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Preamble 
 

The technology of environmental monitoring systems is becoming a 

mature research field.  The need to monitor and understand complex 

environmental phenomena and biochemical processes that take place in various 

temporal and spatial domains cannot be addressed simply by deploying 

(spreading) tens of data logging nodes in the area of interest. The complexity of 

these environmental systems originates from their nonlinear dynamics, scale-

dependent behavior and heterogeneity of the interacting processes.  

Given the physical reality of many environmental applications, especially 

the size and expense of sensors and their cost, we are now seeing a movement 

toward networks that are comparatively lower in population and density but 

much smarter. The transformation of an Environmental Monitoring System 

(EMS) from an elaborate logging system to an intelligent adaptive platform that 

adjusts its sampling and processing features in the context of evolving data 

acquisition would revolutionize our understanding of the monitored 

environment.  

Within this context, this work presents an adaptive reconfigurable 

platform for environmental monitoring. It is based upon the close coupling of an 

8-bit microcontroller and an FPGA acting as a co-processor. The key concept of 

the proposed system is that the extra processing power provided by the 

reconfigurable hardware is accessed on demand. Reserving processing resources 

for the extreme conditions such as flood events can be extremely helpful in the 

process of monitoring and understanding complex environmental phenomena 

while at the same time preserving the system’s energy efficiency. 

 



 

Chapter 1 

Introduction 

 

 

1.1  Introduction 

The technology for sensing and control has the potential for significant 

advances, not only in science and engineering, but equally important, on a broad 

range of applications relating to critical infrastructure protection and security, 

health care, the environment, energy, food safety, production processing, quality 

of life, and the economy.  

Environmental monitoring with Wireless Sensor Networks is one of the 

most challenging research areas in the last decade. It represents a class of sensor 

network applications with enormous potential benefits for scientific 

communities and society as a whole. 

In recent years, technological advances in the miniaturization of 

electronics, wireless communications and embedded microprocessors have 

decreased the size, weight, and cost of sensors and sensor arrays by orders of 

magnitude and at the same time increased their spatial and temporal resolution 

and accuracy.  They also tend to transform environmental monitoring systems 

(EMS) from simple logging devices that record and transmit raw environmental 

data at specific time intervals, to “smart” low-cost, multifunctional, event-driven, 

monitoring systems. 

The design of environmental monitoring applications based on WSNs 

requires the integration of many disciplines including embedded systems, 

telecommunications, software engineering, data bases and management as well 

as data modeling. At the same time designers have to address in situ and 

operational problems (node deployment, sensors calibration etc). The latter are 

associated with the interaction of the monitoring system with the environment 

and, somehow, with the extension of the network lifetime (e.g., energy harvesting 

and management, faults and failures, thermal drifts, ageing effects). 
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1.2  Components of a Environmental Monitoring System  

A typical EMS is made up of five basic components. Processor, storage 

unit, radio, sensors, and power supply: 

 Processing Unit: Typically a microprocessor coupled with a small 

amount of memory for signal processing, storage and transmission. Next 

generation 16/32-bit embedded processors and reconfigurable logic are 

being introduced that provide order-of-magnitude increases in 

computational throughput over 8-bit microcontrollers. 

 Power Supply: In an environmental monitoring system where the 

primary requirement is long-term field monitoring, the power source of 

the system can only be sustained through harvesting energy available in 

the environment mainly through solar cells and rechargeable batteries for 

storage.  

 Storage Unit: The amount of storage needed in a node, depends on the 

overall network structure. If the architecture of the entire system dictates 

that all data should be transmitted instantaneously on the central station, 

then the amount of local storage needed can very little and is mainly used 

as a temporary buffer. If on the other hand, the main concern is the 

limitation of data being transmitted through the communication medium, 

then there is a greater need for local storage. The latter scenario requires 

the existence of greater processing capabilities locally. 

 Sensors: The primary purpose of EMS is neither computing nor 

communicating, but rather sensing. The sensing component of SN nodes is 

the current technology bottleneck. The sensing technologies are not 

progressing as fast as semi-conductors. Also, sensors are being applied to 

the real physical world, while the computing and communicating units are 

dealing with a somewhat controlled environment. One of the main 

challenges of environmental monitoring is selecting the appropriate type 

and quantity of sensors for an application. There are numerous types of 
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sensors with different properties such as resolution, cost, accuracy, size, 

and power consumption. A single chemical sensor can add a few 

thousands of dollars to the cost of the entire system. Also some of the 

most crucial tasks such as fault tolerance, error control, calibration, and 

time synchronization are associated with the sensors of the system. The 

analysis of all aspects of sensing technologies is beyond the range of this 

thesis. 

 Communication Unit: One of the key features of EMS is the 

communication layer. In a remote monitoring location, we are referring to 

wireless communication for data relaying. Communication demand 

depends on the level of local data processing and control [6] but the 

communication layer must be able to cope with high and even burst data 

(worst-case) transfers, especially when real-time tasks are involved. Let’s 

assume, for example, a system is capable of producing -ready to transmit- 

data at a rate of at least 100 Kbps throughout the network. There is also a 

communication control overhead, which increases the data rate to 110 

Kbps. If the communication layer cannot serve the above requirements 

then there will be a bottleneck, which will affect the entire system. 

1.3  Issues and Constrains 

The implementation of an efficient and reliable EMS for ecological 

research imposes a number of design issues and constraints that need to be 

addressed. Challenges and limitations of wireless sensor nodes include, but are 

not limited to, the following: 

 Energy efficiency: Since we are referring to autonomous nodes in 

distributed systems, each node must have the ability to maintain balanced 

(if not minimal) energy consumption. Obviously, the power consumption 

of a system is closely related to its computational task. Therefore, a 

computationally demanding task “consumes” more energy than a 

computationally effortless one. There is a lot of literature in power 

considerations [1,2] and it is also beyond the range of this thesis. 
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 Small physical size and weight: Reducing physical size has always been 

one of the key design issues. It is imperative for the system to have the 

smallest effect in the sensing environment.  The overall weight and size of 

a node is mainly affected by the power unit (battery and solar cells). The 

choice of having a small-sized battery would be beneficial in terms of size 

but would compromise dramatically the energy efficiency of the entire 

system. 

 Robustness: Sensor nodes for ecological research often have to be 

deployed in harsh environments, where they need to survive the elements 

of nature (humidity, moisture etc). They will be unattended, and are 

expected to be power efficient and operational for a long period of time. 

The system must also be resilient to errors and malfunctions.  Since the 

existence of redundant subsystems is prohibited due to space, cost and 

power limitations, special attention must be given to the reliability of the 

individual units even through local or even remote repair, calibration and 

test. 

 Scalability – Upgradability:  Due to continuous technological advances 

in sensors (chemical sensors, cameras etc) and in other fields 

(microcontrollers, network) the system must be easily upgradeable with 

the least effort (both in hardware and software redesign) and with 

minimal cost. This can only be achieved by maintaining a modular 

architecture. 

 Task Concurrency:  A sensor node for environmental monitoring is 

actually a multifunctional platform for data capturing, processing, storing 

and transmission. The overall performance of the system can be achieved 

through task parallelism. For example, information may be 

simultaneously captured from sensors, processed, and transmitted over 

the network in a pipelined manner, instead of sequential action. There are 

two conceptual approaches to address this requirement: (i) partitioning 

the processing unit into multiple units where each is responsible for a 
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specific task; and (ii) reduction of the context switching time between 

tasks. 

 Functional diversity: Apart from the obvious benefits of modular 

architecture, the system must also be able to offer functional modularity. 

We refer to dynamic functional in situ reconfiguration without the need 

for system recovery, reprogramming and redeployment. This dynamic 

diversity in design and usage requires an unusual degree of software and 

hardware modularity which can be accomplished through:  (i) remote 

system reprogramming (if the processing unit is microcontroller based). 

(ii) dynamic, on the fly, system redesign (if the processing unit is based on 

reconfigurable logic) [3] 

1.4  Thesis Objectives 

This thesis presents an adaptive reconfigurable platform for 

environmental monitoring which is based upon the close coupling of an 8bit 

microcontroller and an FPGA acting as a co-processor. The proposed platform 

transforms a conventional data logging device that records and transmits raw 

environmental data at specific time intervals into an intelligent, event-driven 

platform that adjusts its behavior at run-time in the context of the acquired data. 

Additionally it acts as a pre-processor of the collected data, thus minimizing the 

volume of data transmitted. 

The natural architectural choice for such a system is the combination of a 

general purpose processor and a reconfigurable processing element. In such a 

coupled node where a host processor (microcontroller) and reconfigurable logic 

are present, the microcontroller is mostly suitable for implementing sequential 

tasks (control flow oriented tasks), while on the other hand the reconfigurable 

logic is preferred for computationally intense tasks with high degree of 

parallelism. This close coupling of hardware and software in a communication – 

demanding environment is a major factor in the development of a reconfigurable 

environmental sensor node. 
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1.5  Thesis Contribution 

The key innovations of the proposed thesis are the following: 

 Development of an environmental monitoring platform where a low-power 

microcontroller is coupled with an FPGA for computationally demanding 

tasks. 

 Design and development of a platform that is technology and vendor 

independent of the incorporated reconfigurable logic (FPGA) 

 Developing mechanisms for implementing runtime dynamic system 

reconfiguration both in terms of hardware and of software. 

 Implementation of a microkernel where the end-user takes advantage of the 

platforms resources seamlessly through user defined tasks. 

