
CHOROS 2.0: Improving the Performance of
Spatial Reasoning in OWL

Mainas Nikolaos

Department of Electronic and Computer Engineering
Technical University of Crete

Dissertation Thesis Committee:
Euripides G.M Petrakis, Associate Professor (Supervisor)

Stavros Christodoulakis, Professor
Michail G. Lagoudakis, Associate Professor

November 2, 2013

1

Acknowledgments

This thesis would not have been possible without the help of several people who
contributed in the preparation and completion of this study.

Firstly and foremost I would like to thank my advisor, Professor Euripides G.
M. Petrakis for his constant supervision. For guiding, advising and supporting me
in every step of this thesis. I am grateful for giving me the opportunity to work on
this very interesting field of research.

Also, I would like to thank Professor Stavros Christodoulakis and Associate
Professor Michail G. Lagoudakis who agreed to evaluate my diploma thesis.

Moreover, I would like to thank my laboratory colleagues for their patient and
constructive comments.

I would like to thank all my friends for these great years we spent together and
for the many wonderful memories.

Most of all, I would like to thank my family for their enormous help, under-
standing and support all these years.

Abstract

In this thesis, we investigate on potential improvements to CHOROS v1, a qualita-
tive spatial reasoning engine for qualitative topologic and directional spatial infor-
mation. CHROROS v1 reasoner is implemented in Java and supports consistency
checking and query answering over spatial data represented with the Region Con-
nection Calculus (RCC) and the Cone-Shaped directional logic formalism (CSD)
as well as standard RDF/OWL semantic relations, both represented in RDF/OWL.
Our implementation is referred to as CHOROS 2.0 and inherits all features of
CHOROS v1 and suggests certain improvements to the basic path-consistency al-
gorithm enhancing its run-time performance. In addition CHOROS 2.0 handles
information referring to the relevant position of objects expressed in numerical
values, and also updates the ontology with inferred facts. These features are not
supported by its predecessor. Finally, we discuss on further improvements to the
reasoning engine (i.e., based on reducing the size of compositions of basic rela-
tions) and we compare their performance to that of CHOROS v1 as well as to that
of SOWL, a spatial reasoner implemented in SWRL and runs under Protégé.

Contents

1 Introduction 5
1.1 Background . 6
1.2 Problem Definition . 7
1.3 Proposed Work . 7
1.4 Contributions of Present Work 8
1.5 Thesis Outline . 8

2 Background and Related Work 10
2.1 Semantic Web . 10
2.2 Ontologies-OWL . 11
2.3 SWRL . 12
2.4 Qualitative Spatial Models . 13

2.4.1 Topological Relations 13
2.4.2 Directional Relations . 14

2.5 PelletSpatial . 14
2.6 CHOROS 1.0 . 15
2.7 SOWL . 16
2.8 Reasoning on Decomposition of Directional Relations 17
2.9 SPARQL . 18
2.10 SOWL QL . 18
2.11 Jena . 19

3 CHOROS 2.0 20
3.1 Spatial Relations in CHOROS 2.0 20
3.2 CHOROS 2.0 Architecture . 21

3.2.1 Parser . 22
3.2.2 Constraint Network . 24
3.2.3 Reasoner . 24
3.2.4 Re-constructor . 30

3.3 Optimizations . 31

1

CONTENTS 2

4 Evaluation 39
4.1 Theoretical Evaluation . 39
4.2 Experimental Evaluation . 40

4.2.1 CSD Experiments . 41
4.2.2 RCC Experiments . 44
4.2.3 CSD Decomposition Experiments 47
4.2.4 Overall Spatial Experiments 48
4.2.5 Case Study - TUC Spatial Ontology 51

5 Conclusion and Future Work 55

List of Figures

2.1 RCC8 topological relations. 13
2.2 Cone Shaped Directional relations. 14
2.3 Main Components of the CHOROS 1.0 reasoner 16
2.4 North-South Relations . 17
2.5 East-West Relations . 18

3.1 RCC and CSD Relations as object properties, in Protégé 21
3.2 Main Components of CHOROS 2.0 reasoner 21
3.3 Computing a CSD relation from point locations 23
3.4 New East-West Relations . 34
3.5 New North-South Relations . 35

4.1 Average case performance of Reasoning over CSD relation sets . . 42
4.2 Worst case performance of Reasoning over CSD relation sets . . . 43
4.3 Average case performance of Reasoning over RCC relation sets . . 45
4.4 Worst case performance of Reasoning over RCC relation sets . . . 46
4.5 Average Case performance of Reasoning on Decomposed CSD re-

lations . 47
4.6 Worst Case performance of Reasoning on Decomposed CSD rela-

tions . 48
4.7 Average case performance of Reasoning on combined RCC and

CSD relations sets . 49
4.8 Worst case performance of Reasoning on combined RCC and CSD

relations sets. 50
4.9 Campus Map - Technical University of Crete 51

3

List of Tables

3.1 RCC Composition Table . 26
3.2 CSD Composition Table . 27
3.3 Composition Table for North-South Directional Relations 32
3.4 Composition Table for East-West Directional Relations 33
3.5 Composition Table for new East-West Directional Relations . . . 35
3.6 Composition Table for new North-South Directional Relations . . 36

4.1 Response time of reasoning techniques on the ”TUC spatial ontol-
ogy” . 51

4.2 Classes and instances in the TUC spatial ontology. 52
4.3 Object Properties in the TUC spatial ontology. 53
4.4 Data Properties in the TUC spatial ontology 54

4

Chapter 1

Introduction

The increasing use of the World Wide Web (WWW) in the recent years has gener-
ated additional interest for new intelligent mechanisms and applications, capable of
handling tasks that are typically handled manually by users. For example, search-
ing and buying a product on the Web requires careful selection among different
products that satisfy user needs, at the best available price. All these tasks are
handled by using a search engine and by manually browsing, selecting and com-
paring products in Web pages. In recent years, there is an increasing need for Web
services that accomplish these tasks automatically without requiring user interven-
tion, besides task description. These applications must be able to comprehend the
meaning of the content of Web pages and reason over their content similarly to
the way humans do. Semantic Web is a solution to this need, that is realized with
the aid of specific tools capable of representing the meaning of Web pages as well
as, for reasoning and querying over their content. Ontologies provide the means
for representing high-level concepts, their properties and interrelationships. More
specifically, ontologies contain definitions of concepts and of their properties by
means of binary relations between concepts or a concept and a numerical (con-
crete) domain.

Reasoning is the process by which implicitly logical conclusions are extracted
from an explicit set of facts or statements, which form the knowledge base.

Spatial information is an important aspect of Web content. It is inherent to
the content of Web pages using either qualitative or quantitative descriptions (e.g.,
position coordinates, distances). In this work, we present CHOROS 2.0 reasoner
which supports consistency checking over qualitative spatial information in OWL
(i.e., using natural language terms for expressing locations in space in terms of
their relations to other objects especially when exact locations are unknown) us-
ing the Region Connection Calculus (RCC) or the Cone-Shaped Directional logic
formalism (CSD).

5

CHAPTER 1. INTRODUCTION 6

1.1 Background

Formal spatial representations have been studied extensively in the Database [5]
and recently, the Semantic Web literature [6]. Spatial entities (e.g., objects, re-
gions) in classic database systems are represented using points, lines (polygonal
lines) or Minimum Bounding Rectangles (MBRs) enclosing objects or regions and
their relationships. Relations among spatial entities can be topological, orientation
or distance-based relations. Furthermore, spatial relations are distinguished into
qualitative (i.e., relations described using lexical terms such as ”Into”, ”South”
etc.) and quantitative (i.e., relations described using numerical values such as ”10
Km away”, ”45 degrees North” etc.). The motivation for using a qualitative ap-
proach is that it is considered to be closer to the way humans represent and reason
about common sense knowledge. Another motivation is that it is possible to deal
with incomplete knowledge.

Accordingly, spatial ontologies are defined based-upon a reference coordinate
system in conjunction with a set of qualitative topological and directional relations
(e.g., RCC-8 relations). A spatial ontology can also be defined without a coordinate
reference system, such as in the case of topological relations [1]. Nevertheless, it
is not always possible to directly encode the semantics of these relations using
the expressivity of OWL and Description Logics (DL) that OWL is based on [2].
There might be inconsistencies within a set of spatial relations that will not be
detected by an OWL reasoner or, an OWL reasoner might not compute all spatial
inferences. To deal with this problem, reasoning rules for various relation sets have
been proposed [3, 4].

In our previous work, we introduced CHOROS reasoner [7] (referred hence-
forth as CHOROS 1.0) which supports consistency checking and query answering
over spatial information in OWL expressed using the Region Connection Calculus
(RCC) [1] or the Cone-Shaped Directional logic formalism (CSD) [8, 9]. Choos-
ing either representation is a design decision that depends mainly on the applica-
tion. However, both RCC and CSD expressions in OWL may co-exist within the
same ontology together with standard OWL semantic relations. In that respect,
CHOROS 1.0 extends PelletSpatial [2] to support CSD-9 relations in addition to
RCC-8 relations. A limitation of CHOROS 1.0 (and also of PelletSpatial) is that
the ontology is not updated with reasoning results (i.e., the inferred triples are not
added to the ontology).

Reasoning relies on the path consistency algorithm of PelletSpatial [2] ex-
tended to take into account the CSD relations in addition to the RCC ones of the
original implementation. Plausible optimizations of CHOROS 1.0 are also dis-
cussed and evaluated including, a multi-threading (faster) implementation enabling
the parallel execution of CSD and RCC reasoning. We also suggest reducing the
9 CSD relations to 8 by encoding the identical to relation using the sameAs OWL
axiom. As shown in the experimental results of CHOROS 1.0 , this optimization
speed-up the reasoner by at least 10%.

CHAPTER 1. INTRODUCTION 7

1.2 Problem Definition

Typically, when the spatial locations of all objects are given, their relations to other
objects are computed by means of arithmetic operations. No further reasoning
is necessary in this case (i.e., where all information is expressed quantitatively).
However, there are cases where although the exact locations of objects is unknown,
their spatial relations can still be expressed qualitatively by means of their relations
to other objects (e.g., below, above or South, North etc). Qualitative representations
are very common in natural language expressions such as in free text or speech and
can be proven to be particularly useful in dealing with incomplete information in
applications of the Semantic Web. This approach approximates the way humans
think and reason common sense spatial knowledge.

Qualitative spatial reasoning is the process of inferring new spatial relations or
checking existing spatial relations for consistency (e.g., relations ”A is above B”
and ”B is above A” are inconsistent) in applications where spatial information is ex-
pressed qualitatively (or part of this information is expressed qualitatively and part
of it is expressed quantitatively). In this work, qualitative relations between objects
can be expressed by means of their topologic relations (e.g., ”inside”, ”outside”,
”in touch”) or means of their relative placement in the 2D space (e.g., ”North”,
”South” etc) or combinations of the two (e.g., ”A is outside B” and ”A is North of
B”).

