraphrase” input pair
respectively, while in recognition the output is a continuous value ranging from 0 to 1.
On the other hand, the input to a paraphrase generator is a single language expression.
The output is a set of candidate paraphrases of the input phrase and it must be as large
as possible. Finally, in the case of a paraphrase extractor, the main input is a corpus
while the output consists of pairs of paraphrases. The goal is to produce as many
output pairs as possible.As it has already been mentioned, the boundaries between the
above classifications may not always be clear. For example, in many cases a paraphrase
generator may use a recognizer to filter out candidate paraphrases.

At the lexical level, lexical items having the same meaning are mostly referred as
lexical paraphrases or synonyms. However, there are forms of lexical paraphrasing that
can not be described as synonyms, such as hyperonymy where one of the words is either
more general or more specific than the other. The term phrasal paraphrase refers to
phrases which have the same semantic content. The phrasal fragments may take the
form of syntactic phrases or they may be patterns with linked variables.

Finally, paraphrasing can be seen in sentances, i.e. sentential paraphrasing. To
create sentential paraphrases, one can simply substitute words or phrases with semantic
equivalents. However, this technique may not be able to generate more complex ones.

Regarding our final distinction, we have notified 4 different types of corpora. In
linguistics a corpus is a large and structured set of texts. Nowadays and in most cases
corpora are stored electronically. They are used for linguistics process and analysis.
A single monolingual corpus contains texts of only one language. Most of the existing

3

corpora are in English, however there are a few in European, Middle Eastern and East
Asian languages. Monolingual comparable corpora contain texts or in many cases ar-
ticles that refer to same events or same topics. Monolingual corpora that have been
specially formatted for side-by-side comparison are called aligned parallel corpora. For
example, multiple translations of the same novel are used as parallel corpora. A corpus
that contains texts in multiple languages is called multilingual. In many NLP applica-
tions, corpora containing 2 different languages are used, in which case they are called
bilingual. A method using bilingual corpora would translate a text or a sentence into
one language (called pivot language) and then back to the original one.

1.3 Purpose of the Thesis

In this thesis we present paraphrasing methods and semantic textual similarity by using
a variety of string similarity measures and an alignment based on Finite State Machines
(FSMs). The rest of the thesis is organized as follows.

Chapter 2 contains related work for paraphrasing methods and Semantic Textual
Similarity. We present the main ideas, algorithms and evaluation procedure for our
subject of interest.

Chapter 3 presents our approach on paraphrase detection, recognition and gen-
eration as well as on semantic textual similarity. We describe the string similarity
measures and the FSM-based alignment.

Chapter 4 presents our experiments and the evaluation results for our tasks. Ad-
ditionally, we describe the different kind of corpora that we have tested our approach
on.

Finally Chapter 5 presents our conclusions and the opportunities for future work
that can be derived from our study.

Chapter 2

Related Work

Paraphrases are alternative ways to convey the same information. Recognizing, ex-
tracting or generating semantically equivalent phrases is of significant importance in
many natural language applications, hence in the past paraphrases have come under
the scrunity of many research communities. What distinguishes these applications is
not only the volume of research devoted to them but the fact that for each one there
is typically a well-defined problem setting, a standard metric for evaluating the task,
standard corpora on which the task can be evaluated, and competitions devoted to the
specific task.

In this section, first we define the problem and then we consider in turn recognition,
generation and extraction methods for paraphrasing. In each of the three categories
we explain the ideas and the resources used in past approaches. Moreover, we present
the idea of Semantic Textual Similarity through the SemEval workshop.

2.1 Problem Statement

In a paraphrasing system the need to estimate the semantic equivalence between two
sentences is crucial. Therefore, it is important to come up with a process which will
be able to recognize, extract or generate paraphrases, yielding as a result sentences (or
phrases or patterns) that will maintain the semantic notion of the original sentence.
As semantic notion we understand the meaning of the sentence which relies on the
relation between words or phrases. The distiction between the three methods may not
always be clear, for instance paraphrase generation may be combined with a recognition
system.

In a paraphrase recognition system, one of the most important issues, is to deter-
mine the semantic equivalence between two sentences, which defines how similar the
sentences are. More specifically, a system should return a score for a pair of sentences.
As the score increases to one, the sentences tend to have similar meaning. At that
point, the system can capture the semantic similarity, which can be seen as a different
task. In order to complete the recognition method we have to determine a threshold,
which will classify the pair of sentences as paraphrases or not. Applying the threshold
effectively is an issue of great importance, however in our work this is considered as a
machine learning problem.

4

5

The information extracted from the recognition task is widely used for generation
and extraction systems. In a generation system, the goal is to create as many sentences
as possible that are semantically equivalent to an original one. The simpliest approach
for such systems is substituting the words of the original sentence with synonyms,
which can be obtained from several english resources. Furthermore, paraphrases could
be generated using more complicated ways. For instance, by building a set of para-
phrasing rules, using statistical machine translation, or transforming the sentence into
a representation (graph, FSM, etc.) and employing a system which builds a genera-
tor. In the last approach, the system is able to understant the sentence and present
the meaning in another way. Obviously, the design of such a system depends on the
way the sentences are aligned. A recognition system can be employed to filter out the
generated paraphrases.

Furthermore, the last of the paraphrasing methods intends to extract as many as
possible paraphrases from a corpus. For this purpose, systems have been developed
using the distributional hypothesis, which implies that words appearing in the same
context tend to have similar meaning. Moreover, bootstrapping methods have been
used. The obvious problem, is the one of alignment. However, extraction methods are
not addressed in this thesis.

One can easily see that in scenarios like the ones described above, the estimation of
the semantic similarity and creating an alignment between two sentences are of great
importance. The goal of this thesis is to provide an effective system which copes with
paraphrase recognition and generation, as well as semantic textual similarity.

2.2 Semantic Textual Similarity

Semantic textual Similarity (STS) measures the degree of semantic equivalence between
two texts. STS is related to both Textual Entailment (TE) and Paraphrase (PARA).
STS is more directly applicable in a number of NLP tasks than TE and PARA, such
tasks as Machine Translation and evaluation, Summarization, Machine Reading, Deep
Question Answering, etc. Additionally, STS differs from PARA in that, rather than
being a binary yes/no decision, STS incorporates the notion of graded semantic simi-
larity.

2.2.1 Similarity Measures

Plenty of word similarity measures can be used in order to estimate the semantic
equivalence between two sentences. These can be categorized as follows:

1. Corpus-based
Measures that try to identify the similarity of words using information exclusively
from large corpora. Specifically, these are features which capture the context of
the sentence by creating vectors. There are several features, like ESA, LSA, PMI,
etc. which create vectors based on the context [5][1] [19].

2. Knowledge-based
Measures that rely on a semantic network of words (e.g. WordNet, Wikipedia

6

etc.) [11][17].
For example, WordNet is a large lexical database of English. Nouns, verbs, adjec-
tives and adverbs are grouped into sets of synonyms (synsets), each expressing a
distinct concept. Synsets are linked by means of conceptual-semantic and lexical
relations [24].

To estimate the sentence similarity, one can use lexical, syntactic or semantic fea-
tures. In the first case, there is only comparison of the surface form of the word, while
syntactic or semantic relations are used for the other cases respectively. Additionally,
we should mention the alignment methods used, which vary among the systems.

• Lexical Level
In computer science, lexical analysis is the process of converting a sequence of
characters into a sequence of tokens. At the lexical level of sentential similarity,
several similarity measures could be explored, such as: word or character n-
grams, edit distance, least common subsequence (LCS), least common substring
(LCSstring), resemblance coeeficients (e.g. Jaccard, Dice), etc. Moreover, lexical
semantic features may derive from Machine Translation (e.g. BLEU) [5][35].

• Syntactic Level
At the syntactic level, similarities are based on the dependency relations among
the words of a sentence. The dependency relation views the (finite) verb as
the structural center of all the clause structure. All other syntactic units are
either directly or indirectly dependent on the verb. Syntactic dependencies can
be represented as structures, most commonly tree structures. A structure is
determined by the relation between a word (a head) and its dependents [66][54].

• Semantic Level
At the semantic level, in order to estimate the similarity, we can either use lexical
entailment or classical semantic relations. In the second case, we refer to such
relations, as synonyms, hypernyms etc.

2.2.2 Alignment

The alignment between two sentences can be employed in several ways. Besides using
similarity features, as already described, there are a variety of tools, which can create
an alignment. These include FSMs, graphs, lattices etc.

Universal Networking Language (UNL) is a declarative formal language specif-
ically designed to represent semantic data extracted from natural language texts. It
can be used as a pivot language in interlingual machine translation systems or as a
knowledge representation language in information retrieval applications [64].

Finite State Machines It is conceived as an abstract machine that can be in one
of a finite number of states. The machine is in only one state at a time; the state it

7

is in at any given time is called the current state. It can change from one state to
another when initiated by a triggering event or condition; this is called a transition. A
particular FSM is defined by a list of its states, and the triggering condition for each
transition [72][7].

An important distinction among the FSMs is based on the number of tapes. More
specifically, an FSM with one tape is called “acceptor” and its functionality is to accept
a specific language, while an FSM with two tapes is called “transducer”. A transducer
has the ability to convert an input language to an output one according to the transi-
tions allowed.

There are several FSM-toolkits, which support a variety of FSM functions. The
most common of these are: compile, print and draw (for compilation and display), con-
catenation, union, intersection, epsilon removal and composition (for construction and
combination), minimization and determinization (for minimization and equivalence)
and best path for fsm searching. The definition of each fsm function is described in
Appendix A: The FSM Toolkit.

Graphs Graphs can be used to represent natural language text according to the con-
textual relations of words in higher-level language units (e.g. sentences, definitions or
documents). In these graphs, words and/or higher-level language units are represented
with nodes, and edges are added between them according to their textual context, syn-
tactic relatedness, etc [3] [22].

2.2.3 Machine Learning

Machine learning is about the construction and study of systems that can learn from
data. There are two types: supervised and unsupervised, and both can be applied to
Semantic Textual Similarity.

1. Supervised Machine Learning is the machine learning task ([20][10]) of infer-
ring a function from labeled training data. The training data consists of training
examples, accompanied with a desired output value. Such an algorithm analyzes
the training data and produces an inferred function, which is called either a clas-
sifier or a regression function. The inferred function should predict the correct
output value for any valid input object.
Some commonly used supervised algorithms are:

Linear Regression A linear classifier computes the correlation by making a
classification decision based on the value of a linear combination of the features.
An object’s features are typically presented to the machine in a vector called
feature vector. If the input feature vector to the classifier is a real vector ~x, then
the output score is:

y = f(~w· ~x) = f(
∑
j

wjxj) (2.2.1)

where ~w is a real vector of weights and f is a function that converts the scalar
product of the two vectors into the desired output. The weight vector ~w is learned

8

from a set of labeled training samples.

Bagging classifier A bagging classifier is a “bootstrap” method because it
trains each classifier on a random redistribution of the training set. Each clas-
sifier’s training set is generated by randomly drawing with replacement N’¡ N
examples, where N is the size of the original training set. As a result many of the
original examples may be repeated in the resulting training set while others may
be left out. The N’ models are fitted using the above N’ examples and combined
by averaging the output (for regression) or voting (for classification).

M5P classifier An M5P classifier implements base routines for generating M5
Model trees and rules. Model trees are a type of decision tree with linear regres-
sion functions at the leaves and are able to predict continuous numeric values.
They can be applied to classification problems by employing a standard method
of transforming a classification problem into a problem of function approximation.

Naive Bayes classifier A naive Bayes classifier is a simple probabilistic clas-
sifier based on applying Bayes’ theorem with strong (naive) independence as-
sumptions. The naive Bayes classifier combines the a probabilistic model with
a decision rule. One common rule is to decide in favour of the hypothesis that
is more probable; this is known as the MAP decision rule. The corresponding
classifier is the function defined as follows:

classify(f1, ..., fn) = arg max
c
p(C = c)

n∏
i=1

p(Fi = fi|C = c) (2.2.2)

SVM classifier Support Vector Machines are supervised learning models with
associated learning algorithms that analyze data and recognize patterns. The
basic SVM takes a set of input data and predicts, for each given input, which of
two possible classes forms the output, making it a non-probabilistic binary linear
classifier. An SVM model is a representation of the examples as points in space,
divided in categories. New examples are then mapped into that same space and
predicted to belong to one of the categories, based on their distance from them.

Given some training data D, a set of n points of the form

D = {(xi, yj)|xi ∈ Rp, yj ∈ {−1, 1}}ni=1 (2.2.3)

where the yi is either 1 or -1, indicating the class to which the point xi belongs.

2. Unsupervised Machine Learning It refers to the problem of trying to find
hidden structures in unlabeled data. Since the examples given to the learner are
unlabeled, there is no error or reward signal to evaluate a potential solution.

9

2.2.4 Evaluation

Experimenting with semantic textual similarity requires datasets containing both pos-
itive and negative input pairs. Given two sentences, s1 and s2, an STS system will
return a score. For the evaluation procedure of the output, Pearson and Spearman
correlation coeeficients are widely used.

Pearson correlation is a measure of the linear correlation (dependence) between
two variables X and Y, giving a value between +1 and -1 inclusive, where 1 is total
positive correlation, 0 is no correlation, and -1 is negative correlation. It is widely used
in the sciences as a measure of the degree of linear dependence between two variables.
Pearson’s correlation coefficient between two variables is defined as the covariance of
the two variables divided by the product of their standard deviations.

Spearman correlation is a nonparametric measure of statistical dependence between
two variables. It assesses how well the relationship between two variables can be de-
scribed using a monotonic function. If there are no repeated data values, a perfect
Spearman correlation of +1 or -1 occurs when each of the variables is a perfect mono-
tone function of the other.Spearman’s coefficient, like any correlation calculation, is
appropriate for both continuous and discrete variables, including ordinal variables.

2.3 Paraphrase Detection & Recognition

Paraphrase detection decides whether or not two given phrases (or sentences) are para-
phrases. Methods at different levels of the input sentences have been employed. For
example, they may operate on the semantic or syntactic representation or the combi-
nation of different levels.

2.3.1 Logic-based

Logic-based approaches are based on mapping the language expressions to logical mean-
ing representations, and then rely on logical entailment checks, possibly by invoking
theorem provers [2][12][69]. English resources can provide sense knowledge, axioms or
semantic frames. Specifically, WordNet and FrameNet can be used, or online encyclo-
pedias for background knowledge by extracting particular types of information from
their articles.

2.3.2 Vector Space Models of Semantics

In such approaches each word of the input phrase is mapped to a vector which shows
how strongly the word cooccurs with particular other words in corpora [2] [41], possibly
also taking into account syntactic information. A compositional vector-based can then
be used to combine the vectors of single words; in the simplest case, the vector of each

10

expression could be the sum or product of the vectors of its words. Paraphrases are
detected by measuring the distance between the vectors using, for example, the cosine
similarity.

2.3.3 Surface String Similarity

Several paraphrase recognition methods operate on the input surface string without
computing more syntactic or semantic representations. However, it is possible, for a
pre-processing stage to be applied, such as part-of-speech (POS) tagging, lemmatization
or named-entity recognition. For example, some features that are usually computed are
the number of common words or combinations of several string similarity measures [2]
[44] including measures originating from machine translation (e.g. BLEU), the string
edit distance [40].

2.3.4 Syntactic Similarity

In paraphrasing, another common approach is working at the syntax level. Specifically,
the dependency grammar parsers are quite popular. Their output is a graph (usually
a tree) whose nodes are words of the sentence and whose edges correspond to the
syntactic dependencies between words.

To estimate the similarity someone could count the common edges of the depen-
dency trees of the input pair or use other tree similarity measures (e.g. tree edit
distance). A large similarity score implies that the input sentences are paraphrases.
Tree edit distance [2][62] [68][74] computes the sequence of operator applications (e.g.
add, replace, remove an edge or a node) with the minimum cost that turns one tree into
the other. To obtain more accurate predictions, it is important to assign appropriate
costs to the operators during a training stage.

2.3.5 Similarity Measures Operating on Symbolic Meaning Represen-
tations

Graphs with edges corresponding to semantic relations instead of syntactic dependen-
cies may also recognize paraphrases [2][27]. Relations of this kind may be identified
by applying semantic role labeling methods [49] to the input pair of sentences. Several
resources, such as FrameNet, PropBank, Wordnet etc. provide semantically related
phrases or words. For example, using FrameNet’s frames has the advantage that se-
mantically related expressions may invoke the same frame or interconnected frames,
making similarities and implications easier to capture. WordNet automatically con-
structed collections of near synonyms [42][53][16].

By treating semantically similar words as identical, paraphrase recognizers may be
able to cope with paraphrases that have very similar meanings, but few or no common
words.

11

2.3.6 Employ Machine Learning

Using machine learning, multiple similarity measures, possibly computed at different
levels, can be combined. Each sentence of the input pair is represented as a vector
which contains the scores of every measure that has been applied to the pair and
possibly other features. For example, many systems also include features that check
for polarity differences across the two input expressions [2][27] [34][70]. A supervised
machine learning algorithm trains a classifier with manually classified vectors which
correspond to pairs of sentences (training input pairs). Once trained, the classifier
can classify inseen pairs as correct or incorrect paraphrases by simply examining their
features. In such a recognizer, a preprocessing stage is usually applied, which contais
POS tagging, parsing or normalization.