 

Datalogger Unit 
(uC)

(Re)Configuration 
Unit (uC)

Storage
(Data, Bitstreams, 

tasks)

Co-processor
(FPGA)

Sensors Sensors

Control Unit
(task scheduler)

Sensors Sensors

 

Figure 1: Proposed architecture 
 

 

In terms of overall system operation, the major innovations are the 

following: 
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 It allows dynamic remote reconfiguration without the need to withdraw it 

from the sampling field, both in software and in hardware 

 Immediate response to extreme events. The system can self-adapt to the 

acquired readings from the environment and change its operation (for 

example sampling frequency) at runtime  

 From an architectural point of view, the modular design of this platform 

offers a level of transparency between the different layers allowing the 

replacement of various units like the reconfigurable hardware without the 

need for complete system redesign. 

 

1.6  Motivation of the Work 

Hydrologic and geochemical processes that take place in Mediterranean 

watersheds have variable temporal and spatial scales. The hydrographs of both 

temporary and permanent rivers are flashy with response times ranging from 

minutes to hours. “Temporary River” is a general term for all intermittent, 

ephemeral and episodic streams. Temporary river watersheds constitute 30% of 

the Mediterranean region and at least 42% of the Greek territory. Based on 

recent trends, the number of temporary rivers will likely increase in the future 

due to human impacts such as climate change and increased water abstraction. 

Temporary river hydrographs are flashy and exhibit characteristic response 

times ranging from minutes to hours such as experienced during first flush and 

storm events. After dry periods, the first flash floods carry significant quantities 

of suspended solids and pollutants (Fig 1.2).  Compared to perennial flow 

conditions, temporary rivers deliver most of the annual pollution load during 

only a few flood events typically lasting a few hours. [4] 
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Figure 2: Mediterranean Ephimerality 
 

 

 

Given the fact that most EMS are battery powered and with limited 

resources, the key concept of the proposed system is that the extra processing 

power provided by the reconfigurable hardware is accessed on demand and only 

during extreme environmental conditions like those previously described. 

Reserving processing resources for the worst-case scenario can be extremely 

helpful in the process of monitoring and understanding complex environmental 

phenomena while at the same time preserving the system’s energy efficiency. 
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Figure 3: Flood Event in the Koiliaris River 
 

1.7  Thesis Outline 

The current thesis is organized as follows: 

 Chapter 2 provides the theoretical background of the technical 

discussions and terms in this thesis. Basic concepts of reconfigurable 

hardware, system architectures and technologies are presented. 

 Chapter 3 provides the literature survey on reconfigurable platforms.  

 Chapter 4 discusses the proposed system architecture. 

 Chapter 5 refers to the system’s software architecture with a detailed 

analysis on the implemented task scheduler 

 Chapter 6 focuses on the reconfigurable co-processor architecture 

along with the platform implementation.  

 Chapter 7 gives a synopsis of the current work and results.  

 Chapter 8 discusses directions for future upgrades of the proposed 

system. 
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Chapter 2 

Background 

 

 

2.1 Introduction 

This chapter offers the reader the background information for a complete 

understanding of the technical discussions and terms in the following chapters.  

Basic concepts of reconfigurable hardware, system architectures and 

technologies are presented. 

2.2 Reconfigurable Hardware Technology 

A Field Programmable Gate Array (FPGA) is a matrix of configurable logic 

cells, called Configuration Logic Blocks (CLBs). These blocks are embedded in a 

general routing structure (also configurable) which allows their interconnections 

(inputs and outputs of each CLB). As opposed to Application Specific Integrated 

Circuits (ASICs) where the device is custom built for the particular design, FPGAs 

can be programmed to the desired application or functionality requirements [5]. 

The Configurable Logic Block is the basic logic unit in an FPGA. Exact 

numbers and features vary from device to device, but every CLB consists of a 

configurable switch matrix with 4 or 6 inputs, some selection circuitry (MUX, 

etc.), and flip-flops.  

The FPGA configuration is specified with the use of a Hardware 

Description Language (HDL). The programming technology in an FPGA 

determines the type of basic logic cell and the interconnect scheme. The logic 

cells and interconnection scheme, in turn, determine the design of the input and 

output circuits as well as the programming scheme. 

Although one-time programmable (OTP) FPGAs are available, the 

dominant type is SRAM based. The advantages of SRAM based FPGAs is that 
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designers can reprogram them. The disadvantage of using SRAM programming 

technology is the need to keep power supplied for the volatile SRAM to retain the 

connection information. Alternatively, one can load the configuration data from a 

permanently programmed memory (typically a programmable read-only 

memory or PROM or Controller) every time the system is turned on.  

 

Figure 4: FPGA Architecture and CLB 
 

2.3 Configuration Techniques 

Configuration is the process of loading design-specific configuration 

bitstream data into one or more FPGAs/CPLDs to define the functional operation 

of the internal blocks and their interconnections. An SRAM-based FPGA can be 

configured on its power-up or even on demand, depending on the architecture of 

the device. The EEPROM based CPLDs can be programmed on demand and they 

keep their configuration data even after power-off.  

For Xilinx FPGAs, those changes to structure and functionality are made 

by loading configuration bitstream data through one of several configuration 

ports. 

External configuration ports such as the SelectMAP and JTAG interfaces 

are typically driven by an external controller. This has the potential of allowing 

applications to have a smaller operational area on the FPGA and of consuming 

less power. 

1. Slave Serial/SelectMAP (Slave Parallel): Slave Modes use external control 

logic to generate the configuration clock. It allows the FPGA to be configured 

using other logic devices such as microprocessors, or in a daisy-chain. The 

device is incorporated into a system with an intelligent host that controls the 



Background 

19 |  
 

configuration process. The intelligent host transparently selects a serial or 

parallel data source and the data is presented to the device on a common data 

bus. Such systems can store the configuration data on a mass-storage device, 

such as a hard disk. This way, installing new configuration data becomes 

easier and the number of Integrated Circuits (ICs) required for a system is 

reduced.  

2. JTAG: The Joint Test Action Group has developed a specification for boundary 

scan testing. The Boundary Scan Test (BST) is an industry standard (IEEE 

1149.1, or 1532) and it offers the capability to efficiently test components on 

PCBs with tight lead spacing. JTAG has gained popularity due to its 

standardization and ability to program both FPGAs and CPLDs. In this mode 

external logic is also required but this time to drive the JTAG specific pins, 

Test Data In (TDI), Test Mode Select (TMS) and Test Clock (TCK), and one 

optional the Test Reset (TRST). All other pins are tri-stated during JTAG 

configuration. JTAG configuration can start at any time, even during 

configuration through another mode.  

3. ICAP: In contrast to JTAG and Slave Modes, the internal configuration access 

port (ICAP) can be directly accessed by application circuits configured on the 

FPGA (not available on all FPGAs), allowing them to change their own 

structures and functionalities at run time. To achieve this, different circuits 

with different functionalities are loaded onto the FPGA when needed by those 

applications. 

2.4 Reconfigurable WSN nodes architectures 

There has been considerable research into reconfigurable architectures 

and coupling. Todman et al. [6] extended the work of Compton and Hauck [7] 

and have classified the reconfigurable hardware architectures into 5 main 

classes (Figure X): It is outside the scope of this thesis to emphasize on all 

reconfigurable architectures. The main focus is those used in reconfigurable 

WSN nodes. 

In typical, reconfigurable WSN nodes also have a microprocessor, 

memory, and possibly other structures. Whether the reconfigurable logic (RL) is 

depicted as a separate coprocessor or integrated as a functional unit mostly 
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depends on the system architecture and the coupling between the general 

purpose processor (in this case microprocessor) and the FPGA.  

The key classification is based on their system architecture and the nature 

of their RL unit. They are categorized as:  

 

reconfigurable 

fabric

CPU

(e)

 

Figure 5: Reconfigurable hardware architectures and 
coupling 

 

2.4.1 Microcontroller plus Reconfigurable Co-processor  

In these platforms the RL is coupled to the processor through a) its 

system I/O bus or b) its system memory bus. The first case is the easiest 

implementation with the drawback of providing the least data bandwidth 

between the processor and the RL, which is usually a system’s performance 

bottleneck. In the second case, all data communications take place through the 

main memory. The RL performs its computations and returns the results back to 

main memory thus increasing the system’s bandwidth. 

In general, since the RL has no direct transfer link to the processor even a 

conventional microprocessor platform can be extended to a reconfigurable 

system by simply inserting an add-on card with reconfigurable logic to the 

system’s peripheral bus.  In the second case, the extension is a bit more 
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complicated but equally feasible. The main disadvantage in this coupling is that 

the overall data bandwidth of the system is limited. 

For this reason independent co-processor RLs are best suited for 

application that require data-streaming, like image processing and encryption 

where the RL acts independently from the processor. 

2.4.2 Reconfigurable hardware plus embedded processor  

Advances in reconfigurable logic technologies have made possible the 

tight coupling between processor and reconfigurable logic. Instead of deploying 

the RL to a processor system, new reconfigurable ICs embed the processors in 

their fabric. Such architectures allow the direct access to the reconfigurable logic 

from the processor. Nowadays, almost all vendors provide reconfigurable fabrics 

with embedded processor cores. These processors can be implemented 

physically or as soft processors. A processor built from dedicated silicon is 

referred to as a “hard” processor.  A “soft” processor is built using the FPGA’s 

general-purpose logic.  The soft processor is typically described in a Hardware 

Description Language (HDL) or netlist.  Unlike the hard processor, a soft 

processor must be synthesized and fit into the FPGA fabric [8]. Examples of soft 

processors are the MicroBlaze and PicoBlaze processors by Xilinx, as well as the 

Nios and Nios-II processors by Altera. As for hard processors, Altera’s Excalibur 

family embeds the ARM processor and inside Xilinx’s Virtex family is the 

PowerPC processor. Additionally, ATMEL offers FPSLIC family with an AVR core 

embedded. [1,9,10] 

This close coupling between the processor and the RL increases the 

efficiency of the system by increasing communication and data transfers. On the 

other hand, it limits the RL’s independence. By assigning the RL the role of a 

functional unit, means that it is placed directly in the pipeline of the processor, 

potentially stalling execution until it terminates its task. 

