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Περίληψη 
 

Ο σχεδιασµός βέλτιστων ̟ροϊόντων είναι µια α̟ό τις ̟ιο σηµαντικές διαδικασίες για τη 

βιωσιµότητα µιας εταιρείας. Ο Βέλτιστος Σχεδιασµός Γραµµής Προϊόντων α̟οτελεί ένα 

ευρύ ερευνητικό ̟εδίο στο ̟οσοτικό µάρκετινγκ για ̟άνω α̟ό τριάντα χρόνια, το ο̟οίο 

συνήθως µοντελο̟οιείται στα ̟λαίσια της Συζυγούς Ανάλυσης. Αντιµετω̟ίζοντας αυτό το 

NP-hard ̟ρόβληµα βελτιστο̟οίησης, ένας µάνατζερ ̟ρέ̟ει να α̟οφασίσει σχετικά µε µια 

σειρά α̟ό ζητήµατα: την ̟ροσοµοίωση της ανθρώ̟ινης συµ̟εριφοράς ε̟ιλογής, τον 

αλγόριθµο βελτιστο̟οίησης ̟ου θα χρησιµο̟οιηθεί και τη µοντελο̟οίηση των ̟ιθανών 

αντιδράσεων των ανταγωνιστών. Η εφαρµογή µιας α̟οδοτικής µεθόδου έχει σηµαντικές 

ε̟ι̟τώσεις για έναν µάρκετινγκ µάνατζερ, αφού η σχεδίαση µιας µη α̟οτελεσµατικής 

γραµµής ̟ροϊόντων µ̟ορεί να α̟οβεί στην κατάκτηση µικρότερου του αναµενοµένου 

µεριδίου αγοράς, ή ακόµα και στον κανιβαλισµό των υφιστάµενων ̟ροϊόντων της 

εταιρείας. Ο µάνατζερ θα ̟ρέ̟ει να συγκρίνει ̟ροσεχτικά τα διαφορετικά µοντέλα 

ε̟ιλογής, αλγόριθµους βελτιστο̟οίησης και µοντέλα θεωρίας ̟αιγνίων, και να ε̟ιλέξει 

αυτά ̟ου ταιριάζουν καλύτερα στις ανάγκες της εταιρείας. Αυτό α̟οτελεί µια ̟ολύ̟λοκη 

διαδικασία, ιδιαίτερα για ένα µάρκετινγκ µάνατζερ ο ο̟οίος συνήθως δεν διαθέτει 

εξειδικευµένες γνώσεις σχετικά µε αλγορίθµους βελτιστο̟οίησης και θεωρία ̟αιγνίων. 

Στα ̟λαίσια αυτά έχουν ανα̟τυχθεί διάφορα συστήµατα µάρκετινγκ τα ο̟οία 

υ̟οστηρίζουν τους α̟οφασίζοντες σε αυτό το υψηλής ̟ολυ̟λοκότητας ̟ρόβληµα. 

Τα υφιστάµενα συστήµατα χρησιµο̟οιούν α̟λά ντετερµινιστικά µοντέλα ε̟ιλογής για 

την ̟ροσοµοίωση της ανθρώ̟ινης συµ̟εριφοράς ε̟ιλογής, για να µειώσουν την 

̟ολυ̟λοκότητα του ̟ροβλήµατος. Τα µειονεκτήµατα των ντετερµινιστικών µοντέλων 

ε̟ιλογής έχουν καταγραφεί λε̟τοµερώς στη βιβλιογραφία. Ε̟ι̟λέον, όλα τα σχετικά 

συστήµατα στοχεύουν στη βελτίωση της ε̟ίδοσης της µοναδικής καλύτερης λύσης, η ο̟οία 

τελικά ̟αρουσιάζεται στον α̟οφασίζοντα. Όµως ο σχεδιασµός ̟ροϊόντος είναι ένα 

̟ολύ̟λοκο, ήµι-δοµηµένο ̟ρόβληµα το ο̟οίο εµ̟ί̟τει τόσο στο ̟εδίο του µάρκετινγκ όσο 

και σε αυτό της µηχανικής. Στα ̟λαίσια αυτά, ενώ η βέλτιστη λύση είναι σηµαντική για 

µια εταιρεία, αυτή µ̟ορεί να είναι τεχνολογικά ανέφικτη ή το κόστος ̟αραγωγής της να 

είναι α̟αγορευτικό. Έτσι, είναι εξίσου σηµαντικό για έναν µάνατζερ η ύ̟αρξη ενός 



 

αριθµού σχεδόν βέλτιστων λύσεων, τις ο̟οίες θα µ̟ορεί να αξιολογήσει χρησιµο̟οιώντας 

κά̟οια δευτερεύοντα κριτήρια ό̟ως κόστος ̟αραγωγής, στρατηγική ̟ροσέγγιση και 

τεχνολογικοί ̟εριορισµοί. Ε̟ίσης, όλες οι υφιστάµενες ̟ροσεγγίσεις στο ̟ρόβληµα 

θεωρούν την αγορά στατική, ό̟ου οι υ̟άρχουσες εταιρείες δεν θα αντιδράσουν στην 

είσοδο των νέων ̟ροϊόντων. Όµως, λαµβάνοντας υ̟όψη µόνο τα υφιστάµενα 

ανταγωνιστικά ̟ροϊόντα γίνεται µια ̟ολύ ̟εριοριστική ̟αραδοχή και η γραµµή ̟ου θα 

σχεδιαστεί µ̟ορεί να α̟οδειχθεί βέλτιστη µόνο σε βραχυ̟ρόθεσµο χρονικό ορίζοντα. Έχει 

̟λέον καθιερωθεί η ά̟οψη ότι σε µακρο̟ρόθεσµο ορίζοντα, οι αλγόριθµοι 

βελτιστο̟οίησης ̟ρέ̟ει να εµ̟εριέχουν και τις κινήσεις των ανταγωνιστών, οι ο̟οίοι 

̟ιθανόν να εισάγουν νέα ̟ροϊόντα ή να ε̟ανασχεδιάσουν τα υφιστάµενά τους, ως 

α̟άντηση στην είσοδο της νέας εταιρείας στην αγορά. 

Στην ̟αρούσα διατριβή ̟ροτείνεται µια ολοκληρωµένη ̟ροσέγγιση στο ̟ρόβληµα του 

Βέλτιστου Σχεδιασµού Γραµµής Προϊόντων, η ο̟οία συνδυάζει καινοτόµες µεθόδους για 

τα τρία υ̟ο̟ροβλήµατα. Η ̟ροσοµοίωση της ανθρώ̟ινης συµ̟εριφοράς ε̟ιλογής 

υλο̟οιείται µέσω ενός µοντέλου ̟ροσοµοίωσης αγοράς, το ο̟οίο ̟ροσαρµόζει ̟ιθανοτικά 

µοντέλα ε̟ιλογής σε ατοµικό ε̟ί̟εδο. Η Βελτιστο̟οίηση Σµήνους Σωµατιδίων, ένας νέος 

αλγόριθµος ̟ληθυσµού λύσεων εµ̟νευσµένος α̟ό τη φυσική νοηµοσύνη, χρησιµο̟οιείται 

για την ̟αροχή ενός συνόλου καλών σχεδόν βέλτιστων λύσεων, α̟ό τις ο̟οίες ο 

α̟οφασίζων µ̟ορεί να ε̟ιλέξει την ̟ερισσότερο ̟ροτιµητέα. Η δυναµική φύση του 

ανταγωνισµού µοντελο̟οιείται µέσω της ισορρο̟ίας κατά  Nash, ό̟ου οι υφιστάµενες 

εταιρείες της αγοράς αντιδρούν ε̟ανασχεδιάζοντας τις γραµµές ̟ροϊόντων τους. Όλα τα 

̟ροτεινόµενα µοντέλα αξιολογούνται σε σχέση µε τις καλύτερες υ̟άρχουσες µεθόδους, µε 

χρήση τόσο τεχνητών όσο και ̟ραγµατικών δεδοµένων σχετικών µε καταναλωτικές 

̟ροτιµήσεις. Το ̟ραγµατικό σετ δεδοµένων ̟ροήλθε α̟ό µια έρευνα αγοράς η ο̟οία είχε 

ως στόχο τη µέτρηση των καταναλωτικών ̟ροτιµήσεων σχετικά µε το φρέσκο γάλα. Η 

̟ροτεινόµενη ̟ροσέγγιση είναι η ̟ρώτη ̟ροσ̟άθεια ενιαίας αντιµετώ̟ισης των τριών 

υ̟ο̟ροβληµάτων του βέλτιστου σχεδιασµού µέσω µιας ολοκληρωµένης µεθοδολογίας. 

Τέλος, ανα̟τύχθηκε ένα σύστηµα µάρκετινγκ το ο̟οίο ενσωµατώνει την εν λόγω 

µεθοδολογία, µέσω µιας α̟οδοτικής και φιλικής ̟ρος το χρήστη διε̟αφής. 

  



 

Abstract  

 

Designing optimal products is one of the most critical activities for a firm to stay 

competitive. The Optimal Product Line Design constitutes a wide area of research in 

quantitative marketing for over thirty years, which is usually formulated in the context 

of Conjoint Analysis. Dealing with this NP-hard combinatorial optimization problem, a 

manager must decide on a number of issues: how to simulate the consumer choice 

process, which optimization algorithm to apply, and how to model the possible 

retaliatory actions from competitors. The application of an effective approach has 

several important practical implications for marketing managers, since a bad designed 

product line may result in a lower than expected market share, or may even cannibalize 

the firm’s existing products. The manager should carefully compare the different 

alternative choice models, optimization algorithms, game theoretic approaches and 

choose those that better fit the company’s requirements. This constitutes a quite 

complex task, especially for marketing managers who usually do not have special 

knowledge concerning optimization algorithms and game theory. In this context, a 

number of marketing systems have been developed, assisting a manager in this problem 

of high complexity.  

The marketing systems that have been developed so far use simple deterministic choice 

models for simulating the human choice process in order to reduce the problem’s 

complexity. The limitations of deterministic choice rules regarding the effectiveness of 

customer choice behavior simulation are well documented in the literature.  

Furthermore, all marketing systems aim at improving the performance of a single best 

solution, which is finally provided to the decision maker. Product design however is a 

complex and not well formalized discipline that draws upon both marketing and 

engineering fields. In this context, while it is important for a firm to obtain the optimal 

solution, this product line configuration may not be technologically feasible, or the 

production cost may be prohibitive. Hence, it is just as critical for the managers to be 

provided with a wide range of near-optimal product profiles, in order to assess them 



 

using a number of secondary criteria such as production costs, strategic fit, and 

technological considerations.  

Moreover, all the approaches that have been applied to the Optimal Product Line Design 

problem assume a static market, where the incumbent firms will not respond to the 

introduction of one or more new products. However, considering only competitors’ 

current products constitutes a very restrictive assumption, and the product designs 

derived from such static optimization approaches might proved to be optimal only for 

the short term. It is now becoming well known that in the longer run, optimization 

algorithms should take into account the retaliatory actions of the incumbent firms, 

which may launch new products or redesign their existing ones, as a response to the 

entrance of a new firm to the market.      

In the present thesis, an integrated approach for dealing with the Optimal Product Line 

Design problem is presented, which combines state of the art methods for the three 

properties of the problem. The simulation of customer choice behavior is implemented 

through an innovative market simulation model that individually calibrates 

probabilistic choice rules. Particle Swarm Optimization, a new population-based 

algorithm inspired from natural intelligence, is used to provide a set of good near-

optimal solutions, from which the decision maker will be able to select the most 

beneficial one. The concept of Nash equilibrium is employed for modeling the dynamic 

nature of competition, where each incumbent firm responds to competitive moves by 

redesigning its product line. All the methods and algorithms proposed are evaluated 

against the current state of the art approaches, using both simulated and real data 

regarding consumer preferences. The real data set was obtained from a market survey, 

the purpose of which was the measurement of customer preferences concerning milk. 

The proposed approach is the first attempt to integrate the three most important 

properties of the problem into a single methodology. A marketing system is developed, 

which integrates the underlying algorithms of the methodology under an efficient and 

friendly interface. 
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Nowadays the economic environment where firms operate has become more competitive 

than ever. The globalization of the markets, the shorter product life cycles, and the rapid 

technology development, put high pressure on companies’ profitability. In this context 

new product development constitutes one of the most critical success factors for the 

viability of a company. Firms that delay in introducing new products or redesigning 

their existing ones are exposing themselves to great risks, since their current offerings 

are vulnerable to changing consumer expectations and needs, as well as to increased 

competition. Whereas the continuous new product launching is crucial for the survival of 

a company, such procedures entail great risks, since the assets required for the 

development of a new product are usually high. Under such circumstances, a new 

product introduction that does not reach the company’s expectations may have a 

catastrophic effect on its profitability. The commercial failure of the Edsel model cost 

Ford $350 million, while the Concorde aircraft did not recover its investment (Kotler 

and Keller, 2009). New products continue to fail at a disturbing rate; recent studies put 

the rate at 95 percent in the United States and 90 percent in Europe (Kotler and 

Armstrong, 2009).  

In order to minimize the associated risks, managers try to assess a new concept’s 

penetration to the market at its early design stage before it enters the production stage. 

This constitutes a wide area of research in quantitative marketing for over thirty years, 

known as the Optimal Product (Line) Design problem, which is usually formulated in 

the context of Conjoint Analysis. Here, the products are represented by a number of 

characteristics (attributes); a laptop, for example, may be represented by the attributes 



 

monitor, memory etc. Each attribute can take a number of specific levels; the monitor 

may be 20’’ or 24’’, the memory may be 2GB or 4GB etc. The customer preferences 

concerning laptops can be measured with the use of Conjoint Analysis, which estimates 

a utility value for each attribute level called partworth. The combination of a consumer’s 

partworths for a certain product gives the utility value he assigns to the product. Given 

a number of competing products, a customer’s partwoths can be used for estimating the 

utility of each product, which can then be converted to choice probability for each 

product through a choice model, which simulates the customer choice behavior. The 

product choice probabilities can then be aggregated for calculating hypothetical market 

shares.  

In the Optimal Product Line Design problem, a company is interested in designing a 

number (line) of products, the introduction of which to the market will optimize a 

specific objective (usually market share maximization). The problem’s input is the 

buyers’ partworths and the configuration of the competitive products that form the 

market. An optimization algorithm is used for the optimization of the firm’s objective. 

The problem’s complexity depends on the number of products in the line, the number of 

attributes that form a product, and the number of levels in each attribute. In real world 

applications, as the number of attributes and levels increases, the number of candidate 

solutions (product profiles) can grow uncontrollable large, making the managerial task 

for selecting the appropriate product configuration (combination of attribute levels) 

practically infeasible. Actually the Optimal Product Line Design problem has been 

proved to be NP-hard, which means that there is no algorithm that can find and verify 

the global optimal solution in polynomial time (Papadimitriou & Steiglitz, 1983). In this 

context, a number of different heuristic approaches have been applied to solve the 

problem from 1974 until today, the most important being Dynamic Programming (Kohli 

and Sukumar 1990), Beam Search (Nair, Thakur and Wen 1995), Genetic Algorithms 

(Alexouda and Paparrizos, 2001; Steiner and Hruschka 2003; Balakrishnan et al., 2004) 

and Lagrangian Relaxation with Branch and Bound (Camm et al., 2006; Belloni et al., 

2008).  

 



 

1.1 Motivation and Objectives 

Whereas the optimization part of the problem has been extensively studied, with the use 

of state of the art algorithms that provide near-optimal solutions in larger and larger 

solution spaces, other critical factors that affect the quality of the final solution have 

received little attention in the related literature. These factors are the choice model used 

to simulate the consumer choice process, and the behavior of the competing firms after 

the introduction of the new products to the market. Previous studies use simple choice 

models in order to reduce the problem’s complexity. The first choice rule (where each 

consumer is assumed to deterministically select the product with the highest utility) is 

usually employed, since it permits the formulation of the problem as a liner program. 

The limitations of the first choice rule regarding the effectiveness of customer choice 

behavior simulation are well documented in the literature (Elrod, 1989). Probabilistic 

choice models provide a better representation of the human choice process than 

deterministic choice models (Kaul and Rao, 1995), but increase the problem’s complexity 

since the problem becomes non-linear. For this reason, only basic probabilistic choice 

models, like the MultiNomial Logit (MNL) (McFadden, 1974) or the Bradley-Terry-Luce 

(BTL) (Bradley, and Terry, 1952; Luce, 1959) have been used in the Optimal Product 

Line Design problem (Chen and Hausman 2000; Steiner and Hruschka 2003). 

Nowadays, however, simulating the purchasing behavior of customers is implemented 

through more sophisticated models. Actually, current state of the art approaches are 

focusing on market simulation models. Recent approaches like the ALPHA rule (Krieger 

et al., 2004), or the VOICE model (Krieger and Green, 2002), consider the behavior of 

the entire group of customers that form the market, rather than independently 

simulating the behavior of each individual. In the Optimal Product Line Design 

literature, researchers use simple models for simulating the customer choice behavior in 

order to keep the problem’s complexity low. Actually, no approach has utilize market 

simulation models yet.  

Furthermore, the comparison of the different algorithms concerns only the 

approximation of the optimal solution, whereas marketing practitioners who work on 

real problems are interested in a number of other more qualitative issues. Except for 



 

Genetic Algorithms, all the approaches developed so far aim at improving the 

performance of a single best solution, which is finally provided to the decision maker. 

Product design however is a complex and not well formalized discipline that draws upon 

both marketing and engineering fields. In this context, while it is important for a firm to 

obtain the optimal solution concerning customer preferences, this product line 

configuration may not be technologically feasible, or the production cost may be 

prohibitive. Hence, it is just as critical for the managers to be provided with a wide 

range of near-optimal product profiles, in order to assess them using a number of 

secondary criteria such as production costs, strategic fit, and technological 

considerations. As Balakrishnan et al. (2004) state, the “single best solution” approach 

denies the decision makers a preferred list of solutions to discuss and select from, but 

rather tends to have one imposed on them. 

Moreover, all the approaches that have been applied to the Optimal Product Line Design 

problem assume a static market, where the incumbent firms will not respond to the 

introduction of one or more new products. However, considering only competitors’ 

current products constitutes a very restrictive assumption, and the product designs 

derived from such static optimization approaches might proved to be optimal only for 

the short term. It is now becoming well known that in the longer run, optimization 

algorithms should take into account the retaliatory actions of the incumbent firms, 

which may launch new products or redesign their existing ones, as a response to the 

entrance of a new firm to the market. Actually, only two approaches have incorporated 

competitive reactions using game theory in the conjoint analysis context (Choi and 

DeSarbo, 1993; Green and Krieger, 1997). However, both approaches solve only the 

single product design problem, using traditional single-best optimization approaches.      

Dealing with this problem of high complexity, a manager must decide on a number of 

issues: how to simulate the consumer choice process, which optimization algorithm to 

apply, and how to model the possible retaliatory actions from competitors. The 

application of an effective approach has several important practical implications for 

marketing managers, since a bad designed product line may result in a lower than 

expected market share, or may even cannibalize the firm’s existing products. The 

manager should carefully compare the different alternative choice models, optimization 



 

algorithms, game theoretic approaches and choose those that better fit the company’s 

requirements. This constitutes a quite complex task, especially for marketing managers 

who usually do not have special knowledge concerning optimization algorithms and 

game theory. In this context, a number of marketing systems have been developed, 

assisting a manager in such tricky decisions. 

Genetic Algorithms constitute the most advanced optimization method that has been 

incorporated into a marketing system that deals with the problem (Alexouda, 2005). 

However the specific marketing system has been implemented in such a way that 

provides the decision maker with only a single best solution. Hence, it fails to capitalize 

on the Genetic Algorithm’s main advantage, which is the capability to provide a wide 

range of good solutions. Furthermore, the system uses the first choice rule for 

simulating the purchasing behavior of customers, while the competition is considered 

static, and competitors’ responses are not incorporated to the system.   

The objective of the present thesis is twofold. Firstly, an integrated approach for dealing 

with the Optimal Product Line Design problem will be developed, which will combine 

state of the art methods for the three properties of the problem. The simulation of 

customer choice behavior will be implemented through an innovative market simulation 

model that individually calibrates probabilistic choice rules. Particle Swarm 

Optimization, a new population-based algorithm inspired from natural intelligence, will 

be used to provide a set of good near-optimal solutions, from which the decision maker 

will be able to select the most beneficial one. The concept of Nash equilibrium will be 

employed for modeling the dynamic nature of competition, where each incumbent firm 

responds to competitive moves by redesigning its product line. All the methods and 

algorithms proposed will be evaluated against the current state of the art approaches, 

using both simulated and real data regarding consumer preferences (partworths). The 

real data set was obtained from a market survey, the purpose of which was the 

measurement of customer preferences concerning milk. The proposed approach is the 

first attempt to integrate the three most important properties of the problem into a 

single methodology. The second objective of the thesis is to make this methodology easy 

to use for a typical marketing manager. For this reason a marketing system will be 



 

developed, which will integrate the underlying algorithms under an efficient and 

friendly interface. 

The rest of the thesis is organized into seven chapters as follows. Chapter 2 provides a 

brief description of the problem and the critical factors that affect the solution’s quality. 

In chapter 3, the related literature is reviewed, the performance of the algorithms that 

have been applied to the problem is compared, and the pros and cons of the relevant 

marketing systems are discussed. The market survey is described in chapter 4. The 

proposed market simulation model is theoretically validated in chapter 5, and its 

performance is compared to that of the state of the art approach. In chapter 6 Particle 

Swarm Optimization is applied to the Optimal Product Line Design problem, and its 

performance is evaluated against that of Genetic Algorithms regarding a number of 

variables of interest. Competitive reactions are formulated in the context of Nash 

equilibrium in chapter 7. Chapter 8 presents the system that incorporates the proposed 

methodology. Finally, chapter 9 provides an overview of the main conclusions of the 

study, while its limitations are addressed and future research areas are suggested. 
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The goal in the optimal product line design problem is the design of a set of products, 

the introduction of which to the market will maximize an objective of the firm (usually 

market share). This requires the proper modeling of customer preferences concerning 

the various product features. In particular, each product is represented as a bundle of 

attributes (features) which can take specific levels. A personal computer for example, 

consists of the attributes monitor, processor, hard disk, memory etc., the levels of which 

are illustrated in Table 2.1. Customers select the levels of the attributes according to 

their preferences; a civil engineer, for example, will probably choose a large monitor, 

whereas a mathematician may select a fast processor. Through conducting market 

surveys, companies can reveal the customer preferences concerning the various product 

attributes. This is usually done with the application of Conjoint Analysis, which 

estimates values (called part-worths) for each attribute level, at the individual, segment, 

or aggregate market level. An example is given in Table 2.1, where the preferences of 2 

customers concerning the features of a personal computer are represented as part-

worths for each attribute level. 

 

 

 

 

 



 

Table 2.1: Part-worths for each attribute level of a personal computer 

Attributes Levels Partworths 

Customer1 Customer2 

Monitor 17’’ 0.8 0.1 

19’’ 0.2 0.3 

20’’ 0.3 0.4 

24’’ 0.5 0.9 

Processor Single-core 3,8 GHz 0.1 0.2 

Core-2 2,6 GHz 0.3 0.3 

Core-4 2Ghz 0.9 0.5 

Hard disk 200 GB 0.4 0.2 

500 GB 0.6 0.3 

750 GB 0.7 0.5 

1 T 0.4 0.8 

Memory 2 GB 0.2 0.1 

4 GB 0.4 0.3 

6 GB 0.9 0.4 

Mouse Cable 0.3 0.1 

Wireless 0.4 0.9 

Camera Embedded 0.3 0.8 

No camera 0.2 0.2 

 



 

Each customer is assumed to evaluate all product attributes in a simultaneous 

compensative manner and implicitly assign a utility value to each competing 

alternative, which is usually represented as the sum of the part-worths of the 

corresponding attribute levels that comprise the product (linear-additive parth-worth 

model). The higher the product’s utility, the higher the probability to be chosen. Suppose 

that the two customers whose part-worths are presented in Table 2.1, have to select 

between PC1 (17’’, core-4 2GHz, HD 750 GB, 6 GB RAM, cable mouse, no camera) and 

PC2 (24’’, Single-core 3,8 GHz, HD 200 GB, 6 GB RAM, wireless mouse, embedded 

camera). Customer 1 will probably choose PC1 (utility=3.8) over PC2 (utility=2.5), 

whereas Customer 2 will probably choose PC2 (utility=3.4) over PC1 (utility=1.8). The 

utilities are converted to choice probabilities for each product through the use of choice 

models, and are then aggregated across the whole customer base to provide hypothetical 

market shares. If the part-worths for a population of consumers are known, the 

introduction of different product configurations (combinations of attribute levels) to the 

market can be simulated and conditional market shares can be estimated. With the use 

of optimization algorithms the products that maximize the firm’s objective can be found, 

given the customer preferences and the configuration of the competitive products in the 

market. An example could be a car manufacturer company that is interested in 

introducing 3 new car models in different categories (Sport, SUV, Station Wagon) that 

will provide it with the highest possible volume sales. Next, the different properties of 

the optimal product line design problem are described. 

 

2.1.1 Preference measurement 

Before starting a market simulation the consumers’ preferences must be elicited 

through a market survey. Different procedures can be used such as personal interviews, 

questionnaires, or computer programs. The products that participate into the survey are 

assumed to consist of a combination of attributes (quantitative and/or qualitative), each 

taking a number of distinct levels. Each customer evaluates the competitive products or 

hypothetical product profiles comprising of different combinations of attribute levels. 

Various evaluation processes can be used such as ranking or pairwise comparisons of 



 

product profiles, rating of attribute levels or importance weights etc. The preference 

structure of each individual or market segment is revealed through the use of Conjoint 

Analysis, the output of which is the values that a consumer assigns to every level of each 

attribute, the well known part-worths in marketing literature. The (usually linear) 

combination of the part-worths that correspond to the product’s attributes gives its total 

utility value that an individual expects to obtain from the product.  