The most popular reasoning methods are constraint-based techniques [3, 10].
Reasoning applies on sets of qualitative spatial relations which are jointly exhaus-
tive and pairwise disjoint. This means, that between any pairs of spatial entities
exactly one of the basic relations holds. The set of all possible relations is then
the set of all possible unions of the basic relations. Reasoning is realized by ex-
ploiting composition of relations, i.e. given binary relations R1 and R2, which
hold between pairs A, B and B, C respectively, then the composition of R1 and R2

generates the possible relations between A and C. Compositions of relations are
usually pre-computed and stored in composition tables.

1.3 Proposed Work

We present CHOROS 2.0 a reasoner engine which handles spatial data represented
by topologic RCC-8 and directional CSD-9 relations. It is an improved version
of CHOROS 1.0, inheriting all the basic components of its predecessor while im-
proving its performance and functionality. It supports consistency checking over
RCC and CSD relations, and computes new spatial inferences from asserted rela-
tions. Also CHOROS 2.0 supports standard RDF/OWL semantic relations, yield-
ing a consistent ontology on OWL which can be reused or queried (e.g., using
SPARQL).

We investigate on potential improvements to CHOROS 1.0 reasoning. Build-
ing upon PelletSpatial [2], CHOROS 2.0 supports consistency checking for spatial

CHAPTER 1. INTRODUCTION 8

information using Region-Connection Calculus (RCC), but also using the Cone-
Shaped Directional (CSD) logic formalism as CHOROS 1.0 does. In addition
CHOROS 2.0 introduces certain improvements to CHOROS 1.0 with regard to
implementation of the basic path consistency mechanism and also introduces:

a) a software component that updates the ontology with the results of reasoning
(i.e., the ontology is updated with the new inferred relations).

b) a software component that handles quantitative spatial information.

c) an idea for further speeding-up reasoning by introducing decompositions of
directional relations into sets of simpler ones yielding smaller compositions
of basic relations.

These components are missing from both PelletSpatial and CHOROS 1.0. The
experimental results demonstrate that CHOROS 2.0 runs significantly faster than
its respective SWRL implementation and CHOROS 1.0 in all cases.

1.4 Contributions of Present Work

The contributions of the present work are summarized below:

• CHOROS 2.0 is capable of handling both qualitative and quantitative spatial
relations, by computing the relative position of spatial entities.

• For consistency checking and reasoning a new path-consistency algorithm
is implemented, introduced in CHRONOS, which is based on disjunction of
the compositions of basic relations and not on full composition tables used
in CHOROS.

• In order to improve even more the performance of new path-consistency
algorithm, we reduce the number of basic RCC and CSD relations, by re-
placing equal relations with owl axiom ”sameAs”.

• We introduce an approach for improving the performance of reasoning on
directional relations relying on the decomposition of basic CSD-9 relations.

• A new component has been added, which allows updating the ontology with
all possible logical inferences coming from spatial reasoning. This compo-
nent replaces the need of providing a query engine, as updated ontology can
be used as an input in any query engine, such as SOWL QL [11].

1.5 Thesis Outline

Related work in the field of knowledge representation and reasoning are discussed
in Chapter 2. This includes work on representation of spatial information in on-
tologies, as well as reasoning using this information. Moreover earlier work re-
garding reasoning and querying over spatial information is presented. In Chapter

CHAPTER 1. INTRODUCTION 9

3, our proposed tool, CHOROS 2.0 is presented. In the first part of this Chapter
we describe CHOROS 2.0. In the second and third part of this Chapter, the basic
reasoning mechanism is discussed along with our suggested improvements over
its predecessor implementation of CHOROS 1.0, respectively. Chapter 4 initially
presents the theoretical evaluation of path-consistency algorithm following by the
experimental evaluation of reasoning and of its extensions and improvement dis-
cussed in Chapter 3. Finally, conclusions and issues for future work are discussed
in Chapter 5.

Chapter 2

Background and Related Work

2.1 Semantic Web

The ever growing information on the Web in the recent years has generated addi-
tional interest for methods and tools for automating the understanding and subse-
quently the processing of information by the machines. This will pave the way to
technologies for automating tasks that are typically handles by humans. For ex-
ample planning a trip requires selecting and purchasing tickets at specific dates at
the best available price. Typically, these tasks are handled by searching the Web
(e.g., using a search engine). Semantic Web1 is intended to provide a solution to
these needs by developing Web services that accomplish these tasks automatically
without requiring user intervention, besides task description. These services must
be capable to understand the meaning of Web pages and reason over their content
in a way similar the way humans do. Semantic Web will realize this technology by
introducing formal, machine readable semantics for representation of knowledge,
combined with reasoning and querying support.

The Semantic Web is a vision for the future of World Wide Web in which
information is given explicit meaning, making it easier for machines to automat-
ically process and integrate available information. Currently, the World Wide
Web is structured in documents written in Hypertext Markup Language (HTML),
a markup convention which encodes the body text enriched with media objects.
On the contrary, Semantic Web suggests languages, such as Resource Description
Framework (RDF) and Web Ontology Language (OWL)2, providing descriptions
that supplement or replace the content of Web documents. Thus, Web content can
be stored as descriptive data, providing machine understandable semantics, which
can be used by applications to proceed and accomplish tasks, the same way humans
do.

1http://www.w3.org/standards/semanticweb/
2http://www.w3.org/TR/owl-features/

10

CHAPTER 2. BACKGROUND AND RELATED WORK 11

2.2 Ontologies-OWL

In Semantic Web, ontologies provide the means for representing knowledge in an
are of interest. Typically, ontologies comprise of a set of axioms providing defi-
nitions for the concepts (objects) of a domain and of definitions for their relations
(object properties). This information is supplemented by classificatory informa-
tion for such entities (i.e., making it possible to define classification hierarchies for
objects and object properties) as well as, entity and relation constraints. Ontology
axioms provide the semantics allowing for checking existing information for con-
sistency or for inferring new information based on information defined explicitly
in the ontology. Data instantiated to objects and object properties of an ontology
are interpreted as a set of ”individuals” and a set of ”property assertions” that relate
these individuals with each other.

Typically, ontologies comprise of the following components:

• Individuals: instances or objects.

• Classes: collections, concepts, types of objects, or kinds of things.

• Attributes: properties, features characteristics that objects may have.

• Relations: how classes and individuals can be related to each other.

• Function terms: complex structures formed from certain relations that can
be used in place of an individual term in a statement.

• Restrictions: formally stated descriptions of what must be true in order for
some assertion to be accepted as input.

• Rules: statements in the form of an if-then sentence that describe the logical
inferences that can be drawn from an assertion in a particular form.

• Axioms: assertions (including rules) in a logical form that together comprise
the overall theory that the ontology describes in its domain of application.

• Events: the changing of attributes or relations.

By defining shared and common domain theories, ontologies make it feasible
for both, people and machines to communicate concisely, supporting the exchange
of semantics and not only syntax. In recent years, ontologies have been adopted in
many business and scientific communities as a way to share, reuse and process do-
main knowledge. Nowadays, ontologies are used in applications such as scientific
knowledge portals, information management and integration systems, electronic
commerce and semantic web services.

CHAPTER 2. BACKGROUND AND RELATED WORK 12

OWL

The Web Ontology Language (OWL) is a family of knowledge representation lan-
guages for authoring ontologies. OWL can be used to explicitly represent concept
of terms in vocabularies and the relationships between them. It is compatible with
the existing RDF, describing concepts and properties of objects, while offering in-
creased expressiveness over the RDFS vocabulary description language. RDF and
RDFS represent properties or relations between entities in the form of triplets of
the form object-predicate-subject.

OWL is distinguished in three sublanguages, with different levels of expres-
siveness:

OWL-Full which is fully compliant with RDF. It is the most expressive variant
but lacks of decidability and it is not supported by existing OWL reasoners.

OWL-DL which is based on Description Logic, and is most used version of
OWL. It provides maximum possible expressiveness while preserving compu-
tational completeness, decidability and the availability of practical reasoning
algorithms.

OWL-Lite which is a subset of OWL-DL, but less expressive. It allows defi-
nitions of class hierarchies and simple constraint features.

In 2007, OWL 23 was introduced, as an extension of OWL-DL, and became
the current Semantic Web Standard. OWL 2 preserves the features of OWL-DL,
while adding extra functionality and expressiveness. Some of its additional char-
acteristics are richer data types and data ranges, qualified cardinality restrictions,
asymmetric, reflexive and disjoint object properties and enhanced annotation capa-
bilities.

2.3 SWRL

The Semantic Web Rule Language (SWRL)4 is a proposed language for the Se-
mantic Web that can be used to express rules as well as logic, combining OWL DL
or OWL Lite with a subset of the Rule Markup Language. The proposal extends the
set of OWL axioms to include Horn-like rules. It thus enables Horn-like rules to be
combined with an OWL knowledge base. the proposed rules are of the form of an
implication between an antecedent (body) and consequent (head). SWRL allows
users to write rules that can be expressed in terms of OWL concepts to provide
more powerful deductive reasoning capabilities than OWL alone.

3http://www.w3.org/TR/owl2-overview/
4http://www.w3.org/Submission/SWRL/

CHAPTER 2. BACKGROUND AND RELATED WORK 13

2.4 Qualitative Spatial Models

Space and time are fundamentals aspects of the conceptualization of the physical
world. The notions of time and space as well as the evolution of concepts and
individuals into space and time are important issues in almost all application do-
mains. This is due to the fact that in many real-life situations, spatial or temporal
information can not be represented easily with numerical values, or a less accurate
approach is needed.

Typically, qualitative spatial information is represented by introducing a (bi-
nary) relation model for each spatial domain, containing a finite set of binary rela-
tions defined over entities of each domain. Many spatial relation models have been
developed, most of them focusing on one single aspect of space, such as topology,
direction, or position.

2.4.1 Topological Relations

Figure 2.1: RCC8 topological relations.

Topological Relations are expressed via the region connection calculus (RCC)
[1]. It abstractly describes regions (in Euclidean space, or in a topological space)
by their possible relations to each other. RCC (Figure 2.1) consists of 8 basic
relations that are possible between two regions:

• disconnected (DC)

• externally connected (EC)

• equal (EQ)

• partially overlapping (PO)

• tangential proper part (TPP)

• tangential proper part inverse (TPPi)

• non-tangential proper part (NTPP)

• non-tangential proper part inverse (NTPPi)

CHAPTER 2. BACKGROUND AND RELATED WORK 14

2.4.2 Directional Relations

Directional representation of points in two-dimensional space can be applied by
specifying a limited number of relations, each one covering a part of the 360 de-
grees range. Directional relations are expressed using the cone shaped directional
model, in which angular directions are assigned to the nearest cone shaped area.
CSD model [8, 9] (Figure 2.2) suggests 9 basic relations between pairs of points in
a 2-D space:

• north (N)

• north-east (NE)

• east (E)

• south-east (SE)

• south (S)

• south-west (SW)

• west (W)

• north-west (NW)

• identical (O)

N NE

E

SESSW

W

NW

O

Figure 2.2: Cone Shaped Directional relations.

2.5 PelletSpatial

PelletSpatial [2] extends the Pellet OWL reasoner [15] with qualitative spatial rea-
soning capabilities. It supports consistency checking of spatial relations expressed
using RCC-8 calculi and computes new spatial inferences from asserted relations.

