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Abstract

Designing optimal products is one of the most critical activities for a firm to stay
competitive. The Optimal Product Line Design constitutes a wide area of research in
quantitative marketing for over thirty years, which is usually formulated in the context
of Conjoint Analysis. Dealing with this NP-hard combinatorial optimization problem, a
manager must decide on a number of issues: how to simulate the consumer choice
process, which optimization algorithm to apply, and how to model the possible
retaliatory actions from competitors. The application of an effective approach has
several important practical implications for marketing managers, since a bad designed
product line may result in a lower than expected market share, or may even cannibalize
the firm’s existing products. The manager should carefully compare the different
alternative choice models, optimization algorithms, game theoretic approaches and
choose those that better fit the company’s requirements. This constitutes a quite
complex task, especially for marketing managers who usually do not have special
knowledge concerning optimization algorithms and game theory. In this context, a
number of marketing systems have been developed, assisting a manager in this problem

of high complexity.

The marketing systems that have been developed so far use simple deterministic choice
models for simulating the human choice process in order to reduce the problem’s
complexity. The limitations of deterministic choice rules regarding the effectiveness of

customer choice behavior simulation are well documented in the literature.

Furthermore, all marketing systems aim at improving the performance of a single best
solution, which is finally provided to the decision maker. Product design however is a
complex and not well formalized discipline that draws upon both marketing and
engineering fields. In this context, while it is important for a firm to obtain the optimal
solution, this product line configuration may not be technologically feasible, or the
production cost may be prohibitive. Hence, it is just as critical for the managers to be

provided with a wide range of near-optimal product profiles, in order to assess them



using a number of secondary criteria such as production costs, strategic fit, and

technological considerations.

Moreover, all the approaches that have been applied to the Optimal Product Line Design
problem assume a static market, where the incumbent firms will not respond to the
introduction of one or more new products. However, considering only competitors’
current products constitutes a very restrictive assumption, and the product designs
derived from such static optimization approaches might proved to be optimal only for
the short term. It is now becoming well known that in the longer run, optimization
algorithms should take into account the retaliatory actions of the incumbent firms,
which may launch new products or redesign their existing ones, as a response to the

entrance of a new firm to the market.

In the present thesis, an integrated approach for dealing with the Optimal Product Line
Design problem is presented, which combines state of the art methods for the three
properties of the problem. The simulation of customer choice behavior is implemented
through an innovative market simulation model that individually calibrates
probabilistic choice rules. Particle Swarm Optimization, a new population-based
algorithm inspired from natural intelligence, is used to provide a set of good near-
optimal solutions, from which the decision maker will be able to select the most
beneficial one. The concept of Nash equilibrium is employed for modeling the dynamic
nature of competition, where each incumbent firm responds to competitive moves by
redesigning its product line. All the methods and algorithms proposed are evaluated
against the current state of the art approaches, using both simulated and real data
regarding consumer preferences. The real data set was obtained from a market survey,
the purpose of which was the measurement of customer preferences concerning milk.
The proposed approach is the first attempt to integrate the three most important
properties of the problem into a single methodology. A marketing system is developed,
which integrates the underlying algorithms of the methodology under an efficient and

friendly interface.



1 Introduction

Nowadays the economic environment where firms operate has become more competitive
than ever. The globalization of the markets, the shorter product life cycles, and the rapid
technology development, put high pressure on companies’ profitability. In this context
new product development constitutes one of the most critical success factors for the
viability of a company. Firms that delay in introducing new products or redesigning
their existing ones are exposing themselves to great risks, since their current offerings
are vulnerable to changing consumer expectations and needs, as well as to increased
competition. Whereas the continuous new product launching is crucial for the survival of
a company, such procedures entail great risks, since the assets required for the
development of a new product are usually high. Under such circumstances, a new
product introduction that does not reach the company’s expectations may have a
catastrophic effect on its profitability. The commercial failure of the Edsel model cost
Ford $350 million, while the Concorde aircraft did not recover its investment (Kotler
and Keller, 2009). New products continue to fail at a disturbing rate; recent studies put
the rate at 95 percent in the United States and 90 percent in Europe (Kotler and
Armstrong, 2009).

In order to minimize the associated risks, managers try to assess a new concept’s
penetration to the market at its early design stage before it enters the production stage.
This constitutes a wide area of research in quantitative marketing for over thirty years,
known as the Optimal Product (Line) Design problem, which is usually formulated in
the context of Conjoint Analysis. Here, the products are represented by a number of

characteristics (attributes); a laptop, for example, may be represented by the attributes



monitor, memory etc. Each attribute can take a number of specific levels; the monitor
may be 20” or 24”, the memory may be 2GB or 4GB etc. The customer preferences
concerning laptops can be measured with the use of Conjoint Analysis, which estimates
a utility value for each attribute level called partworth. The combination of a consumer’s
partworths for a certain product gives the utility value he assigns to the product. Given
a number of competing products, a customer’s partwoths can be used for estimating the
utility of each product, which can then be converted to choice probability for each
product through a choice model, which simulates the customer choice behavior. The
product choice probabilities can then be aggregated for calculating hypothetical market

shares.