Customer preferences are estimated at one of three levels of data aggregation. At the 

individual level, a unique set of part-worths is estimated for each customer. At the 

segment level, the market is assumed to comprise a number of homogeneous segments, 

and consumers belonging to the same segment follow the same preference structure. 

Finally, at the aggregate level a single set of part-worths is calculated for the entire 

customer population, pooling across the data collected for the whole consumer base. 

 

2.1.2 Choice modeling  

Choice modeling is the process of simulating the behavior of a consumer who has to 

select among a set of alternatives. This is usually implemented through the use of a 

choice model. A choice model is the underlying process by which a customer integrates 

information to choose a product from a set of competing products. A number of choice 

models have been developed with varying assumptions and purposes, which differ in the 

underlying logic structure that drives them (Manrai, 1995). The choice model represents 

the consumer’s purchasing pattern by relating preference to choice. It is a mathematical 

model which converts the product utilities that an individual assigns to the set of 

alternatives under consideration, to choice probabilities for each alternative. Choice 

models can be either deterministic or probabilistic. The first choice (or maximum utility) 

rule is a deterministic model, which assumes that the individual will always purchase 

the product with the highest utility. In this case the highest utility alternative receives 

probability of choice equal to 1, while the rest of the alternatives get a zero probability.  

The main weakness of the first choice rule is that it displays information only about the 

product with the maximum utility, while the relative customer preference for the 



 

remaining products is not reflected. Consider a scenario where three consumers have to 

choose among three brands and assign them the utilities shown in Table 2.2. 

 

Table 2.2: Customer utilities for a 3-product scenario 

 Brand A Brand B Brand C 

Customer 1 0.8 0.7 0.2 

Customer 2 0.9 0.8 0.1 

Customer 3 0.3 0.8 0.9 

 

The first choice rule exaggerates the share of brand A (66.67%), while underestimating 

brand B (0%) which, although it receives high utility values from all customers, will 

never be selected because it is not ranked first. Since the maximum utility model 

allocates all the choice probability to the first product, regardless of the extend its utility 

differs from the others, standard errors of the predicted choice shares tend to be higher 

than the other choice models, especially in small sample sizes. The first choice model is 

mainly of historical interest, since its deterministic rule fails to adequately represent 

actual human choice behavior. 

It is widely accepted that the human purchasing process reflects a lot of randomness in 

the real world. A customer will not always buy the brand that perceives best due to out 

of stock occasions, high search costs, buyer confusion, variety seeking etc. Instead of 

allocating all choice likelihood to a single brand, probabilistic models distribute choice 

probabilities among all products, in proportion to their utility value. They incorporate 

the relative differences in utility values to the choice likelihoods, and allow even the 

worst alternative to receive a probability of choice. Probabilistic choice models  (also 

known as share of preference models) are divided into constant utility and random utility 

models. Constant utility models assume that the product utilities are constant and 

capture the stochastic nature of human behavior, by assuming a level of uncertainty in 



 

the decision rule. The most popular constant utility probabilistic model is the BTL: 

Pij=

∑
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where Pij is the probability that consumer i selects product j, Uij is the utility he assigns 

to product j, and n is the number of competing products. The Pessemier’s model (1971) is 

an extension of BTL, where product utilities are subject to an exponential 

transformation, which uniformly controls the flatness or steepness of choice 

probabilities, while preserving the original rank order of preferences:  
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where a is a user specified exponent. Small values of a have a flattening effect, 

overestimating the choice likelihoods of low-utility brands. Large values of a have a 

sharpening effect, and as a approaches infinity the model turns into a first choice rule.  

The Lesourne (1977) model uses an exponent of 2: Pij=
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In contrast to models like BTL that assume constant utilities and apply probabilistic 

choice rules, random utility models assume that the consumer always chooses the 

alternative with the highest utility (U), which consists of two parts. A deterministic 

component (V) specified as a function of the measured product attributes and individual 

preferences, and a stochastic term (e) that represents the unmeasured variation in 

preferences (Baltas and Doyle, 2001): U = V + e.  

The MNL model assumes independently identically distributed errors (stochastic terms) 

across the customer population, according to the double exponential distribution. Under 

this assumption and the principle of utility maximization, the probability that customer 

i chooses product j is: 
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Brice (1997) demonstrated that share of preference models (BTL, MNL) generally 

predict actual market shares better than the more extreme First Choice model.  

 

2.1.3 Optimization criteria  

The first criterion introduced was the maximization of a company’s market share, also 

known as share of choices (Shocker and Srinivasan, 1974), which remains the most 

frequently used objective until today. Later, two more criteria were presented, the 

seller’s welfare (Green et al., 1981) and the buyer’s welfare (Green and Krieger, 1988). 

In the latter, no competition is assumed, and the aim is the maximization of the sum of 

the utilities that products under design offer to all customers. This is the least 

frequently used criterion, which mainly concerns product and services offered by public 

organizations. In the seller’s welfare, the goal is the maximization of a firm’s profit. This 

is the most complicated criterion since it requires the incorporation of the marginal 

return that the firm obtains from each attribute level into the objective function.   

 

2.1.4 Number of products to be designed 

The optimal product design problem (one product to be designed) was first formulated by 

Zufryden (1977). Eight years later Green and Krieger (1985) introduced the optimal 

product line design problem (two or more products to be designed), which is the main 

focus of the specific research area today.  

 

 

 



 

2.1.5 Procedure steps 

The optimal product line design problem can be formulated either as a one-step or a two-

step approach. In the latter, a reference set of candidate alternatives is first defined, and 

the items that optimize a certain criterion are selected next with the use of a specific 

algorithm (Green and Krieger, 1985). The problem here is to decide on the size of the 

reference set of products, and the way that it will be constructed in order to include all 

potential good solutions. Nowadays, the increase in computers’ speed, as well as the 

development of advanced optimization algorithms, has enabled the design of the items 

that comprise the line directly from part-worth data in a one-step approach (Green and 

Krieger, 1988).  

   

2.1.6 Attribute Levels Optimization  

In real world applications, as the number of attributes and levels increases, the number 

of different product profiles raises exponentially, making the selection of the appropriate 

combination of attribute levels a very complex managerial task. For example in a 

product category with 7 attributes each taking 6 different levels, the number of possible 

product profiles is 279,936, while for designing a line of 3 products the number of 

candidate solutions is over 1015. The exponential increase in the number of candidate 

solutions with the increase in the number of attributes and levels is illustrated in Table 

2.3 (Alexouda, 2004).  

 

 

 

 

 

 



 

Table 2.3: The number of possible solutions (products and product lines) of different 

problem sizes (source: Alexouda, 2004) 

Products 

in line 

Attributes 

 

Levels Number of 

possible 

products 

Number of possible product 

lines 

2 3 4 64 2016 

2 4 3 81 3240 

2 4 4 256 32,640 

2 5 3 243 29,403 

3 3 4 64 41,664 

3 4 3 81 85,320 

3 4 4 256 2,763,520 

3 5 3 243 2,362,041 

2 5 4 1024 523,776 

2 5 5 3125 4,881,250 

2 5 6 7776 30,229,200 

2 6 4 4096 8,386,560 

2 6 5 15,625 122,062,500 

2 6 6 46,656 1,088,367,840 

2 7 4 16,384 134,209,536 

2 7 5 78,125 3,051,718,750 

2 7 6 279,936 39,181,942,080 



 

2 8 4 65,536 2,147,450,880 

2 8 5 390,625 76,293,750,000 

2 8 6 1,679,616 1,410,554,113,920 

3 5 4 1024 178,433,024 

3 5 5 3125 5,081,381,250 

3 5 6 7776 78,333,933,600 

3 6 4 4096 11,444,858,880 

3 6 5 15,625 635,660,812,500 

3 6 6 46,656 16,925,571,069,120 

3 7 4 16,384 732,873,539,584 

3 7 5 78,125 79,469,807,968,750 

3 7 6 279,936 3,656,119,258,074,240 

3 8 4 65,536 46,910,348,656,640 

3 8 5 390,625 9,934,031,168,750,000 

3 8 6 1,679,616 789,728,812,499,209,000 

 

Kohli and Krishnamurti (1989) proved that the share of choices for the single product 

design problem is NP-hard, which means that the complete enumeration of the solution 

space is practically infeasible in tractable time. Kohli and Sukumar (1990) proved the 

same for the buyer’s welfare and the seller’s welfare, also for the single product design. 

In this context many different heuristic approaches have been applied to the problem, 

the most significant of which are presented in Section 3.1. 

 



 

2.2 Problem formulation 

The formulation of the problem depends on the employed choice model and the selected 

optimization criterion. 

  

2.2.1 Deterministic choice rules 

The most common approach found in the literature is the share of choices problem for 

the optimal product line design using the first choice rule. 

2.2.1.1 Share of choices  

Here, each individual is assumed to have an existing favorite product called status quo. 

The problem can be formulated as a 0-1 integer program, with the use of the following 

parameters (Kohli and Sukumar, 1990):  

Ω = {1,2,…, K} is the set of K attributes that comprise the product. 

Φκ = {1,2,…, Jκ} is the set of Jk levels of attribute k. 

Ψ = {1,2,…M} is the set of products to be designed. 

θ = {1,2,…Ι}  is the set of Ι customers. 

wijk= is the part-worth that customer i∈θ assigns to level j∈Φκ of attribute k∈Ω. 

*
kij = is the level of attribute k∈Ω of customer’s i∈θ status quo product. 

cijk = wijk - wij*k is the relative difference in the part-worth that customer i∈θ assigns 

between level j and level j* of attribute k∈Ω. 

Since the firm may already offer a number of products, the set of customers whose 

current status quo product is offered by a competitor is indexed as θ’⊂ θ. In this way the 

company aims at gaining the maximum possible number of clients from its competitors, 

without cannibalizing its existing product line. Three decision variables are also used: 
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In this context the share of choices problem in the product line design using a 

deterministic rule is formulated as follows: 
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∑
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xjkm, xim, xi = 0, 1 integer, i∈θ’, j∈Φk, k∈Ω, m∈Ψ.                                                                (5)   

 

Constraint (2) requires each product in the line to be assigned exactly one level of each 

attribute.  Constraint (3) restricts xim to be 1 only if customer i prefers his status quo to 

product m. Constraint (4) forces xi to be 1 only if xim = 1 for all m∈Ψ, that is if customer i 

prefers his status quo to all products in the line. Constraint (5) represents the binary 

restrictions regarding the problem’s decision variables. The objective function (1) 

minimizes the number of instances for which xi = 1, and hence minimizes the number of 

customers who decide to be loyal to their status quo products (which is equivalent to 



 

maximizing the number of customers who switch from their status quo to a product from 

the company’s line). 

 

2.2.1.2 Buyer’s welfare  

In this case no status quo product is assumed for the customer (buyer), who will select 

the item from the offered line that maximizes his utility. The following decision variable 

is used: 

xijkm={
i,buyer  and m,product in  appearsk  attribute of j level if 1,

otherwise 0,
  

The problem can be formulated as a 0-1 integer program as follows (Kohli & Sukumar, 

1990): 

max 
∑∑∑∑
∈ Ψ∈ Ω∈ Φ∈θ κi m k j

ijkmijkxw

                                                                                                          (6) 
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xijkm + xi’j’km ≤ 1,     i’>i, j’>j,  i,i’∈θ, j,j’∈Φκ,k∈Ω, m∈Ψ,                                                        (9) 

xijkm = 0, 1 integer, i∈θ, j∈Φκ, k∈Ω, m∈Ψ                                                                          (10) 

 

Constraint (7) requires that, across products, only one level of an attribute be associated 

with a specific buyer. Constraint (8) requires that, across attributes, the level assigned 

to buyer i∈θ must correspond to the same product. Constraint (9) requires that for all 

buyers assigned to a specific product, the same level of an attribute must be specified. 

Together, these three constraints require that each buyer be assigned one of the 



 

products in the line. The objective function (6) selects the products (attribute levels 

combination) to maximize the total utility across buyers.  

 

2.2.1.3 Seller’s welfare  

Kohli and Sukumar (1990) provide a detailed description of the seller’s welfare problem, 

where the firm wants to maximize the marginal utility obtained by the introduction of a 

line of M new products. The seller may already offer some products in the market, and 

competition is represented through the existence of a current status quo product for 

each customer. If customer i∈θ selects a product in which level j∈Φκ of attribute k∈Ω 

appears, the seller is assumed to obtain a utility value uijk. The seller’s marginal return 

obtained from level j∈Φκ of attribute k∈Ω is: 

dijk = uijk - uij*k, if customer i∈θ switches from a product offered by the seller 

dijk = uijk if customer i∈θ switches from a product offered by a competitor 

The problem can be formulated as a 0-1 integer program as follows: 

max 
∑ ∑∑ ∑
∈ Ψ∈ Ω∈ Φ∈θ κi m k j

iijkmijk yxd

                                                                                                  (11) 
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yi = 0, 1 integer, and (7), (8), (9), (10). 

Constraints (7)-(10) require, as in the buyer’s welfare problem, that a specific product is 

assigned to each customer, and that each product in the line be assigned exactly one 

level of each attribute. Constraint (12) requires that each customer is assigned to the 

product that maximizes his utility. Constraint (13) requires that the seller obtains a 

return from customer i only if the utility of the new item assigned to the customer is 



 

higher than the utility of his status quo product. The objective function (11) selects the 

products to maximize the seller’s total return from the products in the line.   

 

2.2.2 Probabilistic choice models 

When probabilistic choice models are used, the market is assumed to consist of Ν 

competitive products with known configurations, including the M candidate items for 

the firm’s line: 

Ξ = {1,2,…Ν} is the set of products that comprise the market. 

2.2.2.1 Share of choices 

As before Ψ⊂  Ξ is the set of products to be designed. Customers do not have a status 

quo product, and do not deterministically choose the highest utility product. Instead, it 

is assumed that each of the Ν alternatives has a certain probability to be selected, which 

is calculated with the use of a probabilistic choice model. Using BTL for example, the 

probability that customer i will choose product m is estimated as follows: 

Pim = 
∑

Ξ∈n
inim UU

,      i∈θ, m∈Ψ, n∈ Ξ,                                                                                 (14) 

where Uim the utility that customer i assigns to product m (sum of its part-worths): 

∑ ∑
Ω∈ Φ∈

=
k j

jkmijkim xwu
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In this context the problem is formulated as the following non-linear program: 

max 
∑ ∑

Ψ∈ ∈m i

imP
θ                                                                                                                   (15) 

subject to 

xjkm = 0, 1 integer, and (2).   

The objective function (15) maximizes the market share of the m products (probability to 

be purchased) of the company’s line.  



 

2.2.2.2 Seller’s welfare 

Green and Krieger (1992) presented the seller’s welfare problem, in an application of the 

SIMOPT program to pharmaceutical products. In order for the company’s profit to be 

maximized, variable (depending on attribute levels) and fixed costs for each product 

must be included in the objective function. The variable cost per unit for a product m is 

given by the following linear additive function: 

∑ ∑
Ω∈ Φ∈

=
k j

jkmjkm xcc
κ

(var)(var)

,   j∈Φκ, k∈Ω, m∈Ψ, 

where 

(var)
jkc

the variable cost of attribute’s k level j for the seller. 

A similar function is used for the fixed cost of product m: 
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If pm denotes item’s m price, the problem is formulated as the following non-linear 

program: 

max 
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subject to 

xjkm = 0, 1 integer, and (2).   

The objective function (16) maximizes the total seller’s profit obtained from the 

introduction of a line of M products. 
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As discussed in the previous chapter the Optimal Product Line Design problem has been 

proved to be NP-hard, hence there is no algorithm that can find and verify the 

global optimal solution in polynomial time. From its establishment in 1974 until 

today, a number of optimization approaches have been applied to the problem in order to 

provide (near) optimal solutions in tractable time. Some of the proposed algorithms have 

been incorporated to intelligent marketing systems, which assist a manager in this 

problem of high complexity. Most approaches employ the deterministic first choice rule 

due to its simple form. The probabilistic approaches use either the BTL or the MNL, 

with the exception of Krieger and Green (2002) who use the Pessemier model with a 

different exponent for each customer. Almost all approaches maximize the firm’s market 

share, and only a few deal with the other two objectives.  Two-step approaches as well as 

single-product optimization approaches are mostly reported in the first studies, whereas 

the last few years researchers have focused on one-step approaches that optimize 

product lines. With the exception of only two studies, all other approaches consider the 

competition to be static. That is, the rivals do not alter their current products or 

introduce new ones after the firm optimizes its product line.  On the contrary, Choi and 

DeSarbo (1993), and Green and Krieger (1997) propose a dynamic market, where each 

competitor responds by optimizing its product line until a Nash equilibrium is reached. 

Seven algorithms have been incorporated into marketing systems. Table 3.1 summarizes 

the 24 most important approaches that have been reported in the literature. 



Table 3.1: Approaches applied to the optimal product (line) design problem 

Paper Choice rule Objective Steps Algorithm Products Rival System 

Shocker & Srinivasan 1974 Deterministic Share, Profit One Gradient search, Grid 

search 

Single Static  

Zufryden 1977 Deterministic Share One Mathematical 

programming 

Single Static ZIPMAP 

Green, Carroll & Goldberg 

1981 

Deterministic,  

Probabilistic 

Share, Profit One Response Surface methods Single Static QUALIN 

Green & Krieger 1985 Deterministic Share Two Greedy Heuristic, 

Interchange Heurist 

Line Static DESOP, LINEOP 

Kohli & Krishnamusti 1987 Deterministic Share One Dynamic Programming Single Static  

Green & Krieger 1988 Probabilistic Share, Profit, 

Buyers welfare 

One Divide & Conquer Line Static SIMOPT 

McBride & Zufryden 1988 Deterministic Share Two Mathematical 

programming 

Line Static  

Sudharshan, May & Gruca 

1988 

Deterministic,  

Probabilistic 

Share One Non linear programming Line Static DIFFSTRAT 



 

Green, Krieger & Zelnio 

1989 

Probabilistic Share Two Coordinate Ascent Line Static PROSIT 

Kohli & Sukumar 1990 Deterministic Share, Profit, 

Buyers welfare 

One Dynamic Programming Line Static  

Dobson & Kalish 1993 Deterministic Share, Profit, 

Buyers welfare 

Two Greedy Heuristic Line Static  

Choi & DeSarbo 1993 Deterministic Profit One Branch and Bound Single Dynami

c 

 

Nair, Thakur & Wen 1995 Deterministic Share, Profit One Beam Search Line Static  

Balakrishnan & Jacob 

1996 

Deterministic Share, 

Buyers welfare 

One Genetic algorithm Single Static  

Green & Krieger 1997 Deterministic Profit One Divide & Conquer Single Dynami

c 

 

Chen & Hausman 2000 Probabilistic Profit Two Non  linear programming Line Static  



 

Alexouda & Paparrizos 

2001 

Deterministic Profit One Genetic algorithm Line Static MDSS 

Shi, Olafsson & Chen 2001 Deterministic Share One Nested Partitions Line Static  

Krieger &  Green 2002 Probabilistic Share One Greedy Heuristic Single Static  

Steiner & Hruschka 2003 Probabilistic Profit One Genetic algorithm Line Static  

Alexouda 2004 Deterministic Share One Genetic algorithm Line Static MDSS 

Balakrishnan, Gupta  & 

Jacob 2004 

Deterministic Share One Genetic algorithm Line Static  

Camm, Cochran, Curry & 

Kannan 2006 

Deterministic Share One Branch and Bound with 

Lagrangian relaxation 

Single Static  

Belloni, Freund, Selove & 

Simester 2008 

Deterministic Profit One Branch and Bound with 

Lagrangian relaxation 

Line Static  

 



 

3.1 Optimization algorithms applied to the problem 

In this section the most important algorithms that have been applied to the Optimal 

Product Line Design problem are reviewed and evaluated. Emphasis is placed on 

Genetic Algorithms, since it is the only population based algorithm that has been 

applied to the problem, and it constitutes the most advanced optimization algorithm 

that has been incorporated into a marketing system.  

 

3.1.1 Greedy Heuristic 

Introduced by Green and Krieger (1985), this heuristic proceeds in two steps. At the first 

step a “good” set of reference products is created. The second step begins by choosing the 

best alternative among the candidate products. Then, the second alternative is selected 

from the reference set, which optimizes the objective function provided that the first 

product is already included in the market. The procedure iterates by adding one product 

at a time until the desired number of products in the line has been reached. In another 

paper, Green and Krieger (1987) describe the “best in heuristic” for developing the set of 

reference products. Initially the product profile that maximizes the utility u1max of 

customer 1 is found through complete enumeration of the attribute levels. If customer’s 

2 utility for customer’s 1 best product is within a user specified fraction ε of u2max, then 

customer’s 2 best product is not added to the set; otherwise it is. As the method proceeds 

through the group of customers, all of the products currently on the set are tested to see 

if any are within ε of ukmax for customer k, and the previous rule is applied. The process 

is usually repeated through randomized ordering of the customers, and different values 

of ε, depending on the desired size of the set. Local optimality is not guaranteed, as it 

depends on the first product added to the line. 

 

3.1.2 Interchange Heuristic 

In the same paper, Green and Krieger (1985) introduced another method where initially, 

a product line is randomly selected and its objective value is estimated. Next, each 

alternative from the reference set is checked to see whether there exists a product in the 

line, the replacement of which by the specific alternative will improve the line’s value. If 

this condition holds, the alternative is added, and the product that is removed is the one 



 

that results in the maximum improvement of the line’s value. The process is repeated 

until no further improvement is possible. The authors recommend the use of the solution 

provided by the Greedy Heuristic, as the initial product line. The Interchange Heuristic 

guarantees local optimality, where the local neighborhood includes all solutions that 

differ from the existing by one product. 

 

3.1.3 Divide and Conquer 

In this approach, developed by Green and Krieger (1988), the set of attributes K that 

comprise the product line is divided into two equal subsets K1 and K2. First, the levels 

of attributes belonging to K1 that are good approximations of the optimal solution are 

estimated. The authors suggest averaging the part-worths within each level of each 

attribute, and selecting for each attribute the level with the highest average. In each 

iteration, the values of the attributes belonging to the one subset are held fixed, while 

the values of the other subset are optimized through an exhaustive search. If the search 

space is too large for completely enumerating half of the attributes, the set of attributes 

can be divided into more subgroups, at the risk of finding a worst solution. Local 

optimality is guaranteed, where the local neighborhood depends on the number of 

subsets. 

 

3.1.4 Coordinate Ascent 

Green et al. (1989), propose a heuristic that can be considered as a Coordinate Ascent 

implementation. A product line is initially formed at random and evaluated. The 

algorithm then iterates through each product attribute in a random order, and assesses 

each possible level. The altering of an attribute’s level is acceptable if it improves the 

solution’s quality. Only a single attribute change is assessed at a time (one opt version), 

and the algorithm terminates when no further improvement is possible. Local optimality 

is guaranteed, with the local neighborhood including all solutions that differ from the 

existing one by a single attribute. 

 

3.1.5 Dynamic Programming 



 

Kohli and Krishnamusti (1987), and Kohli and Sukumar (1990) use a dynamic 

programming heuristic for solving the optimal product and product line design problems 

respectively. Here, the product (line) is built one attribute at a time. Initially, for each 

level of attribute B, the best level of attribute A is identified, forming in this way a 

number of partial product profiles, equal to attribute’s B number of levels. Next, for each 

level of attribute C, the best partial profile (consisting of attributes A and B) that was 

built in the previous step is identified. The method proceeds until all product(s) 

attributes have been considered. Finally, the product (line) that optimizes the desired 

criterion is selected among the full profiles constructed. The quality of the final solution 

is highly dependent to the order in which the attributes are considered, thus multiple 

runs of the heuristic using different attribute orderings are recommended. No local 

optimality is guaranteed. 

 

3.1.6 Beam Search   

Nair et al. (1995) solved the product line design problem using Beam Search. BS is a 

breadth-first process with no backtracking, where at any level of the search only the b 

(Bean Width) most promising nodes are further explored in the search tree. The method 

begins with K relative part-worth matrices C(k) (with elements cij  = wij - wij* ), and 

initializes work matrices A1(•) based on C. At each stage l (layer), matrices E1(•) of 

combined levels are formed, by combining two matrices Al(•) at a time in the given 

order. Then, the b most promising combinations of levels are selected to form columns in 

new matrices Al+1(•) in the next layer, where it remains approximately half of the 

number of matrices in the previous layer. In this way, unpromising attribute levels are 

iteratively pruned, until a single work matrix remains. This final matrix consists of b 

columns, each containing a full product profile. These are the candidate alternatives for 

the first product in the line. For the first of the b alternatives, the data set is reduced by 

removing the customers who prefer this product over their status quo. The previous 

process is repeated for finding one second-product in the line, and iterated until M 

products are build that form a complete product line. The same procedure is repeated, 

until b complete product lines are designed, from which the one that gives the best value 

in the objective function is selected. The final solution depends on the way of pairing the 

different attribute combinations at each layer. The authors suggest a best-worst pairing, 

which gives better results than the random one. No local optimality is guaranteed. 



 

 

3.1.7 Nested Partitions 

In the Nested Partitions implementation (Shi et al., 2001), a region is defined by a 

partial product line profile, for example all products that contain a specific attribute 

level. In each iteration a subset of the feasible region is considered the most promising, 

which is further partitioned into a fixed number of subregions, by determining the level 

of one more attribute, and aggregating what remains of the feasible region into one 

surrounding region. In each iteration therefore, the feasible region is covered by disjoint 

subregions. The surrounding region and each of the subregions are sampled using a 

random sampling scheme, through which random levels are assigned to the remaining 

attributes. The randomly selected product profiles are evaluated, in order for an index to 

be estimated that determines which region becomes the most promising in the next 

iteration. This region is then nested within the last one. If the surrounding region is 

found to be more promising than any of the regions under consideration, the method 

backtracks to a larger region using a fixed backtracking rule. NP combines global search 

through partitioning and sampling, and local search through calculation of the 

promising index. The method can incorporate other heuristics to improve its 

performance. The authors tried a Greedy Heuristic, as well as a Dynamic Programming 

into the sampling step, and a Genetic Algorithm into the selection of the promising 

region. The results of their study indicate that the incorporation of each of the three 

heuristics is beneficial, with GA giving the best performance.  