CHAPTER 2. BACKGROUND AND RELATED WORK 15

Spatial relations are expressed in RDF/OWL and can be combined with arbitrary
domain ontologies.

It implements two reasoners: (a) A reasoner based on the translation of RCC-8
relations to OWL-DL class axioms and, (b) A reasoner that uses the RCC-8 com-
position table and implements a variant of the path-consistency algorithm by Renz
and Nebel. Without further optimizations, performance of the former reasoner does
not scale-up well with the size of the dataset. In addition to translating RCC-8 re-
lations to OWL class axioms, one axiom is defined for each region to satisfy the
regularity condition of region (i.e., to be a non-empty concept and to contain all of
the regions interior points). This significantly affects non-determinism as well as
the number of qualified existential quantifiers in the ontology. Qualified existential
and universal quantifiers, is one of the sources of complexity (AND-branching)
in DL reasoning. The later reasoner design using path-consistency and the RCC
composition table, has shown better performance.

PelletSpatial can also answer SPARQL queries that mix spatial relations with
RDF/OWL relations.

2.6 CHOROS 1.0

CHOROS 1.0 [7] is a reasoner for directional and topologic informaiton in OWL.
CHOROS 1.0 supports consistency checking and query answering over spatial in-
formation in OWL expressed using the Region Connection Calculus (RCC) or the
Cone-Shaped Directional logic formalism (CSD). Choosing either representation
is a design decision that depends mainly on the application. However, both RCC
and CSD expressions in OWL may co-exist within the same ontology together
with standard OWL semantic relations. In that respect, CHOROS 1.0 extends Pel-
letSpatial to support CSD-9 relations in addition to RCC-8 relations. As such, it
can answer mixed SPARQL queries over all spatial and non spatial relation types.

Architecture of CHOROS 1.0 reasoner (Figure 2.3) consists of 3 basic compo-
nents:

• Parser implements an RDF and an ARQ parser for parsing ontologies and
queries respectively. RDF parser extracts from the RDF graph the spatial
triples and inserts them to the corresponding RCC and CSD constraint net-
work for consistency checking and query answering. The rest of the non
spatial graph is handled by Pellet’s KB. In ARQ parser, query atoms are
characterized as RCC, CSD or non spatial.

• Reasoner is implemented by using an exclusive reasoner for each spatial cal-
culus. Spatial reasoning is then achieved by applying the path consistency
algorithm of PelletSpatial. In order to improve its performance CHOROS 1.0
introduces a a multi-threading implementation enabling the parallel execu-
tion of CSD and RCC reasoning. Also, it suggests reducing the 9 CSD rela-
tions to 8 by replacing the ”identical to” relation with OWL axiom ”sameAs”.

CHAPTER 2. BACKGROUND AND RELATED WORK 16

• Query Engine is similar to PelletSpatial’s with the addition of CSD opera-
tors. It answers conjunctive queries specifying spatial and non spatial pat-
terns. The query engine implements a dual stage query answering technique,
where the set of query solutions returned by the first stage in response to a
given spatial query are inserted to the second stage whose purpose is to guar-
antee that the non-spatial part of the query is satisfied as well.

Figure 2.3: Main Components of the CHOROS 1.0 reasoner

2.7 SOWL

SOWL [12] is an ontology for representing and reasoning over spatio-temporal in-
formation in OWL. It is built-upon well established standards of the semantic web
(OWL 2.0, SWRL) and enables representation of static as well as of dynamic in-
formation based on the 4D-fluents (or, equivalently, on the N-ary) approach. Rep-
resentation of qualitative spatio-temporal information as well as quantitative in-
formation is a distinctive feature of SOWL. SOWL reasoner is capable of inferring
new relations and checking their consistency, while retaining soundness, complete-
ness, and tractability over the supported sets of relations.

Reasoning in SOWL, is realized by introducing a set of SWRL rules operating
on spatial and temporal relations. Reasoners which support DL-safe rules, like
Pellet, apart from consistency checking and inferring over OWL semantics, can be
also used over spatio-temporal relations.

Regarding spatial information, both RCC topological and cone-shaped direc-
tional relations are integrated in SOWL. The SOWL spatial reasoner in particular,
implements rules for RCC and CSD relations using SWRL and OWL 2.0 prop-
erty axioms. All basic relations are pairwise disjoint. Their inverse relations are
also defined. The ”identical to” relation is replaced by the OWL axiom ”sameAs”.
Specifically, the nine directional relations are transitive OWL relations, whilst their
inverse relations are defined. Furthermore, the identity relation is symmetric. As
for topological relations, relations DC, EC and PO are symmetric and relations
NTPPi and TPPi are the inverse of NTPP and TPP respectively. Path consistency

CHAPTER 2. BACKGROUND AND RELATED WORK 17

[13] is implemented by introducing rules defining compositions and intersections
of supported relations until a fixpoint is reached or until an inconsistency is de-
tected.

2.8 Reasoning on Decomposition of Directional Relations

In [14], Batsakis proposes a new approach for reasoning over cone shaped direc-
tional relations, which is based on the decomposition of basic relations into two sets
of relations, one for the East-West axis (horizontal) and one for the North-South
axis (vertical). Relations on each set are jointly exclusive and pairwise disjoint but
for each pair of spatial objects two relations, one for each set can hold. For exam-
ple, object A can be North and East of object B corresponding to the North-East
CSD-9 cone shaped relation.

The basic relations on North-South set, as presented in Figure 2.4, are:

• North

• South

• Equal-Horizontal

• Identical-Horizontal

North

South

Equal-Horizontal Equal-Horizontal

Figure 2.4: North-South Relations

The basic relations on East-West set, as presented in Figure 2.5, are:

• East

• West

• Equal-Vertical

• Identical-Vertical

CHAPTER 2. BACKGROUND AND RELATED WORK 18

Equal-Vertical

Equal-Vertical

West East

Figure 2.5: East-West Relations

The decomposition of CSD-9 relations is defined as follows:

NCSD9(x, y) ≡ North(x, y) ∧ Equal − V ertical(x, y)
NECSD9(x, y) ≡ North(x, y) ∧ East(x, y)
ECSD9(x, y) ≡ Equal −Horizontal(x, y) ∧ East(x, y)

SECSD9(x, y) ≡ South(x, y) ∧ East(x, y)
SCSD9(x, y) ≡ South(x, y) ∧ Equal − V ertical(x, y)

SWCSD9(x, y) ≡ South(x, y) ∧West(x, y)

WCSD9(x, y) ≡ Equal −Horizontal(x, y) ∧West(x, y)

NWCSD9(x, y) ≡ North(x, y) ∧West(x, y)

IdenticalCSD9(x, y) ≡ Identical −Horizontal(x, y) ∧ Identical − V ertical(x, y)

Reasoning in CSD relations, is realized by introducing a set of SWRL rules
operating on the decomposed relations, as described above. These rules define
compositions and intersections of supported relations until a fixpoint is reached or
until an inconsistency is detected. In the same work, Batsakis showed that rea-
soning using the new formalism runs significantly faster than SOWL in both the
average and worst cases. Both implementations resort to SWRL.

2.9 SPARQL

SPARQL [16] is the W3C recommendation query language for RDF. The basic
evaluation mechanism of SPARQL queries is based on graph matching. The query
criteria are given in the form of RDF triples possibly with variables in the place
of the subject, object, or predicate of a triple, referred to as basic graph patterns.
SPARQL is capable of querying required and optional graph patterns along with
their conjunctions and disjunctions.

2.10 SOWL QL

SOWL Query Language (SOWL QL) [11], is a high-level query language for spa-
tio temporal ontologies in OWL. SOWL QL is independent from the underlying

CHAPTER 2. BACKGROUND AND RELATED WORK 19

SOWL representation so that, the user need not be familiar with the peculiarities
of the spatio-temporal model applied (i.e., 4D-fluents or N-ary relations). It re-
lies on the idea of extending SPARQL with spatio-temporal operators and handles
dynamic (spatio-temporal) ontologies almost like static ones.

Main advantages of SOWL QL are summarized below:

• it is independent over the underlying model of spatio temporal representa-
tion.

• user need not be familiar with the peculiarities of the underlying model.

• it supports an exhaustive set of spatial and temporal operators including all
temporal Allen, as well as all topological and directional operators

• it supports querying of qualitative expressions (defined using natural lan-
guage terms such as before, after, East, West) in addition to quantitative
spatio-temporal expressions

• it supports reasoning during the querying process (i.e., queries specifying
exact temporal or spatial values call for reasoning support)

SOWL QL queries are translated into equivalent SPARQL queries. In fact,
SOWL QL is an extension of SPARQL, using the same clauses as SPARQL does
and fully supports all SPARQL features. The structure of a SOWL QL query is
the same with SPARQL, with the additions of spatio temporal operators (all tem-
poral Allen relations and all spatial topological and directional relations operators
are implemented as operators), which are not supported by other query languages,
meaning that any SOWL QL query can also be expressed in SPARQL and vice
versa. Query selection criteria are expressed by RDF triples of the form subject -
predicate - object referred to as basic graph patterns.

SOWL QL is fully implemented and supported by a Graphical User Interface
(GUI).

2.11 Jena

Jena5 is an open source Semantic Web framework for Java. It provides an API for
reading, processing and writing data in RDF graphs, while offering efficient storage
techniques of large numbers of RDF triples. Jena is compliant with W3C recom-
mendations providing an ontology API for handling OWL and RDFS ontologies,
and also a query engine according to SPARQL specifications. The framework has
various internal reasoners and the Pellet reasoner can be set up to work in Jena.

5http://jena.apache.org/

Chapter 3

CHOROS 2.0

CHOROS 2.0 is a reasoning engine for spatial information in OWL expressed using
RCC and CSD models. It is the result of an investigation on suggesting potential
improvements over CHOROS 1.0 [7]. CHOROS 1.0, is an early version of a qual-
itative spatial reasoning engine supporting consistency checking, inference of new
spatial relations as well as query answering on qualitative spatial information ex-
pressed using Region-Connection-Calculus (RCC) and Cone-Shaped Directional
logic Formalism (CSD). It works with all RCC and CSD relations in combination
with standard RDF/OWL semantic relations in an OWL ontology which are han-
dled by Pellet. It is practically an extension over PelletSpatial [2] for handling
directional in addition to topologic information. CHOROS 2.0 inherits all fea-
tures of CHOROS 1.0 and in addition suggests certain improvements to the basic
path consistency mechanism for enhancing its run-time performance. In addition,
CHOROS 2.0 supports updating of the ontology with inferred facts, a feature which
is not supported by PelletSpatial or by its predecessor implementation. These new
spatial inferences can be stored in an updated ontology which can be re-used or
queried using SPARQL.

3.1 Spatial Relations in CHOROS 2.0

CHOROS 2.0 defines an RDF/OWL vocabulary of terms denoting RCC topological
(Figure 2.1) and Cone shaped directional (Figure 2.2) models. More specifically,
using this formalism, a region (a spatial entity in general) is defined as an OWL in-
dividual (e.g., Individual: Town1, Individual: Town 2 oftype class: Town) while, a
spatial relation between two entities is defined as an OWL object property assertion
(e.g., Individual: Town1 ObjectProperty: WestOf Individual: Town2).

