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MepiAnyn

O Ccproc cival £évag KpuTrToypd@ikog ouvette¢epyaoTis VLIW (ueydAou
TIAATOUG EVTOAWYV)  yId OCUMMETPIKOUG aAyopiBuoug kputrtoypagnons. O
Ccproc éxel 10 OIKO TOU OUVOAO €VTOAWV HEIWHPEVNG TTOAUTTAOKOTNTAG,
QQOCIWHUEVO OTOUG CUMMETPIKOUG aAyopliOuoug Kputrtoypd@nong, IKavo va
uTTOOTNPIEEI TTOAAOUG aTTO TOUG ONUEPIVOUG OCUMPMUETPIKOUG aAyopIBuoug
KPUTITOYPA®PNONG.

2€ QUTH TN JITTAWMATIKA PETOPEPAPE Kal agloAoyioaue Tov Ccproc o€
TexvoAoyia OAokAnpwpévwy KukAwpdtwy Eidikou Zkotmou(ASIC). TNa 1n
diadikaoia Tng ouvBeong oe ASIC xpnoiyotroifoaue Tov Design Compiler Tou
Synopsys. Xpnaoigotroijoape pia BipAiodrikn 0,13 um(UMCO013).

H amédoon tou Ccproc katagépaue va @tacel ota 250 Mhz. O
OUVOAIKOG apIBPOG KeAiwv TTou Xpnoiyotroidnkav civar 93.185 Ta otroia

kataAduBavav xwpo 5.343.404 um"2 .
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1. Elcaywyn

Eivar ouxva atrapaitnto va TTpOCapUOOCTEl MIa UTTApXouoa UAOTToinon o€
dlapopeTik TeExvoAoyia . O Adyog eival o611 waxvouue TIG Auoeig [I3] TTou Ba
TTAPACYOUV TO YPNYOPOTEPO XPOVO OTNV AYopPd, TO XOAUNAOTEPO KOOTOG KAl TNV
uwnAoTEPN atrodoon yia TIG OIAdOXIKEG YEVEEG TwWV TIPOIOVTWYV. 2TnV
TTEPITITWON OGS ATTOPACICANE VA PETATPEWOUUE Pia uAoTroinon atrd FPGA oe¢
éva oAhokAnpwpévo kUkAwpa (ASIC). 'Eva ASIC cival éva oAokAnpwuévo

KUKAWMO TToU €€l UAOTTOINBET yia cuyKeKpIPEVN AsiToupyia (xprion) [14].

11 ASIC
2AMEPQ, uTTdp)xouV dUo TTpoocyyioelg o€ oxediaon ASIC:

e H Full-custom ASIC eival pun TTPOKTIKI IO TOUG TTEPICOOTEPOUG

xpPnoteg. 2e pia Full-custom ASIC o punxavikog oxediadel pepika | OAa Ta
KUTTOpa AOYIKAG, KUKAWUATA, cuykekpipéva yia éva ASIC. Auto onuaivel
OTI 0 OXedIOOTAG EYKATOAEITTEI TNV TIPOCEYYION TNG XPNOIMOTToinoNG
éToipwy BIBAIOBNKwyY  atmd Aoyik& KUTTApa yia ToO OUVOAO i PEPOG TNG
oxediaong. ‘Exel vonua yia va uioBetrioel kaveig auth Tnv néBodo povo eav
Oev UTTAPXE! Kapia KatdAANAn uttdpxouoa BIBAIOBNAKN KUTTGpwyv diaBEéaiun
TTOU va PTTopei va xpnoigoTtroinBei yia oAdkAnpn tn oxediaon. Auti n
mpooéyyion  (Full-custom) xpnoigotroicitar  étav oI UTTAPXOUCEG
BIBAIOBNKES KUTTAPWY Oev gival APKETA ATTODOTIKEG(OE TAXUTNTA), 1 TA
KUTTOPO AOYIKAG Oev €ival APKETA MPIKPA 1 KATAVAAWVOUV TTAPA TTOAAN

EVEPYEIQ.



e H Semi-custom ASIC xpnoiyotroiel £To1ueS BIBAIOBAKESG AOYIKWV

KUTTApwv. H Semi-custom ASIC oxediaon ecival TTPOKTIKOTEPN YIA TOUG
TTEPIOCOTEPOUG XPNOTEG ETTEIDN TA EPYOAEIO OUVOEONG £XOUV WPILACE! KOl
o€ ouvduaopud Me TNV UTTAPEN TWV YAWOOWV TIEPIYPAPAS UAIKOU

TTAIPVOUE TO ATTOTEAECUA TWV TTPODIAYPAPWV HOG.

1.2 Ccproc

H oxediaon 1mou BéAoupe va petaTpéwoupe oe ASIC eival o Ceproc. O CCproc
gival évag VLIW ouvetreCepyaoTiG  KPUTTTOYPAQPOG VIO  CUMMETPIKOUG
aAyopiBuoug. To datapath Tou €xer dourp RISC, kavr) yia va uttooTnPIgEl
TTOANOUG aTTO TOUG ONPEPIVOUG aAYOPIOUOUG KPUTTITOYPAPNONG, AEITOUPYWVTAG
o€ TTOAU avTaywVIOTIKEG TaXUTNTES. 'Evag ouvetteEepyaoTAG ival pia €10IKAG
Xpnong upovada emegepyaciag Tmou Bonbd& TOV KEVTPIKO ETTECEPYQOTH) OTNV

EKTEAEON OUYKEKPIMEVOU TUTTOU OIADIKATIWV.

1.3 EmiAoyR uhotroinon og ASIC

O1 FPGAs cival dnpo@IAEic yia TIG ypriyopesg o€ XpOvo ulotroinong oxedIAoEIg
ME XaunAOG NRE (un emmavaAaupavéueveg datrdveg). EvrouTolg, uttdpxouv
oNPAvTIKES dATTAVEG TTOU cuvdéovTal UE TN XpnolpoTtroinon FPGA yia peyaAeg
oxediaoelg. O1 FPGAs mdoyouv atro:

e UWNAS KOGOTOG avA-PovAadwv

e xaunAn amédoon

e YauNAQ etmiTreda AoyIKrG OAOKANpwoNng

e uEYAAn katavaAwaon 10XU0g

AvTifeTa, n TAatpopua ASIC €xer:
e YXAMNAOTEPO KOOTOG pHovAdag
e uWnAdGTEPN atTOdOON Kal AoyIK-) OAOKANPWONG
e YauNAOTEPN KaTavAAWON 10XU0G

e KOl Eival MIKPOTEPN KATAOKEUAOTIKA



AuToi gival o1 Adyol TTou atropacicaue va ulotroifjooupue Tov Ccproc oe ASIC

TTOU apXIKa €ixe uhotroinBei oe FPGA.

1.4 Aopn AITAWMATIKAG Epyaciag

O kUpiog oT1dX0G auTAG TNG OITTAWMATIKAG gpyaciag €ival va uAotroinBei o
Ccproc o¢ ASIC tTpokeipgévou va emmTeuxBei upnAoTepn amrdédoon pe Aiyotepn
KatavaAwaon 10xUo¢ Kal va eAaxioTotroinBei n mepioxn g oxediaong. To

UTTOAOITTO QUTOU TOU KEIPJEVOU OPYAVWVETAI WG £EAG:

* YTT6BaBpo kai n apxitektovikr ) Ccproc

» Aladikaoia ouvBeong XpNOIKMOTTOIVTAG TO Synopsys

+ Aladikaoia TTou akoAouBroape yia va OAOKANPWOOUNE TO OTOXO HAG
« ETTaABeuon kai atroteAéopata

 Eytreipieg kal ouptepdopaTa



2. YéBabpo kal n Apxitektovikr Ccproc

2€ AUTO TO KeQAAalo eoTiAlouphe oTnv Treplypa®r Tou Ccproc. Apxika Ba
OoUME MPEPIKA TTOAU ONnUAvVTIKA TTPAYMOTA yIa TNV KPUTITOYpA@ia Kal TOUg
ONUOPIAECTEPOUC KAl ACQAAECTEPOUG  AAYyOpPIBUOUG  TTOU  OruEPa
xpnoigotrolouvtal. Katotrv €0TIGCOUPE OTNV TTEPIYPAPN TNG APXITEKTOVIKAG
Tou CCproc Trpiv avagepBoupe oTn dladikacia TNG ouvOeong PE TO EPYOAEIO

Synopsys.
21 Kputrtoypa@gia

Kputrtoypagia [13] €ival évag Topéag Twv PaBnUaTIKWVY evOIAQEPOPEVOS VIO
TNV aOQAAEIO TTANPOQPOPIWY KOl T OXETIKA ¢nTrpaTta. O OoKOTTog TNG  €ival va
KpUWel TNV €vvola €vOG uNvUUATOG Kal OXI TNV UTTapér) Tou. ZTIC PNEPEC PaG N
KPUTITOYpa®ia €£Xel apyioel va €@ApUOCeTal  Kal otV TTANPOYOPIKH.
2UCTAMATO  KPUTTTOYPA®PNONG XpnolgotroloUuvtal  yia TV ao@dAcia

UTTOAOYIOTWV KOl OIKTUWV.

‘Evag KpuTrToypa@ikog aAyopiBuog eivalr pia pabnuatik AsiToupyia TTou
XpnoigoTrolgital otn d1adIKaoia KPUTITOypda@nong Kal aTToKPUTITOYpda®nonG.
‘Evag KpUTITOYpa@IKOG aAyopiBuog Asitoupyei o€ oxéon pe €va KAedi (pia
AEEN, évag aplBPOG, A hIa @PACN) YIa va KPUTITOYPOPAOEl TO apPXIKO KEIUEVO.
To apxIKO KeiUEVO KPUTITOYypa@EiTal Kal dnuioupyeital otn B8éon Tou éva
KPUTITOYPA®NUA. H ao@AA&ia TwV KPUTITOYPAPNUEVWY OTOIXEIWV ECAPTATAI £
oAoKAfjpou atd duo TTpdyuaTta: Tn dUVANN TOU KPUTTTOYPOQPIKOU aAyopiduou

Kal TN JUCTIKOTNTA TOU KAEIBIOU.

2AMEPQ o1 aAyOpIBuol KpuTITOYPAPNoNG XwpidovTal o€ dUOo Katnyopies [I12]:
e 2 UUMETPIKOUG KPUTTTOYPAPIKOUG aAYOPIBUOUG.
® Mn OUMMETPIKOUG KPUTTTOYPAPIKOUG aAYyOPIBUOUG.



2.2 Xupperpikoi AAyépiduol Kputrroypdenong

MNa va karaAdBouue yiati o Ccproc uTTooTNPICEI CUYKEKPIMEVOUG CUUMETPIKOUG
aAyopiBuoug oe auTtd TO KEPAAQIO €EETACOVTAI TA YEVIKA XAPOKTNEIOTIKA TWV
OUMUETPIKWY OAYOPIBUWYV. ZUYKEKPIYEVN TTPOCOX dOBNKE OTNV E€TTIAOYN TWV
aAyopiBuwyv TToU TEBNKAV UTTO €€€Taon, €TTEIdN TTOAAOI OTTO QUTOUG €XOUV
aduvauieg. ‘ETol, TTpokelyévou va kataoTel n avdAuor) pag 6co 1o duvaTtov
TTANPEOTEPN, EMAEXTNKAV OI akOAouBol aAyoépiBuol: Rijndael [7] MARS[8],
Serpent [9], Twofish [10], Blowfish [12], RC4 [I5], DES [I6], RC5 [13], IDEA
[14]. ATté auTh TNV oudda PeTd atrd avaAuon €TTIAEXTNKAV VA UTTOOTNPIXTOUV

atré Tov Ccproc ol évte TeAIKoi uttowniol Tou AES [17].

O A.Otcodopdtroulog [5] ouptrepiéAaBe otov Ccproc TIG akOAouBeg TTPACEIS

TTOU XPNOIUOTTOIOUVTAl ATTO TOUG OAYOPIOUOUG TTOU ETTIAEXTNKAV:

1. Unsigned Tp60Beon kai agaipeon modulo 2%

2. MoAAatrAaciacudg modulo 232

3. ATTOKAEIOTIKO i (Xor) peTagu 32-bit dedouévwy

4. ZT0BEPEC UETATOTTIOEIG KAl TTEPIOTPOPES

5. MeTaTOTTIOEIC KAI TTEPIOTPOYPES ECAPTNUEVWY OEOONEVIIV

6. TMOAUWVUNIKOG TTOANOTTAQCIACPOG TTETTEPACUEVOU TTEDIOU O€ 2% modulo
7. Emexktdoelg kal petaAAayég (Xboxes)

8. Koutid avtikatdoTtaong (Sboxes)

9. Aopég dikTUWV Feistel [15].



2.3 YAotroinon o€ YAIKO Twv AAyopiBuwyv kail ETTiITayXuvTtég

Ymdpyouv Tpia €idn uAoTToIoEWY aAyopiBpwy :

* C ka1 epapuoyég Assebly

* 2ZUYKEKPIPEVEG EQAPHOYES UAIKOU aAyopiBuou

* OUVETTEEEPYAOTEG UAIKOU e ISA TTOU UTTOOTNPICEI aAYOPIBUOUG

O1 epappoyEg UAIKOU TTapExXouV TNV uwnAoTePn TaxUTNTA aTTd TIG EQAPHOYEG
AoyiouikoU. H ouykekpipévn Katnyopia e@apuoyns UAIKOU aAyopiBuou TTapéxel
TNV UTTEPPBOAIKA a1rddoon TaxuTNTAG Yia KABE CUPUETPIKGO aAyopIBuo, AOyw
TWV AQIEPWHPEVWYV ETTECEPYAOTWYV UAIKOU. H TeAeuTaia katnyopia, €ival KATTwWG
«OTn péon» Twv  TTponyoUueEVWY OUO Kal €O0TIACEl O OUYKEKPINEVOUG
OUMMETPIKOUG aAyOpiBuoug TTou UAOTTOIOUVTAlI O€ OUVETTEEEPYAOTES. AUTH N
KATNyopia MTTOPEI va XAPOKTNPIOTEI WG n 1o OUOKOAN yia va uAoTtroindei,
emeidn) amaitei ™ PBaBid  TapdAAnAn  avdAuon TTOAAWV  CUPPETPIKWV
aAyopiBuwv Kai emTTPOOOETNG TTPOCTIABEIAG, TTPOKEINEVOU va ETTITEUXOEI N
IcoppoTTia PETagU TNG atdédoong Kal TNG eueAigiag Tng oxediaong. O Ccproc
QVNKEl OTNV TEAEUTAIO KATAyopia Kal yia va ulotroindei €yive BaBid avaluon
oTnVv €mMAoyn EMITAYXUVTWY Yia TNV TEAIKA uAoTtToinon [17][18][19][20].