Instead of mapping each pair to a feature vector that contains mostly scores mea-
suring the similarity between the two input sentences, it is possible to use vectors that
encode directly parts of their syntactic or semantic representation.

2.3.7 Decoding

Decoding is a recognition approach which uses a sequence of rules, that may have been
produced by extraction mechanisms, often in addition to synonyms and hypernyms-
hyponyms, in order to turn one of the input sentences to the other. If there is such a
sequence then the pair of sentences are paraphrases depending on the rules used. Each
rule is associated with a confidence score (possibly learnt from a training dataset) so
that the degree to which the rule preserves the original meaning is reflected. Then we
can search for the sequence of transformations with the maximum score (or minimum
cost) [2][29]. The context where rules are applied may also be used as there may exist
words with multiple senses.

Resources like WordNet and extraction methods provide such rules. When oper-
ating at the level of semantic representations, the sequence sought is in effect a proof
that the two input expressions are paraphrases and it may be obtained by exploiting
theorem provers [6].

2.3.8 Evaluation

Experimenting with paraphrase recognizers requires datasets containing both positive
and negative input pairs. When using discriminative classifiers (e.g. SVMs) the neg-
ative training pairs must ideally be near misses, otherwise they may be of little use
[2][61][71].

The most widely used benchmark dataset for paraphrase recognition is the Microsoft
Research (MSR) Paraphrase Corpus. It contains 5,801 pairs of sentences obtained from
clusters of online news articles reffering to the same events. The pairs were initially
filtered by heuristics and then filtered by an SVM-based paraphrase recognizer, trained
on separate manually classified pairs, which was biased to overidentify paraphrases.
Finally, human judges annotated the remaining sentence pairs as paraphrase or not.
Approximately, 67% of the 5,801 pairs were judged as paraphrases. The dataset is
divided in two non-overlapping parts, for training (70% of all parts) and testing (30%).

12

Table 2.1 lists all the published results of paraphrase recognition experiments on
the MSR corpus. Two baseline systems are included: BASE1 classifies all pairs as
paraphrases; BASE2 classifies two sentences as paraphrases when their surface word
edit distance is below a threshold, tuned on the training part of the corpus.

method accuracy (%) precision (%) recall (%) F-measure (%)

Corley & Mihalcea (2005) 71.5 72.3 92.5 81.2

Das & Smith (2009) 76.1 79.6 86.1 82.9

Finch et al. (2005) 75.0 76.6 89.8 82.7

Malakasiotis (2009) 76.2 79.4 86.8 82.9

Qiu et al. (2006) 72.0 72.5 93.4 81.6

Wan et al. (2006) 75.6 77.0 90.0 83.0

Zhang & Patrick (2005) 71.9 74.3 88.2 80.7

BASE1 66.5 66.5 100.0 79.9

BASE2 69.0 72.4 86.3 78.8

Table 2.1: Paraphrase recognition results on the MSR corpus

Four commonly used evaluation measures are used: precision 2.3.1, recall 2.3.2,
accuracy 2.3.3 and F-measure 2.3.4 with equal weight on precision and recall. These
measures are defined below.

PR =
TP

TP + FP
(2.3.1) RC =

TP

TP + FN
(2.3.2)

AC =
TP + TN

TP + TN + FP + FN
(2.3.3) FM =

2 ∗ PR ∗RC
PR+RC

(2.3.4)

where :

• TP (true positives) are the numbers of pairs that have been correctly classified
as positives (paraphrases).

• FP (false positives) are the numbers of pairs that have been incorrectly classified
as positives.

• TN (true negatives) are the number of pairs that have been correctly classified
as negatives (not paraphrases).

• FN (false negatives) are the number of pairs that have been incorrectly classified
as negatives.

From the results of Table 1 we can see that all systems have better recall than
precision, which implies that they tend to over-classify pairs as paraphrases, possibly
because the sentences of each pair have at least some common words. The high F-
measure of BASE1 is largely due to its perfect recall; its precision is significantly

13

lower, compared to the other systems. BASE2, which uses only string edit distance, is
a competitive baseline for this corpus.

2.4 Paraphrase Generation

Unlike paraphrase recognizers, which can be embedded in paraphrase generators to
filter out erroneous generated paraphrases, generators are modules that produce new
phrases, patterns or sentences that are semantically equivalent. Paraphrase genera-
tors are given as input a single sentence and they produce as many output candidate
paraphrases as possible. There are two main approaches for paraphrase generators.

2.4.1 Inspired by Statistical Machine Translation

Many generation methods borrow ideas from statisical machine translation (SMT).
SMT methods rely on very large bilingual or multilingual corpora [2] [55]. Let’s assume
a sentence F, whose words are f1, f2, ..., f|F | and N one candidate translation, whose
words are a1, a2, ..., a|N | . The best translation, denoted N?, is the N with the maximum
probability of being a translation of F.

N? = arg maxP (N |F) = arg max
P (N)P (F |N)

P (F)
= arg maxP (N)P (F |N) (2.4.1)

Since F is fixed, the denominator P(F) above is fixed and can be ignored when searching
for N?. P(N) is called the language model and P(F—N) the translation model.

Assuming that the probability of encountering word ai depends only on the preced-
ing n-1 words, P(N) becomes :

P (N) = P (a1) · P (a2|a3) · P (a3|a1, a2) · P (a4|a2, a3) · · ·P (a|N ||a|N |−2, a|N |−1) (2.4.2)

A language model also includes smoothing mechanisms, to deal with n-grams that are
rare or not present in the corpus, which would lead to P(N)=0.

To create the corpus, methods like those employed to create the MSR corpus have
been used. The sentence pairs are then word aligned as in machine translation, and the
resulting alignments are used to create a table of phrase pairs as in phrased-based SMT
systems [39]. The table of phrase pairs may include synonyms obtained from Word-
Net or similar resources or pairs of paraphrases discovered by paraphrase extraction
methods. Phrase pairs that occur frequently in the aligned sentences may be assigned
higher probabilities [58]. Their decoder first constructs a lattice that represents all the
possible paraphrases of the input sentence that can be produced by replacing phrases
by their counterparts in the phrase table. Unlike machine translation, not all of the
words or phrases need to be replaced.

Paraphrases can also be generated by using pairs of machine translation systems
to translate the input expression to a new language, often called a pivot language, and
then back to the original language. The resulting expression is often different from the
input one, especially when the two translation systems employ different methods [23].

14

An advantage of this approach is that the machine translation systems can be treated
as black boxes, and they can be trained on readily available parallel corpora of different
languages. A disadvantage is that translation errors from both directions may lead to
poor paraphrases.

An approach similar to syntactic transfer in machine translation may also be adopted
[51]. In that case, the input expression is first parsed. The resulting syntactic repre-
sentation is then modified in ways that preserve the original meaning. New language
expressions are then generated from the new syntactic representations. Parsing, how-
ever, the input expression may introduce errors, and producing a correct meaning
representation of the input may be far from trivial.

2.4.2 Bootstrapping

When the input and output expressions are slotted templates, it is possible to ap-
ply bootstrapping to a large monolingual corpus, instead of using machine translation
methods. Initially, we retrieve from the corpus sentences that contain seed pairs which
match to the template we wish to generate. Simple filtering techniques may be used,
because some of the generated candidate templates may not be paraphrases of the
original one. Having obtained new templates, we can search the corpus for new sen-
tences that match them. From the new sentences, more seed values can be extracted.
More iterations may be used to generate more templates and more seeds, until no more
templates and seeds can be discovered or a maximum number of iterations is reached.

Figure 2.1: Generating paraphrases of ”X wrote Y” by bootstrapping ([2]).

15

If slot values can be recognized reliably, we can obtain the initial seed slot val-
ues automatically by retrieving directly sentences that match the original templates.
Moreover, we can obtain the initial templates automatically, by identifying sentences
of interest, identifying slot values in the sentences and using the contexts of the slot
values as initial templates. TEASE [67] is a well-known bootstrapping method of this
kind.

Similar bootstrapping methods have been used to generate information extraction
patterns [2][60][73]. Some of those methods, however, require corpora annotated with
instances of particular types of events to be extracted [32][65][18].

2.4.3 Evaluation

In most paraphrase applications, it is desirable not only to produce correct outputs,
but also to produce as many correct outputs as possible. The two goals correspond to
high precision and recall respectively [2].

For a particular input si, the precision pi and recall ri of a generator can be defined
as follows. TPi is the number of correct outputs for input si, FPi is the number of
wrong outputs for si and FNi is the number of outputs for si that have incorrectly not
been generated.

pi =
TPi

TPi + FPi
(2.4.3)

ri =
TPi

TPi + FNi
(2.4.4)

Instead of reporting recall, it is common to report (along with precision) the average
number of outputs, sometimes called yield, defined below, where we assume that there
are n test inputs. A better option is to calculate yield at different precision levels, since
there is usually a tradeoff between the two figures, which is controlled by parameter
tuning.

yield =
1

n

n∑
i=1

(TPi + FPi) (2.4.5)

Unlike recognition, there are no widely adopted benchmark datasets for paraphrase
generation, and comparing results obtained on different datasets is not always mean-
ingful. The lack of generation benchmarks is probably due to the fact that although it
is possible to assemble a large collection of input expressions, it is practically impossible
to specify in advance all the numerous correct outputs a generator may produce.

2.5 Paraphrase Extraction

Unlike recognition and generation methods , extraction methods are not given partic-
ular input language expressions. They typically process large corpora to extract pairs
of language expressions that constitute paraphrases. The generated pairs are stored to
be used subsequently by recognizers and generators or other applications [2].

16

2.5.1 Distributional Hypothesis

A possible paraphrase extraction approach is to store all the word n-grams that occur
in a large monolingual corpus (e.g. for n ≤ 5), along with their left and right contexts,
and consider as paraphrases n-grams that occur frequently in similar contexts. Vector
similarity measures, for example cosine similarity or Lin’s measure [42], can then be
employed to identify n-grams that occur in similar contexts by comparing their vectors.
This approach has been shown to be viable with very large monolingual corpora.

Paraphrasing approaches of this kind are based on Harris’s Distributional Hypoth-
esis [30], which states that words in similar contexts tend to have similar meanings.

Lin and Pantel’s (2001) [43] well-known extraction method, called DIRT, is also
based on the extended Distributional Hypothesis, but it operates at the syntax level.
DIRT first applies a dependency grammar parser to a monolingual corpus. Dependency
paths are then extracted from the dependency trees of the corpus. Once the paths have
been extracted, it looks for pair of paths that occur frequently with the same slot fillers.
A measure based on mutual information [48] is used to detect paths with common fillers.

Bhagat et al. (2007) [9] developed a method, called LEDIR, to classify the tem-
plate pairs < P1, P2 > that DIRT and similar methods produce into three classes: (i)
paraphrases, (ii) P1 textually entails P2 and not the reverse, or (iii) P2 textually en-
tails P1 and not the reverse; with the addition of LEDIR, DIRT becomes a method
that extracts separately pairs of paraphrase templates and pairs of directional textual
entailment templates. Ibrahim et al.’s (2003) [33] method is similar to DIRT, but it
assumes that a monolingual parallel corpus is availiable (e.g. multiple English trans-
lations of novels) and extracts pairs of dependency paths only from aligned sentences
that share matching anchors. Anchors are allowed to be only nouns or pronouns, and
they match if they are identical. Matching anchors become matched slots. Heuristic
functions are used to score the anchor matches and the resulting template pairs, which
are more likely to be paraphrases, rather than simply textual entailment pairs, since
they are obtained from aligned sentences of a monolingual parallel corpus.

An alternative is to identify anchors in related sentences from comparable corpora,
which are easier to obtain. Shinyama and Sekine (2003) [63] find pairs of sentences that
share the same anchors within clusters of news articles reporting the same event. In
their method, anchors are named entities (e.g. person names) identified using a named
entity recognizer, or pronouns and noun phrases that refer to named entities. Depen-
dency trees are then constructed from each pair of sentences, and pairs of dependency
paths are extracted from the trees by treating anchors as slots.

2.5.2 Bootstrapping

Bootstrapping approaches can also be used in extraction, as in generation, but with
the additional complication that there is no particular input template nor seed values
of its slots to start from.

Brazilay and McKeown (2001) [15] used a bootstrapping method to extract para-
phrases from a parallel monolingual corpus, involving two classifiers. One classifier
examines the words the candidate paraphrases consist of, and a second one examines
their contexts. The two classifiers use different feature sets and the output of each

17

classifier is used to improve the performance of the other one in an iterative manner.
Words that occur in both sentences of an aligned pair are treated as positive lexical
examples; all the other pairs of words from the two sentences become seed negative
lexical examples. In each iteration, only k strongest positive and negative context rules
are retrained. The strength of each context rule is its precision.

The context rules may also produce multi-word lexical examples, which are gen-
eralized by replacing their words by their POS tags. The paraphrasing rules are also
filtered by their strength, which is the precision with which they predict paraphrasing
contexts. The remaining paraphrasing rules are used to obtain more lexical examples,
which are also filtered and so on until no new positive lexical examples can be obtained
from the corpus, or a maximum number of iterations is exceeded.

2.5.3 Alignment

Barzilay and Lee (2003) [14] used comparable corpora. The sentence of each corpus
were clustered separately and from each cluster a lattice was produced by aligning the
cluster’s sentences with Multiple Sequence Alignment [13]. Each sentence of a cluster
corresponds to a path in the cluster’s lattice. In each lattice, nodes that are shared by
a high percentage (50% in Barzilay and Lee’s experiments) of the cluster’s sentences
are considered backbone nodes. Parts of the lattice that connect otherwise consecutive
backbone nodes are replaced by slots. If two slotted lattices from different corpora
share many fillers, they are taken to be paraphrases. Hence, this method also uses the
extended Distributional Hypothesis.

Pang et al.’s method (2003) [57] produces finite state automata, but it requires a
parallel monolingual corpus. The parse trees of aligned sentences are constructed and
then merged. Each merged tree is converted to a finite state automaton by traversing
the tree in a depth-first manner and introducing a ramification when a node with a
disjunction is encountered. All the language expressions that can be produced by the
automaton are paraphrases.

Bannard and Callison-Burch (2005) [4] point out that bilingual parallel corpora are
much easier to obtain and in much larger sizes, using statistical machine translation
(SMT). More precisely, to paraphrase English phrases, they employ German as pivot
language. They construct a phrase table from the parallel corpus, and from the table
they estimate the probabilities P(e—f) and P(e—f), where e and f range over all of
the English and pivot language phrases of the table. The best paraphrase e∗2 of each
English phrase e1 in the table is computed as follows:

e∗2 = arg maxP (e2|e1) = arg max
∑
f∈T

P (f |e1)P (e2|f, e1) ≈ arg max
∑
f∈T

P (f |e1)P (e2|f)

(2.5.1)
Multiple bilingual corpora, for different pivot languages, can be used, where C

ranges over the corpora.

e∗2 = arg max
∑
C

∑
f∈T (C)

P (f |e1)P (e2|f) (2.5.2)

18

Zhao et al. (2008) [76] use a log-linear classifier to score candidate paraphrase pairs
that share a common pivot phrase, instead of using equations. In effect, the classifier
uses the above probabilities additionally to other features that assess the quality of the
word alignment. In subsequent work, Zhao et al. (2009) [75] consider that two English
phrases are paraphrases, when they are aligned to different pivot phrases.

2.5.4 Evaluation

As in generation, recall cannot be computed. Instead, one may again count the total
yield of the method, possibly at different precision levels. Moreover, direct comparisons
of extraction methods may be impossible. Furthermore, different scores are obtained,
depending on whether the extracted pairs are considered in particular contexts or not,
and whether they are required to be interchangeable grammatical sentences.

As in generation, in principle one could use a paraphrase recognizer to automatically
score the extracted pairs. However, recognizers are not yet accurate enough;hence,
human judges are usually employed. Again, one may also evaluate extraction methods
indirectly, for example by measuring how much the extracted pairs help in information
extraction [2].

2.6 Summary

Table 2.2 summarizes the main ideas discussed per task. The underlying ideas of
generation and extraction methods are in effect the same, even if the methods perform
different tasks; recognition work has relied on rather different ideas, quite similar to
those of STS.

main ideas discussed R-P G-P E-P

Logic-based inferencing X

Vector space semantic models X

Surface string similarity measures X

Syntactic similarity measures X

Similarity measures on symbolic meaning representation X

Machine learning algorithms X X X

Decoding X X

Word/sentence alignment X X

Pivot language(s) X X

Bootstrapping X X

Distributional Hypothesis X X

Sunchronous grammar rules X X

Table 2.2: Main ideas discussed and tasks they have mostly been used in. R: recogni-
tion, G: generation, E: extraction, P: paraphrasing

Chapter 3

Our Approach

In the previous chapter we saw that there are several ways in order to implement
paraphrasing methods. There is a variety of similarity measures to be used and plenty
ways to implement the alignment between two sentences. Our approach is focused on
string similarity measures, which can capture the similarity or dissimilarity between
two text strings. In parallel, we attempt to create alignment between two sentences by
using Finite State Machines.