2.5 Chapter Summary 

This chapter highlights technologies regarding reconfigurable hardware 

configuration processes and system architectures used in reconfigurable wsn 

architectures. 



 

Chapter 3 

Literature Survey 

 

 

3.1  Introduction 

Current technological advances have led to the availability of 

environmental sensors that are smaller, cheaper, intelligent and more reliable. 

On the other hand, traditional WSN platforms based solely on microcontrollers 

fall short of providing flexible and adequate solutions in response to the 

increased processing and data demand. These drawbacks have led, among other 

things, in the adaptation of reconfigurable logic (RL) as hardware accelerators in 

WSN platforms. Due to the diverse nature of environmental monitoring 

applications and the importance of reconfigurability at the hardware platform 

level as illustrated in previous sections, this chapter is mainly focused on the 

FPGA-based reconfigurable platforms currently available.  

3.2  Reconfigurable WSN nodes architectures 

In typical, reconfigurable WSN nodes also have a microprocessor, 

memory, and possibly other structures. Whether the reconfigurable logic (RL) is 

depicted as a separate coprocessor or integrated as a functional unit mostly 

depends on the system architecture and the coupling between the general 

purpose processor (in this case microprocessor) and the FPGA.  

3.3 Microcontroller + reconfigurable co-processor platforms  

In this section platforms based on the microcontroller + reconfigurable 

co-processor approach will be discussed. 

3.3.1 mPlatform 

At Microsoft Research Labs they developed a modular stackable platform 

[11]. The mPlatform was designed so that a wide range of processors can coexist 

on the same platform and efficiently communicate in any possible configuration. 
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The coupling of the heterogeneous microprocessors is achieved by a 

reconfigurable HW (CPLD in this case). The local processor on each module 

interacts with a parallel bus through the bus controller, implemented in a low-

power CPLD thus achieving communication abstraction through the entire 

modular platform.  

In the mPlatform the term reconfigurability is used only to emphasize on the 

platform’s Lego-like nature where the number and type of processors put 

together depends on the requirements of a given research project.  

With this in mind, the CPLD is configured only at design time in order to meet the 

specific communication demands of a particular project. 

 

Figure 6: mPlatform architecture 

3.3.2 Cookie  

At the CEI-UPM, researchers have developed a platform based on a 8052 

uC from Analog Devices (ADuC841) and a Xilinx XC3S200 Spartan 3 FPGA [12].  

It is composed of four main layers: processing, communication, power supply 

and sensors. The FPGA acts as an independent co-processor solely for taking 

measurements from digital sensors (Figure X2). The uC sends triggers to the 

FPGA, specifying the sensor from which the measure has to be taken, and the 

FPGA activates the corresponding sensor interface.  
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The Cookie platform supports dynamic reconfiguration of the FPGA. It 

uses the uC to reconfigure the FPGA from a library of general HW digital 

interfaces for sensors (as I2C, 1-Wire, SPI, etc.). The uC will use the JTAG port of 

the FPGA to accomplish this task. The uC will receive the bitstream from the 

communication layer (ZigBee module) and will download it in the FPGA 

configuration memory. 

 

Figure 7: HW-SW Reconfigurable Sensor Node Diagram 

3.3.3 RESENSE 

RESENSE is a reconfigurable WSN platform, developed at the Technical 

University of Crete [13].  In the RESENSE platform there are two distinct 

architectures that incorporate reconfigurable logic. In the sensor node level 

researchers have coupled a commercial WSN mote (Micaz/IRIS - ATMega1281 

uC) and a low-power CPLD (Xilinx CoolRunner-II). On the base station they have 

combined an Intel Atom processor (general purpose CPU) with a Virtex-5 FPGA 

(XC5VLX110T).  

 

Figure 8: RESENSE general scheme 

 



Literature Survey 

25 |  
 

Both Reconfigurable Nodes are treated as hardware accelerators by 

executing security (encryption/decryption/authentication) algorithms for 

providing a network-level security framework. They have proven that the overall 

energy consumption of the new infrastructure is reduced by up to 98%, when 

compared with the consumption of a widely used commercial CPU-based WSN 

node executing those same WSN processing tasks in software. 

3.3.4 Tyndall (25mm Cube)  

The Tyndall Mote was developed at the Tyndall National Institute by the 

Wireless Sensor Networks Team [ 14]. The Tyndall Mote is a compact, 

reconfigurable and modular platform. The design is based around several 

25×25mm boards that are interconnected by means of two standard connectors 

placed on contiguous sides of each of the square boards.  

FPGA technology and additional processing capability can easily be 

incorporated into the system stack when required by simply adding the required 

layer, similarly appropriate power supplies and battery layers or coin cell 

battery layers can be stacked one on top of each other, also in a modular fashion  

All of the communication layers are designed with an on-board 

ATmega128L microcontroller developed to integrate the radio and transceivers, 

as well as being compatible with TinyOS, and other standard. 

 

Figure 9: Tyndall’s 25 mm stackable platform 
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In this case also, the main research is not focused on FPGA 

reconfiguration, but rather in reprogramming the microcontroller and the FPGA 

before deployment. 

3.3.5 REWISE node 

Wilder et al. [15] present a reconfigurable wireless sensor network 

(REWISE), showing that FPGAs reach an optimum balance between flexibility, 

energy requirements and processing power. Their node is based on a 16bits 

microcontroller (MSP430) from Texas Instruments. Their system is an 

implementation of what they call wireless JTAG, which is independent of the final 

FPGA that will be used. Each node includes a repository of HW/SW 

configurations and programs to avoid the high cost of sending these files through 

the network. 

 

Figure 10: REWISE reconfigurable node 
  

3.4  Reconfigurable hardware + embedded processor  

In this section platforms based on embedded processors in the 

reconfigurable fabric will be considered. 

3.4.1 Darmstadt platform 

At the Institute of Microelectronics System of Darmstadt University, they 

have developed a reconfigurable prototyping platform based only on a single 

Spartan3-2000 FPGA as the main processing [16]. The board has a CPLD only for 

reconfiguration purposes. In their application example, the heart of the system is 

a soft core 32-bit LEON2 RISC processor with the rest of the reconfigurable logic 
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acting as functional unit (RFU) integrated directly into the processor's data path. 

The FPGA is used to integrate debugging and system monitoring in the logic, and 

to emulate the digital part of the final node. Therefore, their main target is 

prototyping. There is no reference to any kind of system reconfiguration of the 

platform, neither static nor dynamic. 

 

Figure 11: Schematic view of the Darmstadt  
platform 

3.4.2 Warangal platform 

In the National Institute of Technology, Warangal in India, Muralidhar and 

Rao, developed a Reconfigurable WSN node using an ALTERA Cyclone II FPGA 

[17]. The processing unit (treatment unit by the authors’ terms) is a NIOS II soft 

core. They proposed a real-time forest fire detection system by using 

reconfigurable wireless sensor networks. Their target is to reuse the 

reconfigurable functional unit (RFU) through dynamic reconfiguration. 
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Figure 12: Warangal platform node architecture 

3.5  Other Reconfigurable WSNs 

Latha et al [18] from College of Engineering, Anna Univ., Chennai, 

India, have proposed a two-level system for surveillance and intrusion detection. 

At the first level, relatively simple nodes with basic sensing devices are used as 

primary detectors of intrusions. The second-level sensor node is composed of a 

high performance FPGA that can be dynamically reconfigured for different 

applications, interfaced with the camera.  

There are no additional references to the way the FPGA in the node is 

dynamically reconfigured. 

3.6 Summary 

In this chapter we gave a detailed survey on existing reconfigurable 

platforms. In contrast to our system, most platforms treat the 

reconfigurable logic as a functional accelerator with no reference to run-

time dynamic reconfiguration.  



 

Chapter 4 

System Architecture 

 

 

4.1  Introduction 

This chapter focuses on the description of the platform which includes a 

microcontroller and an FPGA for acting as a coprocessor in terms of its hardware 

architecture.  

4.2  System Architecture (Layers) 

The reconfigurable platform is partitioned into three layers, for sensing, 

communication and processing as proposed in [19] and illustrated in fig. 12.  

 

This layered- modular design approach is adopted by many researcher 

[20,21,11,22] mainly because it can provide scalability and reusability. It offers a 

level of transparency between the different layers. Each layer only communicates 

with its adjacent layer. The “communication” layer interfaces only with the 

Sensing Layer

Storage
Processing Layer

uC
Co-processor

FPGA

Communication 
Layer

Processing Layer

 

Figure 13: Layers of the reconfigurable Platform 
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control medium (“processing” layer), inside the node. The existence of the 

reconfigurable section, its functionality and even its presence, is completely 

hidden from the “communication” layer. The platform can be easily upgraded 

with the least effort (both in hardware and software redesign) and with minimal 

cost. For example, the communication layer or the sensors can be replaced 

without the need to redesign the entire platform, as long as the interfaces remain 

unaltered. All of the above are depicted in Figure 12. 

4.2.1 Communication Layer 

The “Communication” layer is the physical and data-link layer. It typically 

consists of the wireless communication module and its controller.  All incoming 

data and control instructions that reach the node from the network are collected 

by this layer. They are parsed and stripped from any communication related 

information and are forwarded to the “Processing” layer. Additionally, all 

processed or raw data collected from the sensors are transmitted through the 

communication layer to a base-station on demand or at specific time intervals, 

depending on the communication policy of the deployed network and the 

platforms appointed tasks. 