In the Optimal Product Line Design problem, a company is interested in designing a
number (line) of products, the introduction of which to the market will optimize a
specific objective (usually market share maximization). The problem’s input is the
buyers’ partworths and the configuration of the competitive products that form the
market. An optimization algorithm is used for the optimization of the firm’s objective.
The problem’s complexity depends on the number of products in the line, the number of
attributes that form a product, and the number of levels in each attribute. In real world
applications, as the number of attributes and levels increases, the number of candidate
solutions (product profiles) can grow uncontrollable large, making the managerial task
for selecting the appropriate product configuration (combination of attribute levels)
practically infeasible. Actually the Optimal Product Line Design problem has been
proved to be NP-hard, which means that there is no algorithm that can find and verify
the global optimal solution in polynomial time (Papadimitriou & Steiglitz, 1983). In this
context, a number of different heuristic approaches have been applied to solve the
problem from 1974 until today, the most important being Dynamic Programming (Kohli
and Sukumar 1990), Beam Search (Nair, Thakur and Wen 1995), Genetic Algorithms
(Alexouda and Paparrizos, 2001; Steiner and Hruschka 2003; Balakrishnan et al., 2004)
and Lagrangian Relaxation with Branch and Bound (Camm et al., 2006; Belloni et al.,

2008).



1.1 Motivation and Objectives

Whereas the optimization part of the problem has been extensively studied, with the use
of state of the art algorithms that provide near-optimal solutions in larger and larger
solution spaces, other critical factors that affect the quality of the final solution have
received little attention in the related literature. These factors are the choice model used
to simulate the consumer choice process, and the behavior of the competing firms after
the introduction of the new products to the market. Previous studies use simple choice
models in order to reduce the problem’s complexity. The first choice rule (where each
consumer is assumed to deterministically select the product with the highest utility) is
usually employed, since it permits the formulation of the problem as a liner program.
The limitations of the first choice rule regarding the effectiveness of customer choice
behavior simulation are well documented in the literature (Elrod, 1989). Probabilistic
choice models provide a better representation of the human choice process than
deterministic choice models (Kaul and Rao, 1995), but increase the problem’s complexity
since the problem becomes non-linear. For this reason, only basic probabilistic choice
models, like the MultiNomial Logit (MNL) (McFadden, 1974) or the Bradley-Terry-Luce
(BTL) (Bradley, and Terry, 1952; Luce, 1959) have been used in the Optimal Product
Line Design problem (Chen and Hausman 2000; Steiner and Hruschka 2003).
Nowadays, however, simulating the purchasing behavior of customers is implemented
through more sophisticated models. Actually, current state of the art approaches are
focusing on market simulation models. Recent approaches like the ALPHA rule (Krieger
et al., 2004), or the VOICE model (Krieger and Green, 2002), consider the behavior of
the entire group of customers that form the market, rather than independently
simulating the behavior of each individual. In the Optimal Product Line Design
literature, researchers use simple models for simulating the customer choice behavior in
order to keep the problem’s complexity low. Actually, no approach has utilize market

simulation models yet.

Furthermore, the comparison of the different algorithms concerns only the
approximation of the optimal solution, whereas marketing practitioners who work on

real problems are interested in a number of other more qualitative issues. Except for



Genetic Algorithms, all the approaches developed so far aim at improving the
performance of a single best solution, which is finally provided to the decision maker.
Product design however is a complex and not well formalized discipline that draws upon
both marketing and engineering fields. In this context, while it is important for a firm to
obtain the optimal solution concerning customer preferences, this product line
configuration may not be technologically feasible, or the production cost may be
prohibitive. Hence, it is just as critical for the managers to be provided with a wide
range of near-optimal product profiles, in order to assess them using a number of
secondary criteria such as production costs, strategic fit, and technological
considerations. As Balakrishnan et al. (2004) state, the “single best solution” approach
denies the decision makers a preferred list of solutions to discuss and select from, but

rather tends to have one imposed on them.

Moreover, all the approaches that have been applied to the Optimal Product Line Design
problem assume a static market, where the incumbent firms will not respond to the
introduction of one or more new products. However, considering only competitors’
current products constitutes a very restrictive assumption, and the product designs
derived from such static optimization approaches might proved to be optimal only for
the short term. It is now becoming well known that in the longer run, optimization
algorithms should take into account the retaliatory actions of the incumbent firms,
which may launch new products or redesign their existing ones, as a response to the
entrance of a new firm to the market. Actually, only two approaches have incorporated
competitive reactions using game theory in the conjoint analysis context (Choi and
DeSarbo, 1993; Green and Krieger, 1997). However, both approaches solve only the

single product design problem, using traditional single-best optimization approaches.

Dealing with this problem of high complexity, a manager must decide on a number of
issues: how to simulate the consumer choice process, which optimization algorithm to
apply, and how to model the possible retaliatory actions from competitors. The
application of an effective approach has several important practical implications for
marketing managers, since a bad designed product line may result in a lower than
expected market share, or may even cannibalize the firm’s existing products. The

manager should carefully compare the different alternative choice models, optimization



algorithms, game theoretic approaches and choose those that better fit the company’s
requirements. This constitutes a quite complex task, especially for marketing managers
who usually do not have special knowledge concerning optimization algorithms and
game theory. In this context, a number of marketing systems have been developed,

assisting a manager in such tricky decisions.

Genetic Algorithms constitute the most advanced optimization method that has been
incorporated into a marketing system that deals with the problem (Alexouda, 2005).
However the specific marketing system has been implemented in such a way that
provides the decision maker with only a single best solution. Hence, it fails to capitalize
on the Genetic Algorithm’s main advantage, which is the capability to provide a wide
range of good solutions. Furthermore, the system uses the first choice rule for
simulating the purchasing behavior of customers, while the competition is considered

static, and competitors’ responses are not incorporated to the system.