3.1 The idea

For the purposes of this thesis, we approach the problems of paraphrase recognition and
detection by applying string similarity measures. The implementation of some of the
measures precede the current work. Given the existing research by our lab members,1

we have chosen to enrich it by adding word and character n-grams and creating a
system, which is able to identify paraphrases effectively. Nevertheless, our approach can
be extended and incorporate similarity measures derived from other sources (syntactic,
knowledge-based, etc.).

The general idea for our alignment approach is fairly simple. We have used Finite
State Machines (FSMs), in order to link a pair of sentences. In an attempt to increase
the chances of a successful alignment, we have used english resources based on the
google similarity2. By creating sets of semantically equivalent words we increase the
possibility of the matching, especially if we refer to a specific-oriented domain. Based on
that assumption, we implement a word-order sensitive similarity measure and perform
paraphrase recognition. Furthermore, we use a language model, which can enrich
our system with grammatically, that is to say the utterance of being grammatically
well-formed. By adding the language model to our system, we target to generate
paraphrases.

1Work of N. Malandrakis and V. Prokopi [45][46]
2Work of E. Iosif, PortDial project

19

20

3.2 String Similarity Metrics

In order to achieve our goal, we implemented a variety of string similarity metrics,
which were applied to the text. Specifically, we used:

• Word n-grams and Character q-grams (n = 1,2,3 and q = 2,3) In the
field of computational linguistics, an n-gram is a contiguous sequence of n items
from a given sequence of text.

The concept of using n-grams is that the desired meaning is hidden inside each
word or a sequence of words. In each case, we are sure that substrings of a
sentence contain a significant amount of information and can be embedded in
order to efficient approximate matching. Comparing character q-grams instead
of word n-grams gives us the opportunity to distinguish similarity bewteen se-
mantically equivalent words but not entirely identical. Character q-grams can
capture similarity of words that derive from the same stem but differ on their
suffix or prefix.

The similarity is expressed as ([36]):

SIM(X,Y) =
|X ∩ Y |

αmax(|X|, |Y |) + (1− α)min(|X|, |Y |)
(3.2.1)

where |X| and |Y | are the number of n-grams of sentences X and Y respectively.
The parameter α controls the effect of each sentence and it’s no effect value is
α = 0.5.

To build the SIM(X,Y) function we represent the sentence as sets of words or as
sets of characters. Let’s assume that we have the sentence “A man with a hard
hat is dancing.”. The word bigrams that will be produced are: {A man, man
with, with a, a hard, hard hat, hat is, is dancing}, while the character bigrams
for the word “dancing” will be {da, an, nc, ci, in, ng}.

• Longest Common Subsequence Similarity (LCSS) based on the Longest
Common Subsequence (LCS) character based dynamic programming algorithm.
LCSS represents the length of the longest string (or strings) that is a substring
(or are substrings) of two or more strings.

Let two sentences be defined as follows: X = (x1, x2, ..., xm) and Y = (y1, y2, ..., yn).
The prefixes of X are X1,2,...,m; the prefixes of Y are Y1,2,...,n. Let LCSS(Xi, Yj)
respresent the set of longest common subsequence of prefixes Xi and Yj . The
function which defines the set of sequences is

LCSS(Xi, Yj) =

0 if i = 0 or j = 0

LCSS(Xi−1, Yj−1) + 1 if xi = yj

longest(LCSS(Xi, Yj−1), LCSS(Xi−1, Yj)) if xi 6= yj
(3.2.2)

21

• Skip Bigrams coocurance measures the overlap of skip bigrams between two
sentences or phrases. Skip-grams are a technique widely used, whereby n-grams
are formed, but in addition to allowing adjacent sequence of words, to allow
tokens to be ”skipped”. We define skip k-grams for a sentence w1...wn to be the
set

{wi1 , wi2 , ..., win |
n∑

j=1

ij − ij−1 < k} (3.2.3)

Skip-grams reported for a certain skip distance (k) allow a total of k or less skips
to construct the n-gram. As such, skip bigrams results include 1 skip and 0 skips.

For example, let’s assume the sentence “A man with a hard hat is dancing.” and
compare the bigrams and the skip-bigrams that are produced.
Bigrams = {A man, man with, with a, a hard, hard hat, hat is, is dancing}.
Skip-bigrams = {A man, A with, A a, man with, man a, man hard, with a, with
hard, with hat, a hard, a hat, a is, hard hat, hard is, hard dancing, hat is, hat
dancing, is dancing}.

• Containment metrics on n-grams (n = 1,2,3) It is defined as the percent-
age of a sentence that is contained in another sentence. It is a number between 0
and 1, where 1 means the hypothesis sentence is fully contained in the reference
sentence. We express containment as the amount of n-grams of a sentence con-
tained in another. The containment metric is not symmetric and is calculated
as:

c(X,Y) =
|S(X) ∩ S(Y)|

S(X)
(3.2.4)

where S(X) and S(Y) are all the n-grams of sentences X and Y respectively. [46]

• Number of n-gram matches and degree of similarity between non-
matching words In order to compute the similarity between two sentences,
a two-pass procedure was followed. First lexical hit rates were identified and
then, the similarity was calculated among non-matched n-grams. [45] The se-
mantic similarity scores from pairs of words are summed together in an attempt
to obtain a score similar to the BLUE metric (Papineni et al., 2002). However,
the alignment between the two input sentences is a problem. In order to cope
with it, the comparison of the non-matched n-grams is employed from the first
sentence to the second and vise versa.

3.3 Algorithm for Paraphrase Detection and Semantic Tex-
tual Similarity

Paraphrase detection, identifies a pair of sentences as paraphrases, returning a score,
either 1 if the sentences are paraphrases or 0 if not. While, Semantic Textual Similar-
ity (STS) computes a score, which ranges from 0 to 1, where 0 implies no similarity

22

between the two sentences and 1 for identical sentences.

Figure 3.1: System architecture for Paraphrase detection and STS

According to the schematic representation of the algorithm, which is presented in figure
(3.1), the system is comprised by 3 components.

The first component represents a pre-processing stage, in which we use the CoreNLP
suite of tools (Finkel et al., 2005; Toutanova et al., 2003), a process that includes named
entity recognition, normalization, part of speech tagging and lemmatization. Addition-
ally, we achieve the stemming implementation by using the Porter Stemmer.

At the second stage, we applied to the input text the string similarity metrics. The
computed similarity scores show the degree of semantic equivalence between a pair of
sentences. The higher the score, the more identical the sentences are.

At the final component, we use the calculated similarity scores, to estimate the
semantic similarity between the pairs of sentences contained in the corpus. In order to
employ machine learning methods, we use the Weka Toolkit, which offers a variety of
machine learning algorithms 3.

3.4 Algorithm for Paraphrase Recognition and Genera-
tion

At this section we present the algorithm constructed for paraphrase recognition and
generation. Our work is basically based on an alignment implemented by Finite State

3www.cs.waikato.ac.nz/ml/weka

www.cs.waikato.ac.nz/ml/weka

23

Figure 3.2: System architecture for Paraphrasing Prompts

Machines (FSMs). The schematic representation of the algorithm is presented in figure
3.2.

3.4.1 Baseline

As our baseline system we have used the word unigram feature, as it is defined in the
3.2.1 equation. However, the resulting similarity is based only on the shared words of
the input pair, without preserving the word order inside the sentence.

The recognition result will derive from the two input acceptors (A.fsa and B.fsa) in
combination with the determinization of their intersection (C.fsa). So our system will
correspond to:

C.fsa = A.fsa ∩B.fsa (3.4.1)

The intersection function (defined with the symbol ∩) returns the common words
of the two input acceptors with cost combined from the costs of the two acceptors.
Moreover, the determinization of the resulting acceptor rejects the duplicate transitions.

For instance, let’s assume as input pair the sentences s1 and s2, which correspond
to “A man with a hard hat is dancing.” and “A man wearing a hard hat is dancing.”
respectivelly.

The produced input and resulted FSAs would be:

24

(a) A.fsa, the acceptor for
the input sentence s1

(b) B.fsa, the acceptor for
the input sentence s2

(c) C.fsa, the resulted ac-
ceptor containing the shared
words of the input FSAs

Figure 3.3: Example of FSAs for the baseline system

3.4.2 Word-order sensitive

Considering the implementation of the word unigrams metric as our baseline, we in-
tended to add the concept of word-order to the computed similarity.

In our attempt to identify the semantic similarity between a pair of sentences we
created a Finite State Acceptor (FSA) for each sentence, which accepts the sentence,
its substrings and their concatenation. The recognition is employed by composing the
FSAs with a Finite State Transducer (FST), which contains transitions based on the
google similarities. An FST is a two-tape finite state machine, an input and an output,
and has the ability to translate the contents of its input tape to the output.

In order to create an alignment between the two input acceptors, we created a
transducer with identity mapping weight equal to zero and transitions for semantically
equivalent words (synonyms) with weight based on the google similarity. More specif-
ically, for every noun and verb contained in the sentences, which are included in a
vocabulary of 135465 words, we extract the N synonyms with the highest google sim-
ilarity score. After filtering the synonyms and rejecting those that have not the same
part-of-speech (POS) tag as the original word, we conclude to a set of semantically
equivalent words. We define the weight of the synonym transitions for the word i as:

{wi1, wi2, ..., wiN |
N∑
j=1

1−Gij} (3.4.2)

where wij is the j − th transition of the i − th word, N the number of synomyms
and G is a vector containing the N highest google similarities sorted in an decreasing
order.

25

Finally, in order to avoid assymetry, the synonym transitions for the first sentence
have as input the original word and as output the synonym, while for the second
sentence, the order is inversed.

If we set the number of synonyms equal to zero (N=0), the system corresponds
as intersecting the two input FSAs because the transducer will contain only word to
word transitions. As a result, the produced FSA will be the concatenation of the
common substrings of the input acceptors. The role of the transducer is to replace the
epsilon transitions with synonyms. If an alignment exists, the epsilon transition will be
replaced and the cost will change. If more than one alignments exist, then the one with
the lowest cost will be chosen. Moreover, the POS filtering will maintain the semantic
notion of the initial prompt.

So our recognition system will correspond to the best path of a composition of the
input acceptor (A.fsa and B.fsa respectivelly) with a transducer (C.fst).

A.fsa ◦ C.fst ◦B.fsa (3.4.3)

The composition function (defined with the symbol ◦) returns a relational compo-
sition of the input FSMs in the given order. If an input machine is an acceptor, then it
is treated as a transducer with identical input and output tape. Additionally, the best
path function returns the lowest cost paths from the start state to the final one.

Except of using the best path, we employed paraphrase recognition by normalizing
the cost extracted from the composition. The normalization employed is based on the
sentences’ length and its definition is:

Similarity(A.fsa,B.fsa) = 1− C

α|A.fsa|+ (1− α)|B.fsa|
(3.4.4)

where C is the resulting cost extracted from the composition of the input acceptors
with the transducer, |A.fsa| and |B.fsa| are the length (in words) of the first and
second sentence respectively and α is a parameter controlling the degree of the effect
of each sentence in the similarity measure. It is set to its no effect value, equal to 0.5.

For the generation task, we used a different sequence of FSM functions. Initially,
we have linked the resulting, from the composition, FSTs (D.fst) by using the union
function (defined with the symbol

⋃
). Then, we compose the produced FST with an

FSA created from a language model.
A statistical language model assigns probability to a sequence of m words. The

language model that we have used ia a task-dependent, smoothed back-off bigram in
the .arpa format, with costs being −0.3log10(P (w)). We created the .arpa file by using
the CMU toolkit 4. We convert it to a form compatible with fsm-toolkit and recalculate
the costs, hence we manage to create an acceptor (LM.fsa).

Assigning weights was the main problem. The values we use in our experiments are
the ones that produced the best results, however they are not considered as optimal.

So our generation system responds to the following definition:

4http://www.speech.cs.cmu.edu/SLM_info.html

http://www.speech.cs.cmu.edu/SLM_info.html

26

(
⋃
D.fst) ◦ LM.fsa (3.4.5)

Let’s assume the input pair s1 and s2, which refer to the sentences “What date
would you like to travel” and “What time do you want to fly” and the acceptors 3.4
and 3.5 respectively. Each FSA has, additionally to the word, epsilon transitions with
weights equal to 1, which corresponds to the acceptance of the sentence, its substrings
and any concatenation of theirs. The weight was set to 1, in order to disfavour the
deletions.

Figure 3.4: Acceptor, A.fsa, for the input sentence s1 containing word and epsilon
transitions.

Figure 3.5: Acceptor, B.fsa, for the input sentence s2 containing word and epsilon
transitions.

The produced FST for the above example would be (3.6):

27

Figure 3.6: Example of a transducer, C.fst, for the input sentences s1 and s2, for a
small number of synonyms (N).

For the recognition task, we have extracted the best path from the resulting FST
(D.fst). Then, in order to extract a score for each sentence of the corpus, we have used
the following sequence of fsm functions: project -2 and minimize (D.fsa) 3.7.

The project function returns the input or output of the transducer, depending on a
parameter which controls the outcome. The parameter has value either 1 or 2 for the
input and output tape respectively. The minimization of the resulting acceptor leads
to a minimal deterministic acceptor.

28

Figure 3.7: Resulting acceptor, D.fsa, after projecting and minimizing the composition
A.fsa ◦ C.fst ◦B.fsa .

The language model is a back-off bigram model. For example the sentence s3 “Do
you need a hotel for tonight” it would be 3.8:

Figure 3.8: Language model, LM.fsa, produced from the sentence s3

Chapter 4

Experimental Procedure &
Evaluation

In this chapter we present the results of our work and describe our experiments for
paraphrase detection, sementic textual similarity and paraphrasing methods, recogni-
tion and generation. Firstly, we evaluate the system based on string similarity features,
which is used for paraphrase detection and semantic textual similarity (STS). Then,
we present the experiments of our FSM-based algorithm. The best approach to show
that our system works well would be to compare its performance with other systems.
Unfortunately, in our case the comparison can not be performed due to the origin of
the dataset. However, we evaluated the algorithm on the test datasets of SemEval 2012
and we present the results.

4.1 Evaluation on Paraphrase Detection

Paraphrase detection identifies a pair of sentences as paraphrases or not, returning a
discrete value which characterizes each class.

For our experiments we have used the MSR paraphrase corpus, a benchmark
dataset. It contains 5.801 pairs of sentences, obtained from clusters of online newsarti-
cles referring to the same events. The sentence pairs were annotated by human judges
as paraphrases or not. More information about the MSR paraphrase corpus are given
in 2.3.8.

The training process includes two different classifiers, a Naive Bayes and an SVM
classifier, although we ended using only the former. Their definition is described in
2.2.3.

For the evaluation step, we have selected four commonly used evaluation metrics,
which are defined below: precision (equation 4.1.1), recall (equation 4.1.2), accuracy
(equation 4.1.3) and F-measure (equation 4.1.4). Additionally, we have calculated the
Pearson correlation coefficient. The definition of these measures is:

29

30

PR =
TP

TP + FP
(4.1.1) RC =

TP

TP + FN
(4.1.2)

AC =
TP + TN

TP + TN + FP + FN
(4.1.3) FM =

2 ∗ PR ∗RC
PR+RC

(4.1.4)

where :

• TP (true positives) are the numbers of pairs that have been correctly classified
as positives (paraphrases).

• FP (false positives) are the numbers of pairs that have been incorrectly classified
as positives.

• TN (true negatives) are the number of pairs that have been correctly classified
as negatives (not paraphrases).

• FN (false negatives) are the number of pairs that have been incorrectly classified
as negatives.

Additionally, we have choosen two techniques of estimating the performance. We
employ either 10 fold-cross-validation or we use the 70% of the dataset for training and
the 30% for testing.

10 fold-cross-validation One round of cross-validation involves partitioning a sam-
ple of data into complementary subsets, performing the analysis on one subset (called
the training set), and validating the analysis on the other subset (called the valida-
tion set or testing set). To reduce variability, multiple rounds of cross-validation are
performed using different partitions, and the validation results are averaged over the
rounds.

classiffier NaiveBayes

evaluation metrics accuracy precision recall F-measure correlation

Word Character Ngrams 0.700 0.804 0.732 0.766 0.351

LCS LCSstring skip2 containment 0.647 0.811 0.620 0.703 0.303

Ngram hits & Lex. non-matching words 0.668 0.783 0.699 0.739 0.288

All measures 0.676 0.817 0.669 0.735 0.342

Table 4.1: Paraphrase Detection results, using a Naive Bayes classifier, without stem-
ming implementation

31

classiffier NaiveBayes

evaluation metrics accuracy precision recall F-measure correlation

Word Character Ngrams 0.698 0.802 0.732 0.765 0.348

LCS LCSstring skip2 containment 0.647 0.811 0.620 0.703 0.303

Ngram hits & Lex. non-matching words 0.668 0.783 0.699 0.739 0.288

All measures 0.674 0.815 0.665 0.733 0.333

Table 4.2: Paraphrase Detection results, using a Naive Bayes classifier, with stemming
implementation

The above tables contain scores for the three categories of metrics as described in
the feature description 3.2.

The results clearly indicate that the combination of word and character n-grams
perform better in four of our evaluation metrics. As we can see from the detailed
tables, listed on the Appendix Results for Paraphrase Detection and STS, the main
contributor for these results is the character n-gram metric, which achieves the highest
performance, due to their ability to capture semantic similarity between non-identical
words.

