
Technical University of Crete

“Electronic & Computer Engineer”

MA Thesis

System Development under
Grid Environment

Author:
Pavlov G. Nicola

February 2008

Contents

Contents i

List of Figures v

List of Tables vii

Abstract ix

Acknowledgements xi

1 Introduction 1

2 Maximizing GridFTP Throughput 7
2.1 Introduction . 7
2.2 GridFTP Overview . 8

2.2.1 Transmission Control Protocol (TCP) 10
2.2.2 TCP socket buffer size 12
2.2.3 TCP parallel streams 13

2.3 Simulation . 14
2.3.1 Initial experiments . 14
2.3.2 Further Experiments 18
2.3.3 Related Work . 18
2.3.4 Our Approach . 20

2.4 Acknowledgments . 31

3 Bandwidth Estimation 33
3.1 Introduction . 33
3.2 Packet Pair/Train Technique 34
3.3 Active end-to-end Bandwidth Measurement 35

i

3.4 Related Work . 38
3.5 Our Approach . 39
3.6 Implementation . 42

4 Enabling Applications for the Grid 45
4.1 Introduction . 45
4.2 Performance . 48
4.3 Jobs and Grid Applications 51
4.4 Job Criteria . 54

4.4.1 Batch job . 54
4.4.2 Standard application 55
4.4.3 Parallel applications 56
4.4.4 Interactive jobs . 56

4.5 Programming Language Considerations 56
4.6 Job Dependencies on System Environment 58
4.7 Job Topology . 59
4.8 Passing of Data Input/Output 60
4.9 Qualification Scheme for Grid Applications 61
4.10 Data Management Considerations 62
4.11 Grid User Roles . 64
4.12 Framework . 66
4.13 Our Work . 66

4.13.1 MATLAB application 68
4.13.2 Grid-enabling the application 69
4.13.3 Grid Portal . 81

4.14 Acknowledgments . 82

5 Conclusions 83

Appendix A Data Description 85
A.1 Children 2004 . 85

Appendix B Multiprocessing in MATLAB 89
B.1 Overview . 89

B.1.1 Implicit Multiprocessing 89
B.1.2 Explicit Multiprocessing 90

B.2 Implicit Multiprocessing . 90
B.2.1 Platform Differences and Multithreaded Computation . 90
B.2.2 Enabling Multithreaded Computation 91
B.2.3 Setting the Number of Threads Programmatically . . . 92
B.2.4 Crash Recovery and Multithreading 94

ii

B.2.5 Measuring Performance Improvement for a Single Op-
eration . 94

Appendix C MATLAB Compiler 97
C.1 Overview of MATLAB Compiler 97
C.2 How does MATLAB Compiler Work 97
C.3 Before You Begin . 99
C.4 Using the GUI to Create and Package a Deployable Component 99

References 101

iii

iv

List of Figures

1.1 Grid Computing Vision . 3

2.1 Parallel Data Transfer . 9

2.2 Manual control of TCP buffer sizes 10

2.3 GridFTP Extended Mode . 10

2.4 TCP Socket Buffer Size . 12

2.5 TCP Parallel Streams . 13

2.6 Locally at TUC . 16

2.7 Remotely between TUC and UoP 17

2.8 Modified TCP buffer size . 19

2.9 LANForge Topology . 21

2.10 TUC-UoP Grid Testbed . 22

2.11 Transfer Rate vs. Parallel streams for a 100MB-file, using
different Buffer sizes . 23

2.12 Transfer Rate vs. Parallel streams for a 1GB-file, using differ-
ent Buffer sizes . 24

2.13 Transfer Rate vs. Parallel streams for a 10GB-file, using dif-
ferent Buffer sizes . 25

2.14 Transfer Rate vs. Parallel streams for a 100MB-file, using
different Buffer sizes between TUC and UoP 26

2.15 Throughput Deviation . 30

3.1 Packet Pair Technique . 34

3.2 Packet Pair Technique showing a narrow link 35

3.3 A case where congestion occurs 36

3.4 A case where no congestion occurs 37

3.5 LANForge Topology . 39

3.6 Results from our own approach up to 80Mbps 42

v

3.7 Our tool, IGI and PTR . 43

4.1 Parallel Application Flow . 53
4.2 Serial Application Flow . 54
4.3 Application Stages . 68
4.4 Grid-enabling Issues . 70
4.5 Execution Time among Different Available Resources 71
4.6 Speedup for the First Parallelism Level 72
4.7 Speedup for the Second Parallelism Level 73
4.8 Parallelism Levels . 74
4.9 Speedup for the Third Parallelism Level 75
4.10 TUC Grid Testbed . 80

A.1 Channel Locations . 87

B.1 Multithread Unset . 92
B.2 Multithread Set . 93

vi

List of Tables

2.1 PC Specifications at TUC . 15
2.2 PC Specifications at UoP . 15

3.1 Characteristics of our too, IGI/PTR and Pathload 39
3.2 Dispersion Comparison under No-congestion Network 41
3.3 Our Tool compared with PTR 41

A.1 Channels . 86

B.1 Platform BLAS Libraries . 91

vii

viii

Abstract

This thesis studies in depth technologies lying under Grid Computing.
Grid Computing allows people to share computing power, databases and
other on-line tools securely across institutions without sacrificing local au-
tonomy. Our involvement in Grid Computing related projects during the
last 2-3 years has brought us up against many challenges. One of these chal-
lenges had to do with maximization of GridFTP throughput, which is the
most used data transfer protocol adopted by all versions of Grid middleware.
GridFTP has its origins to the well-known FTP protocol; it additionally
provides secure as well as more efficient data transfers between grid nodes
thanks to a number of user-tuneable parameters. We refer specifically to
the number of TCP parallel streams and the TCP socket buffer size. In the
meantime, we have run many GridFTP sessions through emulated network
conditions. Based on the generated results, we have produced and analyzed
the best fitting model for the throughput among various mathematical and
statistical models. The models studied were: Linear Regression, Least Mean
Square Error and Non-Linear (exponential model). For each model, we have
used the following parameters as input: bottleneck bandwidth, RTT, number
of TCP parallel streams and sender TCP socket buffer size. In conclusion,
we have seen that an active probing tool which could actively estimate the
network conditions in terms of bottleneck bandwidth and RTT could benefit
GridFTP. The question to be addressed was “which method or technique can
reliably and actively estimate the network conditions, i.e. RTT and bottle-
neck bandwidth?”. We in this thesis, have exploited also this matter.

Nowadays, a single computer, a cluster of standard computers or even a
special-purpose supercomputer is not enough for the calculations scientists
really want to do. Although, computers are improving incredibly fast, they
still do not keep up with the increased demands of the scientists. Due to

ix

that, it’s very difficult, very expensive and sometimes impossible to achieve
certain scientific goals with current computer technology. Grid Computing
was initially introduced to overcome the drawbacks mentioned before to be-
come today a promisor technology in other fields like industry and commerce.
We, in this thesis, examine the ability of Grid Computing in solving heavy-
computational problems. We tried to grid-enable an application based on
MATLAB that deal with Children’s Epilepsy. Specifically, we studied the
application running in its default state and try to parallelize it in order to
run under the grid-testbed created at the Technical University of Crete. Fur-
thermore, the application has been tested at the University of Plymouth.

Grid Computing is implemented via what is called a middleware. Globus
Toolkit has emerged as the de facto standard middleware for Grids. It con-
stitutes of open-source code that has been developed by the Global Research
Community as means to implement the principles of Grid Computing. Un-
fortunately though, in order to run any middleware and exploit its various
features and capabilities, someone has to undergo the whole process of in-
stalling the middleware and its various components. All this done using
command prompt which first takes time and second putting every user to
comprehend the operating aspect of the middleware which leads in turn, to
distance the user from his/her first goals. Not to forget to mention that
the creators of heavy-computational applications are mainly scientists and
they do not want to add a complicated middleware on their list. They are
concerned about the application itself. A mechanism or a software is re-
ally essential in order to expose the computing resources and distributed
systems to general user communities without forcing them to deal with the
complexities of the underlying systems. Web browser-based portal user in-
terfaces provide access to a large variety of resources, services, applications,
and tools for private, public, and commercial entities. We, at the Technical
University of Crete, did create a Grid portal of our own in order to fulfil
our needs. The portal includes API for querying/modifying databases based
upon OGSA-DAI, an API for transferring files based upon GridFTP service
and an API for submitting jobs based on GRAM.

x

Acknowledgements

First of all, I would like to thank my family for their everlasting support.

I am grateful to Dr. Ioannis Barbounakis for sharing his time and knowl-
edge in our cooperative work.

I am also grateful to Professor Vasilios Samoladas for being the second
supervisor.

At last, I would like to thank my supervisor Professor Michael Zervakis
for sharing his experience.

xi

Chapter 1
Introduction

Grid computing can mean different things to different individuals. The
grand vision is often presented as an analogy to power grids where users (or
electrical appliances) get access to electricity through wall sockets with no
care or consideration for where or how the electricity is actually generated.
In this view of grid computing, computing becomes pervasive and individual
users (or client applications) gain access to computing resources (processors,
storage, data, applications, and so on) as needed with little or no knowledge
of where those resources are located or what the underlying technologies,
hardware, operating system, and so on are [1].

Though this vision of grid computing can capture one’s imagination and
may indeed someday become a reality, there are many technical, business,
political, and social issues that need to be addressed. If we consider this vi-
sion as an ultimate goal, there are many smaller steps that need to be taken
to achieve it.

Therefore, grid computing can be seen as a journey along a path of in-
tegrating various technologies and solutions that move us closer to the final
goal. Its key values are in the underlying distributed computing infrastruc-
ture technologies that are evolving in support of cross-organizational appli-
cation and resource sharing and virtualization across technologies, platforms,
and organizations. This kind of virtualization is only achievable through the
use of open standards. Open standards help ensure that applications can
transparently take advantage of whatever appropriate resources can be made
available to them. An environment that provides the ability to share and
transparently access resources across a distributed and heterogeneous envi-
ronment not only requires the technology to virtualize certain resources, but

1

Chapter 1. Introduction

also technologies and standards in the areas of scheduling, security, account-
ing, systems management, and so on.

Early implementations of grid computing have tended to be internal to a
particular company or organization. However, cross-organizational grids are
also being implemented and will be an important part of computing and busi-
ness optimization in the future. As Internet connect speed increases though,
the difference between having two PCs in the same office, the same build-
ing, the same city or the same country shrinks. By developing sophisticated
middleware which makes sure that widely distributed resources are used effec-
tively, Grid computing gives the user the impression of shrinking the distances
further still. In addition, as the middleware gets more sophisticated, it can
deal with the inevitable differences between the types of computers that are
being used in a highly distributed system, which are harder to control than
within one organization. One of the most popular middleware packages today
is Globus [2], and it is essentially a software toolkit for making Grids. With
such middleware, the aim is to couple a wide variety of machines together
effectively, including supercomputers, storage systems, data sources and spe-
cial classes of devices such as scientific instruments and visualization devices.

Grid computing involves an evolving set of open standards for Web ser-
vices and interfaces that make services, or computing resources, available
over the Internet.

Very often grid technologies are used on homogeneous clusters, and they
can add value on those clusters by assisting, for example, with scheduling or
provisioning of the resources in the cluster. The term grid, and its related
technologies, applies across this entire spectrum.

One definition of Grid computing, by Ian Foster [3], one of the pioneers
who helped coin the term, distinguishes it from other forms of computing
such as distributed computing, metacomputing, clutser computing and peer-
to-perr computing.

The definition is that Grid must satisfy three criteria:

1. No central administrative control of the computers involved (that elim-
inates clusters and farms, and also local Grid computing)

2. Use of general-purpose protocols

2

Chapter 1. Introduction

Figure 1.1: Grid Computing Vision

3. High quality of service (that eliminates peer-to-peer and means that
Grids should not rely on cycle scavenging from individual processors,
but rather on load balancing between different independent large re-
sources, such as clusters and local Grids)

When it comes to building Grids, the basic ideas that the software engi-
neers and developers have in mind and spend most of their time and effor
working on are described below.

The most important is the sharing of resources on a global scale. This
is the very essence of the Grid. Then, although it is hardly a novelty, secu-
rity is a critical aspect of the Grid, since there must be a very high level of
trust between resource providers and users, who will often never know who
each other are. Sharing resources is, fundamentally, in conflict with the ever
more conservative security policies being applied at individual computer cen-
ters and on individual PCs. So, getting Grid security right is crucial. If the
resources can be shared securely, then the Grid really starts to pay off when
it can balance the load on the resources, so that computers everywhere are
used more efficiently, and queues for access to advanced computing resources
can be shortened. For this to work, however, communications networks have
to ensure that distance no longer matters - doing a calculation on the
other side of the globe, instead of just next door, should not result in any
significant reduction in speed. Finally, underlying much of the worldwide
activity on Grids these days is the issue of open standards, which are
needed in order to make sure that Research and development worldwide can
contribute in a constructive way to the development of the Grid, and that

3

Chapter 1. Introduction

industry will be prepared to invest in developing commercial Grid services
and infrastructure.

As mentioned before, Globus Tooklit is the most well-known open-source
middleware to make Grids. It contains several components such as Grid
Security Infrastructure (GSI), GridFTP, Grid Resource Allocation Manage-
ment (GRAM) and others.

In this thesis, all our work was based on the Globus Toolkit. Specifically
we tried to exploit some of the features mentioned above beyond their simple
use.

GridFTP is the Globus component that is responsible for transferring files
in a Grid environment. In this thesis, we made an extensive research on the
GridFTP service. We studied its throughput behaviour based on network
and non-network parameters under different emulated network conditions.
We then tried to find the best fitting model based on mathematical and sta-
tistical regression models. As a conclusion from the research on GridFTP
throughput, we saw that a tool that can measure activley network conditions
(RTT and bandwidth) would help in maximizing the GridFTP throughput
dynamically. Reasearch in this field has been held for some years now. Packet
pair/train technique is the most well-known methodology adopted in this
field. We tested some “ready” tools that are based on this technique. These
tools seemed to work only for low-scale networks. That led us to create a
tool to work properly for large-scale networks. In this thesis, we present our
own approach and compare it with other tools.

GRAM is the Globus component that is responsible for submitting jobs
into a Grid environment. In this thesis, we tried to grid-enable an application
that is created using MATALB. The application initially ran in a serial way.
Our goal was to examine the application and its ability to run in a parallel
way. We submitted the application using GRAM, into the grid testbed cre-
ated at the Technical University of Crete. Moreover, GRAM was also used
to test the application’s integrity with the University of Plymouth.

The structure of this thesis is formulated as follows:

Chapter 1 is this introduction.

Chapter 2 presents the GridFTP service and its various features. GridFTP
is the most known and used protocol to transfer files through grid enviorn-

4

Chapter 1. Introduction

ments and is adopted by all grid middleware. GridFTP throughput can be
maximized using tunable features such as number of TCP parallel streams
and TCP socket buffer size. In this chapter, we examine these two features
and try to model the GridFTP throughput based on five different network
and non-network parameters. These parameters are: File-size, RTT, band-
width, number of TCP parallel streams and TCP socket buffer size. We also
present the best fitting model for the GridFTP throughput.

Chapter 3 introduces a bandwidth estimation approach. Based on our work
in chapter 2, we concluded that a tool that could actively measure the net-
work conditions (i.e. RTT and bandwidth) could help in maximizing in an
automatic way the GridFTP throughout. We adopted the most well-known
technique used in the field, the packet train/pair technique. In this chapter,
we introduce our approach in measuring the bandwidth based on Java Net-
working.

Chapter 4 presents an example of Grid applications. Grid computing was ini-
tially introduced to meet the requirements of heavy computations. Starting
from an application written in MATLAB and ending up with an application
that could run under grid environments and thus run much more effectively
and quickly was our goal. In this chapter, we introduce the steps that took
place and the difficulties we did face.

Chapter 5 gathers all the conclusions met so far.

5

6

Chapter 2
Maximizing GridFTP Throughput

2.1 Introduction

The majority of internet users have been utilizing physical network con-
nections of the order of at least 100 Mbps. Recently however, there is a high
demand for 1000-Mbps Ethernet connections.

The need for transferring large-sized files is continuously increasing the
demand for higher throughput. The assumption that the network connection
speed is the only parameter that affects the throughput has been proven in-
adequate. TCP/IP [4], which is the underlying network mechanism, is based
on the pre-set values of parameters like the TCP socket sender/receiver buffer
size and TCP block size. For the average user, all these parameters have been
transparently set to a default value by the operating system or the specific
applications themselves, leading to semi-dynamic behaviours. The absence
of dynamic configuration of such parameters according to the ever-changing
network conditions leads to a lower throughput. However, for the professional
or high-skilled network user it is an important issue to be able to optimize the
TCP/IP layer parameters with regard to the maximum achievable through-
put. Grid Computing has been evolved like one of these professional users.
It’s about an initiative which enables large scale scientific and engineering
computation via the connection of multiple distributed computing resources.

In general, large scale scientific and engineering computation requires
large file transfers among network computers in minimal time, which are
projected to higher throughout needs and make GridFTP [5] the best avail-
able choice.

7

Section 2.2 GridFTP Overview

GridFTP uses Transmission Control Protocol (TCP) [6] as its underlying
networking mechanism. TCP is a connection-oriented, reliable and window-
based protocol unlike connectionless User Datagram Protocol (UDP) [7].

In this chapter we are going to present our research on GridFTP service.
In details, an overview of the GridFTP protocol, its various features and ca-
pabilities, is going to be presented. The GridFTP underlying network mech-
anism TCP is going to be referred. How TCP multiple parallel streams and
TCP socket buffer size affect GridFTP throughput, is going to be discussed.
The latter will be achieved theoretically and experimentally. Experiments
have been conducted locally at the Technical University of Crete (TUC) us-
ing a network emulator and also remotely with the University of Plymouth
(UoP). Results will be studied over various network and non-network pa-
rameters by applying three different mathematical and statistical models.
Finally, the best fitting model is going to be presented.

2.2 GridFTP Overview

GridFTP is a common data transfer and access protocol that provides
secure, efficient data transfer in Grid environments. This protocol is based
on the well-known, standard FTP [9] protocol. The FTP protocol has been
chosen because it is the most commonly used protocol for data transfer on
the Internet. GridFTP extends FTP protocol with the following features:

• Grid Security Infrastructure (GSI) [10]: Robust and flexible au-
thentication, integrity, and confidentiality features are critical when
transferring or accessing files. GridFTP supports GSI authentication
with user controlled setting of various levels of data integrity and/or
confidentiality.