The objective of the present thesis is twofold. Firstly, an integrated approach for dealing
with the Optimal Product Line Design problem will be developed, which will combine
state of the art methods for the three properties of the problem. The simulation of
customer choice behavior will be implemented through an innovative market simulation
model that individually calibrates probabilistic choice rules. Particle Swarm
Optimization, a new population-based algorithm inspired from natural intelligence, will
be used to provide a set of good near-optimal solutions, from which the decision maker
will be able to select the most beneficial one. The concept of Nash equilibrium will be
employed for modeling the dynamic nature of competition, where each incumbent firm
responds to competitive moves by redesigning its product line. All the methods and
algorithms proposed will be evaluated against the current state of the art approaches,
using both simulated and real data regarding consumer preferences (partworths). The
real data set was obtained from a market survey, the purpose of which was the
measurement of customer preferences concerning milk. The proposed approach is the
first attempt to integrate the three most important properties of the problem into a
single methodology. The second objective of the thesis is to make this methodology easy

to use for a typical marketing manager. For this reason a marketing system will be



developed, which will integrate the underlying algorithms under an efficient and

friendly interface.

The rest of the thesis is organized into seven chapters as follows. Chapter 2 provides a
brief description of the problem and the critical factors that affect the solution’s quality.
In chapter 3, the related literature is reviewed, the performance of the algorithms that
have been applied to the problem is compared, and the pros and cons of the relevant
marketing systems are discussed. The market survey is described in chapter 4. The
proposed market simulation model is theoretically validated in chapter 5, and its
performance is compared to that of the state of the art approach. In chapter 6 Particle
Swarm Optimization is applied to the Optimal Product Line Design problem, and its
performance is evaluated against that of Genetic Algorithms regarding a number of
variables of interest. Competitive reactions are formulated in the context of Nash
equilibrium in chapter 7. Chapter 8 presents the system that incorporates the proposed
methodology. Finally, chapter 9 provides an overview of the main conclusions of the

study, while its limitations are addressed and future research areas are suggested.



2 The optimal product line design problem

The goal in the optimal product line design problem is the design of a set of products,
the introduction of which to the market will maximize an objective of the firm (usually
market share). This requires the proper modeling of customer preferences concerning
the various product features. In particular, each product is represented as a bundle of
attributes (features) which can take specific levels. A personal computer for example,
consists of the attributes monitor, processor, hard disk, memory etc., the levels of which
are illustrated in Table 2.1. Customers select the levels of the attributes according to
their preferences; a civil engineer, for example, will probably choose a large monitor,
whereas a mathematician may select a fast processor. Through conducting market
surveys, companies can reveal the customer preferences concerning the various product
attributes. This is usually done with the application of Conjoint Analysis, which
estimates values (called part-worths) for each attribute level, at the individual, segment,
or aggregate market level. An example is given in Table 2.1, where the preferences of 2
customers concerning the features of a personal computer are represented as part-

worths for each attribute level.



Table 2.1: Part-worths for each attribute level of a personal computer

Attributes Levels Partworths
Customerl Customer?2
Monitor 177 0.8 0.1
19” 0.2 0.3
20” 0.3 0.4
24”7 0.5 0.9
Processor Single-core 3,8 GHz 0.1 0.2
Core-2 2,6 GHz 0.3 0.3
Core-4 2Ghz 0.9 0.5
Hard disk 200 GB 0.4 0.2
500 GB 0.6 0.3
750 GB 0.7 0.5
1T 0.4 0.8
Memory 2 GB 0.2 0.1
4 GB 0.4 0.3
6 GB 0.9 0.4
Mouse Cable 0.3 0.1
Wireless 0.4 0.9
Camera Embedded 0.3 0.8

No camera 0.2 0.2




Each customer is assumed to evaluate all product attributes in a simultaneous
compensative manner and implicitly assign a wutility value to each competing
alternative, which is usually represented as the sum of the part-worths of the
corresponding attribute levels that comprise the product (linear-additive parth-worth
model). The higher the product’s utility, the higher the probability to be chosen. Suppose
that the two customers whose part-worths are presented in Table 2.1, have to select
between PC1 (177, core-4 2GHz, HD 750 GB, 6 GB RAM, cable mouse, no camera) and
PC2 (247, Single-core 3,8 GHz, HD 200 GB, 6 GB RAM, wireless mouse, embedded
camera). Customer 1 will probably choose PC1 (utility=3.8) over PC2 (utility=2.5),
whereas Customer 2 will probably choose PC2 (utility=3.4) over PC1 (utility=1.8). The
utilities are converted to choice probabilities for each product through the use of choice
models, and are then aggregated across the whole customer base to provide hypothetical
market shares. If the part-worths for a population of consumers are known, the
introduction of different product configurations (combinations of attribute levels) to the
market can be simulated and conditional market shares can be estimated. With the use
of optimization algorithms the products that maximize the firm’s objective can be found,
given the customer preferences and the configuration of the competitive products in the
market. An example could be a car manufacturer company that is interested in
introducing 3 new car models in different categories (Sport, SUV, Station Wagon) that
will provide it with the highest possible volume sales. Next, the different properties of

the optimal product line design problem are described.

2.1.1 Preference measurement

Before starting a market simulation the consumers’ preferences must be elicited
through a market survey. Different procedures can be used such as personal interviews,
questionnaires, or computer programs. The products that participate into the survey are
assumed to consist of a combination of attributes (quantitative and/or qualitative), each
taking a number of distinct levels. Each customer evaluates the competitive products or
hypothetical product profiles comprising of different combinations of attribute levels.