4.2 Evaluation on Semantic Textual Similarity

Semantic textual similarity estimates the degree of equivalence between a pair of sen-
tences, returning a continuous score ranging from 0 to 1.

At the Semantic Textual Similarity task, we have used the test datasets of the
SemEval workshop 2012 and 2013. The SemEval workshop 2012-2013 shared task of
Semantic Textual Similarity (STS) copes with the semantic equivalence of sentences 1.

4.2.1 Datasets

Totally, the algorithm was tested at 9 datasets (4.2.1), all annotated by the AMT at a
range from 0 to 5, where 0 implies no similarity, while 5 identical sentences.

MSRpar Microsoft Research (MSR) has acquired two manually annotaded datasets.
The first, called MSR Paraphrase (MSRpar) is widely used for semantic equivalence
evaluation. After processing the dataset, the organizers sampled 1500 pairs of sen-
tences, which were splitted 50% for training and 50% for testing.

MSRvid The second dataset derived from the MSR is the MSR Video Paraphrase
Corpus. The dataset was created by showing brief video segments to annotators from

1The participants were asked to estimate the semantic equivalence of the source datasets at a scale
from 0 to 5. They could send a maximum of three system runs. After downloading the test datasets,
they had a maximum of 120 hours to upload the results. After the submission deadline expired, the
organizers published the gold standard in the task website, in order to ensure a transparent evaluation
process. The gold standard evaluation, was employed by Amazon Mechanical Turk (AMT) in order to
crowd source the annotation task.

32

Amazon Mechanical Turk (AMT), and ask them to provide an one sentence decription
of the main action or event in the video. In total, 1500 pairs of sentences were sampled
which were splitted 50% for training and 50% for testing.

SMTeuroparl Given the strong connection between STS systems and Machine Trans-
lation evaluation metrics, the organizers selected pairs of sentences from the translation
shared task of the 2007 and 2008 ACL Workshops on Statistical Machine Translation
(WMT). This resulted in 729 unique training pairs. The test data is comprised of all
Europarl human evaluated French-English pairs from WMT 2008.

SMTnews One of the out-of-domain testing datasets of 2012 workshop. It comprised
of all the human ranked French-English system submissions from the WMT 2007 news
conversation test set, resulting in 351 unique system reference pairs.

OnWN2012 The second surprise test dataset (consisting of 750 pairs of sentences),
which is radically different, as it comprised 750 pairs of glosses from OntoNotes 4.0
and WordNet 3.1 senses. The similarity between the sense pairs was generated using
simple word overlap.

HDL The organizers used naturally occurring news headlines gathered by the Europe
Media Monitor (EMM) engine from several different newssources. EMM clusters to-
gether related news. The goal was to generate a balanced data set across the different
similarity ranges. Accordingly, 750 pairs of sentences were sampled.

SMT The SMT dataset comprises pairs of sentences used in machine translation eval-
uation. The dataset was built based on two different 2 different sets depending on the
evaluation metric. In total, it contains 750 pairs of sentences.

OnWN2013 The OnWN dataset contains gloss pairs from OntoNotes-WordNet (OnWN).
The pairs are sampled based on the string similarity ranging from 0.4 to 0.9. String
similarity is used to measure the similarity between a pair of glosses. The OnWN set
comprises 561 gloss pairs from OntoNotes 4.0 and WordNet 3.0.

FnWN The FnWN dataset contains gloss pairs from FrameNet-WordNet (FnWN).
The pairs are sampled based on the string similarity ranging from 0.4 to 0.9, as in
the OnWN dataset. The FnWN set has 189 manually mapped pairs of senses from
FrameNet 1.5 to WordNet 3.1. They are randomly selected from 426 mapped pairs.

4.2.2 Evaluation Results

Two evaluation metrics have been used, i.e. the Pearson and Spearman correlation co-
efficients, for every computed measure compared with the ground truth scores provided
by the organizers of the SemEval workshop.

33

The two evaluation metrics we have chosen are widely used. Their definition is
described in 2.2.4. As a second evaluation metric the weighted mean of Pearson and
Spearman correlations is used. The Pearson and Spearman coefficient for each dataset
is weighted according to the number of sentence pairs in that dataset.

WeightedMean =

∑5
i=1 ri ∗ ni∑5

i=1 ni
(4.2.1)

where ri is the Pearson/Spearman scores for each dataset and ni the number of
pairs in each dataset.

In order to compute the correlation between the similarites calculated by the fea-
tures and the gold standards provided by the organizers of the SemEval, the Weka
toolkit was used. More specifically, we used 3 classifiers, a Linear Regression classifier,
a Bagging classifier and an M5P classifier. Their definition is described in 2.2.3.

• Linear Regression classiffier

Linear Regression

MSRpar MSRvid SMTeuroparl OnWN SMTnews Mean

Word Character Ngrams 0.597 0.753 0.552 0.715 0.501 0.644

LCS LCSstring skip2 containment 0.373 0.516 0.448 0.672 0.164 0.464

Ngram hits & Lex. non-matching words 0.449 0.673 0.443 0.238 0.299 0.432

All measures 0.494 0.814 0.572 0.726 0.510 0.641

Table 4.3: Evaluation of string similarity measures on the test datasets of SemEval
2012 using a Linear Regressor

Linear Regression

FNWN headlines OnWN SMT Mean

Word Character Ngrams 0.440 0.717 0.550 0.334 0.524

LCS LCSstring skip2 containment 0.129 0.696 0.510 0.330 0.480

Ngram hits & Lex. non-matching words 0.089 0.692 0.171 0.307 0.383

All measures 0.356 0.745 0.519 0.371 0.531

Table 4.4: Evaluation of string similarity measures on the test datasets of SemEval
2013 using a Linear Regressor

34

• Bagging classiffier

Bagging

MSRpar MSRvid SMTeuroparl OnWN SMTnews Mean

Word Character Ngrams 0.572 0.752 0.551 0.702 0.532 0.639

LCS LCSstring skip2 containment 0.531 0.649 0.578 0.656 0.573 0.602

Ngram hits & Lex. non-matching words 0.479 0.678 0.480 0.295 0.311 0.461

All measures 0.588 0.812 0.610 0.724 0.598 0.679

Table 4.5: Evaluation of string similarity measures on the test datasets of SemEval
2012 using a Bagging classiffier

Bagging

FNWN headlines OnWN SMT Mean

Word Character Ngrams 0.330 0.708 0.640 0.318 0.529

LCS LCSstring skip2 containment 0.165 0.674 0.630 0.341 0.509

Ngram hits & Lex. non-matching words 0.050 0.685 0.245 0.313 0.398

All measures 0.343 0.724 0.698 0.318 0.550

Table 4.6: Evaluation of string similarity measures on the test datasets of SemEval
2013 using a Bagging classiffier

• M5P classiffier

M5P

MSRpar MSRvid SMTeuroparl OnWN SMTnews Mean

Word Character Ngrams 0.597 0.752 0.552 0.712 0.488 0.642

LCS LCSstring skip2 containment 0.555 0.587 0.453 0.672 0.453 0.563

Ngram hits & Lex. non-matching words 0.451 0.689 0.443 0.238 0.301 0.437

All measures 0.617 0.811 0.531 0.676 0.561 0.658

Table 4.7: Evaluation of string similarity measures on the test datasets of SemEval
2012 using an M5P classiffier

35

M5P

FNWN headlines OnWN SMT Mean

Word Character Ngrams 0.440 0.717 0.568 0.334 0.529

LCS LCSstring skip2 containment 0.090 0.696 0.588 0.334 0.498

Ngram hits & Lex. non-matching words 0.089 0.692 0.180 0.317 0.389

All measures 0.332 0.746 0.699 0.183 0.512

Table 4.8: Evaluation of string similarity measures on the test datasets of SemEval
2013 using an M5P classiffier

• Comparing the classifiers.

datasets

classifiers MSRpar MSRvid SMTeuroparl ONWN SMTnews FNWN headlines OnWN SMT

LinearRegression 0.494 0.814 0.572 0.726 0.510 0.356 0.745 0.519 0.371

Bagging 0.588 0.812 0.610 0.724 0.598 0.343 0.724 0.698 0.318

M5P 0.617 0.811 0.531 0.676 0.5621 0.332 0.746 0.699 0.183

Table 4.9: The results show the correlation of ”All measures” as described abobe among
all datasets (both SemEval 2012 and 2013) and all the classifiers

Tables 4.3, 4.4, 4.5, 4.6, 4.7 and 4.8 contain scores for every category of metrics as
described in 3.2 and their combination, while we change the classiffier and the applied
dataset. The combination of all measures achieves in most cases the highest perfor-
mance. Character and word n-grams are quite competitive against the combination of
all measures, considering that they achieve quite high correlation scores. However, the
applied dataset contributes considerably to the performance.

Table 4.9 shows the correlation scores of the “All measures” which contains all the
metrics. The idea is to compare the system’s performance and the classiffier’s contri-
bution in it. As we can see, the performance varies among the datasets. For datasets
with small sentences, such as MSRvid and headlines, the Linear Regression classifier
seems to achieve equally high scores with the other classifiers, while in other datasets
its performance reduces significantly.

36

4.3 Experiments on Paraphrasing Prompts

At this section we present the results for paraphrase recognition and generation, with
an FSM-based algorithm. The proposed model has been tested in two kinds of travel-
domain corpora, in order to paraphrase prompts. The first corpus contains data col-
lected from the CrowdFlower crowdsoursing servise, while the second is harvested from
the web.

We have categorized the results according to the input dataset. The first section
refers to data collected from crowdsoursing while the second to web documents. Results
are listed in detail at the Results for Paraphrasing Prompts

4.3.1 Data Collection

Initially, we wanted to create datasets containing travel domain information. In order
to achieve our goal, we used web documents and data collected from the CrowdFlower
crowdsoursing servise.

Crowdsoursing Data

To create this corpus, we collected data from the CrowdFlower crowdsoursing servise 2.
Users were asked to fill a questionnaire with 4 tasks. At the first task, they were asked
to create a question, given an answer and the opposite. At the second task, users were
asked to paraphrase parts of dialogues, while the third was to complete a dialogue.
Finally, at the last task, users were asked to fill in blanks from dialogues.

Gathering the data from the first and the third task, we manage to create a dataset
with prompts. Even though the specific corpus was significantly more relevant than
the web documents, we employed the same pre-processing steps:

1. 5 to 15 words per sentence. After analyzing datasets containing prompts from
the PortDial project, we concluded that the majority of prompts contain 5 to
15 words, with exception prompts which refer to more than one category. For
example, asking about departure date and destination in one sentence.

2. at least 3 mutual words with a list of keywords. This list contains words such as
date, travel, hotel etc. This criterion was established in order to reject sentences
that do not refer to the travel domain.

3. make the sentences of the corpus unique.

4. finally, the corpus contained 433 prompts, covering the categories of: PLACE,
DATE, DAY, TIME.

2Work of E. Palogiannidi [56]

37

Web Documents

At first, we used the “human-human” corpus from the PortDial project (www.portdial.
eu) datasets in order to extract travel domain prompts. The following dialogue was
contained in the specific dataset. We refer to the System’s answers as prompts.

SYSTEM: AND WHAT DAY IN MAY DID YOU WANT TO TRAVEL
USER: OKAY I NEED TO BE THERE FOR A MEETING THAT’S FROM THE
TWELFTH TO THE FIFTEENTH
SYSTEM: AND FLYING INTO WHAT CITY
USER: SEATTLE
SYSTEM: AND WHAT TIME WOULD YOU LIKE TO LEAVE PITTSBURGH
USER: I DON’T THINK THERE’S MANY OPTIONS FOR NON-STOP
SYSTEM: RIGHT THERE’S THREE NON-STOPS A DAY

After extracting the prompts, we categorized them depending on their subject, result-
ing 7 categories: PLACE, AIRPORT, DATE, TIME, DAY, HOTEL, CAR. The next
step was to create queries. Totally, we used 55 queries, which we used in order to
harvest web documents from the web.

CATEGORIES EXAMPLE

DATE what date would you like to travel

TIME what time would you like to leave

DAY what date did you need to depart

PLACE flying into what city

AIRPORT which airport would you like to fly to

CAR did you need a car

HOTEL what hotel would you like

Table 4.10: Categories of prompts and examples

However, the data collected had to be processed and cleaned. For that purpose, we
considered the following characteristics as mandatory:

1. 5 to 15 words per sentence. After analyzing datasets containing prompts from
the PortDial project, we concluded that the majority of prompts contain 5 to
15 words, with exception prompts which refer to more than one category. For
example, asking about departure date and destination at one sentence.

2. at least 3 mutual words with a list of keywords. This list contains words such as
date, travel, hotel etc. This criterion was established in order to reject sentences
that do not refer to the travel domain.

3. make the sentences of each dataset unique.

4. finally, 7 datasets have been created, one for each category.

www.portdial.eu
www.portdial.eu

38

DATASET SIZE (in sentences)

DATE 77

TIME 314

DAY 113

PLACE 857

AIRPORT 136

CAR 381

HOTEL 352

Table 4.11: Size of each web dataset

4.3.2 Results on Crowdsourcing Data

For the input prompt “WHAT DATE WOULD YOU LIKE TO TRAVEL”, we show
the best 10 candidate paraphrases according to the cost, normalized or not, that was
calculated for each sentence of the corpus.

Input prompt WHAT DATE WOULD YOU LIKE TO TRAVEL

without normalization with normalization

Best Candidate Paraphrases

what time would you like to travel what time would you like to travel
what date do you want to travel what date do you want to travel

what date would you like what day would you like to travel
what date would you like to depart what date would you like to leave
what date would you like to leave what date would you like to depart
what day would you like to travel what time of day would you like to travel

what date do you like to leave what date would you like to book a flight
what date did you wish to travel what date would you like

what time of day would you like to travel what date do you like to leave
what time would you like to depart what date did you wish to travel

Table 4.12: Candidate paraphrases for the input prompt: WHAT DATE WOULD
YOU LIKE TO TRAVEL.

The recognition results on the crowdsourcing data are quite good, regardless the
existance of the normalization factor on the produced scores. As we can see from the
table 4.12, the 10 best candidate paraphrases maintain the semantic concept of the
input prompt.

By adding the language model, we manage to generate paraphrases. The best 10
produced paraphrases for the same input prompt are:

39

Figure 4.1: Candidate Paraphrases for input prompt “WHAT DATE WOULD YOU
LIKE TO TRAVEL”

40

The generation results are good but not as impressive as in the recognition task.
The language model contributes to that, since the weights used are the ones that give
us premium but not optimal results.

4.3.3 Results on Web Documents

For the input prompt “WILL YOU NEED A HOTEL”, we show the best 10 candidate
paraphrases according to the cost, normalized or not, that was calculated for each sen-
tence of the corpus.

Input prompt WILL YOU NEED A HOTEL

without normalization with normalization

Best Candidate Paraphrases

do you need a hotel do you need a hotel
but do you need a hotel why do you need a hotel
do you need a hotel job where do you need a hotel

do you need a hotel pickup when do you need a hotel
do you need a hotel rental do you need a hotel tonight

do you need a hotel reservation do you need a hotel roommate
do you need a hotel room do you need a hotel room

do you need a hotel roommate do you need a hotel reservation
do you need a hotel tonight do you need a hotel rental
when do you need a hotel do you need a hotel pickup

Table 4.13: Candidate paraphrases for the input prompt: WILL YOU NEED A HO-
TEL.

The above results were extracted specifically from the dataset referring to HOTEL.
The results for the rest of the datasets (AIRPORT, CAR, DATE, DAY, PLACE, TIME)
will be found in the Results for Paraphrasing Prompts.

The recognition results in the case of web documents are quite good (table 4.13).
However, the quality of the information contained on the documents is to be questioned.

By adding the language model, we manage to generate paraphrases. The best 10
produced paraphrases for the same input prompt are:

41

Figure 4.2: Candidate Paraphrases for input prompt “WILL YOU NEED A HOTEL”

42

The web documents contain, except of prompts, sentences that have either small or
no semantic similarity with our target domain, resulting a poor language model, which
effects the generation results.

4.3.4 Objective Evaluation

In order to evaluate our approach, we managed to estimate the semantic equivalence
among texts. For this purpose, we tested our algorithm on the test datasets of the Se-
mEval workshop of 2012 (MSRpar, MSRvid, SMTeuroparl, SMTnews, OnWN). Their
description is on 4.2.1.

Baseline system

The simplest version of the algorithm, which is the FSM implementation of the word
unigram feature. The produced FSA accepts the shared words of the two input sen-
tences or any combination of them, without preserving the word order.

The evaluation of the above system shows results equal to the one computed for
the word unigram similarity feature, as the score produced are based on the number of
the unique words either of the input sentences or of their intersection.

Datasets

Evaluation Measure MSRpar MSRvid SMTeuroparl OnWN SMTnews

Pearson correlation 0.539 0.443 0.498 0.661 0.412

Spearman correlation 0.512 0.471 0.559 0.666 0.408

Table 4.14: Evaluation scores of the baseline system

Word-order sensitive FSMs

At this point, we attempt to experiment on the two parameters of the algorithm, the
number of semantically equivalent words (N) and the cost of the epsilon transitions (e).