As shown in Figure 3.1, CSD and RCC relations are defined as simple object
properties with no extra characteristics (e.g., inverse, transitive). One can either
use the vocabulary provided, or use his own by defining sub-property axioms (e.g.,
ObjectProperty: N subPropertyOf: NorthOf).

Non-spatial relations are represented as ordinary OWL assertions (e.g., Individ-

20

CHAPTER 3. CHOROS 2.0 21

ual: Town1 DatatypeProperty: hasName: Athens). In order to perform efficiently
CHOROS 2.0 strictly separates spatial reasoning from semantic DL reasoning by
using an exclusive spatial reasoner component.

Figure 3.1: RCC and CSD Relations as object properties, in Protégé

3.2 CHOROS 2.0 Architecture

Figure 3.2 illustrates CHOROS 2.0 architecture. It consists of several modules
which are described in the following focusing on differencies and unique charac-
teristics over CHOROS 1.0 (Figure 2.3).

Figure 3.2: Main Components of CHOROS 2.0 reasoner

CHAPTER 3. CHOROS 2.0 22

The Parser component of CHOROS 1.0 is responsible for loading and han-
dling of ontologies and SPARQL queries. It implements an Ontology Parser which
loads ontologies and separates spatial relations from the Ontology model. Also
an ARQ Parser is implemented in order to handle SPARQL queries by separating
spatial from non-spatial OWL triples. The Parser component of CHOROS 2.0 im-
plements only an Ontology Parser and introduces an additional Parser for handling
quantitative spatial relations.

Furthermore, CHOROS 1.0 implements a Query Engine for answering spatial
queries, derived by the ARQ Parser. It implements a dual stage query answering
technique, where the set of query solutions returned by the first stage in response to
a given spatial query are inserted to the second stage whose purpose is to guarantee
that the non-spatial part of the query is satisfied as well. This implementation is
restrictive, as queries must contain at least one spatial triple, otherwise an empty
result set is returned. Notice also that inferred relations are inserted to the respec-
tive (CSD or RCC) constraint network rather that the ontology itself. CHOROS
2.0 deals this problem by replacing Query Engine with an Ontology Reconstruc-
tion component, which updates the ontology with inferred facts. Thus, the updated
ontology can be used by any Query Engine such as SPARQL or SOWL-QL [11].

CHOROS 2.0 consists of 4 main components:

• Parser which loads the ontologies and extracts their spatial relations.

• Constraint Network which stores spatial property assertions as long as non-
spatial standard OWL assertions.

• Reasoner which is responsible for consistency checking and logical infer-
ence.

• Reconstructor which updates ontology with new spatial inferences.

3.2.1 Parser

The Parser component is responsible for loading ontologies into the memory. Its
main task is to handle RDF/OWL information. It implements, the Spatial Parser
which separates spatial and non-spatial relations from ontologies, and the Quanti-
tative Parser which handles specific quantitative spatial information. Both tools are
implemented with the use of Jena1 framework, which provides an API for reading,
processing and writing data in RDF graphs.

Spatial Parser

The spatial parser extracts spatial information from RDF graphs. In order to recog-
nize spatial information, spatial vocabularies are defined consisting of name defi-
nitions of the basic CSD and RCC relations. All spatial triples are identified and

1http://jena.apache.org/

CHAPTER 3. CHOROS 2.0 23

removed from the graph, and then stored in the appropriate RCC or CSD constraint
network. The rest of the graph, containing non-spatial standard OWL assertions, is
stored as an ontology in the knowledge base and is handled by an ordinary Pellet2

reasoner.

Quantitative Parser

Handling quantitative spatial information is a new feature introduced by CHOROS
2.0. Quantitative spatial information refers to the representation of certain aspects
of spatial information, such as position, expressed in numerical values. Similarly
to SOWL model [12], spatial objects containing information about their relative
position, must be defined as individuals of Point Class. Point Class has also 2
numerical attributes, namely X and Y, to represent footprints of objects. Spatial
objects described by their relative position to other objects, can be used to infer
spatial relations between other objects. The task of making this information acces-
sible by the reasoner is undertaken by the Quantitative Parser.

The Quantitative Parser retrieves all Point individuals from the ontology, com-
putes the angle between every pair of Point individuals, and is mapped to the cor-
responding CSD relation between the two points (i.e., object locations). Finally,
this relation is inserted into the CSD Constraint Network. Figure 3.3 shows how
the angle between two object locations (x1,y1) and (x2,y2) is computed:

angle = arctan

(
Dy

Dx

)
∗ 180
π

where, Dy = y2 − y1 and Dx = x2 − x1

Figure 3.3: Computing a CSD relation from point locations

The mapping of angles to CSD relations is realized according to the following
rules:

2http://clarkparsia.com/pellet/

CHAPTER 3. CHOROS 2.0 24

• If −22.5◦ ≤ angle ≤ 22.5◦ then WestOf relation holds.

• If 22.5◦ < angle ≤ 67.5◦ then SouthWestOf relation holds.

• If 67.5◦ < angle ≤ 112.5◦ then SouthOf relation holds.

• If 112.5◦ < angle ≤ 157.5◦ then SouthEastOf relation holds.

• If 157.5◦ < angle ≤ 180◦ or −157.5◦ < angle ≤ −180◦ then EastOf
relation holds.

• If −112.5◦ < angle ≤ −157.5◦ then NorthEastOf relation holds.

• If −67.5◦ < angle ≤ −112.5◦ then NorthOf relation holds.

• If −22.5◦ < angle ≤ −67.5◦ then NortWestOf relation holds.

• If no angle is calculated then Identical relation holds.

3.2.2 Constraint Network

A Constraint Network (CN) is a set of variables together with a set of constraints.
CHOROS 2.0 implements two constraint networks, one for RCC relations and the
other for CSD relations. They store spatial relations, extracted from the ontology
during parsing. They also provide mechanisms for retrieving these relations.

Apart from spatial relations, a spatial ontology consists also of non-spatial stan-
dard OWL assertions. These non-spatial relations are stored in Pellet’s Knowledge
Base, a structure similar to a constraint network. A Knowledge Base (KB) is a
special kind of database for knowledge management, providing the means for the
organization, and retrieval of knowledge. The Knowledge Base of Pellet is a com-
bination of an assertional box (that contains assertions about individuals) and a
terminological box (that contains axioms about classes). This KB is used for con-
sistency checking and inference on non-spatial information.

3.2.3 Reasoner

CHOROS 2.0 handles separately spatial from semantic DL reasoning. Non-spatial
relations are stored as a Knowledge Base and are managed by Pellet. On the other
hand, spatial relations are stored in the corresponding RCC and CSD Constraint
Networks. CHOROS 2.0 provides a dedicated reasoner engine for each spatial
model. These two reasoner engines are implemented in Java as separate threads, in
order to enable ”parallel” and concurrent execution of their tasks.

Both CSD and RCC spatial models, are expressed by a set of jointly exclu-
sive and pairwise disjoint basic relations, which is closed under several operations
(composition, intersection, inverse operation).

Spatial reasoning (i.e., inferring implied relations or detecting inconsistencies)
can be viewed as a constraint satisfaction problem which is NP in the general case.

CHAPTER 3. CHOROS 2.0 25

It is implemented by means of a path consistency algorithm [2], which computes
all inferred relations using compositions of existing relations defined, until a fixed
point is reached (i.e., the algorithm does not yield new inferences) or until an in-
consistency is detected (i.e., yield the empty relations as a result). Path consistency
when applied on a set of assertions containing only basic relations retains tractabil-
ity and guarantees soundness and completeness of reasoning [17]. The possible
compositions of basic relations are stored in separate composition tables, one for
each type of spatial model. Because the compositions of basic relations for the two
models are mutually exclusive, CHOROS 2.0 clearly separates reasoning for each
type of spatial model (i.e., reasoning is implemented and run separately).

Composition Tables of Spatial Relations

A composition table represents the result of the composition of pairs of basic rela-
tions. For example, if relation R1 holds between object1 and object2, and relation
R2 holds between object2 and object3, then the corresponding entry of composi-
tion table denotes the possible relation(s) holding between object1 and object3

R1(object1, object2) ∧R2(object2, object3)→ R3(object1, object3)

The composition tables for spatial relations are represented below. Specifically,
Table 3.1 refers to RCC basic relations, and Table 3.2 refers to CSD basic relations.

Path Consistency Algorithm

Path consistency algorithm (Algorithm 1) [2] computes all inferred relations using
compositions of existing relations defined, until a fixed point is reached (i.e., new
inferences don’t arise) or until an inconsistency is detected (i.e., ∅ is produced as a
result).

Given a constraint network N, N is consistent if it is either empty, or if every
relation in the network is consistent. Notice that, the requirement for the relations
in N to be defined, i.e. of the set of eight basic RCC relations, is relevant to the
tractability of a sound and complete path-consistency procedure. According to
[12, 18], a sound and complete path-consistency is tractable for the set of CSD and
RCC relations.

A queue Q is used as a structure to store relations that have to be processed.
The algorithm is executed until Q = ∅, or an inconsistency is detected. Q is
initialized with all defined relations Rij ∈ N (Line 6).