2.4 H ApxitekToviknp Tou Ccproc

O Ccproc civai [6] kputrToypd@ikdg ocuvetteEepyaoTnic VLIW TtTou gival apketd
EUENIKTOG va UTTOO0TNPIgEI OAOUG TOUG GUPUETPIKOUG aAYOPIBUOUG TTOU £pTacaV
o1o TeAIKO Tou AES, aAAd é€xel kal Tn duvatoTnTa va UTTOOTNPIGEI KAl VEOUG
aAyopIBuoug. ToAAEG QopEG KaTa TN BIAPKEIQ TNG ETTEEEPYATIAG, CUMMETPIKWYV
aAyopiBuwv xpnoiyotroiouvtal 64-bit, 96-bit 1 akéua kar 128-bit dedopévwv
TTou TTPETTEl va avaAuBouv TapdAAnAa. Autd odriynoe otnv amdégaocn va
uhotroinBei évag ouvetre¢epyaoTic VLIW pe 1é€ooepic ouoTddEG, OTTWG

@aivetal oto oxfAua 1.
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instruction
fetch

| ] > ] ]
| .
t# decode [ R = execute | ]\AA—> R = Sboxes | R write
32 | - back
L PN > LN LN
Ty S S L iy
| ] > ] ]
| .
t# decode [ R = execute d ]\BA—> R = Sboxes | R write
32 | > back
L PN — LN LN
> N o — —_—— —
128 I — — —
| q ;
- decode ( R | execute | ]\CA—> R[> Sboxes (s R [ H€
32 | back
L PN — LN LN
Ty S S L iy
Ty — =
| . .
t# decode [ R M execute ]\DA—> R t» Sboxes (= R write
32 | L back
e R el e

oxnua 1 - Ceproc

S
Cluster C Cluster B Cluster A

Cluster D

Karapxnyv, uttdpxel hia govada eupuTtntag odnyiag, n oTroia Traipvel pia

128-bit AéEN kal TNV TTEPVAEI OTIG TEOOEPIG OUOTAdEG WG TEoOoEPIG 32-bit

eVTIOAEG. A@dTou €xel OlaipeBei n 128-bit AéEn oe Téooepig 32-bit evIOAEG

€1I0AyeTal N KABe pia 010 OTAdIO ATTOKWAIKOTTOINONG KA&Be cuoTadag. To

ETTOPEVO OTADIO €ival TO OTADIO EKTEAEONG, OTTOU eKEi EKTEAOUVTAI OAEC Ol

AOVYIKEG Kal apIBunTIKEG TTPACEIS (UTTAPYXOUV UAOTTOINUEVA O€ UAIKO PHOVADEG

oTTwg ToAAatTAaoiaoTAg [16], ALU K.T.A.). To emméuevo oTddIo €ival TO

otadio pvAuNG. OAa Ta Sboxes éxouv ToTTO0BETNBEI OTO OTAdIO PVAMUNG

KaBe ouoTddag kal o€ autd Ta OTAdIO yivovial OAeC OI TTPOCTTEAACEIS

Mvnpwyv. TENOG, €ival TO oTadio write-back oOtToUu yivetal n eyypagny o€

KATOXWPNTEG.
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3. 20vleon

2€ AUTO TO KEPAAQIO avaAuoupe Tn peBodoloyia ouvBeong Kal Ta epyaAEia
TTOU XPNOIUOTTOINCAPE VIa va OAokAnpwoouue auti Tnv Oladikaoia. H
ouvBeon eival évag YeVIKOG OPOG TTOU AVAPEPETAl OTNV AUTOUATN PETAPPACN
kwdika HDL og éva 1coduvapo netlist wnelokwyv kuttdpwyv. To netlist dev
gival TTapd n douIKn TTEPIYPAPr AOYIKAG, 1I000UVAUN PE TOV KWOIKA E1I0AYWYNG
HDL. O kwdikag HDL eival n ave¢dptntn atrd texvoloyia Tepiypagr] Aoyikng
TToUu ypagetal armmé Tov oxedlaotd. To netlist epi€éxel Ta ouykekpipéva
WYNQIOKA KUTTOPA TEXVOAOYIOG TTOU ATTAITOUVTAI VIO TO TTPAYHUATIKO ox£D1o [I1].
O mpwTtoTTépog OTNV ayopd oTo Aoyiopikd ouvBeong AOyIKNAG €ival TO

Synopsys.

3.1 Synopsys

MNa ™ diadikacia TG ouvBeong xpnoigotroioaue 1o Design Compiler Tou
Synopsys [1]. MepihauBavel Ta epyaleia Tou ouvBéTouv TIG oxedidoelg HDL
MOG, o€ OXEDIAOEIC PEATIOTOTTOINUEVEG TEXVOAOYIKGA €EQPTWUEVEG (O€ ETTITTEDO
Aoyikwv TTUAWV). YTmrooTtnpiel BeAtioTotTroioeig oxediaong o€ TaxutnTaA,

MEYEBOG Kal KaTtavaAwaon 10XU0G.

{’F—:\*'_H_D I__s D:r::_e__f YHDL Compiler

_ / ffl'a-la 8]4] Ed,xﬁ\_
I|l lII

Verllog sourcs . HDL Compiler,_| Design Compiler | g technology- )

____ - "ﬁpendent r‘u&tliy'I

Qt_lﬁl_ﬁ_e_r input f-;:urn‘l_ﬁ_t:@_“} -

oxXAMa 2 - emokoTTnon dladikaciag ouvBeong pe Design Compiler
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3.2 Baoiki pony ouvlsong

Na Ttnv oAokAgpwon ¢ diadikaciag TG ouvBeong aTraITEITal VA

akoAouBnBouv pia oeipd atdé oTddia.

1. AvamTtuén apxeiwv TTePIypaPnig UAIKoU.

Ta apxeia T1ou eocdayovrar otov Design Compiler ypdgovrar cuyvda
XPNOoIJoTIoOIWVTAG Hia yYAwooa Treplypa®ng UAikou (HDL) omrwg Verilog n
VHDL. AUTEG o1 TTEPIYPOQEG OXEDIOU TTPETTEI VA YPOPTOUV TTPOCEKTIKA YA va
TTETUXOUPE Ta KOAUTEpA aTtroTeAéopaTta ouvbeong. Katd 1o ypdwyipgo Tou
Kwdika HDL pag, mpémel TAvTa va eEETACOUNE TIG ETTITITWOEIS O€ ETTITTEDO
UAIKOU. ‘Eva KOAOG KWAIKAG PTTOPEI va ETTIQPEPEI MIKPOTEPEG KAl YPNYOPOTEPES

OXEDIAOEIG.

2. Tpocodiopiouds Twv BiBAIOBNKWY

AleukpiviCoupe TIG BIBAI0BRKeS yia To Design Compiler pe mn xpnoiyoTroinon
Tou link_, target_, symbol_, kai Twv synthetic_library evioAwv. O1 BIBAI0BrKeg
TEXVOAoyiag kaBopifouv TO OUVOAO O0€ AOyIKG KUTTOPA TOU TTPOMNOEUTH

NUIOYWYWV KAl OXETIKEG TTANPOPOPIES VI AUTd.

3. AildBaopa TG oxediaong.
O Design compiler xpnoigotroigi Tov petayAwttioty HDL yia va dioBdoel Tn

oxediaon o€ RTL kal o€ eTiTredo TTUAWV.

4. MovTtehoTtroinon Tou TTePIBAANOVTOG TNG oxediaong

O Design Compiler atraitei va diapop@wvoupe 1o TEPIBAAAOV TNG oxediaong
TToU ouvTiBeTal. AuTO TO TTPOTUTTO TTEPIAQUPBAVEI TOUG EEWTEPIKOUG TTAPAYOVTEG
Aeitoupyiag  (Beppokpaoia, TAon), Ta @optia, fanouts kar Ta TTPOTUTTA
KaAwdiwv. AuT n MovteAotroinon emmnpeddel APECA TA  ATTOTEAEOUATO

ouvBeong Kal BEATIOTOTTOINONG TNG OXEdIaONG.

13



5. KaBoploudg TTeplopiopwy NG oxediaong
O Design Compiler xpnoigoTtrolei kavoveg oxediaong Kal TTEPIOPICHUOUG

BeATioToTTOINONG YIa va €AéyEEl TN oUVBEON Tou oxediaong.

6. EmAoyr oTpaTtnyIKNG HETAYAWTTIONG

O1 duo 1m0 diadedopéveg OTPATNYIKEG METAYAWTTIONG €ival n top-down Kal n
bottom-up([3]. 2Tnv top-down n uwnAGTEPN 1EPAPXIKA OXEDIOON EI0AYETAI OTOV
Design Compiler padi pe TIg uttoOXEDIAOEIG TNG KAl PeTayAwTTiCovTal padi.
AvTiBéTwg, oTtnv bottom-up kdBe utrooxediaon elodyetal otov  Design
Compiler kai petayAwrtriCetal pévn m¢. 'ETol gekivape amd 10 XaunAOTEPO
IEPAPXIKA  €TTITTEDO  KaI  OuveXiCOUPE OTO QUECWS  uwnAoTEPO. MOAIG
TEAEIWOOUUE KAl UE AUTO OuveXiCOUUE TNV idla d10dIKACIa WOTTOU VA YTACOUNE

oTO UYNnASTEPN 1EPAPXIKG OXEDIaON.

7. BeAmnioTtotroinon tng oxediaong

A@oU TTApOoUME KATTOIO OTTOTEAEOUATA TTOU QQOPOUV T oOxediaor pag
TTPOOTTAB0UNE VO BEATIOTOTTOINCOUPE TN oXediaon o€ péyebBog kal atrdédoon.
AUTO PTTOPOUNE va TO TTETUXOUME PE KATTOIEG EVTOAEG Tou Design Compiler

ME TO VO TTPOCELOUNE Kal va AAAGEOUE Ta apXEia E1I0ayWYNAG.

8. AvdaAuon kai 1TiAucn oXedIAOTIKWY TTPORANUATWY
2€ auTO TO OTAdIO PAETTOUME AVOAUTIKA T OTTOTEAEOUATA TTOU MaG Oivel O
Design Compiler 6ocov agopoulv Tn oxediaor pag. 2Tn OUuvéxela, av Oev

gipaoTe euxapioTnuévol atrd Tn oxediacr| Jag, ETMOTPEPOUNE OTO BAua 7.
9. AmoBnkeuon TnG oxediaong

AQOoU TEAEILWOOUUE PE TIG BEATIOTOTTOINCEIS TNG OXEDIOONG PMOG CWIOUNE TO

QTTOTEAECHA TNG OUVOEDONG.
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4. YAoTtroinon

2€ autd TO Ke@AAaio €oTiGCoupe oTn Oladikacia Trou €mmAECAUE yia va
ulotroijooupe Tov Ccproc oe ASIC. ApxIKG E£TTPETTE va TPOTTOTTOINCOUME
MepIkG atmod Ta eCapTwpeva HDL apxeia tng FPGA o¢ pia TEXVOAOYIKA-
avecapTnTn Hop@r). ‘ETrpetre £1Tiong va aAAAGOUPE OAa Ta DOUIKA OTOIXEID TNG
oxedioong Otou gixav TTapaxBei amd TN yevvATpia Kwdika Tou ISE. H
YEVWATPIa KwdIKa Tng Xilinx xpnoiyotrolei UAIKO aTtd  pia OUYKEKPIYEVN
TEXVOAOyia TTOU €ival dyvwaoTn o1o Synopsys. Katomiv 6a dieukpiviocoupe Tn
BIBAI0BRKN TexvoAoyiag TTou Ba xpnoiyotroijooupe. ‘Etreita 6a Béocoupe Toug
TTEPIOPIOPOUG oxediaong Kal Ba €TMAECOUNE TN OTPATNYIKI METAYAWTTIONG.
Katétmv Ba douue pepPIKES BEATIOTOTTOINOEIG Kl TEAIKA Ba eAéygoupe To OxEDIO

MOG Kal Ba avaAUOOUUE Ta ATTOTEAEOUATA.

4.1 Avarrtugn Apxeiwv VHDL yia To Synopsys

Ta meplocdTEPa aATTO TA OOPIKA OTOIXEIA TTOU €ival XaunAd oTnv lepapxia
éxouv TTapayxBei ammo 1n yevvATpia Kwdika g Xilinx. MNapadeiypata TEToIWV
OTOIXEIWV €ival O CUYKPITEG, Ol aBPOIOTEG, O TTOANQTTAQCIAOTEG KAl Ol PVAUEG,
Ta OTToIa £TTPETTE VA AAAGEOUV E TETOIO TPOTTO WOTE TO SYynOpsys va UTTOPETE!
va 1a xaptoypagnoel oe pia texvoAoyia ASIC. OAa 1a dopika oToixeia, eKTOC
atroé TNG MVAMEG, uAoTToINONKav TEAIKA PE €va avegdpTNTa TEXVOAOYIKA UQPOG

VHDL. H diadikaoia Tou akohouBroaue gival n €¢AG:

1. AAM\GCoupe éva apxeio VHDL og éva texvoloyika aveEaptnto apxeio VHDL
2. E¢etdloupe av 1o VEO OTOIXEIO AgIToupyEi OTTWG TO TTPWTOTUTTO. Edv dev
AeIToupyei OTTWG auTtd TTPETTEI va TTIOTPEWOUUE 0TO Brua 1. EAv Acitoupyei pe

TOV id10 TPOTTO PE TO TTPWTOTUTTIO ouvexiCoupe oTo Pripa 3. XpnoIUOTTOINCAE

modelsim yia va eTTaAnBevooupe T oXediaor] Yag.
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3. AilaBdaloupe 10 véo apxeio VHDL pe To synopsys.

4. Zntdue atrd TO0 Synopsys va HETAYAWTTIOEI TOV KWOIKA Pag.

5. Zntaue amrd Synopsys va mmapaydayel n oXedioor] Yag o€ TTITTESO TTUAWV.

6. E¢etdloupe 10 véo apyxeio VHDL 3 VERILOG o¢ emitredo TTUAWYV yia va
gipaoTe PEPRalOl OTI AEITOUPYEI OTTWG TO EEAPTWHEVO (TTPWTOTUTTO) apxeio. Edav
AeIToupyei OTTWG auTd, £xoupe TeAsiwael TN diadikaoia pag, v OxI TTPETTEI va

ETTIOTPEWOUE OTO Brpa 1.

4.1.2 ANAayR Mvnpwv

H diadikaocia aAAayAg Twv pvnuwy eival dia@opeTik. H diagopd gival OTi
TPETTEl va  OTTOQACIOOUME  TTPWTA TNV  TEXVOAoyia TTou B€Aoupe va
Xpnoigotroiooupe. Ta oToixeia PvAPNG dev  ypd@ovTal o€ avetdpTtnTn
Texvoloyikd VHDL. O1 pvueg tmou Ba Xpnoigotroifooupe ivar OOoMIKA
oToIxeia TTou OxedIAdovTal YIa MIA OUYKEKPIPMEVN TEXVOAOYIO Kal €XOuv
KaBopiopéveg TTpodiaypa@eg. Qg ek TOUTOU, TO TIPWTO TIPAYUA TTOU TTPETTEl VO
KAvVOUE €ival va TTapayyeiAoupe atrd TOV TTPOPNBEUTH NUIAYWYWY UVAPES JE
XOPAKTNPIOTIKA TToU BEAOUE yia Tn oXediaor Pag Kal va gival CUPPBATEG PE TNV
BIBAIOBNAKN TexvOAoyiag TTou BEAOUME va XPNOIUOTTOINOOUME. TN OUVEXEIQ
TPETTEl va TTapdayouue pe Tn BorBeia tou Design Compiler 1o .db apyxeio 1Tou
QvTIOTOIXEI OTN PVAPN TTou B€Aoupe va xpnolpotroijooupe. OTav €XOUupE TO
.db apxeio NG pvAUNG BewpPOUME TN HPVAMN MOG WG Paupo Kouti. TMa Tig
TEPAITEPW DOKIPEG OTO Modelsim XpnoIhgoTToloupE To .vhd 1} .v apxEio OTTou 0
TIPOUNOEUTAG NUIAYWYWYV PaG MO EXEl TTapaoxel. Eav o1 Tpodiaypa®Eg TnG
vEQG PVAMUNG OEV CUUTTITITOUV HE TIG TTPOdIAYPAPES TNG MVAUNG TTou BEAOUUE
va aANGEoupe, TTPETTEN va TTEPIBAAAOUME TN PVAMN MOG WE Ta AoyIKG oToIxEia
TTou Ba TNV avaykdoouv va AEIToupynoel Je Tov idI0 TPOTTO TTOU AEITOUPYEI N
pvAun Tng FPGA (Tn pvAun 1Tou B€Aoupe va avtikaraoTioouue). Ta Bripara
TTOU TTPETTEI VO aKOAOUBAoouuE yia va aAAGEoupe pia pvhun ato pia FPGA og

Mia TexvoAoyia ASIC civail:
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1. ATrogaacifoupe Tnv TEXVOAoyia TTou BEAOUUE va XPNOIUOTTOINCOULE.