• Third-party control of data transfer: Third-party transfers are
necessary to manage large datasets for large distributed communities.
The GridFTP separates control and data channels, enabling third-party
transfers, i.e. the transfer of data between two end hosts, mediated by
a third host.

• Parallel data transfer: Improves aggregate bandwidth relative to
that achieved by a single TCP stream.

• Stripped data transfer: Partitioning data across multiple servers
can further improve aggregate bandwidth.

8

Chapter 2. Maximizing GridFTP Throughput

• Partial file transfer: Some applications can benefit from transferring
segments of files rather than complete files: e.g. analyses that require
access to subsets of massive object-oriented database files. GridFTP
allows transfer of the remainder of a file starting at a specified offset.

• Manual control of TCP buffer sizes: This is a critical parameter
for achieving maximum bandwidth with TCP/IP.

• Reliable data transfer: Reliable transfer is important for many ap-
plications that manage data. Fault recovery methods for handling tran-
sient network failures, server outages, etc., are needed.

Figure 2.1: Parallel Data Transfer

The GridFTP protocol specifies two modes of data transfer:

• Stream Mode (Mode S)

• Extended Mode (Mode E)

Stream Mode is implemented in FTP servers where bytes flow in order,
over a single TCP connection. There are no advanced features in this mode.
GridFTP defaults to this mode so it is compatible with normal FTP servers.

On the other hand, Extended Block Mode constitutes an extension of the
Stream Mode where data can be sent over the data channel in blocks. Each
block consists of 8-flag bits, a 64 bit integer indicating the offset from the
start of the transfer, and a 64 bit integer indicating the length of the block in
bytes followed by a payload of length bytes as shown in Figure 2.3. Because
the offset and length are provided, out-of-order transmission is acceptable,
i.e. the 10th block could arrive before the 9th because you know explicitly

9

Section 2.2 GridFTP Overview

Figure 2.2: Manual control of TCP buffer sizes

Figure 2.3: GridFTP Extended Mode

where it belongs. This also enables parallelism and striping.

As we mentioned before, GridFTP uses TCP as its underline networking
mechanism. An overview of the TCP protocol is presented in the next section.

2.2.1 Transmission Control Protocol (TCP)

A software developer designing a network application can choose whether
to use TCP or UDP as a transport protocol. As mentioned before, GridFTP
is based on TCP.

TCP is a connection-oriented protocol. It processes data in streams. In
other words, TCP can accept data, a byte at a time rather than as a prefor-
matted block. It enables re-sequencing, i.e. restore the data original order.
The latter enables using TCP multiple streams which is going to be fully
discussed later on. It is based on flow control which would not outrun or

10

Chapter 2. Maximizing GridFTP Throughput

overrun the destination machines capability to receive the data.

TCP uses what is called a “congestion window”. A congestion window
is used to determine how many packets it can send at one time. Larger
congestion window means higher throughput. However, when a client sends
data faster than either the network or the host on the other end, we say
that we have a network congestion situation which reduces the throughput
to very low levels. There are some other factors that could degrade the TCP
performance. Here are some: 1) bad Network Interface Card cables, 2) poor
application design and 3) too small TCP window size.

TCP uses a number of mechanisms to achieve high performance and avoid
congesting the network. These mechanisms include the use of a sliding win-
dow, the slow-start algorithm, the congestion avoidance algorithm, the fast
retransmit and fast recovery algorithms, and more.

Specifically, the TCP “slow-start” and “congestion avoidance” are the re-
sponsible algorithms for determining the size of the congestion window. The
congestion window is directly proportional to the amount of buffer space that
the kernel allocates for each socket. The kernel each operating system sets
up a specific amount of buffer for each socket. Besides, the buffer size can
be adjusted for both send and receive ends of the socket.

TCP was first employed in 1970. Since then, a lot of TCP extensions
(versions) have been presented in order to overcome the early TCP protocol
limitations. To the best of our knowledge, the more representative extensions
are the TCP Reno, TCP new Reno and TCP Vegas. The most well-known
TCP version is TCP Reno.

Limitations that exist in the late TCP versions are: 1) Inability to support
multiple-stream, parallel transfers. TCP has been developed as a one-stream
transfer protocol. 2) TCP block-size boundaries are not defined. The user
application is responsible to set these boundaries. 3) TCP was originally
invented for point-to-point connections. It cannot be used for broadcast or
multicast transmission. 4) TCP uses a congestion window to define how
many packets it can send at one time as shown in Figure 1. Larger conges-
tion window means higher throughput.

GridFTP protocol has been designed to overcome the TCP limitations
mentioned above. It achieves this goal by integrating some additional fea-
tures such as manual control of TCP socket buffer size and parallel TCP

11

Section 2.2 GridFTP Overview

connections. However, there is still a remaining problem in that there is no
rule of thumb for choosing optimal values for these parameters.

2.2.2 TCP socket buffer size

Current operating systems (Microsoft & Linux) offer a good environment
for TCP tuning configuration which in turn helps achieve higher performance.
For example, an increase in the TCP receiver socket buffer size leads to higher
throughput. To achieve maximum throughput, TCP sender/receiver socket
buffer sizes must be optimal. If the TCP sender socket buffer size is too
small, the TCP congestion window will never fully open up and if it is too
large the sender may overrun the receiver which will cause the TCP window
to shut down.

Linux SuSE (the Linux version we used as the underline OS for all the
tests, simulations, etc.) default TCP send/receive buffer is 128 KB. By pre-
serving default parameters, stable transfer operations are provided but at the
cost of the transfer rates. In other words, a small percentage of the band-
width will be consumed.

Figure 2.4: TCP Socket Buffer Size

The TCP sender/receiver buffer sizes are chosen depending on what is
called the Bandwidth Delay Product (BDP). BDP is the amount of data
that can be in transit in the network at any time. Formally, it is equal to the
product of the bottleneck link bandwidth and the Round Trip Time (RTT,
also known as latency or delay) of the network connection form end-to-end.
Today, BDP has become more important to the TCP protocol compared
with the past due to the implementation of higher speed networks.

In addition to the above, GridFTP provide parallelism, i.e. using multiple
TCP streams (connections) in transmission.

12

Chapter 2. Maximizing GridFTP Throughput

2.2.3 TCP parallel streams

TCP probes the available bandwidth of a connection by continuously in-
creasing the window size until a packet loss is detected. When the latter
happens, the window size is cut in half and starts recurring again. For large
WAN connections, i.e. for large BDPs, the recurring stage requires a longer
time. During this stage, less available bandwidth will be used. For the per-
formance not to be degraded, a large bottleneck link is required which, in
turn, requires large TCP socket buffer sizes on all the intervening routers.

In order to improve the latter situation, TCP parallel streams can be
used. This technique works as follows: data is divided into N portions and
each portion is transferred with a separate TCP connection. The effect of
N parallel streams is to reduce the Bandwidth Delay Product experienced
by a single stream by a factor of N because they all share the single-stream
bandwidth. When competing with connections over a congested link, each of
the parallel streams will be less likely to be selected for having their packets
dropped, and therefore the aggregate amount of potential bandwidth which
must go through premature congestion avoidance or slow start is reduced. It
should be noted, however, that if the bandwidth is limited by small router
buffers in the path, all the streams are likely to experience packet loss in
synchrony (when the buffer fills, arriving packets from each stream are all
dropped) and thus gain little advantage over a single stream.

Figure 2.5: TCP Parallel Streams

13

Section 2.3 Simulation

Experience has shown that parallel streams can dramatically improve
application throughput and can also be a useful technique for cases where
you dont have root access to a host in order to increase its maximum TCP
buffer size. However, parallel streams can drastically reduce throughput if
the sending host is much faster than the receiving host.

2.3 Simulation

In the following section we are going to present the initial tests that took
place locally and remotely.

globus-url-copy Command-line

The basic procedure for using GridFTP is running the globus-url-copy

command [11].

For implicitly, just run the following:

user:/> globus-url-copy source url destination url

Note: Authentication and authorization processes should be met in order
to run successfully the above command.

In the default mode, globus-url-copy uses a single TCP stream. To
choose TCP parallel streams, the option -p is added to the globus-url-copy
command. But the question that arises up is how do one chooses a value for
the -p option?

For most instances, using 4 streams is a very good rule of thumb. Unfor-
tunately, there is not a good formula for picking an exact answer.

Therefore, we tried to find an answer conducting some experiments (tests).

2.3.1 Initial experiments

The initial experiments involved transferring various files on two phases:

1. Locally (using the Grid testbed at the Technical University of Crete
(TUC))

2. Remotely, between TUC and the University of Plymouth (UoP).

14

Chapter 2. Maximizing GridFTP Throughput

Those first tests included only the TCP Parallel streams feature of the
GridFTP protocol.

GridFTP
Server

CPU RAM LAN
NIC

OS Globus
Toolkit

Grid3.tsi.gr Pentium
IV Xeon 2
GHz

512 MB 100Mbps SuSE
Linux 9.2

GT 4.0.1

Grid2.tsi.gr Pentium
II 400
MHz

128 MB 100Mbps Slackware
10.1

GT 4.0.1

Table 2.1: PC Specifications at TUC

Table 2.1 shows the machines used locally at TUC during the tests. The
Globus Toolkit available at that time was GT4.0.1 (In the meantime of writ-
ing this thesis a GT4.0.5 was available).

GridFTP
Server

CPU RAM LAN
NIC

OS Globus
Toolkit

Grid3.tsi.gr Pentium
IV Xeon 2
GHz

512 MB 100Mbps SuSE
Linux 9.2

GT 4.0.1

smb2193n2-
31814

Pentium
IV 3 GHz

1 GB 1Gbit SuSE
Linux 9.2

GT 4.0.0

Table 2.2: PC Specifications at UoP

Table 2.2 shows the machines from TUC and UoP used duting the tests.

Figure 2.6 below, shows the transfer rate vs. the parallel streams for dif-
ferent file-sizes (10MB, 100MB and 1GB file-size). The transfers where done
locally at TUC. The transfer rate is represented in MB/s. A range from 1
to 512 TCP parallel streams was used initially. We show only some values
from this range (1, 4, 8, 10, 16 and 32).

When transferring a 10MB file, the best transfer rate (9.60MB/s) is
achieved when -p equals four. While using a 100MB file, the best transfer
rate (9.95MB/s) is achieved when -p equals eight. Note that using four and
ten parallel streams roughly achieve the same average value. Using a 1GB

15

Section 2.3 Simulation

0 5 10 15 20 25 30 35
4

5

6

7

8

9

10

11

Number of TCP Parallel Streams

T
ra

ns
fe

r
R

at
e

 (
M

B
/s

ec
)

10MB, 100MB, 1GB

10MB
100MB
1GB

Figure 2.6: Locally at TUC

file, the best transfer rate had been achieved (10.37 MB/s) when -p has the
value ten. 10. In addition to the latter, using eight parallel streams in the
transfer can achieve well values (10.22 MB/s).

Observing Figure 2.6, one can originally notice that all the files (10MB,
100MB and 1GB) can be transferred at a very good rate when using four
parallel streams.

Looking more precisely, one can figure out the following:

1. For small-size files (1MB - 80MB), its more preferable to use only four
parallel streams;

2. For large-size files (100MB -), eight or ten parallel streams can be used
for transferring files.

We have to emphasize that these values can differ from machines
to machines according to the network bandwidth that underlies
them.

16

Chapter 2. Maximizing GridFTP Throughput

Figure 2.7 shows the transfer rate vs. TCP parallel streams using the
same file-sizes (10MB, 100MB, 1GB) as the case before. As expected, the
transfer rate reduces dramatically when files are transferred remotely. From
the graph, the best transfer (3.91MB/s), while using 10MB file, is achieved
when sixteen parallel streams are used. That comes in contradiction with
the tests done locally, where transfer rate starts to reduce after using ten
parallel streams. When 100MB file was used, we can notice that the best
transfer rate (6.97MB/s) is achieved also when sixteen parallel streams are
used for the transfer. Finally when using 1GB-file for the transfer, we notice
that the best transfer rate (7.63MB/s) is achieved when the parallel streams
used are thirty two.

Note: The tests took place between 13:00 and 16:00 locally
(Greece, +2GMT).

0 5 10 15 20 25 30 35
0

1

2

3

4

5

6

7

8

Number of TCP Parallel Streams

T
ra

ns
fe

r
R

at
e

 (
M

B
/s

ec
)

10MB, 100MB, 1GB

10MB
100MB
1GB

Figure 2.7: Remotely between TUC and UoP

Finally, according to the theory and the tests that took place, one can con-
clude that using parallel streams improves radically the transfer rate band-
width. In other words, the GridFTP protocol/service takes advantage of the
bandwidth thus improving vastly the transfer rate and by that we recommend
using multiple parallel streams during transfers.

17

Section 2.3 Simulation

2.3.2 Further Experiments

In the second phase, in addition to the TCP parallel streams, TCP socket
buffer size was examined. The benefit from using an adapted value for the
buffer size was discussed in the previous section. We here show the tests taht
took place and discuss the results.

In these tests, only remote transfers with UoP have taken place.

Figure 2.8 shows the transfer rate vs. the parallel streams of a 100MB-
file for different TCP socket buffer sizes. Using Ethereal Monitoring tool and
depending on previous tests with UoP the estimated RTT value between the
two universities is ≈ 70ms. The bandwidth value used at that time was
100Mbps. That gives a BDP value of 875000 bytes. As the TCP socket
buffer size values, the following were used: the default TCP socket buffer
size of a SuSe kernel (128K), twice BDP and finally BDP multiplied by the
number of TCP parallel streams.

As can be seen from Figure 2.8, using modified TCP socket buffer size
values improves further the transfer rate. Moreover, Figure 2.8 shows that
using very large TCP socket buffer sizes may have negative effects on the
transfer rate.

In general, using suitable values for the TCP socket buffer size and for the
number of TCP parallel streams the throughput would reach to an optimal
value. As mentioned above though, there is no rule of thumb on choosing
these values.

2.3.3 Related Work

During the last years, there have been some efforts trying to explore and
find some certain formula that could estimate and calculate efficient values
for those features [12, 13, 14].

In [12], an extension of the GridFTP protocol is proposed, which deter-
mines the required TCP socket buffer size based on the BDP. Particularly,
it is based on a one-time measurement of the BDP, i.e. Round Trip Time
(RTT) and bottleneck (available) bandwidth. Under real conditions though,
the BDP value varies over time. Moreover, other network parameters such
as the number of TCP parallel streams and non-network parameters such as
file-size are not taken into consideration. Finally, the proposed mechanism

18

Chapter 2. Maximizing GridFTP Throughput

1 4 8 16 32
0

1

2

3

4

5

6

7

8

9

Number of TCP Parallel Streams

T
ra

ns
fe

r
R

at
e

(M
B

/s
ec

)
100MB

TCP buffer = BDP x # of Parallel Streams TCP buffer = 2 x BDP Default TCP

Figure 2.8: Modified TCP buffer size

allocates twice of the BDP per TCP connection, which is inefficient regarding
memory allocation according to our conclusions.

In [13], a fluid-flow model has been adopted for the TCP control mecha-
nism when applied to large scale IP networks. Here, multiple TCP connec-
tions are modelled as independent continuous-time systems and the bottle-
neck router is modelled as another single continuous-time system. An anal-
ysis of the final model is then performed. As a result, the optimal number
of TCP connections and the TCP socket buffer size are computed. However,
it should be mentioned that the RTT, the packet loss probability and the
bottleneck bandwidth should be known in advance. Moreover, only server-
to-client transfers are taken into consideration, whereas traffic on the control
channel is neglected. Although, they use the TCP socket buffer size equal
to BDP in their ns-2 based simulations, they suggest that TCP socket buffer
size should be larger than the BDP value.

In [14], an automatic configuration mechanism, based on [13], is proposed.
It is unable to apply to third-party transfers since the configuration is fully
performed at the client side. This way, only client-to-server transfers should
benefit, and hence this mechanism should not be integrated in an updated

19

Section 2.3 Simulation

version of the GridFTP protocol. However, it seems that such a mechanism
should be more beneficial to Grid transfer protocols if it was implemented in
the middleware.

The GridFTP protocol extension proposed in [12] is based on a one-
time measurement of the BDP, i.e. on both RTT (network latency) and the
bottleneck (available) bandwidth. Under real conditions though, the BDP
value varies over time. Moreover, other network parameters such as number
of TCP parallel streams and socket buffer size play an equally important role.

In [13], a certain number of network parameters such as the RTT, the
packet loss probability and the bottleneck bandwidth should be known in
advance. Moreover, only server-to-client transfers are taken into consider-
ation, whereas traffic on the control channel is neglected. Moreover, ns-2
simulator has been used as its simulation tool. Its concluded that TCP
socket buffer size should be larger than the BDP. Although a reference to
BDP as inadequate for practical purposes is made, their ns-2 based simula-
tion model is based on BDP.

In [14], the proposed automatic configuration mechanism cannot apply to
third-party transfers since the configuration is fully performed at the client
side. This way, only client-to-server transfers should benefit, and hence the
proposed mechanism should not be integrated in an updated version of the
GridFTP protocol. However, it seems that such a mechanism should be more
beneficial to Grid transfer protocols if it was implemented in the middleware.

2.3.4 Our Approach

In contrast to the previous works, we have approached the problem of
GridFTP throughput maximization in an opposite way. We first started per-
forming a series of experiments over real-world wide area network conditions
and then recording the measurements. Afterwards, we experimented with the
network throughput behaviour, via a network emulator, under the variation
of the following network and non-network parameters: 1) File-size, 2) RTT,
3) Network Bandwidth, 4) Number of parallel streams and 5) TCP sender
buffer size. We initially considered BDP as the only throughput-affecting
parameter which characterizes the current network conditions. However, we
soon discovered that BDP cannot be considered equivalent to the various
bottleneck bandwidth and RTT values whose product equals BDP, i.e. the
pair (100Mbps, 70ms) has the same BDP value as the pair (1Gbps, 7ms).
Through a behavioural analysis, we tried to find the best-fitting model to

20

Chapter 2. Maximizing GridFTP Throughput

the network throughput estimator. Through this estimator, each application
and hence GridFTP will be able to pre-select (right before the data transfer)
the best network parameters (number of TCP parallel streams and buffer
size) in terms of maximum throughput.