CHAPTER 3. CHOROS 2.0 26

DC EC PO TPP NTPP TPPi NTPPi EQ
DC DC, EC,

PO, TPP,
NTPP,
TPPi,
NTPPi,
EQ

DC, EC,
PO, TPP,
NTPP

DC, EC,
PO, TPP,
NTPP

DC, EC,
PO, TPP,
NTPP

DC, EC,
PO, TPP,
NTPP

DC DC DC

EC DC, EC,
PO, TPPi,
NTPPi

DC, EC,
PO, TPP,
TPPi, EQ

DC, EC,
PO, TPP,
NTPP

EC, PO,
TPP,
NTPP

PO, TPP,
NTPP

DC, EC DC EC

PO DC, EC,
PO, TPPi,
NTPPi

DC, EC,
PO, TPPi,
NTPPi

DC, EC,
PO, TPP,
NTPP,
TPPi,
NTPPi,
EQ

PO, TPP,
NTPP

PO, TPP,
NTPP

DC, EC,
PO, TPPi,
NTPPi

DC, EC,
PO, TPPi,
NTPPi

PO

TPP DC DC, EC DC, EC,
PO, TPP,
NTPP

TPP,
NTPP

NTPP DC, EC,
PO, EQ,
TPP,
NTPP

DC, EC,
PO, TPPi,
NTPPi

TPP

NTPP DC DC DC, EC,
PO, TPP,
NTPP

NTPP NTPP DC, EC,
PO, TPP,
NTPP

DC, EC,
PO, TPP,
NTPP,
TPPi,
NTPPi,
EQ

NTPP

TPPi DC, EC,
PO, TPPi,
NTPPi

EC, PO,
TPPi,
NTPPi

PO, TPPi,
NTPPi

EQ, PO,
TPPi,
TPP

PO, TPP,
NTPP

TPPi,
NTPPi

NTPPi TPPi

NTPPi DC, EC,
PO, TPPi,
NTPPi

PO, TPPi,
NTPPi

PO, TPPi,
NTPPi

PO, TPPi,
NTPPi

PO, TPP,
NTPP,
EQ, TPPi,
NTPPi

NTPPi NTPPi NTPPi

EQ DC EC PO TPP NTPP TPPi NTPPi EQ

Table 3.1: RCC Composition Table

CHAPTER 3. CHOROS 2.0 27

N NE E SE S SW W NW O
N N N,NE N,NE,E N, NE, E,

SE
N, NE,
E, SE, S,
SW, W,
NW, O

W, NW,
SW, N

NW, W,
N

NW,W N

NE NE, E NE NE, E E, NE,
SE

E, NE,
SE, S

N, NE,
E, SE, S,
SW, W,
NW, O

N, NE,
NW, W

N, NE,
NW

NE

E NE, E, N NE, E E SE, E SE, E, S S, SW,
SE, E

N, NE,
E, SE, S,
SW, W,
NW, O

N, NW,
NE, E

E

SE E, SE,
NE, N

E, SE,
NE

SE, E SE SE, S S, SE,
SW

S, W, SE,
SW

N, NE,
E, SE, S,
SW, W,
NW, O

SE

S N, NE,
E, SE, S,
SW, W,
NW, O

E, S, NE,
SE

SE, E, S SE, S S S, SW S, W, SW W, S,
NW, SW

S

SW W, SW,
N, NW

N, NE,
E, SE, S,
SW, W,
NW, O

S, SW,
SE, E

S, SW,
SE

SW,S SW SW, W W, NW,
SW

SW

W N, W,
NW

N, NW,
NE, W

N, NE,
E, SE, S,
SW, W,
NW, O

S, SE,
SW, W

W, S, SW W, SW W W, NW W

NW N, NW N, NW,
NE

N, NW,
NE, E

N, NE,
E, SE, S,
SW, W

W, NW,
SW, S

W, NW,
SW

NW, W NW NW

O N NE E SE S SW W NW O

Table 3.2: CSD Composition Table

CHAPTER 3. CHOROS 2.0 28

Algorithm 1 Path-Consistency Algorithm

1: procedure PATHCONSISTENCY(N)
2: if N = ∅ then
3: return true
4: end if
5: complete(N)
6: Q← {Rij\Rij ∈ N}
7: while Q 6= ∅ do
8: Rab ← remove(Q)
9: if !isConsistent(N,Q,Rab) then

10: return false
11: end if
12: end while
13: return true
14: end procedure

15: procedure ISCONSISTENT(N,Q,Rab)
16: for Sbc ∈ N do
17: Tbc ← Rab ◦ Sbc

18: add(N,Q, Tac)
19: if !isConsistent then
20: return false
21: end if
22: end for
23: return true
24: end procedure

25: procedure ADD(N,Q, Tac)
26: if T = > then
27: return
28: end if
29: Uac ← {Rij\i = a, j = c,Rij ∈ N}
30: if 6 ∃Uac then
31: Vac ← Tac

32: else
33: Vac ← Tac ∩ Uac

34: if V = ∅ then
35: isConsistent = false
36: return
37: end if
38: if U = V then
39: return
40: end if
41: N ← N\{Uac}
42: end if
43: N ← N ∪ {Vac}
44: Q← Q ∪ {Vac}
45: add(N,Q, {Vĉa})
46: end procedure

The complete step (line 5), includes the inverse step and the equals step. In
inverse step for every defined relation Rij ∈ N , we ensure that, Rĵi ∈ N (its
inverse relation is also in N). In equal step for every region x ∈ N , we ensure that
relation Equal(x, x) ∈ N .

A relation Rab (Line 15) is path-consistent if the rule for combining a compo-
sitional inference with existing information [19],

Vac ← Uac ∩Rab ◦ Sbc

results in a non-empty set (V 6= ∅) for regions a and c, where Sbc ∈ N relations
with a transitive path with Rab from a, through b, to c and Uac a relation possibly
∈ N as existing information.

The compositional inference Tac ← Rab ◦ Sbc (Line 17), is computed for re-
gions a and c as the union set T for the composition of each pair (r,s) in the set
R × S, r ∈ R, s ∈ S. The composition of a pair (r,s) consists of a lookup for the
CSD or RCC composition table given that r and s are elements of the set of defined
relations.

If Uac ∈ N (i.e., there is existing information for the pair (a,c)), we complete
the rule by computing the intersection Vac ← Tac ∩ Uac (Line 33), where V is

CHAPTER 3. CHOROS 2.0 29

the intersection set of relations v ∈ T ∩ U . This step refines the already existing
relation Uac ∈ N and is essential for the path-consistency algorithm as it defines
the inconsistent state: if V = ∅ an inconsistency is found.

Line 38 states that if U = V , the step Vac ← Tac ∩ Uac (line 33), could not
refine relation Uac. Hence, combining compositional inference Tac with existing
information Uac does not add new information. In this case, we can return. Other-
wise, Uac is removed from N, the refined Vac is added to N and Q, and the inverse
Vĉa is processed.

To conclude, path consistency is implemented by consecutive application of
the formula:

Rs(x, y)← Ri(x, y) ∩ (Rj(x, k) ◦Rl(k, y)),∀x, y, k

representing intersection of compositions of relations with existing relations (sym-
bol ∩ denotes intersection, symbol ◦ denotes composition and Ri, Rj , Rl, Rs

denote temporal relations) [12]. This formula is applied until there are no new
inferences, or until until the empty set is reached, implying that the network is
inconsistent.

In order to comprehend the functionality of path consistency algorithm con-
sider the following examples:

CONSISTENT EXAMPLE

Given the following CSD constraint network which represents the di-
rectional relations between 4 houses:

• house1 N house2

• house2 NW house3

• house1 NE house4

• house4 N house3

Using the CSD composition table 3.2 and the path-consistency al-
gorithm described above, we can refine the network in the following
way:

(house1 N house2) ◦ (house2 NW house3)

→ house1 {N ∪ NW} house3

(house1 NE house4) ◦ (house4 N house3)

→ house1{N ∪ NE} house3

(house1 {N ∪ NW} house3) ∩ (house1 {N ∪ NE} house3)

CHAPTER 3. CHOROS 2.0 30

→ house1 N house3

That is, the first house is north of the third which is the intersection of
the above two relations.

INCONSISTENT EXAMPLE

Given the following CSD constraint network which represents the di-
rectional relations between 4 houses:

• house1 N house2

• house2 NW house3

• house1 SE house4

• house4 E house3

Using the CSD composition table and the path-consistency algorithm,
we can refine the network in the following way:

(house1 N house2) ◦ (house2 NW i3)

→ house1 {N ∪ NW} house3

(house1 SE house4) ◦ (house4 E house3)

→ house1{E ∪ SE} house3

(house1 {N ∪ NW} house3) ∩ (house1 {E ∪ SE} house3)

→ ∅, inconsistency

That is, network is inconsistent because the intersection of the above
two relations is the empty relation.

3.2.4 Re-constructor

Re-constructor component updates the ontology with information inferred by the
reasoner and by this, make this information accessible to users. At the end of the
reasoning process, if no inconsistency is detected in any Constraint Network or in
the Knowledge Base, Re-constructor creates an ontology as an output of CHOROS
2.0. The new ontology contains all original relations of input ontology, enriched
with new spatial inferences computed during reasoning.

Spatial relations from both CSD and RCC constraint networks are asserted
into the new ontology, as OWL object property assertions. Finally, Pellet reasoner

CHAPTER 3. CHOROS 2.0 31

is applied in order to ensure consistency over the total set of OWL-DL axioms.
The output ontology can be used by any query engine, such as SOWL Ql [11] or
SPARQL, since spatial information are handled as typical OWL object properties
assertions.

3.3 Optimizations

The reasoning engine is the core of CHOROS 2.0 system. In order to improve its
performance, possible optimizations are discussed in the following:

Handling Disjunctions of Basic Relations

CHOROS 1.0 implements the same reasoning engine introduced by PelletSpatial
and is based on the composition table of basic relations. However, as Table 3.1 and
Table 3.2 illustrates, not all compositions yield a unique relation as a result. For
example, the composition of relations NTPP and EC returns as a result relation
DC, while compositions of relations EC and PO returns as a result a set of five
possible relations (DC, EC, PO, TPP , NTPP). Disjunctions of relations are
represented using new relations, whose compositions must also be defined and
asserted into the knowledge base.

CHOROS 1.0 pre-computes the set of possible compositions over all disjunc-
tions of basic CSD and RCC relations and stores them into a static full composition
table. Therefore, full composition table of RCC relations contains 28×28 = 65536
relations, and the corresponding full composition table of CSD relation contains
29 × 29 = 262144 relations.

On the contrary, CHOROS 2.0 adopts the approach introduced in CHRONOS
[20]. In CHRONOS compositions of disjunctions of basic relations are defined as
the disjunction of the compositions of these basic relations. For example, compo-
sition between the disjunction of relations (DC, EC, TPPi) and relation TPPi
is computed as follows:

(DC ∪ EC ∪ TPPi) ◦ TPPi

→ (DC ◦ TPPi) ∪ (EC ◦ TPPi) ∪ (TPPi ◦ TPPi)
→ DC ∪ (DC ∪ EC) ∪ (TPPi ∪NTPPi)

→ DC ∪ EC ∪ TPPi ∪NTPPi
Following the later (referred to as ”dynamic approach”) a series of composi-

tions of relations is computed ”on the fly” (rather that storing all intermediate com-
position results in the memory) which involves only a single look-up operation in
the CSD or RCC composition table respectively. This not only saves memory but
also (as will be shown in the experiments) computes faster, since it stores only the
compositions over the basic relations. Specifically, composition table of RCC re-
lations contains 28 = 256 relations, and the corresponding composition table of
CSD relations contains 29 = 512 relations.

CHAPTER 3. CHOROS 2.0 32

Reduction of Basic Relations

In CHOROS 1.0, the set of possible compositions over all disjunctions of basic
CSD relations is an order of magnitude greater than the corresponding set of basic
RCC relations. Therefore, the composition table of basic CSD relations greatly af-
fects the performance of CHOROS 1.0 reasoner engine, even for small datasets. To
deal this problem CHOROS 1.0 proposes reduction of basic CSD relations from 9
to 8, by replacing the directional relation ”identicalTo” with owl axiom ”sameAs”.

CHOROS 2.0 also proposes reduction of CSD basic relations, extending this
approach to RCC basic relations. Specifically, topological relation ”EQ” is also
replaced by owl axiom ”sameAs”. With this representation the spatial reasoning
engines handle less relations, improving reasoning performance, while identical
relations are asserted into Knowledge Base and treated as standard OWL axioms.

Decomposition of CSD Relations

CHOROS 2.0 implements the approach described in section 2.8 [14] by modifying
the basic components of its architecture (Figure 3.2). Since, CSD relations are ex-
pressed by the new sets, CHOROS 2.0 replaces CSD Constraint Network with the
North-South Constraint Network and the East-West Constraint Network in order to
store the relations created from the decomposition of basic CSD relations. Decom-
position of CSD relations is applied in Parser component, while spatial relations
from input ontology are extracted.

Reasoning over directional relations, is realized by implementing the North-
South reasoner and the East-West reasoner, for the corresponding Constraint Net-
works. Both reasoners are based on the path-consistency algorithm (Algorithm 1),
as described above, and define compositions of basic relations.