For the evaluation we have computed the Perason and Spearman correlation coef-
ficient for every combination of the two parameters, cost of epsilon transition in the
input FSA and number of synonyms (N).

43

Datasets

Number of synonyms (N) epsilon cost (e) MSRpar MSRvid SMTeuroparl OnWN SMTnews

N = 0

e = 0.2 0.397 0.374 0.485 0.635 0.399
e = 0.4 0.397 0.374 0.485 0.635 0.399
e = 0.6 0.397 0.374 0.485 0.635 0.399
e = 0.8 0.397 0.374 0.485 0.635 0.399
e = 1 0.397 0.374 0.485 0.636 0.398

N = 20

e = 0.2 0.398 0.376 0.485 0.636 0.398
e = 0.4 0.406 0.371 0.491 0.640 0.404
e = 0.6 0.411 0.367 0.492 0.640 0.405
e = 0.8 0.413 0.363 0.492 0.641 0.404
e = 1 0.414 0.360 0.492 0.641 0.402

N = 40

e = 0.2 0.398 0.376 0.485 0.636 0.398
e = 0.4 0.408 0.382 0.491 0.641 0.404
e = 0.6 0.414 0.385 0.491 0.643 0.404
e = 0.8 0.417 0.385 0.491 0.643 0.404
e = 1 0.418 0.385 0.490 0.643 0.402

N = 60

e = 0.2 0.398 0.376 0.485 0.636 0.398
e = 0.4 0.407 0.390 0.490 0.643 0.408
e = 0.6 0.413 0.400 0.490 0.646 0.413
e = 0.8 0.416 0.403 0.488 0.647 0.414
e = 1 0.416 0.404 0.487 0.647 0.413

N = 80

e = 0.2 0.398 0.376 0.485 0.636 0.398
e = 0.4 0.406 0.395 0.489 0.644 0.408
e = 0.6 0.410 0.407 0.488 0.647 0.412
e = 0.8 0.412 0.412 0.486 0.648 0.413
e = 1 0.413 0.414 0.485 0.648 0.412

Table 4.15: Pearson correlation coefficient on the datasets of the SemEval workshop of
2012. Experimenting on the two parameters, number of synonyms (N) and cost of the
epsilon transition (e).

By changing the values of the parameters, number of synonyms (N) and the cost of
the epsilon transition (e), we conclude that increasing “e”, achieves better performance.
However, increasing the parameter N, for N=40, N=60 and N=80, does not show such
an improvement, as shown in Table 4.15.

44

In an attempt to improve our system’s performance, we have combined the scores
derived from 4 versions of it, using 3 different classifiers. For the machine learning,
the Weka toolkit was used and especially a Linear Regression, a Bagging and an M5P
classifier. To implement this idea, we used scores from the baseline system (3.4.1), the
word-order sensitive FSM (3.4.2) for N = 0, 20, where N is the number of synonyms
according to the google similarity. Additionally, we used an implementation of the
FSM system, which preserves the word order, however it does not filter the synonyms
according to their POS (part-of-speech) tag. Finally, for all the above versions of the
algorithm, except the baseline system, the cost for the epsilon transition is set to 1.

Datasets

classifiers MSRpar MSRvid SMTeuroparl OnWN SMTnews

Linear Regressor 0.548 0.461 0.492 0.657 0.387

Bagging 0.548 0.457 0.502 0.653 0.379

M5P 0.501 0.534 0.579 0.639 0.374

Table 4.16: Correlation on the datasets of SemEval 2012 after combining systems with
different parameters, using a Linear Regressor, a Bagging and an M5P classifier.

Comparing the tables 4.14, 4.15 and 4.16, we can see that the combination of the
FSM-based approaches presents higher correlation scores than our main system (table
4.15, referring to word-order sensitive FSMs 3.4.2). However, the correlation is still
lower than the baseline system (table 4.14, referring to the FSM-implemented word
unigram measure 3.4.1).

Finally, we selected the SMTnews dataset to experiment on by increasing the num-
ber of semantically equivalent words (N,synonyms), based on the google similarity. The
parameter N was set to 250 and 500, i.e. quite larger than the previous experiments.

Number of synonyms (N)

epsilon cost (e) N = 250 N = 500

e = 0.2 0.398 0.398

e = 0.4 0.407 0.407

e = 0.6 0.411 0.409

e = 0.8 0.413 0.410

e = 1 0.412 0.408

Table 4.17: Correlation on the SMTnews dataset of SemEval after increasing the num-
ber of synonyms to N = 250 and N = 500

The correlation is lower than that of the baseline system, although the difference
is quite small. That is expected since we have added the word-order constraint in our
calculated similarity.

Chapter 5

Conclusions and Future Work

5.1 Conclusions

Overall, the completion of this work led to several valuable conclusions. First of all,
we managed to discover the meaning of natural language only by using the surface
information of a text, without the support of grammatical rules.

We created a baseline system with string similarity metrics in order to detect para-
phrases and estimate semantic textual similarity. For both tasks, we used widely known
datasets to conclude that our proposed metrics perform well comparing to larger sys-
tems.

The best results are mainly produced by the combination of all metrics, while
the character n-gram feature shows quite impressive performance. The obtained re-
sults showed that character n-grams can capture the semantic similarity between non-
identical words. Additionally, we tried to introduce some additional constraints in
order to improve our results, so we added length normalization to our features.

Our second goal was to create a system that is able to recognize and generate
paraphrases via a composition of Finite State Machines (FSMs). For the experimental
procedure, we focused on the travel domain and more specifically on prompts. The
corpora we used were either harvested from the web or collected from the CrowdFlower
crowdsourcing servise.

The main factor of this approach is the usage of English resources based on the
google similarity, in order to build an alignment between two sentences. The recog-
nizer achieves quite good results, while the generator shows fair but not spectacular
performance.

We built a bigram language model using the CMU toolkit. The contribution of the
language model to the generator was the factor that defined our results. In the case of
the web documents the outcome has weak, mostly because of the unrelevant informa-
tion included in the documents. However, for the data collected from crowdsourcing,
the results seem promising. Improvements in this section should benefit the system’s
performance.

45

46

5.2 Future Work

5.2.1 Similarity Features

This thesis approached the paraphrase detection and semantic textual similarity prob-
lem at the level of string similarity features. An obvious improvement would be to
develop a larger system comprised of similarity features which would evolve the exist-
ing one. Including not only string similarity features but context or knowledge-based
metrics (for instance WordNet) may improve our performance.

Further improvement could be gained by including part-of-speech information, in
order to measure syntactic constraints, in the similarity feaures.

5.2.2 FSM-based alignment

Moreover, improvement could come from the task of prompts paraphrasing. Experi-
menting more with the parameters, the number of semantically equivalent words (N)
and the cost of the epsilon transition, could give us a clearer view regarding their con-
tribution to both recognizing and generating prompts. Increasing the parameter N will,
theoretically, show use better results, although that is not certain.

Additionally, electing to substitute google similarity for a similarity based on con-
text may improve the existing alignment procedure. Discarding the semantically equiv-
alent words used for the alignment with different criteria, such as the word’s sense, can
create alignments more relevant to the travel domain.

5.2.3 Data Collection

We have selected to test our algorithm on travel-domain corpora, either harvested
from the web or collected from crowsoursing. The quality of the included information
is ambiguous, especially in the case of web documents.

Presently, the language model is task-dependent, as indicated by the fairly good
results in the generating task. Creating a language model based on a more relevant
corpus or experimenting on the transition weights may alleviate the problem.

Appendix A

The FSM Toolkit

Overview

The AT&T FSM library 1 is a set of general-purpose software tools available for Unix,
for building, combining, optimizing, and searching weighted finite-state acceptors and
transducers. Finite-state transducers are automata for which each transition has an
output label in addition to the more familiar input label. Weighted acceptors or trans-
ducers are acceptors or transducers in which each transition has a weight as well as
the input or input and output labels. The original goal of the AT&T FSM library was
to provide algorithms and representations for phonetic, lexical, and language-modeling
components of large vocabulary speech recognition systems.
This imposed the following requirements:

1. Generality: to support the representation and use of the various information
sources in speech recognition

2. Modularity: to allow rapid experimentation with different representations

3. Efficiency: to support competitive large-vocabulary recognition using automata
of more than 10 million states and transitions.

The mathematical foundation of the library is the theory of rational power series,
which supplies the semantics for the objects and operations and creates opportunity
for optimizations such as determinization and minimization. System Components:

1. AT&T FSM library: includes about 30 stand-alone commands to construct, com-
bine, determinize, minimize, and search weighted finite-state machines (FSMs).
These commands manipulate FSMs by reading from and writing to files or pipelines.

2. Dot and Dotty: programs used by the FSM library to visualize graph represen-
tations of FSMs (Graphviz).

1www.research.att.com/~fsmtools/fsm/man3/fsm.1.html

47

www.research.att.com/~fsmtools/fsm/man3/fsm.1.html

Appendix A 48

Commands

1. FSM COMPILATION AND DISPLAY

fsmcompile takes input representing an FSM from file file or standard input,
and sends to standard output its binary encoding. The input should be the tex-
tual representation of an FSM. FSM states, input symbols and output symbols
are represented in the input by non-negative numbers, unless the options -s sym-
bols, -i symbols, -o symbols are used. These options allow state, input symbols
and output symbols, respectively, to be given textual names, where symbols files
give the translation from those names and numbers . The input should be an
acceptor, unless the -t option is given, in which case it should be a transducer.

fsmprint prints the input FSM on standard output using same textual format
as fsmcompile accepts as input. States, input symbols and output symbols are
printed in numeric form, unless the options -s symbols, -i symbols, -o symbols
are used to provide textual names for states, input symbols and output symbols,
respectively.

fsmdraw sends to standard output a dot(1) graph representation of the in-
put FSM (The command dot -Tps can be used to convert from dot format to
PostScript.) States, input symbols and output symbols are displayed in numeric
form, unless the options -s symbols, -i symbols, -o symbols are used 56 to pro-
vide textual names for states, input symbols and output symbols, respectively.
The options -w x and -h x set the page width and height (in inches), -f font-
name sets the font name (default is Times-Roman), -F n sets the font size (in
points), -p use portrait mode (default is landscape), and -v displays vertically
(i.e., top-to-bottom; default is left-to-right).

2. FSM CONSTRUCTION AND COMBINATION

fsmunion returns the union of one or more input FSMs.

fsmconcat returns the concatenation of one or more input FSMs, in the order
specified by the command-line arguments.

fsmclosure returns the Kleene closure of the input FSM. With the -p option,
the empty string is not added, that is, Kleene + is used instead of Kleene *.

fsmrmepsilon returns an equivalent FSM with no epsilon transitions. The in-
put FSM must have no negative cost epsilon cycles.

fsmintersect returns the intersection of two or more acceptors. Each input
FSM accepts string s iff the output FSM accepts s with the costs combined by

Appendix A 49

the EXTEND operation.

fsmcompose returns the relational composition of the input FSMs, in the or-
der given in the command line. With two input FSMs, for example, if the first
machine transduces string s1 to s2 and the second machine transduces s2 to s3,
then the output machine will transduce s1 to s3 with the two costs combined by
the EXTEND operation. If an input machine is an acceptor, it is treated as a
transducer from the language it accepts to itself.

fsmdifference returns the intersection of the acceptor fsm1 with the comple-
ment of the costless, deterministic, epsilon-free acceptor fsm2.

3. FSM MINIMIZATION AND EQUIVALENCE

fsmconnect returns an FSM from which any states and arcs in the input that
do not lie on a path from the start state to a final state have been removed. With
the -t option, it returns exit status 1 if the output has no states, which is useful
for testing the input for emptiness.

fsmdeterminize determinizes the input FSM, which must be determinizable.
Epsilon arcs are treated the same as other symbols.

fsmminimize returns the minimal deterministic FSM equivalent to the input
FSM, which must be a deterministic acceptor. Epsilon arcs are treated the same
as other symbols.

fsmarccollect COLLECTS costs on identically-labelled arcs between the same
source and destination states.

fsmcompact uses a heuristic procedure to return an FSM equivalent to fsm. but
possibly smaller. It works for arbitrary FSMs.

fsmequiv exits with zero status if fsm1 and fsm2 are equivalent. The inputs
must be deterministic, epsilon-free acceptors.

4. FSM SEARCH

fsmbestpath returns the lowest-cost path from the start state of the input FSM
to a final state. The path is encoded as a (single path) FSM. With the -n nbest
option, the nbest lowest-cost paths are returned. The output 58 is encoded as
an FSM that is the union of the individual paths in increasing cost order. With

Appendix A 50

the -c cthresh and -N nthresh options, the input FSM is pruned as in fsmprune,
limiting the nbest search. With the -u option, all paths returned will be distinct
strings.

fsmprune returns those states and arcs that lie on paths whose total path cost
in fsm is within cthresh of the lowest cost path and at most the nthresh best such
states. input epsilons. In each case, if there is a cycle with respect to the sorting
criterion, fsmtopsort returns the input FSM unsorted.

fsminfo sends to standard output the following information about the input
FSM its FSM class and whether it is an acceptor or transducer. With the -n
option, various numeric information is printed, including the number of states,
number of transitions, final states, epsilon transitions, strongly-connected compo-
nents, accessible states, and co-accessible states. With the -p option, FSMProps
is called on the input, which will return pre-computed information about the
FSM, such as whether it is cyclic, costless, non-negative, or deterministic. If pre-
computed information about a property is not supported by the FSM class, a ?
is printed for it. With the -t option, values for all FSM properties are printed (by
explicit tests run on the FSM if needed). See fsmprops.h for the set of defined
FSM properties. With the -c option, the FSM class properties are printed, which
include the FSM operations supported by that class. See fsmprops.h for the set
of defined FSM class properties. With the -q w option, quantiles in intervals of
width w are printed for various data including state in-degree, state out-degree,
input label, output label, and arc cost. With the -b q1 option, the quantiles begin
at q1 (default: 0.0), and with the -e q2 option, the quantiles end at p2 (default:
1.0). The -v option is equivalent to -tcn -q4.

Appendix B

Results for Paraphrase Detection
and STS

The Character n-gram features, used in both Paraphrase Detection and Semantic Tex-
tual Similarity, are computed via the following equations:

SIM(A,B) =
|A ∩B|

αmax(|A|, |B|) + (1− α)min(|A|, |B|)
(B.1)

SIM(A,B) = log (
|A ∩B|+ b

|A|+ |B|
) (B.2a)

SIM(A,B) = log (
|A ∩B|+ b

|A| ∗ |B|
) (B.2b)

SIM(A,B) =
|A ∩B|+ b

|A| ∗ |B|
(B.2c)

SIM(A,B) = e(−2∗G0) (B.2d)

G0 =
max(log(|A|), log(|B|))− log(|A ∩B|)

log(∆)−min(log(|A|), log(|B|))
(B.2e)

where |A |and |B |is the number of bigrams of the the first and the second sentence,
respectively.

At the first equation the parameter a controls the effect of each sentence and its
no-effect value is α = 0.5. The parameter b is set to its no-effect value (b=0) and
describes the degree to which all of the words have commonalities among each other.

51

Appendix B 52

At the last equation ∆ = 15000, under the assumption that the average number of
character n-grams in a word is 6 and the average sentence length is 25 words.

For the features LCS, LCSstring and Skip bigrams, two types of normalization have
been employed:

NormSimilarity =
Similarity

(|A|+ |B|)
(B.3)

NormSimilarity =
Similarity

(|A| ∗ |B|)
(B.4)

The containment n-grams feature has been computed for unigrams, bigrams and tri-
grams (n = 1,2,3). The normalization for these measures is:

NormSimilarity =
Similarity

|A|
(B.5)

NormSimilarity =
Similarity

|B|
(B.6)

At the following section, the results for each mertic’s performance and their com-
binations in both tasks are listed. We have categorized the results depending on the
machine learning employed and the existence of stemming or not. For the machine
learning, we have used two classifiers, a NaiveBayes and an SVM.

Paraphrase Detection

The tables below show the results of each metric on the MSR paraphrase dataset for
the task of detection.

The combination of Word and Character n-grams with the string similarity mea-
sures achieve the highest scores almost in every case.

Two baselines are included, BASE1 classifies all pairs as paraphrases; BASE2

classifies two sentences as paraphrases when their surface word edit distance is below
a threshold.

