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Abstract

The majority of reinforcement learning algorithms available today, focus on approxi-

mating the state (V ) or state-action (Q) value function and efficient action selection

comes as an afterthought. On the other hand, real-world problems tend to have large

action spaces, where evaluating every possible action becomes impractical. This mis-

match presents a major obstacle in successfully applying reinforcement learning to

real-world problems. This thesis presents an effective approach to learning and act-

ing in domains with multidimensional and/or continuous control variables, where

efficient action selection is embedded in the learning process. Instead of learning

and representing the state or state-action value function of the Markov Decision

Process (MDP), we learn a value function over an implied augmented MDP, where

states represent collections of actions in the original MDP and transitions represent

choices eliminating parts of the action space at each step. Action selection in the

original MDP is reduced to a binary search by the agent in the transformed MDP,

with computational complexity logarithmic in the number of actions, or equivalently

linear in the number of action dimensions. This method can be combined with

any discrete-action reinforcement learning algorithm, for learning multidimensional

continuous-action policies using a state value approximator in the transformed MDP.

Results with two well-known reinforcement learning algorithms (Least-Squares Policy

Iteration and Fitted-Q Iteration) on three continuous action domains (1-dimensional

inverted pendulum regulator, 1-dimensional double integrator, and 2-dimensional
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bicycle balancing) demonstrate the viability and the potential of the proposed ap-

proach.
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Περίληψη

Η πλειονότητα των αλγορίθμων ενισχυτικής μάθησης που είναι διαθέσιμοι σήμερα ε-

στιάζουν στην προσέγγιση της συνάρτησης αξιολόγησης ως προς τις καταστάσεις (V )

ή ως προς τα ζεύγη καταστάσεων-ενεργειών (Q) και η αποτελεσματική επιλογή ενερ-

γειών αφήνεται σε δεύτερη μοίρα. Από την άλλη πλευρά, τα προβλήματα του πραγ-

ματικού κόσμου τείνουν να έχουν μεγάλους χώρους ενεργειών, όπου η αξιολόγηση

κάθε δυνατής ενέργειας καθίσταται ανέφικτη. Η αναντιστοιχία αυτή προβάλλει ένα

σημαντικό εμπόδιο στην επιτυχή εφαρμογή ενισχυτικής μάθησης σε προβλήματα του

πραγματικού κόσμου. Η παρούσα εργασία παρουσιάζει μια αποτελεσματική προσέγγιση

στη πρόβλημα της μάθησης και της επιλογής ενεργειών σε πεδία με πολυδιάστατες

ή/και συνεχείς μεταβλητές ελέγχου, όπου η αποδοτική επιλογή ενέργειας είναι ενσω-

ματωμένη στη διαδικασία μάθησης. Αντί να μαθαίνει και να αναπαριστά κάποιος τη

συνάρτηση αξιολόγησης (V ή Q) της Μαρκωβιανής Διεργασίας Αποφάσεων (Markov

Decision Process - MDP), μαθαίνει μια συνάρτηση αξιολόγησης πάνω σε μια μετα-

σχηματισμένη (επαυξημένη) διεργασία, όπου οι καταστάσεις αντιπροσωπεύουν συλ-

λογές ενεργειών της αρχικής διεργασίας και οι μεταβάσεις αντιπροσωπεύουν επιλογές

εξάλειψης τμημάτων του χώρου ενεργειών σε κάθε βήμα. Η επιλογή ενέργειας στην

αρχική διεργασία ανάγεται σε δυαδική αναζήτηση από τον πράκτορα στη μετασχηματι-

σμένη διεργασία, με πολυπλοκότητα λογαριθμική ως προς το πλήθος των ενεργειών,

ή ισοδύναμα γραμμική ως προς τις διαστάσεις του χώρου ενεργειών. Η μέθοδος αυτή

μπορεί να συνδυαστεί με οποιονδήποτε αλγόριθμο ενισχυτικής μάθησης για διακριτές
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ενέργειες για την εκμάθηση πολιτικών για πολυδιάστατους συνεχείς χώρους ενεργειών

με τη χρήση προσέγγισης για τη συνάρτηση αξιολόγησης ως προς τις καταστάσεις

στη μετασχηματισμένη διεργασία. Τα αποτελέσματα σε συνδυασμό με δύο γνωστούς

αλγορίθμους ενισχυτικής μάθησης (Least-Squares Policy Iteration και Fitted-Q Itera-

tion) σε τρία πεδία με συνεχείς ενέργειες (1-dimensional inverted pendulum regulator,

1-dimensional double integrator, και 2-dimensional bicycle balancing) αναδεικνύουν

τη βιωσιμότητα και τις προοπτικές της προτεινόμενης προσέγγισης.
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1

Introduction

Learning from experience. An ability at which humans excel, and has allowed us to

progress much faster than other species. Until recently, learning from experience was

an ability exclusive to living things. The last few years have seen more and more

applications of machines learning from data. One very simple application, we are

all familiar with, are spam filters. Using “spam”/“not spam” flags from users, spam

filters learn how to separate useful from spam emails, relieving users from having to

go through every email on their own.

Machine learning has found many applications besides spam filters. However,

two common traits that most successful applications have in common, is that the

learning algorithm has some source of positive and negative examples, and that they

are “one-shot”. By one-shot, we mean that it is generally assumed, that the decision

of whether to flag a particular email as spam does not change the distribution of

emails we’ll receive in the future. This type of learning is commonly known as

supervised learning.

An arguably much more interesting setting is that of sequential decision making

without an explicit source of correct or incorrect behavior. It becomes even more
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interesting (and realistic) when we assume that we have no, or very little, knowledge

about the environment. Problems that fall under this category include problems as

diverse as scheduling a fleet of delivery trucks, flying an autonomous helicopter, or

even controlling the electric power distribution of an entire country. Reinforcement

learning is a subfield of machine learning that deals with these types of problems.

Perhaps somewhat surprisingly, even though Reinforcement Learning (RL) deals

with a class of very interesting problems, it has yet to find a killer application. This

can be attributed to a number of things. First of all, the problems that RL tries

to address are generally more complex than many other machine learning problems.

Secondly, RL is still a relatively young field. Even though it has shown much promise

in toy domains in laboratory settings, there are a still obstacles it needs to overcome

before it becomes successful in the real world.

This thesis deals with one particular obstacle that seems to universally cripple RL

algorithms and appears in almost all interesting real world domains: making decisions

efficiently, when the number of actions available at each timestep is large. A large

action space can be the result of a finely discretized continuous action space, or a

multidimensional action space yielding many action combinations, or a combination

thereof.

1.1 Contribution

This thesis addresses the problem of learning and acting in domains with multidi-

mensional and/or continuous state-action spaces, when we can make no convexity or

other strong simplifying assumptions about the shape of the value function. The ap-

proach presented yields a sample-efficient, constant-time, limited-resource algorithm,

suitable for real-world embedded and/or high-performance applications.

Efficient action selection is directly embedded into the learning process, where

instead of learning and representing the state or state-action value function over the
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original MDP, a state value function over an implied augmented MDP is learned,

whose states also represent collections of actions in the original MDP and transitions

also represent choices eliminating parts of the action space. Thus, action selection

in the original MDP is reduced to binary search in the transformed MDP, whose

complexity is linear in the number of action dimensions. It is shown that the rep-

resentational complexity of the transformed MDP is within a factor of 2 from that

of the original MDP, without relying on any assumptions about the shapes of the

action space and/or the value function.

1.2 Thesis outline

Chapter 2 provides the necessary background of the ideas this thesis builds upon.

A brief introduction is given to Reinforcement Learning and Markov Decision Pro-

cesses. Additionally, Fitted-Q iteration, and Least Squares Policy Iteration, the

Reinforcement Learning algorithms used in the experiments throughout this thesis,

are summarized.

Chapter 3 motivates the need for continuous and multidimensional action spaces

and explains why this is such a difficult problem to solve.

Chapter 4 is an overview of previous related work in the area, along with a

discussion of the strengths and weaknesses of each type of approach.

Chapter 5 presents the approach advocated in this thesis, states a number of

important properties and gives a concrete algorithm implementation.

Chapter 6 demonstrates the applicability of the proposed approach when coupled

with modern reinforcement learning algorithms such as Fitted-Q iteration, and Least

Squares Policy Iteration, in the inverted pendulum, double integrator, and bicycle

balancing domains.