Table 3.3 represents the compositions of relations of North-South set. Rela-
tions North, South, Equal-Horizontal and Identical-Horizontal, are denoted by N,
S, EqH, IdH respectively.

N S EqH IdH
N N N, S, EqH, IdH N, EqH N
S N, S, EqH, IdH S S, EqH S

EqH N, EqH S, EqH N, S, EqH, IdH EqH
IdH N S EqH IdH

Table 3.3: Composition Table for North-South Directional Relations

Table 3.4 represents the compositions of relations of East-West set. Relations
East, West, Equal-Vertical and Identical-Vertical, are denoted by E, W, EqV, IdV
respectively.

Finally, in Re-constructor component directional relations from both Constraint
Networks are combined to compose the CSD-9 relations, which are inserted into
the output ontology. Composition of CSD-9 relations is achieved by applying an

CHAPTER 3. CHOROS 2.0 33

E W EqV IdV
E E E, W, EqV, IdV E, EqV E
W E, W, EqV, IdV W W, EqV W

EqV E, EqV W, EqV E, W, EqV, IdV EqV
IdV E W EqV IdV

Table 3.4: Composition Table for East-West Directional Relations

addition set of rules (which are proposed in this work).
Notice though, that the experimental results demonstrate that reasoning on di-

rectional relations decomposed to relations of North-South and East-West set, in-
fers less relations than the CSD-9 model. These results are due to the semantics of
the set of relations replacing the ordinary CSD-9 relations, from which the reason-
ing process depends on.

For example, given 4 objects and their relations as shown below:

• Object1 SE Object2

• Object2 SW Object3

• Object3 E Object4

Applying reasoning process (Algorithm 1) according to the CSD-9 model, infers
the following relations:

• Object1 (SE, SW, S) Object3

• Object2 (S, SE, SW, E) Object4

• Object1 (S, SE, SW, E) Object4

On the other hand, to apply the reasoning process according to the decom-
position of directional relations, it is necessary to express initial relations on the
North-South set and the East-West set firstly.

North-South axis relations East-West axis relations

• Object1 S Object2

• Object2 S Object3

• Object3 EqH Object4

• Object1 E Object2

• Object2 W Object3

• Object3 E Object4

Then the reasoning process is applied on each set separately, and inferred rela-
tions for each set are shown below.

CHAPTER 3. CHOROS 2.0 34

North-South axis relations East-West axis relations

• Object1 S Object3

• Object2 (S, EqH) Object4

• Object1 (S, EqH) Object4

Additional relations cannot be
inferred. Composition of rela-
tions E and W yields all pos-
sible relations of the East-West
set, which don’t add any infor-
mation to the network, causing
the algorithm to skip them.

It is impossible, by combining existing information in both networks, to gen-
erate the same relations as the CSD-9 model. Using the Re-constructor component
all possible relations that can be generated from both networks are:

• Object1 (SE, SW, S) Object3

• Object2 (S, SE, SW) Object4

• Object1 (S, SE, SW) Object4

We observe that relation E is not generated between pairs Object2, Object4 and
Object1 and Object4.

To deal with this problem, we propose replacement of relations Equal-Horizontal
and Equal-Vertical. Regarding the North-South set, relation Equal-Horizontal is
replaced by relations Horizontal-East and Horizontal-West (Figure 3.5) in order to
be more accurate over the horizontal axis. Similarly for the East-West set, relation
Equal-Vertical is replaced by relations Vertical-North and Vertical-South (Figure
3.4).

Vertical-North

Vertical-South

West East

Figure 3.4: New East-West Relations

CHAPTER 3. CHOROS 2.0 35

North

South

Horizontal-West Horizontal-East

Figure 3.5: New North-South Relations

Existence of new relations, slightly changes decomposition of CSD relations,
which are defined as follows:

NCSD9(x, y) ≡ North(x, y) ∧ V ertical −North(x, y)
NECSD9(x, y) ≡ North(x, y) ∧ East(x, y)
ECSD9(x, y) ≡ Horizontal − East(x, y) ∧ East(x, y)

SECSD9(x, y) ≡ South(x, y) ∧ East(x, y)
SCSD9(x, y) ≡ South(x, y) ∧ V ertical − South(x, y)

SWCSD9(x, y) ≡ South(x, y) ∧West(x, y)

WCSD9(x, y) ≡ Horizontal −West(x, y) ∧West(x, y)

NWCSD9(x, y) ≡ North(x, y) ∧West(x, y)

IdenticalCSD9(x, y) ≡ Identical −Horizontal(x, y) ∧ Identical − V ertical(x, y)

Table 3.5 represents compositions of relations of East-West set. Relations
Vertical-North, Vertical-South are denoted by VerN, VerS respectively.

E W VerN VerS IdV

E E
E, W, VerN, VerS,
IdV

E, VerN E, VerS E

W E, W, VerN, VerS,
IdV

W W, VerN W, VerS W

VerN E, VerN W, VerN VerN
E, W, VerN, VerS,
IdV

VerN

VerS E, VerS W, VerS
E, W, VerN, VerS,
IdV

VerS EqV

IdV E W VerN VerS IdV

Table 3.5: Composition Table for new East-West Directional Relations

Table 3.6 represents compositions of relations of new North-South set. Rela-
tions Horizontal-East, Horizontal-West are denoted by HorE, HorW respectively.

CHAPTER 3. CHOROS 2.0 36

N S HorE HorW IdH

N N
N, S, HorE, HorW,
IdH

N, HorE N, HorW N

S N, S, HorE, HorW,
IdH

S S, HorE S, HorW S

HorE N, HorE S, HorE HorE
N, S, HorE, HorW,
IdH

HorE

HorW N, HorW S, HorW
N, S, HorE, HorW,
IdH

HorW HorW

IdH N S HorE HorW IdH

Table 3.6: Composition Table for new North-South Directional Relations

The benefits from the definition of relations can be seen by applying the rea-
soner process on the example above. Firstly, original relations are expressed on the
North-South set and the East-West set.

North-South axis relations East-West axis relations

• Object1 S Object2

• Object2 S Object3

• Object3 HorE Object4

• Object1 E Object2

• Object2 W Object3

• Object3 E Object4

Then, reasoning is applied on each set separately, and inferred relations are
shown below.

North-South axis relations East-West axis relations

• Object1 S Object3

• Object2 (S, HorE) Object4

• Object1 (S, HorE) Object4

Additional relations cannot be
inferred. Composition of rela-
tions E and W yields all pos-
sible relations of the East-West
set, which don’t add any infor-
mation to the network, causing
the algorithm to skip them.

Regarding the East-West axis, no additional relations can be inferred. However,
from the North-South network there is enough information to generate all possible
relations as CSD-9 model does. Below we present the CSD re-composition rules
which are the inverse of the de-composition rules described above, enriched with
rules handling relations between spatial entities that exist in either the East-West
or the North-South Network.

For each relation relNS(x, y) in North-South Network:

• If a relation relEW (x, y) exists in East-West Network then:

– if North ∈ relNS(x, y) AND Vertical-North ∈ relEW (x, y)
add in ontology NorthCSD9(x, y).

CHAPTER 3. CHOROS 2.0 37

– if South ∈ relNS(x, y) AND Vertical-South ∈ relEW (x, y)
add in ontology SouthCSD9(x, y).

– if Horizontal-East ∈ relNS(x, y) AND East ∈ relEW (x, y)
add in ontology EastCSD9(x, y).

– if Horizontal-West ∈ relNS(x, y) AND West ∈ relEW (x, y)
add in ontology WestCSD9(x, y).

– if North ∈ relNS(x, y) AND East ∈ relEW (x, y) add in
ontology NorthEastCSD9(x, y).

– if North ∈ relNS(x, y) AND West ∈ relEW (x, y) add in
ontology NorthWestCSD9(x, y).

– if South ∈ relNS(x, y) AND East ∈ relEW (x, y) add in
ontology SouthEastCSD9(x, y).

– if South ∈ relNS(x, y) AND West ∈ relEW (x, y) add in
ontology SouthWestCSD9(x, y).

– if Identical-Horizontal∈ relNS(x, y) AND Identical-Vertical∈ relEW (x, y)
add in ontology IdenticalCSD9(x, y).

• else:

– if North ∈ relNS(x, y) add in ontology:

∗ NorthCSD9(x, y)

∗ NorthEastCSD9(x, y)

∗ NorthWestCSD9(x, y)

– if South ∈ relNS(x, y) add in ontology:

∗ SouthCSD9(x, y)

∗ SouthEastCSD9(x, y)

∗ SouthWestCSD9(x, y)

– if Horizontal-East ∈ relNS(x, y) add in ontology:

∗ EastCSD9(x, y)

– if Horizontal-West ∈ relNS(x, y) add in ontology:

∗ WestCSD9(x, y)

For each relation relEW (x, y) in East-West Network:

• If a relation relNS(x, y) exists in North-South Network then:

– if East ∈ relEW (x, y) AND Horizontal-East ∈ relNS(x, y)
add in ontology EastCSD9(x, y).

– if West ∈ relEW (x, y) AND Horizontal-West ∈ relNS(x, y)
add in ontology WestCSD9(x, y).

– if Vertical-North ∈ relEW (x, y) AND North ∈ relNS(x, y)
add in ontology NorthCSD9(x, y).

– if Vertical-South ∈ relEW (x, y) AND South ∈ relNS(x, y)
add in ontology SouthCSD9(x, y).

– if East ∈ relEW (x, y) AND North ∈ relNS(x, y) add in
ontology NorthEastCSD9(x, y).

CHAPTER 3. CHOROS 2.0 38

– if East ∈ relEW (x, y) AND South ∈ relNS(x, y) add in
ontology SouthEastCSD9(x, y).

– if West ∈ relEW (x, y) AND North ∈ relNS(x, y) add in
ontology NorthWestCSD9(x, y).

– if West ∈ relEW (x, y) AND South ∈ relNS(x, y) add in
ontology SouthWestCSD9(x, y).

– if Identical-Vertical∈ relEW (x, y) AND Identical-Horizontal∈ relNS(x, y)
add in ontology IdenticalCSD9(x, y).

• else:

– if East ∈ relEW (x, y) add in ontology:

∗ EastCSD9(x, y)

∗ NorthEastCSD9(x, y)

∗ SouthEastCSD9(x, y)

– if West ∈ relEW (x, y) add in ontology:

∗ WestCSD9(x, y)

∗ NorthWestCSD9(x, y)

∗ SouthWestCSD9(x, y)

– if Vertical-North ∈ relEW (x, y) add in ontology:

∗ NorthCSD9(x, y)

– if Vertical-South ∈ relEW (x, y) add in ontology:

∗ SouthCSD9(x, y)

The Re-constructor component using the above rules, combines information
in both networks and generates the following final directional relations, which are
similar to the relations inferred using the CSD-9 model.