Various evaluation processes can be used such as ranking or pairwise comparisons of



product profiles, rating of attribute levels or importance weights etc. The preference
structure of each individual or market segment is revealed through the use of Conjoint
Analysis, the output of which is the values that a consumer assigns to every level of each
attribute, the well known part-worths in marketing literature. The (usually linear)
combination of the part-worths that correspond to the product’s attributes gives its total

utility value that an individual expects to obtain from the product.

Customer preferences are estimated at one of three levels of data aggregation. At the
individual level, a unique set of part-worths is estimated for each customer. At the
segment level, the market is assumed to comprise a number of homogeneous segments,
and consumers belonging to the same segment follow the same preference structure.
Finally, at the aggregate level a single set of part-worths is calculated for the entire

customer population, pooling across the data collected for the whole consumer base.

2.1.2 Choice modeling

Choice modeling is the process of simulating the behavior of a consumer who has to
select among a set of alternatives. This is usually implemented through the use of a
choice model. A choice model is the underlying process by which a customer integrates
information to choose a product from a set of competing products. A number of choice
models have been developed with varying assumptions and purposes, which differ in the
underlying logic structure that drives them (Manrai, 1995). The choice model represents
the consumer’s purchasing pattern by relating preference to choice. It is a mathematical
model which converts the product utilities that an individual assigns to the set of
alternatives under consideration, to choice probabilities for each alternative. Choice
models can be either deterministic or probabilistic. The first choice (or maximum utility)
rule is a deterministic model, which assumes that the individual will always purchase
the product with the highest utility. In this case the highest utility alternative receives
probability of choice equal to 1, while the rest of the alternatives get a zero probability.
The main weakness of the first choice rule is that it displays information only about the

product with the maximum utility, while the relative customer preference for the



remaining products is not reflected. Consider a scenario where three consumers have to

choose among three brands and assign them the utilities shown in Table 2.2.

Table 2.2: Customer utilities for a 3-product scenario

Brand A Brand B Brand C
Customer 1 0.8 0.7 0.2
Customer 2 0.9 0.8 0.1
Customer 3 0.3 0.8 0.9

The first choice rule exaggerates the share of brand A (66.67%), while underestimating
brand B (0%) which, although it receives high utility values from all customers, will
never be selected because it is not ranked first. Since the maximum utility model
allocates all the choice probability to the first product, regardless of the extend its utility
differs from the others, standard errors of the predicted choice shares tend to be higher
than the other choice models, especially in small sample sizes. The first choice model is
mainly of historical interest, since its deterministic rule fails to adequately represent

actual human choice behavior.

It is widely accepted that the human purchasing process reflects a lot of randomness in
the real world. A customer will not always buy the brand that perceives best due to out
of stock occasions, high search costs, buyer confusion, variety seeking etc. Instead of
allocating all choice likelihood to a single brand, probabilistic models distribute choice
probabilities among all products, in proportion to their utility value. They incorporate
the relative differences in utility values to the choice likelihoods, and allow even the
worst alternative to receive a probability of choice. Probabilistic choice models (also
known as share of preference models) are divided into constant utility and random utility
models. Constant utility models assume that the product utilities are constant and

capture the stochastic nature of human behavior, by assuming a level of uncertainty in



the decision rule. The most popular constant utility probabilistic model is the BTL:

Yy

n b

.U,

J=1

Pj=

where P; is the probability that consumer i selects product j, Ui is the utility he assigns
to product j, and n is the number of competing products. The Pessemier’s model (1971) is
an extension of BTL, where product utilities are subject to an exponential
transformation, which uniformly controls the flatness or steepness of choice

probabilities, while preserving the original rank order of preferences:
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where a is a user specified exponent. Small values of ¢ have a flattening effect,

Py

overestimating the choice likelihoods of low-utility brands. Large values of a have a

sharpening effect, and as a approaches infinity the model turns into a first choice rule.

2
The Lesourne (1977) model uses an exponent of 2: Pij:n—lj

U
=

In contrast to models like BTL that assume constant utilities and apply probabilistic
choice rules, random utility models assume that the consumer always chooses the
alternative with the highest utility (U), which consists of two parts. A deterministic
component (V) specified as a function of the measured product attributes and individual
preferences, and a stochastic term (e) that represents the unmeasured variation in

preferences (Baltas and Doyle, 2001): U=V +e.

The MNL model assumes independently identically distributed errors (stochastic terms)
across the customer population, according to the double exponential distribution. Under
this assumption and the principle of utility maximization, the probability that customer

i chooses product j is:



Brice (1997) demonstrated that share of preference models (BTL, MNL) generally

predict actual market shares better than the more extreme First Choice model.

2.1.3 Optimization criteria

The first criterion introduced was the maximization of a company’s market share, also
known as share of choices (Shocker and Srinivasan, 1974), which remains the most
frequently used objective until today. Later, two more criteria were presented, the
seller’s welfare (Green et al., 1981) and the buyer’s welfare (Green and Krieger, 1988).
In the latter, no competition is assumed, and the aim is the maximization of the sum of
the utilities that products under design offer to all customers. This is the least
frequently used criterion, which mainly concerns product and services offered by public
organizations. In the seller’s welfare, the goal is the maximization of a firm’s profit. This
is the most complicated criterion since it requires the incorporation of the marginal

return that the firm obtains from each attribute level into the objective function.

2.1.4 Number of products to be designed

The optimal product design problem (one product to be designed) was first formulated by
Zufryden (1977). Eight years later Green and Krieger (1985) introduced the optimal
product line design problem (two or more products to be designed), which is the main

focus of the specific research area today.