Chapter 7 discusses the strengths and weaknesses of the approach, gives a number

of guiding directions for future work, and concludes this thesis with a brief summary.
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Finally, Appendix A provides an equivalent Q-value formulation, which can be

used as an alternative to the V -value formulation presented in Chapter 5.
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2

Background

2.1 Agents and environments

An agent can be anything that has the ability to perceive some aspect(s) of its

environment and act. The environment is what our agent perceives as the “outside”

world. It can be the real world, a room, a simulated labyrinth, or even an actuator.

Considering an actuator as part of the environment, rather than part of the agent,

may at first seem unnatural. However, in the cases that we are interested in, the

agent will usually have no prior knowledge about the results of its own actions. This

is very similar to the behavior of a newborn baby, who initially knows nothing about

controlling his/her own arms and legs. Thus, our agents will treat everything as part

of the environment, even parts of their bodies, and use their observations to learn

how to interact with it in a beneficial way.

Environments are in most cases stochastic. What this means for our agent, is

that, even if everything in the environment is the same between two repetitions of

an experiment (we are in the same state), an action may have different outcomes.

The difference between outcomes can be sharp as in the (discrete) case of a coin toss
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that may produce heads or tails, or it can be more subtle and fine-grained, as in the

(continuous) case of a free running motor that rotates within a certain speed range

when voltage is applied to its terminals.

2.2 Markov Decision Processes (MDP)

A Markov Decision Process (Puterman, 1994), is a discrete-time mathematical decision-

making modeling framework, particularly useful when the outcome of a process is a

function of the agent’s actions perturbed by noise. MDPs have found extensive use

in areas such as economics, control, manufacturing, and Reinforcement Learning.

An MDP is defined as a 6-tuple pS,A,P ,R, γ,Dq, where:

• S is the state space of the process. It can be finite set, or it can be infinite as is

the case when there is some state variable that can take values in a continuous

range. The current state s is assumed to be a complete description of the state

of the environment at the current timestep.

• A is the action space of the process. Just like the state space, it can be finite

or infinite. The set of actions are the possible choices an agent has at each

timestep.

• P is a Markovian transition model, where P ps1|s, aq denotes the probability of

a transition to state s1 when taking action a in state s. The Markov property,

implies that the probability of making a transition to state s1 when taking

action a in state s, depends only on the current s and a and not on the history

of the process.

• R is the reward function (scalar real-valued) of the process. It is Markovian as

well, and Rps, a, s1q represents the expected immediate reward for any transi-

tion from s to s1 under action a at any timestep. The expected reward for a

6



state-action pair ps, aq, is defined as:

Rps, aq �
¸
s1PS

Pps1|s, aqRps, a, s1q .

• γ P r0, 1q is the discount factor. It is a way to express the fact that we care more

about rewards received now, than in the distant future. The reward we receive

at the current timestep is weighted by 1, while future rewards are exponentially

discounted by γt. In the extreme case where γ � 0, the problem degenerates

to picking the action that will yield the largest immediate reward (supervised

learning). As γ gets closer to 1, we may sacrifice short term benefits to achieve

higher rewards later.

• D is the initial state distribution. It describes the probability each state in S

has to be the initial state. In some problems most states have a zero probability,

while few states (possibly only one) are candidates for being an initial state.

2.3 Policies and value functions

A policy π is a mapping from states to actions. It defines the response (which may be

deterministic or stochastic) of an agent in the environment for any state it encounters

and it is sufficient to completely determine its behavior. In that sense πpsq is the

action chosen in state s by the agent following policy π.

An optimal policy π�, also known as an “undominated optimal policy”, is a policy

that yields the highest expected utility in the long run. That is, it maximizes the

expected total discounted reward under all conditions (over the entire state space).

For every MDP there is at least one such policy although it may not be unique (mul-

tiple policies can be undominated; hence yielding equal expected total discounted

reward through different actions).
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The value Vπpsq of a state s under a policy π is defined as the expected, total,

discounted reward when the process begins in state s and all decisions are made

according to policy π:

Vπpsq � Eat�π;st�P

�
8̧

t�0

γtR
�
st, at

����s0 � s

�
.

The value Qπps, aq of a state-action pair ps, aq under a policy π is defined as the

expected, total, discounted reward when the process begins in state s, action a is

taken at the first step, and all decisions thereafter are made according to policy π:

Qπps, aq � Eat�π;st�P

�
8̧

t�0

γtR
�
st, at

����s0 � s, a0 � a

�
.

The goal of the decision maker is to find an optimal policy π� for choosing actions,

which maximizes the expected, total, discounted reward for states drawn from D:

π� � arg max
π

Es�D rVπpsqs � arg max
π

Es�D
�
Qπ

�
s, πpsq

��
.

For every MDP, there exists at least one optimal deterministic policy. If the value

function Vπ� is known, an optimal policy can be extracted, only if the full MDP model

of the process is also known to allow for one-step look-aheads. On the other hand,

if Qπ� is known, a greedy policy, which simply selects actions that maximize Qπ�

in each state, is an optimal policy and can be extracted without the MDP model.

Value iteration, policy iteration, and linear programming are well-known methods

for deriving an optimal policy, a problem known as planning, from a (not too large)

discrete MDP model.

2.4 Reinforcement Learning (RL)

In Reinforcement Learning (Kaelbling et al., 1996; Sutton and Barto, 1998; Russel

and Norvig, 2003), a learner interacts with a stochastic process modeled as an MDP.
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It is usually assumed that the agent knows nothing about how the environment works

or what the results of its actions are (does not have access to the model P and reward

function R of the underlying MDP). Additionally, in contrast to supervised learning,

there is no teacher to provide samples of correct or bad behavior.

The goal is to gradually learn an optimal policy using the experience collected

through interaction with the process. At each step of interaction, the learner observes

the current state s, chooses an action a, and observes the resulting next state s1 and

the reward received r, essentially sampling the transition model and the reward

function of the process. Thus, experience comes in the form of ps, a, r, s1q samples.

Two related problems fall within Reinforcement Learning: prediction and control.

In prediction problems, the goal is to learn to predict the total reward for a given fixed

policy, whereas in control the agent tries to maximize the total reward by finding a

good policy. These two problems are often seen together, when a prediction algorithm

evaluates a policy and a control algorithm subsequently tries to improve it.

The learning setting is what characterizes the problem as a Reinforcement Learn-

ing problem. Any method that can successfully reach a solution, is considered as a

Reinforcement Learning method. This means that very diverse algorithms coming

from different backgrounds can be used; and that is indeed the case. Most of the

approaches can be distinguished into Model-Based learning and Model-Free learning.

In Model-Based learning, the agent uses its experiences in order to learn a model

of the process and then find a good decision policy through planning. Model-Free

learning on the other hand, tries to learn a policy directly without the help of a

model. Both approaches have their strengths and weaknesses (in terms of guarantee

of convergence, speed of convergence, ability to plan ahead, use of resources).
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2.5 Learning algorithms

In this section, we provide a brief introduction to two reinforcement learning algo-

rithms used in the experiments. We should stress that while these learning algorithms

are a popular choice, the methods presented in this thesis are designed so that they

can be combined with any reinforcement learning algorithm beyond these two.

2.5.1 Fitted Q Iteration (FQI)

Fitted-Q Iteration (Ernst et al., 2005), is an approximate version of the value iteration

algorithm using Q-values. It uses a batch of samples and a supervised learning

(regression) algorithm in the inner loop, to successively approximate and improve

the value function. Instead of trying to learn the V value function as is typical for

exact value iteration, FQI learns the Q value function from samples, allowing it to

perform a model-free maximization step for policy improvement at each iteration.

One of its biggest strengths is that it can be combined with any linear or non-linear

function approximator (regressor). In particular, it has been demonstrated to achieve

excellent performance when combined with random forest type approximators, as well

as neural networks (Riedmiller, 2005). Figure 2.1 summarizes the Fitted-Q Iteration

algorithm.