• Object1 (SE, SW, S) Object3

• Object2 (S, SE, SW, E) Object4

• Object1 (S, SE, SW, E) Object4

Chapter 4

Evaluation

The purpose of the experimental evaluation is to demonstrate the improved perfor-
mance of CHOROS 2.0 (and of its variants implementing the optimizations dis-
cussed in Chapter 3) over PelletSpatial [2], CHOROS 1.0 [7] and SOWL [12], a
spatial reasoner implemented in SWRL. We carried-out two different sets of ex-
periments corresponding to measurements of performance in the average and the
worst case. The average case performance is encountered when less than n2 re-
lations are inferred from input set of n locations. In our experiments, exactly kn
relations (k=8 in the case or RCC-8 and k=9 in the case of CSD-9) are asserted.
This is for example the case of a random set of objects. Accordingly, the worst case
performance is encountered when the number of asserted relations are in the order
of n2. This is for example the case of objects given in a certain arrangement (i.e.,
each one is N of another or inside the one another). In all experiments we compare
the running time of the competitor reasoner implementations as a function of the
number of instances (regions or locations) in the ontology.

4.1 Theoretical Evaluation

The complexity of an algorithm is usually measured in terms of the worst case run-
ning time or memory consumption. Running time as well as memory consumption
of an algorithm depends on the size n of its input and can be expressed as a func-
tion f(n). The asymptotic behavior of f is specified in terms of the big O notation
which gives an upper bound on the running time.

Previous works have shown that path consistency has O(n5) time worst case
complexity (with n being the number of individuals) and is sound and complete
[3]. Clearly, this upper bound is pessimistic, since the overall number of iterations
of path-consistency algorithm may be lower than O(n2) because an inconsistency
detection may terminate the reasoning process early, or the asserted relations may
yield a small number of inferences.

In CHOROS as well as in PelletSpatial path consistency has O(n3) worst time
complexity [7]. In our implementation any spatial object can be related with every

39

CHAPTER 4. EVALUATION 40

other object with one basic spatial relation. Between n objects, at most (n − 1)2

relations can be asserted. In the most general case where disjunctive relations are
supported in addition to the basic ones, any spatial object can be related with every
other object by at most k relations, where k is the size of the set of supported
relations (maximum k = 8 for RCC relations, and k = 9 for CSD relations) [12].
Therefore, at most O(kn2) relations can be asserted into the Constraint Networks,
for n spatial objects.

4.2 Experimental Evaluation

To evaluate performance of CHOROS 2.0 reasoner, we run a series of experiments.
The purpose of these experiments is to present runtime efficiency of reasoning
engine against the size of the datasets as well as present their dependance on the
type of spatial information at hand. All experiments were carried-out on a home
PC, with Intel Core i5 CPU at 2.60 GHz, 4 GB RAM and Windows 8 operating
system.

As datasets, simple spatial ontologies are used, containing spatial individuals
whose numbers ranges from 10 to 100. In order to prevent inconsistencies, ev-
ery individual can be spatially related with only one individual. Performance of
CHOROS 2.0 reasoner is measured both in the average as well as in the worst
cases.

In the average case, which is the most common, every spatial individual can be
related spatially to only one spatial individual. Spatial relations between individu-
als are assigned randomly from the sets of topological or directional relations. For
the full range of datasets, results are derived from the average over 10 measure-
ments.

On the other hand, in the worst case the reasoning process on spatial relations
infer relations between all spatial individuals. For this, individuals are selected
in a sequence so that, each one is included inside the next (i.e., Ri NTPP Ri+1)
in the case of topological representation and, each one is in the same direction
(e.g., North) with respect to its next (i.e., Ri N Ri+1) in the case of directional
representation.

In the following, performance of various implementations of CHOROS 2.0
reasoner is presented, compared with other reasoning engines, which also support
reasoning for both topological as for directional qualitative data, such as CHOROS
and SOWL.

CHAPTER 4. EVALUATION 41

4.2.1 CSD Experiments

CHOROS 2.0 implements two different approaches for the CSD model:

• CHOROS 2.0 is based on the CSD-9 calculus, by applying consistency check-
ing on the 9 basic CSD relations.

• CHOROS 2.1 is based on consistency checking over 8 basic CSD relations,
as directional relation IdenticalTo is replaced by OWL axiom sameAs.

Figure 4.1 shows performance of CHOROS 2.0 and CHOROS 2.1 in the av-
erage case, while Figure 4.2 presents performance of both implementations of
CHOROS 2 in the worst case. Moreover, both figures also present the performance
of the respective implementations of CHOROS and SOWL.

As shown in Figures 4.1(a) and 4.2(a) both implementations of CHOROS 2
outperform CHOROS and SOWL. This significant improvement in performance
lies in the fact that spatial reasoning in CHOROS 2 doesn’t need to pre-compute the
full composition table of basic relations, a time consuming process, as CHOROS
does. On the contrary, CHOROS 2 need to store only compositions over the basic
relations.

Regarding the representation of directional relations, figures 4.1(b) and 4.2(b)
show that CHOROS 2.1 performs slightly better than CHOROS 2.0. These results
are expected, since CHOROS 2.1 applies consistency checking on less basic rela-
tions than CHOROS 2.0, as directional relation IdenticalTo is replaced by OWL
axiom sameAs handled by Pellet.

CHAPTER 4. EVALUATION 42

(a)

(b)

Figure 4.1: Average case performance of Reasoning over CSD relation sets

CHAPTER 4. EVALUATION 43

(a)

(b)

Figure 4.2: Worst case performance of Reasoning over CSD relation sets

CHAPTER 4. EVALUATION 44

4.2.2 RCC Experiments

In the following, we demonstrate the performance of CHOROS 2 reasoner on topo-
logical relations. Similar to directional model, CHOROS 2 presents two implemen-
tations of the RCC model:

• CHOROS 2.0 is based on the RCC-8 calculus, by applying consistency
checking on the 8 basic RCC relations.

• On the other hand, CHOROS 2.1 is based on consistency checking on 7
basic RCC relations, as topological relation EQ is replaced by OWL axiom
sameAs.

Average case performance of both approaches of CHOROS 2 is presented in
Figure 4.3, while Figure 4.4 illustrates the corresponding measurements in the
worst case. Relevant implementations of CHOROS and SOWL have also been
added in order to be compared with our implementation.

As in the case of directional relations, we find from Figures 4.3(a) and 4.4(a)
that both implementations of CHOROS 2 outperform CHOROS and SOWL. It
turns out that the replacement of the full composition table with a dynamic ap-
proach in the handling of compositions of complex relations, is crucial to the per-
formance of CHOROS 2.

Similar conclusions also apply in the case CHOROS 2.0 and CHOROS 2.1.
Figures 4.3(b) and 4.4(b) show that reduction of basic RCC relations improve the
performance of CHOROS 2. It appears that this optimization affects more the RCC
model than the CSD, comparing Figures 4.4(b) and 4.2(b).

Comparing the reasoning process on both spatial models, we notice that rea-
soning on CSD relations is a faster compared to reasoning on RCC relations. This
is mainly due to the characteristic of the CSD model, where every relation has its
inverse relation, as seen in figure 2.2. It is an important factor as indirectly accel-
erates the process of reasoning. In CSD model, compositions of inverse relations
yields all possible relations, which don’t provide any information, causing the al-
gorithm to skip them and thus the process to be applied in fewer relations.

On the other hand, the RCC model does not feature this characteristic. Refer-
ring to the RCC basic relations in Figure 2.1, we notice that only relations NTPP
and TPP can be regarded as the inverse relations of NTPPi and TPPi respectively.
However, in most cases as illustrated in table 3.1, compositions of these inverse
relations don’t yield all possible relations of the model. As a result more relations
are inserted into the network to be processed by the path consistency algorithm.

CHAPTER 4. EVALUATION 45

(a)

(b)

Figure 4.3: Average case performance of Reasoning over RCC relation sets

CHAPTER 4. EVALUATION 46

(a)

(b)

Figure 4.4: Worst case performance of Reasoning over RCC relation sets

CHAPTER 4. EVALUATION 47

4.2.3 CSD Decomposition Experiments

Apart from reasoning over the CSD model, CHOROS 2 also examines the perfor-
mance of reasoning over the decomposition of directional relations. Reasoning is
applied as described in section 3.3, and both reasoner engines are implemented as
threads in order to enable ”parallel” and concurrent execution of their tasks. This
reasoning technique is referred to as CHOROS 2.2.

Figure 4.5 presents the average case performance of CHOROS 2.2, while Fig-
ure 4.6 illustrates the worst case performance of the new CSD reasoner. Moreover,
we compare CHOROS 2.2 with CHOROS 2.1, technique exhibiting the best per-
formance on the CSD model.

Figure 4.5: Average Case performance of Reasoning on Decomposed CSD rela-
tions

As Figure 4.5 shows, despite the fact that CHOROS 2.2 handles more relations
than CHOROS 2.1, it performs better in the average case. As mentioned before,
both reasoners of CHOROS 2.2 apply the path-consistency algorithm in smaller
sets of basic relations than the CSD model, which is faster overall.

However, in the worst case (Figure 4.5) roles are reversed, as CHOROS 2.1
performs better than CHOROS 2.2. This is because each reasoner of CHOROS
2.2 infers relations between all spatial individuals, and thus to infer twice as many
relations as CHOROS 2.1 does.

CHAPTER 4. EVALUATION 48

Figure 4.6: Worst Case performance of Reasoning on Decomposed CSD relations

4.2.4 Overall Spatial Experiments

In previous sections, we presented performance of various implementations of
CHOROS 2 in either directional or topological data. In this section we demonstrate
performance of CHOROS 2 reasoning over spatial data containing both CSD and
RCC relations. Figure 4.7 illustrates the average case performance of CHOROS 2,
and Figure 4.8 the worst case performance of reasoning. In the following experi-
ments the competitor implementations are:

• CHOROS 2.1 applies reasoning on the 8 basic relations of CSD model, as
well as on the 7 basic relations of RCC model.

• CHOROS 2.2 applies reasoning on the decomposition of directional rela-
tions, as well as on the 7 basic relations of RCC model.

• CHOROS applies reasoning on the 8 basic relations of CSD model, as well
as on the 8 basic relations of RCC model.

• SOWL

Notice that each reasoner is implemented as thread in order to enable ”parallel”
and concurrent execution of their tasks.

Figures 4.7 and 4.8 illustrate that all implementations of CHOROS 2 outper-
form CHOROS and SOWL. It is worth mentioning, that performance of CHOROS
2 depends mainly the performance of RCC reasoner (Figures 4.7(b) and ??), as it
is proved to be the most time consuming process in spatial reasoning.

CHAPTER 4. EVALUATION 49

(a)

(b)

Figure 4.7: Average case performance of Reasoning on combined RCC and CSD
relations sets

CHAPTER 4. EVALUATION 50

(a)

(b)

Figure 4.8: Worst case performance of Reasoning on combined RCC and CSD
relations sets.

CHAPTER 4. EVALUATION 51

4.2.5 Case Study - TUC Spatial Ontology

The ”TUC spatial ontology” [7] is a mechanism to describe data related to spatial
entities of the University campus of Technical University of Crete (TUC).

Figure 4.9: Campus Map - Technical University of Crete

Figure 4.9 illustrates the campus map of TUC. The ”TUC spatial ontology” is
implemented in OWL. It consists of classes, properties and individuals. Table 4.2
shows all classes, gives a brief description and lists some individuals that belong
to each class. Table 4.3 and Table 4.4 illustrates object properties and datatype
properties of the ontology.