The modular approach of the platform permits the use of different 

communication protocols and physical layers. In the past, a platform-compatible 

Communication Layer consisting of a Bluetooth module and its controller has 

been implemented [19].  

For the purpose of this thesis, the communication layer has been 

implemented as a point to point serial, communication interface through the 

platform’s UART. The platform can receive a series of data and control 

commands form the communication layer which, refer to the following 

operations: 

1. Replace TASK INI instructions: A sequence of commands and data 

for replacing the “task-ini” file located in the storage unit. This file 

contains the user-defined task parameters, necessary for controlling 

the entire system’s behavior. 
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2. Replace PTL Script instructions: Commands followed by a sequence 

of data, which replace the PTL script controlling the FPGA 

(re)configuration process 

3. System Reboot command: Control instruction for performing a 

system reset.  

4. Write Bitstream instructions: Command and data for placing a new 

(or replacing) an FPGA application file (bitstream). 

The entire platform can be remotely configured at runtime, by sending it a 

sequence of control instructions and data.  

The following table contains all the control instructions the platform can 

receive from the communication layer. The opcode of the instructions in 

Mnemonics syntax is displayed in the left side of the Table followed by the 

number of operands of each instruction.  

Mnemonics Operand Description Opcode 

RESET  System’s “Software” Reset 0x01 

Replace TASK INI instructions 

TASK_PROG_START  

Accessing the“Task_ini” file for 

write and truncating the file to 

zero length  

0x02 

TASK_PROG_BYTE X 
Receive X bytes of “Task_ini” 

file contents 
0x03 

TASK_PROG_KBYTE X 
Receive X Kbytes of “Task_ini” 

file contents 
0x04 

TASK_PROG_STOP  
Accessing and closing the 

“Task_ini” file (like fclose) 
0x05 

Replace PTL INI instructions 

PTL_PROG_START  

Accessing the “ptl” script file 

for write and truncating the 

file to zero length  

0x06 

PTL_PROG_BYTE X 
Receive X bytes of “ptl” script 

file contents 
0x07 
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Mnemonics Operand Description Opcode 

PTL_PROG_KBYTE X 
Receive X Kbytes of “ptl” script 

file contents 
0x08 

PTL_PROG_STOP  
Accessing and closing the “ptl” 

script file. 
0x09 

Replace bitstream instructions 

BSTR_START  

Accessing a bitstream file for 

write and truncating the file to 

zero length (create it if it 

doesn’t exist) 

0x0A 

BSTR _PROG_BYTE X 
Receive X bytes of bitstream 

file contents 
0x0B 

BSTR _PROG_KBYTE X 
Receive X Kbytes of bitstream 

file contents 
0x0C 

BSTR _PROG_STOP  
Accessing and closing the 

bitstream file. 
0x0D 

 

4.2.2 Processing Layer 

The “processing” layer is the platform’s core. It consists of an 8-bit 

microcontroller, a storage unit and the FPGA co-processor for enabling efficient 

data retrieval and processing. More details about the architecture of the 

“processing” layer will be provided in the following sections. The processing 

layer is the control medium of the entire system. It is responsible for a) raw data 

collection from the “sensing” layer, b) data processing, c) data storage and d) 

data transmission to the network though the communication layer. 

In cases where the system cannot rely solely on the microprocessor for 

data gathering, the processing layer is also responsible for triggering and 

dynamically (re)programming the FPGA to act as a co-processor  

The layer’s “storage” unit acts as the system’s main memory. It is 

partitioned into a) Data Memory: Stores all the measurements (raw or 
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processed) from the sensing layer, b) RL Configuration memory: stores all 

configuration files (bitstreams and configuration instructions) for the FPGA 

(re)configuration process and c) Instruction Memory: System initialization files.  

4.2.3 Sensing Layer 

This layer is connected with the “processing” layer and hosts all the 

sensors necessary to take measurements from the environment. It provides the 

necessary communication interfaces of different sensors (pH, nitrate, DO, 

temperature or camera), with the processing layer.  

The topology of the attached sensors and their interfaces with the 

microcontroller or the FPGA is of course dictated by the application for which 

they are deployed. As a rule of thumb though, it is better to have the sensors with 

the lowest data throughput (temp, flow and chemical sensors) controlled by the 

microcontroller in the processing layer. On the other hand, cameras are best 

managed by the FPGA since it has the capability to handle more complex 

interfaces.  

4.3  Platforms’s Datapath 

The platform contains 5 main modules as depicted in the following figure.  

4.3.1 Control Unit 

The control unit is responsible for issuing and scheduling tasks on the 

data-logger unit (uc-tasks) or the co-processor (fpga-tasks). When an fpga-task is 

to be executed, the control unit addresses a request to the “configuration” unit. 

Along with the request, it passes information concerning the entire configuration 

process of the FPGA (bitstream location, priority level, configuration process). 

The allocation of all the tasks along with the scheduling algorithm will be 

discussed in a following section. 
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Figure 14: Platform’s Datapath 
 

4.3.2 Configuration Unit  

As described earlier, the configuration unit is responsible for placing a 

given task in the FPGA by configuring it with the provided bitstream. It receives 

and places all incoming requests for FPGA configuration in the “FPGA Arbitration 

Buffer” (FA BUFFER). Inside the “FA Buffer” all pending requests are sorted 

based on their accompanied priority level. This way, FPGA configuration 

requests with higher priority levels are executed before requests with lower 

configuration levels. 

It is actually an updated version of the Hardware Programmer & Tester 

(H.P.T.) which was originally developed as a download and testing apparatus in 

close coupling with the Reconfigurable Run – Time Environment ReRun [23,24] 

developed also in our lab. In this version the HPT is completed detached from the 

PC-based ReRun and is solely controlled by the “scheduler” unit. Yet, it continues 

to support the PTL formal language, created for the RTE ReRun.  



System Architecture 

35 |  
 

The HPT communicates with the co-processor through two dedicated 8-

bit configuration ports. They used for dynamic reconfiguration and readback 

purposes, also attached to the reconfigurable section of the node. 

4.3.3 Co-processor Unit (FPGA):  

The co-processor (FPGA) is dynamically triggered by the “configuration” 

unit upon request from the control unit. When the FPGA is programmed, it 

performs the task for which it has been activated and is then deactivated. 

The co-processor only communicates with the data-logger 

(microprocessor) through a serial interface for sending and receiving data. In 

other words, the microcontroller “sees” the FPGA as an external source of data. 

4.3.4 Data logger Unit  

The data-logging unit is the main module for collecting data either from 

the sensors attached to it or from the co-processor. The tasks executed on the 

data-logging unit (microprocessor) can be event or time driven.  

4.4 PTL Language 

The PTL language (Programming and Testing Language) can be used to 

write scripts to describe the (re)configuration or testing process of a 

reconfigurable unit. PTL has a BNF grammar, well-defined semantics, and is 

compiled with flex and bison.  

One of the advantages of having a formal language for the environment is 

that the behavior of the system as a whole is unambiguous. PTL instructions are 

categorized into two different types.  The “programming” instructions, needed 

for implementing any (re)configuration, readback or test process at the 

reconfigurable layer and the “protocol” instructions. Our platform only supports 

the PTL “programming” instructions. The HPT module is connected through an 

SPI interface to the memory unit. The RL Configuration memory (controlled 

exclusively by the HPT) stores the configuration bitstreams necessary for the 

FPGA (re)configuration, and the appropriate scripts [25].   
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Each PTL instruction is divided into 2 main fields: the opcode and the 

operand. The following table contains all the programming instructions.  

Mnemonics Operand Description Opcode 

CLEAR_BITS X Clear “CNTRL PORT” bit(s) 0x03 

CLK_HIGH  
Initialise Configuration Clock 

at logic level ‘1’ 
0x1E 

CLK_LOW  
Initialise Configuration Clock 

at logic level ‘0’ 
0x1D 

CNTRL_BITS X Send Byte to “CNTRL PORT” 0x0A 

CNTRL_MAP X 
Define “CNTRL PORT” bit 

direction 
0x02 

DATA_SERIAL  
Send Data from “DATA PORT” 

serially 
0x05 

DATA_PARALLEL  
Send Data from “DATA PORT” 

parallel 
0x06 

LSB  
Send data serially (Least SB 

first) 
0x1F 

MSB  
Send data serially (Most SB 

first) 
0x20 

NOP  No operation 0x0D 

PROG_BYTE X 
Send X bytes of data through 

“DATA PORT” 
0x08 

PROG_KBYTE X 
Send X Kilobytes of data 

through “DATA PORT” 
0x09 

SET_BITS X, Y Set “CNTRL PORT” bit(s) 0x04 

Branch Instructions 

CSEQ_CNTRL_A X 
Compare “CNTRL PORT” 

contents with X. Skip if Equal 
0x22 

FOR_LOOP_START X, Y For Loop Start 0x0B 

FOR_LOOP_END  End of For Loop 0x0C 

SBC_CNTRL  Skip if bit(s) in “CNTRL PORT” 0x24 
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Mnemonics Operand Description Opcode 

is (are) clear 

SBS_CNTRL  
Skip if bit(s) in “CNTRL PORT” 

is (are) set 
0x27 

Table 1: Programming Instructions 

 

4.5 System’s Interfaces 

The platform’s interfaces are divided into 5 main sections as shown in the 

following figure. 
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Figure 15 Platform’s Interfaces 

  

4.5.1 Communication layer Interface (UART0_IF) 

This serial interface is provided as standard and is maintained internally 

by the control unit. It uses the UART0_IF during normal operation in order to 

communicate with the network and acquire data and instructions necessary for 

its operation.  
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4.5.2 Storage Interface (SD_IF) 

The storage module that has been selected is a serial flash memory. 