2.5.2 Least-Squares Policy Iteration (LSPI)

Least-Squares Policy Iteration (Lagoudakis and Parr, 2003) is a reinforcement learn-

ing algorithm based on the approximate policy iteration framework, whereby at each

iteration an improved policy is produced as the greedy policy over an approximation

of the value function of the previous policy. LSPI uses linear approximation architec-

tures consisting of a weighted sum of a set of basis functions φ for representing value

functions. The value function of each policy is learned by solving a linear system

formed using a set of samples from the process and the fixed-point property of the
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Fitted Q-Iteration (D, γ, N)
// D : Source of samples ps, a, r, s1q
// N : Number of iterations
k Ð 0
Qk Ð 0
do

TS ÐH
for each ps, a, r, s1q in D

TS Ð TS Y
 �
ps, aq, pr � γ maxa1PAQ

kps1, a1qq
�(

Qk�1 Ð use regression on TS
k Ð k � 1

while (k   N)
return QN

Figure 2.1: The Fitted Q-Iteration algorithm.

value function under the Bellman equation. Although, there is no guarantee that

improvement will be monotonic, it is guaranteed that the iteration will not diverge,

and indeed in most cases it converges in a few iterations, otherwise it oscillates within

a small region. LSPI is summarized in Figure 2.2.
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LSPI (D, φ, γ, ε)
// D : Source of samples ps, a, r, s1q
// φ : Basis functions
// γ : Discount factor
// ε : Stopping criterion
w1 Ð 0
repeat

w Ð w1

A Ð 0
bÐ 0
for each ps, a, r, s1q in D

a1 � arg maxa2PAw
Jφps1, a2q

A Ð A� φps, aq
�
φps, aq � γφps1, a1q

	J
bÐ b� φps, aqr

w1 Ð A�1b
until (}w � w1}   ε)
return w

Figure 2.2: The Least Squares Policy Iteration (LSPI) algorithm.
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3

Problem Statement

3.1 Why are continuous actions necessary?

Most benchmark domains in reinforcement learning are modeled with discrete ac-

tions. It is disheartening that some researchers are so out of touch with the require-

ments of real-world applications, that they even claim that “discrete actions seem to

work well enough, what is the point of continuous actions”1.

Let’s look at one of the most popular benchmarks for reinforcement learning, the

inverted pendulum problem (Wang et al., 1996). It requires balancing a pendulum

of unknown length and mass at the upright position by applying forces to the cart to

which it is attached. The 2-dimensional continuous state space includes the vertical

angle θ and the angular velocity 9θ of the pendulum.

Typically three actions are used: force of �50 ,50 and 0 newtons. The domain is

approached as an avoidance task, with zero reward as long as the pendulum is above

the horizontal configuration, and a negative reward when the controller fails and the

pendulum falls. In simulation, this scheme does indeed work fine. Unfortunately it

is very far from any real world application’s requirements.

1 The author has heard this particular phrase more than once.

13



The first problem, is that the mechanical stresses placed on the drivetrain of a

controller that only has such extreme actions available to it, would wear the setup

in a very short amount of time. On the other hand, a controller with a much more

fine-grained action set, would be able to use much lower force magnitudes when

correcting for small deviations. In addition the resulting controller may be more

stable, especially in noisy situations. A controller with only three actions often

has to choose between overcompensating for a small deviation, or waiting another

timestep till the accumulated deviation is larger. A continuous controller does not

face this predicament. It can compensate just the right amount.

Finally, in a real-world application, we would care about much more than just

staying balanced. For instance we would probably also care about not spending

a huge amount of energy. Since force used is directly related to energy used, this

would require much more fine-grained actions that can correct for deviations while

minimizing applied forces.

3.2 Are continuous actions possible?

One could argue that whenever a digital circuit is controlling something in the real

world, we can never have truly continuous actions. For example, to control the

position of a servo, the voltage at the terminals of a motor, or even the brightness of

a light emitting diode (LED) we would be using pulse width modulation (PWM) with

the duty cycle controlled by an 8-12 bit register. In such a situation we don’t really

have a “continuous” action space, but a finely discretized one. However, these spaces

are more than just a collection of 28 to 212 unrelated actions. They are structured,

and nearby actions have similar outcomes. For our purposes we will call such a finely

discretized action space continuous.
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3.3 Multidimensional action spaces

Apart from a finely discretized continuous action space, another reason why we may

have a large number of actions, is the presence of many action variables. Consider

for example the task of controlling an autonomous helicopter. In that case, we’ll

have (at least) four control variables. The yaw, pitch and roll rates, as well as the

collective pitch. If every control variable has an 8-bit resolution, the combined state

action space will have 28 � 28 � 28 � 28 � 232 actions.

One approach sometimes used in such cases, is to model the problem as a multi-

agent domain. The reasoning is that it may be easier to learn multiple simple con-

trollers, than one more complex one. Unfortunately not only does such an approach

present additional design difficulties, but it can also lead to highly suboptimal solu-

tions.

The first difficulty with the multiagent approach, is that in order to decompose

the action space, we will also need to decompose the state space and reward function

to the relevant components for each controller. Depending on the problem this may

be far from trivial.

The second and far more dangerous issue, is that if cooperation between the

different agents is required to achieve good performance, an approach that has not

accounted for that may end up yielding highly suboptimal solutions. On the other

hand, an approach that accounts for communication between the agents to achieve

a globally good solution, will likely be more complex than solving the original single

agent problem.

3.4 Why are large action spaces a problem?

From the discussion above, we can see that both continuous and multidimensional

action spaces essentially boil down to a large action space. This section explains
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why large action spaces present a problem for common, value-function-based RL

algorithms.

Suppose we are using Q value functions. Then at every timestep, when asked to

select an action, the controller has to perform a maximization, namely arg maxaQps, aq

where s is the current state. In the helicopter example above, this would mean evalu-

ating the value function at 232 points and picking the maximum. This would present

a problem even in simulation, let alone in a real embedded platform, where we would

only have a few milliseconds to make a decision.

Similarly, if we were using the V value function, in the example above, we would

need to evaluate the reward and transition models as well as the value function 232

times per timestep.

Additionally, computing the value function would be a problem as well. Algo-

rithms such as (approximate) value and policy iteration, perform a maximization

step at each iteration. This would mean that we would have to perform Op232q

operations per sample point (state or state-action pair), per iteration.

It should be obvious by now that action selection in multidimensional and/or

continuous action spaces, is not a trivial problem that can be solved by brute force

methods. A more elegant solution is required. The next chapter presents some

related work that has appeared in the literature.
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4

Related Work

4.1 Scope

Our focus is on problems where decisions must be made under strict time and hard-

ware constraints, with no access to a model of the environment. Such problems

include many control applications, such as controlling an unmanned aerial vehicle

or a dynamically balanced humanoid robot. Extensive literature exists in the math-

ematical programming and operations research communities dealing with problems

having many and/or continuous control variables. Unfortunately, the majority of

these results are not very well suited for our purposes. Most assume availability of a

model and/or do not directly address the action selection task, leaving it as a time

consuming, non-linear optimization problem that has to be solved repeatedly during

policy execution. Thus, our survey will be focused on approaches that align with the

assumptions commonly made by the RL community.

4.2 The main categories

There are two main components in every approach to learning and acting in con-

tinuous and/or multidimensional action spaces. The first is the choice of what to
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represent, while the second is how to choose actions.

Even though many RL approaches have been presented in the context of some

representation scheme (neural-networks, CMACs, nearest-neighbors), upon careful

analysis we realized that, besides superficial differences, most of them are very similar

to one another. In particular, three main categories can be identified.

4.2.1 Combined state-action approximators

The first and most commonly encountered category uses a combined state-action

approximator for the representation part, thus generalizing over both states and

actions. Since approaches in this category essentially try to learn and represent the

same thing, they only differ in the way they query this value function in order to

perform the maximization step.

In the simplest case, if the value function is assumed to be convex given the state,

and the approximator used is differentiable, finding the maximum is straightforward.

While there are many large scale problems for which such an assumption is true, or

at least approximately true, it is not the case in the kinds of control tasks we are

primarily interested in this thesis.

In the more general case, the maximization step can involve sampling the value

function in a uniform grid over the action space at the current state and picking

the maximum, Monte Carlo search, Gibbs sampling, stochastic gradient ascent, and

other optimization techniques.

One should immediately notice, that the aforementioned approaches don’t have

any significant difference from approaches in other communities where the maxi-

mization step is recognized as a non-linear maximization task, and is tackled with

standard mathematical packages. To our knowledge, all the methods proposed for

the maximization step have already been studied outside the RL community, and

their optimized versions have made it into popular mathematical packages.
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4.2.2 Action mixing

The second category deals predominantly with continuous (rather than multidimen-

sional) control variables and is usually closely tied to online learning. The action

space is discretized and a small number of different, discrete, approximators are used

for representing the value function.