2.1.5 Procedure steps

The optimal product line design problem can be formulated either as a one-step or a two-
step approach. In the latter, a reference set of candidate alternatives is first defined, and
the items that optimize a certain criterion are selected next with the use of a specific
algorithm (Green and Krieger, 1985). The problem here is to decide on the size of the
reference set of products, and the way that it will be constructed in order to include all
potential good solutions. Nowadays, the increase in computers’ speed, as well as the
development of advanced optimization algorithms, has enabled the design of the items
that comprise the line directly from part-worth data in a one-step approach (Green and

Krieger, 1988).

2.1.6 Attribute Levels Optimization

In real world applications, as the number of attributes and levels increases, the number
of different product profiles raises exponentially, making the selection of the appropriate
combination of attribute levels a very complex managerial task. For example in a
product category with 7 attributes each taking 6 different levels, the number of possible
product profiles is 279,936, while for designing a line of 3 products the number of
candidate solutions is over 105, The exponential increase in the number of candidate
solutions with the increase in the number of attributes and levels is illustrated in Table

2.3 (Alexouda, 2004).



Table 2.3: The number of possible solutions (products and product lines) of different

problem sizes (source: Alexouda, 2004)

Products Attributes Levels
in line

2 3 4
2 4 3
2 4 4
2 5 3
3 3 4
3 4 3
3 4 4
3 5 3
2 5 4
2 5 5
2 5 6
2 6 4
2 6 5
2 6 6
2 7 4
2 7 5

Number of
possible

products

64

81

256

243

64

81

256

243

1024

3125

7776

4096

15,625

46,656

16,384

78,125

279,936

Number of possible product

lines

2016

3240

32,640

29,403

41,664

85,320

2,763,520

2,362,041

523,776

4,881,250

30,229,200

8,386,560

122,062,500

1,088,367,840

134,209,536

3,051,718,750

39,181,942,080




2 8 4 65,536 2,147,450,880

2 8 5 390,625 76,293,750,000

2 8 6 1,679,616 1,410,554,113,920

3 5 4 1024 178,433,024

3 5 5 3125 5,081,381,250

3 5 6 7776 78,333,933,600

3 6 4 4096 11,444,858,880

3 6 5 15,625 635,660,812,500

3 6 6 46,656 16,925,571,069,120

3 7 4 16,384 732,873,539,584

3 7 5 78,125 79,469,807,968,750

3 7 6 279,936 3,656,119,258,074,240
3 8 4 65,536 46,910,348,656,640

3 8 5 390,625 9,934,031,168,750,000
3 8 6 1,679,616 789,728,812,499,209,000

Kohli and Krishnamurti (1989) proved that the share of choices for the single product
design problem is NP-hard, which means that the complete enumeration of the solution
space is practically infeasible in tractable time. Kohli and Sukumar (1990) proved the
same for the buyer’s welfare and the seller’s welfare, also for the single product design.
In this context many different heuristic approaches have been applied to the problem,

the most significant of which are presented in Section 3.1.



2.2 Problem formulation

The formulation of the problem depends on the employed choice model and the selected

optimization criterion.

2.2.1 Deterministic choice rules

The most common approach found in the literature is the share of choices problem for

the optimal product line design using the first choice rule.

2.2.1.1Share of choices
Here, each individual is assumed to have an existing favorite product called status quo.
The problem can be formulated as a 0-1 integer program, with the use of the following

parameters (Kohli and Sukumar, 1990):

Q=1{1,2,..., K} is the set of K attributes that comprise the product.
D.=1{1,2,..., Ji} 1s the set of J; levels of attribute k.

¥ =1{1,2,...M} is the set of products to be designed.

0=1{1,2,...1} is the set of I customers.

wir=1s the part-worth that customer i<f assigns to level je @, of attribute ke Q.

Jii =is the level of attribute k< of customer’s i< status quo product.

cijk = wijk - wijk 1s the relative difference in the part-worth that customer ic6 assigns

between level j and level j* of attribute ke (2.

Since the firm may already offer a number of products, the set of customers whose
current status quo product is offered by a competitor is indexed as 6’ 6. In this way the
company aims at gaining the maximum possible number of clients from its competitors,

without cannibalizing its existing product line. Three decision variables are also used:



1, if the level of product's m attribute k is j,
Xjkm {

0, otherwise

1, if product's m utility for customer i is less than his status quo,
Xim {

0, otherwise

1,if customeri does not choose to switch from his status quo,
Xi {

0, otherwise

In this context the share of choices problem in the product line design using a

deterministic rule is formulated as follows:

S

min 6’ (D)
subject to

ijkm =1

JED , keQ meW, 2)
Z Zcijkxjkm + Vin >0

keQ jed , ie@: meqf, (3)

zxim

xi-m¥ >1-M, Viel’ 4)
Xjkm, Xim, i = 0, 1 integer, i<@’, je Dr, ke, me W, (5)

Constraint (2) requires each product in the line to be assigned exactly one level of each
attribute. Constraint (3) restricts xin to be 1 only if customer ¢ prefers his status quo to
product m. Constraint (4) forces xi to be 1 only if xim = 1 for all me @, that is if customer i
prefers his status quo to all products in the line. Constraint (5) represents the binary
restrictions regarding the problem’s decision variables. The objective function (1)
minimizes the number of instances for which x;= 1, and hence minimizes the number of

customers who decide to be loyal to their status quo products (which is equivalent to



maximizing the number of customers who switch from their status quo to a product from

the company’s line).