2. NapayyéAvoupe atTd TOV TTPOPNBEUTH NUIAYWYWY HAG Wi puvriiun ouupaTh
ME TNV TEXVOAOyia TTOU Ba XPNOIYOTIOINCOUE TEAIKA yia Tn oxediaon pag. H
MVAUN TTOU TTapayYEAVOUUE TTPETTEI va €XEI TTAPOPOIEG TTPOdIAYPAPES PE TNV

MVAMN TToU TTpooTTaboupe va aAAdgouue (UEyeBOG, arjuaTa eAEyXOu).

3. MepiBdAAoupe TN pvARun Mag pe emTTAéov Aoyiky o€ éva véo apyeio vhdl
XPNOIMOTTOIWVTAG TO .vhd TNG PHvAUNG TTOU €XOUME WG DOUIKO OTOoIXEIO (Haupo
kouTi). O okoTrdg pag eival 0TI n véa PvAun YE TNV TTPOOBETN AoyiKh Ba €xEl
TNV 010 CUPTTEPIPOPA WE TN PVAUN TTou BéAoupe va aAAagoupe. @EAoupue va
gipaoTte BEPaiol OTI TO VEO dOUIKO OTOIXEIO AcITOUpyEi OKPIBWG WE TOV idIO
TPOTTO ME TO TTPWTOTUTTO, £TOI TTPOCTTABOUNE VA KAVOUUE Ta TTEdia SOKIPWV
MOog va TrepIAGBouv 600 TO duvaTOv TTEPICOOTEPEG TTEPITITWOEIG. Edv
KATaQEPOUME TEAIKA TO VEO OTOIXEIO JAG va CUUTTEPIPEPOEI pe Tov idlI0 TPOTTO
ME auTO TToU BEAOUPE va OAAGEOUE, TTPOXWPANE OTO ETTOMEVO Briua, €av Oxl,

emavaAaupavoupe 1o BApa 3.

4. AigBacouue pe 1 PonBeia Tou Design Compiler 1o .lib apxeio TTOU

QVTIOTOIXEI OTN VEA PMVAKN MOG Kal TTapAyouue To Icoduvapo .db.

5. Twpa diapdaloupe 10 véo apxeio vhdl pag pe tnv TPOoBeTn AOYIKN Kal TO

ouvdéoupue pe TN BIBAIOBNAKN TNG véag pvAuNng pag (ue 1o .db).

6. MetayAwTTiCoupe 10 apxeio vhdl pag pe 1o Synopsys.

7. Zntape amrd Synopsys va mmapaydyel Tn oXediaor] yag o€ emiTedO TTUAWV.

8. E¢erdloupe TN véa pvAun o€ eTiTTEdO TTUAWV yia va cipacte BEBaior Ot

Aeiroupyei 6TTwg N PvAun TTou aAAGgape. EGv Asitoupyei OTTWG TO TTPWTATUTTO,

éExoupe TeEAElwoel Tn dladikaoia pag, €Av Oxl, TTIPETTEI va ETTIOTPEWYOUNE OTO

Bripa 3.
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4.2 NMpoocdiopiocuég BiBAioBnkwv

To emouevo BAPa TNG dladikaoiag Pag ATav va amo@acioTei n BIBAI0BRKN
AOYIKWV KUTTApwv. EmAEgape Ttnv  Tuttotroinuévn  BIBAIOBAKN  Aoyikwv
KUTTAPpWV uywnAng mukvotnTag 0.13um. H Tutrotroinuévn BiBAIOBrKN KUTTApwWV
uwnAng TtukvotnTtag 0.13um TTapéxel OTa ONPEPIVA TTponyuéva  epyalEia
ouvBeoNG TIG ATTAPAITATEG OOMIKEG HOVADEG VIO VA EQAPPOCEl ATTOTEAECUATIKG

TNV dladikagia TnNg ouvleong yia pia atrodoTIKr) oxediaon.

4.3 NMpoodiopiocuog Meplopicpwyv

Atmropacicape va €mMAEEOUUE pPia peyadAn TTepiodo poAoyioU yia TNV TTPWTN
METAYAWTTION TTPOKEIMEVOU va doUpE €Av n oXediaor Mag AeiToupyei KaAd.
Apyodtepa oT1o 0TAdIO BeATIOTOTTOINONG B AOXOANBOUUE yIa TNV €TTITEUEN TNG
MEYIOTNG ouxvoTnTag. ‘ETol etmIAéyouue pia TTepiodo 7 ns(142MHz).

4.4 EmiAoyn Z1patnyikAg MeTayAwTTiong

H otpatnyikp 1ou emAé€ape va akoAouBrioouue eivar n  bottom-up.
MpoTiyAcape autiv TV oTpartnyikn amd tnv top-down e1eldry BeAoape va
aoxoAnBoupe pe kABe uttooxediaon eXxwploTd. Me auTtdv ToV TPOTTO €XOUME
TO TTAEOVEKTNUO TO OTI gipacTte BEPaiol yia Tn oTtaBepdtnTa KAGBe SOUIKOU
OTOIXEiOU. Z€ AUTAV TN oTPATNYIKA BAETTOUNE TN OXEdiAON PAG WG BEVTPO KAl
apxiCoupe va  PeTayAwWTTICOUPE T  @QUAAD TOU. 2TO €ETTOMEVO  Brpa
METAYAWTTICOUPE TO OOMIKA OTOIXEIO TOU ETTOPEVOU UWPNAOTEPOU ETTITTEDOU TNG
lEpapxiag. ZuveyxiCoupe Tn dladikaoia PEXPlI va @TACOUPE OTO KOPUPAio

OTOIXEIO.

4.5 BeATioToTtroinon tng 2xediaong

O1wg avagpépinke kal TTapatrdvw, n oxediaon uAotroindnke apxikd ota 142

MHZ. H pwTtn pag utmrdéBeon Atav OTI n Kpioiun TTopegia pyag Ba EmpeTTe va
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gival n pvAun evioAwv (350 MHZ). A@OTou cixaue Ta ATTOTEAEOUATA TNG
ouvBeong avakaAUwaue OTI N Kpiolun Tropeia pag PBpébnke oto oTddIO
ektéAeong oTtov moAAamAaciaot (mmult32x32). H oxediaory pag dev
pTopouce va utrepPei Ta 200 MHZ Adyw Tou TToAAaTTAaoiaoTr. O KwdiKkag
vhdl TrpooTTabouce va piunBei Tov TTPWTOTUTTO TTOAAATTAQCIOOTH. H UTTdBe0n
TTOU KAvape ATav OT1 ol KatdAoyol (atrd Ta dUo OTAdIa CWANVWOEWVY) OV gixav
iIcoppoTnNBei  KaAd. Katd OuvéETTEld  XPNOIYOTIOINCAPE TNV EVIOAR
balance_register mavw oTtov TTOAAaTTAOCIAOTH. Ta véa aQmmoTeAéopaTa TTOU
THPAUE NTAV 0OPWGS KAAUTEPQ, YE TN oXediaorn Pag va @Ttavel ota 250 MHZ
(BeAmioTotToinON 25%). H véa Kpioiun tmopeia pag cival Twpa n ALU (etTeidn

utToO0TNPICEI TIG DITTAEC EVTOAEQ).

decstageA (register) -> exstageA (ALU input) 0.16 ns
exstageA (ALU input) -> exstageA (ALU output) 3.91 ns
exstageA (ALU output) -> AluOutMemRegister 3.94 ns

Aev  TrpooTraBiocape va oAAGgoupe TRV ALU emmeidf oTta  ocuoThpaTa
KpuTtrToypagnong ouvnBifovralr OITTAEG odnyieg kKal autd onuaivel 611 Ba
¢odelapue dUO KUKAOUG poAoyiwv avTi Tou €vOg, TO OTToio odeUoUUE TWPA.

Auto Ba ofuaive Tn peiwon Tou throughput NG oxediaong pag.

4.6 ETraAn0guon kai AtTroTeAECHATA

Xpnoiyotroimoaue modelsim yia Tnv €maAnBeuon Tng oxediaong pag. ‘Etmperre
VO OUYKPIVOUUE TIG KUPATOUOPYEG TTOU Eixape attd Tnv epapupoyh 1ng FPGA

ME TIC KUPATOUOPPEG aTTO TN O0XEdIOOT HAG O€ ETTITTEOO TTUAWV.

4.6.1 Acitoupyikn kol Xpoviki MNpoocopoiwon

KdBe @opd Tou aAAGfope pia evotnTa o€ €TTTEDO TTUAWV TNV QVTI-
KaBiotouoaue pe TNV TPWTOTUTIN oTov Ccproc. Katomiv  eAéyxaue Tn
oXediaon HeE To VEO DOMIKO OTOIXEIO av AEITOUPYOUOE CWOTA. ZUYKPIVOUE CAPA

TTPOG OAUA TIG KUMATOPOPPES TNG TTPWTOTUTING OXEDIAONG UE EKEIVEG TNG VEQG.
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2UYKPIVAPE TIG KUPATOUOP®EG KABE aAyopiBuou 1Tou 0 Ccproc utrooTnpidel
(AES, SERPENT, MARS, TWOFISH, RC6). Otav eAéyéape 6An tnv ASIC
oxediaor pag (Ceproc o emiredo TTUAWV) OTI €ixe Tnv idia AsiIToupyia Pe TNV
epapuoynn FPGA Trpoxwprioape oOTnV  XPOVIKA Trpoocouoiwon. [a va
OAOKANPwWOEi n Xpovikr TTpooouoiwon €lonyaue 1o .sdf apxeio amd 10
Synopsys TO OTT0i0 eUTTEPIEXEI OAEG TIC XPOVIKEG TTANPOPOpPIEC TNG OXEDIAONS

Mag. H oxediaon pag €xel Ta idia atroTeAéopaTa AEIToupyiag JeE TNV apXIK.

4.6.2 AtroTteAéopara

H amrdédoon 1ng oxediaong pag £pBace ota 250MHz oTTwg €idape kal 010 4.5.
H avwtarn ocuxvétnta oe FPGA fitav 108 MHZ. To ox£016 pag XpnoIJoTroinoe
93.185 Aoyika kutTapa kai 94885 kaAwdia. 2tnv FPGA xpnoiyotroiiénkav

275.452 1mUAeg. Ta atmroteAéopaTta atrd T0 Synopsys @aivovTal TTapakaTw :

Cells 93185 5.343.404 100
sp_mem64x32 4 101.770 1,9
sp_mem256x32 88 3773985,531 70,6
sp_mem256x128 1 146625 2,7
sp_mem512x32 4 279.299 5,2
memories 97 4301679,344 80,5
flip-flop and latch 8796 320644,2271 6
non combinational 8893 4622323,571 86,5
combinational 84292 721080,429 13,4

21ov Trivaka 2 BAETToupe TIG dlagopég ueTalu Tng ASIC oxediaong kai Tng

FPGA oxediaong.

Mivakag 1 - amroteAéouara
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Mivakag 2 - Z0ykpion
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5. EpTreIpieg Kal ZUPTTEPACHATA

O1rwg avaeépinke Kal oTnv apxn WYAaxvoupe TIG AUCEIG TTou Ba TTapdoxouv TO
YPNYOPATEPO XPOVO OTNV ayopd, To XaunAdTEPO KOOTOG Kal TNV uwnAOTEPN
atrodoan yia TIG dIadoXIKES yeveES Twv TTpoidvTwy. O FPGAs mmdoyouv atrd
upnAd  KOOTOG  ava-povadwyv,  XaunA ammdédoon, XAMNAG  eTTiTTEdQ
OAOKAApWONG Kal peyaAn katavaAwon 1oxuog. AvtiBeta, Ta ASICs €xouv
OPKETA XaPNAOTEPO KOOTOG avé povada oe emimedo PAdIKAG TTapaywyng,

TTPOOPEPOUV UYNASTEPES ATTODOOEIG KAl KATAVAAWVOUV AlyoTEPN I0XU .

2€ QUTN TNV gpyacia TpooTtradnoaue va aAAdéouue pia FPGA spapuoyr o€
Mia ASIC yia Toug AGyoug TIOU avagEépaue Trapammavw. KatopBwoaue

EMTUXWG va UAoTtToifooupe Tov CCproc og ASIC.

H eumepia amd 1 diadikaoia ouvBeong eival TTOAU XPAOIPN OE €vav
oxedlaoTr UAIKOU. ApXIKA, 0 oXeDIAOTNG, JaBaivel TTWGS va YPAPEl TEXVOAOYIKA
ave¢dptntn VHDL. MaBaivel €mmiong tnv akpipr] METAQPAOn Ot UAIKO TOu
behavioral kwdIkd Tou. H €Tdépevn onuUaAvTIKA eUTTEIpia yia €vav oxedIOOTH
UAIKOU gival OTI paBaivel TTwg va xpnoiyotrolei anuavtikd CAD epyaleia (0TTwg
ISE ka1t SYNOPSYS).

lNna va ocuvoyiooupe, peyaho pépog Twv FPGA g@apuoywyv KOTaAryouv o€

ASIC 6tav B€Aoupe va eMITUXOUNE TOUG OTOXOUG TTOU QVAPEPAUE TTAPATTAVW.
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Mapdaptnua A : YroBadpo kail n Apxitektovikr Ccproc

In this chapter we focus on describing Cryptium. Firstly we will see some very
important things about cryptography and the most popular and safe ciphers
that nowdays are used. Then we focus on describing CCproc’s

Architecture as implemented before synthesis in Synopsys.

21 Cryptography

Cryptography [13] (derived from Greek kputrtdg kryptds "hidden," and ypdgeiv
grafein "to write") is a discipline of mathematics concerned with information
security and related issues, particularly encryption, authentication, and access
control. Its purpose is to hide the meaning of a message rather than its
existence. In modern times, it has also branched out into computer science.
Cryptography is central to the techniques used in computer and network

security for such things as access control and information confidentiality.

A cryptographic algorithm, or cipher, is a mathematical function used in the
encryption and decryption process. A cryptographic algorithm works in
combination with a key( a word, number, or phrase ) to encrypt the plaintext.
The same plaintext encrypts to different ciphertext with different keys. The
security of encrypted data is entirely dependent on two things: the strength of

the cryptographic algorithm and the secrecy of the key.

2.2 Public and Private Key Ciphers

Two forms of cryptography are commonly used in information systems today,

which are shown in next figure:

e Symmetric Key or Private Key ciphers.

e Asymmetric Key or Public Key ciphers.
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Figure1 - Public-key (down) and Symmetric-key (up) algorithms

As it is shown from figure 1, public key ciphers, use two types of keys, a
public that is used to encrypt data, and a private that is used to decrypt the
encrypted data. On the other hand, private key ciphers use only a private key
for both data encryption and decryption. Another fact is that private key
ciphers are much faster than public key ciphers[l2], so during a secure data
exchange, at first a private key is shared between the users with a public key
cipher and then all other data are being transmitted with a private key cipher,

that uses the previous private key for encryption / decryption. More
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specifically, the entire process of a secure communication channel

establishment is as follows:

1. Person A sends his public key to person B through an unsecured

communication channel.
2. B encrypts its secret key with a public key cipher and sends it to A.
3. A decrypts the encrypted secret key with his private key.

4. From this moment all data are encrypted / decrypted with symmetric

key ciphers.