Appendix B 53

NaiveBayes

measures accuracy precision recall F-measure correlation

character bigrams B.1 0.722 0.754 0.870 0.808 0.325

bigrams B.2a 0.722 0.745 0.892 0.812 0.314

bigrams B.2b 0.677 0.677 0.994 0.805 0.092

bigrams B.2c 0.672 0.672 1.000 0.804 NaN

bigrams B.2d 0.726 0.752 0.883 0.812 0.327

character trigrams B.1 0.719 0.755 0.862 0.805 0.321

trigrams B.2a 0.722 0.745 0.892 0.812 0.313

trigrams B.2b 0.673 0.675 0.992 0.803 0.046

trigrams B.2c 0.672 0.672 1.000 0.804 NaN

trigrams B.2d 0.718 0.748 0.877 0.807 0.307

word 1grams B.1 0.726 0.761 0.862 0.809 0.338

word 2grams B.1 0.686 0.715 0.885 0.791 0.204

word 3grams B.1 0.680 0.693 0.941 0.798 0.142

LCS B.3 0.701 0.729 0.882 0.799 0.258

LCS B.4 0.679 0.686 0.963 0.801 0.123

LCSstring B.3 0.672 0.672 1.000 0.804 NaN

LCSstring B.4 0.672 0.672 1.000 0.804 NaN

SKIP2 B.3 0.344 0.765 0.035 0.067 0.016

SKIP2 B.4 0.672 0.672 1.000 0.804 NaN

containment 1gram 0.720 0.779 0.815 0.797 0.349

containment 2gram 0.677 0.750 0.781 0.765 0.254

containment 3gram 0.657 0.735 0.766 0.750 0.204

character 2grams 0.716 0.785 0.796 0.790 0.353

character 3grams 0.707 0.784 0.779 0.782 0.340

bigrams 0.711 0.793 0.772 0.782 0.352

trigrams 0.704 0.789 0.763 0.776 0.341

word Ngrams 0.679 0.784 0.721 0.751 0.302

character Ngrams 0.706 0.795 0.758 0.776 0.350

LCS 0.698 0.748 0.831 0.787 0.278

LCSstring 0.672 0.672 1.000 0.804 NaN

SKIP2 0.344 0.765 0.035 0.067 0.016

containment 0.668 0.788 0.693 0.737 0.297

Word Character Ngrams 0.700 0.804 0.732 0.766 0.351

LCS LCSstring skip2 containment 0.647 0.809 0.622 0.703 0.296

allMeasures 0.678 0.815 0.674 0.738 0.339

BASE1 0.665 0.665 1.000 0.799
BASE2 0.69 0.724 0.863 0.788

Appendix D:

Table B.1: Evaluation on paraphrase detection, using a Naive Bayes classifier. No
stemming has been employed while 10 fold-cross-validation has been used

Appendix B 54

SVM

measures accuracy precision recall F-measure correlation

character bigrams B.1 0.722 0.744 0.896 0.813 0.313

bigrams B.2a 0.724 0.740 0.909 0.816 0.312

bigrams B.2b 0.672 0.672 1.000 0.804 NaN

bigrams B.2c 0.672 0.672 1.000 0.804 NaN

bigrams B.2d 0.721 0.735 0.916 0.815 0.299

character trigrams B.1 0.721 0.744 0.893 0.812 0.307

trigrams B.2a 0.712 0.726 0.918 0.811 0.276

trigrams B.2b 0.672 0.672 1.000 0.804 NaN

trigrams B.2c 0.672 0.672 1.000 0.804 NaN

trigrams B.2d 0.713 0.731 0.908 0.810 0.282

word 1grams B.1 0.725 0.753 0.879 0.811 0.331

word 2grams B.1 0.672 0.672 1.000 0.804 NaN

word 3grams B.1 0.672 0.672 1.000 0.804 NaN

LCS B.3 0.672 0.672 1.000 0.804 NaN

LCS B.4 0.672 0.672 1.000 0.804 NaN

LCSstring B.3 0.672 0.672 1.000 0.804 NaN

LCSstring B.4 0.672 0.672 1.000 0.804 NaN

SKIP2 B.3 0.672 0.672 1.000 0.804 NaN

SKIP2 B.4 0.672 0.672 1.000 0.804 NaN

containment 1gram 0.727 0.753 0.885 0.813 0.333

containment 2gram 0.672 0.672 1.000 0.804 NaN

containment 3gram 0.672 0.672 1.000 0.804 NaN

bigrams 0.726 0.737 0.921 0.819 0.312

trigrams 0.711 0.719 0.934 0.813 0.264

character 2grams 0.724 0.736 0.921 0.818 0.310

character 3grams 0.709 0.717 0.938 0.813 0.260

word Ngrams 0.734 0.759 0.885 0.817 0.350

character Ngrams 0.722 0.729 0.935 0.819 0.302

LCS 0.672 0.672 1.000 0.804 NaN

LCSstring 0.672 0.672 1.000 0.804 NaN

SKIP2 0.672 0.672 1.000 0.804 NaN

containment 0.738 0.758 0.897 0.821 0.357

Word Character Ngrams 0.743 0.761 0.901 0.825 0.369

LCS LCSstring skip2 containment 0.742 0.764 0.892 0.823 0.370

allMeasures 0.752 0.773 0.894 0.829 0.398

BASE1 0.665 0.665 1.000 0.799
BASE2 0.69 0.724 0.863 0.788

Table B.2: Evaluation on paraphrase detection, using a SVM classifier. No stemming
has been employed while 10 fold-cross-validation has been used)

Appendix B 55

NaiveBayes

measures accuracy precision recall F-measure correlation

character bigrams B.1 0.718 0.752 0.867 0.805 0.314

bigrams B.2a 0.719 0.743 0.888 0.809 0.301

bigrams B.2b 0.681 0.681 0.986 0.806 0.110

bigrams B.2c 0.672 0.672 1.000 0.804 NaN

bigrams B.2d 0.716 0.744 0.881 0.807 0.303

character trigrams B.1 0.718 0.754 0.861 0.804 0.316

trigrams B.2a 0.718 0.741 0.893 0.810 0.299

trigrams B.2b 0.675 0.678 0.985 0.803 0.070

trigrams B.2c 0.672 0.672 1.000 0.804 NaN

trigrams B.2d 0.716 0.746 0.876 0.806 0.303

word 1grams B.1 0.724 0.758 0.866 0.809 0.333

word 2grams B.1 0.687 0.719 0.879 0.791 0.213

word 3grams B.1 0.681 0.694 0.939 0.798 0.145

LCS B.3 0.708 0.742 0.866 0.800 0.284

LCS B.4 0.681 0.687 0.964 0.803 0.126

LCSstring B.3 0.672 0.672 1.000 0.804 NaN

LCSstring B.4 0.672 0.672 1.000 0.804 NaN

SKIP2 B.3 0.350 0.767 0.048 0.091 0.022

SKIP2 B.4 0.672 0.672 1.000 0.804 NaN

containment 1gram 0.720 0.777 0.819 0.797 0.346

containment 2gram 0.677 0.751 0.777 0.764 0.255

containment 3gram 0.656 0.738 0.758 0.748 0.208

bigrams 0.708 0.792 0.768 0.780 0.349

trigrams 0.700 0.790 0.754 0.772 0.335

character 2grams 0.714 0.786 0.791 0.788 0.348

character 3grams 0.705 0.785 0.773 0.779 0.338

word Ngrams 0.677 0.781 0.723 0.751 0.296

character Ngrams 0.707 0.797 0.756 0.776 0.353

LCS 0.703 0.753 0.829 0.790 0.292

LCSstring 0.673 0.681 0.968 0.799 0.085

SKIP2 0.350 0.767 0.048 0.091 0.022

containment 0.671 0.789 0.697 0.740 0.302

Word Character Ngrams 0.698 0.802 0.732 0.765 0.348

LCS LCSstring skip2 containment 0.655 0.804 0.643 0.715 0.299

allMeasures 0.680 0.812 0.682 0.741 0.337

BASE1 0.665 0.665 1.000 0.799
BASE2 0.69 0.724 0.863 0.788

Table B.3: Evaluation on paraphrase detection, using a Naive Bayes classifier. Stem-
ming has been employed while 10 fold-cross-validation has been used

Appendix B 56

SVM

measures accuracy precision recall F-measure correlation

character bigrams B.1 0.719 0.741 0.894 0.810 0.302

bigrams B.2a 0.720 0.736 0.912 0.814 0.299

bigrams B.2b 0.672 0.672 1.000 0.804 NaN

bigrams B.2c 0.672 0.672 1.000 0.804 NaN

bigrams B.2d 0.720 0.736 0.911 0.814 0.298

character trigrams B.1 0.718 0.740 0.894 0.810 0.299

trigrams B.2a 0.713 0.727 0.919 0.812 0.277

trigrams B.2b 0.672 0.672 1.000 0.804 NaN

trigrams B.2c 0.672 0.672 1.000 0.804 NaN

trigrams B.2d 0.715 0.731 0.911 0.811 0.277

word 1grams B.1 0.727 0.754 0.881 0.813 0.330

word 2grams B.1 0.672 0.672 1.000 0.804 NaN

word 3grams B.1 0.672 0.672 1.000 0.804 NaN

LCS B.3 0.682 0.683 0.985 0.807 0.100

LCS B.4 0.672 0.672 1.000 0.804 NaN

LCSstring B.3 0.672 0.672 1.000 0.804 NaN

LCSstring B.4 0.672 0.672 1.000 0.804 NaN

SKIP2 B.3 0.672 0.672 1.000 0.804 NaN

SKIP2 B.4 0.672 0.672 1.000 0.804 NaN

containment 1gram 0.727 0.750 0.889 0.814 0.329

containment 2gram 0.672 0.672 1.000 0.804 NaN

containment 3gram 0.672 0.672 1.000 0.804 NaN

bigrams 0.723 0.735 0.919 0.817 0.299

trigrams 0.708 0.716 0.939 0.812 0.252

character 2grams 0.724 0.736 0.920 0.818 0.308

character 3grams 0.708 0.716 0.939 0.812 0.251

word Ngrams 0.735 0.756 0.893 0.819 0.347

character Ngrams 0.720 0.727 0.934 0.818 0.296

LCS 0.695 0.706 0.937 0.805 0.201

LCSstring 0.672 0.672 1.000 0.804 NaN

SKIP2 0.672 0.672 1.000 0.804 NaN

containment 0.735 0.755 0.897 0.820 0.351

Word Character Ngrams 0.743 0.760 0.902 0.825 0.364

LCS LCSstring skip2 containment 0.741 0.762 0.894 0.823 0.366

allMeasures 0.746 0.767 0.894 0.825 0.378

BASE1 0.665 0.665 1.000 0.799
BASE2 0.69 0.724 0.863 0.788

Table B.4: Evaluation on paraphrase detection, using a SVM classifier. Stemming has
been employed while 10 fold-cross-validation has been used

Appendix B 57

NaiveBayes

measures accuracy precision recall F-measure correlation

character bigrams B.1 0.721 0.754 0.872 0.808 0.345

bigrams B.2a 0.723 0.746 0.894 0.813 0.325

bigrams B.2b 0.680 0.680 0.993 0.807 0.094

bigrams B.2c 0.675 0.675 1.000 0.806 NaN

bigrams B.2d 0.724 0.751 0.885 0.813 0.343

character trigrams B.1 0.718 0.755 0.863 0.805 0.335

trigrams B.2a 0.720 0.743 0.895 0.812 0.337

trigrams B.2b 0.675 0.677 0.995 0.806 0.084

trigrams B.2c 0.675 0.675 1.000 0.806 NaN

trigrams B.2d 0.714 0.745 0.876 0.805 0.344

word 1grams B.1 0.722 0.760 0.859 0.807 0.369

word 2grams B.1 0.684 0.713 0.889 0.791 0.231

word 3grams B.1 0.679 0.693 0.943 0.799 0.185

LCS B.3 0.705 0.739 0.871 0.800 NaN

LCS B.4 0.684 0.691 0.963 0.805 NaN

LCSstring B.3 0.675 0.675 1.000 0.806 NaN

LCSstring B.4 0.675 0.675 1.000 0.806 NaN

SKIP2 B.3 0.675 0.675 1.000 0.806 NaN

SKIP2 B.4 0.675 0.675 1.000 0.806 NaN

containment 1gram 0.722 0.781 0.817 0.799 0.354

containment 2gram 0.677 0.752 0.778 0.765 0.267

containment 3gram 0.655 0.735 0.765 0.750 0.227

bigrams 0.709 0.793 0.769 0.781 0.358

trigrams 0.702 0.792 0.758 0.775 0.352

character 2grams 0.718 0.789 0.795 0.792 0.362

character 3grams 0.707 0.788 0.774 0.781 0.357

word Ngrams 0.678 0.787 0.718 0.751 0.296

character Ngrams 0.700 0.796 0.747 0.771 0.370

LCS 0.698 0.750 0.829 0.788 NaN

LCSstring 0.675 0.675 1.000 0.806 NaN

SKIP2 0.675 0.675 1.000 0.806 NaN

containment 0.670 0.794 0.689 0.738 0.257

Word Character Ngrams 0.693 0.803 0.723 0.761 0.373

LCS LCSstring skip2 containment 0.660 0.805 0.656 0.723 0.299

allMeasures 0.680 0.814 0.682 0.742 0.344

BASE1 0.665 0.665 1.000 0.799
BASE2 0.69 0.724 0.863 0.788

Table B.5: Evaluation on paraphrase detection, using a Naive Bayes classifier. No
stemming has been employed while we use 70% of the dataset as a training sample and
30% as testing

Appendix B 58

SVM

measures accuracy precision recall F-measure correlation

character bigrams B.1 0.723 0.738 0.914 0.817 0.329

bigrams B.2a 0.723 0.731 0.933 0.820 0.346

bigrams B.2b 0.675 0.675 1.000 0.806 NaN

bigrams B.2c 0.675 0.675 1.000 0.806 NaN

bigrams B.2d 0.716 0.728 0.923 0.814 0.334

character trigrams B.1 0.717 0.734 0.910 0.813 0.303

trigrams B.2a 0.710 0.720 0.934 0.813 0.271

trigrams B.2b 0.675 0.675 1.000 0.806 NaN

trigrams B.2c 0.675 0.675 1.000 0.806 NaN

trigrams B.2d 0.711 0.726 0.918 0.811 0.304

word 1grams B.1 0.723 0.748 0.891 0.813 0.355

word 2grams B.1 0.675 0.675 1.000 0.806 NaN

word 3grams B.1 0.675 0.675 1.000 0.806 NaN

LCS B.3 0.675 0.675 1.000 0.806 NaN

LCS B.4 0.675 0.675 1.000 0.806 NaN

LCSstring B.3 0.675 0.675 1.000 0.806 NaN

LCSstring B.4 0.675 0.675 1.000 0.806 NaN

SKIP2 B.3 0.675 0.675 1.000 0.806 NaN

SKIP2 B.4 0.675 0.675 1.000 0.806 NaN

containment 1gram 0.726 0.752 0.888 0.814 0.349

containment 2gram 0.675 0.675 1.000 0.806 NaN

containment 3gram 0.675 0.675 1.000 0.806 NaN

bigrams 0.723 0.732 0.930 0.819 0.346

trigrams 0.710 0.718 0.939 0.814 0.288

character 2grams 0.721 0.731 0.927 0.817 0.345

character 3grams 0.709 0.717 0.939 0.813 0.284

word Ngrams 0.735 0.757 0.894 0.820 0.365

character Ngrams 0.718 0.724 0.940 0.818 0.338

LCS 0.675 0.675 1.000 0.806 NaN

LCSstring 0.675 0.675 1.000 0.806 NaN

SKIP2 0.675 0.675 1.000 0.806 NaN

containment 0.736 0.757 0.896 0.821 0.374

Word Character Ngrams 0.741 0.759 0.903 0.825 0.383

LCS LCSstring skip2 containment 0.742 0.762 0.899 0.825 0.365

allMeasures 0.751 0.773 0.894 0.829 0.411

BASE1 0.665 0.665 1.000 0.799
BASE2 0.69 0.724 0.863 0.788

Table B.6: Evaluation on paraphrase detection, using a SVM classifier. No stemming
has been employed while we use 70% of the dataset as a training sample and 30% as
testing

Appendix B 59

NaiveBayes

measures accuracy precision recall F-measure correlation

character bigrams B.1 0.718 0.752 0.869 0.806 0.321

bigrams B.2a 0.718 0.743 0.891 0.810 0.324

bigrams B.2b 0.681 0.683 0.985 0.807 0.153

bigrams B.2c 0.675 0.675 1.000 0.806 NaN

bigrams B.2d 0.717 0.745 0.883 0.808 0.312

character trigrams B.1 0.719 0.755 0.864 0.806 0.323

trigrams B.2a 0.719 0.741 0.896 0.811 0.308

trigrams B.2b 0.676 0.678 0.989 0.805 0.116

trigrams B.2c 0.675 0.675 1.000 0.806 NaN

trigrams B.2d 0.719 0.749 0.878 0.808 0.315

word 1grams B.1 0.724 0.759 0.866 0.809 0.342

word 2grams B.1 0.688 0.719 0.882 0.792 0.226

word 3grams B.1 0.680 0.694 0.940 0.799 0.175

LCS B.3 0.708 0.742 0.869 0.801 NaN

LCS B.4 0.684 0.691 0.963 0.805 NaN

LCSstring B.3 0.675 0.675 1.000 0.806 NaN

LCSstring B.4 0.675 0.675 1.000 0.806 NaN

SKIP2 B.3 0.675 0.675 1.000 0.806 NaN

SKIP2 B.4 0.675 0.675 1.000 0.806 NaN

containment 1gram 0.721 0.779 0.819 0.798 0.350

containment 2gram 0.677 0.754 0.775 0.764 0.270

containment 3gram 0.656 0.739 0.757 0.748 0.226

bigrams 0.708 0.794 0.768 0.781 0.351

trigrams 0.697 0.793 0.746 0.769 0.337

character 2grams 0.713 0.787 0.790 0.788 0.363

character 3grams 0.705 0.788 0.769 0.779 0.347

word Ngrams 0.679 0.786 0.721 0.752 0.385

character Ngrams 0.706 0.802 0.750 0.775 0.360

LCS 0.704 0.756 0.831 0.791 NaN

LCSstring 0.678 0.679 0.993 0.806 0.058

SKIP2 0.675 0.675 1.000 0.806 NaN

containment 0.671 0.793 0.693 0.740 0.292

Word Character Ngrams 0.697 0.806 0.726 0.764 0.351

LCS LCSstring skip2 containment 0.668 0.800 0.677 0.734 0.302

allMeasures 0.688 0.814 0.697 0.751 0.332

BASE1 0.665 0.665 1.000 0.799
BASE2 0.69 0.724 0.863 0.788

Table B.7: Evaluation on paraphrase detection, using a Naive Bayes classifier. Stem-
ming has been employed while we use 70% of the dataset as a training sample and 30%
as testing

