

Technical University of Crete

Department of Electronic and Computer

Engineering

“On Runtime Environments for

Reconfigurable Logic:

A Dynamically Reconfigurable Architecture for

Adaptive Environmental Monitoring”

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER IN ELECTRONIC ENGINEERING

by

Efstathiou Dionissios

Supervising Professor: Professor Apostolos Dollas

 Thesis Committee: Professor Kostantinos Kalaitzakis

 Professor Dionysios Pnevmatikatos

March 2011

2 |

3 |

TABLE OF CONTENTS

Preamble .. 7

Chapter 1 .. 8

1.1 Introduction ... 8

1.2 Components of a Environmental Monitoring System ... 9

1.3 Issues and Constrains .. 10

1.4 Thesis Objectives ... 12

1.5 Thesis Contribution ... 13

1.6 Motivation of the Work ... 14

1.7 Thesis Outline .. 16

Chapter 2 .. 17

2.1 Introduction ... 17

2.2 Reconfigurable Hardware Technology .. 17

2.3 Configuration Techniques ... 18

2.4 Reconfigurable WSN nodes architectures ... 19

2.4.1 Microcontroller plus Reconfigurable Co-processor .. 20

2.4.2 Reconfigurable hardware plus embedded processor 21

2.5 Chapter Summary .. 21

Chapter 3 .. 22

3.1 Introduction ... 22

3.2 Reconfigurable WSN nodes architectures ... 22

3.3 Microcontroller + reconfigurable co-processor platforms 22

3.3.1 mPlatform .. 22

3.3.2 Cookie .. 23

3.3.3 RESENSE ... 24

3.3.4 Tyndall (25mm Cube) .. 25

3.3.5 REWISE node ... 26

3.4 Reconfigurable hardware + embedded processor .. 26

3.4.1 Darmstadt platform ... 26

3.4.2 Warangal platform .. 27

3.5 Other Reconfigurable WSNs .. 28

3.6 Summary .. 28

Chapter 4 .. 29

4 |

4.1 Introduction ... 29

4.2 System Architecture (Layers)... 29

4.2.1 Communication Layer .. 30

4.2.2 Processing Layer .. 32

4.2.3 Sensing Layer ... 33

4.3 Platforms’s Datapath ... 33

4.3.1 Control Unit ... 33

4.3.2 Configuration Unit ... 34

4.3.3 Co-processor Unit (FPGA): ... 35

4.3.4 Data logger Unit ... 35

4.4 PTL Language ... 35

4.5 System’s Interfaces .. 37

4.5.1 Communication layer Interface (UART0_IF) .. 37

4.5.2 Storage Interface (SD_IF) ... 38

4.5.3 Sensor Interface (SENSE_IF) .. 38

4.5.4 FPGA Configuration interface (HPT_IF) ... 38

4.5.5 FGPA Data Interface (UART1_IF) ... 39

Chapter 5 .. 41

5.1 Introduction ... 41

5.2 Software Architecture (Abstract View) ... 41

5.3 Kernel Modules and Services .. 42

5.4 Scheduler Model - Multitasking .. 43

5.5 Kernel Services .. 44

5.6 Task Definition - Syntax ... 46

5.7 Task Allocation - Placement .. 48

5.8 Task Execution Example .. 50

Chapter 6 .. 53

6.1 Introduction ... 53

6.2 Co-processor Design Considerations ... 53

6.3 Co-processor Architecture ... 54

6.3.1 FPGA’s Configuration Mechanism ... 55

6.4 Platform Implementation .. 55

6.4.1 Platform’s pinout ... 56

Chapter 7 .. 58

5 |

7.1 Introduction ... 58

7.2 FPGA Configuration ... 58

7.2.1 3.3V Tolerant configuration interface ... 59

7.2.2 Spartan3 Slave Serial Configuration .. 60

7.2.3 PTL Scripts .. 62

7.3 SW Validation .. 63

7.3.1 Accompanied Task-INI Script ... 64

Chapter 8 .. 66

8.1 Conclusions .. 66

8.2 Future Case Study .. 66

8.3 Future Works ... 67

References ... 68

TABLE OF FIGURES

Figure 1: Proposed architecture ... 13

Figure 2: Mediterranean Ephimerality .. 15

Figure 3: Flood Event in the Koiliaris River ... 16

Figure 4: FPGA Architecture and CLB .. 18

Figure 5: Reconfigurable hardware architectures and coupling 20

Figure 6: mPlatform architecture ... 23

Figure 7: HW-SW Reconfigurable Sensor Node Diagram ... 24

Figure 8: RESENSE general scheme.. 24

Figure 9: Tyndall’s 25 mm stackable platform .. 25

Figure 10: REWISE reconfigurable node.. 26

Figure 11: Schematic view of the Darmstadt platform .. 27

Figure 12: Warangal platform node architecture ... 28

Figure 13: Layers of the reconfigurable Platform ... 29

Figure 14: Platform’s Datapath ... 34

Figure 15 Platform’s Interfaces .. 37

Figure 16: CONF CLK pulses with: .. 39

Figure 17: Cooperative scheduling with time slices ... 44

Figure 18: State machine kernel services .. 45

Figure 19: Task Scheduler Architecture... 50

Figure 20: Task Allocation and Scheduling Example .. 51

Figure 21: FPGA – uC coupling .. 54

Figure 22: Platform’s schematic view .. 56

6 |

Figure 23: 3.3V configuration of a Spartan-3 device in slave-serial mode 60

Figure 24: Configuration Flow Diagram for the Serial Mode ... 61

Figure 25: Koiliaris River Flood Events Counts ... 64

LIST OF TABLES

Table 1: Programming Instructions ... 37

Table 2: User – defined task values/parameters ... 47

Table 3: Examples of user defined parameters in “ini-task” file .. 48

Table 4: Platform’s Interfaces ... 57

Table 5: SPARTAN3 Bit – Stream Lengths.. 59

Table 6: Spartan3 Configuration mode pin settings. ... 59

7 |

Preamble

The technology of environmental monitoring systems is becoming a

mature research field. The need to monitor and understand complex

environmental phenomena and biochemical processes that take place in various

temporal and spatial domains cannot be addressed simply by deploying

(spreading) tens of data logging nodes in the area of interest. The complexity of

these environmental systems originates from their nonlinear dynamics, scale-

dependent behavior and heterogeneity of the interacting processes.

Given the physical reality of many environmental applications, especially

the size and expense of sensors and their cost, we are now seeing a movement

toward networks that are comparatively lower in population and density but

much smarter. The transformation of an Environmental Monitoring System

(EMS) from an elaborate logging system to an intelligent adaptive platform that

adjusts its sampling and processing features in the context of evolving data

acquisition would revolutionize our understanding of the monitored

environment.

Within this context, this work presents an adaptive reconfigurable

platform for environmental monitoring. It is based upon the close coupling of an

8-bit microcontroller and an FPGA acting as a co-processor. The key concept of

the proposed system is that the extra processing power provided by the

reconfigurable hardware is accessed on demand. Reserving processing resources

for the extreme conditions such as flood events can be extremely helpful in the

process of monitoring and understanding complex environmental phenomena

while at the same time preserving the system’s energy efficiency.

Chapter 1

Introduction

1.1 Introduction

The technology for sensing and control has the potential for significant

advances, not only in science and engineering, but equally important, on a broad

range of applications relating to critical infrastructure protection and security,

health care, the environment, energy, food safety, production processing, quality

of life, and the economy.

Environmental monitoring with Wireless Sensor Networks is one of the

most challenging research areas in the last decade. It represents a class of sensor

network applications with enormous potential benefits for scientific

communities and society as a whole.

In recent years, technological advances in the miniaturization of

electronics, wireless communications and embedded microprocessors have

decreased the size, weight, and cost of sensors and sensor arrays by orders of

magnitude and at the same time increased their spatial and temporal resolution

and accuracy. They also tend to transform environmental monitoring systems

(EMS) from simple logging devices that record and transmit raw environmental

data at specific time intervals, to “smart” low-cost, multifunctional, event-driven,

monitoring systems.

The design of environmental monitoring applications based on WSNs

requires the integration of many disciplines including embedded systems,

telecommunications, software engineering, data bases and management as well

as data modeling. At the same time designers have to address in situ and

operational problems (node deployment, sensors calibration etc). The latter are

associated with the interaction of the monitoring system with the environment

and, somehow, with the extension of the network lifetime (e.g., energy harvesting

and management, faults and failures, thermal drifts, ageing effects).

Introduction

9 |

1.2 Components of a Environmental Monitoring System

A typical EMS is made up of five basic components. Processor, storage

unit, radio, sensors, and power supply:

 Processing Unit: Typically a microprocessor coupled with a small

amount of memory for signal processing, storage and transmission. Next

generation 16/32-bit embedded processors and reconfigurable logic are

being introduced that provide order-of-magnitude increases in

computational throughput over 8-bit microcontrollers.

 Power Supply: In an environmental monitoring system where the

primary requirement is long-term field monitoring, the power source of

the system can only be sustained through harvesting energy available in

the environment mainly through solar cells and rechargeable batteries for

storage.

 Storage Unit: The amount of storage needed in a node, depends on the

overall network structure. If the architecture of the entire system dictates

that all data should be transmitted instantaneously on the central station,

then the amount of local storage needed can very little and is mainly used

as a temporary buffer. If on the other hand, the main concern is the

limitation of data being transmitted through the communication medium,

then there is a greater need for local storage. The latter scenario requires

the existence of greater processing capabilities locally.

 Sensors: The primary purpose of EMS is neither computing nor

communicating, but rather sensing. The sensing component of SN nodes is

the current technology bottleneck. The sensing technologies are not

progressing as fast as semi-conductors. Also, sensors are being applied to

the real physical world, while the computing and communicating units are

dealing with a somewhat controlled environment. One of the main

challenges of environmental monitoring is selecting the appropriate type

and quantity of sensors for an application. There are numerous types of

Introduction

10 |

sensors with different properties such as resolution, cost, accuracy, size,

and power consumption. A single chemical sensor can add a few

thousands of dollars to the cost of the entire system. Also some of the

most crucial tasks such as fault tolerance, error control, calibration, and

time synchronization are associated with the sensors of the system. The

analysis of all aspects of sensing technologies is beyond the range of this

thesis.

 Communication Unit: One of the key features of EMS is the

communication layer. In a remote monitoring location, we are referring to

wireless communication for data relaying. Communication demand

depends on the level of local data processing and control [6] but the

communication layer must be able to cope with high and even burst data

(worst-case) transfers, especially when real-time tasks are involved. Let’s

assume, for example, a system is capable of producing -ready to transmit-

data at a rate of at least 100 Kbps throughout the network. There is also a

communication control overhead, which increases the data rate to 110

Kbps. If the communication layer cannot serve the above requirements

then there will be a bottleneck, which will affect the entire system.

1.3 Issues and Constrains

The implementation of an efficient and reliable EMS for ecological

research imposes a number of design issues and constraints that need to be

addressed. Challenges and limitations of wireless sensor nodes include, but are

not limited to, the following:

 Energy efficiency: Since we are referring to autonomous nodes in

distributed systems, each node must have the ability to maintain balanced

(if not minimal) energy consumption. Obviously, the power consumption

of a system is closely related to its computational task. Therefore, a

computationally demanding task “consumes” more energy than a

computationally effortless one. There is a lot of literature in power

considerations [1,2] and it is also beyond the range of this thesis.