When acting, instead of picking the discrete action that has the highest value,

the actions are somehow “mixed” depending on their relative values or “activations”.

The mixing can be either between the discrete action with the highest predicted value

and its closest neighbor(s), or even a weighted average over all discrete actions (where

the weights are the predicted values).

Online learning comes into play in the way the action values are updated. The

learning update is distributed over the actions that were used to produce the action,

hence with multiple updates, the values that each discrete action approximator rep-

resents, may drift far from what the value of that particular discrete action is for the

domain in question.

While these schemes allow the agent to develop preferences for actions that fall

between approximators, it is unclear under what conditions they converge. Addi-

tionally, such approaches scale poorly to multidimensional action spaces. Even for a

small number of discrete actions from which one can interpolate in each dimension,

the combinatorial explosion soon makes the problem intractable. In order to deal

with this shortcoming, the domain is often partitioned into multiple independent

subproblems, one for each control variable. However, by assigning a different agent

to each control variable, we are essentially casting the problem into a multiagent

setting, where avoiding divergence or local optima is much more difficult.
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4.2.3 Policy gradient

Policy gradient methods (Peters and Schaal, 2006) circumvent the need for value

functions by representing policies directly. One of their main advantages is that the

approximate policy representation can often output continuous actions directly. In

order to tune their policy representation, these methods use some form of gradient

descent, updating the policy parameters directly. While they have proven effective at

improving an already reasonably good policy, they are rarely as effective in learning

a good policy from scratch, due to their sensitivity to local optima. In addition very

few of these algorithms come with any kind of useful guarantees about the quality

of the solution.

4.3 Common approaches

In this section, I provide a brief description of what I believe is a representative

sample of approaches from the categories above, that have appeared in the RL liter-

ature. This discussion does not, in any way, attempt to be complete. The goal is to

highlight the similarities and differences between these approaches and provide my

own (biased) view of their strengths and weaknesses.

Santamaŕıa, Sutton, and Ram (Santamaŕıa et al., 1998) provide one of the ear-

liest successful examples of generalizing across both states and actions in RL. They

demonstrate that a combined state-action approximator can have an advantage in

continuous action spaces, where neighboring actions have similar outcomes. Their

approach was originally presented in conjunction with CMACs (Albus, 1975), how-

ever it can be combined with almost any type of approximator. It has proven to be

effective at generalizing over continuous action spaces and can be used with multiple

control variables. Unfortunately, it does not address the problem of efficient action

selection. Without further assumptions, it requires an exhaustive search over all
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available action combinations, which quickly becomes impractical as the size of the

action space grows.

One popular approach to dealing with the action selection problem is sam-

pling (Sallans and Hinton, 2004; Kimura, 2007). The representation is the same

as above, however, using some form of Monte-Carlo estimation, the controller is

able to choose actions that have a high probability of performing well, without ex-

haustively searching over all possible actions (Lazaric et al., 2008). Unfortunately,

the number of samples required in order to get a good estimate can be quite high,

especially in large and not very well-behaved action spaces.

Originally presented in conjunction with incremental topology-preserving maps,

continuous-action Q-learning (Millán et al., 2002), can be generalized to use other

types of approximators. The idea is to use a number of discrete approximators

and output an average of the discrete actions weighted by their Q-values. The

incremental updates are proportional to each unit’s activation. Ex a¡ (Mart́ı•n H.

and de Lope, 2009) differs from continuous-action Q-learning in that it interprets Q-

values as probabilities. When it comes to selecting a maximizing action and updating

the value function, the idea is very similar to continuous-action Q-learning. In this

case, the continuous action is calculated as an expectation over discrete actions.

4.4 Non-stardard approaches

This section provides a brief description of a number of approaches that do not fall

into the categories presented above.

Scaling efficient action selection to multidimensional action spaces has been pri-

marily investigated in collaborative multi-agent settings, where each agent corre-

sponds to one action dimension, under certain assumptions (factored value function

representations, hierarchical decompositions, etc.). The work most relevant to that

of this thesis is that of Bertsekas and Tsitsiklis Bertsekas and Tsitsiklis (1996). In
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section 6.1.4 of their book they introduce a generic approach of trading off control

space complexity with state space complexity by making incremental decisions over

an augmented state space. This idea was further formalized by de Farias and Van

Roy (de Farias and Roy, 2004) as an MDP transformation encoding multidimen-

sional action selection into a series of simpler action choices. This thesis could be

considered as a concrete implementation of the above ideas in a model-free setting.

Pazis and Parr (2011a) present a new type of value function (called the H-value

function) which can be used to select actions in time logarithmic to the number of

actions, and also takes up space logarithmic to the number of actions. Unfortunately

its construction is only straightforward when approximate linear programming is used

as the learning method, which requires noise free samples. In addition, because it

only tries to approximate the values of the best actions, it does not seem very well

suited for online learning or exploration.

Finally, some methods exploit certain domain properties, such as temporal local-

ity of actions (Riedmiller, 1997; Pazis and Lagoudakis, 2009b), modifying the current

action by some small amount ∆ at every step. However not only do they not scale

well to multidimensional action spaces, but their performance is also limited by the

implicit presence or explicit use of a low pass filter on the action output, since they

are only able to pick actions close to the current one.
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5

Action Search

This chapter presents the V -value formulation of action search, consistent with Pazis

and Lagoudakis (2011). For an alternative Q-value formulation consistent with Pazis

and Lagoudakis (2009a), see Appendix A.

As described in the previous chapter, there are two main components in every

approach to learning and acting in continuous and/or multidimensional action spaces.

Each component aligns with one of the two problems that surface when the number

of available actions becomes large. The first problem is how to generalize among

different actions. It has long been recognized that the naive approach of using a

different approximator for each action quickly becomes impractical, just as tabular

representations become impractical when the number of states grows. Even though

this problem is far from being solved, there has been significant progress.

The second issue, which becomes apparent when the number of available actions

becomes too large, is that selecting the right action using a reasonable amount of

computation becomes non-trivial. Even if we have an optimal state-action value

function, the number of actions available at a particular state may be too large to

enumerate at every step. This is especially true in multidimensional action spaces
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where, even if the resolution of each control variable is low, the available action

combinations grow exponentially. While many approaches offer a reasonable com-

promise between computational effort and accuracy in action selection, there is room

for significant improvement.

5.1 Designing for efficient action selection

It should be apparent from the previous discussion that most approaches deal with

the two problems separately. I believe that in order to be able to provide an adequate

answer to the action selection problem, we must design our representation to facilitate

it, and this is the approach explored in this thesis. The value function learned

is designed to allow efficient action selection, instead of the latter coming as an

afterthought. We are able to do this without making any assumptions about the

shape of, or our ability to decompose, the action space.

The problem of generalizing among actions is transformed to a problem of general-

izing among states in an equivalent MDP, where action selection is trivial. Arguably

such an approach does not offer any reduction in the complexity of what has to be

learned (in fact we will show that in the case of exact representation the memory

requirements are within a factor of 2 from the original). Nevertheless, the benefits of

using such an approach are twofold. Firstly, it allows us to leverage all the research

devoted to effective generalization over states. Instead of having to deal with two

different problems, generalizing over states and generalizing over actions, we now

have to deal with the single problem of generalizing over states. Secondly, it offers

an elegant solution to the action selection problem, which requires exponentially less

computation per decision step1.

1 Note that this speedup also affects the learning phase of algorithms such as LSPI and FQI. It has
been observed that when the number of actions grows beyond a certain point, the time to perform
the maximization step may dominate the execution time of the algorithm.
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5.2 Intuition

Before we formally describe the algorithm and the MDP transformation, we should

give some intuition behind our approach.

Consider an MDP with 2N actions. In the absence of any other information,

2N evaluations and comparisons are required to find the maximizing action. Even

for moderate N this can be a problem. What if we could decompose the original

action space into two halves. Then finding the optimal action in each half would only

require 2N�1 evaluations and comparisons. Of course, to achieve any speedup, we

have to be able to efficiently select which half of the action space we are interested

in, without evaluating all of them. We can do so by storing two additional values

per state. The maximum value over the actions in each halfspace.

Unfortunately 2N�1 evaluations may still be quite expensive. However all we have

to do, is perform the above decomposition recursively to each halfspace. By the Nth

decomposition step, we’ll be left with singleton action spaces.