 

3.1.8 Genetic Algorithms 

Genetic Algorithms are optimization techniques that were first introduced by Holland 

(1975). They are based on the principle of “natural selection” proposed by Darwin a long 

time ago, and constitute a special case of Evolutionary Programming algorithms. In 

accordance with Biology science, GAs represent each solution as a chromosome that 

consists of genes (variables), which can take a number of values called alleles. A typical 

GA works as illustrated in Figure 3.1. Initially a set of chromosomes (population) is 

generated. If prior knowledge about the problem exists, it is used to create possible 

“good” chromosomes; else the initial population is generated at random. Next, the 

problem’s objective function is applied to every chromosome of the population, in order 



 

for its fitness (performance) to be evaluated. The chromosomes that will be reproduced 

to the next generation are then selected according to their fitness score, that is, the 

higher the chromosome’s fitness the higher the probability that it will be copied to the 

subsequent generation. Reproduction ensures that the chromosomes with the best 

performance will survive to the future generations, a process called “survival of the 

fittest”, so that high quality solutions will not be lost or altered.  

 

Figure 3.1: Genetic Algorithm flowchart 

 

 

 

 

 

 

 

 

 

A mating procedure follows, where two parents are chosen to produce two offspring with 

a probability pc, through the application of a crossover operator. The logic behind 

crossover is that a chromosome may contain some “good” features (genes) that are highly 

valued. If two chromosomes (parents) exchange their good features then there is a great 

possibility that they will produce high performance chromosomes (offspring) that will 

combine their good features. The expectation is that from generation to generation, 

crossover will produce new higher quality chromosomes. Subsequently, each of the 

newly formed chromosomes is selected with a probability pm to be mutated. Here one of 

its genes is chosen randomly and its value is altered to a new one randomly generated. 

Mutation produces new chromosomes that would never be created through crossover. In 

this way, entirely new solutions are produced in each generation, enabling the algorithm 

to search new paths and escape from possible local minima. Whereas reproduction 
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reduces the diversity of the population, mutation maintains a certain degree of 

heterogeneity of solutions, which is necessary to avoid premature convergence of the 

evolutionary process. However, mutation rates must be kept low, in order to prevent the 

disturbance of the search process that would lead to some kind of random search. 

Finally, if the convergence criterion has been met, the algorithm stops and the best 

solution so far is returned; else it continues from the population’s evaluation step. 

 

3.1.8.1 Type of problems solved 

GAs were first applied to the optimal product design problem by Balakrishnan and 

Jacob (1996), who dealt with the share of choices and the buyer’s welfare problem, by 

employing the first choice rule. The authors provide a number of advantages that leaded 

them to use this approach. The search is implemented from a set of points (equal to the 

size of the population) rather than a single point, increasing in this way the method’s 

exploratory capability. GAs do not require additional knowledge, such as the 

differentiability of the function; instead they use the objective function directly. GAs do 

not work with the parameters themselves but with a direct encoding of them, which 

make them especially suited for discontinuous, high-dimensional, and multimodal 

problem domains, like the optimal product design. Later, Alexouda and Paparrizos 

(2001) applied GAs to the seller’s welfare problem for the optimal product line design, 

while Alexouda (2004), as well as Balakrishnan et al. (2004) dealt with the share of 

choices problem. All three approaches employed the first choice rule. The only approach 

that uses probabilistic choice rules is that of Steiner and Hruschka (2003), who dealt 

with the seller’s welfare problem. 

 

3.1.8.2 Problem representation 

Except for Balakrishnan et al.  (2004), all other approaches adopted a binary 

representation scheme. In Balakrishnan and Jacob (1996), each product is represented 

by a chromosome, which is divided into K substrings that correspond to the product’s 

attributes. Each substring consists of Jκ (the number of attribute’s k levels) genes that 

take values (alleles) 0 or 1. Hence the length of a chromosome is P=
∑

Ω∈k
kj

. A value of 1 

denotes the presence of the specific level in the corresponding attribute, and a value of 0 

its absence. This representation has the restriction that exactly one gene must take the 



 

value of 1 in each substring. For example, it is assumed that a personal computer 

consists of the attributes processor (Single-core 3,8 GHz, Core-2 2,6 GHz, Core-4 2Ghz), 

monitor (17’’, 19’’, 20’’, 24’’), and hard disk (200 GB, 500 GB, 750 GB). Then a Core-2 2,6 

GHz with 20’’ monitor and 750 GB hard disk will be represented by the chromosome 

C={010 0010 001}. In Alexouda and Paparrizos (2001), Steiner and Hruschka (2003), and 

Alexouda (2004), a chromosome corresponds to a line of products. Each chromosome is 

composed of M*K substrings that represent the product’s attributes, each consisting of 

Jκ genes that take values 0 or 1. As before, a value of 1 denotes the presence of the 

specific level in the corresponding attribute, and a value of 0 its absence. The restriction 

that exactly one gene must take the value of 1 in each substring also holds here. The 

length of each chromosome is P=M*
∑

Ω∈k

kj

. Referring to the personal computer 

example, the chromosome D={010 0010 001|100 0001 010} represents a line of two 

products; a Core-2 2,6 GHz with 20’’ monitor and 750 GB hard disk, and a single-core 

3,8 GHz with 24’’ monitor and 500 GB hard disk.  

Balakrishnan et al. (2004) use an integer representation scheme, where a chromosome 

corresponds to a line of products, a gene to an attribute, and the gene’s values to 

attribute levels. Hence, each chromosome is of length M*K, and is divided into M 

substrings, each representing a product in the line. Within each substring, gene k can 

take Jκ different values. The line of the two products described by chromosome D above, 

is represented in this case by chromosome E={233|142}. Here, the authors raise an 

issue concerning the principal of minimal redundancy, according to which each member 

of the space being searched should be represented by one chromosome only (Radcliffe, 

1991). The integer representation scheme does not adhere to this principle, since the 

same line of products can be represented by M! different chromosomes. The previous PC 

product line, for instance, can also be represented by the chromosome E’={142|233} (the 

two products exchange their positions). This could cause inefficiencies in the search 

process, as the crossover between two identical products (E and E’) may result in two 

completely different sets of offspring. On the other hand, it may prove to be an 

advantage, as more members of the search space will probably be explored. In order to 

alleviate this concern, they adopt an alternative representation scheme where the 

substrings (products) in a chromosome are arranged in lexicographic order. That is, 

product 111 is before 112 which is before 121 etc. In this encoding, called sorted 

representation, the chromosome E would not exist. They tested both the sorted and the 

unsorted representations. 



 

3.1.8.3 Genetic Algorithm’s parameters 

Balakrishnan and Jacob (1996) modeled the problem with the use of matrices. The GA 

population (number of chromosomes) has a size of N, and is stored in the matrix POPN*P. 

Customers’ preferences (part-worths for each attribute level) are maintained in the 

matrix BETAI*P. The utilities that each of the I customers assigns to each of the N 

products (represented by chromosomes) are estimated in each generation, and stored in 

the matrix PRODUTIL= BETA*POPT. For the share of choices problem the utility of 

each customer’s status quo product is maintained in the matrix STATQUO. The 

chromosome n is evaluated through the comparison of the n-th column in PRODUTIL 

with the corresponding in STATQUO. The fitness of the chromosome is the number of 

times that PRODUTIL(i,n)>STATQUO(i,n), i=1…I, that is the number of customers that 

prefer the new product to their status quo. For the buyer’s welfare problem the fitness of 

the chromosome n is the sum of elements of the n-th column in PRODUTIL, that is the 

aggregate utility value for the whole set of customers. 

 

3.1.8.3.1 Initialization of the population 

All five approaches initialize the GA population in a totally random manner. 

Furthermore, Alexouda and Paparrizos (2001), Alexouda (2004), and Balakrishnan et al. 

(2004), also assess the performance of a hybrid strategy in respect to the initialization of 

the population. Before running the GA, a Beam Search heuristic is applied and the best 

solution found is seeded into the genetic algorithm’s initial population, while the 

remaining N-1 chromosomes are randomly generated. The population size is set to 100 

(Balakrishnan and Jacob, 1996), 150 (Alexouda and Paparrizos, 2001; Steiner and 

Hruschka, 2003), 180 (Alexouda, 2004), or 400 (Balakrishnan et al., 2004).  

 

3.1.8.3.2 Reproduction  

Except for Steiner and Hruschka (2003), all other approaches adopt an elitist strategy 

for the process of reproduction, where the F fittest chromosomes are copied intact into 

the next generation. Such an approach ensures that the best chromosomes will survive 

to the subsequent generations. The value of F ranges from 4N/10 (Alexouda and 

Paparrizos, 2001; Alexouda, 2004), to N/2 (Balakrishnan and Jacob, 1996; Balakrishnan 

et al., 2004). Steiner and Hruschka (2003) employ a binary tournament selection 

procedure, where N/2 pairs of chromosomes are randomly selected with replacement, 



 

and from each pair only the chromosome with the higher fitness value survives to the 

succeeding generation. This is a semi-random process, which ensures that the 

chromosomes with higher fitness values have more probabilities to survive. 

 

3.1.8.3.3 Crossover 

In the approaches that adopt a binary representation scheme, the unit of interest in the 

crossover procedure is the substring, in order for feasible solutions to be produced. In 

Steiner and Hruschka (2003) for example, who use one-point crossover with probability 

pc=0.9 and random selection of the cross site, the crossover of the two parents 

A = {010 0010 001|100 0001 010}       and 

B = {100 0100 010|010 0010 100}, 

after the second substring will generate the two offspring 

A’ = {010 0010 010|010 0010 100}      and 

B’ = {100 0100 001|100 0001 010}. 

Except for the above approach, the other ones employ a uniform crossover with the 

probability pc taking the values 0.4 (Alexouda and Paparrizos, 2001), 0.45 (Alexouda, 

2004) and 0.5 (Balakrishnan and Jacob, 1996). In the approach that employs an integer 

representation scheme, the unit of interest in crossover is the gene. If for instance, the 

two parents 

S={122|323}       and 

T={141|421}, 

exchange their second and sixth genes, this will generate the offspring 

S’={142|321}       and 

T’={121|423}. 

When the sorted representation is used, the offspring are sorted in lexicographic order 

after the crossover operation. According to Radcliffe (1991), a forma specifies at certain 

chromosome’s positions (called defining positions) particular values that all its instances 

must contain. That is, if a chromosome η is an instance of a forma β, then η and β both 



 

contain the same values at the specified positions. Chromosomes S and T, for example, 

both belong to the forma:  

β = 1** *2*,  

where the * denotes a “don’t care” value. The principle of respect defines that the 

crossover of two chromosomes that belong to same forma must produce offspring also 

belonging to the same forma. Whereas in the unsorted representation the crossover is 

“respectful”, the property does not hold in the sorted representation, due to the ordering 

of the attributes after the crossover. 

 

3.1.8.3.4 Mutation 

Except for the one with the integer representation scheme, in all other approaches the 

mutation operator is applied at the substring level. Chromosomes are randomly selected 

(without replacement) with a probability pm (mutation rate). An attribute (substring) of 

the selected chromosome is randomly picked and its level is altered. If, for instance, 

chromosome A is chosen to be mutated at the second substring, a potential mutated 

chromosome will be A’’={010 1000 001|100 0001 010}. In Balakrishnan et al. (2004), the 

mutation takes place at the gene level, while two different mutation operators are used. 

Except for the standard mutation operator, a hybridized one is employed, which uses as 

a mutator chromosome the best solution found by the Beam Search heuristic. Whenever 

a chromosome is selected for mutation, a gene is randomly selected and its value is 

either randomly changed using the standard mutation operator, or altered to the value 

contained in the specific attribute of the mutator chromosome. In this way the good 

attribute values of the BS best solution will be copied to the GA population. On the other 

hand, this may result in premature convergence to the alleles of the mutator string. In 

order to avoid this, the two mutator operators have equal probability to be applied. The 

mutation rate takes a wide range of values: 0.05 (Steiner and Hruschka, 2003), 0.1 

(Alexouda, 2004), 0.2 (Alexouda and Paparrizos, 2001), 0.3 (Balakrishnan and Jacob, 

1996), or 0.4 (Balakrishnan et al., 2004). 

 

3.1.8.3.5 Stopping criterion 

From the entire set of chromosomes only the N fittest are maintained to the next 

generation, and the algorithm iterates until a stopping criterion is met. Balakrishnan 



 

and Jacob (1996), Steiner and Hruschka, (2003), and Balakrishnan et al. (2004) employ 

a moving average rule, where the algorithm terminates when the percentage change in 

the average fitness of the best three chromosomes over the five previous generations is 

less than 0.2% (convergence rate). In the other two approaches the procedure terminates 

when the best solution does not improve in the last 10 (Alexouda and Paparrizos, 2001), 

or 20 (Alexouda, 2004) generations. 

 

3.1.8.4 Performance evaluation 

 

3.1.8.4.1 Genetic Algorithm vs. Dynamic Programming 

Balakrishnan and Jacob (1996) compared the results of their approach and the Dynamic 

Programming approach (Kohli and Krishnamusti, 1987) with the complete enumeration 

solutions in 192 data sets, in both the share of choices and buyer’s welfare problems. A 

full factorial experimental design was generated using the factors and levels presented 

in Table 3.2. 

 

Table 3.2: Factors and levels used in the experiment 

Factor Levels 

Number of attributes 4 6 8 

Number of attribute levels 2 3 4 5 

Number of customers 100 200 300 400 

 

The part-worths were randomly generated following a normal distribution, and 

normalized within each customer to sum to 1. Random was also the generation of each 

customer’s status quo product. Four replications were performed in each case resulting 

in a total of 192 data sets. In the share of choices problem, the average best solution 

provided by GA was 99.13% of the optimal product profile found by complete 

enumeration, while the same value for the DP was 96.67%. GA also achieved a tighter 

standard deviation (0.016) than that of DP (0.031). In the buyer’s welfare problem the 



 

respective values were 99.92% for the GA with 0.0028 std, and 98.76% for the DP with 

0.0165 std. The number of times that the optimal solution was found (hit rate) was 123 

for the GA and 51 for the DP in the share of choices, and 175 for the GA and 82 for the 

DP in the buyer’s welfare. The performance of GA was also compared with that of DP in 

two larger problems of sizes 326,592 and 870,912, where an exhaustive search was 

infeasible in tractable time. The data sets consisted of 200 customers, and 9 attributes 

that take (9,8,7,6,2,2,3,3,3) or (9,8,8,7,6,2,2,3,3) levels, while ten replications for each 

data set were performed. GA showed a better, worse, and equal performance compared 

to DP in 11, 3, and 6 data sets for the share of choices, and in 8, 3, and 9 data sets 

respectively for the buyer’s welfare. 

 

3.1.8.4.2 Genetic Algorithm vs. Greedy Heuristic 

Steiner and Hruschka (2003) compared the results of their approach and the Greedy 

Heuristic approach (Green and Krieger 1985) with the complete enumeration solutions, 

in the seller’s welfare problem. A factorial experimental design was generated using the 

factors and levels presented in Table 3.3. 

 

Table 3.3: Factors and levels used in the experiment 

Factor Levels 

Number of attributes 3 4 5 

Number of attribute levels 2 3 4 

Number of products in the  line 2 3 4 

Number of competing firms 1 2 3 

 

From the 81 different cases a subset of 69 was considered. Four replications were 

performed under each case, resulting in a total of 276 problems solved, where customer 

part-worths, attribute level costs, and competitive products configuration were randomly 

generated. The value of the solution found by GA was never less than 96.66% of the 

optimal (minimum performance ratio), while the corresponding value for the GH was 



 

87.22%. The optimal solution was found in 234 cases by the GA, and in 202 cases by the 

GH, which corresponds to a hit ratio of 84.78% and 73.19% respectively. The solution 

found by GA was strictly better than that found by GH in 66 cases, and strictly worse in 

only 25. 

 

3.1.8.4.3 Genetic Algorithm vs. Beam Search 

Alexouda and Paparrizos (2001), Alexouda (2004), and Balakrishnan et al. (2004) 

compared the performance of GA with that of BS, which was considered the state of the 

art approach of the time. The first two approaches make a comparison of the two 

methods with a full search method in the seller’s welfare and share of choices problems 

respectively. Eight small problems were solved using different values for the number of 

products in the line (2, 3), number of attributes (3, 4, 5, 6, 7, 8), and number of levels (3, 

4, 5, 6). Ten replications were performed in each case, while the number of customers 

was kept constant to 100. The results are shown in Table 3.4. 

 

Table 3.4: Results of the comparison of the two methods 

 Seller’s welfare Share of choices 

GA found optimal 73.75% 77.50% 

BS found optimal 41.25% 45% 

GA outperforms BS 53.75% 33.75% 

BS outperforms GA 12.50% 12.50% 

GA/optimal 0.9958 0.9951 

BS/optimal 0.9806 0.9882 

 

Furthermore, they compared the performance of a GA with completely random 

initialization (GA1), a GA where the initial population is seeded with the best BS 

solution (GA2), and a BS heuristic, in problems with larger sizes where complete 



 

enumeration is unfeasible. The number of customers was set to either 100 or 150 (Table 

3.5). 

 

Table 3.5: Results of the comparison of the three methods 

 Seller’s welfare Share of choices 

I=100 I=150 I=100 I=150 

GA1 outperforms BS 93.88% 93.33% 47.92% 53.33% 

BS outperforms GA1 6.11% 5.83% 33.33% 31.25% 

GA2 outperforms BS 86.66% 80.83% 40% 43.33% 

GA1 outperforms GA2 - - 31.67% 35% 

GA2 outperforms GA1 - - 45.83 43.33% 

GA1/ BS 1.0962 1.0794 - - 

GA2/ BS 1.0853 1.0702 - - 

 

Balakrishnan et al. (2004) defined eight different types of GA and hybrid GA procedures 

(Table 3.6). 

 

 

 

 

 

 

 

 



 

Table 3.6: Genetic Algorithm techniques defined 

Type Representation Integration with BS 

Hybrid Mutation Seed with BS 

GASM Unsorted No No 

GASSM Sorted No No 

GAHM Unsorted Yes No 

GASHM Sorted Yes No 

GASMBS Unsorted No Yes 

GASSMBS Sorted No Yes 

GAHMBS Unsorted Yes Yes 

GASHMBS Sorted Yes Yes 

 

A 2x2 full factorial experimental design was employed using the factors number of 

products in the line (4 or 7), and number of attributes (7 or 9), with respective attribute 

levels (6 3 7 4 5 3 3) and (7 3 5 5 6 3 3 7 5), while the number of customers was 200. Two 

replications were performed in each case. The values of GA parameters are illustrated in 

Table 3.7.  

 

 

 

 

 

 

 

 



 

Table 3.7: Values of the Genetic Algorithm parameters 

Parameter Value 

Mutation rate 0.04 

Population size 400 

Number of attributes to crossover (N=4, K=7) 10 

Number of attributes to crossover (N=4, K=9) 17 

Number of attributes to crossover (N=7, K=7) 12 

Number of attributes to crossover (N=7, K=9) 21 

Number of generations 500 

 

After experimentation it was found that a mutation rate less than 0.04 resulted in a 

premature convergence to suboptimal solutions, while higher values did not offered a 

substantial improvement. In addition, higher number of attributes to crossover was 

more beneficial in problems with smaller number of products in the line, as compared to 

problems with larger product lines. The results are presented in Table 3.8. 

 

 

 

 

 

 

 

 

 

 



 

Table 3.8: Results of the comparison of the 10 methods 

Method Best solution found 

(percentage of cases) 

Average approximation of 

best solution 

GASM 12.5% 94.44% 

GASSM 12.5% 94.21% 

GAHM 12.5% 94.16% 

GASHM 12.5% 94.15% 

GASMBS 25% 94% 

GASSMBS 0 93.35% 

GAHMBS 0 92.82% 

GASHMBS 0 92.32% 

BS 0 89.53% 

CPLEX 50% 82.68% 

 

Another full factorial design (2x2x2) was employed, in order to assess the impact of the 

number of products in line (4 or 7), the number of attributes (7 or 9), and the presence or 

absence of attribute importance, to the following variables of interest: 

• The best GA solution. 

• The ratio of the best GA solution to the best BS solution. 

• The number of unique chromosomes in the final population: 

o With the best fitness. 

o With fitness within the 5% of the best solution. 

o With fitness between the 5% and 10% of the best solution. 

• The worst chromosome in the final population. 

• The average fitness in the final population. 

• The standard deviation of chromosomes’ fitness in the final population. 

• The number of generation at which the best solution was found. 



 

Two product lines are considered different when at least one product exists in the one 

but not in the other, while two products are considered to be different if they differ in 

the level of at least one attribute. Ten replications were performed in each case resulting 

in a total of 80 data sets. The eight GA instances, as well as the BS heuristic, were run 

10 times for each data set, hence 6400 different GA runs were performed. The results 

showed that GA techniques performed better or equally well as compared to BS in the 

6140 cases (95.93%), performed strictly better in 5300 (82.81%), and underperformed in 

260 (4.07%). The best GA solution reached a maximum difference of 12.75% with that of 

the BS, and was on average 2.6% better. The maximum difference reached when the BS 

solution was better was 6.1%. The hybridized GA methods always produced solutions at 

least as good as the BS solution, and in the 80.2 % of cases produced strictly better 

solutions.  

An interesting finding is that GA techniques which employ the unsorted representation, 

the standard mutation, and do not seed initial population with the best BS solution, 

showed the best average performance. A possible reason is the fact that the sorted 

representation scheme does not adhere to the principle of respect regarding the 

crossover operation. In addition, the incorporation of the best BS solution into the initial 

GA population, as well as the hybrid mutation operator probably make the algorithm 

converge to an area of solutions around the seeded BS solution, which in some cases 

may be suboptimal. Some loss in diversity of the final population may also be exhibited, 

as the integrated techniques displayed the worst results in respect to the number of 

unique chromosomes in the final population. Furthermore, integrated techniques suffer 

from premature convergence, as they tend to produce the best solution earlier, and 

result in the lowest standard deviation of chromosomes’ fitness in the final population. 

Particularly, GA techniques without any hybridization (GASM, GASSM) provided final 

solutions at least as good as that of the hybridization techniques in 52.37% of cases on 

average, and strictly better on 35.12%. This indicates that the integration with the BS 

heuristic does not improve the quality of the solution. The number of products and 

number of attributes significantly affect (p<0.0001) the best GA solution, the ratio of the 

best GA solution to the best BS solution, all three measures of unique chromosomes in 

the final population, the standard deviation of chromosomes’ fitness in the final 

population, and the number of generation at which the best solution was found; all in 

the positive direction. Finally, the presence of attribute importance has a statistically 

significant impact on the best GA solution, and the ratio of the best GA solution to the 

best BS solution. 



 

 

3.1.8.5 Sensitivity Analysis 

Balakrishnan and Jacob (1996) conducted a sensitivity analysis of the GA performance 

to changes in the values of its parameters, employing both the share of choices and the 

buyer’s welfare criterion. A full factorial experimental design was generated using the 

factors and levels presented in Table 3.9. 

 

Table 3.9: Factors and levels included in the experiment 

Factor Levels 

Mutation rate 0 0.01 0.1 0.25 0.3 

Attributes participating in the 

crossover 

0 K/4 K/2 3K/4 

Population size 50 100 200 

Degree of improvement in 

stopping rule 

2% 0.2% 

 

The product category was assumed to consist of 8 attributes, each taking 5 levels, while 

the number of customers was set to 400. For each of the two problems a total of 120 GA 

runs were performed. In the share of choices, the average best solution provided by GA 

was 96.8% of the optimal product profile found by complete enumeration, and was found 

after 7.35 iterations (generations) on average. Hence GA reaches a near optimal solution 

by evaluating only the one fourth of the percent of the total number of possible solutions, 

which for the specific problem is 390625. Analyses of variance were performed to assess 

the impact of the four parameters to the quality of the solution. A main effects model 

had an R2 of 0.504 and was statistically significant (p<0.05). Larger population sizes 

result in higher fitness of the best chromosome. As the number of attributes 

participating in the crossover increase, the quality of the solution also increases. As it 

was expected the tightening of the convergence parameter from 2% to 0.2% improves the 

fitness of the best solution. Whereas mutation rate had no significant main effect 

(p=0.175), the best algorithm’s performance was achieved at the highest mutation rate. 



 

Similar results concerning the parameters’ impact in the solution’s quality were 

exhibited in the buyer’s welfare problem, where a main effects model had an R2 of 0.724 

and was statistically significant (p<0.05). The average best solution provided by GA was 

97.9% of the optimal product profile found by complete enumeration, and was found 

after 8.48 iterations on average.  

Steiner and Hruschka (2002) in another paper studied the sensitivity of the 

approximation of the optimal solutions with regard to varying parameter values for 

different problem sizes. A 12x5x3 factorial experiment was designed with 12 values of 

population size in the range [30, 250] at increments of 20 chromosomes, 5 different 

crossover probabilities (0.6, 0.7, 0.8, 0.9, 1), and 3 values of mutation rate (0, 0.01, 0.05). 

The size of the search space varied from 12650 to 10586800 feasible product lines, 

depending on the number of products in the line (2, 3, 4), number of attributes (2, 3, 4), 

and number of levels (4, 5). The recommended GA parameter values depending on the 

problem size after more than 1500 test runs are illustrated in Table 3.10. 