Although slower than parallel interface, the serial interface is ideal in space-

sensitive systems such as the current one. The sequential access serial interface 

scheme employed through a Serial memory pinout enables a practically limit-

free upgrade path for either density or word-width. Conventional random access, 

parallel interface Flash must use dedicated address pins to interface with the 

system. The Serial Peripheral interfaces with other devices using only seven 

signal leads, three of which are dedicated to the serial bus (SCK, SI and SO). The 

remaining signal leads on the Serial memory include a chip select (CS), chip reset 

input (RESET), a write protect input (WP), and a ready/busy output 

(RDY/BUSY). 

The Serial memory can be used with any type of micro controller, but the 

interface of the device is also compatible with SPI modes to provide simple 

interconnections with the increasingly popular SPI micro controllers. SPI is a 

serial interface protocol, utilizing 8-bit words, useful in communicating with 

external devices such as serial EEPROMs and the Serial DataFlash.  

4.5.3 Sensor Interface (SENSE_IF) 

The sensing interface is responsible for communicating with the “sensing” 

layer. It consists of an 8 bit port used to send and receive data and commands to 

several sensors directly attached to the microcontroller. The sensors can be 

digital and are accessed through several supported protocols like 1-Wire 

Protocol, or analogue and can use the system’s built-in ADC.  

4.5.4 FPGA Configuration interface (HPT_IF) 

The configuration interface is responsible for sending data and control 

signals to the target FPGA. It consists of two 8bit ports and an independent pin 

the Conf CLK.  

The data port, when in programming mode, sends configuration data to 

the target FPGA(s) in parallel or serially. In serial configuration mode, data can 
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be sent starting from the MSB or the LSB pin, depending on the configuration 

protocol.  

The Control port (CNTRL_PORT) can be used to manipulate the 

configuration process by issuing appropriate patterns. Each pin in the Control 

Ports can be used independently.  

The Conf CLK is the main clock source of the target FPGA(s) during the 

configuration cycle. With each clock pulse on the Conf CLK line, configuration 

data are transferred, serially or in parallel, through the data port. Since the 

configuration algorithms differ between FPGAs, even in the use of the 

configuration clock source, the Conf CLK is capable of producing pulses with 

minimum high level duty cycle or vice versa as shown in the following figure. 

 
Figure 16: CONF CLK pulses with: 
 (a) Low level duty cycle >50% and (b) high level duty cycle >50%. 

 

4.5.5 FGPA Data Interface (UART1_IF) 

The FPGA communicates with the uC through a serial interface. The 

advantages of using a low cost and robust communication serial bus between the 

FPGA and the microcontroller are: 

a) It is an easily implemented unified communication medium, mainly on the 

FPGA.  

b) It doesn’t burdens the microcontroller’s limited resources and pin count.  

c) The architecture and the interface of the microcontroller remain 

unaffected and independent of the hardware characteristics of the FPGA. 

d) Retains data synchronization. For example, the reconfigurable section 

(FPGA) can be driven by a 200MHz system clock. On the other hand, the 

8bit microcontroller is driven by a ~12MHz system clock. In this case, 

asynchronous serial communication is a simple and ideal communication 

(a)

(b)



System Architecture 

40 |  
 

interface to overcome the synchronization problems imposed in a system 

where each component is driven from a different clock source. 

e) It offers the easiest scalability mechanism  

The drawback though is that it provides the least data bandwidth 

between the microcontroller and the FPGA. If the designer doesn’t utilizes the 

FPGA solely as a unit for data acquisition but rather as a source of high 

processing capabilities, the serial communication bottleneck can be alleviated. 

For example, the FPGA can transmit through the serial i/f, only processed and 

compressed data. 



 

 

Chapter 5 

Task Scheduler Architecture  

and Implementation 

 

 

5.1 Introduction 

Most conventional Real-time Operating Systems (RTOSs) are not suitable 

for platforms based on the CPU-FPGA architecture. This is mainly due to their 

inability to integrate dynamic runtime (re)configuration of the FPGA in their 

scheduling algorithm. Many RTOSs provide support for a Functional Unit or a co-

processor simply by seeing it as a static (one-time configurable) module. In this 

chapter, we present the software we have developed for our system.  

5.2 Software Architecture (Abstract View) 

Our software architecture follows the microkernel concept. By the term 

microkernel we refer to a near minimum set of services implemented in software 

in order to provide to the user a hardware resources level of abstraction.  

More specifically, our kernel is composed by a set of services that run 

exclusively on the microcontroller. These services call device drivers for 

accessing different hardware components of the platform. Among others, the 

Storage Area through a FAT file-system, the serial ports and the different sensors 

attached to the platforms. 

The user is responsible for writing and formulating application tasks 

based on these predefined services. In our approach, the tasks utilize the 

microcontroller resources and the adjacent sensors form the “sensing layer” and 

only in application critical tasks do they use the FPGA resources.  
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5.3 Kernel Modules and Services 

The implemented kernel consists of the following primary modules and 

services, as illustrated in figure 19: 

 Task Parser Module: It is activated during the system’s initialization 

phase for reading the “task-ini” file and parsing the user defined tasks 

and their parameters.  

 Task Allocation Module: This module controls the queue that a 

newly appointed or rescheduled task is going to be placed in. 

 Task Dispatcher Module: Based on the incoming interrupts (from 

the timer and event handling services) it decides to which task it is 

going to give control of the microcontroller resources.  

 Task Scheduler Module: The scheduler is the main core of the entire 

microkernel. It is controlling the execution and termination of the user 

appointed tasks along with their accompanied services at runtime and 

based on the scheduling model and algorithm that will be discussed in 

a following section. 

 FPGA Arbiter Module: This module is responsible for controlling the 

FPGA configuration process. It is triggered by the scheduler and 

according to the user defined tasks. The configuration algorithm will 

be analyzed in a following section. 

 Sensor Services: These are preinstalled kernel functions that provide 

the mechanism for data acquisition and storage.  

 Device Drivers: They provide access to the system’s hardware 

resources, like the memory unit, the serial ports. They are also 

responsible for providing access to the different sensors attached to 

the platform.  

 FPGA Configuration Service: Although the FPGA can be categorized 

with the rest of the resources, the complexity and the importance of 

this service permit us to treat it as a discrete one.  It is responsible for 

providing the configuration mechanism for the attached FPGA. It is 

actually the software model of the reconfiguration unit (HPT) 
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 Timer-handling service: This service is responsible for offering time-

based triggers to services and tasks.   

 Event-handling service: It offers event-based triggers to the 

scheduler based on interrupts from external or internal resources. 

Figure 19 shows the modules that provide the operating system services. 

5.4 Scheduler Model - Multitasking 

The adopted scheduler and correlative algorithm is capable of scheduling 

and executing tasks on the microcontroller and utilize the platforms resources, 

including the FPGA, dynamically and at runtime. 

The scheduling model for the tasks executed in the microcontroller is 

based on a cooperative scheduler [26] in order to avoid the need for a 

preemptive one which is costly in memory usage (a stack per task) and context 

switching times. Additionally we wanted to preserve “sensitive” services like 

FPGA configuration services from being arbitrarily switched (preempted) while 

they are accessing the FPGA.   

The main drawback in using a cooperative scheduling algorithm is that 

each task must ‘voluntarily’ give up its execution and allow the kernel to make a 

task switch, in order to maintain task level parallelism.  If a task takes too long to 

execute then the entire task sequence is stalled until the task has finished 

execution and has released the microcontroller resources. 

In our platform, this task level parallelism is maintained by dividing the 

system’s execution time into time slices. The running services are decomposed 

into a number of sequential states as in finite state machines (FSMs) that are 

executed in these predefined time slices. This way a task is executed in many 

time slices. This alleviates the problem of task stalling. Since the tasks that are 

executed in our platform are mainly services that require many I/O transfers 

(data from sensors and data storage) it means that they take a lot of time to 

finish. So the task scheduling time granularity is carefully picked in order to be 

able to accommodate lengthy I/O Transfers (i.e. 1/8th of a second). Of course 
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there can be task states that exceed the designated time slice, but these only 

occur in rare conditions, like for example when programming the FPGA. 

St. 3St. 1 St. 2
idle

idle
idle idle

Task A States Task B States

Time Slices

 

Figure 17: Cooperative scheduling with time slices 

 

5.5 Kernel Services 

As mentioned earlier, a service is a generic kernel module that is 

structured as a set of sequential states as in finite state machines.  

There are two basic services in the system as shown in the following 

figure, the “FPGA Configuration” service and the “Data Acquisition” service. 

The “Data Acquisition” service is the basis for implementing user defined 

data-logging tasks. It controls the entire process of acquiring readings from a 

sensor, processing and storing them. It receives as arguments the type of sensor 

(for data acquisition), the storage filename (for data-logging) and whether it will 

be executed periodically (time-driven) or at an event. It is partitioned in the 

following states: 

 State1: Reads a value from a sensor 

 State2: Stores the value 

 State3: Compares the reading with the threshold value 

 State4: Execute an “FPGA Configuration” Task if not already activated 

 State6: Reschedule 
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Figure 18: State machine kernel services 
 

The “FPGA Configuration” service is responsible for controlling an FPGA. 