Introduction

11 |

 Small physical size and weight: Reducing physical size has always been

one of the key design issues. It is imperative for the system to have the

smallest effect in the sensing environment. The overall weight and size of

a node is mainly affected by the power unit (battery and solar cells). The

choice of having a small-sized battery would be beneficial in terms of size

but would compromise dramatically the energy efficiency of the entire

system.

 Robustness: Sensor nodes for ecological research often have to be

deployed in harsh environments, where they need to survive the elements

of nature (humidity, moisture etc). They will be unattended, and are

expected to be power efficient and operational for a long period of time.

The system must also be resilient to errors and malfunctions. Since the

existence of redundant subsystems is prohibited due to space, cost and

power limitations, special attention must be given to the reliability of the

individual units even through local or even remote repair, calibration and

test.

 Scalability – Upgradability: Due to continuous technological advances

in sensors (chemical sensors, cameras etc) and in other fields

(microcontrollers, network) the system must be easily upgradeable with

the least effort (both in hardware and software redesign) and with

minimal cost. This can only be achieved by maintaining a modular

architecture.

 Task Concurrency: A sensor node for environmental monitoring is

actually a multifunctional platform for data capturing, processing, storing

and transmission. The overall performance of the system can be achieved

through task parallelism. For example, information may be

simultaneously captured from sensors, processed, and transmitted over

the network in a pipelined manner, instead of sequential action. There are

two conceptual approaches to address this requirement: (i) partitioning

the processing unit into multiple units where each is responsible for a

Introduction

12 |

specific task; and (ii) reduction of the context switching time between

tasks.

 Functional diversity: Apart from the obvious benefits of modular

architecture, the system must also be able to offer functional modularity.

We refer to dynamic functional in situ reconfiguration without the need

for system recovery, reprogramming and redeployment. This dynamic

diversity in design and usage requires an unusual degree of software and

hardware modularity which can be accomplished through: (i) remote

system reprogramming (if the processing unit is microcontroller based).

(ii) dynamic, on the fly, system redesign (if the processing unit is based on

reconfigurable logic) [3]

1.4 Thesis Objectives

This thesis presents an adaptive reconfigurable platform for

environmental monitoring which is based upon the close coupling of an 8bit

microcontroller and an FPGA acting as a co-processor. The proposed platform

transforms a conventional data logging device that records and transmits raw

environmental data at specific time intervals into an intelligent, event-driven

platform that adjusts its behavior at run-time in the context of the acquired data.

Additionally it acts as a pre-processor of the collected data, thus minimizing the

volume of data transmitted.

The natural architectural choice for such a system is the combination of a

general purpose processor and a reconfigurable processing element. In such a

coupled node where a host processor (microcontroller) and reconfigurable logic

are present, the microcontroller is mostly suitable for implementing sequential

tasks (control flow oriented tasks), while on the other hand the reconfigurable

logic is preferred for computationally intense tasks with high degree of

parallelism. This close coupling of hardware and software in a communication –

demanding environment is a major factor in the development of a reconfigurable

environmental sensor node.

Introduction

13 |

1.5 Thesis Contribution

The key innovations of the proposed thesis are the following:

 Development of an environmental monitoring platform where a low-power

microcontroller is coupled with an FPGA for computationally demanding

tasks.

 Design and development of a platform that is technology and vendor

independent of the incorporated reconfigurable logic (FPGA)

 Developing mechanisms for implementing runtime dynamic system

reconfiguration both in terms of hardware and of software.

 Implementation of a microkernel where the end-user takes advantage of the

platforms resources seamlessly through user defined tasks.

Datalogger Unit
(uC)

(Re)Configuration
Unit (uC)

Storage
(Data, Bitstreams,

tasks)

Co-processor
(FPGA)

Sensors Sensors

Control Unit
(task scheduler)

Sensors Sensors

Figure 1: Proposed architecture

In terms of overall system operation, the major innovations are the

following:

Introduction

14 |

 It allows dynamic remote reconfiguration without the need to withdraw it

from the sampling field, both in software and in hardware

 Immediate response to extreme events. The system can self-adapt to the

acquired readings from the environment and change its operation (for

example sampling frequency) at runtime

 From an architectural point of view, the modular design of this platform

offers a level of transparency between the different layers allowing the

replacement of various units like the reconfigurable hardware without the

need for complete system redesign.

1.6 Motivation of the Work

Hydrologic and geochemical processes that take place in Mediterranean

watersheds have variable temporal and spatial scales. The hydrographs of both

temporary and permanent rivers are flashy with response times ranging from

minutes to hours. “Temporary River” is a general term for all intermittent,

ephemeral and episodic streams. Temporary river watersheds constitute 30% of

the Mediterranean region and at least 42% of the Greek territory. Based on

recent trends, the number of temporary rivers will likely increase in the future

due to human impacts such as climate change and increased water abstraction.

Temporary river hydrographs are flashy and exhibit characteristic response

times ranging from minutes to hours such as experienced during first flush and

storm events. After dry periods, the first flash floods carry significant quantities

of suspended solids and pollutants (Fig 1.2). Compared to perennial flow

conditions, temporary rivers deliver most of the annual pollution load during

only a few flood events typically lasting a few hours. [4]

Introduction

15 |

Figure 2: Mediterranean Ephimerality

Given the fact that most EMS are battery powered and with limited

resources, the key concept of the proposed system is that the extra processing

power provided by the reconfigurable hardware is accessed on demand and only

during extreme environmental conditions like those previously described.

Reserving processing resources for the worst-case scenario can be extremely

helpful in the process of monitoring and understanding complex environmental

phenomena while at the same time preserving the system’s energy efficiency.

Introduction

16 |

Figure 3: Flood Event in the Koiliaris River

1.7 Thesis Outline

The current thesis is organized as follows:

 Chapter 2 provides the theoretical background of the technical

discussions and terms in this thesis. Basic concepts of reconfigurable

hardware, system architectures and technologies are presented.

 Chapter 3 provides the literature survey on reconfigurable platforms.

 Chapter 4 discusses the proposed system architecture.

 Chapter 5 refers to the system’s software architecture with a detailed

analysis on the implemented task scheduler

 Chapter 6 focuses on the reconfigurable co-processor architecture

along with the platform implementation.

 Chapter 7 gives a synopsis of the current work and results.

 Chapter 8 discusses directions for future upgrades of the proposed

system.

0,00

10,00

20,00

30,00

40,00

50,00

60,00

10/05 2/06 6/06 10/06 2/07 6/07

D
a
il
y
 fl

o
w

 (
m

3
/s

)

date

Chapter 2

Background

2.1 Introduction

This chapter offers the reader the background information for a complete

understanding of the technical discussions and terms in the following chapters.

Basic concepts of reconfigurable hardware, system architectures and

technologies are presented.

2.2 Reconfigurable Hardware Technology

A Field Programmable Gate Array (FPGA) is a matrix of configurable logic

cells, called Configuration Logic Blocks (CLBs). These blocks are embedded in a

general routing structure (also configurable) which allows their interconnections

(inputs and outputs of each CLB). As opposed to Application Specific Integrated

Circuits (ASICs) where the device is custom built for the particular design, FPGAs

can be programmed to the desired application or functionality requirements [5].

The Configurable Logic Block is the basic logic unit in an FPGA. Exact

numbers and features vary from device to device, but every CLB consists of a

configurable switch matrix with 4 or 6 inputs, some selection circuitry (MUX,

etc.), and flip-flops.

The FPGA configuration is specified with the use of a Hardware

Description Language (HDL). The programming technology in an FPGA

determines the type of basic logic cell and the interconnect scheme. The logic

cells and interconnection scheme, in turn, determine the design of the input and

output circuits as well as the programming scheme.

Although one-time programmable (OTP) FPGAs are available, the

dominant type is SRAM based. The advantages of SRAM based FPGAs is that

Background

18 |

designers can reprogram them. The disadvantage of using SRAM programming

technology is the need to keep power supplied for the volatile SRAM to retain the

connection information. Alternatively, one can load the configuration data from a

permanently programmed memory (typically a programmable read-only

memory or PROM or Controller) every time the system is turned on.

Figure 4: FPGA Architecture and CLB

2.3 Configuration Techniques

Configuration is the process of loading design-specific configuration

bitstream data into one or more FPGAs/CPLDs to define the functional operation

of the internal blocks and their interconnections. An SRAM-based FPGA can be

configured on its power-up or even on demand, depending on the architecture of

the device. The EEPROM based CPLDs can be programmed on demand and they

keep their configuration data even after power-off.

For Xilinx FPGAs, those changes to structure and functionality are made

by loading configuration bitstream data through one of several configuration

ports.

External configuration ports such as the SelectMAP and JTAG interfaces

are typically driven by an external controller. This has the potential of allowing

applications to have a smaller operational area on the FPGA and of consuming

less power.

1. Slave Serial/SelectMAP (Slave Parallel): Slave Modes use external control

logic to generate the configuration clock. It allows the FPGA to be configured

using other logic devices such as microprocessors, or in a daisy-chain. The

device is incorporated into a system with an intelligent host that controls the

Background

19 |

configuration process. The intelligent host transparently selects a serial or

parallel data source and the data is presented to the device on a common data

bus. Such systems can store the configuration data on a mass-storage device,

such as a hard disk. This way, installing new configuration data becomes

easier and the number of Integrated Circuits (ICs) required for a system is

reduced.

2. JTAG: The Joint Test Action Group has developed a specification for boundary

scan testing. The Boundary Scan Test (BST) is an industry standard (IEEE

1149.1, or 1532) and it offers the capability to efficiently test components on

PCBs with tight lead spacing. JTAG has gained popularity due to its

standardization and ability to program both FPGAs and CPLDs. In this mode

external logic is also required but this time to drive the JTAG specific pins,

Test Data In (TDI), Test Mode Select (TMS) and Test Clock (TCK), and one

optional the Test Reset (TRST). All other pins are tri-stated during JTAG

configuration. JTAG configuration can start at any time, even during

configuration through another mode.

3. ICAP: In contrast to JTAG and Slave Modes, the internal configuration access

port (ICAP) can be directly accessed by application circuits configured on the

FPGA (not available on all FPGAs), allowing them to change their own

structures and functionalities at run time. To achieve this, different circuits

with different functionalities are loaded onto the FPGA when needed by those

applications.

2.4 Reconfigurable WSN nodes architectures

There has been considerable research into reconfigurable architectures

and coupling. Todman et al. [6] extended the work of Compton and Hauck [7]

and have classified the reconfigurable hardware architectures into 5 main

classes (Figure X): It is outside the scope of this thesis to emphasize on all

reconfigurable architectures. The main focus is those used in reconfigurable

WSN nodes.

In typical, reconfigurable WSN nodes also have a microprocessor,

memory, and possibly other structures. Whether the reconfigurable logic (RL) is

depicted as a separate coprocessor or integrated as a functional unit mostly

Background

20 |

depends on the system architecture and the coupling between the general

purpose processor (in this case microprocessor) and the FPGA.