Unlike [12], our work focuses on multiple TCP streams and TCP sender
buffer size. Whereas, [13, 14] also focus on these two parameters, their pro-
posed mechanism has only been tested under ns-2 and is only based upon
BDP. Moreover, it cannot be applied to third-party transfers.

In this work, we find the best-fitting model for the network throughput
estimator. Through this estimator, each application and hence GridFTP will
be able to pre-decide (right before the data transfer) on the best parameters
(number of parallel streams and buffer size) in terms of maximum through-
put.

Throughput Measurement Setup

In this section, we describe two different network configuration setups to
measure the throughput of the GridFTP protocol. In each case, we com-
mit two hosts running the client and the server applications of the GridFTP
protocol. In the first setup we have made use of the LANforge network emu-
lator [15] as shown in Figure 2.9, whereas in the second setup, we have used
the already established Grid infrastructure between Technical University of
Crete (TUC) and University of Plymouth (UoP).

Figure 2.9: LANForge Topology

21

Section 2.3 Simulation

Figure 2.10: TUC-UoP Grid Testbed

LANForge is an advanced network emulator which provides a handful of
network parameters enough to extensively test the GridFTP protocol locally
without the inconvenience of having to coordinate different administrative
domains.

Choosing the parameters for LANForge setup

Regarding file-size, we have used 100MB, 1GB and 10GB values. RTT
values range from 20ms to 100ms. Network Bandwidth values range from
45Mbps to 155Mbps. As for the number of TCP parallel streams, we have
chosen the most common values (8, 16, 32, and 64). Choosing more than
64 parallel streams had no remarkable improvement on the throughput. Fi-
nally, we have chosen TCP socket sender buffer size values in the range from
the default kernel value 128KB up to 1MB. In every case, we have carefully
selected the (RTT, Bandwidth) pair values so that the equivalent BDP value
remains below the maximum TCP socket buffer size value being used in our
experiments. Moreover, we configured LANForge so that it resembles a real
network. We chose a packet-drop frequency of 10−3 packets and a maximum
jitter value of 4ms at both ends of the WAN link.

Results produced from LANForge setup

In our first set of simulation runs, we wrote down the behaviour of 100MB
file-transfers. The throughout reaches a maximum at a specific pair of values
for the number of parallel streams and the TCP sender buffer size as shown
in Figure 2.11. For all the other pairs, the throughput remains at lower lev-
els. For the cases, we have chosen more than 16 parallel streams, it seems
that the extra throughput gain is compensated from the time required to
reassemble the packets from these extra streams.

22

Chapter 2. Maximizing GridFTP Throughput

8 16 32 64
0

2

4

6

8

10

12

14

Number of TCP Parallel Streams

T
ra

ns
fe

r
R

at
e

(M
B

/s
ec

)

100MB

1024K 854K 512K 256K 128K

Figure 2.11: Transfer Rate vs. Parallel streams for a 100MB-file, using different
Buffer sizes

Figure 2.12 summarizes the results from the 1GB file-transfers. In this
case, it seems that the TCP sender buffer size has sufficient time to reach
its maximum value, which corresponds to the maximum throughput the file
transfer can take from the network. Thats why, whatever the number of
parallel streams and the TCP sender buffer size used in the simulations, the
throughput remains stabilized. This behaviour is further amplified by the
10GB file-transfers (see Figure 2.13).

TUC-UoP Grid testbed

During the establishment of a small Grid testbed between TUC and UoP,
we had the chance to run several GridFTP tests under real network condi-
tions. The tests were run at different times of the day and for a period longer
than a month in order to have all the network variations possible. We used
the Ethereal Monitoring Tool to measure RTT and bottleneck bandwidth.
The measured values were 70ms and 50Mbps respectively. They produced a
BDP value of 427 KB, more than three times the TCP default sender/receiver
buffer size.

Figure 2.14 presents the measurements that were taken. Its worth noting
the proximity between the simulated and the measured throughput values

23

Section 2.3 Simulation

8 16 32 64
0

2

4

6

8

10

12

14

Number of TCP Parallel Streams

T
ra

ns
fe

r
R

at
e

 (
M

B
/s

ec
)

1GB

1024K 854K 512K 256K 128K

Figure 2.12: Transfer Rate vs. Parallel streams for a 1GB-file, using different
Buffer sizes

for the case of 100MB file-transfers.

Throughput Modelling

As mentioned before, a fluid-flow model has been adopted by [13]. Ap-
plying steady state analysis, the GridFTP goodput is given as a function of
the TCP socket buffer size W , the number of parallel TCP connections N ,
the round-trip time R, the bottleneck link bandwidth B and the packet loss
probability p as shown in Equation 2.1:

G∗ ≈ min

(
NW

R
,
N (1− p)

2R

(
−3 +

√
6 + 21p
√
p

))
(2.1)

The optimal number of parallel TCP connections is obtained by deter-
mining N that maximizes Equation 2.1.

In our approach however, we have already setup a network testbed as
described in the previous section. Having all the necessary network measure-
ments at our disposal, we are capable of observing the throughput behaviour
in terms of each parameter alone.

We first came to the conclusion that the throughput depends more or less

24

Chapter 2. Maximizing GridFTP Throughput

8 16 32 64
0

2

4

6

8

10

12

14

Number of TCP Parallel Streams

T
ra

ns
fe

r
R

at
e

(M
B

/s
ec

)

10GB

1024K 854K 512K 256K 128K

Figure 2.13: Transfer Rate vs. Parallel streams for a 10GB-file, using different
Buffer sizes

on the five parameters used in our network setup. These parameters are file-
size, RTT, Network Bandwidth, number of TCP parallel streams and TCP
socket sender buffer size. Based on our simulation parameter configurations,
we did not see any remarkable throughput decrease when we introduced
packet drop frequency as well as jitter. This led us to avoid considering
packet loss probability as a parameter throughout the modelling phase.

Reviewing the relevant literature we found that the most proper models
that could apply to the observed throughput behaviour would be the Linear
Regression model [16], the Non-linear model [17] Regression and the classical
Least Linear Minimum Mean Square Error estimator [18]. Thus we applied
all these models to the measurements and concluded which the best-fitting
model was.

In particular, we have properly modelled the GridFTP file transfer through-
put as a function of the network and non-network parameters mentioned
above according to the following formula:

Y = f (X,A) + ε (2.2)

where Y is the throughput vector, X is the matrix that contains the combi-
nation of the five parameters, A is the parameter weighting vector and ε is
the error vector.

25

Section 2.3 Simulation

8 16 32 64
0

1

2

3

4

5

6

7

8

9

Number of TCP Parallel Streams

T
ra

ns
fe

r
R

at
e

(M
B

/s
ec

)

100MB

854K 427K 128K

Figure 2.14: Transfer Rate vs. Parallel streams for a 100MB-file, using different
Buffer sizes between TUC and UoP

For each applied model, the steps below were followed:

1. Computation of the A vector.

2. Estimation of the throughput Y vector based on A vector from step
“1” and the parameter X matrix.

3. Statistically processing the deviations between the estimated Y vector
and the observed Y vector.

The last step is used as an indicator of which model properly applies to the
throughput maximization problem.

Multiple Linear Regression

Regression analysis is the statistical methodology of predicting values of
one or more response (dependent) variables from a collection of predictor
(independent) variable values. It can also be used for assessing the effects of

26

Chapter 2. Maximizing GridFTP Throughput

the predictor variables on the responses [16].

The classical linear regression model states that Y is composed of a mean,
which depends in a continuous manner on the ai’s, and a random error ε,
which accounts for measurement error and the effects of other variables not
explicity considered in the model. The values of the predictor variables
recorded from the experiment or set by the investigator are treated as fixed.
The error (and hence the response) is viewed as a random variable whose
behaviour is characterized by a set of distributional assumptions.

The linear model has the following formula:

Y = XA+ ε (2.3)

yi = a1yi1 + a2yi2 + a3yi3 + a4yi4 + a5yi5 + εi

where i = 1, 2, ..., n

Y =



y1

y2

y3
...
yn


(n×1)

A =


a1

a2

a3

a4

a5


(5×1)

ε =



e1
e2
e3
...
en


(n×1)

X =


1 x11 x12 x13 x14 x15

1 x21 x22 x23 x24 x25
... · · ·
1 xn1 xn2 xn3 xn4 xn5


(6×1)

Least squares is used to solve the above problem in order to estimate
the parameter vector A given the observations Y and X. The least squares
procedure determines the A vector that minimizes the sum of squares given
by

ζ2 =
n∑

i=1

(yi − a1xi1 − a2xi2 − a3xi3 − a4xi4 − a5xi5)
2

Using calculus the resulting equation for A is given by

A =
(
XTX

)−1
XTY (2.4)

27

Section 2.3 Simulation

LMMSE Estimation

In this model Y and X are considered as Random Vectors. Assuming
that these vectors are dependent, the following question, which is described
in Equation 2.5, comes up: given the random vectors X and Y , what is the
vector A that best estimates or approaches the random vector Y .

Ŷ = XA+ ε (2.5)

The corresponding minimum-mean-square-error (m.m.s.e for short) ma-
trix of Equation 2.5 is given by

m.m.s.e = E (y − ŷ) (y − ŷ)∗ = Rx − ARxy (2.6)

The optimum choice A that minimizes Equation 2.6 (i.e. minimizes the
mean-square error in the estimator of each component of the vector Y) is
given by

A = RX,YR
−1
X (2.7)

where RX,Y is the cross-correlation matrix between X and Y and R−1
X is the

inverse auto-correlation matrix of X.

Multiple Non-linear Regression

Unlike the Linear Regression (which is a simple straight relationship), the
Non-linear Regression is not defined by a specific relationship in the litera-
ture. In other words, this type of regression is case dependent. Therefore, by
analyzing and graphically representing (see Figures 5 and 6) the throughput
measurements in terms of each parameter, we came to the conclusion that
the throughput changes exponentially to the parameter variations as shown
in the following formula:

Y = eXA + ε (2.8)

After linearization, Equation 2.8 will become:

log Y = XA+ log ε (2.9)

Note that, Equation 2.9 is now a linear equation which can be solved in
the same way as with the Linear Regression model.

28

Chapter 2. Maximizing GridFTP Throughput

We have estimated the A vector based on our simulation results adopting
the three models mentioned in the previous section with the help of Matlab
[19].

From the first view, it seems that the Linear Regression model is the most
simplified model of the three because it assumes that the throughput vector
Y changes proportionally to the X parameter matrix. Of course, the lin-
ear model adoption proved not to be always valid. This happens especially
during large file transfers, where there is enough time for the throughput
to reach its highest possible value. Under this condition, we do not expect
any throughput increase by further increasing the number of parallel streams.

On the other hand, the LMMSE adopts a linear relationship between
the parameters and the throughputs, which are going to be estimated. This
is a stochastic model and is often called by the name “Linear Least Mean
Squares”, whereas the previous model is deterministic and is called “Linear
Least Squares”. In this case, the estimated throughput results were far away
from the observed values. This happens mostly due to the small number of
trials that have taken place and the small degree of variance in the parameter
sets that have been chosen.

Finally, the Non-linear model is based on the multidimensional X, Y
data, where Y is exponentially related to X as shown in Equation 2.8. The
idea here is to obtain values for the vector A associated with the best fitting
curve, i.e. Least Squares. In this case, the theoretical results were found to
be closer to the measurements than the other models.

In performing throughput measurement analysis, we thought we had bet-
ter estimate the deviation between measured and estimated throughput over
all possible configuration setups. In principle, we did not count the cases
where the deviations were both positive and far away from their pre-defined
values (2.2, 1.6 and 1.1 MB/s). The first results showed that the LMMSE
model was far behind the other two models in estimating the throughput.
Limiting our interest to the Linear and Non-linear Regression models, we
computed the percentage of the simulation scenarios whose deviation was
below some predefined values.

The first deviation value of 2.2 MB/s was chosen because the Non-Linear
model was capable of estimating the throughput of all the scenarios (100%)
with deviation below this value. Afterwards, the other deviation values were
chosen to be lower to show the superiority of the Non-Linear over the Lin-
ear model. As it is shown in Figure 2.15, the accuracy of the Non-Linear

29

Section 2.3 Simulation

2.2 1.6 1.1
0

10

20

30

40

50

60

70

80

90

100

110

Throughput Deviation (MB/sec)

T
ra

ns
fe

r
R

at
e

(M
B

/s
ec

)

Linear
Non−Linear

Figure 2.15: Throughput Deviation

throughput estimation is very satisfactory.

To sum up, in this work, we try to find the best-fitting model that best
suits the GridFTP throughput among different mathematical and statistical
regression models. The models examined were: the Linear, the Non-Linear
(exponential) and the Stochastic. Our goal has been the correct choice of
the GridFTP parameters (number of TCP parallel streams and TCP sender
socket buffer size) that would maximize its throughput since no rule of thumb
exist on choosing those parameters. Our efforts are based on real-condition
and emulation results. Our analysis utilizes both network and non-network
parameters. The model, whose estimations best fit the observed throughput
measurements, is proven to be the Non-Linear (exponential) model. Compar-
ing our approach with other related works, we can notice that [12] computes,
based on one-time measurement of the BDP, the required TCP socket buffer
size only. The number of TCP parallel streams is not computed which leads
to sub-optimal GridFTP throughputs. Throughout this chapter we have

30

Chapter 2. Maximizing GridFTP Throughput

proved that optimal GridFTP throughput could be achieved using both TCP
socket buffer size and number of TCP parallel streams parameters. While
[13, 14] present an apporach to measure TCP sokcet buffer size and number
of TCP connections in a dynamic manner based on a fluid-flow model, no
reference of the throughput behaviour under several conditions (network and
non-network) is noted. In this work, we beleive that studying the GridFTP
throughput would help understand and figure out the way which GridFTP
should be dynamically and optimally parameterized.

2.4 Acknowledgments

We would like to express our gratefulness to both Mrs. Lingfen Sun and
Mr. Pin Hu from the University of Plymouth, England for the assistance in
running the GridFTP trials between our universities.

Many thanks to the creators of LANForge network emulator [15] for their
licensing and their helpful hints.

31

Section 2.4 Acknowledgments

32

Chapter 3
Bandwidth Estimation

3.1 Introduction

In the previous chapter, we talked about GridFTP service and we studied
its throughput behaviour. We have produced and analyzed the best fitting
model for the throughput among various mathematical and statistical mod-
els. The models studied were: Linear Regression, Least Mean Square Error
and Non-Linear/exponential model. For each model, we have used the fol-
lowing parameters as input: bottleneck bandwidth, RTT, number of parallel
streams and sender TCP socket buffer size. In conclusion, we have seen that
an active probing tool which could actively estimate the network conditions
in terms of bottleneck bandwidth and RTT could benefit GridFTP.

Hence our next challenge was to create a tool that could make use of the
best fitting model based on the current network conditions in order to appro-
priately parameterize GridFTP to achieve the maximum available network
throughput.

The question to be addressed was “which method or technique can reli-
ably and actively estimate the network conditions, i.e. RTT and bottleneck
bandwidth?”.

Regarding RTT, first we employed a software program which sends UDP
packets to the server and waits to receive them back. RTT is equal to the
time difference between the reception and the transmission of each packet.
We used UDP packets instead of TCP because first TCP is a feedback pro-
tocol and second TCP uses a large amount of overhead.

33

Section 3.2 Packet Pair/Train Technique

Regarding the bottleneck bandwidth, things were rather complicated.
The extension of the RTT algorithm we first used was proved to be un-
suitable in estimating the bottleneck bandwidth due to instabilities. This
led us to turn to search more deeply relevant material in the area.

3.2 Packet Pair/Train Technique

In large-scale networks, such as the Internet, it is impossible to keep an
updated view of the network conditions for the entire network. This is partly
because the amount of information needed would be so large that no single
computer would be able to process it. Another problem is that the network is
divided into sub-networks that are managed by different corporations. How-
ever, to obtain the network conditions and characteristics of an end-to-end
path is a feasible task by using active measurement methods. Many of these
methods do not require previous knowledge of the network at all.

A general way of active bandwidth measurement is to inject probing pack-
ets into an end-to-end path and observe their behaviour to estimate the
bottleneck capacity and the available bandwidth. One of the most popular
mechanisms is the “packet pair” technique in which a source sends pair of
packets of the same size to a receiver. The inter-packet dispersion (∆S) be-
tween these two probing packets changes according to path characteristics
such as link capacities and cross-traffic (see Figure 3.1). Hence, the rela-
tionship between the inter-packet dispersion at the sender and that at the
receiver is exploited to estimate the end-to-end network bandwidth.

Figure 3.1: Packet Pair Technique

The basic packet pair algorithm relies on the fact that if two packets sent
back-to-back are queued next to each other at a narrow link and therefore
once they will exit the narrow link they will dispersed by, let’s say, ∆ as
shown in Figure 3.2. Mathematically, ∆ could be given by:

34

Chapter 3. Bandwidth Estimation

∆ = P/B (3.1)

where P is the packet size, and B is the bandwidth of the narrow link.

Figure 3.2: Packet Pair Technique showing a narrow link

If the two packets have the same size, their transmission delays are the
same. This means that after the narrow link, a dispersion of ∆ will be main-
tained between the packets even if faster links are traversed downstream of
the narrow link.

From Equation 3.1, bandwidth will be given by:

B = P/∆ (3.2)

Packet pair technique involves sending two probing packets back to back as
described before. When dealing with large scale networks, two packets are
not enough to measure efficiently the bandwidth. Therefore, an extension
of the packet pair technique is the packet train. The packet train technique
sends more than two probing packets and the dispersion is measured as the
time interval of the first and the last packets.

3.3 Active end-to-end Bandwidth Measure-

ment

Suppose, a sender injects N probe packets, each of size P , into a path
with an input dispersion ∆S. Consider C as the path capacity. After the

35

Section 3.3 Active end-to-end Bandwidth Measurement

packets have traversed the network path the dispersion may have changed
due to the network congestion, from an input dispersion ∆S into an output
dispersion ∆R.

The sending rate, with which the sender sends the probing pakcets to a
receiver, could be given by the following equation:

S.R. =
P.(N − 1)

∆S

(3.3)

The Receiving Rate (R.R.), which is the rate of the probing packets arriving
at the receiver, is defined in a similar way as the above Equation 3.3:

R.R. =
P.(N − 1)

∆R

(3.4)

Consider now, the case where S.R. > C. In this case, the probe packets
are obliged to queue at C, i.e. the narrow link. The latter leads to a conges-
tion which means that ∆R is greater than ∆S. This is shown in Figure 3.3.
The bottleneck bandwidth in this case will be equal to the R.R..