 

Table 3.10: Recommended GA parameter values  

Problem size 12650 79800 161700 3921225 10586800 

Population size 130 150 230 250 250 

Approximation of 

optimal 

99.5% 99% 98.3% 99.2% 97.5% 

Crossover probability 1 0.9 1 1 1 

Approximation of 

optimal 

99% 98.4% 97.6% 98.6% 96.8% 

Mutation rate 0.05 0.05 0.05 0.01 0.01 

Approximation of 

optimal 

98.9% 98.8% 97.7% 98.5% 96.8% 

 

 



 

3.1.9 Lagrangian Relaxation with Branch and Bound 

Camm et al. (2006) introduced a computationally efficient algorithm that guarantees 

global optimality in the share of choices problem for designing a single product. They 

developed an exact method that uses Lagrangian Relaxation with Branch and Bound for 

finding provable optimal solutions to large scale problems, using a deterministic choice 

rule. Branch and Bound (Land and Doig, 1960) constitutes an optimization algorithm 

mainly used in discrete and combinatorial problems, which attempts to discard large 

subsets of the entire set of feasible solutions without enumeration, by proving that the 

global optimal solution cannot be contained in them. This procedure requires the 

estimation of lower and upper bounds of the objective being optimized, so that the 

search is limited to promising regions only. When the lower bound exceeds the upper 

bound in a certain branch, then this branch is excluded from further search. In order to 

calculate upper bounds the authors use Lagrangian Relaxation, a method that “relaxes” 

hard problem constraints in order to create another problem that is less complex than 

the initial. The constraints are moved into the objective function and a penalty is added 

to the fitness of the solution if they are violated. The upper bounds provide an indication 

of the quality of any feasible solution compared to the (unknown) optimal. The lower 

bounds are created using heuristics that generate feasible solutions. The proposed 

method is initialized with the use of a greedy algorithm that finds a feasible solution. 

Next, a lagrangian dual problem is defined, by relaxing constraint (3), and the 

subgradient optimization procedure of Downs and Camm (1996) is used for the 

estimation of the values of the associated lagrangian multipliers. They use this 

lagrangian problem as a quick attempt to improve on the initial greedy solution. The 

search tree is initialized with the use of the best solution between the greedy and 

lagrangian generated one, and a depth first strategy is employed. The algorithm 

branches on constraints (2) in ascending order with respect to their cardinality (number 

of levels within attribute). In this way, each level of the search tree corresponds to an 

attribute. The authors use several logic rules to develop and prune the search tree, in 

order to significantly decrease the number of variables on which they branch, thereby 

reducing the time required to solve problems to verifiable optimality. The algorithm 

found and verified the global optimum solution to 1 real and 32 simulated problems with 

as many as 32 attributes and 112 levels. The required time ranged from 1.4 seconds to 

40 minutes, depending on the problem complexity. 



 

Belloni et al. (2008) proposed a Lagrangian Relaxation with Branch and Bound method 

for identifying global optimal solutions in the seller’s welfare problem for designing a 

line of products, using a deterministic choice rule. As the authors mention, the 

lagrangian relaxation itself is not a practical algorithm, and most managers would 

consider it too complicated and computationally intensive for implementation and 

practical use. However, they use it to compute guaranteed optimal solutions, which are 

then used to benchmark the solutions generated by other heuristic algorithms. 

Heuristics are used to generate a feasible solution that has a fitness value (profit) of f. If 

it is shown that any feasible solution which includes a certain product generates a 

fitness value of less than f, then all solutions that contain the particular product are 

excluded from further search. Lagrangian relaxation is employed for the estimation of 

an upper bound on the fitness score that can be generated by a given set of solutions. 

The constraint relaxed is that each consumer can purchase exactly one product. Hence, 

for any solution in which the consumer selects more than one product, a penalty is 

subtracted from the fitness of that solution. Similarly, when a consumer chooses less 

than one product, a reward is added to the solution’s fitness. The method seeks for the 

tightest possible upper bounds by varying the penalties which are applied to the 

objective function when a solution does not satisfy the relaxed constraints. Finding tight 

upper bounds helps ruling out portions of the feasible set as fast as possible. The 

algorithm was applied to 12 simulated problems, as well as 2 versions of a real world 

problem. The full problem had almost 5*1015 feasible solutions and the truncated 

problem had over 147 billion feasible solutions. With a computer that evaluates 30,000 

solutions per second, it would take 57 days to completely enumerate the truncated 

problem, and over 5,000 years to exhaustively search the full problem. The method 

solved in about 24 hours the truncated and in approximately one week the full problem.  

 

3.1.10 Comparison of the algorithms 

Belloni et al. (2005) measured the complexity of the problems evaluated in previous 

studies from 1985 to 2005 using the log of the number of feasible product lines (Figure 

3.2).  

 

 



 

Figure 3.2: Size of problems solved (source: Belloni et al., 2005) 
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Belloni et al. (2008) compared the performance of 9 different algorithms both in actual 

and simulated data sets. The real problem had over 4.9*1015 feasible solutions, and the 

lagrangian relaxation with branch and bound took over a week to find the global 

optimum. Except for algorithms’ performance, they report a subjective assessment of 

relative difficulty, where “medium” or “high” level of difficulty denotes methods that 

require some problem-specific fine tuning of parameter values. Table 3.11 illustrates the 

results for ten trials of each method. 

 

 

 

 

 

 

 



 

Table 3.11: Comparison of methods on the actual data set (source: Belloni et al., 2008) 

Method Average 

performance 

(%) 

Best performance as 

% of the optimal 

CPU 

time 

Subjective 

difficulty 

Lagrangian 

relaxation with 

branch and 

bound 

100 - 1 

week 

Very high 

Coordinate 

ascent 

98.0 98.6 5.4 

sec 

Low 

Genetic 

algorithm 

99.0 100 16.5 

sec 

Medium 

Simulated 

annealing 

100 100 128.7 

sec 

Medium 

Divide and 

conquer 

99.6 100 12.5 

sec 

Low 

Greedy heuristic 98.4 98.4 3.5 

sec 

Low 

Product 

swapping 

99.9 99.9 14.1 

sec 

Low 

Dynamic 

programming 

94.4 97.4 5.5 

sec 

High 

Bean search 93.9 98.6 1.9 

sec 

High 

Nested 

partitions 

96.7 98.4 8.4 

sec 

High 

 



 

As the authors comment, among the more practical methods, the genetic algorithm, 

simulated annealing, divide and conquer, and product swapping perform best, reaching 

solutions that are on average within 1% of the optimum. The methods’ performance was 

also evaluated using 12 simulated data sets. Table 3.12 presents the results for 10 

problem instances for each data set. 

In the simulated data sets the genetic algorithm and the simulated annealing manage to 

accomplish at least as good performance as on the actual data set, whereas the divide 

and conquer, and the product swapping perform slightly worse. The simulated data sets 

enable the extraction of more general conclusions about the algorithms performance 

than the single real data set. Hence, the genetic algorithm and the simulating annealing 

seem to be the best methods to be applied to the optimal product line design problem, 

since they provide excellent performance as well as the highest stability among all data 

sets. Simulated annealing always reaches the global optimum (but cannot guarantee it) 

with a small cost in time (more than two minutes), while genetic algorithm finds or 

comes very close to the global optimum, requiring much less time (11-16 sec).  

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 3.12: Comparison of methods on the simulated data sets (source: Belloni et al., 

2008) 

Method Average 

performance 

(%) 

Finds 

optimal 

solution 

(%) 

Finds solution 

>95% of optimal 

(%) 

Average 

CPU time 

(sec) 

Lagrangian 

relaxation with 

branch and 

bound 

100 100 100 659.4 

Coordinate 

ascent 

96.0 15.8 65.8 0.6 

Genetic 

algorithm 

99.9 81.7 100 11.8 

Simulated 

annealing 

100 100 100 131.8 

Divide and 

conquer 

98.7 45.8 97.5 0.7 

Greedy 

heuristic 

97.5 23.3 82.5 0.2 

Product 

swapping 

98.5 39.2 95.8 0.8 

Dynamic 

programming 

96.3 10.0 70.8 0.9 

Bean search 99.1 46.7 99.2 0.4 

Nested 

partitions 

93.9 4.2 44.2 2.2 

 



 

3.2 Programs and Systems 

In this section the programs and systems that deal with the optimal product (line) 

design problem are presented. All systems have been developed using one or more of the 

algorithms discussed in the previous section.  

 

3.2.1 DESOP-LINEOP 

DESOP and LINEOP are the two modules that comprise the program developed by 

Green and Krieger (1985), which was the first that dealt with the optimal product line 

design problem. The choice rule is deterministic, the objective is the maximization of 

market share, and the approach proceeds in two steps. In the first step, a reference set 

of promising products is constructed through the use of DESOP. The input is a matrix 

containing the part-worths of the I customers for each level of each attribute as well as a 

matrix containing the configuration of each customer’s status quo product. The program 

accepts up to 400 customers and 20 attributes, each taking up to 9 levels, while the total 

number of levels must not exceed 80. The customers whose status quo product has 

higher utility than the best possible product profile are removed. The user is provided 

with summary descriptive data regarding the frequency with which each attribute 

displays the highest part-worth, and he is able to remove a subset of levels or fix an 

attribute at a certain level. Using the best in heuristic, the program generates the 

reference set of products, as well as an IxM matrix with the utilities each customer 

assigns to each of the candidate products. This utilities matrix along with the status quo 

matrix are entered at the second step to the LINEOP, which selects the products from 

the reference set that will comprise the product line. The program accepts up to 64 

candidate products and produces a line of a maximum length of 30, using either the 

Greedy or the Interchange heurist.  

 

3.2.2 SIMOPT 

SIMOPT (Green and Krieger, 1988) solves all three problems, directly from part-worth 

data in a one step approach, using the Divide and Conquer heuristic. The user can 

specify the subset compositions of the heuristic, which, according to authors, should be 

formed so as to minimize the correlation of part-worths across subsets of attributes. 



 

Attributes that are more closely related to each other should be assigned to the same 

subset. Except for the customer part-worths matrix, the set of competitive product 

profiles is also required, as the system uses probabilistic choice rules. Furthermore, the 

user may optionally provide importance weights for each customer (reflecting the 

frequency and/or the amount of purchase), background attributes or demographic 

weights for use in market segment selection and market share forecasting. When the 

Seller’s welfare is selected, costs/return data measured at the individual-attribute level 

are required. The system provides the user with the capability to perform a sensitivity 

analysis, in order to observe how market shares (or return) change for all competitors as 

one varies the levels within each attribute in turn. Since in practice a manager will not 

probably be interested just in maximizing market share or return, but needs to have a 

picture of the tradeoff between them, SIMOPT also supports a Pareto frontier analysis. 

The user is provided with all the undominated profiles with respect to return and share, 

and can simulate giving up an amount of the one objective for an increase in the other.  

 

3.2.3 GENESYS 

Balakrishnan and Jacob (1995) developed the GENEtic algorithms based decision 

support SYStem, which uses the triangulation methodology to increase the confidence in 

the quality of the obtained solution for the single product design problem. According to it 

the solution obtained with a certain method is considered “good”, if it is in the ball park 

of the solution obtained through a maximally different heuristic. Using complete 

enumeration for small problems, Genetic Algorithm, and Dynamic Programming, 

GENESYS enables the user to avoid the solutions that are caught in local optima. The 

system consists of a menu driven user interface, where the user can select a single 

heuristic or the triangulation approach, as well as whether the share of choices or 

buyer’s welfare problem will be solved. Customer part-worths and status quo products 

are stored in a database, and the three solution methods are stored in a model base. The 

DP implementation is as in Kohli and Krishnamusti (1987), and the GA as in 

Balakrishnan and Jacob (1996). 

 

3.2.4 MDSS 



 

Alexouda (2004) developed a Marketing Decision Support System for solving all the 

three problems in the optimal product line design, using a deterministic choice rule. The 

system employs a one-step approach through a GA implementation (Alexouda and 

Paparizzos, 2001). Borland C+ Builder 3 has been used for the construction of the 

system, which consists of a database where the seller’s return data, as well as the 

customer part-worths and status quo products are stored, a model base that contains the 

GA implementation for each of the three problems as well as a complete enumeration 

method for small problems, and a graphical user interface. Emphasis has been placed on 

the friendliness of the user interface, which is menu-driven with common easy-of-use 

features like grid formats, navigators for grids, and pop-up menus. Tools are available 

that provide an easy to understand visible way to present options to the user, as well as 

shortcuts that perform actions quickly. Except for the attribute optimization, the system 

also offers a market simulation module that provides the user with the capability to 

perform what-if analysis, and assess the likely degree of success of different product line 

configurations to the market. 

 

3.2.5 Advanced Simulation Module 

ASM is a commercial system that was launched by Sawtooth Software in January 2003. 

All three problems of the optimal product line design are supported, as well as a market 

simulation module. The user can select between a deterministic and a probabilistic 

choice rule, as well as among five different optimization methods: Complete 

Enumeration, Grid Search, Gradient Search, Stochastic Search, and Genetic 

Algorithms. Grid Search is similar to the Coordinate Ascent approach by Green et al. 

(1989). In the Gradient Search, a combination of attributes to be altered simultaneously 

is found, through a Steepest Ascent method that locates the top of a peak in a response 

surface. An initial solution is generated randomly or specified by the user. Each 

attribute is changed (one at a time) and the resulting gain or loss in the objective is 

measured. Then, the direction for changing all attributes simultaneously that results in 

the largest improvement per unit change is decided. This is the direction of locally 

Steepest Ascent for the response surface, called Gradient. A line search is conducted 

next, beginning from the existing solution and moving in the direction specified by the 

gradient. The first move is very small, and each subsequent move is twice as far from 

the starting point. The results from the final three points are used to fit a quadratic 



 

curve to the response surface, and the point that maximizes the quadratic function is 

located. The response surface is evaluated at that point, and the solution is retained if it 

is better than the previous best. When no improvement is achieved from one iteration to 

the next, the algorithm terminates. In Stochastic Search one attribute is randomly 

altered at a time and if it results in an objective’s improvement the change is acceptable. 

The process iterates for a prespecified number of times. The authors recommend using 

either Grid or Stochastic Search from different starting points. If the same solution is 

always obtained then this is probably the global optimum. Otherwise the search domain 

should be reduced using the experience obtained, in order to conduct a complete 

enumeration. When continuous attributes exist (e.g. price), the Gradient Search is the 

most appropriate. Genetic Algorithms should be used when conditions limit the 

capabilities of the other methods, for instance when the response surface is very 

irregular with multiple peaks.  

 

3.2.6 Discussion 

Marketing systems that deal with the optimal product line design problem have evolved 

considerably among the past 25 years. Among the five systems presented, four are 

purely academic and only one is a commercial product. A lot of work has been done since 

the launch of the first program (Green and Krieger, 1985), which could only solve 

problems of limited size (not more than 400 customers and 80 attribute levels in total). 

However, among the algorithms that achieved the highest performance in the problem, 

only GAs have been incorporated into marketing systems. Whereas GAs have been used 

to systems that solve both the Single Product (GENESYS) and the Product Line Design 

problem (MDSS and ASM), all systems provide the decision maker only with a single 

best solution. As mentioned before, the manager that will make the final decision is 

usually interested in having a range of good solutions, so that he can select the one 

which satisfies a number of subjective criteria.  
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TThhee  mmaarrkkeett  rreesseeaarrcchh  ssuurrvveeyyss  tthhaatt  ccoommppaanniieess  ccoonndduucctt  nnoowwaaddaayyss  aarree  mmoossttllyy  ddeessccrriippttiivvee,,  

ffooccuussiinngg  oonn  tthhee  ccoolllleeccttiioonn  ooff  ddeemmooggrraapphhiicc  ccoonnssuummeerr  ddaattaa..  WWhheerreeaass  pprroovviiddiinngg  vvaalluuaabbllee  

iinnffoorrmmaattiioonn  ffoorr  pprroodduucctt  pprroommoottiioonn  aanndd  aaddvveerrttiissiinngg  ddeecciissiioonnss,,  ddeemmooggrraapphhiicc  ddaattaa  ccaannnnoott  

ssuuppppoorrtt  tthhee  ffiirrmm’’ss  ddeecciissiioonn  mmaakkeerrss  iinn  nneeww  pprroodduucctt  ddeessiiggnn,,  ddeevveellooppmmeenntt  aanndd  ppoossiittiioonniinngg  

aapppplliiccaattiioonnss..  SSuucchh  ddeecciissiioonnss  rreeqquuiirree  ttoooollss  tthhaatt  wwiillll  aassssiisstt  pprroodduucctt  mmaannaaggeerrss  iinn  eessttiimmaattiinngg  

ccoonnssuummeerr  pprreeffeerreenncceess  wwiitthh  rreeggaarrdd  ttoo  tthhee  vvaarriioouuss  pprroodduucctt  cchhaarraacctteerriissttiiccss..  TThhiiss  kkiinndd  ooff  

iinnffoorrmmaattiioonn  ccaann  bbee  ffuurrtthheerr  uusseedd  ffoorr  pprreeddiiccttiinngg  tthhee  ccuussttoommeerr’’ss  ppuurrcchhaassiinngg  bbeehhaavviioorr,,  aanndd  

ddeessiiggnn  pprroodduuccttss  tthhaatt  wwiillll  mmaaxxiimmiizzee  tthhee  ccoommppaannyy’’ss  pprrooffiittss..  AAss  ddiissccuusssseedd  iinn  tthhee  pprreevviioouuss  

cchhaapptteerr,,  iinn  oorrddeerr  ffoorr  tthhee  ccuussttoommeerr  pprreeffeerreenncceess  ccoonncceerrnniinngg  aa  pprroodduucctt  ccaatteeggoorryy  ttoo  bbee  

mmeeaassuurreedd,,  tthhee  pprroodduucctt  iiss  ddeessccrriibbeedd  iinn  tteerrmmss  ooff  aa  sseett  ooff  aattttrriibbuutteess..  FFuurrtthheerrmmoorree,,  eevveerryy  

pprroodduucctt  aattttrriibbuuttee  iiss  bbrrookkeenn  ddoowwnn  iinnttoo  aa  nnuummbbeerr  ooff  lleevveellss..  AA  ssttaattiissttiiccaall  tteecchhnniiqquuee  tthhaatt  

eennaabblleess  tthhee  eessttiimmaattiioonn  ooff  aa  nnuummeerriiccaall  vvaalluuee  ((ccaalllleedd  ppaarrtt--wwoorrtthh))  ffoorr  eeaacchh  aattttrriibbuuttee  lleevveell  iiss  

CCoonnjjooiinntt  AAnnaallyyssiiss  ((GGrreeeenn  aanndd  RRaaoo,,  11997711))..  

 

4.1 Conjoint Analysis 

Conjoint Analysis was developed by Paul Green, a professor of the Wharton School of 

the University of Pennsylvania, and has its origins in Mathematical Psychology. Orme 

(2006) divides Conjoint Analysis into 3 different types: a) Conjoint Value Analysis, b) 

Adaptive Conjoint Analysis, and c) Choice-based Conjoint Analysis. 

Conjoint Value Analysis is the traditional full profile approach, where each product 

profile is represented by the entire set of attributes. The first step in this approach is the 



 

determination of the set of attributes that will be used for the product representation. 

The number of attributes must be kept as small as possible, in order to minimize the 

respondent’s burden. Next the levels for each attribute are decided. The following step is 

the construction of the product profiles that the respondents will evaluate. If the 

number of possible profiles is relatively small (up to 18) then a full factorial design may 

be employed, where the respondents evaluate all the possible combinations of attribute 

levels. When, however, the number of possible profiles is large, a fractional factorial 

design must be employed, where the respondents evaluate only a limited number of 

representative product profiles. The analyst must also decide the way that the profiles 

will be provided to the respondent: cards where products are described according to their 

attribute levels, visual products presented in personal computers, or even the products 

themselves in their natural form. The next step is the determination of the way that the 

respondents will evaluate the profiles. A rating scale from 1 to 10 or to 100 can be used 

for each profile, or the respondent can rank the profiles from the most to the least 

preferred. A market research survey is usually conducted for data collection, where 

respondents provide information either by answering questions or by filling in 

questionnaires. Specially designed computer programs can also be used for collecting 

data from distance. The method that will be used for data analysis depends on the way 

information was collected. In Conjoint Value Analysis linear regression or dummy 

variable regression are typically used. 

 

4.2 The survey 

In order for the models proposed in the present thesis to be tested with the use of real 

world data, a market survey was conducted. The survey concerns the consumer 

preferences with regard to fresh milk in the Greek retailing sector. The Greek retailing 

market in milk is composed of four large players and a number of other small companies 

that only have a local distribution of their products in 1-4 prefectures. More than 30 

products are offered to the market that belong to three main categories:  

1. fresh cow milk, 

2. high pasteurized cow milk, 

3. fresh goat milk. 



 

These products vary with regard to the size, the package and a number of other 

attributes. One of the small players of the specific market is a company located in the 

island of Crete in the prefecture of Chania (company ALPHA from now on). ALPHA is 

currently offering only a limited number of products to the specific market, which all 

belong to the category of fresh goat milk. ALPHA will be used as a case study of a niche 

player who wishes to become a large player in the market, through the design of a new 

line of products. Using the product line design approach introduced in this thesis, 

ALPHA will redesign its fresh goat milk products, while entering the market of fresh 

and high pasteurized cow milk. Since the data needed for applying the proposed models 

are the customer partworths concerning the milk product attributes, a conjoint market 

survey was conducted.    

The design of the survey was made in cooperation with the company’s marketing 

managers. Specifically, four attributes were identified as having impact to a customer’s 

purchasing decision: the type of the milk, the percentage of fat included in the milk, the 

product’s size, and the product’s packaging. The main types of milk offered in the 

market are the three that have already been described. Two levels were specified for the 

fat percentage: 1.5% and 3.5%. Four product sizes are available in the market: 0.5 liter, 

1 liter, 1.5 liter, and 2 liter. Finally, fresh milk is offered in two different types of 

package: paper and plastic. The 4 attributes with the corresponding levels are 

illustrated in Table 4.1. 

 

Table 4.1: Attribute and levels included in the study 

Attribute Levels 

Size (l) 0.5 1 1.5 2 

Milk 

type 

Fresh High 

pasteurized 

Goat 

Fat 1,5% 3,5% 

Package Paper Plastic 

 



 

The partworths for each attribute level will be estimated with the application of 

Conjoint Value Analysis. Ranking a list of hypothetical full profile milk products was 

chosen as the customer preference elicitation process, since it provides the respondents 

with the minimum possible burden. The number of possible product profiles is 48, which 

constitutes a very large number for a full factorial approach. Hence, a fractional 

factorial approach is adopted, where 16 hypothetical were created (Table 4.2) with the 

use of the Orthogonal Design option of the statistical program SPSS 16.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 4.2: The hypothetical milk profiles 

Milk type Fat Size (l)  Package 

Goat 3.5% 0.5 Plastic 

High 

pasteurized 

3.5% 1 Plastic 

High 

pasteurized 

1.5% 1.5 Plastic 

Fresh 1.5% 0.5 Paper 

Fresh 1.5% 1 Paper 

Goat 3.5% 1.5 Paper 

Fresh 3.5% 1.5 Paper 

Fresh 1.5% 2 Plastic 

High 

pasteurized 

1.5% 0.5 Paper 

Fresh 3.5% 0.5 Plastic 

Fresh 3.5% 2 Paper 

Goat 1.5% 1 Paper 

Fresh 3.5% 1 Plastic 

Fresh 1.5% 1.5 Plastic 

High 

pasteurized 

3.5% 2 Paper 

Goat 1.5% 2 Plastic 

 

Six more hypothetical milk profiles were created (Table 4.3), where four of the profiles 

were designed to be efficient choice sets that have statistically optimal utility and level 



 

balance (Huber and Zwerina, 1996), while the other two had all attributes duplicated 

except for one. 

 

Table 4.3: The profiles for the holdout task 

Milk type Fat Size (l)  Package 

Fresh 3.5% 0.5 Plastic 

High 

pasteurized 

1.5% 1 Plastic 

Goat 3.5% 1.5 Paper 

Fresh 1.5% 2 Paper 

Fresh 3.5% 1 Plastic 

High 

pasteurized 

3.5% 1 Plastic 

 

Except for the conjoint data, each respondent provided personal information 

(demographic characteristics) and information concerning his milk usage patterns, by 

answering the set of questions illustrated in Table 4.4. 

 

 

 

 

 

 

 

 



 

Table 4.4: The demographics part of the questionnaire 

1. What is your sex? ⁭   Male 

⁭   Female 

2. What is your age? ………………. 

3. What is your family status? 
⁭ Single 

⁭ Married without children 

⁭ Married with children 

4. What is your education level? 
⁭ Primary school 

⁭ High school 

⁭ University 

5. Occupational status? 
 

⁭ Unemployed 

⁭ Free lancer 

⁭ Public servant 

⁭ Private servant 

⁭ Student 

⁭ Pupil 

6. How often do you buy milk? 
 

⁭ 4-7 times a week 

⁭ 1-3 times a week 

⁭ 1-3 times a month 

⁭ less than once a month  

7. How do you use milk (multiple choice)? 
⁭ Consumption                      

⁭ Cooking             



 

⁭ Other                                 

8. How often do you exercise? 
 

⁭ Daily 

⁭ 2-4 times a week 

⁭ 3-4 times a month 

⁭ less than 3 times a month 

9. Are you concerned about nutrition 
components? 

⁭ Not at all  

⁭ Little 

⁭ Moderately 

⁭ Very 

 

Data collection was completed in different super-markets in the city of Chania within 

the period April-December 2008. The target group was frequent milk buyers. A total of 

482 consumers were interviewed with the use of a simple random sampling procedure. 

Each respondent completed an anonymous questionnaire, which consisted of the Tables 

4.2, 4.3, and 4.4. After filling in Table 4.4, each respondent ranked the profiles shown in 

Table 4.2 from the most to the least preferred, in order for the partworths for each 

product attribute to be estimated. Finally, each respondent completed a holdout task by 

selecting one among the 6 alternative milk profiles of Table 4.3. The data from the 

holdout task will be used for the validation of the market simulation model that is 

presented in the next chapter.  

 

4.3 The results of the survey 

 

The data set was cleaned and the sample was reduced to 480 respondents. The following 

figures provide for illustrative purposes a brief description of the results concerning 

Table 4.4. 