2.2.1.2Buyer’s welfare
In this case no status quo product is assumed for the customer (buyer), who will select
the item from the offered line that maximizes his utility. The following decision variable

1s used:

1,if level j of attribute k appears in product m, and buyeri,
Xijkm= {

0, otherwise

The problem can be formulated as a 0-1 integer program as follows (Kohli & Sukumar,

1990):

Z ZZ ZWy‘kxy'km

max i€ meYkeQjed, (6)
subject to

Z 2 X =1

Jje®, me¥ , iee’ kEQ, (7)
Z'xijkm - Z'xijk'm = 0

je®, je® , k>k, kEk<Q, i<, meW, (8)
Xijkm + Xijem < 1, 1>1, j>], 1,170, j,j’c Dic,ke, me W, 9)
xijkm = 0, 1 integer, i€0, je Dy, ke, meW (10)

Constraint (7) requires that, across products, only one level of an attribute be associated
with a specific buyer. Constraint (8) requires that, across attributes, the level assigned
to buyer i€ must correspond to the same product. Constraint (9) requires that for all
buyers assigned to a specific product, the same level of an attribute must be specified.

Together, these three constraints require that each buyer be assigned one of the



products in the line. The objective function (6) selects the products (attribute levels

combination) to maximize the total utility across buyers.

2.2.1.3Seller’s welfare

Kohli and Sukumar (1990) provide a detailed description of the seller’s welfare problem,
where the firm wants to maximize the marginal utility obtained by the introduction of a
line of M new products. The seller may already offer some products in the market, and
competition is represented through the existence of a current status quo product for
each customer. If customer i<f selects a product in which level je®;. of attribute ke
appears, the seller is assumed to obtain a utility value uijjx. The seller’s marginal return

obtained from level je @ of attribute k<2 is:
dijk = uijk - Wik, 1f customer i< switches from a product offered by the seller
dijr = uijk if customer i< 6 switches from a product offered by a competitor

The problem can be formulated as a 0-1 integer program as follows:

PIDIPIPILIEIY

max ic@ me¥Y keQ jed, (1 1)
subject to
Z Z Z Wik (xijkm - xi'jkm) 20
meYkeQ jed , l + i’, ie 0, (12)
Vi Z Z Z Wik X 2 yl'”:

meV¥ keQ jed , LEG (13)

yi = 0, 1 integer, and (7), (8), (9), (10).

Constraints (7)-(10) require, as in the buyer’s welfare problem, that a specific product is
assigned to each customer, and that each product in the line be assigned exactly one
level of each attribute. Constraint (12) requires that each customer is assigned to the
product that maximizes his utility. Constraint (13) requires that the seller obtains a

return from customer ¢ only if the utility of the new item assigned to the customer is



higher than the utility of his status quo product. The objective function (11) selects the

products to maximize the seller’s total return from the products in the line.

2.2.2 Probabilistic choice models

When probabilistic choice models are used, the market is assumed to consist of N
competitive products with known configurations, including the M candidate items for

the firm’s line:
5 =1{1,2,...N} is the set of products that comprise the market.

2.2.2.1Share of choices

As before W< F is the set of products to be designed. Customers do not have a status
quo product, and do not deterministically choose the highest utility product. Instead, it
1s assumed that each of the N alternatives has a certain probability to be selected, which
is calculated with the use of a probabilistic choice model. Using BTL for example, the

probability that customer i will choose product m is estimated as follows:

oo U,-M/ZUM

nex 10, meW, ne 5, (14)

where Uin the utility that customer ¢ assigns to product m (sum of its part-worths):

Uipm = Z Z Wik X jiom

ke je® , 1€0,jeDy, keQ, meP.

In this context the problem is formulated as the following non-linear program:

DIPINH

subject to
xirm = 0, 1 integer, and (2).

The objective function (15) maximizes the market share of the m products (probability to

be purchased) of the company’s line.



2.2.2.28eller’s welfare

Green and Krieger (1992) presented the seller’s welfare problem, in an application of the
SIMOPT program to pharmaceutical products. In order for the company’s profit to be
maximized, variable (depending on attribute levels) and fixed costs for each product
must be included in the objective function. The variable cost per unit for a product m is

given by the following linear additive function:

(var)

_ (var)
Cm = Z chk X jim
keQ jed, , JjeDi, ke, meW,
where
(var)
C Jk

the variable cost of attribute’s k level j for the seller.

A similar function is used for the fixed cost of product m:

(fix) _ (fix)
Cm = Z Zcﬂc X jtom

keQje, , je®r, keQ, meW.

If pm denotes item’s m price, the problem is formulated as the following non-linear

program:

5 [<pm Y P }

max meY¥ iel (16)
subject to

xjirm = 0, 1 integer, and (2).

The objective function (16) maximizes the total seller’s profit obtained from the

introduction of a line of M products.



3 Previous Approaches

As discussed in the previous chapter the Optimal Product Line Design problem has been
proved to be NP-hard, hence there is no algorithm that can find and verify the
global optimal solution in polynomial time. From its establishment in 1974 until
today, a number of optimization approaches have been applied to the problem in order to
provide (near) optimal solutions in tractable time. Some of the proposed algorithms have
been incorporated to intelligent marketing systems, which assist a manager in this
problem of high complexity. Most approaches employ the deterministic first choice rule
due to its simple form. The probabilistic approaches use either the BTL or the MNL,
with the exception of Krieger and Green (2002) who use the Pessemier model with a
different exponent for each customer. Almost all approaches maximize the firm’s market
share, and only a few deal with the other two objectives. Two-step approaches as well as
single-product optimization approaches are mostly reported in the first studies, whereas
the last few years researchers have focused on one-step approaches that optimize
product lines. With the exception of only two studies, all other approaches consider the
competition to be static. That is, the rivals do not alter their current products or
introduce new ones after the firm optimizes its product line. On the contrary, Choi and
DeSarbo (1993), and Green and Krieger (1997) propose a dynamic market, where each
competitor responds by optimizing its product line until a Nash equilibrium is reached.
Seven algorithms have been incorporated into marketing systems. Table 3.1 summarizes

the 24 most important approaches that have been reported in the literature.