Now consdier, the case where S.R. < C. In this case, the probe packets
will pass through the path without any queue. No congestion will occur and
that can be shown in Figure 3.4. In such cases no bottleneck bandwidths are
found in the path which in turn means that the path with capcity C can not
be measured or estimated.

Figure 3.3: A case where congestion occurs

36

Chapter 3. Bandwidth Estimation

Figure 3.4: A case where no congestion occurs

But how do the above equations relate to bandwidth? As described in
the previous section, bandwidth is given by the Equation 3.2. The relation
between the bandwidth and the sending/receiving rates is stated below.

The bandwidth is proportional to the sending rate. In other words, when
a sender injects probe packets at a rate of 10Mbps, the bandwidth that could
be estimated in this case is 10Mbps. While when the sender, sends pack-
ets at a rate of 100Mbps, a 100Mbps bandwidth could be estimated. In
a path with capcity C = 20Mbps for example, a S.R. = 5Mbps could not
estimate the bandwidth in this case. This is desrcibed above (see Figure 3.4).

Equations 3.3 and 3.4 consist of the following variables:

1. Probe packet size, P

2. Number of pakcets sent, N

3. Packet Dispersion, ∆

Consider now the case, where a sender sends N packets, of size P each, and a
∆ time gap interval between each packet. Then the total dispersion between
the last and the first packet would be equal to ∆.(N − 1).

Equation 3.3 would become:

S.R. =
P.(N − 1)

∆.(N − 1)
−→ S.R. =

P

∆
(3.5)

37

Section 3.4 Related Work

Note that the above equation and Equation 3.2 are equal.

In conclusion, in order to measure actively end-to-end bandwidths, it’s
necessary that any bandwidth measuring tool would send probe packets with
a rate that is larger than the path’s capacity. In other words, the basic idea
here, is to throttle the path and then measure the rate of the arriving packets
at the other end, i.e. at the receiver.

The key out here that large packets and very small Dispersions should
be used in order to get high sending rates. Based on what we have shown
previoulsy, high sending rates have the ability to measure high bandwidth
values.

3.4 Related Work

Among the tools in the relative literature, we refer the following three:
IGI/PTR [20], Pathchirp [21] and Pathload [22].

Pathload is a tool for estimating the available bandwidth of an end-to-end
path from o sender to a receiver. This available bandwidth is the maximum
throughput that a flow can get in the path from sender to receiver. Pathload
is based on observations of the one-way delay in probe-packet trains. If the
input rate of the probe packets is above the available bandwidth the one-way
delay will show an increasing trend within the train. If not, the one-way
delay is more or less constant. Results are obtained at the receiver side. To
locate the available bandwidth Pathload performs a binary search.

The IGI and PTR algorithms send a sequence of packet trains with in-
creasing initial gap from the source to the destination host. They monitor
the difference between the average source (initial) and destination (output)
gap and they terminate when it becomes zero. At that point, the packet
train is operating at the turning point. The final measurement is computed
using the IGI and PTR formulas. The results are obtained at the sender side.

Pathchirp injects probe packets in chirps. A chirp is a sequence of probe
packets with exponentially decreasing time intervals between the probe pack-
ets. It is then possible to investigate a whole range of input rates in one
chirp. The analysis is then performed by investigating the relation between
delayed and non-delayed probe packets. One chirp gives an estimate of avail-
able bandwidth. Pathchirp requires three different machines in order to run

38

Chapter 3. Bandwidth Estimation

(sender, receiver, and master to collect the results).

3.5 Our Approach

Our approach is also based on packet train techqniue. Specifically we
make use of Equations 3.3 and 3.4. Our tool sends specific number of equal-
sized packets (N = 251 & P = 65000Bytes). Moreover, a constant gap
between each packet is inserted (∆ = 6ms).

According to the above values, we have:

S.R. =
P.(N − 1)

∆
=

65000× 8× (251− 1)

6× 10−3 × (250)
= 86.66Mbps (3.6)

The above value means that our tool can measure bandwidth values up to
86Mbps.

Table 3.1 shows the basic characteristics of our tool, IGI/PTR and Pathload.

Our Tool IGI/PTR Pathload
Packet Size, P 65000Bytes 500Bytes 1472Bytes
Number of Packets, N 250 60/train 100/fleet
Packet Dispersion, ∆ 4− 6ms Varies 0.08ms

Table 3.1: Characteristics of our too, IGI/PTR and Pathload

Figure 3.5: LANForge Topology

39

Section 3.5 Our Approach

What really distinguishes our approach form the other tools is that we use
large packet-sizes (P = 65000Bytes). While, all the other tools use small
packet-sizes (up to 1500Bytes). There is a reason for that. The TCP/IP
stack uses what is called Maximum Transmission Unit (MTU). MTU refers to
the size (in bytes) of the largest packet that a given layer of a communication
protocol can pass onwards. MTU parameters usually appear in association
with ethernet card communication interfaces, i.e. NIC. MTU is usually equal
to 1500 bytes. That’s why all the tools mentioned above use packet-sizes up
to the MTU value. In our approach we neglect the lower layers of TCP/IP
and focus on the application layer. According to our tool, using packet-sizes
up to the MTU value would limit the sending rate and thus would limit the
bandwidth value that can be estimated as can be shown below:

S.R. =
P

∆
=

1500× 8

6× 10−3
= 2Mbps (3.7)

Another difference between our tool and the other tools, is the gap or dis-
persion (∆) value inserted between each packet. The other tools use small
dispersions (< 1ms) while in our tool we are obliged to use dispersions> 4ms.
This is described below:

Our initial tests concerned sending probing packets simultaneously from the
sender to the receiver. We noticed that the receiver could not process more
than 300 hundred packets sent simultaneously. Sending probing packets with
a gap inserted between each packet did solve the problem. We applied to
our system the case described in Section 3.3 where S.R. < C. In this case,
we expect to have S.R. = R.R.. In other words, we expect ∆S = ∆R (see
Figure 3.4).

In order to test the above theory we considered the following scenario:

Two probing packets of size 1500Bytes and a bandwidth value 100Mbps
set by LANForge emulator were used. Moreover, a dispersion range of 1ms
to 10ms was used. Note that the higher sending rate is acheived when a
1ms-gap is used. According to Equation 3.3, sending rate would be equal to
12Mbps. Since the capacity is set to 100Mbps that would apply to the case
mentioned above where S.R. < C which lead to ∆S = ∆R.

Initially we used a dispersion value of ∆S = 1ms. As mentioned before
we expect to have ∆R = 1ms but the value we get is ∆R = 4ms. The same
happens when using ∆S = 2ms. Other values tested are shown in Table 3.2
below. This happens due to hardware/software drawbacks and inabilities.

40

Chapter 3. Bandwidth Estimation

In this thesis, we do not refer to these inabilities.

∆S 1ms 2ms 3ms 4ms 5ms 6ms 7ms 8ms 9ms 10ms
∆R 4ms 4ms 4ms 4ms 5ms 6ms 7ms 8ms 9ms 10ms

Table 3.2: Dispersion Comparison under No-congestion Network

According to the above table, the tests we conducted shows that due to
hardware/software inabilitites it is impossible to have ∆ < 1ms.

Pathload uses a maximum pakcet size of 1472Bytes. A constant gap of 80
us. That would give us a sending rate of 147Mbps, according to Equatoin 3.5.

IGI/PTR in it’s default run uses 60 packets per train, 500Bytes each.
This is suitable for measuring low-scale networks (up to 1Mbps). In order
to measure large-scale networks, these values should be modified. We have
seen through a lot of tests, that 200 pakcets per train and 20000Bytes each,
give satisfying results for the PTR. The IGI under such conditions would
only work properly for values equaland below 20Mbps. This is shown in
Figure 3.7.

We used LANForge [15] emulator in order to test the integrity of our
approach, IGI/PTR and Pahtload. Figure 3.5 shows the network topology.

Figure 3.7 compares our approach with the IGI/PTR tool. Notice that
IGI works properly for 20Mbps bandwidths and below. While PTR can be
comparable to our case. That is, because PTR uses the same formula as our
tool (see Equation 3.3).

Bandwidth
(Mbps)

5 10 20 30 40 50 60 70 80

Our Tool 5 10 20 30 40 50 61 72 74
PTR 4.2 8.7 19.6 28.3 38.1 46.9 54.1 62.1 72.8
Our Tool /
Bandwidth

1 1 1 1 1 1 1.01 1.03 0.93

PTR /
Bandwidth

0.84 0.87 0.98 0.94 0.95 0.94 0.90 0.87 0.92

Table 3.3: Our Tool compared with PTR

41

Section 3.6 Implementation

1 2 5 10 20 40 60 80
01
2
5

10

20

30

40

50

60

70

80

Bandwidth (Mbps)

E
st

ia
m

te
d

 B
an

d
w

id
th

Our Tool

Figure 3.6: Results from our own approach up to 80Mbps

3.6 Implementation

Java was the first programming language designed from the ground up
with networking in mind. Java was originally designed for proprietary cable
television networks rather than the Internet, but it’s always had the network
foremost in mind. One of the first two real Java applications was a web
browser. As the global Internet continues to grow, Java is uniquely suited to
build the next generation of network applications. Java provides solutions
to a number of problemsplatform independence and security being the most
importantthat are crucial to Internet applications, yet difficult to address in
other languages.

Since Java provides packages that deals with Networking our choice was
Java Networking as the base language for our tool and since TCP and UDP
protocols are the basis of networking we had to choose one of them. We
chose UDP protocol for the same reasons described in Section 3.1. An echo
UDP sender and an echo UDP receiver were implemented. The echo UDP
Sender sends a specific number (N) of equally sized (packet-size P) probing
packets. These probing packets are separated by an initial constant gap of
6ms.

To sum up, our tool is based on the well-known packet pair/train tech-

42

Chapter 3. Bandwidth Estimation

5 10 20 30 40 50 60 70 80
0

5

10

20

30

40

50

60

70

80

90

Bandwidth set by LANForge (Mbps)

E
st

ia
m

te
d

B
an

dw
id

th

IGI PTR Our Tool

Figure 3.7: Our tool, IGI and PTR

nique. Our tool was implemented based on Java Networking and specifically
based on UDP classes and packages. Probing packets are sent from one end
to another. In order to estimate or measure the bottleneck bandwidth, the
underlying network path should be burst (throttled) with probing packets.
This in turn would lead these probing packets to queue at some point (narrow
link). After this occurs, one can easily measure the rate at which these pack-
ets reach the other end. The receiving rate, at that point, would be equal to
the bottleneck bandwidth. In our approach, we use large packet-sizes which
lead to higher sending rates which in turn could estimate higher bandwidth
values. Moreover, we proved that using small dispersion values, compared
to other tools, would lead the receiver to a state where it can not handle
or process the incoming packets and thus lead to incorrect measurements
of the bandwidth. Among IGI/PTR and Pathload, only PTR seems to be
comparable to our approach. Initially, when we tested PTR it produced ab-

43

Section 3.6 Implementation

normal results. We had to run a lot of tests until we started to see satisfying
results. Our application is created in such a way that it would give results
wihtout having to modify any parameter. Our application runs faster than
the other tools since the other tools send a large number of packets (at least
1000 packets). we use only 200-300 packets.

44

Chapter 4
Enabling Applications for the Grid

4.1 Introduction

It is practically impossible nowadays to do science without computers.
Research in many fields of science nowadays, has evolved new methods that
require high computing capabilities. This means that the scientists are fac-
ing increasingly complicated problems which require much more than a sin-
gle computer’s capabilities. Often, a single computer, a cluster of standard
computers or even a special-purpose supercomputer is not enough for the
calculations scientists really want to do. Although, computers are improving
incredibly fast, they still do not keep up with the increased demands of the
scientists. Due to that, its very difficult, very expensive and sometimes im-
possible to achieve certain scientific goals with current computer technology.
Physicists, biologists, chemists, etc. develop and submit applications with
high computing demands to parallel, distributed or even Grid Systems with
the objective of obtaining the results in the shortest possible time and of con-
sidering the largest possible problem size. Therefore, performance is a key
aspect in parallel/distributed computing. We talk more about performance
in the next section.

Some issues that do concern scientists could be the following:

1. The amount of data scientists need can be huge. Moreover, data is
stored in different locations. Satellite images of the Earth can be a
good example. It might take a lot of time to copy the data one needs
to one central computer in order to analyze it. So ideally the scientist
wants to do the computation where the data is.

2. The amount of calculations the scientist has to do is huge. For example,

45

Section 4.1 Introduction

simulating the effect of thousands of potential drug molecules on a
protein related to some disease.

3. A scientific team with members around the globe wants to share large
amounts of data and do complex analysis of the data rapidly online
together.

To solve these problems the following idea was put forth:

1. of having huge storage space so they would never have to worry where
to put the data,

2. of having nearby large computing power available for their institution
whenever they need it,

3. of being able to collaborate with distant colleagues easily and efficiently,
safely sharing with them resources, data, procedures and results.

If we take a look at the world today, we can see that it contains a lot
of computers (several million). These could be desktop PCs, workstations,
mainframes and supercomputers. Of course, these computers belong to many
different people (students, doctors, secretaries) and institutions (companies,
universities, hospitals). Most of these computers are probably connected to
the Internet. Imagine now, that all these computers around the world are
connected together. Its here where the idea of the Grid comes out.

If a scientist wants to run a colleagues molecular simulation program,
(s)he would no longer need to install the program on his machine. Instead,
he could just ask the Grid to run it remotely on his colleagues computer. In
fact, he would not need to ask the Grid anything. It would find out the best
place to run the program, and install it there.

If one needs to analyze a lot of data from different computers all over the
globe, he could ask the Grid to do this. Again, the Grid could find out where
the most convenient source of the data is without me specifying anything
and do the analysis on the data wherever it is. Moreover, if one needs to do
some analysis interactively in collaboration with several colleagues around
the world, the Grid would link computers up and figure out who should be
able to take part in this common activity.

Grid computing can be seen as the evolution of distributed computing
and its several derivatives (metacomputing, cluster computing and P2P). All
made possible by the advent of very high-speed Internet connections, and of

46

Chapter 4. Enabling Applications for the Grid

powerful computer processors that are able to run quite complex middleware
in the background without disturbing the task that the computer is trying
to handle [24].

As Internet connect speed increases, the difference between having two
PCs in the same office, the same building, the same city or the same coun-
try shrinks. By developing sophisticated middleware which makes sure that
widely distributed resources are used effectively, Grid computing gives the
user the impression of shrinking the distances further still. In addition, as
the middleware gets more sophisticated, it can deal with the inevitable dif-
ferences between the types of computers that are being used in a highly
distributed system, which are harder to control than within one organiza-
tion. One of the most popular middleware packages today is called Globus,
and it is essentially a software toolkit for making Grids. With such middle-
ware, the aim is to couple a wide variety of machines together effectively,
including supercomputers, storage systems, data sources and special classes
of devices such as scientific instruments and visualization devices. Finally,
Grid computing aims to use resources that are not centrally controlled. The
sharing is across boundaries - institutional and even national - which adds
considerable complexity, while bringing also huge potential benefits.

Grid should in principle have access to parallel computers, clusters, local
Grids, even Internet computing solutions, and would choose the appropriate
tool for a given calculation. In this sense, the Grid is the most generalized,
globalized form of distributed computing one can imagine.

But reality is far enough from theory. There are some issues that should
be resolved in order to achieve all what is discussed above.

Some of these issues are listed below:

• The ability to allow for independent management of computing re-
sources

• The ability to provide mechanisms that can intelligently and transpar-
ently select computing resources capable of running a user’s job

• The understanding of the current and predicted loads on grid resources,
resource availability, dynamic resource configuration, and provisioning

• Failure detection and failover mechanisms

47

Section 4.2 Performance

• Ensure appropriate security mechanisms for secure resource manage-
ment, access, and integrity

4.2 Performance

As mentioned before, performance is a key aspect in parallel/distributed
computing. To obtain an efficient application, it is necessary to consider two
main issues:

• The design and development of the application.

• Application performance analysis and tuning.

Design and development of distributed applications require a detailed
knowledge of the system’s features to take advantage of its capabilities.
Moreover, distributed systems usually involve heterogeneous systems, and
this fact further complicates the design of efficient applications. However, in
many cases the developers of these high performance systems are not com-
puter specialists and typically, they are not interested in the low-level details
of their systems. Therefore, many libraries and software layers have been de-
veloped to facilitate the construction of distributed applications. The main
concern is that, in many cases, the software layers that have been introduced
imply degradation in the performance of the application, due to the general
conception of such software [23].

Once an application has been developed and has been tested from the
functional point of view, the programmers must investigate its performance.
Therefore, they carry out some performance analysis to assess the behaviour
of the application, to detect potential performance bottlenecks and to deter-
mine their causes. Finally, the programmers modify the application, accord-
ing to their best knowledge, to overcome the problems identified.

It must be pointed out that, in practice, the causes of performance bot-
tlenecks can be found at different levels. For example, a communication
problem can result from:

• An erroneous conception of the application that provokes an unneces-
sary blocking time in a receive primitive.

• Communication library implementation. In many cases, the design or
implementation of the software layers is generic and is not optimized

48

Chapter 4. Enabling Applications for the Grid

for a particular system or for particular conditions. This implies that
the application may behave differently than expected.

• Operating system features. For example, an inappropriate buffer size
and the message treatment at the protocol level can interfere with ap-
plication message delivery times.

• Underlying hardware capabilities. The interconnection network fea-
tures (latency, bandwidth, etc.) or even the contention in the network
can seriously slow down the application.

Moreover, in many cases the application performance depends in the in-
put data set. This fact implies that a set of potential bottlenecks can vary
for different executions.

As a consequence, performance analysis is a difficult and costly task. The
developers are forced to master the application, the involved software layers
and the distributed system behaviour and this can be too complex for non-
specialists.

To tackle all these problems, user-friendly tools should be available. The
required tools include programming environments, debugging tools and per-
formance analysis systems. However, in the area of performance analysis,
there is still a lack of real useful tools and most of what is available require
a high degree of expertise from the user.

The classical approach for performance analysis and tuning was based on
visualization tools. First, programmers develop and debug their applications.
Next, they run them with the help of a monitoring tool that collects the infor-
mation on the behaviour of the application. Then, in a post-mortem phase, a
visualization tool shows the collected information using different views (such
as gantt charts, bar charts, pie charts, etc.).