However, there still are various ways to decipher encrypted communications
without knowing the proper keys. Examples are brute force attacks, where all
possible keys are being tried, ciphertext-only attacks, where the attacker tries
to guess the plaintext with theoretical methods such linear and differential
cryptanalysis[6], and man-in-the-middle attacks, where an adversary positions
himself between A and B persons and intercepts each signal they send to
each other[l2].

2.3 Private Key Algorithms

In Orded to understand Why Cryptium supports specific private key ciphers in
this chapter we focus on symmetric key ciphers. Specific attention was paid to
choose which algorithms to study, because many of them have weaknesses.
So, in order to make our analysis as complete as possible, the following
algorithms were chosen: Rijndael [7] MARS [8], Twofish [9] Serpent [10],
Blowfish [12], RC4 [I5], DES (Data Encryption Standard) [I6], RC5 [13],
International Data Encryption Standard (IDEA) [14]. This group contains only
the five AES (Advanced Encryption Standard) finalists of round 2 [I7], i.e. the
strongest ones of the AES candidates. It also, has the previous standard
encryption algorithm DES, plus Blowfish, IDEA, RC4, RC5 which are older
and widely used. All these facts it is believed that led in a very realistic and
representative choice of the best symmetric key ciphers ever designed, in

order to proceed into further analysis.
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Every symmetric cipher has the following three important parameters:

1. The number of bits in its secret key.
2. The size of the data block that operates on (also in bits).
3. The number of processing rounds.

Depending on the size of data block, symmetric ciphers have two categories:

e Block ciphers that operate on large data blocks.
e Stream ciphers that operate usually on one bit.

Table 1 shows all these attributes for the ciphers mentioned before. Figure 2
shows a generic schematic for the encryption / decryption process. Before
message encryption starts, every symmetric cipher has an initialization phase,
which is mainly the key expansion. More specifically, the secret key is
processed in a certain way and the result is a number of other keys that some
of them are used in different encipher / decipher rounds. In rare cases, also
other required operations occur, such as in Blowfish, where its substitution

boxes are being created.

Algorithm | Type Key size | Block size
(bits) (bits)
Blowfish Block | up to 448 64
Twofish Block | up to 256 128
DES Block 64 64
Rijndael Block | up to 256 128
MARS Block | 128 to 400 128
Serpent Block 256 128
IDEA Block 128 64
RC4 Stream | up to 2048 8
RC5 Block | up to 2040 >0
RC6 Block | up to 2040 >0

Table 1 — Symmetric ciphers categories

After the entire initialization phase is completed, encryption process begins.
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The latter consists of a certain number of various types of arithmetic
operations that are being applied on the plaintext for a specific number of
rounds. Once the defined round number has been reached, encryption
process is finished and ciphertext is ready to be transmitted. Decryption
process in most cases, if it is not identical, then it is almost the same as the
encryption process, where again various types of arithmetic operations are
being performed on ciphertext for a specific number of rounds, in order the

recipient to retrieve the original message.

Plaintext / Secret
Ciphertext Key

Ny

A

Arithmetic Expanded
operations Keys

NO
Rounds
completed?

YES

A

Ciphertext /
Plaintext

figure2 — Encryption / Decryption process

Symmetric key ciphers are designed in such a way that it will as difficult to
break as possible. In order to achieve the highest security level, designers
have to consider, among others, the kind of arithmetic operations that will be
used, the size of the data block and secret key, and the number of processing

rounds.

Data block and key size affect the hardware resources that will be needed,
mostly the number of registers and memory allocation. Key size also heavily
contributes to the cipher's security level, because, when using brute force
attack, the required computing power increases exponentially with it. Today

an acceptable key size is at least 80-bit, while 128-bit will probably remain
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unbreakable by brute force attacks for the foreseeable future.

The number of rounds also affects considerably a cipher's security level,
because, in each one of them, previous processed data get “scrambled” even
more. It is on the designer’s decision of how many total rounds a cipher will
consist of. Fewer rounds mean lesser security, but on the other hand, quicker
data block processing. As a result, the appropriate round number depends on
the round’s itself strength, i.e. the arithmetic operations that are applied to a

data block in each one of them.

When the above ciphers had been designed, processors were still 32-bit and,
consequently, most of the arithmetic operations are chosen to take advantage
of it. Also, it is imperative that these operations present rapid bit diffusion, in
order to increase the cipher’s security. Theodoropoulos [5] concluded that the

operations and structures most commonly used are:

10.Unsigned addition and subtraction modulo 22

11. Multiplication modulo 2°

12. Exclusive or (xor) between 32-bit data

13.Fixed shifts and rotations

14.Data depended shifts and rotations

15. Finite field polynomial multiplication in 2% modulo a prime polynomial
16. Expansions and permutations (Xboxes)

17.Substitution boxes (Sboxes)

18. Feistel network structures [15].
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2.4 Algorithm Implementations and Symmetric cipher

accelerators

There are three kind of algorithm implementation :

e C and Assebly Implementations
e Algorithm Specific Hardware Implementations

e Symmetric Ciphers ISA extensions and Hardware Co-Processors

Hardware implementations provide higher speed than software
implementations. The algorithm specific hardware Implementation category
provides ultra speed performance for each symmetric algorithm, because of
the dedicated hardware processors. The last category , is somehow “in the
middle” of the previous two and it focuses on symmetric ciphers specific
hardware co-processors. These designs may extend an existing processor’'s
architecture in order to support more efficiently symmetric ciphers, or even
introduce new co-processors specifically for some of them. As it may be easily
comprehended, this category can be characterized as the hardest of all,
because it requires deep parallel analysis of many symmetric ciphers and
extra effort, in order to obtain a balanced between performance and flexibility

design.

Burke et al in [17] are trying to improve the performance of symmetric ciphers
for the Alpha 21264 processor by examining eight algorithms. After analysis of
bottleneck in these ciphers, they conclude to an extended ISA that consists of
hardware rotations, modulo multiplication, permutation and Sbox access
instructions and may achieve up to a 74% speedup over the baseline

machine.

Murat Fiskiran et al in [18] study the effect of different addressing modes that
can be used to calculate the effective address during Sbox access. More
specifically they determinate how performance is affected on 1, 2, 4 and 8

wide EPIC (Explicitly Parallel Instruction Computer) processors depending on
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addressing mode of the architecture, issue width of the processor and number
of memory ports. The results indicate that speedups exceeding 2x can be

obtained when fast addressing modes are used.

Another similar approach comes from [19], where the same authors describe
a new hardware module called PTLU (Parallel Table Look Up). It consists of
multiple LUTs that can be accessed in parallel and its purpose is again Sbox
access acceleration. Their results show maximum speedups of 7.7x for AES

and 5.4x for DES, all tested on a single-issue 64-bit RISC processor.

Finally, Jung et al in [20]are trying to accelerate multiplication in GF (2")
execution, an operation rather frequent in symmetric ciphers as stated in
section 2.2. To be more specific, in this project they automate the design
process for this kind of multipliers with VHDL (Very high speed intergraded
circuit Hardware Description Language) and compare their results with other

GF multipliers both on FPGA and ASIC implementations.

2.5 The Ccproc Architecture

Ccproc is a [6] VLIW symmetric cipher co-processor who is flexible
enough to support all Advanced Encryption Standard (AES) round two
finalists, but also potential to new ones symmetric ciphers.

It has been observed that all AES round two finalists treat 128-bit plaintext as

four 32-bit words. Many times during processing, symmetric ciphers require
64-bit, 96-bit or even 128-bit data values at the same time in order to proceed.
This led to the decision to build a VLIW co-processor with four clusters, as

shown in figure 3.
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Figure 3— CCproc’s schematic overview

First of all, there is an instruction fetch unit, which takes on to fetch a 128-bit
data value and pass it to the four clusters as four 32-bit instructions. Bits 127
down to 96 form cluster’s A instruction, bits 95 down to 64 form cluster’s B
instruction, bits 63 down to 32 form cluster’s C instruction and bits 31 down to
0 form cluster's D instruction. As it can be seen in figure 4, there is an
instruction cache 256x128 size, where quads of 32-bit instructions are stored.
PC is the program counter register that holds the instruction cache’s access
address. Multiplexer A selects with “nPCsel” between PC address and an
address “label” generated from the “loop controller” unit, in case there is a
loop instruction, while multiplexer B selects again with “nPCsel” between
“label” and PC to pass into the adder for next instruction’s address effective

calculation.
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Figure 4 — CCproc’s instruction fetch unit

After a 128-bit data value has been fetched, it is separated to four 32-bit

instructions that are directly connected with each cluster's decode stage,

whose high level schematic is shown in figure 5.
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Figure 5 — Decode unit

The main unit in this stage is the Decode controller, which decodes each 32-
bit “Instr” instruction comes from the “instruction fetch” unit. It produces valid
RF and KRF addresses, plus many other control signals that pass through the
next stages via the R1 pipeline register. “AluOutWB” contains every data that
will be stored to RF or KRF. Finally there is an “Address Comparator” unit that
compares “addresses” signals, which contain RF write addresses to next
stages with current’s instruction target register in RF. Every control signal that
this unit produces, pass through pipeline register R2. It should be noted that
R1 and R2 pipeline registers have the same meaning with the R one between

“decode” and “execution” stages in figure 3.

The register file was designed, as shown in figure 6, having three copies of

an 8x32 register set.With this design we read up to three different registers in
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a single clock cycle RF is fully synchronous, which means that reading from
and writing to it occurs on the positive clock edge. During a read operation,
each one of them can provide an independent 32-bit register, through each
one of the “RdAddr1”, “RdAddr2” and “RdAddr3” address signals, resulting up
to three 32-bit registers to “DataOut1”, “DataOut2” and “DataOut3” signals in
single clock cycle. This is particularly useful when double-instructions occur
where three operands are needed at the same time. However, all copies must
always be identical to each other, so there is only one “WrAddr”, “WrEn” and
“Dataln” signal, writing every time the same data in each RF core.

When one or more of the “RdAddr1”, “RdAddr2” and “RdAddr3” signals are
equal to the “WrAddr” signal, there is logic that passes immediately “Dataln”
value to the appropriate “DataOutX” signal. In other words, this RF utilizes a
Read-After-Write scheme.

RAAddrl———p{R4Addr Dout—» DataQOutl
Dataln——e-»{Din RF core
WrAddr p-| WrAddr
WrEn - (WrEn
RdAddr2 > RdAddr Dout—® DataQut2
e Din RF core
B
p{ WrAddr
- WrEkn
RdAddr3 » RdAddr Dout—® DataOut3
L p|Din RF core
Ll WrAddr
—— | WrEkn

figure 6 - Register File

The KRF is a special RAM in each cluster's decode stage, where a cipher’s

expanded keys are stored. Every KRF is a 64x32 data space, meaning it has
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sixty four 32-bit registers

Next stage is the execution stage, where all logic and arithmetic operations

are performed and is shown in figure 7.

Inl >

ALU

In2 >

A
In3 >

func
' \\Q\
GFM >
16x8x8
> A >

MM
32x32

Twofish
SboxEx

Figure 7 — Execution stage

The ALU, GF multiplier 16x8x8 and MM functional units are all placed here.
RF outputs that have come from the previous pipeline stage are their inputs
and depending on the operation that needs to be performed, multiplexer A
selects the appropriate result. As it was shown in figure 7, before the next
pipeline register, there is a “MX” (X=A, B, C, D) 4-to-1 multiplexer that selects
among the multiplexer's A outputs of each cluster's execution stage. These
multiplexers are used in case data need to be switched between clusters, by
using the appropriate “move” instruction. Also in this stage there is Twofish’s

Sboxes first portion.
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In symmetric ciphers there is a high frequency occurrence of two dependent,
back-to-back instructions. Examples are double additions, subtractions and
XOR, and addition or subtraction followed by a XOR. In order to save valuable
computing clock cycles it was decided that this type of double-instructions
should be included in CCproc’s ISA. This is the reason that the processor’s
ALU has three 32-bit inputs and one 32-bit output. As it can be observed in
figure 8, there are three 32-bit ASUs (Addition / Subtraction Units), three 2-
input 32-bit xors and three multiplexers. ASU A adds or subtracts inputs “In1”
and In2”, while gate A makes a xor operation between them. If there is a
double-instruction, results from ASU A and gate A, are passed, in combination
with “In3”, through ASUs B and C, and gates B and C. Finally multiplexers A,
B and C are used to select appropriate data depending on the value of “func”
field while, in arrows before multiplexer C is shown operation allocation. ALU
instructions have the below specific format:

Result < (In1 op1 In2) op2 In3

where “In1”, “In2” and “In3” are the three “ALU core 1” inputs and op1, op2

are the two operations that may be performed.

a([dl add2 xor2 double : xorl
" j +/- add, sub
In2 o I \
xor »00
» — O c
—7] A >0 >
Y . —»{[]
- 1Y addadd, subadd,
o addsub, subsub
In3 > +/- - Uj addxor, subxor
> B >
)
s
v
- +/_ > : xoradd, xorsub
- >l xXorxor
C
QE
figure 8 - ALU
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Besides the “ALU core 1” there is another functional unit, called “ALU core 27,
that is used for data rotations and shifts, and is shown in figure 9. More
specifically there are two SRUs (Shift / Rotate Units), which take as inputs 32-
bit “Dataln” that will be shifted / rotated, a 5-bit “amount” that indicates the
specific shift / rotation amount plus a “shift / rotate” signal that selects shift or
rotation. Once the two SRU’s have finished, multiplexer A selects the

appropriate direction, depending on instruction that were issued.

left /right
INl— e—»{Dataln DataOut
Shift / Rotate
Left
In2 »| amount
_ S/R
shift / +
rotate
L Dataln DataOut
Shift / Rotate
Right
L » amount
S +/ R

figure 9—ALU core2

In Virtex 4 FPGAs there is a new block called “XtremeDSP slice” that
intergrades an 18x18 multiplier along with a 48x48 adder. Reference [16] has
an application note, which was used, on how to form a 32x32 multiplier from
these smaller ones; however its 32 MSBs were omitted, in order to perform

modulo 2% computations, as it is shown in figure 10.
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figure 10 — 32x32 multiplier modulo 2%

As it was mentioned, in each slice there is an 18x18 multiplier, resulting in the
utilization of three such units along with their respective adders. Slices 1 and
3 are used to produce the final result’s bits, while slice 2 to compute an
intermediate product. It should be also noted that every slice has, among
others, a register between multiplier and adder called “M”, plus one before
each output called “P” and have been used to increase its maximum operating
frequency. These registers in combination with the external “R” one, lead to a

cost of 2 computing clock cycles per modulo multiplication.

Next stage is the memory stage. As it is shown in figure 11 all Sboxes have
been placed to each cluster's memory stage, with the exception of Twofish,
where a small portion is also in execution stage. Serpent also doesn’t have its
sboxes in every cluster because of its multiple instances.It should be noted
that there is no reference to RC6 cipher, because it does not utilize any

Sboxes at all.
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figure 11 — Sbox stage

Sboxes are usually non-linear structures that map an n-bit value to an m-bit
value, essentially Look Up Tables (LUT). A symmetric cipher may have one or
more different Sboxes, with each one of them having arbitrary dimensions, as
shown in 12. Also the Sbox may even be the only non-linear part of the
cipher.

Carefully chosen Sboxes can provide good resistance against linear and
differential attacks, as well as good data and key bits avalanche. A drawback
when using them is their relative slow software implementation. Also their

index consists of a few bits (otherwise they would be too large), so they must
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deliberately be placed in a cipher.

—m bits—| — j bits —|
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Figure 12 - Sboxes

Permutation is the structure where bits change place among each other, while
in expansion, bits are also mixed but some of them appear more than once.
They are linear operations, and thus not sufficient to guarantee security.
However, when used with good non-linear Sboxes, they are vital for the

security because they propagate the non-linearity uniformly over all bits.