In the original action space, the question we were asking was: “which of these

2N actions is the optimal?”. In the new action space, the first question we ask is:

“which half of the action space contains the optimal action?”, followed by: “I know

one of these two quarters of the action space contain the optimal action. Which one

is it?”. This process continues until we reach the bottom level, at which point we

have narrowed our choices down to two potential actions, and the answer to the last

query leaves us with a unique action.

5.3 MDP transformation

In this section we formally present the MDP transformation procedure, and state a

number of important properties.

Consider an MDP MpS,A, P, R, γ,Dq, where at each state s P S our agent
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has to choose among the set of available actions A. We will transform M using a

recursive decomposition of the action space available to each state. The first step

is to replace each state s of M with 3 states s10, s
1
1, and s12. State s10 has two

actions available. The first leads deterministically to s11, while the second leads

deterministically to s12. In state s11 we have access to the first half of the actions

available in s while in s12 we have access to the other half. The transition between s10

to s11, or s10 to s12 is undiscounted and does not receive a reward. Therefore, we have

that V ps10q � V psq � maxaPAQps, aq while at least one of the following is also true:

V psq � V ps11q or V psq � V ps12q. We can think of the transformation as creating a

state tree, where the root has deterministic dynamics with the go-left and go-right

actions available, zero reward and no discount (γ � 1). Each leaf has half the number

of available actions as the original MDP and the union of actions available to all the

leaves is A, the same as those available in the original MDP.

Applying this decomposition recursively to the leaves of the previous step, with

individual leaves from each iteration having half the number of actions, leads to the

transformed MDP M1 where for each state in M we have a full binary tree in M1

and each leaf has only one available action. If we represent the i-th leaf state under

the tree for state s as s1i, the value functions ofM1 andM are related by the equation

V ps1iq � Qps, aiq. Also note that by the way the tree was created, each level of the

tree represents a max operation over its children.

Theorem 1. Any MDP M � pS,A, P, R, γ,Dq with |A| � 2N discrete actions can

be transformed to another MDPM1 � pS 1,A1, P 1, R1, γ1,D1q, with |S 1| � p2|A|�1q|S|

states and only |A1| � 2 actions, which leads to the same total expected discounted

reward.

Proof. The transformed MDP M1 is constructed using the recursive decomposition

described above. The new state space will include a full binary tree of depth log2 |A|
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for each state in S. The number of states in each such binary tree is p2N�1�1q; 2N leaf

states —one for each action in A— and p2N �1q internal states. Therefore, the total

number of states inM1 must be p2N�1�1q|S| � p2|A|�1q|S|. The transformed MDP

uses only two actions for making choices at the internal states; the original actions

are hard-coded into the leaf states and need not be considered explicitly as actions,

since there is no choice at leaf states. The transition model P 1 is deterministic at all

internal states, as described above, and matches the original transition model P at

all leaf states for the associated original state and action. The reward function R1

is 0 and γ1 � 1 for all transitions out of internal states, but R1 matches the original

reward function and γ1 � γ for all transitions out of leaf states2. Finally, D1 matches

D over the |S| root states and is 0 everywhere else. The optimal state value function

V in the transformed MDP is trivially constructed from the optimal state-action

value function Q of the original MDP. For i � 1, . . . , 2N , the value V ps1iq of each leaf

state s1i in the binary tree for state s P S, corresponding to action ai P A, is trivially

set to be equal to Qps, aiq and the value of each internal state is set to be equal to

the maximum of its two children.

The proposed action space decomposition can also be applied to arbitrary discrete

or hybrid action spaces. If the number of actions is not a power of two, it merely

means that some leaves will not be at the bottom level of the tree or equivalently

the binary tree will not be full.

5.4 Action selection

Corollary 2. Selecting the maximizing action among |A| actions in the original

MDP, requires Oplog2|A|q comparisons in the transformed MDP.

2 One could alternatively set the discount factor to γ
1

log2 |A| for all states. However, this choice
may make the approximation problem harder, since nodes within the optimal path in the tree for
the same state will have different values.
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Selecting the maximizing action is quite straightforward in the transformed MDP.

Starting at the root of the tree, we compare the V -values of its two children and

choose the largest (ties can be resolved arbitrarily). Once we reach a leaf, we have

only one action choice. The action available to the i-th leaf in M1 corresponds to

action ai in M. Since this is a full binary tree with |A| leaves, its height will be

log2|A|. The search requires one comparison per level of the tree, and thus the total

number of comparisons will be Oplog2|A|q. Notice that the value of the root of the

tree is never queried and thus does not need to be explicitly stored.

To illustrate the transformation, figure 5.1 shows the decomposition steps for a

state with 8 actions. Figure 5.2 shows the original and transformed value functions

for the same state.

5.5 Multidimensional action spaces

When the number of controlled variables increases, the number of actions among

which the policy has to choose from grows exponentially. For example, in a domain

with 4 controlled variables whose available action sets are A0, A1, A2, and A3, the

combined action space is A � A0 �A1 �A2 �A3. If |A0| � |A1| � |A2| � |A3| � 8,

then |A| � 4096. The key observation is that there is no qualitative difference be-

tween this case and any other case where we have as many actions (e.g. one controlled

variable with a fine resolution). Therefore, if we apply the transformation described

earlier, with each one of the 4096 actions being a leaf in the transformed MDP, we

will end up with a tree of depth 12. One convenient way to think about this trans-

formation (that will help us when trying to pick a suitable approximator) is that

each of the 4 controlled variables yields a binary tree of depth 3. On each “leaf” of

the tree formed by the actions in A0, there is a tree formed by the actions in A1,
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s

a1 a2 a3 a4 a5 a6 a7 a8

s0

s1 s2

a1 a2 a3 a4 a5 a6 a7 a8

s0

s1 s2

s11 s12 s21 s22

a1 a2 a3 a4 a5 a6 a7 a8

s0

s1 s2

s11 s12 s21 s22

s111 s112 s121 s122 s211 s212 s221 s222

a1 a2 a3 a4 a5 a6 a7 a8

Figure 5.1: Decomposing a state with eight actions
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4 3 2 3 1 2 3 5

5

4 5

4 3 2 5

4 3 2 3 1 2 3 5

4 3 2 3 1 2 3 5

Figure 5.2: An example value function for the state in figure 5.1. States in gray
do not need to be explicitly stored.

.

and so forth3. Notice that while the number of leaves in the full tree is the same as

the number of actions in the original MDP, the complexity of reaching a decision is

once again exponentially smaller.

Corollary 3. The complexity (in the transformed MDP) of selecting the maximiz-

ing multidimensional action in the original MDP is linear in the number of action

dimensions.

Consider an MDP with an N -dimensional action space

A � A0 �A1 � � � � �AN . The number of comparisons required to select the maxi-

3 Equivalently, one can interleave the partial decisions across the action variables in any desired
schedule. However, it is important to keep the chosen schedule fixed throughout learning and acting,
so that each action of the original MDP is reachable only through a unique search path.
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mizing action is:

Oplog2|A|q � Oplog2|A0 �A1 � � � � �AN |q

� Oplog2|A0| � log2|A1| � � � � � log2|AN |q

5.6 Learning from samples

The transformation presented above provides a conceptual model of the space where

the algorithm operates. However, there is no need to perform an explicit MDP

transformation for deployment. Every sample of interaction (consistent with the

original MDP) collected, online or offline, yields multiple samples (one per level

of the corresponding tree) for the transformed MDP; the path in the tree can be

extracted through a trivial deterministic procedure (binary search). Alternatively,

the learner can interact directly with the tree in an online fashion, making binary

decisions at each level and exporting action choices to the environment whenever a

leaf is reached.

The careful reader will have noticed that, for every sample on the original MDP,

we have log2 |A| samples on the transformed MDP. This may raise some concern

about the time required to learn a policy from samples, since the number of samples

is now higher. A number of researchers have already noticed that the running time

for many popular RL algorithms is dominated by the multiple max (policy lookup)

operations at each iteration (Ernst et al., 2005), which is further amplified as the

number of actions increases. Our experiments have confirmed this, with learning be-

ing much faster on the transformed MDP. In fact, (unsurprisingly) for the algorithms

tested, learning time increased logarithmically with the number of actions with our

approach, while the expensive max operation quickly rendered the naive application

of the same algorithms impractical.
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5.7 Representation

One useful consequence of the transformed MDP’s structure is that the V -value

function is sufficient to perform action selection, without requiring a model. Each

state in the original MDP corresponds to a tree in the transformed MDP. Starting at

the root, a leaf can be reached by following the deterministic and known transitions

of navigating through the tree. Once at the i-th leaf, there is only one available

action, which corresponds to action ai in the original MDP. Also notice that the

value function of the root of the tree is never queried and thus does not need to be

explicitly stored.