 

 

Figure 4.1: Survey results 
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NUTRITIOUS COMPONENTS

16,25%

17,08%

37,92%

28,75%

No concerned

Little concerned

Moderately

concerned

Very concerned

 

 

The results indicate that the customer sample is representative of the average human 

being (before the data collection there was a concern that most subjects would be 

undergraduates). The data above will be used after the design of ALPHA’s product line, 

for posititioning and advertising purposes, and thus will not be further analyzed in the 

present thesis. The data from Table 4.2 were used for the estimation of part-worths for 

the 480 respondents with the use of Conjoint Analysis provided by the SPSS 16 

software. These data along with the respondents’ holdout choices will be used as the 

input to the models introduced in the subsequent chapters. 



 

55  MMaarrkkeett  SSiimmuullaattiioonn  MMooddeell  

 

 

 

 

In this chapter an innovative market simulation model is developed, that will be used 

for simulating the choice process of the group of customers each time a company 

optimizes its product line. 

 

5.1 Introduction 

More and more companies today try to forecast the market penetration of a new concept 

before it enters the production stage. In this context, marketing managers include 

consumer preference modeling in the early stages of new product development. Market 

Simulations assist a manager in developing an effective marketing strategy through 

performing what-if questions. The manager can simulate market behaviour on new 

product introductions, product line extensions, or product modifications. He can 

implement scenarios of introducing different product configurations to the market, and 

predict conditional choice shares, estimate the direct and cross elasticity of price 

changes, or form the logical guide to strategic simulations that anticipate competitive 

responses (Orme, 2006). Customer brand switching behavior can be revealed, enabling 

the firm to design new products that take share from its competitors without 

cannibalizing its existing product line.  

One of the most popular approaches among marketing practitioners is the simulation of 

market behavior on new product introductions using conjoint data. Consumer 

preferences for the various product attributes are estimated through conjoint analysis, 

and are used to predict the hypothetical market shares that different product 

configurations might gain. In this way, conjoint market simulation assists managers in 

reducing the uncertainty when designing new products for a specific market. 



 

The effectiveness of a market simulation depends on the level of accuracy in the product 

market shares prediction. This requires the proper modeling of human choice behavior, 

a task of high complexity, since it involves the integration of sophisticated theoretical 

assumptions into mathematical models (choice models). As Baier and Gaul (2001) note, 

the determination of an adequate choice model is the most cumbersome task in market 

simulation situations. Allenby et al. (2005) stress the complexity of human behavior, and 

propose the adjustment of choice models to better predict it. Popular choice models 

usually applied in market simulations are the BTL, and the MNL. Despite their 

extensive usage, these models fail to represent similarity among alternatives in the 

choice rule, suffering from the well known Independence from Irrelevant Alternatives 

bias. As a result they tend to overestimate the market shares of similar products. The 

first choice rule on the other hand, where the consumer is assumed to deterministically 

select the most preferred product, overestimates the choice shares of the highest rated 

alternatives.    

A number of approaches have been developed that overcome the above limitations, 

whereas other models focus on the optimization of market shares prediction. However, 

an integrated approach that efficiently addresses both issues has not been proposed yet. 

In this chapter, a market simulation model will be developed that effectively combines 

the satisfaction of the critical theoretical properties that a market simulation should 

reflect, with high predictive accuracy on market shares estimation. It will be shown that 

calibrating choice models using data from the products’ multiattribute analysis by each 

customer, can substantially improve the effectiveness of market simulators.  

 

5.2 Market Simulations 

Before starting a market simulation the consumers’ preferences must be elicited, 

usually with the use of Conjoint Analysis. The partworths estimated through Conjoint 

Analysis form the product utility values for each individual. Product utility values are 

then  converted to choice probabilities through the use of a choice model like the BTL or 

the MNL. Next, a market scenario is formulated where n customers have to select one 

product among m alternatives. For each customer i, a vector of product choice 

probabilities [Pi1, Pi2,..., Pim] is calculated, and the total choice likelihood for a product j 

results from the aggregation of its choice probabilities across the whole customer base: 



 

CPj=∑ =

n

i ijP1 . Finally, the simulated market share for each product j is estimated: 

MSj=100* ∑ =

m

k kj 1
CPCP %.  

Numerous simulations may be conducted by altering the configuration of one or more 

products and observe the relative change in market shares. In this way, the outcome of 

different competitive market strategies may be anticipated. Market simulations can 

capture cross-elasticity effects between different brands or attributes, answer what-if 

questions about new product launches, product modifications, or product line extensions 

given a current competitive environment, reveal price/sales elasticities and guide pricing 

strategy (Orme, 2006). 

 

5.3 Critical properties of market simulations 

Two critical properties enable a market simulation to track the complexity of market 

behavior; differential impact and differential substitution (Orme and Huber, 2000).  

 

5.3.1 Differential Impact 

When a current feature is modified or a new one is added, the selection probabilities of 

the items in the choice set will be differentially impacted. People who like speed prefer 

sport cars, whereas a person who likes luxury and safety might prefer a limousine. 

Hence, if the horsepower of a sport car is increased, its sales can be significantly raised, 

since potential sport cars buyers give high importance to the car’s acceleration. On the 

contrary, the same action will probably have small impact on the sales volume of a 

limousine, as candidate limousine buyers do not consider the car’s acceleration as an 

important attribute. While such complex patterns of interactions can be represented as 

cross terms in an aggregate-level model, Huber et al. (2001) state that the modeling of 

interaction terms in the utility function is complicated, as their number can grow 

uncontrollable large, leading to overfitting or misspecification problems. They 

recommend the aggregation of heterogeneous individuals, each following a different 

preference model, as a more efficient way to represent the differential impact that a 

certain feature may have on specific brands. This constitutes a more stable modeling 

approach than the curve-fitting exercise of the cross term, and has the additional 



 

advantage of being more managerial actionable. In addition, the heterogeneity account 

permits the reflection of idiosyncratic individual preferences in market simulations, in 

the context of a simple additive model. Allenby et al. (2005) also favor the use of a main-

effects model for each individual, since the interactions between the parameters 

reflecting the alternatives and the characteristics of the respondents could result in 

unmanageably large aggregate models. They argue that exploring the impact of 

alternative scenarios on a product’s market share is more accurate with respondent-

level parameters. Simulating markets at the individual level enables managers to 

identify the critical marginal consumers, who are most likely to change their selection, 

and may also help them to design new product offerings, which will exceed the 

consumer’s purchasing threshold.  

 

5.3.2 Differential Substitution 

Differential substitution refers to the assumption that when a new product enters a 

market it gains share mostly from the similar products, rather than from the dissimilar 

ones. This is also known as the “similarity hypothesis” (Tversky, 1972). This property is 

very important, since the two popular choice models, BTL and MNL, do not exhibit 

differential substitution. Instead, they follow the proportionality assumption, according 

to which the ratio of the shares of any two products of the market is independent from 

the rest products. The outcome of this property, also known as Independence from 

Irrelevant Alternatives (IIA), is that a new product takes share from all existing products 

in proportion to their current shares (no similarity effect). The limitation of the IIA bias 

is explained through the red/blue bus paradox (Ben-Akiva and Lerman, 1985), where 

two alternative means of transportation, a car and a red bus, are equally valued by an 

individual, thus they have 50% likelihood to be chosen. Now we assume that another 

bus which differs only in color (blue) from the existing one (thus offering the same utility 

to the individual) enters the choice set. Since the three alternatives have the same 

utility value, a proportional model will predict 33.3% final share for each of them. 

However, in reality it is expected that the new product (blue bus) will take share mostly 

from products that are similar to it (red bus), instead of dissimilar ones (car). In such a 

case the car’s choice likelihood will probably remain close to 50%, and the two buses will 

share the rest 50%. The market shares of the alternatives closest to the launched one 

are usually reduced, due to the greater substitution that occurs between them (negative 



 

similarity effect). The IIA bias prevents the model from postulating any pattern of 

differential substitutability among alternatives, hence the cross-elasticity of the 

probability of product i with respect to a change in Uk is the same for all i with i≠k 

(Baltas and Doyle, 2001). 

While representing real world purchasing situations more effectively than proportional 

models, choice models that reflect substitutability have shown low predictive accuracy 

due to the “attraction effect”, according to which the introduction of a new product raises 

the attractiveness for the category it belongs to. This assumption is also known as 

“share inflation” or the “rich supply” effect, where the existence of similar alternatives 

increases their desirability (positive similarity effect). According to Huber and Puto 

(1983) the addition of a new alternative to a customer’s choice set, initially results in a 

global attraction effect, where a general shift of preferences occurs toward the new item. 

Next, a local substitution effect takes place, where the new product takes shares mainly 

from similar items in the set. This explains the relatively good predictive performance 

that proportional models show, as the two effects counterbalance each other.  

 

5.4 Previous Approaches 

As far as predictive accuracy is concerned, the state of the art market simulation 

approach, which is widely used in commercial applications, is the SIMOPT (SIMulation 

and OPTimization) product-positioning model (Krieger et al., 2004). In this model 

market behavior is simulated through the calibration of the exponent a of the 

Pessemier’s model: 

Pij= ∑
=

n

j

a

ij

a

ij UU
1  

 

This is implemented with the use of the ALPHA rule as follows: Assuming that 

“external” market shares are known, the ‘optimal’ a is calculated so that the simulated 

choice shares are as close as possible to the external. The model can be applied to 

individual level conjoint data and exhibit the differential impact property. On the other 

hand, the SIMOPT approach does not display differential substitution, since the 

Pessemier’s model is an extension of BTL model that also suffers from the IIA bias. The 

fact that the same choice model is used for the whole customer sample constitutes 



 

another limitation of the ALPHA rule, since findings from consumer behavior research 

indicate that every individual follows a different choice pattern.    

Matsatsinis and Samaras (2000), propose the selection of a different choice model for 

each consumer, through the study of the distribution of the total utilities he assigns to 

the set of products. Particularly, they consider the distribution’s Range (r=Umax-Umin), 

Kurtosis (k) and Skewness (s), for selecting the choice model that better describes each 

consumer’s purchasing pattern. The values of these three coefficients constitute the 

input that triggers a total of 27 if-then rules, which comprise a knowledge base 

containing 8 different brand choice models (Matsatsinis and Siskos, 1999). Two of the 

models used arise from the calibration at the individual level of the Pessemier and the 

MNL models, with the use of r as the exponent. Their approach displays differential 

impact, since customer preferences are estimated at the individual level using the 

UTASTAR (Siskos and Yannacopoulos, 1985) preference disaggregation method. 

Differential substitution is not adequately reflected, since six of the choice models used 

are subject to the IIA property. 

The VOICE decision support model (Krieger and Green, 2002) optimizes a firm’s market 

share for a specified product/service, taking as input the customer’s stated: a) attribute 

performance scores for each product, b) attribute importance ratings, and c) constant 

sum probabilities of choosing each product. A grid search heuristic is used which, at the 

individual level, modifies the importance ratings and estimates an “optimal” exponent a 

for the Pessemier model that, together, best reproduce the vector of constant sum 

likelihoods. Since each consumer is dealt with individually, there is a great possibility 

that the previous procedure overfits to the constant sum probabilities provided by the 

consumer. To ameliorate this concern, they put a constraint to the extent that the 

modified attribute weights can differ from the customer supplied. While constituting an 

innovative approach, their model is quite hard to use in practice due to the large amount 

of data required by the respondents. Actually, psychologists have questioned the 

interviewee’s ability to provide valid attribute weights, arguing that the results tend to 

be unstable and highly influenced by the decision context (Tversky and Simonson, 1993). 

 

 

 



 

5.5 The proposed approach 

The aim of the proposed approach is twofold. First, high performance in predicting 

actual product market shares has to be displayed. This will be achieved through the 

calibration of the choice model’s exponent at the individual level. Second, compliance 

with the theoretical properties mentioned in Section 5.3 has to be accomplished. 

Differential impact, as well as differential substitution must be exhibited, through the 

reflection of both the substitutability and the attraction effect. A corrective method is 

developed for this purpose.  

 

5.5.1 Calibration of the choice model 

According to Orme and Johnson (2006), an appropriate and theoretically justified 

method for tuning simulated results to more closely fit real market shares is the 

adjustment of the exponent used in choice models. In the proposed model the approaches 

of SIMOPT and MARKEX are extend through the individual calibration of the 

Pessemier model, through the assumption that exponent a depends not only on the 

range of the product utilities distribution but also on its kurtosis and skewness. This 

assumption is based on studies that relate the values of the three coefficients with the 

level of difficulty a customer expresses in making a choice among a set of competing 

alternatives (Matsatsinis and Samaras, 2000; Tsafarakis et al., 2008). Previous research 

on consumer behavior has related the value of the choice model’s exponent to the 

expertise of the decision maker, or the level of customer’s involvement into the 

purchasing decision. The proposed approach is more practical for a manager to apply it, 

since r, k, s are easy to measure coefficients. In order to find the relationship between 

exponent a and the three coefficients that better simulates market behavior, the 

performance of all the possible linear combinations among them will be assessed (Table 

5.1).  

 

 

 

 



 

Table 5.1: Variations of the choice model’s exponent 

Case Exponent  

1 Rri + Kκi + Ssi 

2 Rri + Kκi 

3 Rri + Ssi 

4 Kκi + Ssi 

5 Rri 

6 Kκi 

7 Ssi 

 

In case 1 for example, the model’s exponent for an individual i is given by the following 

equation: 

αi = Rri + Kκi + Ssi,                                                                                                            (17) 

where the parameters R, K, and S have the same value across the customer sample, in 

order to prevent the model from individually overfitting. 

An experiment using artificial data will be conducted, where the predictive accuracy of 

the ALPHA rule will be compared with the seven different approaches shown in Table 

5.1. The data sets where the eight models will be tested consist of simulated part-worths 

for each respondent, as well as hypothetical market scenarios with different product 

configurations. The market is assumed to comprise 8 competitive products, each 

consisting of 9 attributes which can take 9 different levels. Initially, the part-worth 

functions of 5,000 hypothetical respondents are estimated. This large number of 

respondents represents the total target population, whose purchasing behavior is to be 

simulated. Part-worths for each attribute level are randomly drawn from a uniform 

distribution in the range [0, 1]. The market scenario is formulated next, through the 

random selection of the level of each of the 9 attributes for every product. Using the 

simulated part-worths in combination with the products’ configuration, the utility value 

that every respondent assigns to each product is calculated. These error free utilities are 

used for the estimation of the “actual” market shares for each scenario, assuming that 

the individual will always choose the alternative with the highest utility value within 

the set. The sample of the population on which the models will be tested is then 

constructed, through the choice of 800 from the 5,000 respondents. In order for potential 



 

errors derived from the procedure of measuring the customers’ preferences to be 

simulated, error terms are added to the sample’s “true” utilities. These error terms 

follow a normal distribution with zero mean and variance obtained from the following 

equation (Wittink and Cattin, 1981): 
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                                                                                   (18) 

where 2
εσ is the variance of the error term, 2

uσ is the variance of the distribution of the 

value of an alternative’s utility across respondents, and PEV is the Percentage of Error 

Variance on preferences, which is set to 0.35. Next the part-worths are standardized by 

setting the lowest level of each attribute to zero, and rescaling the sum of the best 

attribute levels to unity.   

Since the aim of the models is to predict with the highest possible accuracy the behavior 

of the market, they will be calibrated through the estimation of individual exponents ai. 

The calibration is implemented through the calculation of the optimal R, K, and S 

parameters used in each case. The objective is that the market shares that the model 

simulates, should most closely resemble the real market shares. In case 1 for example, 

the optimization of the three parameters is an optimization problem formulated as 

follows: 

find R, K, S that minimize f= ∑ −
j

jj SSRS || |,  j=1,2,…,m,   R, K, S ℜ∈  

where RSj are the real shares and SSj are the shares simulated by the model.  

The choice models’ exponent usually takes real values greater than or equal to 1. The 

values of the r and k coefficients for the whole customer sample are positive, thus for the 

cases 2-7 a full search in the range [1, 300] is implemented with step 0.1 for the R and K 

as well as the a exponent of the ALPHA rule. The s coefficient takes both positive and 

negative values thus a full search is performed in the range [-150, 150] with step 0.1 for 

the S parameter. However, for case 1 the complexity for a full search of the three 

variables (R, K and S) is extremely high, requiring too much CPU time and computer 

memory to be implemented. Hence, two methods will be applied for solving the 

optimization problem: a stochastic logarithmic approach, and a genetic algorithm. 

 



 

5.5.2 Stochastic Logarithmic Approach 

The method consists of two main parts. In the first part, a single path of points is 

followed, beginning from a certain initial point. At each point of the path, only the set of 

its neighbors is examined, so that the next point in the path is selected towards the 

direction of the neighbor corresponding to the minimum value of f. At each iteration of 

the algorithm, the neighboring region is decreased until it reduces to a single point, 

which is selected as a solution of the optimization problem. The second part introduces a 

stochastic factor, which assigns probabilities to every neighbor point of the current 

examined point and then selects the next point among the neighboring ones by 

exploiting these probabilities. In the considered case, the probabilities assigned to each 

point are inversely proportional to criterion f. This way, different paths are examined 

depending on the probabilities and the randomness. Thus, in the second part, the 

experiment needs to be iterated many times and the best solution among all 

experiments is returned as the most appropriate. As a result, the algorithm is repeated 

in several experiments, say m, and within each experiment at n iterations.  

The three variables R, K, and S are concatenated into a three dimensional vector, say x. 

It is now assumed that at the current n-th iteration of the algorithm and at the m-th 

experiment, a point xm(n) has been selected. In the previous notation, the dependence of 

the point x on the iteration and experiment has been added. Then, the next point 

xm(n+1) is then obtained by evaluating f among all its neighbors. The neighboring region 

is defined as: 
},)()(

:{))(),((
3

3

Gnn

RnnN

m

m

∈+=

∈=

ppxy

yx

δ

δ
                                                  (19) 

where G={-1,0,1} and )(nδ  is an integer indicating the step size of the neighborhood 

region. At each iteration, the step size )(nδ  is reduced such that 2/)()1( nn δδ =+  

until 1)( =nδ . Initially, a high value for )(nδ  is chosen in order to cover the largest part 

of the space. This constitutes the first part of the algorithm. 

In the second part, probabilities are assigned for each neighboring point of the current 

point xm(n). In particular, if the three-dimensional neighbors of xm(n) is denoted as yi, 

i=1,…,|N|, where |N| stands for the number of elements of the set N in (19), then 



 

probabilities which are inversely proportional to the f can be calculated for each point 

yi,. That is,             Ni

f
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A cumulative probability function is then constructed for all yi i.e., qi=∑ =

i

j 1 jp , i=1,…, 

|N|, with q0=0. Using a given random number r, uniformly distributed in the range [0, 

1], the next point at the (n+1)-th iteration xm(n+1) is chosen among the neighbors yi as 

follows: 

}:))(),(({)1( 1 iimim qrqnnNn ≤<∈=+ −δxyx .  

The algorithm is repeated until 1)( =nδ  and for several experiments and the value that 

minimizes f over all iterations and experiments is selected as the most appropriate. That 

is, for one experiment, the optimal value  ))((minarg�
iterationsallfor

if mm xx =  corresponding to the 

minimum criterion is returned. Then, the algorithm is repeated for many experiments 

and the best value over all experiments is returned, i.e., )�(fminarg�
sexperimentallfor

mxx =  is selected. 

 

5.5.3 Genetic Algorithm 

Another possible solution for the above mentioned optimization problem is the use of an 

Evolution Program. In contrast to enumerative search techniques, such as Dynamic 

Programming, which may break down on complex problems of moderate size, 

evolutionary programs provide unique flexibility and robustness on such problems. For 

this reason, a Genetic Algorithm approach is adopted next. The approach seems to be 

very efficient for the particular optimization problem, given the size and dimensionality 

of the search space and the multimodal nature of the objective function. Possible 

solutions of the optimization problem, i.e., sets of parameters, are represented by 

chromosomes whose genetic material consists of frame numbers (indices). Chromosomes 

are thus represented by index vectors ),,( 321 xxx=x  following an integer number 

encoding scheme, that is, using integer numbers for the representation of chromosome 

elements (genes) 3,,1, K=ixi . The reason for selecting integer number (instead of 

binary) representation is that all genetic operators, such as crossover and mutation, 



 

should only be applied to genes xi, and not to arbitrary bits of their binary 

representation. An initial population of P chromosomes, },,{)0( 1 PxxX K=  is then 

generated by selecting P sets of frames whose feature vectors reside in extreme locations 

of the feature vector trajectory, as described in the temporal variation approach. Since 

there exists some knowledge about the distribution of local optima, the above approach 

exploits the temporal relation of feature vectors and increases the possibility of locating 

sets of feature vectors with small correlation within the first few GA cycles. 

The metric )(xf  is used as an objective function to estimate the performance of all 

chromosomes Pii ,,1, K=x  in a given population. However, a fitness function is used to 

map objective values to fitness values, following a rank-based normalization scheme. In 

particular, chromosomes ix  are ranked in ascending order of )(xf , since the objective 

function is to be minimized. Let },,1{)( Prank i K∈x  be the rank of chromosome 

Pii ,,1, K=x  (rank=1 corresponds to the best chromosome and rank=P to the worst). 

Defining an arbitrary fitness value BF  for the best chromosome, the fitness )( iF x  of the 

i-th chromosome is given by the linear function 

PiDrankFF iBi ,,1,]1)([)( K=−−= xx                                                                       (20) 

where D is a decrement rate. The major advantage of the rank-based normalization is 

that, since fitness values are uniformly distributed, it prevents the generation of super 

chromosomes, avoiding premature convergence to local minima. Furthermore, by simply 

adjusting the two parameters FB and D, it is very easy to control the selective pressure 

of the algorithm, effectively influencing its convergence speed to a global minimum. 

After fitness values, PiF i ,,1),( K=x , have been calculated for all members of the 

current population, parent selection is then applied so that a fitter chromosome gives a 

higher number of offspring and thus has a higher chance of survival in the next 

generation. The roulette wheel selection procedure (Goldberg, 1989) is used for parent 

selection, by assigning each chromosome a probability of selection proportional to its 

fitness value. The roulette wheel selection is one of the most popular methods, because it 

ensures that each chromosome has a growth rate proportional to its fitness value. Note 

also that due to rank-based normalization, selection probabilities remain constant 

between generations.  



 

A set of new chromosomes (offspring) is then produced by mating the selected parent 

chromosomes and applying a crossover operator. The genetic material of the parents is 

combined in a random way in order to produce the genetic material of the offspring. A 

more general technique, that is employed in this application, is the uniform crossover, 

where each parent gene is considered to be a potential crossover point. This means that 

two parents 

),,,( 00
2

0
10 Kaaa K=a  and ),,,( 11

2
1
11 Kaaa K=a  

generate the following two offspring: 

),,,( 21
210

Ks

K

ss
aaa K=′a  and ),,,( 11

2
1
11

21 Ks

K

ss aaa −−−=′ Ka  

where si, i=1,…,K are random numbers taking values 0 or 1 with equal probabilities, so 

that each component comes from the first or the second parent. In the examined 

problem, K=3. 

Although single-point crossover is considered to be inferior to other techniques, no 

evidence has been reported in favor of uniform, multi-point or other types of crossover 

operators (such as arithmetical, segmented, or shuffle) (Michalewicz, 1994). Instead, this 

selection is heavily problem-dependent, and in the examined case uniform crossover has 

exhibited slightly better performance in the experiments. 

The next step is to apply mutation to the newly created chromosomes, introducing 

random gene variations that are useful for restoring lost genetic material, or for 

producing new material that corresponds to new search areas. Uniform mutation is the 

most common mutation operator and is selected for the optimization problem under 

consideration. In particular, each offspring gene ix  is replaced by a randomly generated 

one ix′ , with probability mp . That is, a random number ]1,0[∈r  is generated for each 

gene and replacement takes place if mpr < ; otherwise the gene remains intact. Other 

alternatives, such as non-uniform, boundary, or swap operators, are also possible. Non-

uniform mutation is in general preferable in numerical optimization problems with 

respect to accuracy and convergence speed, but did not achieve better performance in 

the problem under consideration. 

Once new chromosomes have been generated for a given population 0),( ≥nnX , the 

next generation population, )1( +nX , is formed by inserting these new chromosomes into 



 

)(nX  and deleting an appropriate number of older chromosomes, so that each 

population consists of P members. The exact number of old chromosomes to be replaced 

by new ones defines the replacement strategy of the GA and greatly affects its 

convergence rate. An elitist strategy has been selected for replacement, where a small 

percentage of the best chromosomes is copied into the succeeding generation together 

with their offspring, improving the convergence speed of the algorithm.  

Several GA cycles take place by repeating the procedures of fitness evaluation, parent 

selection, crossover and mutation, until the population converges to an optimal solution. 

The GA terminates when the best chromosome fitness remains constant for a large 

number of generations, indicating that further optimization is unlikely. 

 

5.5.4 Stochastic Logarithmic Search vs. Genetic Algorithm 

In order for the performance of the two methods to be evaluated, they are applied to the 

results of a market survey conducted in Paris, for the design of a new Cretan olive oil 

product (Siskos et al., 2001). A total of 204 olive oil consumers tasted 6 different olive 

oils, rank them from the most to the least preferred, and rated them in 5 attributes: 

image (4 levels), color (3 levels), odour (3 levels), taste (3 levels), and package (4 levels). 

The customers’ ranking data are used as external shares, assuming that a consumer 

always purchases the product that ranks first. The customers’ marginal utilities 

(partworths) are derived from the application of UTASTAR. About 300,000 different 

values of the three parameters (R, K and S) are generated, for which the distribution of f 

is shown in Figure 5.1. 
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Figure 5.1: The distribution of the values of the f for more than 300,000 different values 

of the R, K and S. 

 

The same figure presents the minimum value derived by the application of the 

Stochastic Logarithmic method (dotted vertical line) and the Genetic Algorithm method 

(solid vertical line). The value for the stochastic approach is 33.85, while for the genetic 

is 32.65. It can be observed that the genetic method gives much better results than the 

stochastic logarithmic approach. The genetic method is terminated after 2000 iteration 

cycles.  Table 5.2 shows the relatively cost of the methods used. 