However, a more difficult task is that of identifying the real causes of
the bottlenecks and determining what should be modified in the applica-
tion source code, or in the system itself, to overcome them. In the classical
approach, these issues are not addressed. Therefore, in recent years the in-
terest in automatic performance analysis has significantly increased. In the
automatic approach, the tools guide the programmer in the performance im-
provement phase by searching for the causes of bottlenecks and by providing
useful recommendations on how to solve them.

49

Section 4.2 Performance

A major method of constructing applications to run on a computational
Grid is to assemble them from components - separately deployable units of
computation of well-defined functionality. Performance steering is an adap-
tive process involving run-time adjustment of factors affecting the perfor-
mance of an application.

A component is a unit of computation which has a well-defined function-
ality, and which can be composed with other components to create an ap-
plication. Since a component can be individually deployed on to a hardware
platform, component-based applications are, in the general case, distributed
applications. Component-based applications are good candidates for deploy-
ment on to computational Grids and several component frameworks exist to
support the interaction of components.

A computational Grid is a network of heterogeneous machines which can
inter-operate to execute applications. The essence of a computational Grid
is this inter-operation, supported by so-called grid middleware - a suite of
more-or-less integrated software which interacts to provide security, resource
management and information services. Although it is possible to implement
component-based applications directly on this Grid middleware layer, it is
also to have a further middleware layer to support components specifically.
Such component frameworks allow greater flexibility and generality in the
interactions between components.

Central to such middleware layers is some resource scheduler, responsible
for allocating Grid resources to applications submitted for execution. Condor
is an example. It can be referred to as external resource scheduler because
they are external software to the middleware.

An application, consisting of multiple components to be executed on a
computational Grid, requires that multiple resources are allocated to it si-
multaneously. There are two factors associated with resource scheduling for
applications consisting of components which are of relevance here. The first
is the allocation of a set of resources to the application as a whole. The
second is the distribution of the components of the application over these
resources.

50

Chapter 4. Enabling Applications for the Grid

4.3 Jobs and Grid Applications

For an application to benefit from a grid environment it must have the
ability to be paralleled or otherwise the application can’t take advantage from
the grid. Some may think even if the application cannot be paralleled it still
can benefit from the grid since the Grid can be seen as a distributed cluster
where even a single threaded batch job could be able to run on any set of
systems taking advantage of unused cycles. That’s also true. In general, a
grid environment provides greater availability, reliability, and cost efficiencies
than a cluster within an organization, an institute or university.

But still, if an application can be paralleled the gain from the Grid could
reach ten times than that without parallelism. More precisely, if an appli-
cation consists of several jobs (job is a single unit of work) that can all be
executed in parallel, a grid may be very suitable for effective execution of
these jobs on dedicated nodes, especially in the case when there is no or a
very limited exchange of data among the jobs.

The latter could be more comprehensive by reading the following:

• From an initial job, a number of jobs are launched to execute on pre-
selected or dynamically assigned nodes within the Grid.

• Each job may receive a discrete set of data, and fulfils its computational
task independently and delivers its output.

• The output is collected by a final job or stored in a defined data store.

One can figure out that some kind of an automatic/dynamic mechanism
is needed in order to achieve the synchronization between the above. Indeed,
grid services, such as a broker and/or scheduler, may be used to launch each
job at the best time and place within the grid.

Traditional applications execute in a static environment with fixed assets.
The application I/O processes and sub-processes are all located on the same
machine. In a grid environment where resources are dynamically distributed
and allocated there are some considerations that should be taken into mind.

One who wants to run an application on multiple resources in a grid,
(s)he must consider whether the processing of the data can happen in par-
allel tasks or whether it must be serialized. A lot of times, applications can
be divided into parallel and serial tasks. (S)He then have to be careful how

51

Section 4.3 Jobs and Grid Applications

to organize those parts of the application in order to avoid any sort of failure.

Most of the time, those who are creating “heavy-computing” applications
is not aware of the Grid. They maybe have the concept of Grid in mind, but
they do not know how to create grid-enabled applications. They may not be
trained to build such applications. These people are scientists, biomedical
engineers, etc. It’s is very important also to provide well documentation on
such applications. Well documentation would help on a large scale those
who are responsible for grid-enabling the applications. The grid-enabling
engineers in turn have the duty, based on the documentation, to build grid-
enabled applications that can benefit from a grid environment as much as
possible.

Building a grid-enabled application is not an easy task. It’s a hard one
and it’s time consuming. Adoption of the language programming essential
basis, where a big problem is divided into smaller ones and then assembled
all together, could help in this situation.

First, one must understand and comprehend very well what the applica-
tion do. Second, divide or break the application into independent (parallel
tasks) and dependent units (serial tasks). Parallel tasks could then run as in-
dividual jobs in the grid. Third, synchronization between the parallel tasks,
serial tasks and parallel-serial communication should be resolved. Forth, a
grid environment with a suitable middleware that can meet all the above
considerations is needed.

Independent units or parallel tasks can be defined as separate data sets
per job where none of the jobs need results from another job as input. Fig-
ure 4.1 illustrates a parallel application flow. For example, in the case of
a simulation application that is based on a large array of parameter sets
against which a specific algorithm is to be executed, a Grid can help to de-
liver results more quickly. A larger coverage of the data sphere is reached
when the jobs can run in parallel on as many suitable nodes as possible. Such
a job can be as complex as a sophisticated spreadsheet script or any multi-
dimensional mathematical formula of which each requires intense computing.

In contrast to the parallel tasks, are the serial tasks. In this case there is
a single thread of job execution where each of the subsequent jobs has to wait
for its predecessor to end and deliver output data as input to the next job.
Figure 4.2 illustrates a serial application flow. In this case, the advantages of
running such tasks in a grid environment are not based on access to multiple

52

Chapter 4. Enabling Applications for the Grid

Figure 4.1: Parallel Application Flow

systems in parallel, but rather on the ability to use any of several appropriate
and available resources. Note that each job does not necessarily have to run
on the same resource, so if a particular job requires specialized resources that
can be accommodated, while the other jobs may run on more standard and
inexpensive resources. The ability for the jobs to run on any of a number
of resources also increases the application’s availability and reliability. In
addition, it may make the application inherently scalable by being able to
utilize larger and faster resources at any particular point in time. Never-
theless when encountering such a situation it may be worthwhile to check
whether the single jobs are really dependent of each other, or whether due
to its nature they can be split into parallel executable units for submission
on a Grid. For best performance, these kinds of processes might be executed
on a single CPU or cluster, though performance is not always the primary
criteria. Cost and other factors must also be considered, and once a grid
environment is constructed such a job may be more cost effective when run
on a grid versus utilizing a dedicated cluster.

Loose coupling

For a grid, this means the need for a job flow management service to
handle the synchronization of the individual results. Loose coupling between

53

Section 4.4 Job Criteria

Figure 4.2: Serial Application Flow

the jobs avoids high inter-process communication and reduces overhead in
the grid.

For such an application you will need to do more analysis to determine
how best to split the application into individual jobs, maximizing paral-
lelism. It also adds more dependencies on the grid infrastructure services
such as schedulers and brokers, but once that infrastructure is in place, the
application can benefit from the flexibility and utilization of the virtualized
computing environment.

Jobs and sub-jobs

Another approach to ease the managing of jobs within a grid application
is to introduce a hierarchical system of sub-jobs. A job could utilize the
services of the grid environment to launch one or more sub-jobs. For this kind
of environment an application would be partitioned and designed in such a
way that the higher-level jobs could include the logic to obtain resources and
launch sub-jobs in whatever way is most optimal for the task at hand. This
may provide some benefits for very large applications to isolate and pass the
control and management of certain tasks to the individual components.

4.4 Job Criteria

A job as part of a grid application can theoretically be of any type: Batch,
standard application, parallel application, and/or interactive.

4.4.1 Batch job

Jobs in a grid environment could be a traditional batch job on a main-
frame or a program invoked via a command-line interface in a Windows,
Unix, or Linux environment. Normally, arguments are passed to the pro-

54

Chapter 4. Enabling Applications for the Grid

gram, which can represent the data to process and parameter settings related
to the job’s execution.

Depending on its size and the network capacities, a batch job can be sent
to the node along with its arguments and remotely launched for execution.
The job can be a script for execution in a defined environment (for example,
Shell, Java, or Perl script), or an executable program that has few or no spe-
cial requirements for operating system versions, special DLLs to be linked to,
JAR files to be in place or any other special environmental conditions. The
client, portal, and/or broker may need to know the specific requirements for
the job so that the appropriate resource can be allocated. The data for its
computation are either transmitted as arguments or accessible by the job,
be it in local or remote storage or in a file that can also be sent across the grid.

A batch job, especially one with few environmental requirements, in gen-
eral is well suited for deployment in a grid environment.

4.4.2 Standard application

Often standard application, like spreadsheets or video rendering systems,
requires an installation procedure and cannot be sent over the network to run
simply as a batch job. However, a command line interface provided can be
remotely used on a grid for execution of the application where it is installed.

In this case, the grid broker or grid portal needs to know the locations
of the application and the availability of the node. The locations of the ap-
plications on the grid are relatively fixed, meaning in order to change it a
new installation has to be performed and the application may need to be
registered with the grid portal or grid server before it can be used.

New installations are mostly done manually as the applications often re-
quire certain OS conditions and application settings, or very often when
installing on Windows a reboot needs to be executed. This makes a stan-
dard application in many cases quite difficult to handle on a grid, but does
not exclude them. As advances in autonomic computing provide for self-
provisioning, there will be fewer restrictions in this area.

Using standard software as jobs within a grid could raise licensing issues,
either due to the desire to have the application installed on many different
nodes in the grid, or related to single-user versus multi-user license agree-
ments.

55

Section 4.5 Programming Language Considerations

4.4.3 Parallel applications

Applications that already have a parallel application flow, such as those
that have been designed to run in a cluster environment, may already be
suited to run in a grid environment. In order to allow a grid server or grid
portal to take the most advantage of these, there needs to be identifiable and
accessible handles to the inner functions/jobs of such a parallel application.
If this is not the case, such an application can only be handled as one unit,
similar to a standard application. However, it makes sense to include such
an application in a grid if the overall task requires more than the resources
available in a given cluster. This means that the grid could include several
clusters with copies of a parallel application.

4.4.4 Interactive jobs

Interaction with a grid application is most commonly done via the grid
portal or grid server interface. This implies that other than launching the
job, there should not be on-going interaction between the user and the job.

Of course, if we go back to the initial view of the gird as a virtual comput-
ing resource, it is certainly feasible to think of an application requiring user
interaction to be launched on any appropriate resource within the grid as
long as a secure and reliable communications channel could be created and
maintained between the user and the resource. Though the GSI-Enabled
SSH package is available and could be used to create a secure session, the
Globus Toolkit does not provide any tools or guidance for supporting such
an application.

There would be many considerations and issues involved in the develop-
ment and deployment of such an application within a grid environment.

4.5 Programming Language Considerations

Whenever an application is being developed, the question of the pro-
gramming language to be used arises. The grid environment may include
additional considerations. Jobs that are made for high-performance com-
puting are normally written in languages such as C or Fortran. Those jobs
whose individual execution time does not play the most important role for
the application, but whose contents and tasks are of more importance, may
be written in other languages such as Java, or in scripting languages such as

56

Chapter 4. Enabling Applications for the Grid

Perl.

Within a single grid application one might even consider writing various
parts in different languages depending on the requirements for the individual
jobs and available resources.

Some of the key considerations include:

• Portability to a variety of platforms : This includes binary compatibility
where languages such as Java provide an advantage, as a single binary
can be executed on any platform supporting the Java Virtual Machine.
Interpreted languages such as Perl also tend to be portable, allowing
the application to run no matter what the target platform.Portability
of source code can also be considered. For instance, one may decide to
develop an application using C, and then compile it multiple times for
a variety of target platforms. This will require additional work by the
infrastructure to ensure that appropriate executables are distributed to
any target resource.

• Run-time libraries/modules : Depending on the language and how the
program is linked, there may be a requirement for run-time libraries
or other modules to be available. Again, the successful running of an
application will depend on these libraries being available on, or moved
to, the target resource.

• Interfaces to the grid infrastructure: If the job must interface with the
grid infrastructure, such as the Globus Toolkit, then the choice of lan-
guage will depend on available bindings. For example, Globus Toolkit
V2.2 (by the time of writing this thesis, Globus Toolkit 4.0.6 was avail-
able) includes bindings for C. However, through the CoG initiative,
there are also APIs and bindings for Java, Perl and other languages.
Note that an application may not have to interface with the Globus
Toolkit directly, as it is more the responsibility of the infrastructure
that is put in place. That is, given an appropriate infrastructure, the
application may be developed such that it is independent of the grid-
specific services.

One of the driving factors behind the OGSA initiative is to standardize on
the way that various services and components of the grid infrastructure in-
terface with one another. This provides programming language transparency
between two communicating programs. That is, a program written in C, for
example, could communicate with or through a service that is written in
another language.

57

Section 4.6 Job Dependencies on System Environment

4.6 Job Dependencies on System Environment

As shown earlier, a grid application does not require a homogenous run-
time environment, but there are certain considerations to be made in order
to plan for the most beneficial deployment of it. For any job in a grid appli-
cation the following environmental factors may affect its operation. When
developing an application, one must consider these factors and either design
it to be as independent of these factors as possible, or understand that any
dependencies will need to be taken into account within the grid infrastruc-
ture.

• Operating Systems version homogeneous levhomogeneous parameter
settings that are necessary for execution of the job, as well its reliance
on certain system services and auxiliary programs such as a registry.
It is worthwhile to consider whether the grid application will be capa-
ble of running its jobs on any node with different operating systems or
whether it will be restricted to a single operating system.

• Memory size required by a job may limit the possible nodes on which
it can run. The available memory size depends not only on its physical
presence at a node, but also on how much the operating system is
capable of granting at run-time.

• DLLs that are to be linked for the execution of the job. They either
need to be available on the target resource or could possibly be trans-
ferred and made available on the resource before the job is executed.

• Compiler settings play a role as compiler flags and locations may be
different. For example, subtle differences like bit ordering, and number
of bytes used for real and integer numbers may cause failures when a
job is compiled on a different node or operating system than the one it
will eventually be executed on.

• Runtime environment that has to be in place and ready to receive the
job for execution. For instance, the right JDK or interpreter versions
may have to be planned and in place.

• Application Server version and standard as well as its capacity may be
needed to be considered as well as access requirements and services to
be used.

• Other applications that are needed to properly run a job have to be in
place prior to deployment of the grid application. These applications

58

Chapter 4. Enabling Applications for the Grid

can be compilers, databases, system services such as the registry under
Windows, and so on.

• Hardware devices that are required for certain jobs to perform their
tasks. For example, requirements for storage, measurement devices,
and other peripherals must be considered when building the application
and planning the grid architecture.

When developing the grid application, these prerequisites need to be checked
in order to avoid too many restrictions for job execution. A large number of
restrictions could mean more complicated enablement as well as limiting the
number of possible nodes on which the job will be able to run. Therefore, it
is better to restrict such requirements during development of the application
such that jobs can run in as generic an environment as possible.

4.7 Job Topology

For a grid application, there are various topology-related considerations.
There are certain architectural requirements covering the topology of jobs
and data. When designing the grid application architecture, some of the key
items to consider are:

• Where grid jobs can run

• How to determine a suitable node for executing the individual jobs

• Location and amount of data to be processed byt he jobs

• Availability and performance values of the individual nodes at time of
execution

When developing grid-enabled applications you may not know anything about
the topology of the grid on which they will run. However, especially in the
case of an intra-grid that may be put in place to support a specific set of
applications, this information may be available to you. In such a case, you
may want to structure your application and grid in such a way as to optimize
the environment by considering the location of the resources, the data, and
the set of nodes that a particular application might run on.

59

Section 4.8 Passing of Data Input/Output

4.8 Passing of Data Input/Output

Any job in the grid application needs to pass data in and out.

There are various ways to realize the passing of data input and output that
are to be considered during application architecture and design:

• Command line interface can be a natural way for batch jobs and stan-
dard applications to receive data. In this case, the data input normally
will not be complex in nature, but consists of certain arguments used
as parameters to control the internal flow of the job. Such command
lines can easily be integrated in scripts executed at the system level or
within a given interpreter. The transfer of data to the job as a con-
sumer happens immediately at launch time. The amount of data will
normally be small. For larger amounts of data there can be arguments
that specify the name of a data file or other data source.

• Data store of any kind, such as data files in the file system (local or on
a LAN or WAN) or records in a database, a data warehouse or other
storage system that is available. These data stores can be used for
input as well as output of data given that the required access rights
are granted to the job. The transfer of data in can be done anytime
before the job executes, and likewise the output data could be read
anytime after the job completes, therefore providing flexibility for data
movement operations.

• Message queues, like those provided by WebSphere MQSeries, are well
suited to be used for asynchronous tasks within a grid application, es-
pecially when guaranteed delivery of the data provided to the job and
generated by the job is of high importance. A job can access the data
queues in various ways, normally using specific APIs for putting or
getting data as well as for polling the queue for data waiting for pro-
cessing. In an environment where message queuing servers are already
installed, this type of data passing may be desirable.

• System return value, is a corresponding case to the CLI and normally
a way a batch job or any CLI invoked program will return data, or at
least status information about how the job ended. This indicates to the
grid server or grid portal the status of the individual job and requires
appropriate management. The resulting data of the job may be passed
to a data store or message queue for further processing or presentation.

60

Chapter 4. Enabling Applications for the Grid

• Other APIs, when communicating with Web services, Web servers, ap-
plication servers, news tickers, measurement devices, or any other ex-
ternal systems, the appropriate conditions for data passing in and out
have to be taken into consideration. In these cases, you may use HTTP,
HTML, XML, SOAP, or other high-level protocols or APIs.

As indicated, for a grid application there may not be only one way to pass
data for a job, but you may use any combinations of the described mech-
anisms. It is advised to program grid jobs in such a way that the data
sources and sinks are generically handled for more flexible grid topologies.
The optimal solution depends on the environment and the requirements to
be considered at the architecture and design phase of the grid application.

4.9 Qualification Scheme for Grid Applica-

tions

In this section a usable format of a qualification scheme for grid appli-
cations is provided. We also provide a criteria list that may be looked at
as a knock-out list. That is, it includes attributes of an application or its
requirements that may inhibit an application from being a good candidate
for a grid environment. The list may not be complete and depends on the
local circumstances of resources and infrastructure. The qualification scheme
acts as a basis for architecture and project planning for a grid application.