Table 3.1: Approaches applied to the optimal product (line) design problem

Paper

Shocker & Srinivasan 1974

Zufryden 1977

Green, Carroll & Goldberg

1981

Green & Krieger 1985

Kohli & Krishnamusti 1987

Green & Krieger 1988

McBride & Zufryden 1988

Sudharshan, May & Gruca
1988

Choice rule

Deterministic

Deterministic

Deterministic,

Probabilistic

Deterministic

Deterministic

Probabilistic

Deterministic

Deterministic,

Probabilistic

Objective

Share, Profit

Share

Share, Profit

Share

Share

Share, Profit,

Buyers welfare

Share

Share

Steps

One

One

One

Two

One

One

Two

One

Algorithm

Gradient search, Grid

search

Mathematical

programming

Response Surface methods

Greedy Heuristic,

Interchange Heurist

Dynamic Programming

Divide & Conquer

Mathematical

programming

Non linear programming

Products

Single

Single

Single

Line

Single

Line

Line

Line

Rival

Static

Static

Static

Static

Static

Static

Static

Static

System

ZIPMAP

QUALIN

DESOP, LINEOP

SIMOPT

DIFFSTRAT




Green, Krieger & Zelnio

1989

Kohli & Sukumar 1990

Dobson & Kalish 1993

Choi & DeSarbo 1993

Nair, Thakur & Wen 1995

Balakrishnan & Jacob

1996

Green & Krieger 1997

Chen & Hausman 2000

Probabilistic

Deterministic

Deterministic

Deterministic

Deterministic

Deterministic

Deterministic

Probabilistic

Share

Share, Profit,

Buyers welfare

Share, Profit,

Buyers welfare

Profit

Share, Profit

Share,

Buyers welfare

Profit

Profit

Two

One

Two

One

One

One

One

Two

Coordinate Ascent

Dynamic Programming

Greedy Heuristic

Branch and Bound

Beam Search

Genetic algorithm

Divide & Conquer

Non linear programming

Line

Line

Line

Single

Line

Single

Single

Line

Static PROSIT

Static

Static

Dynami

Static

Static

Dynami

Static




Alexouda & Paparrizos

2001

Shi, Olafsson & Chen 2001

Krieger & Green 2002

Steiner & Hruschka 2003

Alexouda 2004

Balakrishnan, Gupta &
Jacob 2004

Camm, Cochran, Curry &

Kannan 2006

Belloni, Freund, Selove &

Simester 2008

Deterministic

Deterministic

Probabilistic

Probabilistic

Deterministic

Deterministic

Deterministic

Deterministic

Profit

Share

Share

Profit

Share

Share

Share

Profit

One

One

One

One

One

One

One

One

Genetic algorithm

Nested Partitions

Greedy Heuristic

Genetic algorithm

Genetic algorithm

Genetic algorithm

Branch and Bound with

Lagrangian relaxation

Branch and Bound with

Lagrangian relaxation

Line

Line

Single

Line

Line

Line

Single

Line

Static

Static

Static

Static

Static

Static

Static

Static

MDSS

MDSS




3.1 Optimization algorithms applied to the problem

In this section the most important algorithms that have been applied to the Optimal
Product Line Design problem are reviewed and evaluated. Emphasis is placed on
Genetic Algorithms, since it is the only population based algorithm that has been
applied to the problem, and it constitutes the most advanced optimization algorithm

that has been incorporated into a marketing system.

3.1.1 Greedy Heuristic

Introduced by Green and Krieger (1985), this heuristic proceeds in two steps. At the first
step a “good” set of reference products is created. The second step begins by choosing the
best alternative among the candidate products. Then, the second alternative is selected
from the reference set, which optimizes the objective function provided that the first
product is already included in the market. The procedure iterates by adding one product
at a time until the desired number of products in the line has been reached. In another
paper, Green and Krieger (1987) describe the “best in heuristic” for developing the set of
reference products. Initially the product profile that maximizes the utility wlmex of
customer 1 is found through complete enumeration of the attribute levels. If customer’s
2 utility for customer’s 1 best product is within a user specified fraction ¢ of ©2max, then
customer’s 2 best product is not added to the set; otherwise it is. As the method proceeds
through the group of customers, all of the products currently on the set are tested to see
if any are within ¢ of ukma for customer k, and the previous rule is applied. The process
1s usually repeated through randomized ordering of the customers, and different values
of £, depending on the desired size of the set. Local optimality is not guaranteed, as it

depends on the first product added to the line.

3.1.2 Interchange Heuristic

In the same paper, Green and Krieger (1985) introduced another method where initially,
a product line is randomly selected and its objective value is estimated. Next, each
alternative from the reference set is checked to see whether there exists a product in the
line, the replacement of which by the specific alternative will improve the line’s value. If

this condition holds, the alternative is added, and the product that is removed is the one



that results in the maximum improvement of the line’s value. The process is repeated
until no further improvement is possible. The authors recommend the use of the solution
provided by the Greedy Heuristic, as the initial product line. The Interchange Heuristic
guarantees local optimality, where the local neighborhood includes all solutions that

differ from the existing by one product.