 

Table 5.2: Comparison of the computational complexity of the two proposed algorithms 

Method Best Score 

Obtained 

Average Computational Time 

(sec) 

Stochastic Logarithmic Search 33.85 3.4 

Genetic Algorithm 32.65 1 

 

Additionally, the effect of different genetic parameters on the selection of the optimal 

value is depicted on Figure 5.2.  
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Figure 5.2: The best obtained values of f using the GA at different mutation rates and 

for 2000 iteration cycles and cross over probability of 20% 

 

Particularly, Figure 5.2 illustrates the minimum value obtained for the same number of 

cycles (2000 in this case) using different mutation rate probabilities. The cross over 

selection probability is 20% in this case. As is observed the best results are derived for a 

mutation rate of about 7.5%. Similarly, the effect of cross over probability of the results 

is shown is Figure 5.3. Again, 2000 iteration cycles has been selected while the mutation 

rate is the best obtained, i.e., 7.5%.  It is clear that a cross over probability of 20% gives 

the best performance. 
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Figure 5.3: The best obtained values of f using the genetic algorithm at different cross-

over rates and for 2000 iteration cycles and mutation of 20%.  



 

 

The full search approach demands a great computational complexity. The stochastic 

approach reduces this complexity but the fact that the method should be iterated using 

different experiments increases relatively the cost as well. Instead, the genetic method 

results in best performance while demanding the smaller computational cost. Hence, for 

the rest of study the method that will be used for optimizing the value of R, K, and S, is 

Genetic Algorithms. 

 

5.5.5 Evaluation of the different approaches 

In order for the performance of the eight approaches to be to assessed, 50 replications 

are executed. In each replication, random part-worths and product configurations are 

generated, while different data sets are used for model calibration and evaluation 

following the Principle of Model Validation (Elrod, 2001). According to this principle, if a 

model is estimated from a sample, and needs to be generalized to the total population, 

then different portions of the sample should be used for evaluation and estimation 

purposes. Thus, the models are calibrated with the use of 400 respondents, and are then 

applied to a different evaluation sample of 400 respondents. The calibration sample is 

only used for the estimation of the R, K, S and a parameters, whereas the models’ 

performance is measured using the evaluation sample. The Mean Absolute Error 

between the simulated shares and the real market shares for each model is used as the 

main performance measure: 

MAE= ii

m

i

SSRS −∑
=1

                                                                                                           (21) 

where m is the number of products, 
iRS are the real and

iSS are the simulated market 

share for product i. The mean value and the standard deviation of each of the 4 

parameters across the 50 calibration sets are presented in Table 5.3:   

   

 

 



 

Table 5.3: Parameters’ mean values and the standard deviations across the 50 

calibration sets 

Model Parameter Mean Std 

1 R 9.6156 14.1424 

K 14.5159 21. 6499 

S 0.1066 0.4546 

2 R 10.6386 16.6659 

K 16.8929 25.9584 

3 R 19.3679 14.8433 

S 0.0558 0.3078 

4 K 0.0047 0.0222 

S 34.3969 25.0943 

5 R 22.576 15.0266 

6 K 37.64 26.0959 

7 S 39.544 101.6717 

Alpha A 128.28 116.2849 

 

Table 5.4 shows the mean value of MAE for the 8 models both for the calibration and the 

evaluation sets across the 50 replications. 

 

Table 5.4: Mean MAE values for the 8 models in the calibration and the evaluation sets* 

Model Calibration Evaluation 

1 14.6612
3,4,5,6,7,8

 16.8721
2,3,4,5,6,7,8

 

2 14.9283
7
 17.2429

7
 

3 15.0986
7
 17.3465

7
 

4 15.0049
7
 17.2852

7
 

5 15.0704
7
 17.5573

7
 

6 14.9909
7
 17.3041

7
 

7 36.5781 37.5036 

8 (Alpha)  14.9603
7 

17.2214
7 

*Statistical significant differences between two means are denoted by superscript numbers 

attached to the superior mean (p<0.1). 



 

 

The results indicate that the 1st approach outperforms the others, the 7th performs 

significantly worse and there are no significant differences among the others. The first 

two approaches exhibit a somewhat better calibration performance than the ALPHA 

rule, while only the 1st gives a slightly lower MAE in the evaluation sample; hence it is 

the one that is proposed for use. 

 

5.5.6 The Corrective Method 

Since the Pessemier model is subject to the IIA property, it will be adjusted for 

similarity in order to account for differential substitution between alternatives. This is 

implemented through the application of a corrective method to the results of the choice 

models (choice probabilities for each product) at the individual level. The degree of 

similarity Sij among two products i and j is measured with the use of the attribute 

partworths:  

Sij=1-(∑k |U- U| jkik )/2,                                                                                                      (22) 

where Uik  is the partworth of attribute k for product i. 

Initially the similarity matrix is created through the estimation of the similarity degree 

for every pair of products. The degree of similarity of product i to all other products, 

defined as its “total similarity” (Paffrath, 1997), is calculated by summing up the 

elements of column i. The correction is implemented through the division of the choice 

probability of each alternative by its corresponding total similarity. Finally, the 

corrected shares are normalized in order to sum up to 100%. 

The effectiveness of the corrective method will be empirically assessed using six criteria 

established by Paffrath (1997) that all methods designed to minimize the IIA bias 

should met. According to the first criterion, the method should account for product 

similarity, so that when a new item is introduced to the market, it gains more share 

from the relatively similar items to it and less share from the relatively dissimilar ones. 

The application of the method should be at the individual level (criterion 2), and it must 

depend both on the customer’s importance structure (criterion 3), and on all product’s 

attributes (criterion 4). Slight product changes should only lead to slight changes in 

similarity and therefore only to minimal changes in its share (criterion 5). The 



 

worsening of a product (e.g. an increase in its price) should not lead to an improvement 

of its share (criterion 6). 

The proposed method is indeed applied to each consumer separately (criterion 2), and 

the part-worths that form the similarity degree (equation 7) depend both on the 

attribute importance weights (criterion 3), and the attribute values (criterion 4). In 

order for the compliance of the method with the rest criteria to be assessed, the method 

will be applied to the following case. Two products consisting of two attributes are 

evaluated by an individual (Table 5.5), and their choice probabilities are estimated using 

the BTL model. 

 

Table 5.5: Product Evaluations 

 Part-worth of 

Attribute 1 

Part-worth of 

Attribute 2 

Utility 

Value 

Product 1 0.95 0.05 1 

Product 2 0.05 0.95 1 

Product 3 0.94 0.06 1 

 

The two products have equal utility values, thus it is expected that the choice 

probability for each will be 50%. Now a third product, highly correlated to product 1, 

enters the choice set. The application of the BTL model without correction for similarity, 

predicts that product 3 gains equal share from the other two (proportionality), resulting 

in a 33% final share for each of the three items (IIA bias). If this was true in practice, 

the choice probability of product 2 could be minimized, through the entrance to the 

choice set of a number of very similar extensions of product 1. This is a fault simulation 

of reality, since a person who prefers, for example, driving to work, will probably take 

his car no matter how many different buses are available. The similarity matrix for the 

corrective method is created next (Table 5.6). 

 

 

 

 



 

Table 5.6: The Similarity Matrix 

 Product 1 Product 2 Product 3 

Product 1 1 0.1 0.99 

Product 2 0.1 1 0.11 

Product 3 0.99 0.11 1 

Total Similarity 2.09 1.21 2.1 

 

The application of the corrective method results in 26.86% simulated share for product 

1, 46.41% for product 2, and 26.73% for product 3. Although the three alternatives share 

the same utility value, product 3 gains more share (23.14%) from the almost identical 

product 1 (substitution), and only a small amount (3.59%) from the dissimilar product 2, 

showing that the similarity among products has been successfully incorporated into the 

choice process (criterion 1). Furthermore, the attraction effect has been effectively 

addressed, since the almost identical products 1 and 3 receive total share that exceeds 

the 50%.  

Now the level of attribute 2 of product 1 is altered, and its part-worth changes from 0.05 

to 0.01. The similarity degree of product 1 is reduced from 2.09 to 2.05, and the item 

becomes more dissimilar to the other two. The slight product modification resulted in 

only a small change in its similarity degree, due to the linear transformation function 

used, and therefore its share dropped insignificantly from 26.86% to 26.15% (criterion 

5). Furthermore the increase in the product’s share due to the corrective method (lower 

similarity), does not compensate the decrease due to its lower utility (0.96), thus the 

worsening of the product does not lead to an improvement in its share (criterion 6). This 

is an advantage of corrective methods that use linear transformation functions instead 

of convex (e.g., negative exponential), which may overestimate small product changes, 

resulting in large changes in choice shares. In such cases, a drop in an item’s utility may 

result in an increased share, due to the excessive improvement caused by the decreased 

similarity.  

 

5.6 A Monte Carlo study for the model’s performance evaluation 

A Monte Carlo experiment was designed in order for the predictive accuracy of the 

proposed approach to be to compared with that of the ALPHA rule, and 3 more 



 

traditional choice models: the BTL, the Lesourne, and the MNL. Based on previous 

studies in market simulation models (Baier and Gaul, 2001) as well as the design of 

previous Monte Carlo studies for conjoint data (Vriens et al., 1996), eight independent 

factors were specified as having potential impact on the performance of the models, each 

varying at two levels (Table 5.7). 

 

Table 5.7: Factors included in the study 

Factor Levels 

1 Number of simulated respondents 100 500 

2 Number of segments 2 4 

3 Number of alternatives 4 8 

4 Number of attributes 5 9 

5 Number of levels 3 6 

6 Segment heterogeneity Homogeneous Heterogeneous 

7 Percentage of error variance on preferences 5% 35% 

8 Similarity among alternatives Dissimilar Similar 

 

5.6.1 Factors included in the study 

The effect of the sample size on the models’ performance will be evaluated using the 

levels 100 and 500, since the number of respondents reported in the majority of 

commercial uses of conjoint analysis, was as low as 30 and as high as 1000 with a mean 

of 268 (Wittink et al., 1994). In order to determine whether the number of segments has 

an impact on the models’ results, a two and a four segment situation is selected 

according to the related literature (Wedel and Steenkamp, 1989). The influence of the 

segments’ heterogeneity will be assessed by setting the variance of the part-worths’ 

distribution within each segment to either 0.05 for the homogeneous or 0.1 for the 

heterogeneous situation (Hagerty, 1985). The number of alternatives is set to 4 or 8 

(Baier and Gaul, 2001), in order to test the implications of the size of the choice set (the 

number of products from which the customer selects) to the models’ performance. Five 

and nine was arranged for the low and high number of attributes conditions 

respectively, as in Huber et al. (1993). For simplicity, equal number of levels was chosen 

for each attribute, within a range widely used in conjoint studies (i.e. 3 and 6). The 5% 



 

and 35% percentages of error variance on preferences (Wedel and Steenkamp, 1989) will 

show the sensitivity of the models’ predictive accuracy to the noise added when 

measuring customer preferences. Finally, the effect of the existence of similar 

alternatives in the choice set is investigated, in order to assess the models’ tolerance 

with the IIA bias. A fractionated factorial design with 12 different profiles is employed 

(Table 5.8), as derived from Addelman’s (1962) basic plans.  

 

Table 5.8: The factor-level combinations 

Profile Responde

nts 

Segme

nts 

Alternat

ives 

Attribu

tes 

Levels Varia

nce 

Error Similar

ity 

1 100 4 8 5 6 0.1 0.35 No 

2 500 4 8 5 3 0.05 0.35 No 

3 500 4 4 9 6 0.05 0.05 No 

4 500 2 8 5 6 0.1 0.05 Yes 

5 500 2 4 9 6 0.1 0.35 No 

6 500 2 8 9 3 0.05 0.35 Yes 

7 100 2 8 9 3 0.1 0.05 No 

8 100 2 4 5 6 0.05 0.35 Yes 

9 100 4 4 9 3 0.1 0.35 Yes 

10 100 2 4 5 3 0.05 0.05 No 

11 500 4 4 5 3 0.1 0.05 Yes 

12 100 4 8 9 6 0.05 0.05 Yes 

 

 

5.6.2 Data generation 

Thirty replications were performed for each combination, resulting in a total of 360 

synthetic data sets. The data sets consist of simulated part-worths for each respondent, 

as well as hypothetical market scenarios with different product configurations. Initially 

the part-worth functions of 5,000 hypothetical respondents are estimated, who belong to 

2 or 4 equally sized segments. Part-worths for each attribute level are randomly drawn 

from a normal distribution, with a different mean for each segment selected within the 

range [0, 1]. The variance of the distribution within each segment is set to either 0.05 or 



 

0.1. Next, the market scenario is formulated through the choice of the level of each 

attribute for every product. When no similar alternatives exist in the choice set, the 

selection of the attribute levels is totally random for all products. In the other case, it is 

assumed that there exist two groups of similar alternatives, consisting of 1 and 3, or 2 

and 6 products, depending on the level of the factor Number of alternatives. Following 

Baier and Gaul (2001), the same level on the first 3 or 5 attributes is set for the 

alternatives within each group, whereas the remaining 2 or 4 attributes are assigned 

levels at random. 

The utility value assigned by the respondents to each product is calculated with the use 

of the simulated part-worths along with the products’ configuration. The “real” market 

shares are estimated for each scenario, with the use of the error free utilities and 

assuming a deterministic first choice rule for each individual. Then the sample of the 

population on which the models will be assessed is constructed, by selecting 200 or 1,000 

from the 5,000 respondents (equal number from each segment). Error terms are added 

to the sample’s “true” utilities, following a normal distribution with zero mean and 0.05 

or 0.35 Percentage of Error Variance on preferences according to equation (18). The two 

models are calibrated with the use of 100 or 500 respondents, and are then applied to a 

different evaluation sample of 100 or 500 respondents respectively. The calibration 

sample is only used for the estimation of the R, K and S parameters of the proposed 

model and the a exponent of the ALPHA rule, whereas the performance of the five 

models is measured using the evaluation sample. 

 

5.6.3 Results of the Monte Carlo study 

The mean value and standard deviation of each of the 4 parameters (R, K, S and a) 

across all the 360 calibration sets are presented in Table 5.9. 

 

Table 5.9: Parameters’ values across all calibration sets 

Proposed model ALPHA 

R K S A 

Mean Std Mean Std Mean Std Mean Std 

8.74 11.85 12.75 13.11 -0.08 6.8 115.6 106.8 



 

 

As it is observed, the K parameter has the highest mean value and the lowest coefficient 

of variation (standard deviation to mean ratio), meaning that kurtosis is the coefficient 

with the highest impact, followed by the range of the utilities, whereas the effect of 

skewnes is rather limited. The mean values of MAE deriving from the calibration of the 

proposed approach and the ALPHA model are illustrated in Table 5.10, where the 

results with and without the application of the corrective method are given. 

 

Table 5.10: Mean MAE values for the calibration of the 2 models with and without 

correction for similarity* 

Proposed ALPHA  

no correction with correction no correction with correction 

1 2 3 4 

14.71262,3,4 22.41894 15.01412,4 22.8941 

*Statistical significant differences between two means are denoted by superscript numbers attached to the superior mean 

(p<0.1). 

 

After the proposed model and the ALPHA model have been calibrated, they are applied 

to the corresponding evaluation data set, both with and without the corrective method, 

along with the three traditional models. In accordance with previous studies comparing 

the predictive accuracy of consumer choice models (Currim, 1982), the following 

prediction measures between the simulated and the real market shares are used: 

• Mean Absolute Error (MAE=∑ −
j

jj SSRS || ), 

• Mean Percentage Error (MPE=∑ −
j

jjj RSSSRS || ), 

• and Mean Square Error (MSE=∑ −
j

jj SSRS 2)( ). 

Table 5.11 presents the mean values of the three measures deriving from the application 

of the 5 models across the 360 evaluation sets. 



 

 

Table 5.11: Mean values for the three error measures in the evaluation sets* 

   MAE MPE MSE 

Proposed no correction 1 15.80
2,3,4,5,6,7 

2.37
2,3,4,5,6,7

 7.32
2,3,4,5,6,7

 

with correction 2 23.89
4,5,6,7

 3.53
4,5,6,7

 11.02
4,5,6,7

 

ALPHA rule no correction 3 16.12
2,4,5,6,7

 2.52
2,4,5,6,7

 7.48
2,4,5,6,7

 

with correction 4 24.38
5,6,7

 3.61
5,6,7

 11.26
5,6,7

 

Bradley Terry Luce 5 55.96
7
 9.35

7
 25.49

7
 

Lesourne 6 52.061
5,7

 8.44
5,7

 23.42
5,7

 

MultiNomial Logit 7 59.57 9.81 27.24 

*Statistical significant differences between two means are denoted by superscript numbers attached to the superior mean 

(p<0.1). 

 

As it was expected the MAE of the proposed model for the calibration set is lower than 

that for the corresponding evaluation set, but the mean difference is relatively small 

(6.7%). This shows that the model avoids overfitting to the calibration set, and achieves 

high performance on the evaluation set too. The proposed approach outperforms the 

ALPHA rule in all cases, while the clear superiority of both approaches over the 

traditional models is obvious. The incorporation of the corrective method results in a 

50% loss in prediction performance. This is reasonable, since the study is based on 

simulated data, and the real shares have been generated using the first choice rule, 

hence human subjectivity is not reflected. Yet, the mean error of the models with the 

corrective method remains less than half of the error derived from the traditional 

models. More clear conclusions about the performance of the corrective method will be 

drawn in the next section where real world data are used. 

The mean values of MAE of each model under the different levels of the 8 factors 

included in the simulation are shown in Table 5.12. 

 

 

 

 



 

Table 5.12: Mean MAE values under each of the factor levels for each model 

Factor Level 

Proposed model ALPHA rule 
Bradley 

Terry Luce 
Lesourne 

Multi 

Nomial 

Logit no correction with 

correction 

no correction with 

correction 

Respondents 100 16.5729 24.6496 16.7431 24.1859 54.7115** 50.1077* 58.221** 

500 15.3069* 23.9513** 15.5137* 23.0701** 57.2196 54.0143 60.9306 

Segments 2 16.1085 25.0726 16.3272 25.6989 63.7151 58.5955 67.6043 

4 15. 9714 24.5284 16.0295** 24.9879 48.2160* 45.5265* 51.5472* 

Alternatives 4 12.6780* 19.7930* 13.0711* 20.3518* 47.3152* 43.8257* 51.3155* 

8 19.1856 28.8080 19.2018 28.4220 64.6159 60.2963 67.8360 

Attributes 5 17.6947 28.3923 17.8285 28.5579 57.8080 53.5855 62.3540 

9 14.1852* 20.2087* 14.4282* 20.2159* 54.1231** 50.5365** 56.7976* 

Levels 3 17.0158 33.4907 17.1702 33.4801 57.3012 53.8031 60.8693 

6 14.8640* 15.1102* 15.0866* 15.2938* 54.6299** 50.3189** 58.2822** 

Segment 

Heterogeneity 

Homogeneous 15.9566 23.7555 16.1619 24.4939 61.2276 56.4835 64.6991 

Heterogeneous 15.9232 24.2071 16.0948 24.2183 50.7036* 47.6385* 54.4525* 

Similarity of 

Alternatives 

Similar 17.5827 25.3799 17.8328 24.8121 59.3911 56.1344 63.2165 

Dissimilar 14.2971* 23.9617** 14.4240* 23.2211** 52.5401* 47.9876* 55.9350* 

Error Variance 5% 12.5447* 23.6590* 12.6940* 23.2025* 56.4006 52.7935 60.4176 

35% 19.3351 25.3985 19.5627 25.1148 55.5305 51.3285** 58.7340** 

The difference between the two means, generated under the levels of the corresponding design factor, is significant:  

* at the 0.01 level, 

 ** at the 0.1 level. 



 

As observed, the proposed approach does not underperform on any factor level. The two 

calibrated models perform better when applied to more respondents, managing to 

accomplish better calibration as the sample increases. On the contrary, traditional models 

exhibit a 6.5% error increase for 5 times more respondents, failing to take advantage of the 

larger data set and to improve their forecasting performance. If the number of segments is 

doubled, the traditional models display a 23% increase in the predictive accuracy. This 

factor, as well as the segment heterogeneity, does not impact the performance of the two 

calibrated models. Traditional models reflect a 17% difference in performance between the 

2 different levels of segment heterogeneity. When the number of alternatives is doubled, the 

calibrated approaches exhibit a 50% loss in forecasting accuracy without the corrective 

method and a 46% with the incorporation of the method. A 20% increase in performance is 

displayed between the 5 and the 9 attribute situation, as well as the 3 and the 6 level 

situation. When there are similar alternatives in the choice set, the calibrated models 

encounter an 18% performance drop. The incorporation of the corrective method reduces 

the percentage of losses to only 5%. The same holds in case that 7 times more noise is 

added, where the calibrated models exhibit a 54% raise in the mean prediction error, while 

the addition of the corrective method diminishes the increase to only 7%. 

 

5.7 A real world application  

In order to test the performance of the model in real world conditions, the data from the 

market survey (chapter 4) were used. The data from Table 4.2 were used for the estimation 

at the individual level of the part-worths for every level of each attribute. Next, the 

customer sample was randomly divided into two equal groups of 240 respondents each. The 

proposed model and the ALPHA rule were calibrated, by estimating the values of the R, K, 

S and a parameters that best predict the holdout choices for the first group. Table 5.13 

shows the MAE resulted from the models’ calibration. 

 

 



 

Table 5.13: Mean absolute error for the calibration of the 2 models with and without 

correction for similarity* 

Proposed ALPHA  

no correction with correction no correction with correction 

1 2 3 4 

22.91683 19.95661,3,4 23.7051 20.84491,3 

*Statistical significant differences between two means are denoted by superscript numbers attached to the superior mean 

(p<0.1). 

 

The parameters estimated (Table 5.14) were used in the second group, in order to assess 

the predictive accuracy of the five models. 

 

Table 5.14: Parameters’ values derived from models’ calibration 

Proposed model ALPHA 

R K S A 

1.47 5.64 -1.57 15.94 

 

Table 5.15 presents the MAE, the MPE and the MSE for the application of the five models 

on the second group of respondents. 

 

 

 

 

 

 

 



 

Table 5.15: The values for the three error measures on the evaluation group* 

   AE PE LSE 

Proposed 

model 

no 

correction 

1 23.74
2,4,5,6,7 

3.59
2,4,5,6,7

 11.05
2,4,5,6,7

 

with 

correction 

2 20.81
1,3,4,5,6,7

 3.11
1,3,4,5,6,7

 9.86
1,3,4,5,6,7

 

ALPHA 

rule 

no 

correction 

3 24.653
5,6,7

 3.817
5,6,7

 11.903
5,6,7

 

with 

correction 

4 21.97
1,3,5,6,7

 3.24
1,3,5,6,7

 10.46
1,3,5,6,7

 

Bradley Terry Luce 5 42.99209
7
 6.612

7
 20.033

7
 

Lesourne 6 41.6241
5,7

 6.048
5,7

 20.816
5,7

 

MultiNomial Logit 7 43.7552 6.914 21.537 

*Statistical significant differences between two means are denoted by superscript numbers attached to the superior mean 

(p<0.1). 

 

As the results indicate, the proposed approach outperforms the ALPHA rule and the 

traditional models in the real world application as well. The model achieves a better fit to 

real data, since the difference in MAE between calibration and evaluation is only 4%. The 

addition of the corrective method improves the performance of the calibrated models, 

resulting in a 14% mean reduction in error prediction.  
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In this chapter the optimization part of the Optimal Product Line Design problem is 

implemented with the use of Particle Swarm Optimization, a nature inspired intelligence 

technique introduced by Kennedy and Eberhart (1995) that has been successfully applied to 

a wide variety of optimization problems of high complexity. The performance of the 

proposed approach is benchmarked against Genetic Algorithms, the only population-based 

algorithm that has been currently applied to the problem. For simplicity reasons, the BTL 

choice model is employed to implement the comparison of the two algorithms. 

 

6.1 Introduction 

As discussed in a previous chapter, almost all approaches that have been applied to the 

Optimal Product Line Design problem aim at finding a better approximation of the global 

optimal solution. Whereas this may be a reasonable target in the Operational Research 

domain, marketing managers focus on other more practical issues. For example, when 

optimizing a firm’s market share, the introduction of product line A may result in 25% 

market share for the firm. At the same time, a product line B may result in 24% market 

share but its production cost may be 40% less than that of product line A. Whereas product 

line A seems to be the best choice, achieving the highest performance concerning the 

optimization objective (market share), product line B constitutes a better option for the firm 

taking into account the significantly lower production cost.  As long as single-objective 

optimization algorithms are used in the Optimal Product Line Design problem, such a 

drawback can only be alleviated with an algorithm that provides a number of alternative 



 

good solutions to the problem. Genetic Algorithms (GA), which belong to the class of 

population-based algorithms, have been successfully applied to the optimal product line 

design problem, displaying high performance in the provision of both an optimal solution 

and a set of good near-optimal solutions.     

In this chapter, a new population-based optimization algorithm called Particle Swarm 

Optimization (PSO) is proposed for solving the Optimal Product Line Design problem. Since 

this approach is the first to employ PSO on the specific problem, the PSO algorithm and its 

variants will be presented first, and then the algorithm’s parameters will be fine tuned and 

the best approach will be selected. Finally, the effectiveness of the approach will be 

evaluated, through a comparison of the performance of PSO with that of GAs, regarding a 

number of variables of interest.  