5.7.1 Exact representation

Corollary 4. In the case of exact representation, the memory requirements of the

transformed MDP are within a factor of 2 from the original.

In order to be able to select actions without a model in the original MDP, the Q-

value function, which requires storing |S||A| entries, is necessary. In the transformed

MDP, the model of the tree is known, therefore storing the V -value function is

sufficient. Since there are |S||A| leaves and the number of internal nodes in a full

binary tree is one less than the number of leaves, the V -value function requires storing

less than 2|S||A| entries. Considering the significant gain in action selection speed,

a factor of 2 penalty in memory required for exact representation is a small price to

pay.

5.7.2 Queries

When considering a deterministic greedy policy, most ofM1’s value function (and its

corresponding state space) is never accessed. Consider a node whose right child has

a higher value than the left child. Any node in the subtree below the left child will

never be queried. Such a policy only ever queries 2|S| log2|A| values; those in the

32



maximal path and their siblings. Of course, we don’t know in advance which values

these are, until we have the final value function. However, this observation provides

some insight while considering approximate representation schemes.

5.7.3 Approximations

The most straightforward way to approximate the V -value function of M1 would

be to use one approximator per level of the tree. Since the number of values each

approximator has to represent is halved every time we go up a level in the tree, the

resources required (depending on our choice of approximator this could be the number

of radial basis functions (RBFs), the complexity of the constructed approximator

trees, or the features selected by a feature selection algorithm) are within a factor of

2 of what would be required for approximating Q-values, just as in the exact case.

To our surprise, we’ve observed that a different approximator per level is not

always necessary in practice. Using a single approximator, as we would if we only

wanted to represent the leaves, and projecting all the other levels on that space

(internal nodes in the tree will fall between leaves) seems to suffice. For example,

for state s in M, with A � t1, 2, 3, 4u we would have the leaves s1 � ps, 1q, s2 �

ps, 2q, s3 � ps, 3q, s4 � ps, 4q. The nodes one level up would be s12 � ps, 1.5q and

s34 � ps, 3.5q (remember that we don’t need to store the root). The result is that

each internal node ends up being projected between two leaf nodes.

An interesting observation is to see what happens when we are sampling actions

uniformly (the probability that we reach a leaf for a particular state of the original

MDP is uniform). The density of samples in each level of the tree is twice the

density of the one below it. Since we have the same number of samples for each level

of the tree and there are half the number of nodes on a level compared to the level

below it, the density doubles each time we go up a level. For most approximators

sample density acts as reweighing, therefore this approximation scheme assigns more
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Action Search
Input: state s, value function V , resolution bits vector N , number of action variables M , vectors amin, amax of action ranges
Output: joint action vector a
aÐ pamax � aminq{2 // initialize each action variable to the middle of its range
for j � 1 to M // iterate over the action variables

∆ Ð 0 // initialize vector ∆ of length M to zeros

∆pjq Ð
�
amaxpjq � aminpjq

	 2Npjq�1

p2Npjq � 1q
// set the step size ∆ for the current action variable

for i � 1 to Npjq // for all resolution bits of this variable
∆ Ð ∆{2 // halve the step size
if V ps, a�∆q ¡ V ps, a�∆q // compare the two children
aÐ a�∆ // go to the left subtree

else
aÐ a�∆ // go to the right subtree

end for
end for
return a

Figure 5.3: A practical implementation of the action search algorithm

weight to nodes higher up in the tree, where picking the right binary action is more

important. Thus, in this manner we get a natural allocation of resources to parts

of the action space that matter. Of course we don’t expect this simplification to be

possible in all situations. Its applicability will depend on our choice of domain and

function approximator. However, as we will see from our experimental results, this

scheme has proven to work very well in practice.

5.8 A practical action search implementation

A practical implementation for the general multidimensional case of the action search

algorithm is provided in Figure 5.3. We are interested in dealing with action spaces

where we are unable to store even a single instance of the tree in memory. Thus,

the search is guided by the binary decisions and relies on generating nodes on the

fly based on the known structure (but not the values) of the tree. Note that while

this is one implementation that complies with the exposition given above, it is not

the only one possible.
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5.9 Alternatives to binary search

For simplicity of exposition, we have thus far examined binary search for finding the

optimal action. It should however be clear that any schedule for splitting the action

space could be implemented. We could even have a non-regular split, where different

nodes have different numbers of children.

As an example, if the number of actions is a power of 4, we could have each

internal state have 4 actions leading deterministically to 4 children. In that case the

computational requirements for finding the optimal action would be exactly the same

as in the binary case, although the tree would have half the levels as in the binary

case. Naturally, for splits with more than 4 children per node, the computational

requirements would quickly increase.

5.10 Non-regular action space partitions

It should noted, that for continuous action spaces, the space does not need to be

divided into equally sized intervals. On a number of applications there may be areas

of the state space that require finer resolution, while others are less important. In

such cases, the partitioning of the space should follow the relative importance of

different areas, rather than absolute distances.
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6

Experimental Results

This section presents results from testing the proposed approach on three domains

with large action spaces. A more realistic and difficult version of the inverted pen-

dulum problem, the double integrator problem, as well as the bicycle balancing

problem.

6.1 Inverted Pendulum

The inverted pendulum problem (figure 6.1), requires balancing a pendulum of un-

known length and mass at the upright position by applying forces to the cart it is

attached to. The 2-dimensional continuous state space includes the vertical angle

θ and the angular velocity 9θ of the pendulum. The action space of the process is

the range of forces in r�50N, 50N s, which in our case is approximated to an 8-bit

resolution with 28 equally spaced actions (256 discrete actions). All actions are noisy

(uniform noise in r�10N, 10N s is added to the chosen action) and the transitions are

governed by the nonlinear dynamics of the system (Wang et al., 1996).

Most researchers in reinforcement learning, choose to approach this domain as

an avoidance task, with zero reward as long as the pendulum is above the horizontal
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Figure 6.1: The Inverted pendulum problem.

configuration, and a negative reward when the controller fails and the pendulum

falls. Instead we chose to approach the problem as a more difficult regulation task,

where we are not only interested in keeping the pendulum upright, but we want to do

so while minimizing the amount of force we are using. Thus a reward of 1�pu{50q2,

was given for choosing action u, as long as |θ| ¤ π{2, and a reward of 0, as soon as

|θ| ¡ π{2, which also signals the termination of the episode. The discount factor of

the process was set to 0.98, and the control interval to 100msec.

In order to simplify the task of finding good features we used PCA on the state

space of the original process1 and kept only the first principal component pc. The

1 The two state variables (θ and 9θ) are highly correlated in this domain.
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state was subsequently augmented with the current action value u. The approxima-

tion architecture for representing the value function in this problem consisted of a

total of 31 basis functions; a constant feature and 30 radial basis functions arranged

in a 5 � 6 regular grid over the state-action space:

�
1, e�

c
p pc
npc

�c1q
2
�p u

nu
�u1q

2

2σ2 , . . . , e�

c
p pc
npc

�c3q
2
�p u

nu
�u3q

2

2σ2

�J

where the ci’s and ui’s are equally spaced in r�1, 1s, while npc � 1.5, nu � 50

and σ � 1. Every transition in this domain corresponds to eight samples in the

transformed domain, one per level of the corresponding tree.

Figure 6.2 shows the total accumulated reward as a function of the number of

training episodes, when action search is combined with Least-Squares Policy Itera-

tion (Lagoudakis and Parr, 2003) and Fitted-Q iteration (Ernst et al., 2005).

Training samples were collected in advance from “random episodes”, that is,

starting in a randomly perturbed state close to the equilibrium state and following

a purely random policy. Each experiment was repeated 100 times for the entire

horizontal axis, to obtain average results and 95% confidence intervals over differ-

ent sample sets. Each episode was allowed to run for a maximum of 3,000 steps,

corresponding to 5 minutes of continuous balancing in real-time.