The key classification is based on their system architecture and the nature

of their RL unit. They are categorized as:

reconfigurable

fabric

CPU

(e)

Figure 5: Reconfigurable hardware architectures and
coupling

2.4.1 Microcontroller plus Reconfigurable Co-processor

In these platforms the RL is coupled to the processor through a) its

system I/O bus or b) its system memory bus. The first case is the easiest

implementation with the drawback of providing the least data bandwidth

between the processor and the RL, which is usually a system’s performance

bottleneck. In the second case, all data communications take place through the

main memory. The RL performs its computations and returns the results back to

main memory thus increasing the system’s bandwidth.

In general, since the RL has no direct transfer link to the processor even a

conventional microprocessor platform can be extended to a reconfigurable

system by simply inserting an add-on card with reconfigurable logic to the

system’s peripheral bus. In the second case, the extension is a bit more

Background

21 |

complicated but equally feasible. The main disadvantage in this coupling is that

the overall data bandwidth of the system is limited.

For this reason independent co-processor RLs are best suited for

application that require data-streaming, like image processing and encryption

where the RL acts independently from the processor.

2.4.2 Reconfigurable hardware plus embedded processor

Advances in reconfigurable logic technologies have made possible the

tight coupling between processor and reconfigurable logic. Instead of deploying

the RL to a processor system, new reconfigurable ICs embed the processors in

their fabric. Such architectures allow the direct access to the reconfigurable logic

from the processor. Nowadays, almost all vendors provide reconfigurable fabrics

with embedded processor cores. These processors can be implemented

physically or as soft processors. A processor built from dedicated silicon is

referred to as a “hard” processor. A “soft” processor is built using the FPGA’s

general-purpose logic. The soft processor is typically described in a Hardware

Description Language (HDL) or netlist. Unlike the hard processor, a soft

processor must be synthesized and fit into the FPGA fabric [8]. Examples of soft

processors are the MicroBlaze and PicoBlaze processors by Xilinx, as well as the

Nios and Nios-II processors by Altera. As for hard processors, Altera’s Excalibur

family embeds the ARM processor and inside Xilinx’s Virtex family is the

PowerPC processor. Additionally, ATMEL offers FPSLIC family with an AVR core

embedded. [1,9,10]

This close coupling between the processor and the RL increases the

efficiency of the system by increasing communication and data transfers. On the

other hand, it limits the RL’s independence. By assigning the RL the role of a

functional unit, means that it is placed directly in the pipeline of the processor,

potentially stalling execution until it terminates its task.

2.5 Chapter Summary

This chapter highlights technologies regarding reconfigurable hardware

configuration processes and system architectures used in reconfigurable wsn

architectures.

Chapter 3

Literature Survey

3.1 Introduction

Current technological advances have led to the availability of

environmental sensors that are smaller, cheaper, intelligent and more reliable.

On the other hand, traditional WSN platforms based solely on microcontrollers

fall short of providing flexible and adequate solutions in response to the

increased processing and data demand. These drawbacks have led, among other

things, in the adaptation of reconfigurable logic (RL) as hardware accelerators in

WSN platforms. Due to the diverse nature of environmental monitoring

applications and the importance of reconfigurability at the hardware platform

level as illustrated in previous sections, this chapter is mainly focused on the

FPGA-based reconfigurable platforms currently available.

3.2 Reconfigurable WSN nodes architectures

In typical, reconfigurable WSN nodes also have a microprocessor,

memory, and possibly other structures. Whether the reconfigurable logic (RL) is

depicted as a separate coprocessor or integrated as a functional unit mostly

depends on the system architecture and the coupling between the general

purpose processor (in this case microprocessor) and the FPGA.

3.3 Microcontroller + reconfigurable co-processor platforms

In this section platforms based on the microcontroller + reconfigurable

co-processor approach will be discussed.

3.3.1 mPlatform

At Microsoft Research Labs they developed a modular stackable platform

[11]. The mPlatform was designed so that a wide range of processors can coexist

on the same platform and efficiently communicate in any possible configuration.

Literature Survey

23 |

The coupling of the heterogeneous microprocessors is achieved by a

reconfigurable HW (CPLD in this case). The local processor on each module

interacts with a parallel bus through the bus controller, implemented in a low-

power CPLD thus achieving communication abstraction through the entire

modular platform.

In the mPlatform the term reconfigurability is used only to emphasize on the

platform’s Lego-like nature where the number and type of processors put

together depends on the requirements of a given research project.

With this in mind, the CPLD is configured only at design time in order to meet the

specific communication demands of a particular project.

Figure 6: mPlatform architecture

3.3.2 Cookie

At the CEI-UPM, researchers have developed a platform based on a 8052

uC from Analog Devices (ADuC841) and a Xilinx XC3S200 Spartan 3 FPGA [12].

It is composed of four main layers: processing, communication, power supply

and sensors. The FPGA acts as an independent co-processor solely for taking

measurements from digital sensors (Figure X2). The uC sends triggers to the

FPGA, specifying the sensor from which the measure has to be taken, and the

FPGA activates the corresponding sensor interface.

Literature Survey

24 |

The Cookie platform supports dynamic reconfiguration of the FPGA. It

uses the uC to reconfigure the FPGA from a library of general HW digital

interfaces for sensors (as I2C, 1-Wire, SPI, etc.). The uC will use the JTAG port of

the FPGA to accomplish this task. The uC will receive the bitstream from the

communication layer (ZigBee module) and will download it in the FPGA

configuration memory.

Figure 7: HW-SW Reconfigurable Sensor Node Diagram

3.3.3 RESENSE

RESENSE is a reconfigurable WSN platform, developed at the Technical

University of Crete [13]. In the RESENSE platform there are two distinct

architectures that incorporate reconfigurable logic. In the sensor node level

researchers have coupled a commercial WSN mote (Micaz/IRIS - ATMega1281

uC) and a low-power CPLD (Xilinx CoolRunner-II). On the base station they have

combined an Intel Atom processor (general purpose CPU) with a Virtex-5 FPGA

(XC5VLX110T).

Figure 8: RESENSE general scheme

Literature Survey

25 |

Both Reconfigurable Nodes are treated as hardware accelerators by

executing security (encryption/decryption/authentication) algorithms for

providing a network-level security framework. They have proven that the overall

energy consumption of the new infrastructure is reduced by up to 98%, when

compared with the consumption of a widely used commercial CPU-based WSN

node executing those same WSN processing tasks in software.

3.3.4 Tyndall (25mm Cube)

The Tyndall Mote was developed at the Tyndall National Institute by the

Wireless Sensor Networks Team [14]. The Tyndall Mote is a compact,

reconfigurable and modular platform. The design is based around several

25×25mm boards that are interconnected by means of two standard connectors

placed on contiguous sides of each of the square boards.

FPGA technology and additional processing capability can easily be

incorporated into the system stack when required by simply adding the required

layer, similarly appropriate power supplies and battery layers or coin cell

battery layers can be stacked one on top of each other, also in a modular fashion

All of the communication layers are designed with an on-board

ATmega128L microcontroller developed to integrate the radio and transceivers,

as well as being compatible with TinyOS, and other standard.

Figure 9: Tyndall’s 25 mm stackable platform

Literature Survey

26 |

In this case also, the main research is not focused on FPGA

reconfiguration, but rather in reprogramming the microcontroller and the FPGA

before deployment.

3.3.5 REWISE node

Wilder et al. [15] present a reconfigurable wireless sensor network

(REWISE), showing that FPGAs reach an optimum balance between flexibility,

energy requirements and processing power. Their node is based on a 16bits

microcontroller (MSP430) from Texas Instruments. Their system is an

implementation of what they call wireless JTAG, which is independent of the final

FPGA that will be used. Each node includes a repository of HW/SW

configurations and programs to avoid the high cost of sending these files through

the network.

Figure 10: REWISE reconfigurable node

3.4 Reconfigurable hardware + embedded processor

In this section platforms based on embedded processors in the

reconfigurable fabric will be considered.

3.4.1 Darmstadt platform

At the Institute of Microelectronics System of Darmstadt University, they

have developed a reconfigurable prototyping platform based only on a single

Spartan3-2000 FPGA as the main processing [16]. The board has a CPLD only for

reconfiguration purposes. In their application example, the heart of the system is

a soft core 32-bit LEON2 RISC processor with the rest of the reconfigurable logic

Literature Survey

27 |

acting as functional unit (RFU) integrated directly into the processor's data path.

The FPGA is used to integrate debugging and system monitoring in the logic, and

to emulate the digital part of the final node. Therefore, their main target is

prototyping. There is no reference to any kind of system reconfiguration of the

platform, neither static nor dynamic.

Figure 11: Schematic view of the Darmstadt
platform

3.4.2 Warangal platform

In the National Institute of Technology, Warangal in India, Muralidhar and

Rao, developed a Reconfigurable WSN node using an ALTERA Cyclone II FPGA

[17]. The processing unit (treatment unit by the authors’ terms) is a NIOS II soft

core. They proposed a real-time forest fire detection system by using

reconfigurable wireless sensor networks. Their target is to reuse the

reconfigurable functional unit (RFU) through dynamic reconfiguration.

Literature Survey

28 |

Figure 12: Warangal platform node architecture

3.5 Other Reconfigurable WSNs

Latha et al [18] from College of Engineering, Anna Univ., Chennai,

India, have proposed a two-level system for surveillance and intrusion detection.

At the first level, relatively simple nodes with basic sensing devices are used as

primary detectors of intrusions. The second-level sensor node is composed of a

high performance FPGA that can be dynamically reconfigured for different

applications, interfaced with the camera.

There are no additional references to the way the FPGA in the node is

dynamically reconfigured.

3.6 Summary

In this chapter we gave a detailed survey on existing reconfigurable

platforms. In contrast to our system, most platforms treat the

reconfigurable logic as a functional accelerator with no reference to run-

time dynamic reconfiguration.

Chapter 4

System Architecture

4.1 Introduction

This chapter focuses on the description of the platform which includes a

microcontroller and an FPGA for acting as a coprocessor in terms of its hardware

architecture.

4.2 System Architecture (Layers)

The reconfigurable platform is partitioned into three layers, for sensing,

communication and processing as proposed in [19] and illustrated in fig. 12.

This layered- modular design approach is adopted by many researcher

[20,21,11,22] mainly because it can provide scalability and reusability. It offers a

level of transparency between the different layers. Each layer only communicates

with its adjacent layer. The “communication” layer interfaces only with the

Sensing Layer

Storage
Processing Layer

uC
Co-processor

FPGA

Communication
Layer

Processing Layer

Figure 13: Layers of the reconfigurable Platform

System Architecture

30 |

control medium (“processing” layer), inside the node. The existence of the

reconfigurable section, its functionality and even its presence, is completely

hidden from the “communication” layer. The platform can be easily upgraded

with the least effort (both in hardware and software redesign) and with minimal

cost. For example, the communication layer or the sensors can be replaced

without the need to redesign the entire platform, as long as the interfaces remain

unaltered. All of the above are depicted in Figure 12.