 

6.2 Original Algorithm 

Particle swarm optimization is a population-based swarm intelligence algorithm. It was 

originally proposed by Kennedy and Eberhart (1995) as a simulation of the social behaviour 

of social organisms such as bird flocking and fish schooling. PSO uses the physical 

movements of the individuals in the swarm and has a flexible and well-balanced 

mechanism to enhance and adapt to the global and local exploration abilities. Most 

applications of PSO have concentrated on the optimization in continuous spaces, while 

recently some work has been done to the discrete optimization problem. Recent complete 

surveys for the Particle Swarm Optimization can be found in Banks et al. (2007, 2008) and 

Poli et al. (2007). The wide use of PSO, mainly during the last years, is due to the number of 

advantages that this method has compared to other optimization methods. Some of the key 

advantages are that this optimization method does not need the calculation of derivatives, 

that the knowledge of good solutions is retained by all particles and that particles in the 

swarm share information between them. Furthermore, PSO is less sensitive to the nature 

of the objective function, can be used for stochastic objective functions and can easily escape 

from local minima. Concerning its implementation, PSO can easily be programmed, has few 



 

parameters to regulate and the assessment of the optimum is independent of the initial 

solution.   

The PSO algorithm works as follows. First a set of P particles (population) is randomly 

initialized, where a particle is a solution to the problem. The size of the population (P) 

remains constant throughout the algorithm’s iterations. The position of each particle is 

represented by a d-dimensional vector in problem space si = (si1, si2,..., sid), i = 1, 2,..., P, 

s ℜ∈  and its performance is evaluated on the predefined fitness function. Thus, each 

particle is randomly placed in the d-dimensional space as a candidate solution. The velocity 

of the i-th particle vi = (vi1, vi2 ,..., vid), u ℜ∈   is defined as the change of its position. The 

flying direction of each particle is the dynamical interaction of individual and social flying 

experience. The algorithm completes the optimization through following the personal best 

solution of each particle and the global best value of the whole swarm, or the local best 

value of a part of the whole swarm depending of the population topology that is selected in 

the algorithm.  Each particle adjusts its trajectory toward its own previous best position 

and the previous best position attained by any particle of the swarm, namely pid and pgd. 

The velocities and positions of particles are updated using the following formulas: 

))(())(()()1( 2211 tsprandctsprandctvtv idgdidididid −+−+=+                                                                       (23) 

                            )1()()1( ++=+ tvtsts ididid
                                                                            (24) 

where t is the iteration counter; c1 and c2 are the acceleration coefficients; rand1, rand2 are 

two random numbers in [0, 1]. The acceleration coefficients c1 and c2 control how far a 

particle will move in a single iteration. Typically, these are both set equal to a value of 2, 

although assigning different values to c1 and c2 sometimes leads to improved performance. 

Eberhart et al. (1996) proposed the limiting of the speed of each particle to a range [-vmax, 

vmax] in order to reduce the possibility of particle moving out of the problem’s space. 

Usually a value ±4 is used. The newly formed particles are evaluated according to the 

objective function, and the algorithm iterates for a predetermined number of 

generations (iterations), or until a convergence criterion has been met. Finally, the 

best solution obtained across all generations is returned. The size of the population (P) 



 

remains constant throughout the algorithm’s iterations. A pseudocode of the Particle Swarm 

Optimization algorithm is presented in the following.  

 

Initialization  

Select the number of neighbourhoods   

Select the number of particles for each neighbourhood 

Generate the initial population of the particles  

Evaluate the fitness of each particle according to the objective function 

Keep the optimum solution of each particle 

Keep the optimum particle of each neighbourhood 

Keep the optimum particle of the whole swarm  

Main Phase 

Do until the maximum number of generations has been reached 

 Calculate the velocity of each particle according to function  

 Calculate the new position of each particle according to function  

 Evaluate the new fitness of each particle 

 Update the optimum solution of each particle  

 Update the optimum particle of each neighbourhood 

      Update the optimum particle of the whole swarm 

Enddo 

Return the best solution/set of solutions. 

 



 

In the following sections, an analytical presentation of the main variants of the PSO algorithm is 

given. 

 

6.2.1 Inertia Weight  

An improvement of the initial algorithm was proposed by Shi and Eberhart (1998) which 

uses an inertia weight w. The inertia weight controls the impact of previous histories of 

velocities on current velocity.  The particle adjusts its trajectory based on information about 

its previous best performance and the best performance of its neighbors. The inertia weight 

w is also used to control the convergence behavior of the PSO. The velocities of particles are 

updated, now, using the following formula: 

))(())(()()1( 2211 tsprandctsprandctwvtv idgdidididid −+−+=+                                                                     (25) 

In order to reduce this weight over the iterations, allowing the algorithm to exploit some 

specific areas, the inertia weight w is updated according to the following equation: 

iter
iter

ww
ww ×

−
−=

max

minmax
max                                                                                                      (26) 

where wmax, wmin are the maximum and minimum values that the inertia weight can take, 

iter is the current iteration (generation) of the algorithm and itermax is the maximum 

number of iterations.   

 

6.2.2 Constriction Factor  

Clerc and Kennedy, 2002 proposed a constriction factor in order to prevent explosion, to 

ensure convergence and to eliminate the parameter that restricts the velocities of the 

particles.  The velocities of particles are updated, now, using the following formula: 

)))(())(()(()1( 2211 tsprandctsprandctvtv idgdidididid −+−+=+ χ                                                                 (27) 

where: 
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and: 

.4,21 >+= cccc                                                                                                                     (29) 

It should be noted that a number of theoretical studies have shown that the convergence 

behavior of PSO is sensitive to the values of the inertia weight, the acceleration coefficients 

and the constriction factor (Engelbrecht, 2007). The choice of values for PSO parameters 

that will ensure convergence to an equilibrium point is problem dependent.  

 

6.2.3 Population topology 

There are two kinds of population topology for the Particle Swarm Optimization, the global 

best (gbest) population topology and the local best (lbest) population topology (Engelbrecht, 

2007). In the gbest PSO the neighbourhood for each particle is the entire swarm. The social 

network employed by the gbest PSO reflects the star topology, where all particles are 

interconnected. Thus, the velocities of each particle are updated based on the information 

obtained from the best particle of the whole swarm. In the lbest PSO each particle has a 

smaller neighborhood. In this case the network topology reflects to the ring topology, where 

each particle communicates with only N other members of the swarm. The communication 

is, usually, achieved with the indices of the particles. Thus, if the size of the neighbourhood 

is equal to 2 the selected neighbours for the particle i are the particles i-1 and i+1. Thus, 

the velocities of each particle are updated based on the information obtained from the best 

particle of the neighborhood. The use of particle indices for the creation of the neighborhood 

is preferred because it is very difficult and computational expensive to calculate distances 

between all the particles in order to find the neighbours of each particle. Furthermore, if 

the indices are used then a particle may belong to more than one neighbourhood, having 

the possibility to spread a good solution in different neighborhoods. Usually the gbest PSO 



 

converges faster than the lbest PSO. On the other hand the lbest PSO has larger diversity 

in the solutions and, thus, it is more difficult to being trapped in a local minimum. 

 

6.2.4 Discrete Particle Swarm Optimization 

The basic PSO algorithm and its variants have successfully operated for continuous 

optimization functions. In order to extend the application to discrete spaces, Kennedy and 

Eberhart (1997) proposed a discrete binary version of PSO where a particle moves in a state 

space restricted to zero and one on each dimension and where each vi represents the 

probability of bit si taking the value 1. Thus, the particles’ trajectories are defined as the 

changes in the probability and vi is a measure of individual’s current probability of taking 1. 

If the velocity is high it is more likely to choose 1, and lower values favour choosing 0. A 

sigmoid function is applied to transform the velocity from real number space to probability 

space: 

)exp(11)( idid uusig −+=                                                                                                        (30) 

In the binary version of PSO, the velocities of the particles are updated using the equations 

(23), (25) or (27) depended on which version of the PSO is used while the positions of the 

particles are updated using the following equation: 

{
)(rand if 1,

otherwise 0,

3
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idvsig

id ts
<

=+                                                                                              (31) 

where rand3 is a uniform random number in [0, 1]. 

 

6.3 The proposed approach 

The customers’ utility functions are estimated at the individual-level, and are converted to 

choice likelihoods through probabilistic choice rules. The share of choices problem will be 

solved, where the goal is the maximization of a firm’s market share. The application of the 



 

model to other problems (seller’s return, buyer’s welfare) is straightforward. In such a 

context the problem is formulated as follows. 

 

6.3.1 Problem formulation 

When probabilistic choice rules are used, the market is assumed to consist of Ν competitive 

products with known configurations, including the M candidate items for the firm’s line. 

The parameters used to formulate the problem are described below: 

}{1,2, N…=Ξ is the set of products that comprise the market. 

},...,2,1{ K=Ω is the set of K attributes that comprise the product. 

},...,2,1{ kk J=Φ  is the set of Jk levels of attribute k. 

},...,2,1{ M=Ψ is the set of products to be designed ( ΞΨ ⊂ ). 

},...,2,1{ I=θ  is the set of Ι customers. 

wijk= is the part-worth that customer θ∈i assigns to level kj Φ∈ of attribute Ω∈k . 

The following decision variable is also used: 

       {
j, isk  attribute m sproduct' of level  theif 1,

otherwise 0,
=jkmx

                                                                     
(32) 

In contrast to the deterministic choice rule formulation, customers do not have a status quo 

product, and do not deterministically choose the highest utility alternative. Instead, each of 

the Ν alternatives has a certain probability to be selected, which depends on its utility 

value. Using the BTL model, the probability that customer i will choose product m is 

estimated as follows: 

Ξ∈Ψ∈∈= ∑
Ξ∈

nmi
U

U
P

n

in

im
im ,,      , θ                                                                                  (33) 

where Uim the utility that customer i assigns to product m (sum of its part-worths): 



 

Ψ∈Ω∈Φ∈∈=∑∑
Ω∈ Φ∈
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k

,,,        , θ                                                                                           (34) 

In this context the problem is formulated as the following non-linear program: 

∑∑
Ψ∈ ∈m i

imP
θ

max                                                                                                                            (35) 

subject to 

Ψ∈Ω∈=∑
Φ∈

mkx
kj

jkm ,            ,1                                                                                                                                    (36) 

integer  1,0=jkmx                                                                                                                                                                   (37) 

Constraint (36) requires each product in the line to be assigned exactly one level of each 

attribute. The objective function (35) maximizes the market share of the m products 

(probability to be purchased) of the company’s line.  

 

6.3.2 Solution Representation 

One of the most critical issues when developing a PSO algorithm is the solution 

representation. PSO has been employed in the optimization of various continuous nonlinear 

functions, but the applications of PSO on discrete problems are still limited. In this section, 

the potential formulations of the PSO algorithm for the Optimal Product Line Design are 

described, which is a combinatorial optimization problem. The goal is to construct a direct 

relationship between the PSO particles and the problem domain. Since PSO was initially 

developed for optimization in continuous search spaces, the mapping that yields the best 

results when converting from continuous domain to the discrete domain required by the 

problem will be explored. For this reason the performance of three integer and two binary 

mapping rules is compared.  

 

6.3.2.1 Integer Representation 



 

In an integer representation scheme, a search space of S=M*K dimension is setup. Each 

dimension has a discrete set of possible values limited to the range [1, Jk]. For example, 

consider a problem where a line comprises two products, each consisting of three attributes, 

which can take three different levels. A possible solution would be: 

2 1 1|3 3 2,                                                                                                                               (38) 

where in the first product, level two appears in attribute one, and level one appears in 

attributes two and three, while in the second product, level three appears in attributes one 

and two, and level two appears in attribute three. In this case, the PSO population is 

represented as a PxS two-dimensional array consisting of P particles, each represented as a 

vector of S product attributes. Thus, a particle flies in an S-dimensional search space. An 

attribute is internally represented as an integer value indicating the selected level during 

the course of PSO.  

In dealing with the Task Assignment Problem, Salman, Ahmad and Al-Madani (2002) map 

an n-task assignment instance into the corresponding n-coordinate particle position. The 

real values in the particles’ positions are converted to integers by dropping the sign and the 

fractional part.  This approach is employed through the further limitation of the integer 

value to the range [0, Jk -1], and it is given the name “Fix”. Laskari, Parsopoulos and 

Vrahatis (2002) propose a PSO algorithm for Integer Programming, where the real values 

in the particles’ positions are truncated to the nearest integer. In order for this approach to 

be applied to the product line design problem, the absolute value of the truncated particles’ 

positions is taken, and the values are limited as before. This mapping is called “Trunc”. 

Finally, a mapping will be tested where the values x in the particles’ positions are first 

limited to the range [0, Jk-1] through the function Y=x mod Jk, which gives the remainder of 

the division of x by Jk. Y is then converted to integer through dropping its fractional part. 

This mapping is called “Mod”. A line of two products for example are to be represented, 

each consisting of three attributes, which can take three levels (0, 1, 2). Table 6.1 illustrates 

the different product lines in which the same random particle corresponds, using the three 

integer mapping rules. 

 

 



 

Table 6.1: Different integer mappings for a potential product line 

 Product 1 Product 2 

Attributes 1 2 3 1 2 3 

Particle 1.3 -2.1 0.6 -0.4 1.9 4.7 

Fix 1 2 0 0 1 2 

Trunc 1 2 1 0 2 2 

Mod 1 0 0 2 1 1 

 

As it is observed, when the three mapping rules are used, a specific particle corresponds to 

three different product lines. In the second attribute of product 1 for instance, the 

corresponding particle’s value is -2.1. Under the Fix mapping, the sign is first dropped (-

2.1→2.1), and then the fractional part (2.1→2). Under the Trunc mapping, the value is first 

truncated to the nearest integer (-2.1→-2), and then its absolute value is taken (-2→2). 

Under the Mod mapping, the remainder of the division of -2.1 by 3 (0.9) is taken first, and 

then the fractional part is dropped (0.9→0). In the third attribute of product 2, where the 

particle’s value is 4.7, the Fix and Trunc mappings result in values 4 and 5 respectively, 

which are then both altered to a value of 2, since they exceed the range [0, 2].  The 

remainder of the division of 4.7 by 3 is 1.7, which results in a value of 1 if the fractional 

part is dropped (Mod mapping). 

 

6.3.2.2 Binary Representation 

In a binary representation scheme the solution (38) would be represented as:  010 100 

100|001 001 010. 

Here each particle dimension represents an attribute level. A value of 1 denotes that the 

specific level is assigned to the corresponding attribute. Therefore each particle flies in the 

S=M*K*Jk dimension space. Since exactly one level must be assigned to each attribute, the 

particle is divided into parts, each describing a single attribute. Within each part exactly 

one dimension must take a value of 1 and all the others must take a value of 0. Tasgetiren 

et al. (2004) propose a heuristic rule called Smallest Position Value (SPV) to enable the 

continuous PSO algorithm to be applied to the Single Machine Total Weighted Tardiness 



 

problem. In order for this rule to be applied to the product line design problem, it is 

modified as follows. Within each particle’s part the dimension with the smallest real value 

takes a value of 1, and the rest take a value of 0. Liao, Tseng and Luarn (2007), apply to the 

Flowshop Scheduling problem a small modification of the discrete version of PSO for binary 

problems (6.2.4). The particle’s velocity is converted to the change of probability, which is 

the chance of the binary variable taking the value 1. In the problem under investigation, 

the dimension with the highest velocity within each particle’s part takes a value of 1, and 

the rest take a value of 0. 

 

6.3.3 A comparison of the different mappings’ performance 

In order the most suitable mapping between the problem solution (line of products) and the 

particle to be found, the performance of the five different mappings is compared with the 

use of artificial data sets. This is implemented through the design of a fractional factorial 

experiment with five factors, each taking two levels (Table 6.2).  

 

Table 6.2: Factors and levels used in the experiment 

Factor Levels 

Number of attributes 3 6 

Number of attribute levels 4 7 

Number of products in the  line 2 4 

Number of competing firms 3 5 

Number of customers 100 500 

 

The data sets where the five mappings will be tested consist of simulated part-worths for 

each customer, as well as hypothetical market scenarios with different configurations of 

competitive products. The market is assumed to consist of 3/5 competing firms, each 

offering 2/4 different products, which is also the number of products that our company 

plans to introduce. Each product consists of 3/6 attributes which can take 4/7 different 

levels. The individual-level part-worths for each attribute level, are randomly drawn from a 



 

uniform distribution in the range [0, 1]. The part-worths are normalized within each 

customer, by setting the lowest level of each attribute to zero, and rescaling the sum of the 

best attribute levels to unity. In order for the market scenario to be formulated, each 

attribute level for each competitive product is randomly selected. Using the simulated part-

worths along with the products’ configuration, the utility value that each consumer assigns 

to each product is calculated. Finally, by adding the potential products under design and 

applying the choice model, the fitness of each possible solution is estimated. Eight 

combinations of the factors above were generated based on Addelman’s (1962) basic plans. 

Twenty replications were performed for each of the eight profiles, resulting in a total of 

eight hundred runs of the algorithm for the five different mappings. The parameters used 

in the PSO algorithm (Table 6.3) are typical values found in the related literature (Kennedy 

& Eberhard, 2001). 

 

Table 6.3: PSO parameters used in the experiment 

Parameter Value 

Population size 50 

c1 2 

c2 2 

wmax 0.9 

wmin 0.1 

Χ 0.728 

Number of iterations 1000 

 

Table 6.4 shows the average fitness among the twenty replications that each mapping 

achieved in each profile. Fitness values are represented as a percentage of the best value 

obtained from among all mappings. 

 



 

Table 6.4: Mean fitness values for each mapping 

Profile Discr Fix SPV  Trunc Mod 

1 1 0.9952 0.9972 0.9948 0.9950 

2 1 0.9952 0.9976 0.9948 0.9948 

3 1 0.9925 0.9984 0.9937 0.9928 

4 1 0.9970 0.9982 0.9976 0.9965 

5 1 0.9873 0.9948 0.9873 0.9870 

6 1 0.9953 0.9970 0.9958 0.9954 

7 1 0.9918 0.9964 0.9912 0.9906 

8 1 0.9964 0.9994 0.9964 0.9952 

Mean 1 0.9938 0.9973 0.9939 0.9934 

 

The superiority of the binary approaches over the integer ones is obvious. The Discr 

mapping strictly outperforms the other mappings in all profiles. The average values of the 

mean, maximum, and minimum number of iterations at which the best solution was found, 

as well as the time required by the algorithm to complete the one thousand iterations, are 

presented in Table 6.5.  

 

Table 6.5. Values for iteration best fitness found and algorithm completion time  

Measure  Discr Fix SPV  Trunc Mod 

Iteration best 

fitness found 

Mean 569.1 16.2 488.4 73.8 39.2 

Max 701.9 23.7 690.3 268.7 95.6 

Min 404.7 9.5 289.3 11.2 10.1 

CPU Time*  56.9 8.2 47.1 24.7 31.3 

 * CPU Time is measured in seconds on a 2.4 core 2 duo PC with 4GB of RAM 

As it is observed, integer mappings require less number of iterations to find the solution 

than do the binary mappings, but take more time to complete each iteration. The 

approaches that will be further tested are the Discr, as it achieves the higher fitness, and 

the SPV, as it achieves the second higher fitness in shorter computational time. 



 

 

6.3.4 PSO configuration 

This section evaluates the performance of the two binary mappings combined with different 

configurations of the PSO algorithm. Specifically the performance of the simple PSO will be 

compared with the PSO with inertia weight, the PSO with constriction factor, and the PSO 

with both inertia and constriction. The previous designed experiment is used here as well, 

and the results are illustrated in Table 6.6. 

 

 

 

 

 

 

 

 



 

Table 6.6: A comparison of different PSO configurations under the two binary mappings 

 Discr Discr  with 

Constriction 

Discr with 

Inertia  

Discr with Inertia & 

Constriction 

SPV SPV  with 

Constriction 

SPV with 

Inertia  

SPV with Inertia 

& Constriction 

P
ro

fi
le

 

1 0.9952 0.9948 0.9937 0.9933 0.9941 0.9976 0.9956 1 

2 0.9960 0.9952 0.9941 0.9945 0.9941 0.9980 0.9960 1 

3 0.9961 0.9972 0.9953 0.9945 0.9930 0.9992 0.9976 1 

4 0.9982 0.9976 0.9976 0.9976 0.9970 0.9988 0.9982 1 

5 0.9903 0.9857 0.9863 0.9869 0.9846 0.9960 0.9926 1 

6 0.9922 0.9914 0.9902 0.9902 0.9887 0.9953 0.9937 1 

7 0.9919 0.9884 0.9884 0.9890 0.9861 0.9942 0.9919 1 

8 0.9970 0.9969 0.9958 0.9958 0.9952 0.9982 0.9976 1 

Mean Fitness* 0.9946 0.9934 0.9926 0.9927 0.9916 0.9971 0.9954 1 

Iteration best 

 fitness found 

Mean 505.3 569.4 329.2 506.1 502.6 685.9 696.2 783.9 

Max 695 709.4 531.2 757.4 680.4 815.4 806.2 860.6 

Min 413.2 410.8 114 357.4 373.6 545.4 514.6 402.4 

CPU Time** 49 55.1 31.9 48.9  48.5 65.9 66.9 75.3 



 

*Fitness values are represented as a percentage of the best value obtained from among all 

PSO configurations 

** CPU Time is measured in seconds on a 2.4 core 2 duo PC with 4GB of RAM 

 

The use of the extra parameters helps the SPV approach to outperform the Discr approach, 

requiring however more iterations and computational time. The SPV with inertia and 

constriction strictly outperforms the other approaches in all profiles.  

 

6.3.5 Population topology 

In the present section the performance of the PSO algorithm with inertia and constriction 

under the SPV mapping will be assessed, with use of different population topologies. 

Specifically, the gbest topology and a number of different lbest topologies will be tested, 

with use of the same experiment as before. Here, a complete enumeration of the search 

space in each problem instance is also implemented, in order for the algorithm’s 

approximation of the optimum solution to be to evaluated. The values of the PSO 

parameters are the same as in Table 6.3, except for the size of the population. Through the 

evaluation of the algorithm’s performance using 9 different population sizes, from 20 to 90, 

it was found that a size of 60 gave the best results. Ten different topologies are tested; from 

1 neighborhood comprising 60 particles (gbest topology), to 30 neighborhoods comprising of 

two particles each. Table 6.7 illustrates the mean values of the best fitness as a percentage 

of the optimum, the iteration in which best fitness was found, and the computational time, 

across the 160 runs for each topology. 

 

 

 

 

 



 

Table 6.7: Performance evaluation of ten different PSO topologies 

Topology Number of 

neighborhoods 

Neighborhood 

size  

Best 

Fitness  

Iteration best 

 fitness found 

CPU 

Time* 

Gbest 1 60 0.9946 863 80.20 

lbest2 2 30 0.9948 892.75 84.44 

lbest3 3 20 0.9954 812.75 85.43 

lbest4 4 15 0.9955 932.25 86.49 

lbest5 5 12 0.9960 940.75 87.72 

lbest6 6 10 0.9966 781.5 88.73 

lbest10 10 6 0.9965 853.5 91.98 

lbest12 12 5 0.9957 788.75 99.88 

lbest15 15 4 0.9951 802.25 104.04 

lbest30 30 2 0.9949 789.25 117.56 

* CPU Time is measured in seconds on a 2.4 core 2 duo PC with 4GB of RAM 

 

The first finding is that the lbest topology strictly outperforms the gbest topology, since the 

latter gives the worst mean value of the best fitness across the ten different topologies. As 

the number of neighborhoods increases the algorithm’s performance also increases until the 

topology of 6 neighborhoods, each consisting of 10 particles. A decline in the algorithm’s 

performance is observed from this point until the final topology of thirty, 2-paricle 

neighborhoods. The CPU time increases as the number of neighborhoods increases, since a 

topology with more neighborhoods requires that more local bests have to be calculated and 

stored in each iteration.  

 



 

6.4 A comparison of Particle Swarm Optimization with Genetic 

Algorithms 

This section will benchmark the performance of PSO against current state of the art 

algorithms. Previous studies have shown that Genetic Algorithms outperform Dynamic 

Programming (Balakrishnan and Jacob, 1996), as well as Beam Search (Alexouda and 

Paparrizos, 2001; Balakrishnan et al., 2004), and together with Simulated Annealing 

provided the best performance among the 9 most important algorithms that have been 

applied to the problem (Belloni et al., 2008). Since Simulated Annealing is a single-best 

approach, the performance of PSO will be compared with that of GAs. The performance of 

PSO and GAs will be compared without the incorporation of retaliatory responses from 

competition, an issue that will be elaborated in the subsequent section.  Based on the 

results of the preceding analysis, the approach that will be applied is the PSO with inertia 

and constriction under the SPV mapping, using a topology of 6 neighborhoods each 

consisting of 10 particles. The other PSO parameters are the same as in Table 6.3, except 

for the number of iterations which is not fixed. Instead, a convergence criterion is employed, 

according to which the algorithm will terminate when the best solution is not improved for 

20 succeeding generations. As for the GA configuration, the findings of previous studies 

which benchmark GAs against other approaches will be used.  

 

6.4.1 Genetic Algorithm implementation 

Genetic Algorithms  will be implemented with the use of an integer representation scheme 

(instead of a binary) as in Balakrishnan et al. (2004), since all genetic operators (crossover, 

mutation) have to be applied to entire attributes (genes), (instead of a portion of binary bits 

that form an attribute) in order for feasible solutions to be produced. The size of the GA 

population is set to 100 (Balakrishnan and Jacob, 1996), and a random initialization is 

performed. In accordance with the findings of the sensitivity analysis performed by Steiner 

and Hruschka (2002), the crossover probability is set to 0.9, and the mutation rate to 0.04. 

A uniform crossover process is adopted, where half of the attributes exchange values 

between the two parents. An elitist strategy is employed as the reproduction process, where 

the 40 best chromosomes are selected to survive into the succeeding generation, as in 



 

Alexouda and Paparrizos (2001). The moving average rule is adopted as the convergence 

criterion, where the algorithm stops iterating when the increase of the mean fitness value 

of the best 3 chromosomes is less than 0.2%, in comparison to the last 5 generations.  

 

6.4.2 Performance results 

Given that conjoint methods are being applied to more and more complex settings, it is 

important to demonstrate that PSO scales to more realistic larger problems than the 

previous solved, in which GAs have already been tested. For this reason, a fractional 

factorial experiment was designed, consisting of 5 factors each varying at two levels (Table 

6.8).  