For comparison purposes, we show the performance of a combined state-action

approximator using the same set of basis functions, learned using LSPI and evaluated

exhaustively at each step over all 256 actions. We chose this approach as our basis

for comparison, because it represents an upper bound on the performance attainable

by algorithms that learn a combined state-action approximator and approximate the

max operator. In order to highlight the importance of having continuous actions,

we also show the performance achieved by a discrete three-action controller learned

with LSPI.
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Figure 6.2: Total accumulated reward versus training episodes for the inverted
pendulum regulation task. The green and blue lines represent the performance of
action search when combined with FQI and LSPI respectively, while the red and
black lines represent the performance of 3 and 256-action controllers learned with
LSPI and evaluated for every possible action at each step.

It should come as no surprise that we are able to outperform the discrete three-

action controller when the number of samples is large, since the reward of the problem

is such that it requires fine control. What is more interesting is that on the one hand,

the learning curve for the transformed MDP appears to be as steep as the one for

the three-action controller, achieving good performance with few training episodes

and on the other hand the performance achieved is at least as good (and in fact

in this case even better), as learning a combined state-action approximator and

evaluating it over all possible actions in order to find the best action. We believe

that the reason the naive combined state-action approximator does not perform very
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well, is that the highly non-linear dynamics of the domain give little opportunity for

generalizing across neighboring actions with such a restricted set of features. While

we don’t expect to always outperform the combined state-action approximator, the

fact that we are able to have comparable performance with only a fraction of the

computational effort (8 versus 255 comparisons per step) is very encouraging.

6.2 Double Integrator

The double integrator problem requires the control of a car moving on a one-dimensional

flat terrain. The 2-dimensional continuous state space pp, vq includes the current po-

sition p and the current velocity v. The goal is to bring the car to the equilibrium

state p0, 0q by controlling the acceleration a, under the constraints |p| ¤ 1 and |v| ¤ 1.

The cost function p2�a2 penalizes positions differing from the home position (p � 0),

as well as large acceleration (action) values. The linear dynamics of the system are:

9p � v and 9v � a.

As the control frequency becomes lower, the car becomes more and more difficult

to control. Large control inputs can easily make the car overshoot the target or

even move outside its operating range. A control interval of 500msec was chosen

in order to make the problem more challenging. Acceleration was restricted in the

range r�1, 1s and was approximated with an 8-bit resolution (256 values) resolution

for the action search controllers. For this experiment we used the Q-value function

formulation (see Appendix A), with a simple polynomial approximator with 10 terms

for each action:

φ � p1, p, v, a, p2a, v2a, a2, pv, pa, va, a2p, a2vqJ

For the discrete controllers, a similar polynomial approximator (without any a terms)

was used:

φ � p1, p, v, pvqJ
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Figure 6.3: Double Integrator (LSPI) : Total accumulated reward.

Note that adding more terms to the approximator did not improve performance.

Once again training samples were collected in advance from “random episodes” with

a maximum length of 200 steps. For accurate assessment of performance, 100 con-

trollers were trained in each case and tested starting at state p1, 0q (maximum allowed

p, zero v) for a maximum of 200 steps. The discount factor of the process was set to

0.98.

Figure 6.3 shows the total accumulated reward as a function of the number of

training episodes. Once again, the BAS controllers learn much faster than their dis-

crete counterparts and achieve far better rewards. Using a combined state-action

approximator and evaluating for all 256 possible action choices yielded successful
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policies for this domain, albeit at a 16-fold increase in computational cost compared

to BAS. This is to be expected since it is very easy to generalize over neighboring

actions for the linear dynamics of the Double Integrator. Even though the perfor-

mance of the combined state-action approximator is better than that of the discrete

controllers, it still falls short of the performance achieved by the BAS controllers.

6.3 Bicycle Balancing

The bicycle balancing problem (Ernst et al., 2005), has four state variables (angle θ

and angular velocity 9θ of the handlebar and angle ω and angular velocity 9ω of the

bicycle relative to the ground). The action space is two dimensional and it consists

of the torque applied to the handlebar τ P r�2,�2s and the displacement of the rider

d P r�0.02,�0.02s. The goal is to prevent the bicycle from falling, while moving at

constant velocity.

Once again we approached the problem as a regulation task, rewarding the con-

troller for keeping the bicycle as close to the upright position as possible. A reward

of 1 � |ω|pπ{15q, was given, as long as |ω| ¤ π{15, and a reward of 0, as soon as

|ω| ¡ π{15, which also signals the termination of the episode. The discount factor of

the process was set to 0.9 and the control interval was set to 10msec. Uniform noise

in r�0.02,�0.02s was added to the displacement component of each action.

As with the pendulum problem, after doing PCA on the original state space and

keeping the first principal component, the state was augmented with the current

action values. The approximation architecture consisted of a total of 28 basis func-

tions; a constant feature and 27 radial basis functions arranged in a 3� 3� 3 regular

grid over the state-action space with npc � 2{3, nd � 0.02, nτ � 2 and σ � 1.

Using 8-bit resolution for each action variable we have 216 (65,536) discrete ac-

tions, which brings us well beyond the reach of exhaustive enumeration. With the
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Figure 6.4: Total accumulated reward versus training episodes for the bicycle
balancing task using action search combined with FQI and LSPI.

approach presented in this thesis we can reach a decision in just 16 value comparisons.

Figure 6.4 shows the total accumulated reward as a function of the number of

training episodes when the proposed method is combined with LSPI and FQI. Once

again the experiment was repeated 100 times for the entire horizontal axis to obtain

average results and 95% confidence intervals over different sample sets. Training

trajectories were truncated after 20 steps2. Each episode was allowed to run for

a maximum of 30,000 steps corresponding to 5 minutes of continuous balancing in

real-time. The learned controllers were almost always able to balance the bicycle for

the entire time with as little as 50 training episodes.

2 Practically all samples generated by the random policy after the first 20 steps are part of
trajectories that have no chance of recovering, and provide no useful information.
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7

Discussion and Conclusion

7.1 Strengths and weaknesses

The method presented in this thesis has a number of unique advantages, that makes

it a good candidate for domains with continuous and/or multidimensional action

spaces:

• An easily overlooked advantage of action search is that it is a deterministic

algorithm. Contrary to stochastic approaches to action selection, it does not

suffer from transient dips in performance due to unlucky action sampling, nor

does it require a source of random numbers which can be problematic in em-

bedded platforms.

• One of the greatest advantages of the proposed scheme, is its simplicity. It is

very easy to implement, both conceptually and in terms of the amount of code

required.

• It requires only a selection between 2 actions from the Reinforcement Learning

algorithm of choice. This allows for very fast and efficient implementations of

the policy function.
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• It easily achieves very fine, practically continuous action resolutions impossible

to reach with naive discrete controllers.

• It is able to scale to multidimensional action spaces, without strong assump-

tions about the shape of the action space.

• It can be used in conjunction with any Reinforcement Learning algorithm with

discrete actions and is not tied to any particular implementation.

• It can be used in an online, offline, on-policy or off-policy setting.

• It has very low computational and memory requirements.

• It requires essentially no tuning. The only tunable variable is the desired reso-

lution for each control variable, which may be part of the problem statement.

• It results in smooth control, minimizing mechanical stresses and power con-

sumption.

• In contrast to some other approaches that feature smooth control, it is able to

take action immediately when a situation that requires it arises.

Of course there are things that were not addressed in this thesis. Here are the

main potential weaknesses of our approach:

• Since action complexity is transformed to state complexity, state space com-

plexity is increased.

• While action selection time is reduced, the representation complexity remains

the same as with other naive approaches.

• We do not address the exploration problem, which is even more difficult in

large action spaces.
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The next section discusses some directions for future research that aim to alleviate

some of these weaknesses.

7.2 Future work

Throughout the thesis we assume that learning in continuous-state MDPs with binary

actions is a solved problem. Unfortunately, the performance of current algorithms

quickly degrades as the dimensionality of the state space grows. The action variables

of the original problem appear as state variables in the transformed MDP, therefore

the number of state variables, quickly becomes the limiting factor. Oftentimes the

choice of features is more critical than the learning algorithm itself. As the dimen-

sionality of the state space grows, picking features by hand is no longer an option.

Combining action search with popular feature selection algorithms and investigating

the particularities of feature selection on the state space of the transformed MDP is

a natural next step.

Our approach effectively answers the question of how to select among a large

number of actions, which is the case with continuous and/or multidimensional control

variables. There are, however, a number of questions we do not address. We use an

“off-the-self” learner and approximator as a black box. It would be interesting to

investigate whether the unique structure of the transformed MDP offers advantages

to certain learning algorithms and approximation architectures.