Knock-out criteria for grid applications

Earlier sections have discussed considerations for grid-enabling an appli-
cation from the perspectives of infrastructure and application functionality.
However, not all applications lend themselves to successful or cost-effective
deployment on a grid. A number of criteria may make it very difficult, require
extensive work effort, or even prohibit grid-enabling an application. Criteria
below may preclude deploying an application to the grid without having to
perform an extensive analysis of the application.

Some facts such as temporary data spaces, data type conformity across
all nodes within the network, appropriate number of SW licences available
in the network for the grid application, higher bandwidth, or the degree of
complexity of the job flow can be solved, but have to be addressed up front
in order to create a reasonable grid application.

61

Section 4.10 Data Management Considerations

An application with a serial job flow can be submitted to a grid, but the
benefits of grid computing may not be realized, and the application may be
adversely affected due to grid management overhead. However, by exploit-
ing the grid and submitting the application to more powerful remote nodes
it may very well provide business value.

In this list of knock-out criteria the most critical items are named that most
certainly hinder or exclude an application from use on a grid:

1. High inter-process communication between jobs without high speed
switch connection (for example, MPI, in general, multi-threaded appli-
cations need to be checked for their need of inter-process communica-
tion.

2. Strict job scheduling requirements depending on data provisioning by
uncontrolled data producers.

3. Unresolved obstacles to establish sufficient bandwidth on the network.

4. Strongly limiting system environment dependencies for the jobs (see
Section 4.6 on page 58).

5. Requirements for safe business transactions (commit and roll-back) via
a grid. At the moment there are standards for secure transaction pro-
cessing on grids.

6. High inter-dependencies between the jobs, which expose complex job
flow management to the grid server and cause high rates of inter-process
communication.

7. Unsupported network protocols used by jobs may be prohibited to per-
form their tasks due to firewall rules.

4.10 Data Management Considerations

No matter what the application, it generally requires input data and will
produce output data. In a grid environment, the application may submit
many jobs across the grid and each of these jobs in turn will need access to
input data and will produce output data.

One of the first things to consider when thinking about data manage-
ment in a grid environment is management of the input data and gathering

62

Chapter 4. Enabling Applications for the Grid

of the output data. If the input data is large and the nodes that will execute
the individual jobs are geographically removed from one another, then this
may involve splitting the input data into small sets that can be easily moved
across the network assuming the individual jobs need access to only a subset
of the data.

The splitting of input data and the joining of output data from the jobs
is often handled by a wrapper around the job that handles the splitting dy-
namically when the job is submitted and retrieves the individual data sets
after each job has completed.

The second aspect of data management is during the job execution by itself.
The job needs to access data that may not be available on local storage.
Several solutions are available:

• Data is stored on network-accessible devices and jobs work on the data
through the network.

• Data is transferred to the execution node before the job is executed
such that the job can access the data locally.

While a grid-based environment may offer many advantages, any given
application may not necessarily benefit from a grid. For example, some per-
sonal productivity applications are tightly coupled with a users interface and
do not consume a large amount of computing resources. Running them on a
grid may not provide significant benefits. However, other applications may
be very suited for exploiting a grid.

If we take a parochial view of the grid as an environment that provides
access to vast amounts of computing power, one of the simplest concepts for
grid utilization is to be able to run an application somewhere else when your
own machine is too busy or otherwise does not have the required resources.
Almost any kind of application can be executed in a grid environment this
way. You may not see spectacular performance gains unless the machine it
runs on is much faster than the machine you usually use.

Applications that can be run in a batch mode are the easiest to execute on
other resources within the grid. Applications that need interaction through
graphical user interfaces are more difficult to run on a grid, but not impossi-
ble. For instance, they can use remote graphical terminal support, such as X
Windows or other similar capabilities. In subsequent sections of this chap-
ter, we discuss many considerations for applications that are CPU intensive

63

Section 4.11 Grid User Roles

or have various requirements associated with data access or sharing. These
number-crunching types of applications have historically gained efficiencies
by running in a cluster environment or more recently in a grid (that some
consider a distributed cluster). However, with advances in grid middleware
and the economic incentives to run more typical business applications on
virtualized resources, there is a trend towards understanding how these busi-
ness applications can be implemented (or modified) to take advantage of the
various resources provided by a grid computing environment.

4.11 Grid User Roles

Several years ago one person would install 3rd-party software, adapt it
for use in a specific field domain, and then use the software for their own
research. As the adoption and deployment of Grid infrastructures matures
though, it is inevitable that we see a partitioning of roles across groups of
individuals and the emergence of specialisations within the community as
well.

An example of roles division can be the following:

• End-users (domain-specific), e.g. scientists and researchers

• Application developers

• Grid administrators

This division of roles could have huge benefits in e-science projects and, in
general, would bring people from different fields to the same table. Note that
this paradigm is not absolute. According to others, the roles would differ in
their structure but they all agree on the need of different roles.

End-user’s Perspective

What mainly drives a typical end user are issues that arise from his/her
application domain itself. For example, a biologist is interested in identifying
relationships between cancer mechanisms and genes. End users (scientists,
researchers, etc.) should be able to carry out experiments and applications
without needing to understand detailed aspects of the underlying grid tech-
nology. In other words, end users are more interested in running applica-
tions without having the obligation to be grid aware. The key out here is
transparency. Applications should be grid-enabled without changing the be-
haviour from the user’s point of view. The latter could be wrapped entirely

64

Chapter 4. Enabling Applications for the Grid

as a Web service for example. The main concerns of such end users include
efficiency, effectiveness, ease and flexibility of use, interoperability, respon-
siveness and interactivity. While the main user needs could be the following:
log into the grid, submit jobs, monitor their progress and recovery.

Application developers

“Application developers” perspective arises since we are talking about ap-
plications that need to be modified or rewritten in order to run and benefit
from a grid. While the grid provides platform neutral protocols for funda-
mental services like job launching and security, it lacks sufficient abstraction
at the application level to accommodate the continuing evolution of individ-
ual machines. The application developer, already burdened with keeping up
the track of evolution in computer architectures, operating systems, paral-
lel paradigms and compilers, must simultaneously consider how to assemble
these rapidly evolving, heterogeneous pieces, into a useful collective comput-
ing resource atop a dynamic and rapidly evolving grid infrastructure.

Application developers role is to create, monitor, test, deploy and debug
applications that would fulfil scientists needs and in the same time could run
efficiently in a certain grid environment. The need for tools that are able
to create and debug the grid applications is essential. Unfortunately, today
there are relatively few such tools.

Grid administrators

There are roles who possess considerable knowledge of grid technology. Such
roles are responsible for the following:

• Installing a suitable grid middleware on a set of machines

• Configuring, managing, monitoring and checking resources

• Enabling applications for the grid

Grid administrators are burdened by keeping up with the evolution of grid
middleware and grid technologies since the underlying grid infrastructure
must mature and be widely and stably deployed and supported. Moreover,
different virtual organizations must possess the appropriate mechanisms for
both co-operating and inter-operating with one another.

A grid-enabled version of an application should offer one or more of the
following benefits to the end user:

65

Section 4.12 Framework

1. be more effective

2. be more efficient (higher throughput/speedup)

4.12 Framework

There are number of paradigms and platforms, such as message passing
(using MPI or PVM), for developing and executing parallel applications on
distributed systems. However, using such programming paradigms/platforms
for creating parallel/distributed applications involves significant development
effort and is time consuming. These approaches are effective for tightly cou-
pled systems such as MPP (Massively Parallel Processing) machines or on
loosely coupled but controlled systems such as clusters. The inherent chal-
lenges in grid computing environments such as the load variability, high net-
work latencies and high probability of failure of individual nodes make it
difficult to adopt a programming approach which favours tightly coupled
systems.

The MATLAB application we worked on, in this thesis, is considered to
be ideal for the case mentioned above as it allows the division of the ap-
plication into independent tasks just by parameterizing the input data. By
achieving the latter, the application can be easily deployed on grids using grid
middleware such as Globus Tooklkit. For the last 3 years, we have worked
with Globus Toolkit and we have much experience in installing, deploying,
configuring, transferring files, submitting jobs, etc. That was very helpful
in running the grid-enabled application on the grid testbed established at
the Technical University of Crete. On the other hand, we do not have any
experience in running applications using MPI. Decomposition, development
and debugging of applications using MPI can take considerable effort. More-
over, load balancing is often difficult when using MPI. Note that, one of the
basic ideas in grid computing is the load balance (recall Chapter 1 for more
information).

4.13 Our Work

The approach to build a grid-enabled application either from scratch or
based on existing solutions adds a wide range of issues for problem analysis,
application architecture, and design. The previous sections have provided an
overview of the issues to consider for any grid application. Specifically, we
look at the characteristics of applications themselves. We provide guidance

66

Chapter 4. Enabling Applications for the Grid

for deciding whether a particular application is well suited to run on a grid.
Some of these items may not apply for every project. Some aspects are famil-
iar from other application development projects and are not elaborated on in
depth. Others that are new aspects due to the nature of a grid application
are provided with greater detail.

In this section we introduce an application that runs under MATLAB. It
runs on one machine and in a serial flow. We try to grid-enable this applica-
tion based on what we presented in the previous sections. In other words, we
first study the application’s ability to be parallelized, i.e. see if we can divide
the application into independent (parallel) tasks/jobs and run each task/job
on a different machine. We had to figure out what was the best job type
(batch, standard, etc.) in order to run the application under the grid. Since
we use Globus, as the underlying middleware, our application runs in batch
mode. We considered the programming language the application should be
written in.

In Section 4.5 on page 56 we introduced some key considerations which,
more or less, included portability to a variety of platforms and run-time li-
braries. Java in this case would provide an advantage over C/C++ since Java
could run under Linux and Windows. By that the portability feature would
be achieved. Since MATLAB has the ability to produce stand-alone applica-
tions in C/C++ and in Java, we applied both languages on our application.
Both stand-alone applications, produced by MATLAB, require run-time li-
braries to be available. We addressed all the required libraries needed. The
next step was to take into account some environmental factors that may af-
fect the application’s operation such as the OS, memory size, DLLs, run-time
environments and any other factors. We check for these prerequisites before
running our application in order to avoid too many restrictions.

The next step was to cover job topology issues as described in Section 4.7
in page 59. We studied where the jobs can run, determine if a node is suit-
able to run an individual job, how to associate jobs with the essential data
and other topology-related considerations. Section 4.8 consider various ways
to pass the data input/output while Section 4.10 refers to the input/output
data management. We, in our application, make use of the GridFTP service
in order to meet the data input/output passing and management issues. We
describe all the above in details in the following subsections.

First, we describe the MATLAB application and after that we face all
the issues described above.

67

Section 4.13 Our Work

4.13.1 MATLAB application

The Signal Processing team, at the Technical University of Crete (TUC),
worked on the problem Children with Epilepsy.

More precisely, the application is based on EEG data files (normal chil-
dren and children with epilepsy). These EEG data files are processed as an
input into MATLAB in order to be processed. Wavelets are computed over
these EEG and finally a classification method is applied (linear, quadratic,
etc.) on the wavelets. As output, classification error is derived.

The data files are first divided into normal and epilepsy (N for normal
and E for epilepsy) and second into tasks. These tasks are actually different
tests done over the EEG files (see Appendix A for more details on the data).
There are eleven different tasks/tests. Each task/test consists of 40 EEG files.

Figure 4.3: Application Stages

Each task/test undergoes the following steps:

1. Wavelet bands are created from the EEG files (This can be done only
once)

2. Statistical tests are done over these WB

3. Find the significant channels

4. Check the filtered channels for significant regions averaging

5. Perform classification (linear, quadratic, etc.)

68

Chapter 4. Enabling Applications for the Grid

Input

EEG Files per task → Wavelet bands

Output

1. Classification score

2. Sensitivity

3. Specificity

4. Time elapsed in seconds

In detail, the following steps take place:

• 1st step is to create “.avw” files and their combinations. For every
EEG file an “.avw” file is created.

• 2nd step is to combine all the “.avw” files to create 6 wavelet files
(based on the number of bands used in the simulation).

• 3rd step is to work on the 6 wavelet files and the initial EEG files to
perform classification.

• 4th step is to apply classification.

Statistics

• Time for creating “.avw” files and their combinations: 11mins/task

• Time for classification method: 3mins/task

• Total Time/task = 14mins

• Total Time over all tasks = 154mins = 2.5hours

4.13.2 Grid-enabling the application

Previously we talked about the MATALB application. We presented the
basic run steps, input/output and some statistics regarding the application
run.

We summarize our contribution to the following:

1. Ability to be parallelized

69

Section 4.13 Our Work

2. Job type

3. Programming languages

4. Environmental factors

5. Job topology

6. Data input/output passing and management

Figure 4.4: Grid-enabling Issues

In the following we talk, in details, about each step.

Ability to be parallelized

The MATLAB application we are considering to parallelize, as mentioned
before, runs over 11 different tasks/tests. These tasks are independent of each
other, i.e. none of the 11 input tasks depend on another’s output task. Each
task has its own input/output data. The latter means that the 11 tasks could
be divided into independent units (jobs) where each job can run on a differ-
ent machine. This would result in speeding-up the application by 11 times
assuming enough resources are available.

Having 11 independent jobs would need 11 programs/scripts in order to
be launched in a grid environment. Each program/script will be associated
with a single job. Creating a program/script for each job is time consuming
and adds effort to the application’s developer. Due to that, we created a
single program/script that would apply for all the 11 jobs. The latter was
achieved by modifying the MATLAB code in such a way that it could identify

70

Chapter 4. Enabling Applications for the Grid

each task it’s going to work on (Each task is identified through its input file
names, e.g. xxxx− Task01, xxxx− Task02, . . . , xxxx− Task11).

1 2 3 4 5 6 7 8 9 10 11
0

20

40

60

80

100

120

140

160

180

Number of Machines

E
xe

cu
tio

n
T

im
e

(m
in

s)

1st Parallelism Level Performance

← Our case

Figure 4.5: Execution Time among Different Available Resources

As mentioned above the application needs 2.5 hours in order to finish.
Parallelizing the application, as described above, would need only 15 min-
utes if there are 11 machines available. Figures 4.5 & 4.6 shows the execution
time and the speedup, among available resources, respectively.

What we introduced so far was based on all the tasks the application
runs over. But what about the tasks themselves? Is there any chance or
possibility that they can be parallelized?

Each task consists of 40 files. The application initially processes these
files and converts each one of them into a wavelet file. This procedure is
independent for each file. Moreover, this procedure takes a lot time (approx-
imately 12 minutes, i.e. 80% of the total time). Applying the same case as
before and assuming enough resources available, the speedup would increase
much more. Figure 4.7 shows the speedup up to 5 machines since the grid
testbed we have consists of 5 machines.

71

Section 4.13 Our Work

1 2 3 4 5 6 7 8 9 10 11
0

2

4

6

8

10

12

Number of Machines

S
pe

ed
up

1st Parallelism Level Speedup

Our case
↓

Figure 4.6: Speedup for the First Parallelism Level

According to what we mentioned previously, two levels of parallelism are
introduced till now (See Figure 4.8).

Several issues arise at this point:

• Does a single program have the ability to perform both parallelism
levels?

• What if the program runs in different grid environments?

• If a single program would achieve both parallelism levels, what overhead
will be introduced?

• Are there any tools (Globus?) that would perform both parallelism
levels automatically?

The issues mentioned above are case-dependent. We are going to discuss
those issues as much as possible based on our case.

72

Chapter 4. Enabling Applications for the Grid

1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Number of Machines

S
pe

ed
up

2nd Parallelism Level Speedup

Figure 4.7: Speedup for the Second Parallelism Level

The initial non-grid-enabled application was designed to run over the
tasks one task at a time. We performed the first parallelism level by cre-
ating a single program/script as described above. Accomplishing that, the
program could run per task without the need to stall at any point. The only
overhead in this case would be passing the input data to the nodes where the
program will launch. Note that, if the input data is already allocated before
launching the jobs, there would be no overhead. Output data in our case
is small in amount and therefore it could be retrieved via the “stdout” (see
Section 4.13.2 on page 80). Assuming enough resources are available, the
speedup in this case would be 11 times. Since we have established 5 ma-
chines in our grid testbed, the speedup would be 3.6 times (see Figure 4.5).

When it comes to the second parallelism level, things are rather more
complicated and difficult. The second parallelism level can only be applied
at stage 2 of the MATLAB application (recall Figure 4.3 on page 68). That
means that the program should stall until this stage finishes before proceed-
ing. A certain mechanism should exist that knows when to stall and when to
proceed. In order to do this we had to split the program into sub-programs.
We created a sub-job that is responsible for parallelizing and a sub-job re-
sponsible for proceeding the run. Moreover, since the input data differs in
name for each task, the application developer has to create 40 different pro-
grams/scripts in order to achieve such way of parallelism. To avoid this we

73

Section 4.13 Our Work

Figure 4.8: Parallelism Levels

renamed the input data in such a way that the program could identify be-
tween them (e.g. xxxx − Task05 − File01, xxxx − Task05 − File02, . . .).
Since this parallelism level has to pass input/output data much more than
the previous level, we expect to have much more overhead.

Taking a closer look at the input files, we noticed that they consist of
32 columns and 4096 rows. The columns represent the number of channels
(see Appendix A for more information). The MATALB application processes
each channel independently which means that parallelizing could be applied
also in this case. As a result, we have a third parallelism level. The program
should stall until the parallel part finishes before it can proceed. Same prob-
lems appear here also where a single program could not achieve such level of
parallelism. Sub-jobs should be created in turn. Figure 4.9 shows the third
parallelism level speedup.

Unfortunately, there are no tools that would perform all the parallelism
levels automatically. It’s the application’s developer duty to create pro-
grams/scripts that would manage the parallelism levels. It’s the application’s
developer duty to reduce as much as possible the sub-jobs interdependencies.
This is not always feasible or easy. A program that is designed to run under
large grid environments would have severe performance problems when deal-
ing with smaller grid environments. The application developer has to keep
in mind that although (s)he would have the ability to create such a program,
the total overhead produced would overcome the total speedup. In that case
no benefit will be gained.