 

Table 6.8: Factors and levels used in the experiment 

Factor Levels 

Number of attributes 5 9 

Number of attribute levels 4 8 

Number of products in the  line 6 9 

Number of competing firms 5 8 

Number of customers 200 700 

 

In a problem instance with 9 attributes and 8 levels per attribute the possible combinations 

for a single product are 134,217,728, while for a line of 9 products the number of possible 

solutions is over 1030. Finding and verifying the global optimal solution through complete 

enumeration of the search space in problems of such sizes would require more than a month 

of computational time. Hence, the best solutions provided by PSO and GA will not be 

compared with the optimum. Instead, a relative comparison of the two algorithms’ 

performance will be made regarding a number of variables of interest. As before eight 



 

profiles were created and 20 replicates were generated for each, which results in a total of 

160 different data sets. In order for the two algorithms to be compared with regard to the 

best solution found, the ratio of the best solution found by PSO to that found by GA will be 

calculate, as well as the percentage of problem instances in which a) PSO finds a better 

solution than GA, and b) GA finds a better solution than PSO. Table 6.9 presents the mean 

values across the 160 data sets.  

 

Table 6.9: Performance results regarding the best solution found by the PSO and GA 

Average PSO/GA 1.0126 

PSO better than GA 23.12% 

GA better than PSO 20.62% 

 

PSO found a better solution than GA in 37 out of the 160 runs (23.12%), GA found a better 

solution than PSO in 33 runs (20.62%), while in 90 runs (56.25%) the two algorithms gave 

the same best fitness. On average, PSO performs 1.26% better than the GA. The average 

iteration where best solution was found is also estimated, as well as the time required for 

the algorithms to converge, and the average fitness of the solutions in the final population, 

and the fitness of the worst solution in the final population. The last two variables are 

calculated as a percentage of the best solution found by the two algorithms in each problem, 

and will enable the evaluation the quality of the entire set of solutions that each algorithm 

provides. Furthermore, the diversity of the alternative solutions is assessed through the 

estimation of the number of unique solutions in the final population, the percentage of 

unique solutions whose fitness is at least 95% of the best solution’s fitness and the standard 

deviation of their fitness. Two solutions are considered different if they differ in at least one 

product, and two products are considered different if they differ in the level of at least one 

attribute. The mean values of the above variables of interest are illustrated in Table 6.10. 

 

 



 

Table 6.10: Mean values of the variables of interest for PSO and GA 

Variable PSO GA 

Iteration best solution was found 775.62 32.37 

Computational Time* 86.96 14.51 

Percentage of unique solutions in the final population 85% 48% 

Percentage of unique solutions with fitness at least 95% of the best 38.3% 9% 

Average fitness of the solutions in the final population 94.97% 96.72% 

Worst solution’s fitness in the final population 85.68% 89.44% 

Standard deviation of solutions’ fitness in the final population 0.016 0.009 

* CPU Time is measured in seconds on a 2.4 core 2 duo PC with 4GB of RAM 

 

Whereas PSO completes each iteration 4 times faster than GA, it requires 6 times more 

computational time to converge. Fifty one out of the sixty (85%) final solutions proposed by 

PSO are unique, while only 48 out of the 100 are unique in the GA’s final population. The 

average fitness of the final population is higher in GA (94.72%) than in PSO (92.97%) due to 

the higher number of identical solutions in the GA’s final population. The wider range of 

good solutions that PSO provides is also indicated from the percentage of unique solutions 

whose fitness is at least 95% of the best solution’s fitness, which is 38.3% (23 out of the 60 

solutions) for PSO and only 9% for GA (9/100). The low performance of GA in the specific 

variable is an outcome of the reproduction and crossover processes, which essentially 

recycle the same genes (attribute levels) among the different solutions, resulting in a final 

population that contains many copies of 3-5 good chromosomes. This explains the 7 times 

higher standard deviation of fitness values in the final population of PSO compared to that 

of GA. The low diversity of the GA’s final population can be mitigated by an increase in the 

mutation probability, since mutation can produce chromosomes that correspond to new 

undiscovered regions of the search space. Higher mutation rates were tested, but whereas 

this increased the GA’s population diversity, it significantly impacted the fitness of the best 



 

solution (a 3%-5% reduction), since higher mutation increases the randomness of the 

search. Larger GA’s population sizes were also explored, but the gain was too small in 

relation to the extra time required for the algorithm to converge. Another effect of the 

reproduction process is the early elimination of the bad solutions. As a consequence, GA 

performs better (89.44%) in the worst solution’s fitness in the final population compared to 

PSO (86.68%). The results indicate that PSO provides the decision maker with a wide range 

(51 out of 60) of unique high quality solutions (94.97% average fitness), among which he can 

choose the best 20 (which exhibit fitness over 95% of the best solution) for further 

evaluation. GA on the other hand, while running 6 times faster than PSO, it converges to a 

final population of low diversity with multiple copies of less than 10 good solutions. Such a 

small set of unique chromosomes can be too restrictive in many situations, since the 

solutions may proved to be almost identical, representing product lines that differ in only a 

single attribute level of one product. On the contrary, PSO searches a much larger part of 

the entire solution space, in an acceptable amount of time for a marketing application (less 

than one and a half minute). The neighborhood topology enables PSO to converge to several 

local optima (usually the same as the number of neighborhoods) and provide a broad range 

of good solutions around them.  
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In this chapter the retaliatory actions from competitors are modeled in a game theoretic 

concept. Each firm is treated as a Nash player that optimizes its product line using PSO 

until a market equilibrium is reached. The approach will be demonstrated through a 

scenario based on the data from the milk survey. 

 

7.1 Introduction 

As illustrated in chapter 3, a number of optimization algorithms have been applied to the 

problem, guaranteeing even the global optimality for the single product design problem. 

However, all studies treat the competition as being static, where the companies that 

participate to the market do not react to the new entrant’s move, staying with the product 

line configurations that were already offering. It is obvious that this does not constitute a 

proper representation of real world conditions. A model that is based in such an assumption 

can only provide an instant picture of the market that is valid only for a short period after 

the introduction of the new product line. However, companies which are about to spend a 

lot of money in developing and launching their new products are interested for the market 

share and profits obtained in the longer term. Only when competitors have made their 

moves and the market has stabilized the new entrant can recover its investment and obtain 

some profit. 

Recent approaches that optimize product line designs using conjoint data neglect to 

explicitly consider potential retaliating moves from the competitors. Actually, only two 



 

approaches have incorporated competitive reactions using game theory in the conjoint 

analysis context. Choi and DeSarbo (1993) apply a specialized branch and bound 

optimization algorithm, while modeling the competitive responses in a Nash equilibrium 

framework. Green and Krieger (1997), also employ the Nash equilibrium concept with the 

use of divide and conquer heuristic. While being the first studies to apply game theory to 

the product design, both approaches solve only the single product design, using traditional 

single-best optimization approaches. A possible reason for which a dynamic competition 

approach has not yet been considered in the Optimal Product Line Design problem is that 

conjoint attributes are typically discrete. In a discrete space the existence of a Nash 

equilibrium cannot be guaranteed through an analytical closed-form solution. Even if a 

Nash equilibrium is found, its uniqueness cannot be proved.  

 

7.2 A Nash equilibrium approach 

The above problems will be faced in the present thesis through the employment of an 

empirical sequential iterative process for computing a Nash equilibrium, if it actually 

exists. The market will be considered to be dynamic, where a new entrant introduces a line 

of products, and the incumbent firms respond by optimizing their products’ configuration 

according to the objective function (equation 35). This is a game where each player (firm) 

acts with perfect information, by observing the competitors’ earlier moves. The process  

continues until a Nash equilibrium (if there exists at least one) is reached. A Nash 

equilibrium is a situation where, given the objective function, none of the players that 

participate to the game can make any further gains (market share increase) by moving 

(altering attribute levels) unilaterally. Since an analytical closed-form solution cannot be 

calculated, the problem will be solved using an iterative tatonnement process. Tatonnement 

process is a term used in game theory to describe the process by which markets find their 

way to equilibrium. The tatonnement process can be either simultaneous, where all players 

form their strategies at the same time, or sequentially, where each player moves in turn, in 

a sequential predetermined order. In real markets, companies usually observe competitors’ 

moves and then alter their strategies, rather than acting all together in a simultaneous 

manner. Hence, a sequential tatonnement process is employed, like in Choi and DeSarbo 



 

(1993), and Green and Krieger (1997), since this constitutes a better representation of real 

world circumstances.  

 

7.2.1 An illustrative real world case 

The proposed approach will be demonstrated using actual conjoint data from the real 

market survey concerning milk buyers. According to the scenario, ALPHA plans to become 

one of the largest players in the Greek retail market of milk, by redesigning its product 

line. As mentioned in chapter 4, four companies are the main players in the market. For 

illustrative purposes, it is assumed that each competitor is currently offering 3 different 

products. Under such a scenario, a game of five players (including the new entrant) is 

formulated, where each alters each product strategy (optimizes its product line) in a 

sequential predetermined order, until a Nash equilibrium is reached. Table 7.1 presents the 

current market scenario, with the initial product configurations of the four incumbent 

firms, together with the corresponding total market share for each firm. Each product is 

described with four integers, each representing the selected level of the corresponding 

attribute. For example, the product 4312 describes a 2-litre, Goat milk, with 1.5% fat in a 

plastic package. 

 

Table 7.1: The existing situation of the market before the entrance of the new firm  

Firms Products Market Share 

(%) 
1 2 3 

BETA 2111 1221 3312 30.86 

GAMMA 4122 3211 1322 28.02 

DELTA 3122 2212 4311 25.44 

EPSILON 1111 4222 2321 15.68 

 



 

The game begins when the new entrant (ALPHA) introduces a line of three new products, 

becoming the fifth player of the market. ALPHA designs its line based on consumers’ 

preferences (parth-worhts) and the current competitive products’ configuration (Table 13), 

using the PSO algorithm. The best solution that PSO provides is the 3112 2221 1321. The 

new market shares are now ALPHA:25.44%, BETA:20.15%, GAMMA:22.03%, 

DELTA:19.64%, EPSILON:12.74%. The entrance of ALPHA to the market results in a 35% 

reduction in BETA’s share and a 20% reduction in the share of the rest three firms. ALPHA 

competes mostly with BETA, since two of their product are almost identical, differing only 

in the level of a single attribute. As a consequence, it is expected that the first player that 

will react to the launch of ALPHA’s product line is probably BETA, which will try to 

redesign its line and win back the lost market share. In such a situation, BETA will 

optimize its product line based on the new market scenario that includes ALPHA, and the 

consumer’s part-worths, which for the purpose of the study are considered stable. In total, 

there are 24 different sequences of competitive moves when ALPHA initiates the game. The 

order of movement for the incumbent firms must be determined exogenously, usually 

through managerial judgment. For illustrative purposes it is assumed that the players will 

respond in a lexicographic order. In such a case, a Nash equilibrium is found after 8 moves, 

with GAMMA being the last to react. A ninth move will not be made, since neither DELTA 

nor any of the rest players can find a new solution that will result in an increase in their 

market share. The product configurations after the market has reached the Nash 

equilibrium along with the final market shares are shown in Table 7.2. 

 

 

 

 

 

 

 



 

Table 7.2: The new situation of the market after the Nash equilibrium has been reached 

Firms Products Market Share 

(%) 
1 2 3 

ALPHA 1212  2221 1321 22.31 

BETA 2111 4211 2322 22.74 

GAMMA 4121 3211 4321 23.42 

DELTA 3122 2212 3111 19.38 

EPSILON 1221 4222 2321 12.15 

  

The configuration of more than half of the products that form the market has changed 

compared to the initial market scenario shown in Table 7.1. Significant differences are also 

displayed in the firms’ market shares. BETA exhibited the greatest loss due to the entrance 

of ALPHA, and GAMMA was the firm that managed to improve its position after the 

stabilization of the market. This indicates that when the market is treated as dynamic, the 

outcome of the optimization process is substantially different from the static case.  

Now it is assumed that the market initially comprises 5 players, with ALPHA participating 

with its initial product line 3112 2221 1321. The sequence in which firms move is changed 

from ALPHA-BETA-GAMMA-DELTA-EPSILON to GAMMA-EPSILON-DELTA-BETA-

ALPHA. The market reaches a Nash equilibrium after 9 moves this time, with BETA being 

the last acting player. The final market shares in this case are: ALPHA:20.16%, 

BETA:24.09%, GAMMA:21.50%, DELTA:20.91%, EPSILON:13.34%. As it is observed, the 

order in which the firms make their moves affects the final outcome, since this time BETA 

and DELTA gained more from the competitive game than the other three players. An 

interesting finding is that the “first mover advantage” comes under question in the second 

scenario, since GAMMA that initiated the sequence exhibited a small decline in its share 

compared to the first scenario. On the other hand, the player that makes the last move 

(GAMMA in the first, BETA in the second scenario) seems to be in a favored position. 



 

However, both issues constitute empirical findings that cannot be easily generalized. 

Probably the first mover advantage would hold, if the first player could foresee the future 

moves of the competition. In the proposed approach where a player cannot predict the 

future competitors’ actions but has, on the contrary, perfect information concerning the 

other players’ previous moves, the last moving firm is in a position to optimize its product 

line without encountering any further competitive reactions. Since however, the firm that 

will make the last move cannot be determined in advance, the value of such a finding is 

rather limited.  

An issue that must be further examined is the fact that each firm optimizes its entire 

product line every time it makes a move. This seems to be a quite strong assumption, since 

in real markets production as well as advertisement costs would prevent firms to alter more 

than a couple of products every time they observe a competitive action. Nevertheless, 

modeling competitive reactions in the concept of Nash equilibrium provides useful insights, 

such as identifying those attribute levels that can stay intact in the long term.  
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The models described in the previous chapters were all developed with the use of the 

R2008a edition of the MATLAB programming language. The user interface of the system 

was built with the use of the Microsoft Visual Basic 2008 express edition programming 

language. In this section, the system that incorporates the proposed models is presented. 

The case study example that was described in the previous chapter will be used for the 

illustration of the system. 

The customers’ partworths constitute the main input of the system. The user is provided 

with 3 choices for entering the customers’ partworths: 

1. Importing from a database. 

2. Importing from a Spreadsheet. 

3. Entering the data manually into a form. 

The partworths are entered through the “Load Partworths” selection from the “File” menu. 

After the procedure has been completed the loaded partworths can be accessed through the 

“Data Set” tab (Figure 8.1) 

 

 

 

 



 

Figure 8.1: The partworths matrix 

 

In order for the system to process these partworths, the attributes that represent the 

product together with the corresponding levels must be entered to the system. The user 

must give the name of each attribute and the corresponding levels separated by semicolons. 

The attribute levels must be entered in the same order as they appear in the file containing 

the partworths. A short description for each attribute may also be given. The process is 

accomplished through the “Enter product configuration” selection from the “File” menu 

which opens the “Attribute Levels” tab (Figure 8.2). 

 

 

 

 

 

 



 

Figure 8.2: The attributes and levels that form the products  

 

After completing the above process, the number of firms (players) that form the market 

must be set. This is implemented through pressing the “Enter Players’ parameters” button 

in the “Attribute Levels” tab. This opens a textbox where the number of players (excluding 

the new entrant) that will participate to the game must be entered (Figure 8.2).  

The product configuration of the incumbent firms of the market (players) along with the 

corresponding market shares must be entered next. These data constitute the second and 

last input of the system. This is implemented with through the “Player Parameters” tab 

that opens after the number of players has been set (Figure 8.3). 

   

   

   

   
 

 

 



 

Figure 8.3: The product configurations of the incumbent firms 

 

 

Next, the current market shares of the current competitors must be entered through the 

“Enter market shares” selection from the “Players” menu. This opens the ‘Market Shares” 

tab, where the name of each firm along with its market share must be entered in a new 

line. For a new entrant only its name is entered. 

The last step is the determination of the values of the PSO parameters that will be used in 

the optimization process. This is implemented through the “Define parameters” selection 

from the “P.S.O.” menu (Figure 8.4). 

 

 

 

 

 



 

Figure 8.4: Determination of the PSO parameters 

 

 

Now the simulation of the game is ready to begin through the selection of the “Run” choice 

from the “File” menu. Initially, the market simulation model is calibrated with the use of 

the customer partworths and the competitors’ current market shares. When this process is 

completed the “Simulation” tab opens. Here each competitor (player) is represented through 

an orange-green disk. The player that is currently optimizing its product line is denoted by 

a purple color. A progress bar shows the percentage of completion of the optimization 

process of the active player (Figure 8.5). 

 

 

 

 

 



 

Figure 8.5: Simulation of the market 

 

 

When the simulation is completed the “Product Line Configuration” tab opens. Here the 20 

best solutions (product line configurations) for the new entrant are illustrated (Figure 8.6). 

 

 

 

 

 

 

 

 



 

Figure 8.6: The 20 best product line configurations for the new firm. 

 

 

The user can select one of the 20 solutions and open the “Market Shares” tab, to see the 

final market share for each competitor under the selected scenario (Figure 8.7). 

 

 

 

 

 

 

 

 



 

Figure 8.7: The final firms’ market shares under a specific solution 

 

Now the user has all the required information for assessing the different solutions and 

selecting the most beneficial. 
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The Optimal Product Line Design is a NP-hard combinatorial optimization problem, where 

several approaches have been applied over the past thirty years. The three main critical 

properties of the problem are the simulation of customer choice behavior, the optimization 

algorithm employed, and the modeling of competitors’ reactions. Most approaches have 

employed deterministic choice rules for simulating the customer choice process, in order to 

reduce the problem’s complexity, which however, suffer from serious limitations. Market 

simulation models have never been employed in any approach or marketing system, since 

they significantly raise the algorithm’s complexity. However, the large increase in 

computers’ speed, as well as the advances in optimization algorithms, can now compensate 

the extra complexity that market simulation models add to the problem.  

As far as optimization algorithms are concerned, survey results have shown that methods 

that work with full product profiles (Genetic Algorithms, Simulated Annealing) perform 

better than methods that work with partial product profiles (Dynamic Programming, Beam 

Search). This holds because the latter methods investigate in each iteration, only the most 

promising solutions and disregard the others, thus it is possible that they disregard (near) 

optimal solutions in a very early stage. Until now, global optimality has been guaranteed in 

tractable time, only for the Single Product Design problem, with the use of Lagrangian 

Relaxation with Branch and Bound. Among the methods that have been applied to the 

Optimal Product Line Design problem, Genetic Algorithms and Simulating Annealing have 

shown the best performance. Genetic Algorithms have an extra benefit compared to 

Simulating Annealing, as they work with a set of candidate solutions rather than a single 

one. In this way they provide the decision maker with a wide range of different product 

lines, which constitutes an important issue in real world marketing problems. Genetic 

Algorithms provide the manager with the capability to select among a set of high quality 

product lines the one that best satisfies the company’s objectives. Genetic Algorithms 

constitute also the most advanced optimization method that has been incorporated into a 

marketing system that deals with the problem.  



 

However the GA-based marketing systems have been implemented in such a way that 

provide the decision maker with only a single best solution, thus they fail to capitalize on 

the method’s main advantage. Furthermore, the issue of dynamic competition has received 

very little attention in the current literature. Retaliatory actions have only been considered 

for the single product design problem, using basic traditional optimization algorithms. 

There is still no approach that incorporates competitors’ responses to the optimization of a 

Product Line Design. In addition, dynamic competition options have not yet been embedded 

into any marketing system that deals with the problem. 

In the present thesis, an integrated approach for dealing with the Optimal Product Line 

Design problem was developed. A user friendly marketing system was also presented, 

which incorporates the innovative methods developed for the three properties of the 

problem. 

The first property, simulating market behavior, constitutes one of the most critical success 

factors of new product design and development. The effectiveness of a market simulation 

depends on the forecasting accuracy of the shares estimation algorithm, as well as the 

proper modeling of human choice behavior. The latter was clearly illustrated through the 

differences in the tested models’ performance between the simulated and the real data set. 

Whereas the calibration of the choice models is an adequate procedure for the achievement 

of high predictive accuracy in synthetic data sets, the incorporation of a corrective method 

into the choice rule is necessary when dealing with real world data. Traditional market 

simulation approaches either fail to achieve low prediction errors, or do not correctly 

represent customer purchasing behavior. An integrated market simulation model that 

performs well on both issues was developed. The study showed that the calibration of choice 

models using the range, kurtosis, and skewness of the customer’s product utilities 

distribution, maximizes their predicting validity. In particular, the calibration of the 

Pessemier model using as exponent the linear combination of the three coefficients, gives 

better results than the ALPHA rule, which is the current state of the art approach in 

commercial applications. The model displays the differential impact that an attribute may 

have on particular alternatives, as well as the substitution and the attraction effects among 

different products, through the incorporation of the corrective method into the choice rule. 

The value of the corrective method was illustrated on the real world scenario, where it 



 

enabled the model to effectively deal with the similar items in the choice set, and improve 

its performance.  

 Next, a novel approach for attribute level optimization was presented, where product lines 

are constructed directly from customer part-worths using the Particle Swarm Optimization 

Algorithm. Since this is the first reported application of the PSO algorithm to the Optimal 

Product Line Design problem, various enhancements of the basic PSO algorithm were 

evaluated, and the best values for the algorithm’s tuning parameters were explored through 

an experimental design. In a comparison of five different mappings that relate the 

continuous space in which particles fly with the discrete domain required by the problem, 

the Smallest Position Value rule gave the best results. Furthermore, it was showed that the 

PSO topology that mostly fits to the problem is the one with 6 neighborhoods each 

comprising 10 particles, and that the incorporation of both an inertia weight and a 

constriction factor improved the algorithm’s performance. Compared to the Genetic 

Algorithm approach, PSO performed better as it displayed a 1.26% mean improvement in 

the quality of the best solution found, but required on average 6 times more computational 

time to converge. However, the main contribution of the PSO approach is the generation of 

a wide range of different near optimal solutions. 85% of the final solutions provided are 

unique, and the fitness of half of them is within the 5% of the best value. Given such a set 

of different yet high quality product lines, the firm can select the one that satisfies a 

number of secondary objectives which are not included in the share of choices calculation 

such as strategic fit, production costs, technological feasibility etc.  

Finally, a dynamic approach for the Product Line Design problem was developed, where 

each firm optimizes its strategy using the Particle Swarm Optimization algorithm, until a 

Nash equilibrium is reached. The incorporation of game theoretic concepts resulted in 

totally different solutions than that obtained in the static case. Hence, product lines that 

might look attractive in the short run, may proved to be suboptimal in the longer term. The 

modeling of retaliatory actions from competitors through the Nash equilibrium framework 

provided useful insights. In a situation where no analytical closed-form solution can be 

provided, the player that initiates the game, and the sequence in which firms act constitute 

determinant factors of the final outcome as well as the speed of convergence. Furthermore, 

since the proposed approach treats all firms as Nash players, where none of them can 



 

foresee the others’ next moves, the first mover advantage does not seem to hold. Instead, 

late-movers may be in a better position, since they are able to act with perfect information, 

by observing the competitors’ previous moves. While the Nash equilibrium constitutes a 

theoretical concept that employs highly simplifying assumptions, its incorporation to the 

product optimization framework reveals valuable information for a firm such as the product 

attributes that resist to the retaliatory moves from competitors, or the incumbent firms 

that will benefit most in the long term. 

Whereas the presented methodology is the first to integrate the three critical properties of 

the optimal product line design problem, it does not come without limitations. The market 

simulation model is still at an early stage of its development. Much of the support for the 

approach is provided on the basis of simulations, which can only reflect the model that 

generated these simulated data. Hence, the model’s performance needs to be further 

evaluated in a wider range of real world cases and situations. Furthermore, due to the 

discrete nature of most conjoint attributes the existence of a Nash equilibrium cannot be 

guaranteed. Even if one exists, it has to be computed empirically through an iterative 

sequential process, and still its uniqueness can hardly be proved. The existence of multiple 

equilibria is not a desirable property for a firm, since there is no information concerning the 

probability with which each of them may occur. There is still much work to be done in this 

direction.  

Nevertheless, the developed system constitutes a useful tool for marketing managers 

involved in new product design decisions. A firm can evaluate the potential success of a set 

of new product concepts before they enter the production stage, using data obtained from a 

market survey. The effective modeling of customer choice behavior and competitors’ 

retaliatory moves assists managers in minimizing the uncertainty and risks associated with 

new product launches. The high predictive accuracy of the system’s underlying methodology 

supports the design of optimal products that will significantly contribute to the firm’s 

profitability, without cannibalizing its existing product line. The presented system is the 

first that provides the user with a wide variety of good near-optimal solutions. The 

significance of this innovative property can be illustrated by a managerially important 

issue raised by Balakrishnan et al. (2004): The fact that the optimization of the selected 

objective (market share, profit) is done at the product line level, may result in large 



 

variances in share among the products that form the line. This will probably cause 

dissatisfaction among the product managers, especially to those assigned a low-share 

product. The existence of different high quality product line configurations might mitigate 

this undesirable organizational conflict through the selection of the product line which, 

while providing a close to the optimal overall market share, it gives the minimum possible 

variation in the expected share among the different items of the line. 

This may also constitute an interesting area for future research: The use of an 

algorithm that optimizes different objectives at the same time, for example market 

share maximization, and minimum variation in the expected share among the 

different items of the line. This would require the application of Multi-Objective 

optimization approaches, instead of the single-objective algorithms that has been 

employed so far to the optimal product line design problem. A multi-objective 

approach along with a Pareto Optimal analysis will enable the firm to concurrently 

optimize two or more conflicting goals (e.g. production cost minimization, and 

market share maximization), while setting a number of constraints (e.g. market 

share not less than 20%). Another promising future research area is the use of 

dynamic models not only for representing the competitive reactions of the firms, but 

also for modeling the way that customer preferences change over time. So far, 

customer preferences are measured once and are considered stable for the rest of 

the simulation. However, it is accepted that consumer preferences in the real world 

are changing over time. In such an approach, the market would stabilize to different 

equilibria over time, depending on the change in customer part-worths.  
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