2.6 Performance Evaluation on Xilinx Virtex 4 FPGA Devices

This section focuses on evaluating CCproc’s performance while processing
the AES round two finalists. Until now there is only a first prototype built on
Virtex 4 FPGAs, which has been successfully verified in post-place and route
simulation level. In order to evaluate its performance, first the total number of

processing clock cycles needed for each cipher was measured and the results

are shown in chart 1.
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Chart 1 - CCproc'sperformancein clock cyclesfor the AESround two finalists

Xilinx XST (Xilinx Synthesis Tool) and ISE 7.1i reported the results shown in
XY. The XC4VLX40 FPGA is the third smallest in the Virtex 4 series, a fact
showing that CCproc is a compact design (275452 gates), capable to fit into

today’s smaller Virtex 4 FPGAs. The complete set consists of 1, 3 and 4-core
implementations mapped on XC4VLX40, XC4VLX100, XC4VLX160 and
XC4VLX 200 FPGAs. It should be noted that devices with speed grade equal

to -12, create the fastest implementations.

Speed | CCproc | Freq e Memory | Xtreme
FPGA Utilization

Grade | Cores | (MH2) Blocks DSP
XC4VLX40 -12 1 95% 18 12
XC4VL X100 -12 1 108 36% 18 12
XC4VL X160 -12 3 77% 54 36
XC4VLX60 -11 1 95 19.6% 18 12
XC4AVL X200 -11 4 78.6% 72 48

Table 2— CCproc's performance statistics

Based on the above performance results, chart 2 shows the achieved

throughput for all AES round two finalists in ECB mode, in each multi-core
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CCproc implementation. The formula that is used to extract results for 1-core

implementations is the one below, where F is the design’s operating

frequency and cc are the processing clock cycles:

%(EMM)Mbits/sec

Throughput =

Mbits/sec
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Chart 1 -CCproc M ulti-corethroughputsin ECB mode
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In this chapter we analyze the synthesis methodology and the tools we used
to accomplish this process. Synthesis is a blanket term which refers to the
automatic translation of HDL code into an equivalent netlist of digital cells.
Netlist is nothing but the structural logic description equivalent to the HDL
input source. The source (HDL code) is the technology independent logic
description written by the designer. The netlist contains the technology
specific digital cells required for the actual design[l1]. The market leader in

logic synthesis software is Synopsys.

3.1 Synopsys

For the procedure of synthesis we used the Synopsys Design Compiler[1].
The Design Compiler product is the core of the Synopsys synthesis software
products. It comprises tools that synthesize our HDL designs into optimized
technology-dependent, gate-level designs. It supports a wide range of flat and
hierarchical design styles and can optimize both combinational and sequential

designs for speed, area, and power.

(F_if'_H_D Ls DEFE_E---: YHDL Compiler

T
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figure 13 - Design Compiler Synthesis Process Overview

Design Compiler reads and writes design files in all the standard electronic
design automation (EDA) formats, including Synopsys internal database (.db)
and equation (.eqn) formats. In addition, Design Compiler provides links to

EDA tools, such as place and route tools, and to post-layout resynthesis
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techniques, such as in-place optimization. These links enable information
sharing, including forward-directed constraints and delays, between Design

Compiler and external tools.

Design Compiler provides two user interfaces:

e The Design Compiler command-line interface, or shell, referred to as
dc_shell. This interface supports both the Design Compiler shell
language(dcsh) and an augmented tool command language (Tcl). To
run.

e The Design Compiler graphical user interfaces (GUI), either the Design

Analyzer or the Design Vision product.

3.2 Design Compiler Tools

Synopsys provides a spectrum of Design Compiler tools, which vary in
complexity with the features offered. We choose the right tool for our design
environment and synthesis requirements. Using Design Compiler tools, we

can

e Produce fast, area-efficient ASIC designs by employing user

specified gate-array, FPGA, or standard-cell libraries

e Translate designs from one technology to another

e Explore design tradeoffs involving design constraints such as timing,
area, and power under various loading, temperature, and voltage
conditions

e Synthesize and optimize finite state machines, including automatic
state assignment and state minimization

e Integrate netlist inputs and netlist or schematic outputs into third-

party environments while still supporting delay information and place and
route constraints

e Create and partition hierarchical schematics automatically
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3.3 Supported File Formats

Design compiler supports various design file formats (EDIF, VHDL, Verilog,
db, sdf).The .db file format is the Synopsys database format and the .sdf is

the standard delay format.

3.4 Resource Requirements

To compile 100K gates, Design Compiler requires at least 512 MB of RAM
and 1 GB of swap space. In addition, approximately 1 GB of disk space is
required for each 100K gates, and approximately 1 GB of disk space is

needed for the Synopsys software

3.5 The High-Level Design Flow

In a basic high-level design flow, as we can see in figure 15, Design Compiler
is used in both the design exploration stage and the final design
implementation stage. In the exploratory stage, we use Design Compiler to
carry out a preliminary, or default, synthesis. In the design implementation

stage, we use the full power of Design Compiler to synthesize the design.
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figure 14 - Basic High-Level Design Flow proposed by Synopsys
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. Start by writing an HDL description (Verilog or VHDL) of our design.

We use good coding practices to facilitate successful Design

Compiler synthesis of the design.

. Perform design exploration and functional simulation in parallel.

In design exploration, we use Design Compiler to (a)
implement specific design goals (design rules and
optimization constraints) and (b) carry out a preliminary,
“‘default” synthesis (using only the Design Compiler default
options).

If design exploration fails to meet timing goals by more than
15 percent, we modify our design goals and constraints, or
improve the HDL code. Then repeat both design exploration
and functional simulation.

In functional simulation, determine whether the design
performs the desired functions by using an appropriate
simulation tool.

If the design does not function as required, we must modify
the HDL code and repeat both design exploration and
functional simulation.

We continue performing design exploration and functional
simulation until the design is functioning correctly and is

within 15 percent of the timing goals.

3. We perform design implementation synthesis by using Design

Compiler to meet design goals. After synthesizing the design into a gate-
level netlist, we verify that the design meets our goals. If the design does
not meet our goals, we generate and analyze various reports to determine

the techniques we might use to correct the problems.

4. After the design meets functionality, timing, and other design goals,
we complete the physical design (either in-house or by sending it to our

semiconductor vendor). We analyze the physical design’s performance by
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using back-annotated data. If the results do not meet design goals, we
return to step 3. If the results meet our design goals, we are finished with

the design cycle.

3.6 Following the Basic Synthesis Flow

In figure 16 we see the basic synthesis flow. We can use this synthesis flow in
both the design exploration and design implementation stages of the high-
level design flow discussed previously. Also listed in figure are the basic

dc_shell commands that are commonly used in each step of the basic flow.
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figure 15 - Basic Synthesis Flow

The basic synthesis flow consists of the following steps:

3.6.1 Develop HDL Files

The input design files for Design Compiler are often written using a hardware
description language (HDL) such as Verilog or VHDL. These design
descriptions need to be written carefully to achieve the best synthesis results
possible. When writing HDL code, we need to consider design data

management, design partitioning, and our HDL coding style. Partitioning and
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coding style directly affect the synthesis and optimization processes.

HDL coding is the foundation for synthesis because it implies the initial
structure of the design. When writing our HDL source code, we always have
to consider the hardware implications of the code. A good coding style can
generate smaller and faster designs. Writing technology-independent HDL is
the first step to succeed our goal. The input HDL is parsed (also called as
analysis) and translated (also called as elaboration) to a data structure. This
data structure is converted into a network of generic logic cells. This network
of generic logic cells is technology-independent since cell libraries in any
technology normally contain NAND gates and inverters. The next thing we
have to be careful when writing HDL source is that the Design Compiler will
not accidentally infer elements as latches and flip-flops. Design Compiler can
infer a generic multiplexer cell from case statements in our HDL code. VHDL
Compiler infers a D latch whenever we do not specify the resulting value for
an output under all conditions, as in an incompletely specified if or case
statement. When an if statement used in a Verilog always block or VHDL
process as part of a continuous assignment does not include an else clause,
Design Compiler creates a latch. The following examples show if statements

that generate latches during synthesis.

Example Incorrect if Statement (Verilog)
if ((a == 1) && (b == 1))
z = 1;

Example Incorrect if Statement (VHDL)
ifT (a="71"and b = ”1”) then

z <= 717;

end if;

An incomplete case statement results in the creation of a latch. VHDL does
not support incomplete case statements. In Verilog we can avoid latch
inference by using either the default clause or the full_case compiler directive.
Although both the full_case directive and the default clause prevent latch

inference, they have different meanings. The full_case directive asserts that
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all valid input values have been specified and no default clause is necessary.
The default clause specifies the output for any undefined input values. For
best results, we use the default clause instead of the full_case directive. If the
unspecified input values are don’t care conditions, using the default clause
with an output value of x can generate a smaller implementation. If we use the
full_case directive, the gate-level simulation might not match the RTL
simulation whenever the case expression evaluates to an unspecified input
value. If we use the default clause, simulation mismatches can occur only if
we specified don’t care conditions and the case expression evaluates to an

unspecified input value.

HDL Compiler can also infer SR latches and master-slave latches. HDL
Compiler infers a D flip-flop whenever the sensitivity list of a Verilog always
block or VHDL process includes an edge expression (a test for the rising or
falling edge of a signal). HDL Compiler can also infer JK flip-flops and toggle
flip-flops. We have to be careful when mixing rising- and falling-edge-triggered
flip-flops in our design. If a module infers both rising- and falling-edge-
triggered flip-flops and the target technology library does not contain a

falling-edge-triggered flip-flop, Design Compiler generates an inverter in the

clock tree for the falling-edge clock.

When writing HDL we have to avoid Inferring Registers Without Control
Signals[4]. For inferring registers without control signals, make the data and
clock pins controllable from the input ports or through combinational logic. If a
gate-level simulator cannot control the data or clock pins from the input ports
or through combinational logic, the simulator cannot initialize the circuit, and
the simulation fails. We have to be cautious when Inferring Three-State
Drivers. We assign the high-impedance value (1’bz in Verilog, 'Z' in VHDL) to
the output pin to have Design Compiler infer three-state gates. Three-state
logic reduces the testability of the design and makes debugging difficult.
Where possible, we replace three-state buffers with a multiplexer. We never
use high-impedance values in a conditional expression. HDL Compiler always
evaluates expressions compared to high-impedance values as false, which

can cause the gate-level implementation to behave differently from the RTL

54



description.

3.6.2 Specify Libraries

We specify the link, target, symbol, and synthetic libraries for Design Compiler
by using the link_, target , symbol , and synthetic_library commands. The
link and target libraries are technology libraries that define the semiconductor
vendor’'s set of cells and related information, such as cell names, cell pin

names, delay arcs, pin loading, design rules, and operating conditions.

3.6.3 Read Design

Design Compiler uses HDL Compiler to read both RTL designs and gate-level
netlists as design file input. We use the analyze and elaborate commands to
read RTL designs, and we use the read_file command (or read command) to
read gate-level netlists. Design Compiler supports all the principal gate-level

netlist formats.

3.6.4 Define Design Environment

Design Compiler requires that we model the environment of the design to be
synthesized. This model comprises the external operating conditions
(manufacturing process, temperature, and voltage), loads, drives, fanouts,

and wire load models. It directly influences design synthesis and optimization

results.
In Design Compiler, the model is defined by a set of attributes and constraints

that we assign to the design, using specific dc_shell commands. Figure 17

illustrates the commands used to define the design environment.
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figure 16 - Commands Used to Define the Design Environment

In most technologies, variations in operating temperature, supply voltage, and
manufacturing process can strongly affect circuit performance (speed). These

factors, called operating conditions, have the following general characteristics:

e Operating temperature variation
Temperature variation is unavoidable in the everyday operation of a
design. Effects on performance caused by temperature fluctuations are
most often handled as linear scaling effects, but some submicron silicon
processes require nonlinear calculations.
e Supply voltage variation
The design’s supply voltage can vary from the established ideal value
during day-to-day operation. Often a complex calculation (using a shift in
threshold voltages) is employed, but a simple linear scaling factor is also
used for logic-level performance calculations.
e Process variation
This variation accounts for deviations in the semiconductor fabrication
process. Usually process variation is treated as a percentage variation in
the performance calculation.
When performing timing analysis, Design Compiler must consider the worst-
case and best-case scenarios for the expected variations in the process,

temperature, and voltage factors.
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If the technology library contains operating condition specifications, we can let
Design Compiler use them as default conditions. Alternatively, we can use the
set_operating_conditions command to specify explicit operating conditions,

which supersede the default library conditions.

One of the most important things we have to define is Wire Load Models. Wire
load modeling allows us to estimate the effect of wire length and fanout on the
resistance, capacitance, and area of nets. Design Compiler uses these
physical values to calculate wire delays and circuit speeds. Semiconductor
vendors develop wire load models, based on statistical information specific to
the vendors’ process. The models include coefficients for area, capacitance,
and resistance per unit length, and a fanout-to-length table for estimating net
lengths (the number of fanouts determines a nominal length). In the absence
of back-annotated wire delays, Design Compiler uses the wire load models to
estimate net wire lengths and delays. Design Compiler determines which wire
load model to use for a design, based on the following factors, listed in order

of precedence:

1. Explicit user specification
2. Automatic selection based on design area

3. Default specification in the technology library

If none of this information exists, Design Compiler does not use a wire load
model. Without a wire load model, Design Compiler does not have complete
information about the behavior of our target technology and cannot compute
loading or propagation times for our nets; therefore, our timing information will
be optimistic. In hierarchical designs, Design Compiler must also determine
which wire load model to use for nets that cross hierarchical boundaries. The
tool determines the wire load model for cross-hierarchy nets
based on one of the following factors, listed in order of precedence:

1. Explicit user specification

2. Default specification in the technology library

3. Default mode in Design Compiler
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Design Compiler supports three modes for determining which wire

load model to use for nets that cross hierarchical boundaries:

e Top

Design Compiler models nets as if the design has no hierarchy and uses
the wire load model specified for the top level of the design hierarchy for
all nets in a design and its subdesigns. The tool ignores any wire load
models set on subdesigns with the set wire_load_model command. We
use top mode if we plan to flatten the design at a higher level of hierarchy
before layout.

e Enclosed

Design Compiler uses the wire load model of the smallest design that fully
encloses the net. If the design enclosing the net has no wire load model,
the tool traverses the design hierarchy upward until it finds a wire load
model. Enclosed mode is more accurate than top mode when cells in the
same design are placed in a contiguous region during layout. We use
enclosed mode if the design has similar logical and physical hierarchies.

e Segmented

Design Compiler determines the wire load model of each segment of a net
by the design encompassing the segment. Nets crossing hierarchical
boundaries are divided into segments. For each net segment, Design
Compiler uses the wire load model of the design containing the segment. If
the design contains a segment that has no wire load model, the tool
traverses the design hierarchy upward until it finds a wire load model. We
use segmented mode if the wire load models in our technology have been

characterized with net segments.

In figure 18 we see a sample design with a cross-hierarchy net, cross_net.
The top level of the hierarchy (design TOP) has a wire load model of 50x50.
The next level of hierarchy (design MID) has a wire load model of 40x40. The
leaf-level designs, A and B, have wire load models of 20x20 and 30x30,

respectively.
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figure 17 - Comparison of Wire Load Mode

In top mode, Design Compiler estimates the wire length of net cross net,
using the 50x50 wire load model. Design Compiler ignores the wire load
models on designs MID, A, and B.

In enclosed mode, Design Compiler estimates the wire length of net
cross_net, using the 40x40 wire load model (the net cross_net is completely
enclosed by design MID).