We use the ”TUC spatial ontology” in order to evaluate the performance of
spatial reasoning techniques described in previous sections, on a real application
(Table 4.1).

SOWL SWRL CHOROS CHOROS 2.1 CHOROS 2.2

Response (time in ms) 8313 2312 422 407

Table 4.1: Response time of reasoning techniques on the ”TUC spatial ontology”

CHAPTER 4. EVALUATION 52

Class Description Individual
Region Superclass of the on-

tology. Every indi-
vidual of this ontol-
ogy represents a re-
gion. Individuals not
belonging in any of
the other subclasses
are defined here di-
rectly.

Campus,the road in-
side the campus and
the gate.

Bus Stop Bus stops serving a
number of destina-
tions throughout the
campus.

Bus stop serving ECE
department and 5
more bs.

Classrooms Groups of classrooms
or classrooms-
buildings. Parts of
a classroom group
should not be defined
as an individual of
this class.

Amphitheatre, group
E and 4 more groups.

Department Departments of the
Technical University
of Crete.

ECE, DPEM and 4
more departments.

Facilities Facilities of the cam-
pus.

Sports Facilities of the cam-
pus for sports activi-
ties.

Basketball courts and
4 more courts.

Residence Facilities of the cam-
pus for student’s ac-
commodation.

Hestia.

Food Facilities of the cam-
pus for food serving.

Restaurant, 3 Cafete-
rias.

Parking Areas that serve
parking throughout
the campus.

Parking area 1-14.

Services Central offices, li-
braries and other
buildings providing
services.

NOC, ISC 1-2, Career
Services and 5 more.

Table 4.2: Classes and instances in the TUC spatial ontology.

CHAPTER 4. EVALUATION 53

Object Property Description Subject class to be
applied (domain)

Object class to be
applied (range)

CSDDefined Cone shaped direc-
tional relations be-
tween centroids of
regions.

Region, Bus
Stop, Classrooms,
Department, Fa-
cilities, Parking
Services.

Region, Bus
Stop, Classrooms,
Department, Fa-
cilities, Parking
Services.

northOf
northEastOf
eastOf
southEastOf
southOf
southWestOf
westOf
northWestOf
identicalTo

RCCDefined RCC-8 topological
relations between
regions.

Region, Bus
Stop, Classrooms,
Department, Fa-
cilities, Parking
Services.

Region, Bus
Stop, Classrooms,
Department, Fa-
cilities, Parking
Services.

disconnected-
From
equalsTo
externally-
ConnectedTo
hasNon-
Tangential-
ProperPart
hasTangential-
ProperPart
nonTangential-
ProperPartOf
partially-
Overlaps
tangential-
ProperPartOf

hasParking Non-spatial rela-
tion representing
that a region is
served by a parking
area.

Classrooms, De-
partment, Facilities
and Services.

Parking.

Table 4.3: Object Properties in the TUC spatial ontology.

CHAPTER 4. EVALUATION 54

Datatype Property Description Subject class to be
applied (domain)

Object class to be
applied(range)

hasName Relation defining the
full name of a region

Region, Bus Stop,
Classrooms, De-
partment, Facilities,
Parking Services.

Type “String”

hasCodeName Relation defining a
code name of a region
according to campus
Map

Region, Bus Stop,
Classrooms, De-
partment, Facilities,
Parking Services.

Type “String”

Table 4.4: Data Properties in the TUC spatial ontology

Chapter 5

Conclusion and Future Work

CHOROS 2.0 is a reasoning engine for spatial information in OWL expressed using
RCC and CSD models. It is the result of an investigation on suggesting potential
improvements over CHOROS 1.0 [7]. It works with all RCC and CSD relations
in combination with standard RDF/OWL semantic relations in an OWL ontology
which are handled by Pellet. It is practically an extension over PelletSpatial for
handling directional in addition to topologic information. CHOROS 2.0 inherits
all features of CHOROS 1.0 and in addition suggests certain improvements sum-
marized below:

• Suggests computing compositions (i.e., disjunctions) of basic relation during
reasoning (i.e., on the fly) rather than storing them in a table in memory
which results in faster reasoning times.

• Suggests reduction of basic relations of both RCC and CSD models, by re-
placing EQUAL relation with OWL axiom ”sameAs”.

• In regards to CSD relations in particular, suggests a reasoning approach
based on the decomposition of CSD-9 relations into pairs of directional re-
lations. This approach results in the faster reasoning in certain cases (i.e., in
the average case).

• Introduces a software component for updating the ontology with the results
of reasoning. These new spatial inferences can be stored in an updated on-
tology which can be re-used or queried using SPARQL.

• Introduces a software component for encoding quantitative spatial informa-
tion into directional relations.

Evaluation results demonstrated that all implementations of CHOROS 2.0 outper-
form CHOROS 1.0 and SOWL. Regarding the directional relations, it appears that
reasoning over the decomposition of directional relations performs better than the
CSD model in the average case. Comparing the two spatial models (i.e., RCC
and CSD), the experimental results demonstrate that the RCC model is the most

55

CHAPTER 5. CONCLUSION AND FUTURE WORK 56

time consuming model in spatial reasoning mostly determining the performance of
CHOROS 2.0 reasoner overall.

Regarding future work, there are still issues worth considering further includ-
ing:

• Investigate potential improvements of reasoning over the decomposition of
directional relations. Reasoning is performed on smaller sets of basic rela-
tions, which may result in faster reasoning.

• Extend the functionality of quantitative parser to generate topologic relations
between spatial entities expressed in numerical values. Given the borders
of regions, we can identify their topology and encode it in terms of RCC
relations.

• Investigate on more effective reasoning methods for smaller sets of basic
relations or for tractable sets of relations such as those identified in [12].

• Support OWL 2 restrictions on spatial relations (e.g., ”a country A borders
with exactly 3 other countries”).

• Examine the performance of CHOROS 2.0 on real applications and ontolo-
gies. In this work, since application data sets or ontologies are not available
to us, the experimental evaluation of the performance of reasoning is carried-
out using mainly synthetic data sets and simple ontologies.

Bibliography

[1] D. A. Randell, Z. Cui, and A. Cohn, ”A Spatial Logic Based on Regions and
Connection,” in KR92. Principles of Knowledge Representation and Reason-
ing: Proceedings of the Third International Conference, B. Nebel, C. Rich,
and W. Swartout, Eds. San Mateo, California: Morgan Kaufmann, 1992, pp.
165-176.

[2] M. Stocker, and E. Sirin ”PelletSpatial: A Hybrid RCC-8 and RDF/OWL
Reasoning and Query Engine” In: CEUR Workshop Proceedings, vol. 529-
OWLED 2009, pp. 2-31, 2009.

[3] J. Renz and B. Nebel, ”Qualitative Spatial Reasoning Using Constraint Cal-
culi.” in Handbook of Spatial Logics, M. Aiello, I. Pratt-Hartmann, and J. van
Benthem, Eds. Springer, 2007, pp. 161-215.

[4] A. G. Cohn and S. M. Hazarika, ”Qualitative Spatial Representation and Rea-
soning: An Overview.” Fundam. Inform., vol. 46, no. 1-2, pp. 1-29, 2001.

[5] R. H. Guting, ”An Introduction to Spatial Database Systems.” The VLDB
Journal, vol. 3, no. 4, pp. 357-399, Oct. 1994.

[6] I. B. Arpinar, A. P. Sheth, C. Ramakrishnan, E. L. Usery, M. Azami, and
M.-P. Kwan, ”Geospatial Ontology Development and Semantic Analytics.”
T. GIS, vol. 10, no. 4, pp. 551575, 2006.

[7] G. Christodoulou, E. Petrakis E., and S. Batsakis. ”Qualitative Spatial Rea-
soning using Topological and Directional Information in OWL”, 24th Interna-
tional Conference on Tools with Artificial Intelligence (ICTAI 2012), Athens,
Greece, November 7-9, 2012.

[8] D. R. Montello and A. U. Frank, ”Modeling Directional Knowledge and Rea-
soning in Environmental Space: Testing Qualitative Metrics,” in The Con-
struction of Cognitive Maps (GeoJournal Library), P. Juval, Ed. Kluwer Aca-
demic Publishers, 1996, pp. 321-344.

[9] J. Renz and D. Mitra, ”Qualitative Direction Calculi with Arbitrary Granu-
larity.” in PRICAI, ser. Lecture Notes in Computer Science, C. Zhang, H. W.
Guesgen, and W.-K. Yeap, Eds., vol. 3157. Springer, 2004, pp. 65-74.

57

BIBLIOGRAPHY 58

[10] B. Nebel and H.-J. Brckert, ”Reasoning about Temporal Relations: A Maxi-
mal Tractable Subclass of Allens Interval Algebra.” in AAAI, B. Hayes-Roth
and R. E. Korf, Eds. AAAI Press / The MIT Press, 1994, pp. 356-361.

[11] Stravoskoufos K. ”SOWL QL : Querying Spatio-Temporal Ontologies In
OWL 2.0”, Master’s Thesis, Department of Electronic and Computer Engi-
neering, Technical University of Crete, April2013.

[12] Sotiris Batsakis, Euripides G.M. Petrakis, ”SOWL: A Framework for Han-
dling Spatio-Temporal Information in OWL 2.0”, 5th International Sym-
posium on Rules: Research Based and Industry Focused (RuleML’ 2011),
Barcelona, Spain, July 19-21, 2011, pp. 242-249.

[13] P. van Beek, and R. Cohen ”Exact and approximate reasoning about temporal
relations.” Computational intelligence, Vol 6(3), pp. 132-147, 1990

[14] S. Batsakis, ”Reasoning over 2D and 3D Directional Relations in OWL: A
Rule-Based Approach”, in Proceedings of RuleML 2013, Seattle, USA, July
11-13, 2013

[15] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz, ”Pellet: Apractical
owl-dl reasoner,” Web Semant., vol. 5, no. 2, pp. 51-53, Jun. 2007.

[16] Eric Prud’hommeaux, Andy Seaborne. SPARQL Query Language for RDF.
http://www.w3.org/TR/rdf-sparql-query/

[17] B. Nebel, and H.J. Burckert ”Reasoning about Temporal Relations: A Max-
imal Tractable Subclass of Allen’s Interval Algebra” Journal of the ACM
(JACM), Vol.42(1), pages:43-66, 1995.

[18] J. Renz and B. Nebel. Efficient Methods for Qualitative Spatial Reasoning. In
Proc. of the 13th European Conference on Artificial Intelligence (ECAI98),
1998.

[19] B. Bennet. Knowledge Representation and Reasoning: Compositional Rea-
soning, 2007. Lecture notes, School of Computing, University of Leeds.

[20] Eleftherios Anagnostopoulos, Sotiris Batsakis, Euripides G.M. Petrakis,
”CHRONOS: A Reasoning Engine for Qualitative Temporal Information in
OWL”, 16th International Conference on Knowledge-Based and Intelligent
Information & Engineering Systems (KES’2013), 9-11 September 2013, Ki-
takyushu, Japan