As mentioned in Section 5.7.2, an interesting observation is that only a small sub-

set of the value function is accessed during policy execution. Pazis and Parr Pazis

and Parr (2011a) demonstrate that this fact can be used to achieve an exponential

reduction in representation complexity in addition to the reduction in action selection

complexity. Unfortunately their construction is only straightforward when approxi-

mate linear programming is used as the learning method, which requires noise free

samples. In addition, because it only tries to approximate the values of the best
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actions, it does not seem very well suited for online learning or exploration. An in-

teresting direction for future research would be to see if reductions in representation

complexity are possible without sacrificing in other areas.

In our experiments we have used batch learning algorithms. One particularly

promising direction is the combination of the research presented in this thesis with

an optimistic exploration framework for online learning, similar in spirit to the pes-

simistic framework of Pazis and Parr Pazis and Parr (2011b). We believe that such a

framework could be used to perform PAC1-optimal exploration in continuous state-

action spaces.

The approach presented in this thesis transforms action complexity to state space

complexity. This allows the learning algorithm to be oblivious to the fact that we

have a large action space. While this is in general a benefit, it could potentially

lead to lost opportunities for optimization. Action spaces have a number of unique

properties. Often, even if the ambient dimension of our state spaces is large, the

accessible states may lie in a lower dimensional manifold. On the other hand, the

entire action space is accessible. During sampling/exploration in a high dimensional

action space, it’s up to the agent not to spend too much time exploring non-promising

actions. One direction for future work would be to investigate how we can exploit

properties of the transformed MDP to guide exploration.

7.3 Conclusion

This thesis presented a principled approach for efficiently learning and acting in

domains with continuous and/or multidimensional control variables. We have shown

that by using a simple MDP transformation, we can attack both the generalization

and action selection problems simultaneously, with minimal cost.

I believe that this work brings us one step closer to the ultimate goal, of having

1 PAC stands for Probably Approximately Correct.
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black box reinforcement learning algorithms that can be used in real world problems.

Of course as we have seen there is still much work to be done. Everything that was

presented here is neither a first step (as it depends on good algorithms for learning

in complex state spaces) nor the last. It is instead a bridge. Its purpose is to help

bridge the gap between the abilities of modern algorithms and the requirements of

real-world problems.
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Appendix A

Q-Value Formulation

This appendix is meant to be a (mostly) self contained alternative to chapter 5. It

provides the originalQ-value formulation of the Binary Action Search algorithm (Pazis

and Lagoudakis, 2009a), with the addition of support for multidimensional action

spaces. It is included for reasons of completeness, and to show the motivation and

intuition behind developing Binary Action Search.

A.1 Intuition

At every timestep, a typical reinforcement learning agent decides what action to

take. Unfortunately, as we saw in Chapter 3, when the number of actions is large,

the computational cost of directly choosing an action can be prohibitive.

Some work has been able to break from the typical paradigm, by taking advantage

of temporal locality. Taking advantage of the fact that in continuous action spaces

successive actions are usually similar, a couple of algorithms opt to modify the current

action, instead of choosing an action directly. The modification steps can either be

fixed (Riedmiller, 1997) or adaptive (Pazis and Lagoudakis, 2009b). Unfortunately,
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when temporal locality is reduced even for some parts of the state space, these

algorithms run into problems.

The key observation in designing an improved algorithm is that nothing prevents

us from querying the internal binary policy more than once before we apply our deci-

sion. If, for example, the answer to the first question is to increase the action value,

we can always compute the new value and check what the binary policy suggests for

that new action value in the same state. If the suggestion is to decrease, then we

have an over-shoot. If the suggestion is to increase, then we have an under-shoot.

Repeated look-ahead queries will allow us to search for an action value that reduces

the effects of over-shooting and under-shooting. Going a step further, we don’t even

have to use the previous action value as the starting point of our search, or have a

constant step size. Instead, we can start at any point and use any convenient step

sizes to search the action range and successively approximate the value of the best

continuous action choice in the current state. In the absence of domain knowledge,

this search can be accomplished in an optimal way using a binary search scheme.

Starting at the center of the range, and halving the size of the step after each query,

we can quickly get very close to the optimal continuous action.

A.2 Binary Action Search

The proposed algorithm, called Binary Action Search (BAS), looks for the best action

choice in the continuous action range ramin, amaxs using a finite number of binary

search steps. The first query will be at the center of the range: “When in state s,

would you rather increase or decrease the value of the action a � pamax � aminq{2?”

The answer will eliminate half of the action range. The next query will be at the

center of the remaining range, and so on. In general, each binary decision will

eliminate half of the remaining possible choices. The number of decisions required to

come to a final decision is the same as the number of bits of the desired resolution. For
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Action Search
Input: state s, value function Q, resolution bits vector N , number of action variables M , vectors amin, amax of action ranges
Output: joint action vector a
aÐ pamax � aminq{2 // initialize each action variable to the middle of its range
for j � 1 to M // iterate over the action variables

∆ Ð 0 // initialize vector ∆ of length M to zeros

∆pjq Ð
�
amaxpjq � aminpjq

	 2Npjq�1

p2Npjq � 1q
// set the step size ∆ for the current action variable

for i � 1 to Npjq // for all resolution bits of this variable
∆ Ð ∆{2 // halve the step size
if Qps, a�∆q ¡ Qps, a�∆q // compare the two children
aÐ a�∆ // go to the left subtree

else
aÐ a�∆ // go to the right subtree

end for
end for
return a

Figure A.1: A practical implementation of the binary action search algorithm

example, if we want to have 256 values for the continuous action (8-bit resolution),

we can use BAS to reach a final decision within 8 queries. The first query will

eliminate 128 of the 256 potential choices, the second query will eliminate 64 of the

remaining 128 choices, and so on, up to the eighth query which will leave us with just

one choice. The Binary Action Search approach is summarized in figure A.1. Note

that ∆ is initialized to a value that allows for proper coverage of the entire action

range (including amin and amax) within a finite number of steps N .

A.3 Learning

The binary policy required by BAS answers the question: “When in state s, would

you rather increase or decrease the continuous action a?”. Most existing RL al-

gorithms can be used in conjunction with BAS to learn such binary-action policies.

There are only real requirement on the learning algorithm of choice is that it must be

able to handle continuous state spaces, since the original state space S will have to be

augmented with the latest value of the continuous action a, therefore the binary pol-
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icy must be learned over the augmented state space pS,Aq. Of course most domains

with continuous actions already have continuous state variables, so this shouldn’t be

a problem.

One potentially non-obvious point that deserves some attention is samples gen-

eration. At first glance, even though we have as many binary decisions per step as

we have resolution bits, there is only one interaction with the environment, and thus

only one reward and one state transition observed. However, we should stress that a

single step in the environment does not not correspond to a single step for the BAS

learner.

From the BAS learner’s point of view, every decision point corresponds to a

sample. The action in each such sample is the corresponding binary decision (increase

or decrease). The (augmented) state in each such sample is the combination of the

state of the process with the current search point in the action range. The last

sample of each decision cycle, includes the observed state transition in the original

state space S after the interaction with the environment, as well as a resetting of the

search point to the center of the action range for the observed next state. Resetting

the search point is required in order to keep the samples along the entire trajectory

of binary decisions “connected”. The reward is zero for all samples, but the last,

which carries the actual reward observed and therefore it is the only one that should

be discounted.

As an example consider a resolution of 3 bits, the continuous action range r1.0, 8.0s,

and an agent who internally makes the binary decisions �1, �1, �1 to find the con-

tinuous action a � 2.0 which is applied to state s. The sample from interacting

with the environment will be ps, 2.0, r, s1q, however the three samples used for learn-

ing the binary policy will be
�
ps, 4.5q,�1, 0, ps, 2.5q

�
,
�
ps, 2.5q,�1, 0, ps, 1.5q

�
, and�

ps, 1.5q,�1, r, ps1, 4.5q
�
.
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A.4 Relationship to the V-value function formulation

Even though the intuition behind the Q-value function formulation presented in

this appendix, and the V-value function formulation presented in chapter 5 is very

different, the resulting algorithms are practically identical. In fact, we can see that

the values stored by the two formulations are the same. For the V-value formulation

we have a binary tree of height logp|A|q whose root does not need to be explicitly

stored. All the nodes and leaves of that tree have a one to one mapping to the two

binary trees (one for each choice “increase” or “decrease”) of height logp|A|q � 1

present in the Q-value function formulation.
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