Appendix B 60

SVM

measures accuracy precision recall F-measure correlation

character bigrams B.1 0.717 0.739 0.899 0.811 0.323

bigrams B.2a 0.718 0.731 0.924 0.816 0.331

bigrams B.2b 0.675 0.675 1.000 0.806 NaN

bigrams B.2c 0.675 0.675 1.000 0.806 NaN

bigrams B.2d 0.716 0.732 0.915 0.813 0.340

character trigrams B.1 0.719 0.739 0.902 0.813 0.305

trigrams B.2a 0.714 0.726 0.927 0.814 0.286

trigrams B.2b 0.675 0.675 1.000 0.806 NaN

trigrams B.2c 0.675 0.675 1.000 0.806 NaN

trigrams B.2d 0.714 0.728 0.919 0.813 0.305

word 1grams B.1 0.729 0.755 0.888 0.816 0.349

word 2grams B.1 0.675 0.675 1.000 0.806 NaN

word 3grams B.1 0.675 0.675 1.000 0.806 NaN

LCS B.3 0.675 0.675 1.000 0.806 NaN

LCS B.4 0.675 0.675 1.000 0.806 NaN

LCSstring B.3 0.675 0.675 1.000 0.806 NaN

LCSstring B.4 0.675 0.675 1.000 0.806 NaN

SKIP2 B.3 0.675 0.675 1.000 0.806 NaN

SKIP2 B.4 0.675 0.675 1.000 0.806 NaN

containment 1gram 0.726 0.750 0.893 0.815 0.348

containment 2gram 0.675 0.675 1.000 0.806 NaN

containment 3gram 0.675 0.675 1.000 0.806 NaN

bigrams 0.720 0.733 0.920 0.816 0.339

trigrams 0.711 0.719 0.939 0.814 0.273

character 2grams 0.721 0.734 0.921 0.817 0.339

character 3grams 0.711 0.720 0.935 0.813 0.265

word Ngrams 0.734 0.755 0.898 0.820 0.343

character Ngrams 0.719 0.728 0.933 0.818 0.329

LCS 0.697 0.706 0.944 0.808 NaN

LCSstring 0.675 0.675 1.000 0.806 NaN

SKIP2 0.675 0.675 1.000 0.806 NaN

containment 0.736 0.757 0.898 0.821 0.353

Word Character Ngrams 0.742 0.761 0.900 0.825 0.384

LCS LCSstring skip2 containment 0.743 0.764 0.896 0.825 0.372

allMeasures 0.750 0.773 0.890 0.828 0.384

BASE1 0.665 0.665 1.000 0.799
BASE2 0.69 0.724 0.863 0.788

Table B.8: Evaluation on paraphrase detection, using a SVM classifier. Stemming has
been employed while we use 70% of the dataset as a training sample and 30% as testing

Appendix B 61

Semantic Textual Similarity

Correlation

measures Pearson Spearman

character 2grams B.1 0.636 0.609

character 2grams B.2a 0.608 0.610

character 2grams B.2b 0.168 0.218

character 2grams B.2c 0.156 0.219

character 2grams B.2d 0.599 0.613

character 3grams B.1 0.647 0.609

character 3grams B.2a 0.597 0.577

character 3grams B.2b 0.183 0.255

character 3grams B.2c 0.214 0.288

character 3grams B.2d 0.537 0.618

word 1grams B.1 0.463 0.471

word 2grams B.1 0.315 0.290

word 3grams B.1 0.247 0.222

LCS B.3 0.319 0.342

LCS B.4 0.127 0.178

LCSstring B.3 0.254 0.249

LCSstring B.4 0.106 0.129

SKIP2 B.3 0.0036 0.095

SKIP2 B.4 0.0069 -0.0147

containment 1gram B.5 0.461 0.465

containment 1gram B.6 0.428 0.438

containment 2gram B.5 0.346 0.330

containment 2gram B.6 0.322 0.310

containment 3gram B.5 0.279 0.264

containment 3gram B.6 0.264 0.254

Table B.9: Evaluation on Semantic Textual Similarity by calculating Pearson and
Spearman Correlation on the concatenation of Test Datasets of SemEval 2012

Appendix B 62

Correlation

measures Pearson Spearman

character 2grams B.1 0.637 0.648

character 2grams B.2a 0.627 0.647

character 2grams B.2b 0.399 0.402

character 2grams B.2c 0.338 0.402

character 2grams B.2d 0.640 0.651

character 3grams B.1 0.645 0.654

character 3grams B.2a 0.549 0.600

character 3grams B.2b 0.312 0.404

character 3grams B.2c 0.364 0.459

character 3grams B.2d 0.628 0.663

word 1grams B.1 0.518 0.540

word 2grams B.1 0.399 0.422

word 3grams B.1 0.314 0.343

LCS B.3 0.465 0.494

LCS B.4 0.271 0.359

LCSstring B.3 0.386 0.409

LCSstring B.4 0.239 0.317

SKIP2 B.3 0.088 0.344

SKIP2 B.4 0.038 0.054

containment 1gram B.5 0.501 0.512

containment 1gram B.6 0.467 0.487

containment 2gram B.5 0.418 0.451

containment 2gram B.6 0.380 0.419

containment 3gram B.5 0.336 0.378

containment 3gram B.6 0.306 0.360

Table B.10: Evaluation on Semantic Textual Similarity by calculating Mean Pearson
and Spearman on Test Datasets of SemEval 2012

Appendix B 63

Correlation

measures Pearson Spearman

character 2grams B.1 0.543 0.539

character 2grams B.2a 0.524 0.542

character 2grams B.2b -0.036 -0.059

character 2grams B.2c 0.029 -0.061

character 2grams B.2d 0.471 0.490

character 3grams B.1 0.470 0.450

character 3grams B.2a 0.397 0.415

character 3grams B.2b -0.001 -0.024

character 3grams B.2c 0.059 0.012

character 3grams B.2d 0.386 0.403

word 1grams B.1 0.408 0.398

word 2grams B.1 0.313 0.315

word 3grams B.1 0.285 0.301

LCS B.3 0.272 0.263

LCS B.4 -0.004 -0.062

LCSstring B.3 0.124 0.068

LCSstring B.4 -0.021 -0.099

SKIP2 B.3 0.116 0.505

SKIP2 B.4 -0.048 -0.043

containment 1gram B.5 0.432 0.423

containment 1gram B.6 0.369 0.363

containment 2gram B.5 0.334 0.342

containment 2gram B.6 0.314 0.319

containment 3gram B.5 0.300 0.321

containment 3gram B.6 0.291 0.313

Table B.11: Evaluation on Semantic Textual Similarity by calculating Pearson and
Spearman Correlation on the concatenation of Test Datasets of SemEval 2013

Appendix B 64

Correlation

measures Pearson Spearman

character 2grams B.1 0.517 0.521

character 2grams B.2a 0.494 0.524

character 2grams B.2b 0.318 0.357

character 2grams B.2c 0.284 0.354

character 2grams B.2d 0.455 0.490

character 3grams B.1 0.520 0.521

character 3grams B.2a 0.471 0.513

character 3grams B.2b 0.304 0.376

character 3grams B.2c 0.321 0.383

character 3grams B.2d 0.415 0.499

word 1grams B.1 0.465 0.482

word 2grams B.1 0.396 0.399

word 3grams B.1 0.350 0.340

LCS B.3 0.367 0.375

LCS B.4 0.233 0.296

LCSstring B.3 0.352 0.330

LCSstring B.4 0.246 0.272

SKIP2 B.3 0.064 0.307

SKIP2 B.4 -0.001 0.029

containment 1gram B.5 0.472 0.484

containment 1gram B.6 0.448 0.462

containment 2gram B.5 0.412 0.419

containment 2gram B.6 0.404 0.406

containment 3gram B.5 0.364 0.359

containment 3gram B.6 0.362 0.355

Table B.12: Evaluation on Semantic Textual Similarity by calculating Mean Pearson
and Spearman Correlation on Test Datasets of SemEval 2013

Appendix C

Results for Paraphrasing
Prompts

C.1 Crowsourcing data

The tables below show results for the recognition task among data collected from the
CrowdFlower crowdsourcing servise.

Input prompt WHAT CITY DO YOU WANT TO FLY TO

without normalization with normalization

Best Candidate Paraphrases

what time do you want to fly where do you want to fly to
where do you want to fly to what time do you want to fly

what do you want to do where would you like to fly to
when do you want to fly what city did you want to depart from
where do you want to fly where do you want to fly

where would you like to fly to when do you want to fly
where do you like to fly what do you want to do

what city did you want to depart from where do you want to fly to and from
what date do you want to depart where do you want to fly from and to
what date do you want to travel where would you like to fly to please

Table C.1: Candidate paraphrases for the input prompt: WHAT CITY DO YOU
WANT TO FLY TO

65

Appendix C 66

Input prompt WHERE WOULD YOU LIKE TO GO

without normalization with normalization

Best Candidate Paraphrases

where would you like to go where would you like to go
where would you like to start where would you like to start

where do you want to go where do you want to go
where would you like to start from where would you like to start from

when would you like to go where and when would you like to go
where and when would you like to go where do you want to go to

where would you like to arrive where do you want to go sir
where would you like to depart hello where do you want to go

where would you like to fly where would you like to travel
where would you like to travel where would you like to fly

Table C.2: Candidate paraphrases for the input prompt: WHERE WOULD YOU
LIKE TO GO

Input prompt WHAT TIME DO YOU NEED TO DEPART

without normalization with normalization

Best Candidate Paraphrases

what day do you want to depart what day do you want to depart
what date do you want to depart what date do you want to depart

what time are you looking to depart what time are you looking to depart
when do you need to depart when do you need to depart

what day do you want to leave what day do you want to leave
when do you need to arrive when do you need to arrive
when do you want to depart when do you want to depart
when do you need to leave when do you need to leave

what day are you looking to leave what day are you looking to leave
what time do you want to fly what time do you want to fly

Table C.3: Candidate paraphrases for the input prompt: WHAT TIME DO YOU
NEED TO DEPART

For the generation task, and the same input prompts, as they are listed at the tables
above, the candidate paraphrases are:

Appendix C 67

Figure C.1: Candidate Paraphrases for input prompt “WHAT CITY DO YOU WANT
TO FLY TO”

Appendix C 68

Figure C.2: Candidate Paraphrases for input prompt “WHERE WOULD YOU LIKE
TO GO”

Appendix C 69

Figure C.3: Candidate Paraphrases for input prompt “WHAT TIME DO YOU NEED
TO DEPART”

Appendix C 70

C.2 Web documents

The tables below show results for the recognition task among data harvested from the
web.

Category AIRPORT

Input prompt DO YOU KNOW WHAT AIRPORT

without normalization with normalization

Best Candidate Paraphrases

do you know what airport do you know what airport
do you know what airport it is do you know what airport this is

do you know what airport this is do you know what airport it is
do you know what airport code is aca do you know what airport you arrived at

do you know what airport i m at do you know what airport runway 9 signifies
do you know what airport runway 9 signifies do you know what airport i m at

do you know what airport you arrived at do you know what airport code is aca
do you know what airport hes flying out of do you know what airport you would fly into

do you know what airport inky traveled through today do you know what airport we re going from
do you know what airport this thai is struggling do you know what airport this thai is struggling

Table C.4: Candidate paraphrases for the input prompt: DO YOU KNOW WHAT
AIRPORT

Category CAR

Input prompt WILL YOU NEED A CAR

without normalization with normalization

Best Candidate Paraphrases

do you prefer a car service do you prefer a car service
do you prefer a car or truck do you prefer a car or truck

do you know what a persimmon is do you know what a persimmon is
what car do you drive do you prefer a car or a house
what do you look like do you prefer a car buffer or standard

do you prefer a car buffer or standard do you prefer a car allowance or have a rental car
do you prefer a car or a house do you prefer a car service versus a taxi

where can i rent a car do you prefer a car over any other transportation
do you know what tofu is do you prefer a car like chassis with better handling
what do you do together are you looking to buy a new car or a quality used car

Table C.5: Candidate paraphrases for the input prompt: WILL YOU NEED A CAR

Appendix C 71

Category DATE

Input prompt WHAT DATE WOULD YOU LIKE TO TRAVEL

without normalization with normalization

Best Candidate Paraphrases

what other date would you like what would you like to ask
what would you like to ask what other date would you like
what name do you like best what name do you like best
what digimon do you like what would you like to see more of
what do you like better what would you like to see in colusa county

what would you like to see more of what do you like better
what gun would you prefer what digimon do you like

what would you like to see in colusa county what did you do to your mini today
which date would you prefer what do you want your baby to be

which date would you prefer to attend what weekend would you like to have the roosevelt reunion

Table C.6: Candidate paraphrases for the input prompt: WHAT DATE WOULD YOU
LIKE TO TRAVEL

Category DAY

Input prompt WHAT DAY WOULD YOU LIKE TO DEPART

without normalization with normalization

Best Candidate Paraphrases

what day would you want to come what day would you want to repeat
what day would you want to live what day would you want to live

what day would you want to repeat what day would you want to come
what would you like to ask what would you like to ask

what day would you want to go what day would you want to relive
what day would you want to be born what day would you want to pick up

what day would you want to do training what day would you want to never end
what day would you want to meet up what day would you want to meet up

what day would you want to never end what day would you want to do training
what day would you want to pick up what day would you want to be born

Table C.7: Candidate paraphrases for the input prompt: WHAT DAY WOULD YOU
LIKE TO DEPART

Category PLACE

Input prompt WHAT CITY DO YOU WANT TO FLY TO

without normalization with normalization

Best Candidate Paraphrases

what do you want to do why do you want to fly to detroit
what do you want to see what do you want to see

why do you want to fly to detroit what do you want to do
what city do you live in what city do you live in

what do you drunks want what do you want me to do
what do you guys want to see what do you want him to explain

what do you want him to explain what do you guys want to see
what do you want me to do what would you like to ask
what would you like to ask what are you going to do
what are you going to do what do you do to keep fit

Table C.8: Candidate paraphrases for the input prompt: WHAT CITY DO YOU
WANT TO FLY TO

Appendix C 72

Category TIME

Input prompt WHAT TIME DO YOU NEED TO DEPART

without normalization with normalization

Best Candidate Paraphrases

what time would you want to leave what time would you want to leave
what time would you want to go what time would you want to visit

what time would you want to know what time would you want to know
what time would you want to visit what time would you want to go

what do you want to be what time do you have to eat dinner
what time do you have to eat dinner what time would you want to arrive at the falls

at what time would you want to return what time would you want to arrive at and why
what time would you want to eat dinner what time would you want to meet there
what time would you want to get going what time would you want to live in
what time would you want to get there what time would you want to go go

Table C.9: Candidate paraphrases for the input prompt: WHAT TIME DO YOU
NEED TO DEPART

Bibliography

[1] Aggarwal, N., Asooja, K. and Buitelaar, P., “DERI&UPM: Pushing Corpus Based

Relatedness to Similarity: Shared Task System Description.” Proc. of the 1st Joint

Conference on Lexical and Computational Semantics (*Sem), pp. 643-647, Mon-

treal, Canada, 2012.

[2] Androutsopoulos, I. and Malakasiotis, P., “A survey of Paraphrasing and Textual

Entailment Methods.” Journal of Artifial Intelligence Research 38(1), pp. 135-187,

2010.

[3] Banea, C., Hassan, S., Mohler, M. and Mihalcea, R., “UNT: A Supervised Syn-

ergistic Approach to Semantic Text Similarity.” Proc. of the 1st Joint Conference

on Lexical and Computational Semantics (*Sem), pp. 635-642, Montreal, Canada,

2012.

[4] Bannard, C. and Allison-Burch, C., “Paraphrasing with bilingual parallel corpora.”

Proc. of the 43rd Annual Meeting of ACL, pp. 597-604, Ann Arbor, USA, 2005.

[5] Bar, D., Biemann, C., Gurevych, I. and Zesch, T., “UKP: Computing Semantic

Textual Similarity by Combining Multiple Content Similarity Measures.” Proc. of

the 1st Joint Conference on Lexical and Computational Semantics (*Sem), pp.

435-440, Montreal, Canada, 2012.

[6] Bar-Haim, R., Degan, I., Greental, I. and Shnarch, E., “Semantic inference at

the lexical-syntactic level.” Proc. of the 22nd Conf. on Artificial Intelligence, pp.

871-876, Vancouver, Canada, 2007.

[7] Barzilay, R. and Lee, L., “Learning to Paraphrase: An Unsupervised Approach

Using Multiple-Sequence Alignment.” Proc. of the HLT Conf. of NAACL, pp. 16-

23, Edmonton, Canada, 2003.