4.2.1 Communication Layer

The “Communication” layer is the physical and data-link layer. It typically

consists of the wireless communication module and its controller. All incoming

data and control instructions that reach the node from the network are collected

by this layer. They are parsed and stripped from any communication related

information and are forwarded to the “Processing” layer. Additionally, all

processed or raw data collected from the sensors are transmitted through the

communication layer to a base-station on demand or at specific time intervals,

depending on the communication policy of the deployed network and the

platforms appointed tasks.

The modular approach of the platform permits the use of different

communication protocols and physical layers. In the past, a platform-compatible

Communication Layer consisting of a Bluetooth module and its controller has

been implemented [19].

For the purpose of this thesis, the communication layer has been

implemented as a point to point serial, communication interface through the

platform’s UART. The platform can receive a series of data and control

commands form the communication layer which, refer to the following

operations:

1. Replace TASK INI instructions: A sequence of commands and data

for replacing the “task-ini” file located in the storage unit. This file

contains the user-defined task parameters, necessary for controlling

the entire system’s behavior.

System Architecture

31 |

2. Replace PTL Script instructions: Commands followed by a sequence

of data, which replace the PTL script controlling the FPGA

(re)configuration process

3. System Reboot command: Control instruction for performing a

system reset.

4. Write Bitstream instructions: Command and data for placing a new

(or replacing) an FPGA application file (bitstream).

The entire platform can be remotely configured at runtime, by sending it a

sequence of control instructions and data.

The following table contains all the control instructions the platform can

receive from the communication layer. The opcode of the instructions in

Mnemonics syntax is displayed in the left side of the Table followed by the

number of operands of each instruction.

Mnemonics Operand Description Opcode

RESET System’s “Software” Reset 0x01

Replace TASK INI instructions

TASK_PROG_START

Accessing the“Task_ini” file for

write and truncating the file to

zero length

0x02

TASK_PROG_BYTE X
Receive X bytes of “Task_ini”

file contents
0x03

TASK_PROG_KBYTE X
Receive X Kbytes of “Task_ini”

file contents
0x04

TASK_PROG_STOP
Accessing and closing the

“Task_ini” file (like fclose)
0x05

Replace PTL INI instructions

PTL_PROG_START

Accessing the “ptl” script file

for write and truncating the

file to zero length

0x06

PTL_PROG_BYTE X
Receive X bytes of “ptl” script

file contents
0x07

System Architecture

32 |

Mnemonics Operand Description Opcode

PTL_PROG_KBYTE X
Receive X Kbytes of “ptl” script

file contents
0x08

PTL_PROG_STOP
Accessing and closing the “ptl”

script file.
0x09

Replace bitstream instructions

BSTR_START

Accessing a bitstream file for

write and truncating the file to

zero length (create it if it

doesn’t exist)

0x0A

BSTR _PROG_BYTE X
Receive X bytes of bitstream

file contents
0x0B

BSTR _PROG_KBYTE X
Receive X Kbytes of bitstream

file contents
0x0C

BSTR _PROG_STOP
Accessing and closing the

bitstream file.
0x0D

4.2.2 Processing Layer

The “processing” layer is the platform’s core. It consists of an 8-bit

microcontroller, a storage unit and the FPGA co-processor for enabling efficient

data retrieval and processing. More details about the architecture of the

“processing” layer will be provided in the following sections. The processing

layer is the control medium of the entire system. It is responsible for a) raw data

collection from the “sensing” layer, b) data processing, c) data storage and d)

data transmission to the network though the communication layer.

In cases where the system cannot rely solely on the microprocessor for

data gathering, the processing layer is also responsible for triggering and

dynamically (re)programming the FPGA to act as a co-processor

The layer’s “storage” unit acts as the system’s main memory. It is

partitioned into a) Data Memory: Stores all the measurements (raw or

System Architecture

33 |

processed) from the sensing layer, b) RL Configuration memory: stores all

configuration files (bitstreams and configuration instructions) for the FPGA

(re)configuration process and c) Instruction Memory: System initialization files.

4.2.3 Sensing Layer

This layer is connected with the “processing” layer and hosts all the

sensors necessary to take measurements from the environment. It provides the

necessary communication interfaces of different sensors (pH, nitrate, DO,

temperature or camera), with the processing layer.

The topology of the attached sensors and their interfaces with the

microcontroller or the FPGA is of course dictated by the application for which

they are deployed. As a rule of thumb though, it is better to have the sensors with

the lowest data throughput (temp, flow and chemical sensors) controlled by the

microcontroller in the processing layer. On the other hand, cameras are best

managed by the FPGA since it has the capability to handle more complex

interfaces.

4.3 Platforms’s Datapath

The platform contains 5 main modules as depicted in the following figure.

4.3.1 Control Unit

The control unit is responsible for issuing and scheduling tasks on the

data-logger unit (uc-tasks) or the co-processor (fpga-tasks). When an fpga-task is

to be executed, the control unit addresses a request to the “configuration” unit.

Along with the request, it passes information concerning the entire configuration

process of the FPGA (bitstream location, priority level, configuration process).

The allocation of all the tasks along with the scheduling algorithm will be

discussed in a following section.

System Architecture

34 |

Datalogger Unit
(uC)

(Re)Configuration
Unit (uC)

Storage
(Data, Bitstreams,

tasks)

Co-processor
(FPGA)

Sensors Sensors

Control Unit
(task scheduler)

Sensors Sensors

Figure 14: Platform’s Datapath

4.3.2 Configuration Unit

As described earlier, the configuration unit is responsible for placing a

given task in the FPGA by configuring it with the provided bitstream. It receives

and places all incoming requests for FPGA configuration in the “FPGA Arbitration

Buffer” (FA BUFFER). Inside the “FA Buffer” all pending requests are sorted

based on their accompanied priority level. This way, FPGA configuration

requests with higher priority levels are executed before requests with lower

configuration levels.

It is actually an updated version of the Hardware Programmer & Tester

(H.P.T.) which was originally developed as a download and testing apparatus in

close coupling with the Reconfigurable Run – Time Environment ReRun [23,24]

developed also in our lab. In this version the HPT is completed detached from the

PC-based ReRun and is solely controlled by the “scheduler” unit. Yet, it continues

to support the PTL formal language, created for the RTE ReRun.

System Architecture

35 |

The HPT communicates with the co-processor through two dedicated 8-

bit configuration ports. They used for dynamic reconfiguration and readback

purposes, also attached to the reconfigurable section of the node.

4.3.3 Co-processor Unit (FPGA):

The co-processor (FPGA) is dynamically triggered by the “configuration”

unit upon request from the control unit. When the FPGA is programmed, it

performs the task for which it has been activated and is then deactivated.

The co-processor only communicates with the data-logger

(microprocessor) through a serial interface for sending and receiving data. In

other words, the microcontroller “sees” the FPGA as an external source of data.

4.3.4 Data logger Unit

The data-logging unit is the main module for collecting data either from

the sensors attached to it or from the co-processor. The tasks executed on the

data-logging unit (microprocessor) can be event or time driven.

4.4 PTL Language

The PTL language (Programming and Testing Language) can be used to

write scripts to describe the (re)configuration or testing process of a

reconfigurable unit. PTL has a BNF grammar, well-defined semantics, and is

compiled with flex and bison.

One of the advantages of having a formal language for the environment is

that the behavior of the system as a whole is unambiguous. PTL instructions are

categorized into two different types. The “programming” instructions, needed

for implementing any (re)configuration, readback or test process at the

reconfigurable layer and the “protocol” instructions. Our platform only supports

the PTL “programming” instructions. The HPT module is connected through an

SPI interface to the memory unit. The RL Configuration memory (controlled

exclusively by the HPT) stores the configuration bitstreams necessary for the

FPGA (re)configuration, and the appropriate scripts [25].

System Architecture

36 |

Each PTL instruction is divided into 2 main fields: the opcode and the

operand. The following table contains all the programming instructions.

Mnemonics Operand Description Opcode

CLEAR_BITS X Clear “CNTRL PORT” bit(s) 0x03

CLK_HIGH
Initialise Configuration Clock

at logic level ‘1’
0x1E

CLK_LOW
Initialise Configuration Clock

at logic level ‘0’
0x1D

CNTRL_BITS X Send Byte to “CNTRL PORT” 0x0A

CNTRL_MAP X
Define “CNTRL PORT” bit

direction
0x02

DATA_SERIAL
Send Data from “DATA PORT”

serially
0x05

DATA_PARALLEL
Send Data from “DATA PORT”

parallel
0x06

LSB
Send data serially (Least SB

first)
0x1F

MSB
Send data serially (Most SB

first)
0x20

NOP No operation 0x0D

PROG_BYTE X
Send X bytes of data through

“DATA PORT”
0x08

PROG_KBYTE X
Send X Kilobytes of data

through “DATA PORT”
0x09

SET_BITS X, Y Set “CNTRL PORT” bit(s) 0x04

Branch Instructions

CSEQ_CNTRL_A X
Compare “CNTRL PORT”

contents with X. Skip if Equal
0x22

FOR_LOOP_START X, Y For Loop Start 0x0B

FOR_LOOP_END End of For Loop 0x0C

SBC_CNTRL Skip if bit(s) in “CNTRL PORT” 0x24

System Architecture

37 |

Mnemonics Operand Description Opcode

is (are) clear

SBS_CNTRL
Skip if bit(s) in “CNTRL PORT”

is (are) set
0x27

Table 1: Programming Instructions

4.5 System’s Interfaces

The platform’s interfaces are divided into 5 main sections as shown in the

following figure.

Platform’s i/f

RESET

clk

SO

SI

SCK

CS

TxD

RxD

Storage
Interface
(SD_IF)

Com
Interface

(UART0_IF)

Conf Clock

CNTRL_PORT (8bits)

DATA_PORT (8bits)

Sensor Port (8bits)

FPGA
Interface

(UART1_IF)

TxD

RxD

FPGA
Configuration

Interface
(HPT_IF)

Sensors
Interface

(SENSE_IF)

Figure 15 Platform’s Interfaces

4.5.1 Communication layer Interface (UART0_IF)

This serial interface is provided as standard and is maintained internally

by the control unit. It uses the UART0_IF during normal operation in order to

communicate with the network and acquire data and instructions necessary for

its operation.

System Architecture

38 |

4.5.2 Storage Interface (SD_IF)

The storage module that has been selected is a serial flash memory.

Although slower than parallel interface, the serial interface is ideal in space-

sensitive systems such as the current one. The sequential access serial interface

scheme employed through a Serial memory pinout enables a practically limit-

free upgrade path for either density or word-width. Conventional random access,

parallel interface Flash must use dedicated address pins to interface with the

system. The Serial Peripheral interfaces with other devices using only seven

signal leads, three of which are dedicated to the serial bus (SCK, SI and SO). The

remaining signal leads on the Serial memory include a chip select (CS), chip reset

input (RESET), a write protect input (WP), and a ready/busy output

(RDY/BUSY).

The Serial memory can be used with any type of micro controller, but the

interface of the device is also compatible with SPI modes to provide simple

interconnections with the increasingly popular SPI micro controllers. SPI is a

serial interface protocol, utilizing 8-bit words, useful in communicating with

external devices such as serial EEPROMs and the Serial DataFlash.

4.5.3 Sensor Interface (SENSE_IF)

The sensing interface is responsible for communicating with the “sensing”

layer. It consists of an 8 bit port used to send and receive data and commands to

several sensors directly attached to the microcontroller. The sensors can be

digital and are accessed through several supported protocols like 1-Wire

Protocol, or analogue and can use the system’s built-in ADC.