Previously, we mentioned a parallelizing process where independent jobs

74

Chapter 4. Enabling Applications for the Grid

1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Number of Machines

S
pe

ed
up

3rd Parallelism Level Speedup

Figure 4.9: Speedup for the Third Parallelism Level

can run on different machines. Another parallelizing process is the Message
Passing Interface (MPI). MPI is a parallelizing process where jobs can run
on multi-CPU machines. Note that MPI is implemented in C and Fortran
programming languages. MPI is not an easy task. It’s time consuming and
involves much development effort. It requires application’s underlying algo-
rithms to be re-written in order to be able to run on multi-CPU machines.

Recalling back the second parallelism level, we mentioned that it takes
80% of the total time. Since MPI could be applied here, we could predict the
speedup using Amdahl’s law. The maximum theoretical speedup considering
40 processors are available is equal to:

Overall Speedup =
1

(1− p) + p
s

=
1

(1− 0.8) + 0.8
40

= 4.5 (4.1)

where p is the fraction of a program that is enhanced & s is the speedup of
the enhanced portion

Concerning each input file independently now, the portion that can be
enhanced, in this case, reaches to 99%. Applying MPI in this case would
speedup the application execution even more. According to Amdahl’s law,
the maximum total speedup in this case would be:

75

Section 4.13 Our Work

Overall Speedup =
1

(1− p) + p
s

=
1

(1− 0.99) + 0.99
32

= 24.4 (4.2)

MATLAB latest version, specifically R2007b, supports multi-threaded
computing. But, at the meantime this version supports only “Basic Linear
Algebra Subroutines” (BLAS) library, such as matrix multiply. As men-
tioned before, additional MATALB code should be re-written to be able to
run on multi-CPU machines. Due to the reasons mentioned above, we do
not implement MPI in our work.

Job type

The grid resource manager is concerned with resource assignments as jobs
are submitted. It acts as an abstract interface to the heterogeneous resources
of the grid. The resource management component provides the facilities to
allocate a job to a particular resource, provides a means to track the status
of the job while it is running and its completion information, and provides
the capability to cancel a job or otherwise manage it. In Globus Toolkit, the
remote job submission is handled by the Grid Resource Allocation Manager
(GRAM). Within a grid environment, applications that can be run in batch
mode are the easiest. GRAM uses the globusrun-ws command in order to
run batch jobs.

globusrun-ws Command-line

For implicitly, just run the following:

user:/> globusrun-ws -submit -f job.xml

The globusrun-ws command is typically passes an RSL string that spec-
ifies parameters and other properties required to successfully launch and run
the job. RSL stands for Resource Specification Language. RSL is a language
used by clients to specify the job to be run. All job submission requests
are described in an RSL string that includes information such as the exe-
cutable file; its parameters; information about redirection of stdin, stdout,
and stderr; and so on. Basically it provides a standard way of specifying all of
the information required to execute a job, independent of the target environ-
ment. It is then the responsibility of the job manager on the target system to
parse the information and launch the job in the appropriate way. The syntax

76

Chapter 4. Enabling Applications for the Grid

of RSL is very straightforward. Each statement is enclosed within XML tags.

Since we use Globus Toolkit, the job type we use in our application is
batch mode. The job we use to submit is written in RSL as mentioned before.

Programming languages

MATLAB programs in general run within the software MATLAB and in
form of “.m” files. We stated before that the job type we are going to use
for our application is the batch mode. In order to run MATLAB programs
out of the MATLAB software box, we need to convert these programs into
applications and libraries that they can be distributed to end users who do
not have MATLAB installed.

MATLAB provide the “MATLAB Compiler” that supports all the fea-
tures of MATLAB, including objects, private functions, and methods. Some-
one can compile M-files, MEX-files, or other MATLAB code. Using MAT-
LAB Compiler you can generate the following:

• Standalone C and C++ applications on UNIX, Windows, and Macin-
tosh platforms

• Standalone JAVA applications on UNIX, Windows, and Macintosh
platforms

For our application we created two different standalone applications. One
application compiled using C language and another application based on Java
language. Java standalone applications have the advantage of running on any
platform. While C standalone applications complied under Linux platform
would only run under Linux platforms. The same happens when using MAT-
LAB Compiler under Windows.

When running Java applications, the user has to keep in mind issues such
as setting the CLASSPATH at the target machine when running the appli-
cation. Another issue that arises here is setting the suitable shared libraries
for Java language. We will talk about this in the next part.

MATLAB Compiler can be used via a GUI. Since MATLAB Compiler
wraps MATLAB files in packages, it’s not a difficult task to achieve but one
has to be careful that all the required MATLAB runtime files are added to
the package.

77

Section 4.13 Our Work

Environment setup

There are several factors that could lead a grid application to face restric-
tions. A large number of restrictions could mean more complicated enable-
ment as well as limiting the number of possible nodes on which the job will
be able to run. That’s why it’s preferred to check for such requirements in
order to avoid too many restrictions when executing the jobs.

Based on our application, the environmental factors could be summarized
to the following:

• OS

• DLLs and runtime environments

• Application version

Memory size and storage requirement in our case is not an issue and
therefore they are not listed here as factors that could restrict our applica-
tion state of execution. Morever, hardware is not an issue in our case.

The grid testbed deployed in the Technical University of Crete consists of
5 machines running under SuSE Linux. The middleware was used to deploy
the grid infrastructure is the Globus Toolkit. Globus Toolkit has wide use
under Linux platforms. Under Windows platforms, Globus Toolkit is avail-
able with minimal features (Java-based Globus Toolkit).

Path specifications and wild card attributes vary based on the underlying
OS. For example, slash (“/”) is used to specify a file’s path under Linux
platforms where backslash (“\”) is used under Windows platforms. Our ap-
plication accesses input files from storage system which means that the pro-
grams/scripts, we are creating, should be aware of this feature. This leads to
the need for creating different programs/scripts to run under different plat-
forms. The latter can be solved using the following MATLAB commands:
isunix, ispc, icmac. The command isunix checks if the unerlying OS is
UNIX, ispc checks if the underlying OS is Windows and ismac checks if
the underlying OS is Macintosh. Using the previous MATLAB commands to
check the underlying OS, just before the application starts running, will lead
to a single program/script thus reducing the path specification restriction.

When packaging and distributing applications and libraries that are gen-
erated by MATLAB Compiler, one must include the MATLAB Component
Runtime (MCR) as well as a set of supporting files generated by MATLAB

78

Chapter 4. Enabling Applications for the Grid

Compiler. You must also set the system paths on the target machine so that
the MCR and supporting files can be found. An application or library gener-
ated by MATLAB Compiler has two parts: a platform-specific binary file and
an archive file containing MATLAB functions and data. For an application,
the binary file consists of a main function, and for a library the binary file
exports multiple functions that can be called by users of the library.

Setting the MCR libraries into the system paths on a target machine was
not an easy task. The libraries that should be set are a large set of libraries
and missing out one library would lead to the failover of the application.
But once the application is tested on one target machine, setting the system
paths on other target machines would be an easy task.

Another restriction would be the MATLAB and the MATLAB Compiler
versions. Since MCR comes with MATLAB, someone should be careful when
compiling MATLAB files using a new MATLAB version and trying to run
the standalone application on a target machine where an older MCR version
is installed.

We should mention here that the MATLAB application was first imple-
mented under Windows platform. For the same reasons mentioned before,
we had to modify the application in order it can run under Linux platforms.
It was a difficult and a hard task since we had to check all the MATLAB files
for platform dependencies. Allocating the appropriate wild card attributes
for Linux, for example, was not easy at all.

Job topology

The grid-enabled application we created was implemented and tested at
the Technical University of Crete. The grid testbed established consisted
of 5 machines, running SuSE Linux platform and Globus Toolkit 4.0.3 mid-
dleware. Moreover, the application was tested remotely at the University of
Plymouth (UoP). The test took place to check the application’s integrity. We
ran our application on one machine only due to lack of available machines at
UoP.

Since we worked with Condor broker we had to ensure that an appropriate
target resource is selected. This requires that the application accurately spec-
ifies the required environment (operating system, processor, speed, memory,
and so on). The more the application developer can do to eliminate specific
dependencies, the better the chance that an available resource can be found

79

Section 4.13 Our Work

Figure 4.10: TUC Grid Testbed

and that the job will complete. But we, in our grid testbed, ensured that
all the machines were capable of running the application. We made sure
that GRAM or any other job scheduler/broker (condor was also used) would
always find these resources in order to run the application.

Globus Toolkit and its basic components (GridFTP and GRAM) were
just enough in order to run the application. Of course MCR was installed on
all machines since it’s a prerequisite when dealing with MATLAB standalone
applications.

GRAM provides mechanisms to query the status of the job as well as
perform operations such as cancelling the job. The application may need to
utilize these capabilities to provide feedback to the user or to clean up or free
up resources when required. For instance, if one job within an application
fails, other jobs that may be dependent on it may need to be cancelled before
needlessly consuming resources that could be used by other jobs.

Data input/output passing and management

Passing and managing the essential input/output data was achieved us-
ing GridFTP service. GridFTP facility provides secure and reliable data
transfer between grid hosts. Its protocol extends the File Transfer Protocol
(FTP) to provide additional features including: GSI, TCP socket buffer size
negotiation, Parallel data transfer and others (recall Chapter 2, for more info
on GridFTP).

80

Chapter 4. Enabling Applications for the Grid

GridFTP is used to pass all the essential input form storage systems to
target machines in order to execute jobs. GridFTP is also used to transfer
the output data back to the user. But For large datasets, it is not practical
and may be impossible to move the data to the system where the job will
actually run. Using data replication or otherwise copying a subset of the
entire dataset to the target system may provide a solution. Since our appli-
cation does not use large datasets, this would be not an issue. We simply
use GridFTP as we mentioned before.

If a job returns a simple status or a small amount of output, the ap-
plication may be able to simply retrieve the data from stdout and stderr.
However, the capturing of that output will need to be correctly specified in
the RSL string that is passed to the globusrun-ws command. If more com-
plex results must be retrieved, the GridFTP service may need to be used by
the application to transfer data files.

Security, reliability, and performance issues should be kept in mind when
moving data across the Internet or another WAN. A logic has to be build to
handle situations when the data access may be slow or prevented.

4.13.3 Grid Portal

Tranparency is an important issue for the end users. Transparency could
be acheived by using user interfaces based on Web browsers. They are called
“Grid Portals”.

Grid portals can deliver complex grid solutions to users wherever they
have access to a web browser running on the Internet. Hence, grid portals
have been proven to be effective mechanisms for exposing computing re-
sources and distributed systems to general user communities without forcing
them to deal with the complexities of the underlying systems. The interfaces
to the services and resources available should be intuitive and easy to use.

Where most of the Grid portals expose functionality like launching jobs
for remote execution or retrieving remotely-stored data, grid portals can also
include application specific interfaces customized for a particular domain.
We should point out here that security gains prominence in Grid portals
largely because of the nature of the Grid resources they expose.

The primary requirements for a grid portal system from a user’s point of
view involve access to Grid Services. These include:

81

Section 4.14 Acknowledgments

• Security services: Only authenticated users could log onto the grid
portal

• Remote file management: Users should be able to access remote files

• Remote job management: Users should have the ability to submit jobs
to the grid for execution

We, in this thesis, created a grid portal that meets the above require-
ments. Specifically, we created a login module based on HTTPS and SSL.
Users can log into the portal using their X.509-based certificates. A GridFTP
API was created to access remote files. A GRAM API was also created to
submit jobs for execution. Using our grid portal, the initial creators of the
MATLAB application could now run the grid-enabled version of the appli-
cation more transparently.

4.14 Acknowledgments

We would like to express our gratefulness to both Mrs. Lingfen Sun and
Mr. Pin Hu from the University of Plymouth, England for the assistance in
running our grid-enabled application between our universities.

82

Chapter 5
Conclusions

The Grid is emerging as a new mean for solving problems in science, engi-
neering, industry and commerce. A computing node or even more, an entire
single site can no longer meet all the resource needs of today’s demanding
applications. Moreover, using distributed resources can bring many benefits
to application users.

During this thesis, we have extensively studied GridFTP service. Specif-
ically we examined its various features (TCP socket buffer size and TCP
parallel streams) that lead to its throughput maximization. We analyzed the
throughput behaviour under five different parameters (File-size, RTT, Band-
width, TCP socket buffer size and TCP parallel streams) and tried to find the
best-fitting model (Linear Regression, LMMSE and Exponential Non-linear
Regression) that suits the throughput. We observed that the Exponential
Non-linear Regression better suits the GridFTP throughput. In conclusion,
we saw that an active tool for estimating RTT and bandwidth could benefit
GridFTP service. Therefore, we have studied bandwidth estimation tech-
niques, i.e. packet pair/train technique. We have tested already existing
tools but most of these tools seemed to function only in low-scale networks
and need a lot of testing to get them work good. We have proposed an ap-
proach based on Java Networking for large-scale networks. We managed to
estimate bandwidths efficiently up to 80Mbps.

Also, in this thesis, we worked on a MATLAB application. We tried to ex-
amine its ability to be parallelized in order to run under a grid environment.
Since Grid Computing was initially introduced to meet heavy-computational
applications, our goal was to run this application in a parallel way and thus
run quickly in a shorter time possible. This application was tested locally

83

Chapter 5. Conclusions

at the Technical University of Crete and remotely at the University of Ply-
mouth. The application in default-run needs 3 hours to terminate. After
grid-enabling the application, it has the ability to terminate in 15 minutes
assuming enough resources available if applied on a the first parallelism level.
We managed to extract three parallelism levels. There are many factors
though, to consider in grid-enabling an application. One must understand
that not all applications can be transformed to run in parallel on a grid and
achieve scalability. Furthermore, there are no practical tools for transforming
arbitrary applications to exploit the parallel capabilities of a grid. However,
automatic transformation of applications is a science in its infancy. This
can be a difficult job and often requires top mathematics and programming
talents, if it is even possible in a given situation. New computation inten-
sive applications written today are being designed for parallel execution and
these will be easily grid-enabled, if they do not already follow emerging grid
protocols and standards.

Grid computing is accessed through what is called a middleware. A mid-
dleware consists of various components (tools, programs, etc.) Installing and
configuring a certain middleware is not an easy task. In contrast, it requires
expert knowledge in order to put a middleware and its components to work
and function properly. Still today, this is all done via command-prompt.
Besides the installation/configuration part, a user has to memorize and run
a lot of command-line instructions in order to invoke a service, such as trans-
ferring a file using GridFTP or submitting a job using GRAM. All this would
“distance” the user form his/her initial goals. For that reason, many tired
and still trying to create a more friendly user interfaces. They are called
Grid Portals. We, during this thesis, have created a mini grid portal. We
have had the ability to comprehend and understand the requirements and
the specifications of a grid portal. We created different APIs. An API for
querying/modifying a database, an API for transferring files and an API for
submitting jobs.

84

Appendix A
Data Description

A.1 Children 2004

Below are some features

• Filters : 0.1 200 Hz

• ADC : 400 Hz, 12 Bits

• Gain: (f.s.d.) 500 V

We have normal and epilepsy children 1 : 1 for comparison. Every EEG
file is described by its name. For example file C06N08 means that this file
contains recordings from child N o06, which is Normal (Children with epilepsy
have E), 08 is the test number. The tests are described below.

Test Description

The tests are described below:

1. Child observes a star [01 or A].

2. Child watches geometrical structures. 500 msec x 30 [02 or B].

3. Child watches one digit numbers (0, 1, 2) msec x 30 [03 or C].

4. Child adds one digit numbers , n = 18, right-wrong answers by turns :
dx or sin [04 or D].

5. Child compares two digit numbers n = 16 (Uses right or left hand if
greater number is right or left [05 or E].

85

Appendix A. Data Description

6. Child subtracts numbers n = 16: Right or wrong by turns: dx or sin.
two digits numbers subtractions or two digits minus one digit. [06 or
F].

7. Letters 500 msec x 30 [07 or G].

8. Phonologic : vowel or consonant before K in a word, n = 14, by turns:
right hand or left hand [08 or H].

9. Semantic: Animal greater than dog, vegetarian, n = 14, by turns: right
hand or left hand [09 or I].

10. Kanisza, 500 msec x 30 [10 or K].

11. Fractals [11 or L].

12. Rest, eyes closed [12 or M]. Not included.

Channels

Table A.1 shows the 32 channels where the EEG files are based:

1 Γ1 VEOGL 17 A1 FP1
2 Γ2 FP2 18 A2 F3
3 Γ3 F4 19 A3 C3
4 Γ4 C4 20 A4 P3
5 Γ5 P4 21 A5 O1
6 Γ6 O2 22 A6 F7
7 Γ7 F8 23 A7 T3
8 Γ8 T4 24 A8 P7
9 ∆1 P8 25 B1 GND
10 ∆2 Cz 26 B2 Fz
11 ∆3 Pz 27 B3 FC3
12 ∆4 FC4 28 B4 FT7
13 ∆5 FT8 29 B5 CP3
14 ∆6 CP4 30 B6 TP7
15 ∆7 TP8 31 B7 FCz
16 ∆8 CPz 32 B8 Oz

Table A.1: Channels

Note Channel 1 (eye movements) and 25 (Ground) should be removed before
analysis.

86

Appendix A. Data Description

Figure A.1: Channel Locations

87

Appendix A. Data Description

88

Appendix B
Multiprocessing in MATLAB

B.1 Overview

MATLAB supports two types of multiprocessing: implicit and explicit.

B.1.1 Implicit Multiprocessing

Characteristics of implicit multiprocessing:

• Runs multiple threads on a single machine, most often using one thread
per processing unit.

• Requires a multiple CPU (multiprocessor or multicore) system.

• Speeds up element wise computations such as those done by the sin
and log functions, and computations that use the Basic Linear Algebra
Subroutines (BLAS) library, such as matrix multiply.

• Does not require any changes to your MATLAB code.

• Works behind the scenes to take advantage of the processing units
available to you. It does this by multithreading the computationally-
intensive math library functions that you use in the course of your
MATLAB session.

Enable implicit multiprocessing with the MATLAB Preferences Panel
to enable or disable, or to set the number of threads to be used. You
can change the maximum number of threads programmatically using the
maxNumCompThreads function.

89

Appendix B. Multiprocessing in MATLAB

B.1.2 Explicit Multiprocessing

Characteristics of explicit multiprocessing:

• Runs separate processes on one or many machines.

• Requires installation of Distributed Computing Toolbox (DCT).

• Speeds up execution of large MATLAB jobs. Enables you to run jobs
simultaneously on a cluster of computers, or as several processes on a
single machine.

• Requires that you modify your MATLAB code.