Basically it controls the configuration process, the data acquisition process and 

finally its deactivation. It receives as arguments the configuration files needed for 

programming an FPGA (ptl script and bitstream), the storage filename (for data-

logging) and the event (or the time) for deactivating the FPGA. It is partitioned in 

the following states: 

 State1: Read configuration files 

 State2: Initiate the FPGA configuration process based on the acquired 

configuration files 

 State3: FPGA is activated. Reads a value from the FPGA through the 

uC-FPGA communication i/f (UART)  

 State4: Stores the value and compare it with a predefined value. This 

value is used in order to decide if the FPGA has finished its operation 

and the service must proceed to the FPGA deactivation process (State 

6) or continue reading values from it (State 3).  

 State5: Go to State3 in case of an event (interrupt from uart) 

 State6: Deactivate (reset) the FPGA and terminate.  
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5.6 Task Definition - Syntax 

A Task is an executable instance of a service with user defined parameter 

values. At run-time, any task may create or terminate (kill) another instance of 

itself or any other task. All tasks are executed:  

 At fixed or variable time intervals,  

 at a specific date and time,  

 upon an event (interrupt, serial I/O, internal signal from another task) 

Tasks are formed by the combination of the system’s services and the user 

defined parameters which are stored in a “task-ini” text file in the storage unit. 

During the systems’ initialization phase the “task-ini” file is read by the parser 

module. According to the values that it reads, it forms and queues tasks based on 

the “data acquisition” and the “FPGA configuration” services.  

All values stored in the “task-ini” file have a simple syntax with 

name/value pairs. The name must be unique (per task) and the value must fit on 

a single line. A Task is a name between square brackets, like “[Task_A]” in the 

example below. The task parameters and their values are separated by an equal 

sign (“=”).  

Parameter Name Definition Values 

Task Name Unique value which defines the 

name of the Task. It is placed 

between brackets. 

[TASK-A] 

Sensor Type(*) Defines if the new Task will be 

based on the “data acquisition” 

or the “FPGA conf” service. 

0: data acquisition, 

1: FPGA conf 

Sensor Resource(*)  Defines the device driver for 

accessing the appropriate 

sensor.  

pH, flow, temp etc 

Store filename Name of the text file for storing 

acquired values from the sensor 

Filename.txt 

(if null, no storage) 

Threshold(*) Value for comparing all 
incoming data with. 
 

Constant value 
(if null, no 
comparison) 

Activate-TASK (*) If the acquired value is greater 
than the threshold value, 
activate a task.  

<Task-name> 
(if null, no 
activation) 
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Parameter Name Definition Values 

Schedule (ReSCH) Declares if the Task is going to 
be rescheduled 

0: no, 
1: yes 

Sched-type Defines the type of task 
scheduling followed by a value 
indicating the time (days, hours, 
minutes, seconds) or the ISR 
(i.e. uart)  
 

0: time intervals,  
1: at a specific time, 
2: upon an event 
(ISR,flag) 

BITSTR(**) Name of the bitstream for the 
FPGA configuration 

<filename> 

FPGA-Priority(**) Priority value for FPGA 
arbitration buffer ordering 

higher value = high 
priority 

Thold-Kill (**) Special data character received 
from UART upon which the 
FPGA must be deactivated (like 
threshold)(***) 

Constant value.  
(if null,  FPGA runs 
infinitely) 

 
(*): only for tasks based on the “data acquisition” services 
(**): only for tasks based on the “FPGA configuration” services 
(***): In order to distinguish the “Thold-kill” value received from uart from the 
data values, a 9 bit protocol is implemented. During data exchange the 9th bit is 
always ‘0’. When the FPGA wants to inform the task that it has finished 
execution, it transmits the “Thold-Kill” byte and the 9th bit is set to ‘1’. 
 

Table 2: User – defined task values/parameters 
 

In the following example there are two task scripts. The first script refers 

to a task based on the data-acquisition service which reads data from a flow 

meter and saves them to a file named “afile.txt”. If the reading from the flow 

sensor exceeds the threshold value of “40”, “Task_F” is activated. Finally the task 

is rescheduled to be executed every 1 minute. The second script refers to a task 

based on the “fpga-configuration” service, as indicated by the “Type” value. It 

configures the FPGA with the bitstream file “fpga.bit” based on the configuration 

process indicated in the ptl-script file “ptl.txt”. After the FPGA is enabled, 

“Task_F” is activated upon interrupt from the UART connecting the uC with the 

FPGA, for data retrieval. All data received from the FPGA are stored in the 

“filez.txt” file. In order for the task to terminate its execution, the FPGA must 

inform Task_F that it has finished its application. This is done by sending the 

“Thold-Kill” byte as described in the previous parameter definition table. 
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At this point it is important to mention that the designer of the FPGA 

application must take into account the data exchange and the communication 

interface between the microcontroller and the FPGA when creating a new 

application  

“Data acquisition” Task “FPGA configuration” Task 

 
[Task_A] 
Type = 0 
SENSOR = flow 
STORE = afile.txt 
THOLD = 40 
Act-TASK= Task_F 
ReSCH = 1 
#Reschedule at 1 minute 
Sched-type = 0,0,0,1,0 
 
 

 
[Task_F] 
Type = 1 
BITSTR: fpga.bit 
STORE = filez.txt 
Thold-Kill = 5 
#Reschedule at 1 minute 
ReSCH = 1 
#Reschedule at uart event 
Sched-type = 2, uart 
FPGA_PR=3 
 

Table 3: Examples of user defined parameters in “ini-task” file 

5.7 Task Allocation - Placement 

The system’s task scheduler architecture is depicted in the following 

figure.  When the system enters its initialization phase, the parser module reads 

the “Task Ini” file, located in the Storage Unit. This file contains all the user 

defined parameters for the services that need to be executed during the system’s 

operation.  

 Whether the task will be executed periodically (time-driven) or under 

specific circumstances (event-driven) and their values, 

 The libraries (resources) it will utilize (sensors, storage area, etc) 

 The location of the configuration file (bitstream) in the RL 

Configuration memory, the configuration commands and the 

configuration mode by which the FPGA will be programmed (if we are 

referring to a task being executed at the FGPA) 

 The storage file in the Data Memory  

The “Task Allocation” Module places the newly formed tasks in the 

scheduler’s queues. There are two main task queues. The “Time Wait” and the 

“Event Wait” Task queue. If the “Sched-type” value of a Task is ‘0’ or ‘1’ (meaning 
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time – driven task), it is placed in the “Time Wait” Task Queue. If the value is 2 

(indicating an event driven task) it is placed in “Event-Wait” Task Queue. So, at 

first all tasks are placed in the scheduler’s queues. The tasks that are placed in 

the “Time Wait” Task Queue are ordered by date and time with the youngest 

first.  The tasks that are placed in the “Event Wait” queue are also ordered 

chronologically. When an event (interrupt or flag from another task) for which a 

task in the event-queued task is waiting for, arrives, it is placed by the Task 

Dispatcher module in “pending event” task queue. The “pending event” task 

queue holds all the tasks that need to be placed on top of the “Time Wait” Queue 

for immediate execution. 

As mentioned in the previous section, a task is decomposed into states 

which are executed independently in time slices. When a task’s state has finished 

execution, the task allocation module reads the task’s “Sched-type” and “ReSCH” 

values and decides whether to place in one of the queues or discard it. This is the 

case when a task is only executed once (ReSCH=’0’). 

If an “FPGA Configuration” task is ready to be executed for the first time, it 

checks to see if the “FPGA Configuration” Queue is empty. The “FPGA 

Configuration” queue holds the user defined information about the FPGA 

configuration process. 

 If the queue is empty, it places all configuration user parameters 

(priority, bitstream filename) in this queue and activates the FPGA configuration 

procedure. If the “FPGA Configuration” Queue is not empty, it means that there is 

another TASK waiting to take control of the FPGA, or the FPGA is used by another 

Task. In this case the configuration user parameters are placed in the “FPGA 

Configuration” Queue and the Task is queued in the “Event Wait” queue waiting 

for the release of the FPGA Queue. All data in this queue are ordered based on the 

user appointed priority value. 

An issue that must be taken into account while designing the task 

execution scripts is the priority levels of the “FPGA conf” tasks. In order to avoid 

“starvation” conditions in situations where many “FPGA configuration” tasks are 



Task Scheduler Architecture 

50 |  
 

queued inside the FPGA Configuration queue, varying priority levels must be 

kept to a minimum. 
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Figure 19: Task Scheduler Architecture 
 

5.8 Task Execution Example 

In the following figure there is an example of a task execution scenario.  
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Time à 
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Figure 20: Task Allocation and Scheduling Example 
 

TASK A’s states are executed at specific time intervals.  

1. In the first step, it reads a value from a sensor by calling the appropriate 

sensor library.  

2. It stores the value in a predefined file in the memory unit, along with the 

current timestamp 

3. Compares the value with a predefined threshold value.  

 If the value exceeds the threshold, it calls Task F 

 If the reading is lower than the threshold, Reissues itself for 

execution at the next interval 

TASK F is defined with the following steps: 
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1. Puts all information regarding the FPGA configuration process (priority, 

bitstream) in the “FPGA Configuration” Queue. This queue holds all 

pending FPGA configuration requests. If the queue is empty, it commences 

the FPGA configuration process else “TASK F” is placed in the pending 

queue and waits for the release of the FPGA Configuration Queue.  