In segmented mode, Design Compiler uses the 20x20 wire load model for the
net segment enclosed in design A, the 30x30 wire load model for the net
segment enclosed in design B, and the 40x40 wire load model for the

segment enclosed in design MID.

The technology library can define a default wire load model that is used for all
designs implemented in that technology. The default wire load library
attribute identifies the default wire load model for a technology library. Some
libraries support automatic area-based wire load selection. Design Compiler
uses the library function wire load_selection to choose a wire load model
based on the total cell area. For large designs with many levels of hierarchy,

automatic wire load selection can increase runtime. To manage runtime, set
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the wire load manually.

After specifying wire lode models and modes we have to model our systems
interface. Design Compiler supports the following ways to model the design’s

interaction with the external system:

e Defining drive characteristics for input ports

Design Compiler uses drive strength information to buffer nets
appropriately in the case of a weak driver. Drive strength is the reciprocal
of the output driver resistance, and the transition time delay at an input
port is the product of the drive resistance and the capacitance load of the
input port.We use set driving_cell and set_input_transition commands
wich affect the port transition delay, but they do not place design rule
requirements, such as max_fanout and max_transition, on input ports.
However, the set_driving_cell command does place design rules on input
ports if the driving cell has DRCs. Both the set drive and the
set _driving_cell commands affect the port transition delay. The
set_driving_cell command can place design rule requirements, such as
max_fanout or max_transition, on input ports if the specified cell has input

ports.

e Defining loads on input and output ports

By default, Design Compiler assumes zero capacitive load on input and
output ports. We use the set_load command to set a capacitive load value
on input and output ports of the design. This information helps Design
Compiler select the appropriate cell drive strength of an output pad and

helps model the transition delay on input pads.

e Defining fanout loads on output ports

We can model the external fanout effects by specifying the expected
fanout load values on output ports with the set fanout_load command.
Fanout load is not the same as load. Fanout load is a unitless value that
represents a numerical contribution to the total fanout. Load is a

capacitance value. Design Compiler uses fanout load primarily to measure
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the fanout presented by each input pin. An input pin normally has a fanout

load of 1, but it can have a higher value.

3.6.5 Set Design Constraints

Design Compiler uses design rules and optimization constraints to control the
synthesis of the design. Design rules are provided in the vendor technology
library to ensure that the product meets specifications and works as intended.
Typical design rules constrain transition times (set_max_transition), fanout
loads (set_max_fanout), and capacitances (set _max_capacitance). These
rules specify technology requirements that we cannot violate. (we can,
however, specify stricter constraints.) Optimization constraints define the
design goals for timing (clocks, clock skews, input delays, and output delays)
and area (maximum area). In the optimization process, Design Compiler
attempts to meet these goals, but no design rules are violated by the process.

To optimize a design correctly, we must set realistic constraints.

Design rule constraints are attributes specified in the technology library and,
optionally, specified by us explicitly. If a technology library defines these
attributes, Design Compiler implicitly applies them to any design using that
library when it compiles the design or creates a constraint report. We cannot

remove the design rule attributes defined in the technology library, because
they are requirements for the technology, but we can make them more
restrictive to suit our design. The transition time of a net is the time required
for its driving pin to change logic values. This transition time is based on the
technology library data. For the nonlinear delay model (NLDM), output
transition time is a function of input transition and output load. Design
Compiler and Library Compiler model transition time restrictions by
associating a max_transition attribute with each output pin on a cell. During
optimization, Design Compiler attempts to make the transition time of each
net less than the value of the max_transition attribute. To change the
maximum transition time restriction specified in a technology library, we use

the set_max_transition command. This command sets a maximum transition
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time for the nets attached to the identified ports or to all the nets in a design

by setting the max_transition attribute on the named objects.

The maximum fanout load for a net is the maximum number of loads the net
can drive. Design Compiler and Library Compiler model fanout restrictions by

associating a fanout_load attribute with each input pin and a max_fanout
attribute with each output (driving) pin on a cell. The fanout load value does
not represent capacitance; it represents the weighted numerical contribution
to the total fanout load. The fanout load imposed by an input pin is not
necessarily 1.0. Library developers can assign higher fanout load values to
model internal cell fanout effects. Design Compiler calculates the fanout of a
driving pin by adding the fanout_load values of all inputs driven by that pin. To
determine whether the pin meets the maximum fanout load restriction, Design
Compiler compares the calculated fanout load value with the pin’s max_fanout
value. During optimization, Design Compiler attempts to meet the fanout load
restrictions for each driving pin. If a pin violates its fanout load restriction,
Design Compiler tries to correct the problem (for example, by changing the
drive strength of the component). The technology library might specify default
fanout constraints on the entire library or fanout constraints for specific pins in
the library description of an individual cell. To set a more conservative fanout
restriction than that specified in the technology library, we use the
set_max_fanout command on the design or on an input port. (we use the
set_fanout_load command to set the expected fanout load value for output
ports.) If we use the set max fanout command and a library max_fanout
attribute exists, Design Compiler tries to meet the smaller (more restrictive)

fanout limit.

The transition time constraints do not provide a direct way to control the actual
capacitance of nets. If we need to control capacitance directly, we use the
set_max_capacitance command to set the maximum capacitance constraint.
This constraint is completely independent, so we can use it in addition to the
transition time constraints. Design Compiler and Library Compiler model
capacitance restrictions by associating the max_capacitance attribute with the

output ports or pins of a cell. Design Compiler calculates the capacitance on
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the output net by adding the wire capacitance of the net to the capacitance of
the pins attached to the net. To determine whether the net meets the
capacitance constraint, Design Compiler compares the calculated
capacitance value with the output pin’s max_capacitance value. We can also
use the set_min_capacitance command to define the minimum capacitance
for input ports or pins. Design Compiler attempts to ensure that the load seen
at the input port does not fall below the specified capacitance value, but it

does not specifically optimize for this constraint.

After setting design rules we have to set the optimization constraints. The
most commonly specified optimization Constraints are timing constraints and

area constraints.

set_max_area

create_clock | \\
set_clock_latency |

set_propagated_clock

set_clock_uncertainty

|
|
_| set_output_delay
I
|
|

figure 18 - Commands Used to Define the Optimization Constraints

Timing constraints specify the required performance of the design.

To set the timing constraints we :

1. Define the clocks.

For synchronous designs, the clock period is the most important constraint
because it constrains all register-to-register paths in the design. We use
the create_clock command to define the period (-period option) and
waveform (-waveform option) for the clock. If we do not specify the clock

waveform, Design Compiler uses a 50 percent duty cycle. In some cases,
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a system clock might not exist in a block. We can use the create_clock -
name command to create a virtual clock for modeling clock signals present
in the system but not in the block. By creating a virtual clock, we can
represent delays that are relative to clocks outside the block. By default,
Design Compiler assumes that clock networks have no delay (ideal
clocks). We wuse the set clock latency and set clock uncertainty
commands to specify timing information about the clock network delay. We
can use these commands to specify either estimated or actual delay
information. We use the set propagated_clock command to specify that
we want the clock latency to propagate through the clock network. We use
the -setup or -hold options of the set_clock latency command to add some
margin of error into the system to account for variances in the clock

network resulting from layout.

2. Specify the I/0O timing requirements relative to the clocks.

If we do not assign timing requirements to an input port, Design Compiler
responds as if the signal arrives at the input port at time 0. In most cases,
input signals arrive at staggered times. We use the set_input_delay
command to define the arrival times for input ports. We define the input
delay constraint relative to the system clock and to the other inputs. If we
do not assign timing requirements to an output port, Design Compiler does
not constrain any paths which end at an output port. We use the
set_output_delay command to define the required output arrival time. We
define the output delay constraint relative to the system clock. If an input
or output port has multiple timing requirements (because of multiple
paths), we use the -add_delay option to specify the additional timing

requirements.

3. Specify the combinational path delay requirements.
For purely combinational delays that are not bounded by a clock period,
we use the set_ max_delay and set min_delay commands to define the

maximum and minimum delays for the specified paths. A common way to
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produce this type of asynchronous logic in HDL code is to use
asynchronous sets or resets on latches and flip-flops. Because the reset

signal crosses several blocks, constrain this signal at the top level.

4. Specify the timing exceptions.

Timing exceptions define timing relationships that override the default
single-cycle timing relationship for one or more timing paths. We use
timing exceptions to constrain or disable asynchronous paths or paths that
do not follow the default single-cycle behavior. Design Compiler
recognizes only timing exceptions that have valid reference points. The
valid startpoints in a design are the primary input ports and the clock pins
of sequential cells. The valid endpoints are the primary output ports of a
design and the data pins of sequential cells. We can specify the following
conditions by using timing exception commands: False paths
(set_false_path), minimum delay requirements (set_min_delay), maximum
delay requirements (set_max_delay), multicycle paths
(set_multicycle_path). Design Compiler does not report false paths in the
timing report or consider them during timingoptimization. We use the
set_false_path command to specify a false path. We use this command to
ignore paths that are not timing critical, that can mask other paths that
must be considered during optimization, or that never occur in normal
operation. We can use the set_min_delay and set_max_delay commands
to specify path delay requirements that are more conservative than those
derived by Design Compiler based on the clock timing. The multicycle path
condition is appropriate when the path in question is longer than a single
cycle or when data is not expected within a single cycle. We use the
set_multicycle_path command to specify the number of clock cycles
Design Compiler should use to determine when data is required at a

particular endpoint.

After timing constraints we have to specify the area constraints. The

set_max_area command specifies the maximum area for the current design

by placing a max_area attribute on the current design. Specify the area in the

same units used for area in the technology library.
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3.6.6 Select Compile Strategy

The two basic compile strategies that we can use to optimize hierarchical
designs are referred to as top down and bottom up[3]. In the top-down
strategy, the top-level design and all its subdesigns are compiled together. All
environment and constraint settings are defined with respect to the top-level
design. Although this strategy automatically takes care of interblock
dependencies, the method is not practical for large designs because all
designs must reside in memory at the same time. In the bottom-up strategy,
individual subdesigns are constrained and compiled separately. After
successful compilation, the designs are assigned the dont_touch attribute to
prevent further changes to them during subsequent compile phases. Then the
compiled subdesigns are assembled to compose the designs of the next
higher level of the hierarchy (any higher-level design can also incorporate
unmapped logic), and these designs are compiled. This compilation process
is continued up through the hierarchy until the top-level design is synthesized.
This method lets us compile large designs because Design Compiler does not
need to load all the uncompiled subdesigns into memory at the same time. At
each stage, however, we must estimate the interblock constraints, and
typically we must iterate the compilations, improving these estimates, until all
subdesign interfaces are stable. Each strategy has its advantages and
disadvantages, depending on our particular designs and design goals. We
can use either strategy to process the entire design, or we can mix strategies,

using the most appropriate strategy for each subdesign.

The top-down compile strategy has these advantages:

e Provides a push-button approach

e Takes care of interblock dependencies automatically

On the other hand, the top-down compile strategy requires more memory and
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might result in longer runtimes for designs with over 100K gates. To

implement a top-down compile, carry out the following steps:

1. Read in the entire design.

2. Resolve multiple instances of any design references. A design that is

referenced by more than one instantiated block or cell must be resolved.

Otherwise,

Design Compiler cannot compute which environmental

attributes and constraints to apply to the design during optimization.

3. Apply attributes and constraints to the top level. Attributes and

constraints implement the design specification.

4. Compile the design.

There goes an example of a top-down compile strategy :

/* read
read -T
read -T
read -T
read -T
read -T
read -T

in the entire design */

verilog
verilog
verilog
verilog
verilog
verilog

E.v

SZDUJOD
U < < < <

current_design TOP

link

/* resolve multiple references */
uniquify
/* apply constraints and attributes */
include defaults.con

/* compile the design */

compile

The bottom-up compile strategy provides these advantages:
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e Compiles large designs by using the divide-and-conquer approach
e Requires less memory than top-down compile

e Allows time budgeting The bottom-up compile strategy requires

e |terating until the interfaces are stable

e Manual revision control

The bottom-up compile strategy compiles the subdesigns separately and then
incorporates them in the top-level design. The top-level constraints are
applied, and the design is checked for violations. Although it is possible that
no violations are present, this outcome is unlikely because the interface
settings between subdesigns usually are not sufficiently accurate at the start.

To improve the accuracy of the interblock constraints, we read in the top-level
design and all compiled subdesigns and apply the characterize command to
the individual cell instances of the subdesigns. Based on the more realistic
environment provided by the compiled subdesigns, characterize captures
environment and timing information for each cell instance and then replaces
the existing attributes and constraints of each cell’s referenced subdesign with
the new values. Using the improved interblock constraint, we recompile the
characterized subdesigns and again check the top-level design for constraint
violations. We should see improved results, but we might need to iterate the

entire process several times to remove all significant violations.

The bottom-up compile strategy requires these steps:
1. Develop both a default constraint file and subdesign-specific
constraint files. The default constraint file includes global constraints, such
as the clock information and the drive and load estimates. The subdesign-
specific constraint files reflect the time budget allocated to the subblocks.

2. Compile the subdesigns independently.

3. Read in the top-level design and any compiled subdesigns not
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already in memory.
4. Set the current design to the top-level design, link the design, and
apply the top-level constraints. If the design meets its constraints, we are

finished. Otherwise, we continue with the following steps.

5. Apply the characterize command to the cell instance with the worst

violations.

6. Use write_script to save the characterized information for the cell.

7. Use remove_design -all to remove all designs from memory.

8. Read in the RTL design of the previously characterized cell.

9. Set current_design to the characterized cell’'s subdesign and

recompile, using the saved script of characterization data.

10.Read in all other compiled subdesigns.

11.Link the current subdesign.

12.Choose another subdesign, and repeat steps 3 through 9 until we

have recompiled all subdesigns, using their actual environments.

When applying the bottom-up compile strategy, consider the following:

e The read_file command runs most quickly with the .db format. If we
will not be modifying our RTL code after the first time we read (or
elaborate) it, save the unmapped design to a .db file. This will save time
when we reread the design.

e The compile command affects all subdesigns of the current design. If

we want to optimize only the current design, we can remove or not include
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its subdesigns in our database, or we can place the dont_touch attribute

on the subdesigns (by using the set_dont_touch command).

There goes an example of a down top compile strategy :

all_blocks = {E,D,C,B,A}

/* compile each subblock independently */
foreach (block, all _blocks) {

/* read in block */

block _source = block + "_v"

read_fTile -format verilog block source
current_design block

link

uniquity

/* apply global attributes and constraints */
include defaults.con

/* apply block attributes and constraints */
block script = block + "_con™

include block script

/* compile the block */

compile

¥

/* read in entire compiled design */
read_file -format verilog TOP.v
current_design TOP

link

write -hierarchy -output first_pass.db

/* apply top-level constraints */

include defaults.con

include top_level.con

/* check for violations */
report_constraint

/* characterize all instances iIn the design */
all_instances = {U1,U2,U2/U3,U2/U4,U2/U5}
characterize -constraint all_instances

/* save characterize information */
foreach (block, all _blocks) {
current_design block

char_block script = block + "_wscr"
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write_script > char_block script

ks

/* recompile each block */

foreach (block, all _blocks) {

/* clear memory */

remove_design -all

/* read in previously characterized subblock */
block _source = block + "_v"

read -format verilog block _source

/* recompile subblock */

current_design block

link

uniquify

/* apply global attributes and constraints */
include defaults.con

/* apply characterization constraints */
char_block script = block + "_wscr"

include char_block script

/* apply block attributes and constraints */
block script = block + "_con"

include block script

/* recompile the block */

compile

}

We can take advantage of the benefits of both the top-down and the bottom-
up compile strategies by using both. This compile strategy is called mixed

compile strategy.
e We use the top-down compile strategy for small hierarchies of blocks.

e We use the bottom-up compile strategy to tie small hierarchies

together into larger blocks.
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3.6.7 Optimize the Design

We use the compile command to invoke the Design Compiler synthesis and
optimization processes. Several compile options are available. In particular,
the map_effort option can be set to low, medium, or high. In a preliminary
compile, when we want to get a quick idea of design area and performance,
we set map_effort to low. In a default compile, when we are performing design
exploration, we use the medium map_effort option. Because this option is the
default, we do not need to specify map_effort in the compile command. In a
final design implementation compile, we might want to set map_effort to high.
We should use this option judiciously, however, because the resulting compile

process is CPU intensive. Often setting map_effort to medium is sufficient.