4.5.4 FPGA Configuration interface (HPT_IF)

The configuration interface is responsible for sending data and control

signals to the target FPGA. It consists of two 8bit ports and an independent pin

the Conf CLK.

The data port, when in programming mode, sends configuration data to

the target FPGA(s) in parallel or serially. In serial configuration mode, data can

System Architecture

39 |

be sent starting from the MSB or the LSB pin, depending on the configuration

protocol.

The Control port (CNTRL_PORT) can be used to manipulate the

configuration process by issuing appropriate patterns. Each pin in the Control

Ports can be used independently.

The Conf CLK is the main clock source of the target FPGA(s) during the

configuration cycle. With each clock pulse on the Conf CLK line, configuration

data are transferred, serially or in parallel, through the data port. Since the

configuration algorithms differ between FPGAs, even in the use of the

configuration clock source, the Conf CLK is capable of producing pulses with

minimum high level duty cycle or vice versa as shown in the following figure.

Figure 16: CONF CLK pulses with:
 (a) Low level duty cycle >50% and (b) high level duty cycle >50%.

4.5.5 FGPA Data Interface (UART1_IF)

The FPGA communicates with the uC through a serial interface. The

advantages of using a low cost and robust communication serial bus between the

FPGA and the microcontroller are:

a) It is an easily implemented unified communication medium, mainly on the

FPGA.

b) It doesn’t burdens the microcontroller’s limited resources and pin count.

c) The architecture and the interface of the microcontroller remain

unaffected and independent of the hardware characteristics of the FPGA.

d) Retains data synchronization. For example, the reconfigurable section

(FPGA) can be driven by a 200MHz system clock. On the other hand, the

8bit microcontroller is driven by a ~12MHz system clock. In this case,

asynchronous serial communication is a simple and ideal communication

(a)

(b)

System Architecture

40 |

interface to overcome the synchronization problems imposed in a system

where each component is driven from a different clock source.

e) It offers the easiest scalability mechanism

The drawback though is that it provides the least data bandwidth

between the microcontroller and the FPGA. If the designer doesn’t utilizes the

FPGA solely as a unit for data acquisition but rather as a source of high

processing capabilities, the serial communication bottleneck can be alleviated.

For example, the FPGA can transmit through the serial i/f, only processed and

compressed data.

Chapter 5

Task Scheduler Architecture

and Implementation

5.1 Introduction

Most conventional Real-time Operating Systems (RTOSs) are not suitable

for platforms based on the CPU-FPGA architecture. This is mainly due to their

inability to integrate dynamic runtime (re)configuration of the FPGA in their

scheduling algorithm. Many RTOSs provide support for a Functional Unit or a co-

processor simply by seeing it as a static (one-time configurable) module. In this

chapter, we present the software we have developed for our system.

5.2 Software Architecture (Abstract View)

Our software architecture follows the microkernel concept. By the term

microkernel we refer to a near minimum set of services implemented in software

in order to provide to the user a hardware resources level of abstraction.

More specifically, our kernel is composed by a set of services that run

exclusively on the microcontroller. These services call device drivers for

accessing different hardware components of the platform. Among others, the

Storage Area through a FAT file-system, the serial ports and the different sensors

attached to the platforms.

The user is responsible for writing and formulating application tasks

based on these predefined services. In our approach, the tasks utilize the

microcontroller resources and the adjacent sensors form the “sensing layer” and

only in application critical tasks do they use the FPGA resources.

Task Scheduler Architecture

42 |

5.3 Kernel Modules and Services

The implemented kernel consists of the following primary modules and

services, as illustrated in figure 19:

 Task Parser Module: It is activated during the system’s initialization

phase for reading the “task-ini” file and parsing the user defined tasks

and their parameters.

 Task Allocation Module: This module controls the queue that a

newly appointed or rescheduled task is going to be placed in.

 Task Dispatcher Module: Based on the incoming interrupts (from

the timer and event handling services) it decides to which task it is

going to give control of the microcontroller resources.

 Task Scheduler Module: The scheduler is the main core of the entire

microkernel. It is controlling the execution and termination of the user

appointed tasks along with their accompanied services at runtime and

based on the scheduling model and algorithm that will be discussed in

a following section.

 FPGA Arbiter Module: This module is responsible for controlling the

FPGA configuration process. It is triggered by the scheduler and

according to the user defined tasks. The configuration algorithm will

be analyzed in a following section.

 Sensor Services: These are preinstalled kernel functions that provide

the mechanism for data acquisition and storage.

 Device Drivers: They provide access to the system’s hardware

resources, like the memory unit, the serial ports. They are also

responsible for providing access to the different sensors attached to

the platform.

 FPGA Configuration Service: Although the FPGA can be categorized

with the rest of the resources, the complexity and the importance of

this service permit us to treat it as a discrete one. It is responsible for

providing the configuration mechanism for the attached FPGA. It is

actually the software model of the reconfiguration unit (HPT)

Task Scheduler Architecture

43 |

 Timer-handling service: This service is responsible for offering time-

based triggers to services and tasks.

 Event-handling service: It offers event-based triggers to the

scheduler based on interrupts from external or internal resources.

Figure 19 shows the modules that provide the operating system services.

5.4 Scheduler Model - Multitasking

The adopted scheduler and correlative algorithm is capable of scheduling

and executing tasks on the microcontroller and utilize the platforms resources,

including the FPGA, dynamically and at runtime.

The scheduling model for the tasks executed in the microcontroller is

based on a cooperative scheduler [26] in order to avoid the need for a

preemptive one which is costly in memory usage (a stack per task) and context

switching times. Additionally we wanted to preserve “sensitive” services like

FPGA configuration services from being arbitrarily switched (preempted) while

they are accessing the FPGA.

The main drawback in using a cooperative scheduling algorithm is that

each task must ‘voluntarily’ give up its execution and allow the kernel to make a

task switch, in order to maintain task level parallelism. If a task takes too long to

execute then the entire task sequence is stalled until the task has finished

execution and has released the microcontroller resources.

In our platform, this task level parallelism is maintained by dividing the

system’s execution time into time slices. The running services are decomposed

into a number of sequential states as in finite state machines (FSMs) that are

executed in these predefined time slices. This way a task is executed in many

time slices. This alleviates the problem of task stalling. Since the tasks that are

executed in our platform are mainly services that require many I/O transfers

(data from sensors and data storage) it means that they take a lot of time to

finish. So the task scheduling time granularity is carefully picked in order to be

able to accommodate lengthy I/O Transfers (i.e. 1/8th of a second). Of course

Task Scheduler Architecture

44 |

there can be task states that exceed the designated time slice, but these only

occur in rare conditions, like for example when programming the FPGA.

St. 3St. 1 St. 2
idle

idle
idle idle

Task A States Task B States

Time Slices

Figure 17: Cooperative scheduling with time slices

5.5 Kernel Services

As mentioned earlier, a service is a generic kernel module that is

structured as a set of sequential states as in finite state machines.

There are two basic services in the system as shown in the following

figure, the “FPGA Configuration” service and the “Data Acquisition” service.

The “Data Acquisition” service is the basis for implementing user defined

data-logging tasks. It controls the entire process of acquiring readings from a

sensor, processing and storing them. It receives as arguments the type of sensor

(for data acquisition), the storage filename (for data-logging) and whether it will

be executed periodically (time-driven) or at an event. It is partitioned in the

following states:

 State1: Reads a value from a sensor

 State2: Stores the value

 State3: Compares the reading with the threshold value

 State4: Execute an “FPGA Configuration” Task if not already activated

 State6: Reschedule

Task Scheduler Architecture

45 |

X=Read Sensor: ?

Store X reading at Y file

Compare X with threshold
value K

Exec FPGA Conf Task F
(if not activated)

Reschedule

X>K

X≤K

Put Conf Data into buffer

Configure FPGA
(through HPT)

Read Data from FPGA

Deactivate FPGA

Data Acquisition Service
FPGA Configuration Service

Store reading at Z file
Compare with Thold-Kill

Reschedule

Figure 18: State machine kernel services

The “FPGA Configuration” service is responsible for controlling an FPGA.

Basically it controls the configuration process, the data acquisition process and

finally its deactivation. It receives as arguments the configuration files needed for

programming an FPGA (ptl script and bitstream), the storage filename (for data-

logging) and the event (or the time) for deactivating the FPGA. It is partitioned in

the following states:

 State1: Read configuration files

 State2: Initiate the FPGA configuration process based on the acquired

configuration files

 State3: FPGA is activated. Reads a value from the FPGA through the

uC-FPGA communication i/f (UART)

 State4: Stores the value and compare it with a predefined value. This

value is used in order to decide if the FPGA has finished its operation

and the service must proceed to the FPGA deactivation process (State

6) or continue reading values from it (State 3).

 State5: Go to State3 in case of an event (interrupt from uart)

 State6: Deactivate (reset) the FPGA and terminate.

Task Scheduler Architecture

46 |

5.6 Task Definition - Syntax

A Task is an executable instance of a service with user defined parameter

values. At run-time, any task may create or terminate (kill) another instance of

itself or any other task. All tasks are executed:

 At fixed or variable time intervals,

 at a specific date and time,

 upon an event (interrupt, serial I/O, internal signal from another task)

Tasks are formed by the combination of the system’s services and the user

defined parameters which are stored in a “task-ini” text file in the storage unit.

During the systems’ initialization phase the “task-ini” file is read by the parser

module. According to the values that it reads, it forms and queues tasks based on

the “data acquisition” and the “FPGA configuration” services.

All values stored in the “task-ini” file have a simple syntax with

name/value pairs. The name must be unique (per task) and the value must fit on

a single line. A Task is a name between square brackets, like “[Task_A]” in the

example below. The task parameters and their values are separated by an equal

sign (“=”).

Parameter Name Definition Values

Task Name Unique value which defines the

name of the Task. It is placed

between brackets.

[TASK-A]

Sensor Type(*) Defines if the new Task will be

based on the “data acquisition”

or the “FPGA conf” service.

0: data acquisition,

1: FPGA conf

Sensor Resource(*) Defines the device driver for

accessing the appropriate

sensor.

pH, flow, temp etc

Store filename Name of the text file for storing

acquired values from the sensor

Filename.txt

(if null, no storage)

Threshold(*) Value for comparing all
incoming data with.

Constant value
(if null, no
comparison)

Activate-TASK (*) If the acquired value is greater
than the threshold value,
activate a task.

<Task-name>
(if null, no
activation)

Task Scheduler Architecture

47 |

Parameter Name Definition Values

Schedule (ReSCH) Declares if the Task is going to
be rescheduled

0: no,
1: yes

Sched-type Defines the type of task
scheduling followed by a value
indicating the time (days, hours,
minutes, seconds) or the ISR
(i.e. uart)

0: time intervals,
1: at a specific time,
2: upon an event
(ISR,flag)

BITSTR(**) Name of the bitstream for the
FPGA configuration

<filename>

FPGA-Priority(**) Priority value for FPGA
arbitration buffer ordering

higher value = high
priority

Thold-Kill (**) Special data character received
from UART upon which the
FPGA must be deactivated (like
threshold)(***)

Constant value.
(if null, FPGA runs
infinitely)

(*): only for tasks based on the “data acquisition” services
(**): only for tasks based on the “FPGA configuration” services
(***): In order to distinguish the “Thold-kill” value received from uart from the
data values, a 9 bit protocol is implemented. During data exchange the 9th bit is
always ‘0’. When the FPGA wants to inform the task that it has finished
execution, it transmits the “Thold-Kill” byte and the 9th bit is set to ‘1’.