2. If the FPGA is configured, “TASK F” enters the “datalogging state” where it 

reads data from the FPGA (through the uart), stores them  

3. Additionally it compares the newly arrived data with the “Thold-Kill” 

value in case the FPGA has issued a termination signal. In that case, TASK 

F released the FPGA Configuration Queue, deactivates the FPGA and 

issues a “sig_kill” for itself 

 



 
 

Chapter 6 

Reconfigurable Co-Processor Architecture  

and Example Implementation 

 

 

6.1 Introduction 

This chapter refers to the architecture of the system’s reconfigurable co-

processor. We discuss the design considerations taken into account for 

implementing the proposed architecture and we conclude by illustrating an 

implementation example with a Spartan 3 FPGA,.  

6.2 Co-processor Design Considerations 

As mentioned earlier the proposed environmental monitoring platform 

must be scalable and adaptive to the application and the monitoring 

requirements for which it is being deployed. 

Since the FPGA plays a vital role in terms in the platform’s overall 

processing capabilities, from the processing layer perspective, it is very 

important to be able to choose from a variety of FPGAs with different capabilities 

as the platform’s co-processing unit, without the need for full system redesign, in 

terms of software and hardware. 

Our platform is technology and vendor independent of the incorporated 

reconfigurable logic (FPGA). Every SRAM-based FPGA currently available in the 

market can be incorporated as a co-processor without the need for redesign due 

to: 

a) The FPGA configuration mechanism by the microcontroller 

b) The FPGA communication interface with the microcontroller 
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6.3  Co-processor Architecture 

The FPGA (co-processor) is coupled to the microcontroller through its 

system I/O bus as shown in the following figure. The FPGA can only access the 

sensors directly attached to it and the storage unit through the microcontroller.  

Although the FPGA is part of the “processing” layer, the 

microcontroller only sees the FPGA as a source of data to be collected. In 

other words, from a behavioral point of view, the FPGA is part of the 

“Sensor” Layer.  

Microcontroller
FPGA

I/O Bus

Configuration i/f

Communication i/f

I/O Bus

Storage

 

Figure 21: FPGA – uC coupling  
 

When the FPGA is enabled and for its entire lifecycle, it remains 

completely autonomous from the microcontroller. The communication bus 

between the two remains idle until the FPGA is ready to transmit data to the 

microcontroller. The corresponding sw-task running on the uC, which is 

responsible for collecting data from the FPGA, is interrupt – driven. It remains 

inactive until data arrive in the FPGA-uC communication bus. It then collects the 

newly arrived data from the bus and stores them in the reserved storage space, 
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indicated by the “parent” task that triggered the FPGA. It is then deactivated once 

more until the next interrupt, or until the FPGA has been deactivated, in  which 

case it is also terminated. 

6.3.1 FPGA’s Configuration Mechanism 

The configuration mechanism of the FPGA is controlled by the 

reconfiguration module (HPT) integrated into the system, which is a vendor – 

independent universal programmer. It is a centralized configuration solution 

which can provide both the bit density and the control logic to manage 

configuration for all FPGAs within a system. 

The configuration bitstream along with the accompanied PTL instructions 

that indicate the FPGA’s configuration process, are retrieved from the storage 

area designated Task that issued the FPGA configuration. 

6.4 Platform Implementation 

The prototype platform has been implemented based on the previously 

mentioned concepts. It is shown in the following figure.  It includes a low-power 

Atmel 8-bit AVR RISC-based microcontroller (ATmega644) [27]. The ATmega644 

was chosen because it contains , 64KB ISP flash memory with read-while-write 

capabilities, 2 USARTs, byte oriented 2-wire serial interface,  8-channel/10-bit 

A/D converter with optional differential input stage with programmable gain, 

SPI serial port and 6 software selectable power saving modes. The platform’s co-

processor has been realized by a commercial low cost development board, the 

Digilent Spartan-3 Board [28,29]. It contains a Xilinx SPARTAN-3 FPGA 

(XC3S1000) [30], an RS232 transceiver, LEDs, buttons and switches. The reason 

for selecting the specific FPGA was cost, available literature and configuration 

diversity. The XC3S1000 FPGA contains 1M system gates (~2K CLBs) and 391 

user I/Os. The platform also comprises a SD card as the storage unit and other 

peripheral components. 
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Figure 22: Platform’s schematic view 

 

6.4.1 Platform’s pinout 

The platform is connected with the communication layer through one of 

the microcontroller’s a serial ports. The other serial port is used to communicate 

with the FPGA board. The implementation of a serial interface between the 

reconfigurable section, the communication layer and the microcontroller offers a 

unified communication medium.  In this way the architecture and the interface of 

the platform remains unaffected and independent of the hardware 

characteristics of the reconfigurable section or the communication layer. 

Another reason is the need for data synchronization. For example, the 

reconfigurable section (FPGA) can be driven by a 50MHz system clock. On the 

other hand, the 8bit microcontroller is driven by a much slower system clock 

(~12MHz). In this case, asynchronous serial communication is a simple and ideal 

communication interface to overcome the synchronization problems imposed in 

a system where each layer is driven from a different clock source.  
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Platform’s Interfaces 

Pin Name Type Pin Count Function 

HPT to FPGA (PROG I/F) 

CONF CLK Output 1 
Configuration clock connected to the 

target board. 

CNTRL_PORT  Bidir 8 
Port for controlling the configuration 

(or test process). 

DATA_PORT Bidir 8 
Port for sending configuration or test 

data to the target board 

Memory Module  Interface (FLASH I/F) 

MOSI Input 1 Serial Data Input Signal 

MISO Output 1 Serial Data Output Signal 

SS Output 1 Slave Select 

SCK Output 1 Serial Clock 

uC to Communication Layer (RS232 I/F) 

RxD Bidir 1 Receive data pin  

TxD Bidir 1 Transmit data pin  

uC to FPGA (RS232 I/F) 

RxD Bidir 1 Receive data pin  

TxD Bidir 1 Transmit data pin  

uC to Sensing Layer 

SENSOR_PORT Bidir 8 
Port for communicating with the 

sensors attached to the uC 

uC to Sensing Layer 

FPGA_SENSOR 

PORT(s) 
Bidir (*) 

Port(s) for communicating with the 

sensors attached to the FPGA.  

(*) Depends on the application and the configuration of the FPGA 

Table 4: Platform’s Interfaces 
 

 

 



 

Chapter 7 

System Validation and  

Performance Evaluation 

 

 

7.1 Introduction 

For testing purposes, the platform was partitioned into two main sections. 

In the first section the Spartan3 FPGA has been successfully configured by the 

platform’s HPT module through Slave Serial configuration mode. This mode 

provides the advantage of utilizing only 5 pins compared with the 12 pins used in 

the SelectMAP mode, thus freeing valuable microcontroller’s pins.  This of course 

comes with the cost of extra configuration delay, since the entire configuration 

file downloaded in the FPGA is serialized. In the other section, the system’s 

overall behavior has been tested with a primary focus on task operations and 

responses to external events.  

7.2 FPGA Configuration 

Spartan3 devices are configured, like most SRAM based FPGAs, by loading 

application – specific configuration data into internal memory. The bitstream is 

organized into 32-bit words. These words carry instructions for the 

configuration logic, as well as data that will be stored in the configuration 

memory. Configuration is carried out by using a subset of the device pins, some 

of which are dedicated, while others can be reused as general – purpose inputs 

and outputs after configuration is completed. The FPGA’s configuration memory 

can be programmed in different ways by using either serial or parallel data. 

Additionally by having an external device like the microcontroller supplying the 

clock signal along with the data to the FPGA, it can be configured in what is 

known as “Slave Serial” or “Slave Parallel” modes. The mode is specified by 

setting values on the Spartan-3 mode pins (M0,M1 and M2). 
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Several of the Spartan3 configuration modes are selectable via mode pins. 

The mode pins M0, M1, M2 are dedicated pins. Other dedicated pins are: 

 CCLK: the configuration clock pin 

 DONE: configuration status pin 

 PROG_B: configuration reset pin 

Device 
Total Number of Configuration Bits 

(including header) 

XC3S50 439,264 

XC3S200 1,047,616 

XC3S400 1,699,136 
XC3S1000 3,223,488 

XC3S1500 5,214,784 
XC3S2000 7,673,024 

XC3S4000 11,316,864 

XC3S5000 13,271,936 
Table 5: SPARTAN3 Bit – Stream Lengths. 

 

Configuration Mode M2 M1 M0 
CCLK 

Direction 

Data 

Width 

Daisy 

Chain 

Master Serial 
0 0 0 Out 1 Yes 

Slave Serial 1 1 1 In 1 Yes 

Master SelectMAP 0 1 1 Out 8 No 

Slave SelectMAP 1 1 0 In 8 No 

Boundary Scan 1 0 1 N/A 1 No 

Table 6: Spartan3 Configuration mode pin settings. 

7.2.1 3.3V Tolerant configuration interface 

The connection of the microcontroller board to the FPGA required some 

attention since it connects a board with 2.5V logic to one with 3.3V logic like the 

STK500 board with the ATMega644. This is mainly because the DONE and 

PROG_B pins are powered by the FPGA’s 2.5V VCCAUX supply. A Xilinx 

application note describes this interface where series of resistors have to be 

inserted on the dedicated configuration pins to account for the voltage drop [31]. 



System Validation and Performance Evaluation 

60 |  
 

The following figure shows the required connections for slave-serial 

configuration. 

 

Figure 23: 3.3V configuration of a Spartan-3 device in slave-serial mode 
 

 

7.2.2 Spartan3 Slave Serial Configuration 

In serial configuration mode, the FPGA is configured by loading one bit 

per CCLK cycle. The FPGA’s CCLK pin is driven by an external source. In this case, 

by the microcontroller’s CONF_CLK pin. The MSB of each data byte is always 

written to the DIN pin first. 