A fully optimized design is one, which has met the timing requirements and
occupies the smallest area. The optimization can be done in two stages one
at the code level, the other during synthesis. The optimization at the code
level involves modifications to RTL code that is already been simulated and
tested for its functionality. This level of modifications to the RTL code is
generally avoided as sometimes it leads to inconsistencies between
simulation results before and after modifications. However, there are certain
standard model optimization techniques that might lead to a better
synthesized design. Model optimizations are important to a certain level, as
the logic that is generated by the synthesis tool is sensitive to the RTL code
that is provided as input. Different RTL codes generate different logic. Minor
changes in the model might result in an increase or decrease in the number of
synthesized gates and also change its timing characteristics. A logic optimizer
reaches different endpoints for best area and best speed depending on the
starting point provided by a netlist synthesized from the RTL code. The
different starting points are obtained by rewriting the same HDL model using
different constructs. Some of the optimizations, which can be used to modify

the model for obtaining a better quality design, are listed below[2].

¢ Resource Allocation.
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This method refers to the process of sharing a hardware resource under
mutuallyexclusive conditions. Consider the following if statement.

if A="‘1"then

E=B+C;

else

E=B+D;

end if;

The above code would generate two ALUs one for the addition of B+C and
other for the addition B + D which are executed under mutually exclusive
conditions. Therefore a single ALU can be shared for both the additions.

The hardware synthesized for the above code is given below in figure 19.

figure 19 - Without resource allocation.

The above code is rewritten with only on addition operator being
employed. The hardware synthesized is given in figure 20.

if A="'1"then

temp := C; // A temporary variable introduced.

else

temp :=D;
end if;

E =B + temp;
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figure 20 - With resource allocation.

It is clear from the figure 20 that one ALU has been removed with one ALU
being shared for both the addition operations. However a multiplexer is
induced at the inputs of the ALU that contributes to the path delay. Earlier
the timing path of the select signal goes through the multiplexer alone, but
after resource sharing it goes through the multiplexer and the ALU
datapath, increasing its path delay. However due to resource sharing the
area of the design has decreased. This is therefore a trade-off that the
designer may have to make. If the design is timing-critical it would be

better if no resource sharing is performed.

e Common sub-expressions and Common factoring

It is often useful to identify common subexpressions and to reuse the
computed values wherever possible. A simple example is given below.

B :=R1+ R2;

C <=R3 - (R1+R2);

Here the subexpression R1 + R2 in the signal assignment for C can be
replaced by B as given below. This might generate only one adder for the
computation instead of two.

C <=R3-B;

Common factoring is the extraction of common subexpressions in

mutually-exclusive branches of an if or case statement.
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if (test)

A<=B & (C +D);

else

J<=(C+D)|T;

end if;

In the above code the common factor C + D can be place out of the if
statement, which might result in the tool generating only one adder instead
of two as in the above case.

temp := C + D; // A temporary variable introduced.

if (test)

A <=B & temp;

else

J<=temp|T;

end if;

Such minor changes if made by the designer can cause the tool to
synthesize better logic and also enable it to concentrate on optimizing

more critical areas.

e Moving Code

In certain cases an expression might be placed, within a for/while loop
statement, whose value would not change through every iteration of the
loop. Typically a synthesis tool handles the a for/while loop statement by
unrolling it the specified number of times. In such cases redundant code
might be generated for that particular expression causing additional logic
to be synthesized. This could be avoided if the expression is moved
outside the loop, thus optimizing the design. Such optimizations performed
at a higher level, that is, within the model, would help the optimizer to
concentrate on more critical pieces of the code. An example is given
below.

C:=A+B;

75



T:=C-6;

/I Assumption : C is not assigned a new value within the loop, thus the
above expression would remain constant on every iteration of the loop.
end loop;

The above code would generate six subtracters for the expression when
only one is necessary. Thus by modifying the code as given below we
could avoid the generation of unnecessary logic.

C:=A+B;

temp := C — 6; // A temporary variable is introduced

for cin range 0O to 5 loop

T := temp;

/I Assumption : C is not assigned a new value within the loop, thus the
above expression would remain constant on every iteration of the loop.

end loop;

e Constant folding and Dead code elimination

The are possibilities where the designer might leave certain expressions
which are constant in value. This can be avoided by computing the
expressions instead of the implementing the logic and then allowing the

logic optimizer to eliminate the additional logic.

Ex:
C:=4;
Y=2*C;

Computing the value of Y as 8 and assigning it directly within our code can
avoid the above unnecessary code. This method is called constant folding.
The other optimization, dead code elimination refers to those sections of
code, which are

never executed.

Ex.
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A:=2;

B:=4,

if(A > B) then

end if;

The above if statement would never be executed and thus should be
eliminated from the code. The logic optimizer performs these optimizations
by itself, but nevertheless if the designer optimizes the code accordingly
the tool optimization time would be reduced

resulting in faster tool running times.

e Flip-flop and Latch optimizations

Earlier in the develop HDL files section, it has been described how flip-
flops and latches are inferred through the code by the synthesis tool.
However there are only certain cases where the inference of the above
two elements is necessary. The designer thus should try to eliminate all
the unnecessary flip-flop and latch elements in the design. Placing only the
clock sensitive signals under the edge sensitive statement can eliminate
the unnecessary flip-flops. Similarly the unwanted latches can be avoided
by specifying the values for the signals under all conditions of an if/case

statement.

e Using Parentheses.

The usage of parentheses is critical to the design as the correct usage
might result in better timing paths.

Ex.

Result<=R1+R2-P + M;

The hardware generated for the above code is as given below in the figure
21.
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figure 21 - Without using parentheses

If the expression has been written using parentheses as given below, the
hardware synthesized would be as given in figure 22.
Result <= (R1 + R2) — (P - M);

Rl B2 B M
R v,y ¢
\ ALU+) __; \ ALTI(-)

Fesult

figure 22 - After using parentheses

It is clear that after using the parentheses the timing path for the datapath
has been reduced as it does not need to go through one more ALU as in

the earlier case.

e Partitioning and structuring the design.

A design should always be structured and partitioned as it helps in
reducing design complexity and also improves the synthesis run times
since it smaller sub blocks synthesis synthesize faster. Good partitioning

results in the synthesis of a good quality design.
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For the optimization of design, to achieve minimum area and maximum
speed, a lot of experimentation and iterative synthesis is needed. The process
of analyzing the design for speed and area to achieve the fastest logic with
minimum area is termed — design space exploration. For the sake of
optimization, changing of HDL code may impact other blocks in the design or
test benches. For this reason, changing the HDL code to help synthesis is
less desirable and generally is avoided. It is now the designer’s responsibility
to minimize the area and meet the timing requirements through synthesis and
optimization using Design Compiler. Various optimization techniques that help
in achieving better area and speed for

our design are given below.

e Compile the design

The compilation process maps the HDL code to actual gates specified
from the target library. This is done through the compile command. The
compile command by default uses the —map_effort medium option. This
usually produces the best results for most of the designs. It also default
settings for the structuring and flattening attributes. The map_effort high
should only be used, if target objectives are not met through default
compile. The -incremental_mapping is used only after initial compile as it

works only at gate-level. It is used to improve timing of the logic.

e Flattening and structuring

Flattening implies reducing the logic of a design to a 2-level AND/OR
representation. This approach is used to optimize the design by removing
all intermediate variables and parenthesis. This option is set to “false” by
default. The optimization is performed in two stages. The first stage
involves the flattening and structuring and the second stage involves
mapping of the resulting design to actual gates, using mapping
optimization techniques. Flattening reduces the design logic in to a two
level, sum-of-products of form, with few logic levels between the input and

output. This results in faster logic. It is recommended for unstructured
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designs with random logic. The flattened design then can be structured
before final mapping optimization to reduce area. This is important as
flattening has significant impact on area of the design. In general one
should compile the design using default settings (flatten and structure are
set as false). If timing objectives are not met flattening and structuring
should be employed. It the design is still failing goals then just flatten the
design without structuring it.

The default setting for structuring is “true”. This method adds intermediate
variables that can be factored out. This enables sharing of logic that in turn

results in reduction of area.

¢ Removing hierarchy

Dc by default maintains the original hierarchy that is given in the RTL
code. The hierarchy is a logic boundary that prevents DC from optimizing
across this boundary. Unnecessary hierarchy leads to cumbersome
designs and synthesis scripts and also limits the DC optimization within
that boundary, without optimizing across hierarchy. To allow DC to
optimize across hierarchy one can use the following commands.dc_shell>
current_design <design name>

dc_shell> ungroup —flatten -all

This allows the DC to optimize the logic separated by boundaries as one

logic resulting in better timing and an optimal solution.

e Optimizing for Area

DC by default tries to optimize for timing. Designs that are not timing
critical but area intensive can be optimized for area. This can be done by
initially compiling the design with specification of area requirements, but no
timing constraints. In addition, by using the don_touch attribute on the
high-drive strength gates that are larger in size, used by default to improve
timing, one can eliminate them, thus reducing the area considerably. Once
the design is mapped to gates, the timing and area constraints should
again be specified (normal synthesis) and the design re-compiled

incrementally. The incremental compile ensures that DC maintains the
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previous structure and does not bloat the logic unnecessarily.

3.6.8 Analyze and Resolve Design Problems

Design Compiler can generate numerous reports on the results of a design
synthesis and optimization, for example, area, constraint, and timing reports.
We use reports to analyze and resolve any design problems or to improve
synthesis results. We can use the check_design command to check the
synthesized design for consistency. A design is consistent when it does not
contain errors such as unconnected ports, constant-valued ports, cells with no
input or output pins, mismatches between a cell and its reference, multiple

driver nets, connection class violations, or recursive hierarchy definitions.

3.6.9 Save the Design Database

We use the write command to save the synthesized designs.
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Mapdaptnua I : YAoTtroinon

In this chapter we focus on the procedure we choose to implement the Ccproc
to ASIC. Firstly we had to modify some of the FPGA dependent HDL files into
a technology-independent form. We also had to change all the components
that where implemented with ISE core generator. Xilinx core generator uses
hardware from a specific technology which is unknown to Synopsys. Then we
will specify the technology library that we will use. Next we will set the design
constraints and select a compile strategy for our design. Then we will see a

few optimizations and finally we will verify our design and analyze the results.

4.1 Developing VHDL for Synopsys

Most of the components that are low in hierarchy where produced from Xilinx
core generator. Elements such us comparators, adders, multipiers and
memory’s had to change in a way that Synopsys could map them to an ASIC
technology. All the components except memory’s where implemented finally

with an in depended VHDL coding style. The procedure we followed is:

1. We change a VHDL file in a technology-independent VHDL.

2. We test the new element to see if it works as before. If it doesn’t work as

It did we have to return to 1. If It works with the same way as it did before the
change we continue to next stage. We used modelsim to complete our
testbenches.

3. We read the new VHDL file with synopsys .

4. We ask from Synopsys to compile our source.

5. We ask from Synopsys to produce a netlist(Gate level ) of this

component.

6. We test new Gate level VHDL or VERILOG file to be sure that it works as

the dependent file did. If it works as it should, we have finished our procedure,
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if not we have to return to step 1.
4.1.1 Modyfying An Adder Produced By Coregenerator

The adder (add1) is a VHDL file produced from Xilinx core generator. This
adder has one input (6 bit ) and one output (6 bit).This adder takes an input
and produces an output incremented by one. We wrote behavioural VHDL for

this element :

library IEEE;
use IEEE.STD_LOGIC_1164.ALL,;

entity add1 is

port (
A:in STD_LOGIC_VECTOR (5 downto 0);
S:out STD_LOGIC _VECTOR (5 downto 0)

)1
end addi;

architecture behave of addl is
begin
process(A)
begin
S<= A+1;
end process;

end behave;

After we wrote the independent VHDL code we tested it with modelsim and
we took the same results with the core generator’'s adder. We also tested it
with the hole design. After this we read the behavioural VHDL with design
compiler.After this we compile add1.vhd and then take the netlist in VHDL or
in VERILOG :

Read -fvhdl add1.vhd

Compile

Write —f vhdl -0 add1_gatelevel.vhd

The output of synopsys (add1_gatelevel) is :

library IEEE;
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use IEEE.std_logic_1164.all;
package CONV_PACK_addl is

-- define attributes
attribute ENUM_ENCODING : STRING;

end CONV_PACK_add1;

library IEEE;

use IEEE.std_logic_1164.all;

use work.CONV_PACK_add1.all;
entity add1_DWO1_inc_6_Ois

port( A : in std_logic_vector (5 downto 0); SUM : out std_logic_vector (5
downto 0));

end add1l_DWO01 inc_6 O;
architecture SYN_rpl of add1l_DWO01 _inc_6 Ois

component HDEXOR2DL
port( A1, A2 :in std_logic; Z: out std_logic);
end component;

component HDINVD1
port( A :in std_logic; Z: out std_logic);
end component;

component HDADHALFD1
port( A, B : in std_logic; CO, S : out std_logic);
end component;

signal carry_5_port, carry_4_port, carry_3_port, carry_2_port : std_logic;
begin

U5 : HDEXOR2DL port map( Al => carry_5_port, A2 => A(5), Z => SUM(H));

U6 : HDINVD1 port map( A => A(0), Z => SUM(0));

Ul 1 1: HDADHALFD1 port map( A => A(1), B => A(0), CO => carry_2_port, S

=>

SUM(1));

Ul 1 2:HDADHALFD1 port map( A => A(2), B => carry_2_port, CO =>
carry_3_port, S => SUM(2));

Ul 1 3:HDADHALFD1 port map( A => A(3), B => carry_3_port, CO =>
carry_4 port, S => SUM(3));

Ul_1 4:HDADHALFD1 port map( A => A(4), B => carry_4_port, CO =>
carry_5_port, S => SUM(4));

end SYN_rpl;

library IEEE;



use IEEE.std_logic_1164.all;
use work.CONV_PACK_add1.all;
entity add1 is

port( A : in std_logic_vector (5 downto 0); S : out std_logic_vector (5
downto 0));

end addl;
architecture SYN_behave of add1 is

component addl_DWO01 inc_ 6 0
port( A :in std_logic_vector (5 downto 0); SUM : out std_logic_vector
(5 downto 0));
end component;

begin

add_21 plus_plus : addl_DWO01 inc_6_ 0 port map( A(5) => A(5), A(4) => A(4),
A(3) => A(3), A(2) => A(2), A(1) => A(1), A(0) =>
A(0), SUM(5) => S(5), SUM(4) => S(4), SUM(3) => S(3)
, SUM(2) => S(2), SUM(1) => S(1), SUM(0) => S(0));

end SYN_behave;

After we take our adder in gatelevel we test it again with the same
testbenches we have tested the adder in behavioural source. The results are
the same so we are sure that our VHDL file in a technology-independent
VHDL is ready for synthesis. The truth is that we have already synthesized
because we got the adder in gatelevel and it works properly but we still have
some steps such as optimization and setting constraints to compete

successfully the synthesis process.