• DCT supports programming constructs for distributed arrays and par-
allel for (parfor) loops. It also supports both interactive and batch
execution. Enable explicit multiprocessing by installing Distributed
Computing Toolbox.

B.2 Implicit Multiprocessing

Multithreaded computation runs in a single instance of MATLAB and
generates simultaneous instruction streams on a multiple CPU (multipro-
cessor or multicore) system. The multiple processors share the memory of
a single computer. The work to be processed is implicitly partitioned for
execution on multiple threads. In particular, multithreaded computation in
MATLAB speeds up element wise computations such as those done by the
sin and log functions, and computations that use the Basic Linear Algebra
Subroutines (BLAS) library, such as matrix multiply.

If you are using a multiple-CPU system, you can run a demo to see
the performance impactsee Multithreaded Computation in the Help browser
Demos pane, under MATLAB Mathematics. For information regarding spe-
cific functions, search for “What MATLAB Functions Support Multithreaded
Computation” on The MathWorks online Support page.

B.2.1 Platform Differences and Multithreaded Com-
putation

The BLAS library used for multithreaded computation differs according
to which platform you are using: Note On Macintosh PowerPC platforms,
multithreaded computation is always enabled for the Accelerate BLAS. To

90

Appendix B. Multiprocessing in MATLAB

Platfrom BLAS Used
Windows with Intel processors Intel MKL BLAS
Windows with AMD processors AMD ACML BLAS
Linux with Intel processors Intel MKL BLAS
Linux with AMD processors AMD ACML BLAS
Macintosh Intel-based Intel MKL BLAS
MacIntosh PowerPC Mac Accelerate BLAS
Solaris Sun Performance Library BLAS

Table B.1: Platform BLAS Libraries

enable multithreaded computation for element wise operations, use MAT-
LAB preferences.

B.2.2 Enabling Multithreaded Computation

The preference automatically detects the number of CPUs on your sys-
tem and recommends the number of threads based on that.

Multithreaded computation in MATLAB is disabled by default. To enable
it and set the maximum number of threads to use, follow these steps:

1. Select File > Preferences > General > Multithreading.
The General Multithreading Preferences panel opens.

2. On the General Multithreading Preferences panel, select Enable
multithreaded computation.

3. Specify the Maximum number of computational threads. Accepting
the Automatic option is recommendedMATLAB automatically sets the
value to the actual number of computational cores on your system.
Note that if your system uses hyperthreading (where one processor is
logically configured as two), MATLAB sets the value to 1.

If you choose Manual, enter the maximum number of threads you want to
set; use a positive integer not greater than 16. (Selecting a number other
than the recommended value might increase performance for some computa-
tions, but might decrease performance for others.)

Note You may find that, at certain times, a library function uses a num-
ber of threads smaller than what you have specified. This can happen if the

91

Appendix B. Multiprocessing in MATLAB

Figure B.1: Multithread Unset

function finds the specified number of threads to be inappropriate.

In the event of an abnormal termination with multithreaded computation
enabled, MATLAB behaves differently than when multithreaded computa-
tion is not enabled.

Making this setting in the Preferences panel not only affects your cur-
rent MATLAB session, but future sessions as well. To disable multithreaded
computation, clear the Enable multithreaded computation selection and
click OK.

Note For Macintosh PowerPC platforms, BLAS multithreaded compu-
tation cannot be disabled.

B.2.3 Setting the Number of Threads Programmati-
cally

To set or retrieve the maximum number of computational threads from
within an M-file program, use the maxNumCompThreads function. You

92

Appendix B. Multiprocessing in MATLAB

Figure B.2: Multithread Set

can either set the maximum number of computational threads to a specific
number, or indicate that you want the setting to be done automatically by
MATLAB.

To set the maximum number of computational threads to a specific number
N, use

maxNumCompThreads(N)

To have MATLAB set the maximum number of threads, use:

maxNumCompThreads(’automatic’)

maxNumCompThreads also returns the current maximum number of threads if
you call it with an output value:

old N = MaxNumCompThreads(new N)

MATLAB keeps the settings you make using maxNumCompThreads syn-
chronous with your Preferences settings. If you change the maximum number

93

Appendix B. Multiprocessing in MATLAB

of computational threads by means of the maxNumCompThreads function,
MATLAB updates the Preferences panel to agree with the new setting.

Note Setting the maximum number of computational threads using maxNum-
CompThreads does not propagate to your next MATLAB session. To make
this setting carry over to future sessions, use the Preferences panel instead.

B.2.4 Crash Recovery and Multithreading

If MATLAB experiences a segmentation violation or other serious prob-
lem when multithreaded computation is enabled, it cannot try to return con-
trol to the Command Window. You do not have an opportunity to view a
segmentation violation message in the Command Window as you might when
multithreaded computation is not enabled. Instead, your platforms vendor,
for example, Microsoft or Apple, provides an error dialog box. MATLAB
then terminates. Upon the next MATLAB startup after a fatal problem, the
“Error Log Reporter” prompts you to e-mail the log to The MathWorks.

B.2.5 Measuring Performance Improvement for a Sin-
gle Operation

This example uses two threads (defined in the variable numThreads) for
one sample operation, matrix multiply. You can experiment by increasing
the number of threads if your system has more than two CPUs. There are
some overhead costs associated with running code the first time, so perform
timing comparisons with a second and subsequent runs to remove effects of
that overhead.

First, define some parameters and generate random data in variables A and B.

numThreads=2; % Number of threads to test

dataSize=500; % Data size to test

A=rand(dataSize,dataSize); % Random square matrix

B=rand(dataSize,dataSize); % Random square matrix

Next, set the number of computational threads to one and time the operation
of interest.

94

Appendix B. Multiprocessing in MATLAB

oldstate = maxNumCompThreads(1);

C=A*B; % Do not perform timing comparison with the first run

tic;

C=A*B;

time1=toc;

fprintf(’Time for 1 thread = %3.3f sec\n’, time1);

Time for 1 thread = 0.074 sec

Now, set the number of computational threads to numThreads and time the
operation. You can experiment by increasing the number of threads if your
system has more than two CPUs.

maxNumCompThreads(numThreads);

tic;

C=A*B;

timeN=toc;

fprintf(’Time for %d threads = %3.3f sec\n’, numThreads, timeN);

Time for 2 threads = 0.040 sec

Calculate performance improvement.

speedup=time1/timeN;
fprintf(’Speed-up is %3.3f\n’,speedup);

Speed-up is 1.855

For more information, read about Multithreaded Computation in MAT-
LAB documentation.

95

Appendix B. Multiprocessing in MATLAB

96

Appendix C
MATLAB Compiler

C.1 Overview of MATLAB Compiler

Use MATLAB R© Compiler to convert MATLAB R© programs to appli-
cations and libraries that you can distribute to end users who do not have
MATLAB installed. You can compile M-files, MEX-files, or other MATLAB
code. MATLAB Compiler supports all the features of MATLAB, including
objects, private functions, and methods. Using MATLAB Compiler you can
generate the following:

• Standalone C and C++ applications on UNIX, Windows, and Macin-
tosh platforms

• C and C++ shared libraries (dynamically linked libraries, or DLLs, on
Microsoft Windows)

Use the mcc command to invoke MATLAB Compiler. Alternatively, you can
use the graphical user interface for MATLAB Compiler by issuing the fol-
lowing command at the MATLAB prompt:

deploytool

C.2 How does MATLAB Compiler Work

MATLAB Compiler Generated Application or Library

When you package and distribute applications and libraries that are gen-
erated by MATLAB Compiler, you must include the MATLAB Component

97

Appendix C. MATLAB Compiler

Runtime (MCR) as well as a set of supporting files generated by MATLAB
Compiler. You must also set the system paths on the target machine so that
the MCR and supporting files can be found. An application or library gener-
ated by MATLAB Compiler has two parts: a platform-specific binary file and
an archive file containing MATLAB functions and data. For an application,
the binary file consists of a main function, and for a library the binary file
exports multiple functions that can be called by users of the library.

Wrapper Files

To create the platform-specific binaries that you specify, MATLAB Com-
piler generates one or more wrapper files. A wrapper file provides an interface
to the compiled M-code. Wrapper files differ depending on the execution en-
vironment.

The wrapper file does the following:

• Performs initialization and termination as needed by a particular in-
terface.

• Defines data arrays containing path information, encryption keys, and
other information needed by the MCR.

• Provides the necessary code to forward calls from the interface functions
to the MATLAB functions in the MCR.

• For an application, contains the main function.

• For a library, contains the entry points for each public M-file function.
Users of libraries generated by MATLAB Compiler must call the library
initialization and termination routines in their client code.

Component Technology File (CTF)

MATLAB Compiler also generates a Component Technology File (CTF),
which is independent of the final target type - standalone application or
library - but is specific to each operating system platform. This file, which
is named with a .ctf suffix, contains the MATLAB functions and data that
define the application or library.

98

Appendix C. MATLAB Compiler

C.3 Before You Begin

Before you can use MATLAB Compiler, you must have it installed and
configured properly on your system. At a minimum, you must run the fol-
lowing command once after installing a new version of MATLAB Compiler:

mbuild -setup

If you need information about writing the M-files that you plan to com-
pile, see MATLAB Programming, which is part of the MATLAB product
documentation.

C.4 Using the GUI to Create and Package a

Deployable Component

Open the Deployment Tool by issuing the following command at the
MATLAB prompt:

deploytool

Use the Deployment Tool as follows to create and package either a stan-
dalone application or a shared library:

1. Create a new project.

2. Add files that you want to compile.

3. Set properties for building and packaging.

4. Save the project.

5. Build the component.

6. Edit and rebuild as necessary.

7. Package the component for distribution to programmers or end users.

For more information read MATALB Compiler 4, User’s Guide.

99

Appendix C. MATLAB Compiler

100

References

[1] K. Fukui B. Jacob, M. Brown and N. Trivedi. Introduction to Grid
Computing. IBM, December 2005. ibm.com/redbooks.

[2] The Globus Alliance. http://www.globus.org/.

[3] Director of Computation Institute Ian Foster. http://www-fp.mcs.

anl.gov/~foster/.

[4] RFC 1180 TCP/IP tutorial. http://www.faqs.org/rfcs/rfc1180.

html.

[5] Data Management GridFTP service. http://www.globus.org/

toolkit/docs/4.0/data/gridftp/.

[6] RFC 793 Transmission Control Protocol. http://www.faqs.org/rfcs/
rfc793.html.

[7] RFC 768 User Datagram Protocol. http://www.faqs.org/rfcs/

rfc768.html.

[8] Greece Technical University of Crete Chania. http://www.tuc.gr.

[9] RFC 959 File Transfer Protocol. http://www.faqs.org/rfcs/rfc959.
html.

[10] Globus Security GSI. http://www.globus.org/toolkit/docs/4.0/

security/.

[11] Multi protocol data movement. http://www.globus.org/toolkit/

docs/4.0/data/gridftp/rn01re01.html.

101

ibm.com/redbooks
http://www.globus.org/
http://www-fp.mcs.anl.gov/~foster/
http://www-fp.mcs.anl.gov/~foster/
http://www.faqs.org/rfcs/rfc1180.html
http://www.faqs.org/rfcs/rfc1180.html
http://www.globus.org/toolkit/docs/4.0/data/gridftp/
http://www.globus.org/toolkit/docs/4.0/data/gridftp/
http://www.faqs.org/rfcs/rfc793.html
http://www.faqs.org/rfcs/rfc793.html
http://www.faqs.org/rfcs/rfc768.html
http://www.faqs.org/rfcs/rfc768.html
http://www.tuc.gr
http://www.faqs.org/rfcs/rfc959.html
http://www.faqs.org/rfcs/rfc959.html
http://www.globus.org/toolkit/docs/4.0/security/
http://www.globus.org/toolkit/docs/4.0/security/
http://www.globus.org/toolkit/docs/4.0/data/gridftp/rn01re01.html
http://www.globus.org/toolkit/docs/4.0/data/gridftp/rn01re01.html

References

[12] W. Feng S. Thulasidasan and M. K. Gardner. Optimizing gridftp
through dynamic right-sizing. In Proceedings of IEEE International
Symposium on High Performance Distributed Computing, 2003.

[13] H. Ohsaki T. Ito and M. Imase. On parameter tuning of data transfer
protocol gridftp in wide-area grid computing. In Proceedings of Second
International Workshop on Networks for Grid Applications, pages 415
– 421, 2005.

[14] H. Ohsaki T. Ito and M. Imase. Automatic parameter configuration
mechanism for data protocol gridftp. In Proceedings IEEE Symposium
on Applications and the Internet (SAINT), 2006.

[15] LANForge. http://www.candelatech.com.

[16] R. Johnson & D. Wichern. Applied Multivariate Statistical Analysis,
chapter 7, pages 377 – 390. Prentice-Hall Inc., fourth edition, 1998.

[17] Multiple Non linear Regression. http://www.graphpad.com/curvefit/
introduction.htm.

[18] A. Sayed T. Kailath and B. Hassibi. Linear Estimation, chapter 3, pages
78 – 88. Prentice-Hall Inc., 2000.

[19] The MathWorks MATLAB and Simulink for Technical Computing.
http://www.mathworks.com/.

[20] P. Steenkiste N. Hu. Estimating available bandwidth using packet pair
probing. Technical report, CMU-CS-02-166, September 2002.

[21] R. Baraniuk J. Navratil V. Ribeiro, R. Riedi and L. Cottrell. pathchirp:
Efficient available bandwidth estimation for network paths. In Passive
and Active Measurement Workshop 2003. 2003.

[22] C. Dovrolis M. Jain. Pathload: A measurement tool for end-to-end
available bandwidth. In ACM SIGCOMM, August 2002.

[23] A. Hoisie A. Malony & B. Miller V. Getov, M. Gerndt. Performance
Analysis and Grid Computing. Kluwer Academic Publishers, 2004.

[24] N. Bieberstein C. Gilzean J. Girard R. Strachowski S. Yu B. Jacob,
L. Ferreira. Enabling Applications for Grid Computing with Globus.
IBM, June 2003. ibm.com/redbooks.

[25] June 2005 The GridChem Project. https://www.gridchem.org/.

102

http://www.candelatech.com
http://www.graphpad.com/curvefit/introduction.htm
http://www.graphpad.com/curvefit/introduction.htm
http://www.mathworks.com/
ibm.com/redbooks
https://www.gridchem.org/

References

[26] June 2005 Lattice QCD Portal. http://lqcd.jlab.org/.

[27] June 05 US National Virtual Observatory. http://www.us-vo.org.

[28] June 05 Fusion Grid Collaboratory. http://www.fusiongrid.org.

[29] June 05 Particle Physics Data Grid. http://www.ppdg.ne.

[30] June 05 Cactus Project. http://www.cactuscode.org/.

[31] June 05 Biomedical Informatics Research Network (BIRN). http://

www.nbirn.net.

[32] June 05 The nanoHUB Project. http://www.nanohub.org.

[33] June 05 Geosciences Network (GEON). http://www.geongrid.org.

[34] June 05 NASA JPL QuakeSim portal. http://complexity.ucs.

indiana.edu:8282.

[35] June 05 Earth System Grid. https://www.earthsystemgrid.org/.

[36] S. Graves D. Reed K. Droegemeier R. Wilhelmson B. D. Plale, D. Gan-
non and M. Ramamurthy. Towards dynamically adaptive weather anal-
ysis and forecasting in lead, May 2005.

[37] Grid Computing. http://www.gridcomputing.com/.

[38] Grid Café. http://gridcafe.web.cern.ch/gridcafe/.

[39] C. Kesselmen I. Foster and S. Tuecke. The Anatomy of the Grid: En-
abling Scalable Virtual Organizations. Intl. Journal of Supercomputing
Applications, 2001.

[40] A. Geist K. Chanchio and M. Chen. A Study of Site Security and Grid
Computing Policies.

[41] I. Foster. What Is the Grid? A Three Point Checklist. July 2002.

[42] J. Schopf and B. Nitzberg. Grids: The Top Ten Questions.

[43] J. Chen B. Hess A. Kowalski W. Watson, I. Bird and Y. Chen. A Web
Services Data Analysis Grid.

[44] E. Deelman. Mapping abstract complex workflows onto grid environ-
ments. Journal of Grid Computing, Vol. 1, 2003.

[45] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure
toolkit. Intl. Journal of Supercomputing Applications, Vol. 11, 1997.

103

http://lqcd.jlab.org/
http://www.us-vo.org
http://www.fusiongrid.org
http://www.ppdg.ne
http://www.cactuscode.org/
http://www.nbirn.net
http://www.nbirn.net
http://www.nanohub.org
http://www.geongrid.org
http://complexity.ucs.indiana.edu:8282
http://complexity.ucs.indiana.edu:8282
https://www.earthsystemgrid.org/
http://www.gridcomputing.com/
http://gridcafe.web.cern.ch/gridcafe/

	Contents
	List of Figures
	List of Tables
	Abstract
	Acknowledgements
	Introduction
	Maximizing GridFTP Throughput
	Introduction
	GridFTP Overview
	Transmission Control Protocol (TCP)
	TCP socket buffer size
	TCP parallel streams

	Simulation
	Initial experiments
	Further Experiments
	Related Work
	Our Approach

	Acknowledgments

	Bandwidth Estimation
	Introduction
	Packet Pair/Train Technique
	Active end-to-end Bandwidth Measurement
	Related Work
	Our Approach
	Implementation

	Enabling Applications for the Grid
	Introduction
	Performance
	Jobs and Grid Applications
	Job Criteria
	Batch job
	Standard application
	Parallel applications
	Interactive jobs

	Programming Language Considerations
	Job Dependencies on System Environment
	Job Topology
	Passing of Data Input/Output
	Qualification Scheme for Grid Applications
	Data Management Considerations
	Grid User Roles
	Framework
	Our Work
	MATLAB application
	Grid-enabling the application
	Grid Portal

	Acknowledgments

	Conclusions
	Appendix Data Description
	Children 2004

	Appendix Multiprocessing in MATLAB
	Overview
	Implicit Multiprocessing
	Explicit Multiprocessing

	Implicit Multiprocessing
	Platform Differences and Multithreaded Computation
	Enabling Multithreaded Computation
	Setting the Number of Threads Programmatically
	Crash Recovery and Multithreading
	Measuring Performance Improvement for a Single Operation

	Appendix MATLAB Compiler
	Overview of MATLAB Compiler
	How does MATLAB Compiler Work
	Before You Begin
	Using the GUI to Create and Package a Deployable Component

	References