There are four major phases in the configuration process: 

1. Clearing Configuration Memory 

2. Initialization 

3. Loading Configuration Data 

4. Startup 
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Figure 24: Configuration Flow Diagram for the Serial Mode 

 
 

 

In order for the device to enter the “Clearing Configuration Memory” 

phase, the microcontroller must issue a HIGH to LOW to HIGH pattern in the 

PROG_B pin thus resetting the device. The minimum time the microcontroller 

holds the PROG_B pin low, is determined by the device’s datasheet and for the 

current device is approximately 300 ns. The INIT_B pin of the FPGA transitions 

HIGH when the clearing of the configuration memory is complete. For the 

XC3S1000 device, this time is 3ms.  
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7.2.3 PTL Scripts 

The following script was used as a “global” PTL script in order for the platform to 

be able to (re)configure the attached SPARTAN3 FPGA 

1 //PTL script for the configuration of  

2 //a XC3S1000 device (3,223,488 bits = 402,936 Bytes) 

3  

4 program "serial"; // Set the programming mode to Serial 

5 

6 msb;   // The MSB will be loaded first 

7 

8 clk high;   // The configuration clock has a  

9     // minimum low time 

10 

11 signal prog_b,done,init_b; // Three signals will be used  

12 

13  map   // Signal Mapping 

14   { 

15  done <= 0;  // done is an input and connected to  

16     // CNTRL_PORT pin0 of the platform 

17  prog_b => 1;  // prog_b is an output and connected to 

18     // CNTRL_PORT pin1 of the platform 

19  init_b <= 2;  // init_b is an input and is connected  

20     // CNTRL_PORT pin2 of the platform 

21  } 

22 

23  start   //Start of script 

24  set prog_b '1';  // Generate a high-low-high 

25  set prog_b '0';  // pulse on the prog_b 

26  set prog_b '1';  // signal 

27 

28  wait 148  //Wait 148 msec until init_b  

29     // goes HIGH 

30   

31  get 1   //Retrieve the Control values 

32     //to see that INIT_B is indeed HIGH 

33     // Load 402 Kbytes + 936 bytes 

34  loadb 255;  // Load   255 bytes 

35  get 1   // Get back values to see if 

36     // INIT_B remains HIGH (if not error) 

37  loadb 255;  // Load   255 bytes 

38  get 1   // Get back values to see if 

39     // INIT_B remains HIGH (if not error) 

40  loadb 255;  // Load   255 bytes 

41  get 1   // Get back values to see if 

42     // INIT_B remains HIGH (if not error) 

43  loadb 171;  // Load   171 bytes 

44  get 1   // Get back values to see if 

45     // INIT_B remains HIGH (if not error) 

46  loadkb 255;  // Load   255 Kbytes 

47 
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48  loadbk 147;  // Load   147 Kbytes 

49     // This is the size of the bit file 

50     // 

51 

52  get 1;  // Get back the values to see that 

53    // DONE is HIGH (if so conf = SUCCESS) 

53 end 

 

In the above PTL script the configuration mode pins M0, M1, M2 are 

assumed to be pre – defined by the user on the board. If not, then the PTL script 

must be enriched with the following instructions at line 12: 

static M0 ‘1’;  // Set the mode pins to  

static M1 ‘1’;  // 111 to enable Slave 

static M2 ‘1’;  // Serial configuration mode 

and the following instructions below line 13 in the pin mapping section: 

M0 => 3;  // The mode pins are statics and 

M1 => 4;  // can only be mapped as 

M2 => 5;  // outputs 

 

7.3 SW Validation 

In terms of system operation and validation, a number of simulation and 

testing scenarios have been tested. Since we refer to a prototype platform tested 

in a lab, all environmental readings were emulated by a series of input files from 

the SD card. In all of the tests, the system operated with as expected 

Furthermore, in one case, real environmental data have been used in 

order to test the system’s overall behavior. Hydrologic data (level and Temp) 

gathered from an environmental monitoring station deployed in the Koiliaris 

River were used as validation input to the platform. The imported time series are 

from data collected from a 2-year period with a constant sampling rate of 5 

measurements per hour (Total: ~70000 measurements).   

The simulation scenario referred to two independent tasks reading 1 

measurement each every 0.5 secs, in order to shorten the simulation time. The 

values from the task which read the water level values were compared with a 

predefined threshold value. In this scenario, if this value was exceeded an FPGA 

Configuration command would be issued, indicating that an extreme event was 
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occurring. The entire simulation period lasted 10hours during which time the 

platform issued 6 FPGA configuration commands. This matches exactly with the 

number of observed flood events as depicted in the following figure. 
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Figure 25: Koiliaris River Flood Events Counts 
 

7.3.1 Accompanied Task-INI Script 

In one of the simulation and testing scenarios the Task-Ini file contained 

the following parameters. 

1 #“Data acquisition” Task 

2 [level-LOG]                   

3 Type = 0                   

4 SENSOR = level      

5 STORE = levelfile.txt          

6 THOLD = 400                 

7 Act-TASK= Video           

9 ReSCH = 1                  

10 #Reschedule at 5 minutes    

11 Sched-type = 0,0,0,5,0   

12                           

13  

14 #“FPGA configuration” Task 

15 [Video]                         

16 Type = 1                         

17 BITSTR: video.bit                 

18 STORE = filev.txt                

19 Thold-Kill = 5                   

20 #Reschedule at 1 minute          

21 ReSCH = 1                      

22  #Reschedule at uart even         

23   Sched-type = 2, uart             

24   FPGA_PR=3                        

25 

26 
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27  #“Data acquisition” Task    

28  [PH-LOG]                   

29  Type = 0                    

30  SENSOR = ph 

31  STORE = phfile.txt          

32  THOLD = 8                  

33  Act-TASK=         

34    ReSCH = 1                               

35    #Reschedule every 2 minutes     

36    Sched-type = 0,0,0,2,0     

 

In this scenario, there are three user defined tasks, “PH-LOG”, “level-LOG” 

and “Video”. It must be pointed out at this point, that the values and parameters 

in this task-ini file are completely arbitrary and do not refer to real–life 

environmental parameters.  

As indicated by their values in the Type fields, the tasks “PH-LOG” and 

“level-LOG” are Data Acquisition Task and are executed solely on the 

microcontroller. “level-LOG” Task is rescheduled every 5 minutes and at that 

time, it takes a reading from the attached flow sensor and stores it along with the 

current timestamp in the “levelfile.txt” inside the SD Card. Furthermore, this task 

compares the flow reading (value in centimeters) with the threshold value of 400 

and if it is greater, it activates “Video” Task. With this task, we wanted to 

describe that if there is a rise in the river level which reaches 4 meters, then we 

are referring to a flood event and we enable the FPGA for further processing and 

data gathering.  

“Video” Task is actually a demo FPGA configuration task, which is 

triggered by the “PH-LOG” task. As mentioned earlier, the system validation was 

performed in two distinct sections. In this section, the FPGA configuration 

process has not been fully tested. As a sign though that the “PH-LOG” task 

triggers the FPGA Task properly, the “Video” task instead of initiating the FPGA 

conf process, it writes to a log file (in the SD) the time that it started executing.  

The “PH-LOG” task is a separate data-acquisition task that doesn’t affect 

the FPGA operation. It takes a reading from a ph sensor every 2 minutes and 

stores it in a file inside the SD card 
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8.1 Conclusions 

This document presented the development of a dynamically 

reconfigurable system for environmental monitoring. The platform’s main 

objective is to serve a variety of tasks ranging from simple data logging to highly 

computationally intensive ones. This is accomplished through the dynamic 

reservation of the processing resources that the reconfigurable co-processor 

offers only when needed. 

The motivation for the current work and the issues and constraints that 

this system has to address were investigated in order to derive guidelines for the 

system’s hardware and software design. One of the main design goals was the 

implementation of a dynamically reconfigurable platform both in terms of 

software and hardware. Additionally the system’s layered – modular design 

allows the use of every SRAM-based FPGA currently available in the market as a 

co-processor without the need for redesign. This is also achieved because the 

FPGA configuration mechanism is controlled by the HPT module integrated into 

the system, which is a vendor – independent universal programmer. 

8.2 Future Case Study 

Experimental setup for image acquisition and processing tasks by the 

FPGA is not implemented yet. An ideal real – life application would be the 

analysis of video captured from the river in order to calculate the water’s 

velocity vectors and river flow rates during a flood event. 

One of the major advantages of introducing complex in-situ data 

acquisition and analysis capabilities in a “water quality” monitoring system, such 
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as automated motion estimation and river-flow calculation is that the volume of 

data transmitted to the network will be greatly reduced.    

8.3  Future Works 

As mentioned in Chapter 5, the current FPGA configuration algorithm is 

based on the FCFS (first-come, first-serve) policy. Despite the fact that all queued 

tasks are prioritized, an active FPGA Task cannot be replaced by a queued one 

with higher priority. In rare but critical conditions this could lead to task 

“starvation” and ultimately in loosing valuable data.  This can be resolved 

through FPGA task (hw task) preemption. On preemption the state of the task 

should be saved either by readback (if the FPGA supports it) or through some 

other method. The current state of the FPGA would be saved along with the 

accompanied software tasks running on the microcontroller and the FPGA would 

be configured with a new configuration. After that, the FPGA would be 

reconfigured with the configuration data retrieved through the readback 

process. It resembles the PUSH, POP instructions of an interrupt driven routine 

in a microcontroller. 

For a hardware technology point of view, the major restriction of having 

only 8 pins for the sensor interface can be alleviated by deploying a 

microcontroller with more I/O pins, or by tripling its I/O capabilities with a 

8255, Programmable Peripheral Interface,  chip. 
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