4.1.2 Modifying A Multiplier That Was Mapped On A DSP

Another example of trying to change a component to a technology-
independent VHDL is the Ccproc multiplier (mmul32x32.vhd). As we have
already seen in chapter 2 our multiplier was implemented using hardware of
Virtex 4. In this FPGA there is a new block called “XtremeDSP slice” that

intergrades an 18x18 multiplier along with a 48x48 adder. We followed the
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same process that we did with the adder and we finally got the multiplier in a

technology-independent VHDL, ready for synthesis.

4.1.3 Altering Memories

Altering memory’s process is different. The difference is that we have to
decide first the technology we want to use. Memory components are not
written in hardware independent VHDL. The memory’s we use are
components designed for a specific technology and have fixed specifications.
Hence, the first thing we have to do is to order from our semiconductor vendor
memory’s with the characteristics that fits to our design and to the technology
library we want to use. After we have to produse with the help of design
compiler the .db file that corresponds to the memory we want to use. When
we have produce the .db file of memory we consider our memory as a black
box (having knowledge of it's characteristics from the data sheet they have
supplied us). For further tests

In modelsim we use the .vhd or .v file that our semiconductor vendor has
supplied us. If the specifications of our new memory don’t feet to the
specifications of the memory we want to alter we have to environ our memory
with elements that will force it to work with the same way as the FPGA
memory (the memory we want to alter) did. The steps we have to follow to

alter a memory from an FPGA to an ASIC technology are:

1. We decide the technology we want to use.

2. We order from our semiconductor vendor a memory compatible to the
technology we will finally use for our design. The memory we order have to
meet as possible as it gets the specifications of the memory we are trying

to alter (size, control signals).

3. We environ our memory with additional logic in a new vhdl file using the

.vhd of the memory we have order as a component (black box). Our
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purpose is that the new memory with the additionally logic will have the
same behaviour with the memory we want to alter. We want to be sure
that our component is working exactly in the same way with the one we
want to change so we try to make our testbenches include as many cases
as possible. If we succeed finally to make our new component to behave
as the one we want to change we proceed to the next step, if not we

repeat step 3.

4. We read with the help of design compiler the .lib file that corresponds to

our new memory and producing the equivalent .db.

5. Now we read our new vhdl file with the additional logic and link it to the

library of our new memory (with the .db).

6. We compile our vhdl file with Synopsys.

7. We ask from Synopsys to produce a netlist (Gate level ) of this

component.

8. We test the new Gate level memory to be sure that it works as
the memory we changed did. If it works as it should, we have finished our

procedure, if not we have to return to step 3.

An example of this procedure was the alteration of the instruction memory.
The instruction memory is a read only memory with width 128 bits and depth
256. This memory is single port and supports read after write. All memory
operations are synchronous with rising edge of clock input. This memory
supports also ENABLE and SINIT (synchronous initialization) signals. The
enable pin affects the read, write, and SINIT functionality of the port. When
the Block Memory has an inactive enable pin, the output pins are held in the
previous state and writing to the memory is disabled .The enable pin is active
high. When enabled, the SINIT pin forces the data output latches to
synchronously load the predefined SINIT value. For the Virtex
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implementation, the SINIT value is zero. Therefore, asserting the SINIT pin

causes the output latches to reset. The SINIT pin is active high.

On the other hand the memory we wanted to use is a single port SRAM and
has a single address port (ADR, for both the read and write address) and
separate data input (DI) and data output (DOUT) ports. Read and write cycles
are timed with respect to a single edge of the clock (CK). During both read
and write cycles, the write enable (WEN) and cell enable (CEN) inputs are
sampled by the rising edge of the clock. During a read cycle, if CEN is de-
asserted, data output bus values are held. When CEN is low, WEN is high
and output enable (OEN) is low, data from the addressed location is
propagated to the data output bus using self-timed circuitry. The CEN feature
is used to save RAM power without the need for external gating. During a
write cycle, if CEN is low, sampled input data is written to the specific address
location, and written data is also propagated to the data output. The DOUT
bus has an asynchronous 3-state output enable control (OEN). ADR, DI,
WEN, and CEN are latched on the rising edge of the clock. For read and write
operations, the output will appear on the DOUT pins after

the access time delay. OEN is asynchronous and not latched. The data will
appear on the output (after delay and access time) only if OEN is asserted. If

OEN is always asserted, the RAM will actively drive the output pins.

CK —
ADR—  Single
DI —
: L DOUT
cen—d ~ Port
WEN— SRAM
OEN —

figure 23 — Single Port memory from our semiconductor vendor

As we can see in figure 23 there is no an SINIT signal and the OEN differs
from the ENABLE.
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The first thing we have to do is to keep WEN to ‘1’ and DI to zero because we
want a read only memory. We also need OEN and CEN to ‘0’ because we will

not use them :

CLK
ADR_

DI
CEN
WEN
OEN

0

figure 24 - first design change to memory

The next thing we have to consider is to create a synchronous enable and an
SINIT signal. Every time that a new address occurs at the next rising clock
edge the memory output produces new data. But if the enable signal becomes
‘0" we need to keep the output on the previous stage. Our new memory
doesn’t support this functionality. So we have to keep our previous data in a
register when enable is ‘0. ENABLE signal and new addresses always
changes at the first half of the clock period (This happens always at the
instruction memory because they depend from the data of the memory output
). Having that in mind our register will be triggered at the falling edge when
ENABLE is ‘0’
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figure 25 — Second design change to memory

The next step is to choose between the memory output and the register
output when the next rising edge occurs. We use a multiplex with a
synchronous control signal (the enable passes through a register) as we can

see in figure 26.
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ADR
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WEN 0

OEN —I>ep CLK

b CLK

figure 26 — third design change to memory

The SINIT signal also doesn’t exist to our memory. Our memory has its
register at the address and not at the output as the one we want to change.
So we have to simulate the animalization of the output register of the memory.
We accomplished this functionality adding to our design an extra multiplexer

as we can in figure 27.
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ADR
DI
CEN i I 0
WEN
OEN CLK i

p CLK

figure 27 — fourth design change to memory

One more thing we have to consider is that we want the output only at the
rising edge. Having the multiplex to the output every time a change occurs (at
his inputs) we will have a new output. To overcome this problem we inserted a
synchronous latch between the multiplex output and the final output as we

can see in figure 28.
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QEN ~Lop CLK
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figure 28 — Instruction memory using the memory of our our semiconductor vendor

After we checked our new design and verified that it worked in the same way
as the one we have changed we continued to next steps. When we have

reached step 8 we verified our netlist with modelsim to make sure our

pCLK

SINIT

processor had the attitude that had before the change.

Another situation, of the step 3 of our procedure, we had to face was that
some of the original Ccproc memories where asynchronous. The memories
we have ordered and would take their place where all synchronous. What we
have done was to replace an asynchronous memory with a synchronous. An

example of this situation was aessbox which had an address input and a data

output as we can see in figure 29.
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WEN
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C

DOUT

figure 29 — asynchronous memory

figure 30 - synchronous memory

We added a clock input and used as a component one of our synchronous

memory’s that fitted better to the size of the asynchronous memory. We also

made our memory to give output to the falling edge in order to work in a

similar way to an asynchronous memory as we can see in figure 30.

The reason that those designs work in the same way is that the asynchronous

memory has registers before its input and registers next to its output that are

triggered on the rising edge. So if the registers before input supplied our

asynchronous memory after a rising edge the registers at the output will have

the new data in next clock cycle. Considering that a synchronous memory

lathed on the falling edge will supply the register at the output before the next

rising edge. We can see what happens in figure 31.
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asynchronous memory _/' o
adrress input e

azynchronus memory o DA
address output e

SYNChronus memory A
addrezs input T

SyYNchronus memory
address output

register autput /
after memory output S B

figure 31 — Waveform comparison

In the case of serpent sboxes we decided to change the asynchronous
memory’s with combinational logic. Every sbox is a memory block with width 4
bits and depth 16. In the final implementation there wold be 512 instances of
those memory blocks. We decided to use combinational logic to avoid to use
SO many memory’s in purpose to decrease the cost and the space of our

design.

An example of VHDL coding of a serpent sbox :

library IEEE;
use IEEE.STD_LOGIC_1164.ALL,;

entity serpent_s4 is
port (
A:in STD_LOGIC_VECTOR ( 3 downto 0 );
SPO : out STD_LOGIC_VECTOR ( 3 downto 0)
)i

end serpent_s4;
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architecture STRUCTURE of serpent_s4 is
begin

process(A)

begin

case Ais
when "0000" => SPO <="0001";
when "0001" => SPO <="1111";
when "0010" => SPO <="1000";
when "0011" => SPO <="0011";
when "0100" => SPO <="1100";
when "0101" => SPO <="0000";
when "0110" => SPO <="1011";
when "0111" => SPO <="0110";
when "1000" => SPO <="0010";
when "1001" => SPO <="0101";
when "1010" => SPO <="0100";
when "1011" => SPO <="1010";
when "1100" => SPO <="1001";
when "1101" => SPO <="1110";
when "1110" => SPO <="0111";
when others => SPO <= "1101";

end case ;
end process;

end STRUCTURE ;

4.2 Specify Libraries

The next step of our process was to decide a cell library. We ended up to the
0.13um High Density Standard Cell Library. The 0.13um High Density
Standard Cell Library provides today’s advanced synthesis tools with the

necessary building blocks to efficiently implement the most complex,
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performance demanding designs. This library uses an innovative, synthesis-
optimized cell set and a density-optimized 9-track layout architecture to offer
systems designers the maximum area efficiency without sacrificing

performance. This 0.13um High Density library is enhanced by:

* A rich set of boolean functions.

* Multiple drive strengths per cell.

* Highly accurate timing and power characterizations.

The library makes use of:

» Handcrafted layouts that use only metal one within the cells
* A rich set of balanced clock buffers

« Careful attention to routing porosity

4.3 Set Design Constraints

We decided to choose a long clock period for the first compilation in order to
see if our design functions well. Later on the optimization stage we will worry
about max frequency. So we choose a period of 7 ns(142MHz). In the next

stage we had to choose a compile strategy and compile the Ccproc.

4.4 Select Compile Strategy

The compile strategy we choose to follow was bottom-up. We preferred this
strategy from up-bottom because we wanted to compile each subdesign
seperatly. In this way we have the advantage to be sure for the stability of

each component.

In this compile strategy we see our design as a tree and we begin to compile
the leafs. In the next step we compile the designs of the next higher level of
the hierarchy. We continue the procedure until we reach the top entity. As we
can see in figure 32 the top entity is cryptium (root) and clusterA, clusrerB,

clusterC, clusterD, ifstage and SerpentSboxes are the next stage in hierarchy.
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SerpentShoxes

figure 32 — cryptium’s tree

As we can see in figure 33 clusterA’s components are decstageA, exstageA

and memstageA .

clusterA

figure 33 — clusterA'’s tree

decstageA

In figures 34, 35 and 36 we see the hierarchy in decstageA, exstageA and

memstageA .
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decstageA

rf3x8x32

CPEEDICED

figure 34 — decstageA'’s tree

alucorev2 gfmul16x8x58 @ @ @ twofishShoxeskE

gfmu@
) (ppo oot Coteta) Groiondd Gotonatd

figure 35 — exstageA'’s tree
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AESSboxes @ TwofishShoxesMemA
CEEICEPICENCED

figure 36 — memstageA’s tree

We begin to compile the components from the bottom of the tree. For
example, if we want to compile decstageA , we compile firstly add1,
Krf32x32bma and comp3. Then we proceed to Krfbma, wich includes add1
and Krf32x32bma, rf3x8x32, which includes comp3. We can see the steps of
the procedure in figures 37, 38, 39.

decstageA

krf32x32ma

figure 37 - first compilation step for decstageA'’s tree

compile
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decstageA

I J

compile
figure 38 — second compilation step for decstageA’s tree
compile decstageA

Kribma rf3x8x32

o> Gamd G

figure 39 - final compilation step for decstageA'’s tree

Follwing the same procedure we compile exstageA and memstageA.
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decstageA memstageA

compile

figure 40 - first compilation step for clusterA’s tree

Then we compile clusterA.

clusterA

figure 41 — final compilation step for clusterA’s tree

compile

decstageA

The next step is to compile clusrerB, clusterC, clusterD, ifstage and
SerpentSboxes wich are in the same stage of hierarchy with clusterA. We use

the same method as we did with clusterA and we finally get to cryptium.
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SerpentShoxes

compile

figure 42 — first compilation step for cryptium’s tree

cryptium

compile

SerpentSboxes

figure 43 - final compilation step for cryptium’s tree

When we reach and compile successfully the top entity we save the .db ,the .v

(or.vhd) gatelevel and the .sdf files that will use to verify our design.

When we make sure that our gatelevel works properly we continue to the

optimization step.
4.5 Optimize the Design

As we discussed before our design was firstly implemented at 142 MHz. The
first assumption was that our critical path should be the instruction memory
(350 Mhz). After we had the timing reports of the synthesis we discovered
that our critical path found at the execution stage at the
multiplier(mmult32x32). Our design couldn’t exceed the 200 Mhz because of
the multiplier. The vhdl source was trying to imitate the implementation that

we saw at 2.5 chapter. The assumption we made was that the registers (from
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the two pipeline stage) our multiplier had, where not well balanced. Thus we
used the balance_register command and recompiled the design. The timing
results where much better. We accomplished to make our design to work at
250 Mhz (25% optimization). Our new critical path is now the ALU(because it

supports double instructions).

decstageA(register) -> exstageA (ALU input) 0.16 ns
exstageA (ALU input) -> exstageA (ALU output) 3.91 ns
exstageA (ALU output) -> AluOutMemRegister 3.94 ns

We didn’t try to change the ALU because in cryptography we meat usually
double instructions and that means we would spend two clock cycles instead
of one, that we spend now. That would meant the reduction of our design’s

throughput.

4.6 Verification and Results

We used modelsim for the verification of our design. We had to compare the
waveforms we had from the FPGA implementation with the waveforms from

our gatelevel design.

4.6.1 Functional and Timing Simulation

Every time we changed a module to its gate-level form we substitute it with
the original one on Ccproc. Then we where simulating the design with it's new
component to verify its correctness. We where comparing signal by signal the
waveforms we had from the original design with the new. We compared the
waveforms of each algorithm that Ccproc supports (AES, SERPENT, MARS,
TWOFISH, RC6). When our ASIC design (Ccproc in a gate-level form) had
the same functionality (identiacal waveforms) with the FPGA implementation
we introduced our constraints. We managed to achieve max frequency 250

Mhz with the following critical path :
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decstageA(register) -> exstageA (ALU input) 0.16 ns
exstageA (ALU input)  -> exstageA (ALU output) 3.91 ns
exstageA (ALU output) -> AluOutMemRegister 3.94 ns

Then we loaded the .sdf file to make the design’s timing simulation. The
delays of the signals didn’t influence the functionality of our design. Our

design has the same functionality with the original one.

4.6.2 Results

The performance of our design reached the 250MHz as we saw in 4.5. As we
saw in chapter 2.6 the max frequency in an FPGA was 108 MHz.

Our design used 93185 cells and 94885 nets. In the FPGA there where used
275452 gates.

The results of the reports are:

RESULTS number area ym”"2 Yarea

number of cells 93185 5.343.404 100
sp_mem64x32 4 101.770 1,90459116
sp_mem256x32 88 3773985,531 70,6288638
sp_mem256x128 1 146625 2,74403732
sp_mem512x32 4 279.299 5,22698288
memories 97 4301679,344 80,5044751
flip-flop and latch 8796 320644,2271 6,00074835
non combinational 8893 4622323,571 86,5052235
combinational 84292 721080,429 13,4947765

Table 3 - Results

In table 4 we see the differences between the ASIC design and the FPGA

design.
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Table 4 - Comparison
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