Table 2: User – defined task values/parameters

In the following example there are two task scripts. The first script refers

to a task based on the data-acquisition service which reads data from a flow

meter and saves them to a file named “afile.txt”. If the reading from the flow

sensor exceeds the threshold value of “40”, “Task_F” is activated. Finally the task

is rescheduled to be executed every 1 minute. The second script refers to a task

based on the “fpga-configuration” service, as indicated by the “Type” value. It

configures the FPGA with the bitstream file “fpga.bit” based on the configuration

process indicated in the ptl-script file “ptl.txt”. After the FPGA is enabled,

“Task_F” is activated upon interrupt from the UART connecting the uC with the

FPGA, for data retrieval. All data received from the FPGA are stored in the

“filez.txt” file. In order for the task to terminate its execution, the FPGA must

inform Task_F that it has finished its application. This is done by sending the

“Thold-Kill” byte as described in the previous parameter definition table.

Task Scheduler Architecture

48 |

At this point it is important to mention that the designer of the FPGA

application must take into account the data exchange and the communication

interface between the microcontroller and the FPGA when creating a new

application

“Data acquisition” Task “FPGA configuration” Task

[Task_A]
Type = 0
SENSOR = flow
STORE = afile.txt
THOLD = 40
Act-TASK= Task_F
ReSCH = 1
#Reschedule at 1 minute
Sched-type = 0,0,0,1,0

[Task_F]
Type = 1
BITSTR: fpga.bit
STORE = filez.txt
Thold-Kill = 5
#Reschedule at 1 minute
ReSCH = 1
#Reschedule at uart event
Sched-type = 2, uart
FPGA_PR=3

Table 3: Examples of user defined parameters in “ini-task” file

5.7 Task Allocation - Placement

The system’s task scheduler architecture is depicted in the following

figure. When the system enters its initialization phase, the parser module reads

the “Task Ini” file, located in the Storage Unit. This file contains all the user

defined parameters for the services that need to be executed during the system’s

operation.

 Whether the task will be executed periodically (time-driven) or under

specific circumstances (event-driven) and their values,

 The libraries (resources) it will utilize (sensors, storage area, etc)

 The location of the configuration file (bitstream) in the RL

Configuration memory, the configuration commands and the

configuration mode by which the FPGA will be programmed (if we are

referring to a task being executed at the FGPA)

 The storage file in the Data Memory

The “Task Allocation” Module places the newly formed tasks in the

scheduler’s queues. There are two main task queues. The “Time Wait” and the

“Event Wait” Task queue. If the “Sched-type” value of a Task is ‘0’ or ‘1’ (meaning

Task Scheduler Architecture

49 |

time – driven task), it is placed in the “Time Wait” Task Queue. If the value is 2

(indicating an event driven task) it is placed in “Event-Wait” Task Queue. So, at

first all tasks are placed in the scheduler’s queues. The tasks that are placed in

the “Time Wait” Task Queue are ordered by date and time with the youngest

first. The tasks that are placed in the “Event Wait” queue are also ordered

chronologically. When an event (interrupt or flag from another task) for which a

task in the event-queued task is waiting for, arrives, it is placed by the Task

Dispatcher module in “pending event” task queue. The “pending event” task

queue holds all the tasks that need to be placed on top of the “Time Wait” Queue

for immediate execution.

As mentioned in the previous section, a task is decomposed into states

which are executed independently in time slices. When a task’s state has finished

execution, the task allocation module reads the task’s “Sched-type” and “ReSCH”

values and decides whether to place in one of the queues or discard it. This is the

case when a task is only executed once (ReSCH=’0’).

If an “FPGA Configuration” task is ready to be executed for the first time, it

checks to see if the “FPGA Configuration” Queue is empty. The “FPGA

Configuration” queue holds the user defined information about the FPGA

configuration process.

 If the queue is empty, it places all configuration user parameters

(priority, bitstream filename) in this queue and activates the FPGA configuration

procedure. If the “FPGA Configuration” Queue is not empty, it means that there is

another TASK waiting to take control of the FPGA, or the FPGA is used by another

Task. In this case the configuration user parameters are placed in the “FPGA

Configuration” Queue and the Task is queued in the “Event Wait” queue waiting

for the release of the FPGA Queue. All data in this queue are ordered based on the

user appointed priority value.

An issue that must be taken into account while designing the task

execution scripts is the priority levels of the “FPGA conf” tasks. In order to avoid

“starvation” conditions in situations where many “FPGA configuration” tasks are

Task Scheduler Architecture

50 |

queued inside the FPGA Configuration queue, varying priority levels must be

kept to a minimum.

Resource Services

Sensor I/F
Sensor I/F

Taks Allocation

FPGA Arbiter Module

FAT
Filesystem

UART I/F Sensor I/F

Sensor I/F
Sensor I/F

Storage Unit
Task Files/ FPGA Conf Files/Data Files

Time Wait
Task Queue

FPGA Conf
Queue

Active Task

Event Wait
Task Queue

Event-handling
service

Task Dispatcher
Module

Time-handling
service

FPGA Configuration
Service

Pending Event
Task Queue

Conf Data &
PTL scripts

Active Task

Tasks

Parser

Figure 19: Task Scheduler Architecture

5.8 Task Execution Example

In the following figure there is an example of a task execution scenario.

Task Scheduler Architecture

51 |

uC Tasks

FPGA Tasks FPGA TASK

Event driven

Time driven

Task A: Reads Value from Sensor

Compare with threshold

Store Value

If greater: {Exec TASK F (@ FA-Buf Ready); }

Exec Task A (@ X Time)

FPGA Buffer

CONF FPGA

TASK

STOP FPGA

TASK

Data

to uC

Time à

Time à

TASK F: Exec CONF FPGA Task

Read/Store Data from UART (@UART event)

Deactivate FPGA (@ value from FPGA)

Figure 20: Task Allocation and Scheduling Example

TASK A’s states are executed at specific time intervals.

1. In the first step, it reads a value from a sensor by calling the appropriate

sensor library.

2. It stores the value in a predefined file in the memory unit, along with the

current timestamp

3. Compares the value with a predefined threshold value.

 If the value exceeds the threshold, it calls Task F

 If the reading is lower than the threshold, Reissues itself for

execution at the next interval

TASK F is defined with the following steps:

Task Scheduler Architecture

52 |

1. Puts all information regarding the FPGA configuration process (priority,

bitstream) in the “FPGA Configuration” Queue. This queue holds all

pending FPGA configuration requests. If the queue is empty, it commences

the FPGA configuration process else “TASK F” is placed in the pending

queue and waits for the release of the FPGA Configuration Queue.

2. If the FPGA is configured, “TASK F” enters the “datalogging state” where it

reads data from the FPGA (through the uart), stores them

3. Additionally it compares the newly arrived data with the “Thold-Kill”

value in case the FPGA has issued a termination signal. In that case, TASK

F released the FPGA Configuration Queue, deactivates the FPGA and

issues a “sig_kill” for itself

Chapter 6

Reconfigurable Co-Processor Architecture

and Example Implementation

6.1 Introduction

This chapter refers to the architecture of the system’s reconfigurable co-

processor. We discuss the design considerations taken into account for

implementing the proposed architecture and we conclude by illustrating an

implementation example with a Spartan 3 FPGA,.

6.2 Co-processor Design Considerations

As mentioned earlier the proposed environmental monitoring platform

must be scalable and adaptive to the application and the monitoring

requirements for which it is being deployed.

Since the FPGA plays a vital role in terms in the platform’s overall

processing capabilities, from the processing layer perspective, it is very

important to be able to choose from a variety of FPGAs with different capabilities

as the platform’s co-processing unit, without the need for full system redesign, in

terms of software and hardware.

Our platform is technology and vendor independent of the incorporated

reconfigurable logic (FPGA). Every SRAM-based FPGA currently available in the

market can be incorporated as a co-processor without the need for redesign due

to:

a) The FPGA configuration mechanism by the microcontroller

b) The FPGA communication interface with the microcontroller

Reconfigurable co-processor

54 |

6.3 Co-processor Architecture

The FPGA (co-processor) is coupled to the microcontroller through its

system I/O bus as shown in the following figure. The FPGA can only access the

sensors directly attached to it and the storage unit through the microcontroller.

Although the FPGA is part of the “processing” layer, the

microcontroller only sees the FPGA as a source of data to be collected. In

other words, from a behavioral point of view, the FPGA is part of the

“Sensor” Layer.

Microcontroller
FPGA

I/O Bus

Configuration i/f

Communication i/f

I/O Bus

Storage

Figure 21: FPGA – uC coupling

When the FPGA is enabled and for its entire lifecycle, it remains

completely autonomous from the microcontroller. The communication bus

between the two remains idle until the FPGA is ready to transmit data to the

microcontroller. The corresponding sw-task running on the uC, which is

responsible for collecting data from the FPGA, is interrupt – driven. It remains

inactive until data arrive in the FPGA-uC communication bus. It then collects the

newly arrived data from the bus and stores them in the reserved storage space,

Reconfigurable co-processor

55 |

indicated by the “parent” task that triggered the FPGA. It is then deactivated once

more until the next interrupt, or until the FPGA has been deactivated, in which

case it is also terminated.

6.3.1 FPGA’s Configuration Mechanism

The configuration mechanism of the FPGA is controlled by the

reconfiguration module (HPT) integrated into the system, which is a vendor –

independent universal programmer. It is a centralized configuration solution

which can provide both the bit density and the control logic to manage

configuration for all FPGAs within a system.

The configuration bitstream along with the accompanied PTL instructions

that indicate the FPGA’s configuration process, are retrieved from the storage

area designated Task that issued the FPGA configuration.

6.4 Platform Implementation

The prototype platform has been implemented based on the previously

mentioned concepts. It is shown in the following figure. It includes a low-power

Atmel 8-bit AVR RISC-based microcontroller (ATmega644) [27]. The ATmega644

was chosen because it contains , 64KB ISP flash memory with read-while-write

capabilities, 2 USARTs, byte oriented 2-wire serial interface, 8-channel/10-bit

A/D converter with optional differential input stage with programmable gain,

SPI serial port and 6 software selectable power saving modes. The platform’s co-

processor has been realized by a commercial low cost development board, the

Digilent Spartan-3 Board [28,29]. It contains a Xilinx SPARTAN-3 FPGA

(XC3S1000) [30], an RS232 transceiver, LEDs, buttons and switches. The reason

for selecting the specific FPGA was cost, available literature and configuration

diversity. The XC3S1000 FPGA contains 1M system gates (~2K CLBs) and 391

user I/Os. The platform also comprises a SD card as the storage unit and other

peripheral components.