[8] Bateman, J. and Zock, M, “Natural Language Generation.” In Mitkov, R. (Ed.),

The Oxford Handbook of Comp. Linguistics, chap. 15, pp. 284-304. Oxford Uni-

versity Press, 2003.

73

Appendix C 74

[9] Bhagat, R., Pantel, P. and Hovy, E., “LEDIR: An unsupervised algorithm for

learning directionality of inference rules.” Proc. of the Conf. on EMNLP and the

Conf. on Computational Nat. Lang. Learning, pp. 161-170, Prague, Czech Repub-

lic, 2007.

[10] Bhagwani, S., Satapathy, S. and Karnick, H., “sranjans: Semantic Textual Simi-

larity using Maximal Weighted Bipartite Graph Matching.” Proc. of the 1st Joint

Conference on Lexical and Computational Semantics (*Sem), pp. 579-585, Mon-

treal, Canada, 2012.

[11] Biggins, S., Mohammed, S. and Oakley, S., “University of Sheffield: Two Ap-

proaches to Semantic Textual Similarity.” Proc. of the 1st Joint Conference on

Lexical and Computational Semantics (*Sem), pp. 435-440, Montreal, Canada,

2012.

[12] Bos, J. and Market, K., “Recognising textual entailment with logical inference.”

Proc. of the Conf. on HLT and EMNLP, pp. 628-635, Vancouver, Canada, 2005.

[13] Brazilay, R. and Lee, L., “Bootstrapping lexical choice via multiple-sequence align-

ment.” Proc. of the Conf. on EMNLP, pp. 164-171, Philadelphia, USA, 2002.

[14] Brazilay, R. and Lee, L., “Learning to paraphrase: an unsupervised approach us-

ing multiple-sequence alignment.” Proc. of the HLT Conf. of NAACL, pp. 16-23,

Edmonton, Canada, 2003.

[15] Brazilay, R. and McKewon, K., “Extracting paraphrases from a parallel corpus.”

Proc. of the 39th Annual Meeting of ACL, pp. 50-57, Toulouse, France, 2001.

[16] Brockett, C. and Dolan, W., “Support Vector Machines for paraphrase identifica-

tion and corpus construction.” Proc. of the 3rd Int. Workshop on Paraphrasing,

pp. 1-8, Jeju island, Korea, 2005.

[17] Buscaldi, D., Tournier, R., Aussenac-Gilles, N. and Mothe, J., “IRIT: Textual Sim-

ilarity Combining Conceptual Similarity with an N-Gram Comparison Method.”

Proc. of the 1st Joint Conference on Lexical and Computational Semantics (*Sem),

pp. 552-556, Montreal, Canada, 2012.

[18] Califf, M. and Mooney, R., “Bottom-up relational learning of pattern matching

rules for information extraction.” Journal of Machine Learning Research, 4(Jun),

pp. 177-210, 2003.

[19] Caputo, A., Basile, P. and Semeraro, G., “UNIBA: Distributional Semantics for

Textual Similarity.” Proc. of the 1st Joint Conference on Lexical and Computa-

tional Semantics (*Sem), pp. 591-596, Montreal, Canada, 2012.

Appendix C 75

[20] Castilo, J. and Estrella, P., “SAGAN: An approach to Semantic Textual Similarity

based on Textual Entailment.” Proc. of the 1st Joint Conference on Lexical and

Computational Semantics (*Sem), pp. 667-672, Montreal, Canada, 2012.

[21] Cohn, T. and Lapata, M., “Sentence Compression beyond word deletion.” Proc. of

the 22nd Int. Conf. on Comp. Linguistics, Manchester, UK, 2008.

[22] Croce, D., Annesi, P., Storch, V. and Basili, R., “Unitor: Combining Semantic

Text Similarity functions through SV Regression.” Proc. of the 1st Joint Conference

on Lexical and Computational Semantics (*Sem), pp. 597-602, Montreal, Canada,

2012.

[23] Duboue, P.A., and Chu-Carroll, J., “Answering the question you wish they had

asked: The impact of paraphrasing for question answering.” Proc. of the HLT

Conf. of NAACL, pp. 33-36, New York, USA, 2006.

[24] Fellbaum, C., “WordNet: An Electronic Lexical Database.” MIT Press, 1998.

[25] Galanis, D. and Androutsopoulos, I., “An extractive supervised two-stage method

for sentence compression.” Proc. of the HLT Conf. of NAACL, Los Angeles, USA,

2010.

[26] Grishman, R., “Information Extraction.” In Mitkov, R. (Ed.), The Oxford Hand-

book of Comp. Linguistics, chap. 30, pp. 545-559. Oxford University Press, 2003.

[27] Haghighi, A. D., “Pobust textual inference via graph matching.” Proc. of the HLT

Conf. on EMNLP, pp. 387-394, Vancouver, Canada, 2005.

[28] Harabagiu, S. and Hickl, A., “Methods for using textual entailment in open-domain

question answering.” Proc. of the 21st National Conf. on Artifial Intelligence, pp.

755-762, Boston, USA, 2006.

[29] Harmeling, S., “Inferring textual entailment with a probabilistically sound calcu-

lus.” Nat. Lang. Engineering, 15(4), pp. 459-477, 2009.

[30] Harris, Z., “Distributional Structure.” In Katz, J. and Fodor, J. (Eds.), The Philos-

phy of Linguistics, pp. 33-49. Oxford University Press, 1964.

[31] Hovy, E., “Text Summarization.” Mitkov, R. (Ed.), The Oxford Handbook of

Comp.Linguistics, chap.32, pp. 583-598. Oxford University Press, 2006.

[32] Huffman, S., “Learning information extraction patterns from examples.” Proc. of

the IJCAI Workshop on New Approaches to Learning for Nat. Lang. Processing,

pp. 127-142, Montreal, Canada, 1995.

Appendix C 76

[33] Ibrahim, A., Katz, B. and Lin, J., “Extracting Structural paraphrases from aligned

monolingual corpora.” Proc. of the ACL Workshop on Paraphrasing, pp. 57-64,

Sapporo, Japan, 2003.

[34] Iftene, A. and Balahur-Dobrescu, A., “Hypothesis trasformation and semantic

variability rules used in recognizing textual entailment.” Proc. of the ACL-PASCAL

Workshop on Textual Entailment and Paraphrasing, pp. 125-130, Prague, Czech

Republic, 2007.

[35] Iosif, E. and Potamianos, A., “Unsupervised Semantic Similarity Computation

Between Terms Using Web Documents.” IEEE Transactions on Knowledge and

Data Engineering, 22(11), 2009.

[36] Jimenez, S., Becerra, C. and Gelbukh, A., “Soft Cardinality: A Parameterized

Similarity Function for Text Comparison.” Proc. of the 1st Joint Conference on

Lexical and Computational Semantics (*Sem), pp. 449-453, Montreal, Canada,

2012.

[37] Knight, K., and Marcu, D., “Summarization beyond sentence extraction: A probal-

istic approach to sentence compression.” Artificial Intelligence, 139(1), pp. 91-107,

2002.

[38] Koehn, P., “Statistical Machine Translation.” Cambridge University Press, 2009.

[39] Koehn, P., Och, F.J. and Marcu, D., “Statistical phrase-based translation.” Proc.

of the HLT Conf. of NAACL, pp. 48-54, Edmonton, Canada. ACL, 2003.

[40] Levenshtein, V., “Binary codes capable of correcting deletions, insertions and re-

versals.” Soviet Physice-Doklady, 10(8), pp. 707-710, 1966.

[41] Lin, D., “An information-theoretic definition of similarity.” Proc. of the 15th Int.

Conf. on Machine Learning, pp. 296-304, Madison, WI. Morgan Kaufmann, San

Francisco, USA, 1998.

[42] Lin, D., “Automatic retrieval and clustering of similar words.” Proc. of the 36th

Annual Meeting of ACL and 17th Int. Conf. on Comp. Linguistics, pp. 768-774,

Montreal, Canada, 1998.

[43] Lin, D. and Pantel, P., “Discovery of inference rules for question answering.” Nat.

Lang. Engineering, 15(3), pp. 414-453, 2001.

[44] Malakasiotis, P. and Androutsopoulos, I., “Learning textual entailment using

SVMs and string similarity measures.” Proc. of the ACL-PASCAL Workshop on

Textual Entailment and Paraphrasing, pp. 42-47, Prague. ACL, 2007.

Appendix C 77

[45] Malandrakis, N., Iosif, E. and Potamianos, A., “Deep Purple: Estimating Sentence

Semantic Similarity using N-gram Regression Models and Web Snippets.” Proc. of

the 1st Joint Conference on Lexical and Computational Semantics (*Sem), pp.

565-570, Montreal, Canada, 2012.

[46] Malandrakis, N., Iosif, E., Prokopi, V., Potamianos, A. and Narayanan, S., “Deep-

Purple: Lexical, String and Affective Feature Fusion for Sentence-Level Semantic

Similarity Estimation.” Proc. of the 2nd Joint Conference on Lexical and Com-

putational Semantics (*Sem), Volume 1: Proceedings of the Main Conference and

the shared Task, pp. 103-108, Atlanta, USA, 2013.

[47] Mani, I., “Automatic Summarization.” John Benjamins, 2001.

[48] Manning, C.D. and Schuetze, H., “Foudations of Statistical Natural Language Pro-

cessing.” MIT Press, 1999.

[49] Marquez, L. and Carreras, X., Litkowski, K. C. and Stevenson, S., “Semantic

role labeling: an introduction to the specia issue.” Comp. Linguistics, 34(2), pp.

145-159, 2008.

[50] McDonald, R, “Discriminative sentence compression with soft syntactic con-

straints.” Proc. of the 11th Conf. of EACL, pp. 297-304, Trento, Italy, 2006.

[51] McKeown, K., “Paraphrasing questions using given and new information.” Comp.

Linguistics, 9(1), 1983.

[52] Moens, M., “Information Extraction: Algorithms and Prospects in a Retrieval

Context.” Springer, 2006.

[53] Moore, R. C., “Towards a simple and accurate statistical approach to learning

translation relationships among words.” Proc. of the ACL Workshop on Data-

Driven Machine Translation, Toulouse, France, 2001.

[54] Neogi, S., Pakray, P., Bandyopadhyay, S. and Gelbukh, A., “JU CSE NLP: Multi-

grade Classification of Semantic Similarity Between Text Pairs.” Proc. of the 1st

Joint Conference on Lexical and Computational Semantics (*Sem), pp. 571-574,

Montreal, Canada, 2012.

[55] Nitin Madnani and Bonnie J. Dorr, “Generating Phrasal and Sentential Para-

phrases: A survey of Data-Driven Methods.” Journal of Computational Linguis-

tics, 36(3), pp. 341-387, MIT Press Cambridge, USA, 2010.

Appendix C 78

[56] Palogiannidi, E., “Using crowdsoursing for grammar induction with application to

spoken dialogue systems.” Diploma Thesis, Technical University of Crete, Chania,

Greece, 2013.

[57] Pang, B., Knight, K. and Marcu, D., “Syntax-based alignment of multiple transla-

tions: extracting paraphrases and generating new sentences.” Proc. of the Human

Lang. Techn. Conf. of NAACL, pp. 102-109, Edmonton, Canada, 2003.

[58] Quirk, C., Brockett, C. and Dollan, W.B., “Monolingual machine translation for

paraphrase generation.” Proc. of the Conf. on EMNLP, pp. 142-149, Barcelona,

Spain, 2004.

[59] Riezler, S., Vasserman, A., Tsochantaridis, I., Mittal, V., and Liu, Y., “Statistical

machine translation for qury expansion in answer retrieval.” Proc. of the 45th

Annual Meeting of ACL, pp. 464-471, Prague, Czech Republic, 2007.

[60] Riloff, E. and Jones, R., “Learning dictionaries for information extraction by

multi-level bootstrapping.” Proc. of the 16th National Conf. on Artificial Intelli-

gence, pp. 474-479, Orlando, USA, 1999.

[61] Schohn, G. and Cohn, D., “Less in more: active learning with Support Vector Ma-

chines.” Proc. of the 17th Int. Conf. on Machine Learning, pp. 839-846, Stanford,

USA, 2000.

[62] Selkow, S., “The tree-to-tree editing problem.” Information Processing Letters,

6(6), pp. 184-186, 1977.

[63] Shinyama, Y. and Sekine, S., “Paraphrase acquisition for information extraction.”

Proc. of the ACL Workshop on Paraphrasing, Sapporo, Japan, 2003.

[64] Singh, J., Bhattacharya, A. and Bhattacharya, P., “janardhan: Semantic Textual

Similarity using Universal Networking Language graph matching.” Proc. of the 1st

Joint Conference on Lexical and Computational Semantics (*Sem), pp. 662-666,

Montreal, Canada, 2012.

[65] Soderland, S., Fisher, D., Aseltine, J. and Lehnert, W.G., “CRYSTAL: Inducing a

conceptual dictionary.” Proc. of the 14th Int. Joint Conf. on Artificial Intelligence,

pp. 1314-1319, Montreal, Canada, 1995.

[66] Souza, J.G.C., Negri, M. and Mehdad, Y., “FBK: Machine Translation Evaluation

and Word Similarity metrics for Semantic Textual Similarity.” Proc. of the 1st

Joint Conference on Lexical and Computational Semantics (*Sem), pp. 624-630,

Montreal, Canada, 2012.

Appendix C 79

[67] Szpektor, I., Tanev, H., Dagan, I. and Coppola, B., “Scaling Web-based acquisition

of entailment relations.” Proc. of the Conf. on EMNLP, Barcelona, Spain, 2004.

[68] Tai, K.-C., “The tree-to-tree correction problem.” Journal of ACM, 26(3), pp. 422-

433, 1977.

[69] Tatu, M. and Moldovan, D., “A semantic approach to recognizing textual entail-

ment.” Proc. of the Conf. on HLT and EMNLP, pp. 371-378, Vancouver, Canada,

2005.

[70] Tatu, M. and Moldovan, D., “COGEX at RTE 3.” Proc. of the ACL-PASKAL

Workshop on Textual Entailment and Paraphrasing, pp. 33-40, Prague, Czech

Republic, 2007.

[71] Tong, S. and Koller, D., “Support Vector Machine active learning with applications

to text classification.” Journal of Machine Learning Research, 2(Nov), pp. 45-66,

2002.

[72] Wang, M. and Cer, D., “Stanford: Probabilistic Edit Distance Metrics for STS.”

Proc. of the 1st Joint Conference on Lexical and Computational Semantics (*Sem),

pp. 648-654, Montreal, Canada, 2012.

[73] Xu, F., Uszkoreit, H. and Li, H., “A seed-driven bottom-up machine learning frame-

work for extracting relations of various complexity.” Proc. of the 45th Annual

Meetting of the Association of Comp. Linguistics, pp. 584-591, Prague, Czech

Republic, 2007.

[74] Zhang, K. and Shasha, D., “Simple fast algorithms for editing distance between

trees and related problems.” SIAM Journal of Computing, 18(6), pp. 1245-1262,

1989.

[75] Zhao, S., Lan, X., Liu, T. and Li, S., “Pivot Application-driven statistical para-

phrase generation.” Proc. of the 47th Annual Meeting of ACL and the 4th Int.

Joint Conf. on Nat. Lang. Processing of AFNLP, pp. 834-842, Singapore, 2009.

[76] Zhao, S., Wang, H., Liu, T. and Li, S., “Pivot Approach for extracting paraphrase

patterns from bilingual corpora.” Proc. of the 46th Annual Meeting of ACL: HLT,

pp. 780-788, Columbus, USA, 2008.

	Table of Contents
	List of Tables
	List of Figures
	Abstract
	Acknowledgements
	Introduction
	Applications
	Classification of the methods
	Purpose of the Thesis

	Related Work
	Problem Statement
	Semantic Textual Similarity
	Similarity Measures
	Alignment
	Machine Learning
	Evaluation

	Paraphrase Detection & Recognition
	Logic-based
	Vector Space Models of Semantics
	Surface String Similarity
	Syntactic Similarity
	Similarity Measures Operating on Symbolic Meaning Representations
	Employ Machine Learning
	Decoding
	Evaluation

	Paraphrase Generation
	Inspired by Statistical Machine Translation
	Bootstrapping
	Evaluation

	Paraphrase Extraction
	Distributional Hypothesis
	Bootstrapping
	Alignment
	Evaluation

	Summary

	Our Approach
	The idea
	String Similarity Metrics
	Algorithm for Paraphrase Detection and Semantic Textual Similarity
	Algorithm for Paraphrase Recognition and Generation
	Baseline
	Word-order sensitive

	Experimental Procedure & Evaluation
	Evaluation on Paraphrase Detection
	Evaluation on Semantic Textual Similarity
	Datasets
	Evaluation Results

	Experiments on Paraphrasing Prompts
	Data Collection
	Results on Crowdsourcing Data
	Results on Web Documents
	Objective Evaluation

	Conclusions and Future Work
	Conclusions
	Future Work
	Similarity Features
	FSM-based alignment
	Data Collection

	The FSM Toolkit
	Results for Paraphrase Detection and STS
	Results for Paraphrasing Prompts
	Crowsourcing data
	Web documents

	Bibliography