Reconfigurable co-processor

56 |

Figure 22: Platform’s schematic view

6.4.1 Platform’s pinout

The platform is connected with the communication layer through one of

the microcontroller’s a serial ports. The other serial port is used to communicate

with the FPGA board. The implementation of a serial interface between the

reconfigurable section, the communication layer and the microcontroller offers a

unified communication medium. In this way the architecture and the interface of

the platform remains unaffected and independent of the hardware

characteristics of the reconfigurable section or the communication layer.

Another reason is the need for data synchronization. For example, the

reconfigurable section (FPGA) can be driven by a 50MHz system clock. On the

other hand, the 8bit microcontroller is driven by a much slower system clock

(~12MHz). In this case, asynchronous serial communication is a simple and ideal

communication interface to overcome the synchronization problems imposed in

a system where each layer is driven from a different clock source.

Reconfigurable co-processor

57 |

Platform’s Interfaces

Pin Name Type Pin Count Function

HPT to FPGA (PROG I/F)

CONF CLK Output 1
Configuration clock connected to the

target board.

CNTRL_PORT Bidir 8
Port for controlling the configuration

(or test process).

DATA_PORT Bidir 8
Port for sending configuration or test

data to the target board

Memory Module Interface (FLASH I/F)

MOSI Input 1 Serial Data Input Signal

MISO Output 1 Serial Data Output Signal

SS Output 1 Slave Select

SCK Output 1 Serial Clock

uC to Communication Layer (RS232 I/F)

RxD Bidir 1 Receive data pin

TxD Bidir 1 Transmit data pin

uC to FPGA (RS232 I/F)

RxD Bidir 1 Receive data pin

TxD Bidir 1 Transmit data pin

uC to Sensing Layer

SENSOR_PORT Bidir 8
Port for communicating with the

sensors attached to the uC

uC to Sensing Layer

FPGA_SENSOR

PORT(s)
Bidir (*)

Port(s) for communicating with the

sensors attached to the FPGA.

(*) Depends on the application and the configuration of the FPGA

Table 4: Platform’s Interfaces

Chapter 7

System Validation and

Performance Evaluation

7.1 Introduction

For testing purposes, the platform was partitioned into two main sections.

In the first section the Spartan3 FPGA has been successfully configured by the

platform’s HPT module through Slave Serial configuration mode. This mode

provides the advantage of utilizing only 5 pins compared with the 12 pins used in

the SelectMAP mode, thus freeing valuable microcontroller’s pins. This of course

comes with the cost of extra configuration delay, since the entire configuration

file downloaded in the FPGA is serialized. In the other section, the system’s

overall behavior has been tested with a primary focus on task operations and

responses to external events.

7.2 FPGA Configuration

Spartan3 devices are configured, like most SRAM based FPGAs, by loading

application – specific configuration data into internal memory. The bitstream is

organized into 32-bit words. These words carry instructions for the

configuration logic, as well as data that will be stored in the configuration

memory. Configuration is carried out by using a subset of the device pins, some

of which are dedicated, while others can be reused as general – purpose inputs

and outputs after configuration is completed. The FPGA’s configuration memory

can be programmed in different ways by using either serial or parallel data.

Additionally by having an external device like the microcontroller supplying the

clock signal along with the data to the FPGA, it can be configured in what is

known as “Slave Serial” or “Slave Parallel” modes. The mode is specified by

setting values on the Spartan-3 mode pins (M0,M1 and M2).

System Validation and Performance Evaluation

59 |

Several of the Spartan3 configuration modes are selectable via mode pins.

The mode pins M0, M1, M2 are dedicated pins. Other dedicated pins are:

 CCLK: the configuration clock pin

 DONE: configuration status pin

 PROG_B: configuration reset pin

Device
Total Number of Configuration Bits

(including header)

XC3S50 439,264

XC3S200 1,047,616

XC3S400 1,699,136
XC3S1000 3,223,488

XC3S1500 5,214,784
XC3S2000 7,673,024

XC3S4000 11,316,864

XC3S5000 13,271,936
Table 5: SPARTAN3 Bit – Stream Lengths.

Configuration Mode M2 M1 M0
CCLK

Direction

Data

Width

Daisy

Chain

Master Serial
0 0 0 Out 1 Yes

Slave Serial 1 1 1 In 1 Yes

Master SelectMAP 0 1 1 Out 8 No

Slave SelectMAP 1 1 0 In 8 No

Boundary Scan 1 0 1 N/A 1 No

Table 6: Spartan3 Configuration mode pin settings.

7.2.1 3.3V Tolerant configuration interface

The connection of the microcontroller board to the FPGA required some

attention since it connects a board with 2.5V logic to one with 3.3V logic like the

STK500 board with the ATMega644. This is mainly because the DONE and

PROG_B pins are powered by the FPGA’s 2.5V VCCAUX supply. A Xilinx

application note describes this interface where series of resistors have to be

inserted on the dedicated configuration pins to account for the voltage drop [31].

System Validation and Performance Evaluation

60 |

The following figure shows the required connections for slave-serial

configuration.

Figure 23: 3.3V configuration of a Spartan-3 device in slave-serial mode

7.2.2 Spartan3 Slave Serial Configuration

In serial configuration mode, the FPGA is configured by loading one bit

per CCLK cycle. The FPGA’s CCLK pin is driven by an external source. In this case,

by the microcontroller’s CONF_CLK pin. The MSB of each data byte is always

written to the DIN pin first.

There are four major phases in the configuration process:

1. Clearing Configuration Memory

2. Initialization

3. Loading Configuration Data

4. Startup

System Validation and Performance Evaluation

61 |

Figure 24: Configuration Flow Diagram for the Serial Mode

In order for the device to enter the “Clearing Configuration Memory”

phase, the microcontroller must issue a HIGH to LOW to HIGH pattern in the

PROG_B pin thus resetting the device. The minimum time the microcontroller

holds the PROG_B pin low, is determined by the device’s datasheet and for the

current device is approximately 300 ns. The INIT_B pin of the FPGA transitions

HIGH when the clearing of the configuration memory is complete. For the

XC3S1000 device, this time is 3ms.

System Validation and Performance Evaluation

62 |

7.2.3 PTL Scripts

The following script was used as a “global” PTL script in order for the platform to

be able to (re)configure the attached SPARTAN3 FPGA

1 //PTL script for the configuration of

2 //a XC3S1000 device (3,223,488 bits = 402,936 Bytes)

3

4 program "serial"; // Set the programming mode to Serial

5

6 msb; // The MSB will be loaded first

7

8 clk high; // The configuration clock has a

9 // minimum low time

10

11 signal prog_b,done,init_b; // Three signals will be used

12

13 map // Signal Mapping

14 {

15 done <= 0; // done is an input and connected to

16 // CNTRL_PORT pin0 of the platform

17 prog_b => 1; // prog_b is an output and connected to

18 // CNTRL_PORT pin1 of the platform

19 init_b <= 2; // init_b is an input and is connected

20 // CNTRL_PORT pin2 of the platform

21 }

22

23 start //Start of script

24 set prog_b '1'; // Generate a high-low-high

25 set prog_b '0'; // pulse on the prog_b

26 set prog_b '1'; // signal

27

28 wait 148 //Wait 148 msec until init_b

29 // goes HIGH

30

31 get 1 //Retrieve the Control values

32 //to see that INIT_B is indeed HIGH

33 // Load 402 Kbytes + 936 bytes

34 loadb 255; // Load 255 bytes

35 get 1 // Get back values to see if

36 // INIT_B remains HIGH (if not error)

37 loadb 255; // Load 255 bytes

38 get 1 // Get back values to see if

39 // INIT_B remains HIGH (if not error)

40 loadb 255; // Load 255 bytes

41 get 1 // Get back values to see if

42 // INIT_B remains HIGH (if not error)

43 loadb 171; // Load 171 bytes

44 get 1 // Get back values to see if

45 // INIT_B remains HIGH (if not error)

46 loadkb 255; // Load 255 Kbytes

47

System Validation and Performance Evaluation

63 |

48 loadbk 147; // Load 147 Kbytes

49 // This is the size of the bit file

50 //

51

52 get 1; // Get back the values to see that

53 // DONE is HIGH (if so conf = SUCCESS)

53 end

In the above PTL script the configuration mode pins M0, M1, M2 are

assumed to be pre – defined by the user on the board. If not, then the PTL script

must be enriched with the following instructions at line 12:

static M0 ‘1’; // Set the mode pins to

static M1 ‘1’; // 111 to enable Slave

static M2 ‘1’; // Serial configuration mode

and the following instructions below line 13 in the pin mapping section:

M0 => 3; // The mode pins are statics and

M1 => 4; // can only be mapped as

M2 => 5; // outputs

7.3 SW Validation

In terms of system operation and validation, a number of simulation and

testing scenarios have been tested. Since we refer to a prototype platform tested

in a lab, all environmental readings were emulated by a series of input files from

the SD card. In all of the tests, the system operated with as expected

Furthermore, in one case, real environmental data have been used in

order to test the system’s overall behavior. Hydrologic data (level and Temp)

gathered from an environmental monitoring station deployed in the Koiliaris

River were used as validation input to the platform. The imported time series are

from data collected from a 2-year period with a constant sampling rate of 5

measurements per hour (Total: ~70000 measurements).

The simulation scenario referred to two independent tasks reading 1

measurement each every 0.5 secs, in order to shorten the simulation time. The

values from the task which read the water level values were compared with a

predefined threshold value. In this scenario, if this value was exceeded an FPGA

Configuration command would be issued, indicating that an extreme event was

System Validation and Performance Evaluation

64 |

occurring. The entire simulation period lasted 10hours during which time the

platform issued 6 FPGA configuration commands. This matches exactly with the

number of observed flood events as depicted in the following figure.

0,00

10,00

20,00

30,00

40,00

50,00

60,00

10/05 2/06 6/06 10/06 2/07 6/07

D
a
il
y
 fl

o
w

 (
m

3
/s

)

date

Flood Events detected in ~2year period: 6

Figure 25: Koiliaris River Flood Events Counts

7.3.1 Accompanied Task-INI Script

In one of the simulation and testing scenarios the Task-Ini file contained

the following parameters.

1 #“Data acquisition” Task

2 [level-LOG]

3 Type = 0

4 SENSOR = level

5 STORE = levelfile.txt

6 THOLD = 400

7 Act-TASK= Video

9 ReSCH = 1

10 #Reschedule at 5 minutes

11 Sched-type = 0,0,0,5,0

12

13

14 #“FPGA configuration” Task

15 [Video]

16 Type = 1

17 BITSTR: video.bit

18 STORE = filev.txt

19 Thold-Kill = 5

20 #Reschedule at 1 minute

21 ReSCH = 1

22 #Reschedule at uart even

23 Sched-type = 2, uart

24 FPGA_PR=3

25

26

System Validation and Performance Evaluation

65 |

27 #“Data acquisition” Task

28 [PH-LOG]

29 Type = 0

30 SENSOR = ph

31 STORE = phfile.txt

32 THOLD = 8

33 Act-TASK=

34 ReSCH = 1

35 #Reschedule every 2 minutes

36 Sched-type = 0,0,0,2,0

In this scenario, there are three user defined tasks, “PH-LOG”, “level-LOG”

and “Video”. It must be pointed out at this point, that the values and parameters

in this task-ini file are completely arbitrary and do not refer to real–life

environmental parameters.

As indicated by their values in the Type fields, the tasks “PH-LOG” and

“level-LOG” are Data Acquisition Task and are executed solely on the

microcontroller. “level-LOG” Task is rescheduled every 5 minutes and at that

time, it takes a reading from the attached flow sensor and stores it along with the

current timestamp in the “levelfile.txt” inside the SD Card. Furthermore, this task

compares the flow reading (value in centimeters) with the threshold value of 400

and if it is greater, it activates “Video” Task. With this task, we wanted to

describe that if there is a rise in the river level which reaches 4 meters, then we

are referring to a flood event and we enable the FPGA for further processing and

data gathering.

“Video” Task is actually a demo FPGA configuration task, which is

triggered by the “PH-LOG” task. As mentioned earlier, the system validation was

performed in two distinct sections. In this section, the FPGA configuration

process has not been fully tested. As a sign though that the “PH-LOG” task

triggers the FPGA Task properly, the “Video” task instead of initiating the FPGA

conf process, it writes to a log file (in the SD) the time that it started executing.

The “PH-LOG” task is a separate data-acquisition task that doesn’t affect

the FPGA operation. It takes a reading from a ph sensor every 2 minutes and

stores it in a file inside the SD card

Chapter 8

Conclusions – Future Work

8.1 Conclusions

This document presented the development of a dynamically

reconfigurable system for environmental monitoring. The platform’s main

objective is to serve a variety of tasks ranging from simple data logging to highly

computationally intensive ones. This is accomplished through the dynamic

reservation of the processing resources that the reconfigurable co-processor

offers only when needed.

The motivation for the current work and the issues and constraints that

this system has to address were investigated in order to derive guidelines for the

system’s hardware and software design. One of the main design goals was the

implementation of a dynamically reconfigurable platform both in terms of

software and hardware. Additionally the system’s layered – modular design

allows the use of every SRAM-based FPGA currently available in the market as a

co-processor without the need for redesign. This is also achieved because the

FPGA configuration mechanism is controlled by the HPT module integrated into

the system, which is a vendor – independent universal programmer.

8.2 Future Case Study

Experimental setup for image acquisition and processing tasks by the

FPGA is not implemented yet. An ideal real – life application would be the

analysis of video captured from the river in order to calculate the water’s

velocity vectors and river flow rates during a flood event.

One of the major advantages of introducing complex in-situ data

acquisition and analysis capabilities in a “water quality” monitoring system, such

Conclusions – Future Work

67 |

as automated motion estimation and river-flow calculation is that the volume of

data transmitted to the network will be greatly reduced.

8.3 Future Works

As mentioned in Chapter 5, the current FPGA configuration algorithm is

based on the FCFS (first-come, first-serve) policy. Despite the fact that all queued

tasks are prioritized, an active FPGA Task cannot be replaced by a queued one

with higher priority. In rare but critical conditions this could lead to task

“starvation” and ultimately in loosing valuable data. This can be resolved

through FPGA task (hw task) preemption. On preemption the state of the task

should be saved either by readback (if the FPGA supports it) or through some

other method. The current state of the FPGA would be saved along with the

accompanied software tasks running on the microcontroller and the FPGA would

be configured with a new configuration. After that, the FPGA would be

reconfigured with the configuration data retrieved through the readback

process. It resembles the PUSH, POP instructions of an interrupt driven routine

in a microcontroller.

For a hardware technology point of view, the major restriction of having

only 8 pins for the sensor interface can be alleviated by deploying a

microcontroller with more I/O pins, or by tripling its I/O capabilities with a

8255, Programmable Peripheral Interface, chip.

References

[1] M. Glesner, T. Hollstein, L. S. Indrusiak, et al., “Reconfigurable platforms for
ubiquitous computing”, Conf. Computing Frontiers 2004: 377-389.

[2] C. Plessl, R. Enzler, H. Walder, et al.,“Reconfigurable Hardware in Wearable
Computing”, Nodes. ISWC 2002: 215-222.

[3] J. Feng, F. Koushanfar, M. Potkonjak, "System-architectures for sensor
networks issues, alternatives, and directions," Computer Design: VLSI in
Computers and Processors, 2002. Proceedings. 2002 IEEE International
Conference on , vol., no., pp. 226- 231, 2002

[4] D. Moraetis, D. Efstathiou, F. Stamati, O. Tzoraki, N. P. Nikolaidis, J. L. Schnoor,
K. Vozinakis, “High-frequency monitoring for the identification of hydrological
and bio-geochemical processes in a Mediterranean river basin”, Journal of
Hydrology, Volume 389, Issues 1-2, Pages 127-136, 28 July 2010.

[5] Xilinx Inc: http://www.xilinx.com

[6] T. Todman, G. Constantinides, S. Wilton, O. Mencer, W. Luk, and P. Cheung,
“Reconfigurable computing: architectures and design methods,” in IEE
Proceedings: Computer & Digital Techniques, vol. 152, no. 2, pp. 193–208, March
2005.

[7] K. Compton and S. Hauck, “Reconfigurable computing: a survey of systems
and software,” ACM Computing Surveys, vol. 34, no. 2, pp. 171–210, 2002.

[8] B. Fletcher: “FPGA Embedded Processors,” in Embedded Systems Conference
San Francisco, CA, p. 18, 2005.

[9] Altera Corporation, http://www.altera.com

[10] Atmel Corporation, http://atmel.com

[11] D. Lymberopoulos, N. Priyantha, and F. Zhao, “mPlatform: A reconfigurable
architecture and efficient data sharing mechanism for modular sensor nodes,”
Information Processing in Sensor Networks, 2007, IPSN 2007, 6th International
Symposium on, pp. 128–137, April 2007.

[12] Y.E. Krasteva, J. Portilla, J.M. Carnicer, E. de la Torre, T. Riesgo: “Remote HW-
SW reconfigurable Wireless Sensor nodes” in 34th Annual Conference of IEEE,
Industrial Electronics, IECON 2008, p. 2483 – 2488, Orlando, FL 2008.

[13] A. Brokalakis, G-G. Mplemenos, K. Papadopoulos and I. Papaefstathiou,
"RESENSE: An Innovative, Reconfigurable, Powerful and Energy Efficient WSN
Node", IEEE International Conference on Communications (ICC 2011 Adhoc,
Sensor and Mesh Networking Symposium), 5-9 June 2011, Kyoto, Japan.

[14] S. J. Bellis, K. Delaney, B. O'Flynn, J. Barton, K. M. Razeeb, C. O'Mathuna,
“Development of field programmable modular wireless sensor network nodes
for ambient systems”, Computer Communications, Volume 28, Issue 13, Wireless
Sensor Networks and Applications - Proceedings of the Dagstuhl Seminar 04122.,
2 August 2005, Pages 1531-1544.

http://www.xilinx.com/
http://www.altera.com/
http://atmel.com/

Refe

69 |

[15] J.L. Wilder, V. Uzelac, A. Milenkovic, E. Jovanov, "Runtime Hardware
Reconfiguration in Wireless Sensor Networks," System Theory, 2008. SSST 2008.
40th Southeastern Symposium on , vol., no., pp.154-158, 16-18 March 2008

[16] H. Hinkelmann, A. Reinhardt, S. Varyani, and M. Glesner, “A reconfigurable
prototyping platform for smart sensor networks,” in Proceedings of the 4th
Southern Conference on Programmable Logic (SPL ’08), pp. 125–130, San Carlos
de Bariloche, Argentina, March 2008.

[17] P. Muralidhar and C. B. R. Rao, “Reconfigurable Wireless sensor network
node based on NIOS core,” in Proceedings of the 4th International Conference on
Wireless Communication and Sensor Networks (WCSN ’08), pp. 67–72,
Allahabad, India, December 2008

[18] P.Latha, M.A. Bhagyaveni, "Reconfigurable FPGA based architecture for
surveillance systems in WSN," Wireless Communication and Sensor Computing,
2010. ICWCSC 2010. International Conference on , vol., no., pp.1-6, 2-4 Jan. 2010

[19] D. Efstathiou, K. Kazakos, A. Dollas, "Parrotfish: Task Distribution in a Low
Cost Autonomous ad hoc Sensor Network through Dynamic Runtime
Reconfiguration," fccm, pp.319-320, 14th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM'06), 2006

[20] H. Hinkelmann, A. Reinhardt, M. Glesner, "A Methodology for Wireless
Sensor Network Prototyping with Sophisticated Debugging Support," Rapid
System Prototyping, 2008. RSP '08. The 19th IEEE/IFIP International Symposium
on , vol., no., pp.82-88, 2-5 June 2008

[21] J. Portilla, T. Riesgo, and A. de Castro, “A Reconfigurable FPGA-Based
Architecture for Modular Nodes in Wireless Sensor Networks” In Proc. 3rd
Southern Conference on Programmable Logic, pages 203–206, 2007.

[22] B. O’Flynn, S. Bellis, K. Delaney, J. Barton, S. C. O’Mathuna, A. M. Barroso, J.
Benson, U. Roedig, and C. Sreenan, “The Development of a Novel Minaturized
Modular Platform for Wireless Sensor Networks”, In Proc. 4thInt. Symp. on
Information Processing in Sensor Networks, pages 370–375, 2005.

[23] D.Efstathiou, Diploma Thesis, “Design and Implementation of a Vendor-
Independent Universal Programmer for FPGA Technology”, MHL, ECED
Department, Technical University of Crete, Greece, July 2002.

[24] T.Kyriakides, Diploma Thesis, “Development of a Language and Universal
Run – Time Environment for FPGA programming”, MHL, ECED Department,
Technical University of Crete, Greece, July 2002

[25] A. Dollas, D. Efstathiou, and T. Kyriakides, “A universal low cost runtime and
programming environment for reconfigurable computing,” in Proceedings of the
14th IEEE International Workshop on Rapid Systems Prototyping (RSP’03), IEEE
Computer Society, 2003.

[26] OPEX Scheduler v1.0 http://www.atmanecl.com/EnglishSite/opex.htm,
Atman Electronics,

[27] Atmel Corporation, ATMega644 Datasheet:
http://www.atmel.com/dyn/resources/prod_documents/doc2593.pdf

http://www.atmanecl.com/EnglishSite/opex.htm
http://www.atmel.com/dyn/resources/prod_documents/doc2593.pdf

Refe

70 |

[28] S3 Board User Manual, “Spartan-3 Starter Kit Board User Guide”, available
online at:
http://www.digilentinc.com/Data/Products/S3BOARD/S3BOARD_RM.pdf,
UG130 (v1.1) May 13, 2005

[29] Digilent Inc.: http://www.digilentinc.com/

[30] Xilinx Spartan 3 FPGA Family Datasheet.:
http://www.xilinx.com/support/documentation/data_sheets/ds099.pdf

[31] K. Goldblatt, “XAPP453 (v1.1.1): The 3.3V configuration of Spartan-3
FPGAs,” Xilinx,” Application note, June 2008.

http://www.digilentinc.com/Data/Products/S3BOARD/S3BOARD_RM.pdf
http://www.digilentinc.com/
http://www.xilinx.com/support/documentation/data_sheets/ds099.pdf