3.1.3 Divide and Conquer

In this approach, developed by Green and Krieger (1988), the set of attributes K that
comprise the product line is divided into two equal subsets K1 and K2. First, the levels
of attributes belonging to K1 that are good approximations of the optimal solution are
estimated. The authors suggest averaging the part-worths within each level of each
attribute, and selecting for each attribute the level with the highest average. In each
iteration, the values of the attributes belonging to the one subset are held fixed, while
the values of the other subset are optimized through an exhaustive search. If the search
space 1is too large for completely enumerating half of the attributes, the set of attributes
can be divided into more subgroups, at the risk of finding a worst solution. Local
optimality is guaranteed, where the local neighborhood depends on the number of

subsets.

3.1.4 Coordinate Ascent

Green et al. (1989), propose a heuristic that can be considered as a Coordinate Ascent
implementation. A product line is initially formed at random and evaluated. The
algorithm then iterates through each product attribute in a random order, and assesses
each possible level. The altering of an attribute’s level is acceptable if it improves the
solution’s quality. Only a single attribute change is assessed at a time (one opt version),
and the algorithm terminates when no further improvement is possible. Local optimality
is guaranteed, with the local neighborhood including all solutions that differ from the

existing one by a single attribute.

3.1.5 Dynamic Programming



Kohli and Krishnamusti (1987), and Kohli and Sukumar (1990) use a dynamic
programming heuristic for solving the optimal product and product line design problems
respectively. Here, the product (line) is built one attribute at a time. Initially, for each
level of attribute B, the best level of attribute A is identified, forming in this way a
number of partial product profiles, equal to attribute’s B number of levels. Next, for each
level of attribute C, the best partial profile (consisting of attributes A and B) that was
built in the previous step is identified. The method proceeds until all product(s)
attributes have been considered. Finally, the product (line) that optimizes the desired
criterion is selected among the full profiles constructed. The quality of the final solution
is highly dependent to the order in which the attributes are considered, thus multiple
runs of the heuristic using different attribute orderings are recommended. No local

optimality is guaranteed.

3.1.6 Beam Search

Nair et al. (1995) solved the product line design problem using Beam Search. BS is a
breadth-first process with no backtracking, where at any level of the search only the b
(Bean Width) most promising nodes are further explored in the search tree. The method
begins with K relative part-worth matrices C(k) (with elements ¢; = wy - wy* ), and
initializes work matrices Ai(*) based on C. At each stage 1 (layer), matrices Ei(*) of
combined levels are formed, by combining two matrices Ai(*) at a time in the given
order. Then, the b most promising combinations of levels are selected to form columns in
new matrices Ai+1(*) in the next layer, where it remains approximately half of the
number of matrices in the previous layer. In this way, unpromising attribute levels are
iteratively pruned, until a single work matrix remains. This final matrix consists of b
columns, each containing a full product profile. These are the candidate alternatives for
the first product in the line. For the first of the b alternatives, the data set is reduced by
removing the customers who prefer this product over their status quo. The previous
process is repeated for finding one second-product in the line, and iterated until M
products are build that form a complete product line. The same procedure is repeated,
until b complete product lines are designed, from which the one that gives the best value
in the objective function is selected. The final solution depends on the way of pairing the
different attribute combinations at each layer. The authors suggest a best-worst pairing,

which gives better results than the random one. No local optimality is guaranteed.



3.1.7 Nested Partitions

In the Nested Partitions implementation (Shi et al., 2001), a region is defined by a
partial product line profile, for example all products that contain a specific attribute
level. In each iteration a subset of the feasible region is considered the most promising,
which is further partitioned into a fixed number of subregions, by determining the level
of one more attribute, and aggregating what remains of the feasible region into one
surrounding region. In each iteration therefore, the feasible region is covered by disjoint
subregions. The surrounding region and each of the subregions are sampled using a
random sampling scheme, through which random levels are assigned to the remaining
attributes. The randomly selected product profiles are evaluated, in order for an index to
be estimated that determines which region becomes the most promising in the next
iteration. This region is then nested within the last one. If the surrounding region is
found to be more promising than any of the regions under consideration, the method
backtracks to a larger region using a fixed backtracking rule. NP combines global search
through partitioning and sampling, and local search through calculation of the
promising index. The method can incorporate other heuristics to improve its
performance. The authors tried a Greedy Heuristic, as well as a Dynamic Programming
into the sampling step, and a Genetic Algorithm into the selection of the promising
region. The results of their study indicate that the incorporation of each of the three

heuristics is beneficial, with GA giving the best performance.

3.1.8 Genetic Algorithms

Genetic Algorithms are optimization techniques that were first introduced by Holland
(1975). They are based on the principle of “natural selection” proposed by Darwin a long
time ago, and constitute a special case of Evolutionary Programming algorithms. In
accordance with Biology science, GAs represent each solution as a chromosome that
consists of genes (variables), which can take a number of values called alleles. A typical
GA works as illustrated in Figure 3.1. Initially a set of chromosomes (population) is
generated. If prior knowledge about the problem exists, it is used to create possible
“good” chromosomes; else the initial population is generated at random. Next, the

problem’s objective function is applied to every chromosome of the population, in order



for its fitness (performance) to be evaluated. The chromosomes that will be reproduced
to the next generation are then selected according to their fitness score, that is, the
higher the chromosome’s fitness the higher the probability that it will be copied to the
subsequent generation. Reproduction ensures that the chromosomes with the best
performance will survive to the future generations, a process called “survival of the

fittest”, so that high quality solutions will not be lost or altered.

Figure 3.1: Genetic Algorithm flowchart
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A mating procedure follows, where two parents are chosen to produce two offspring with
a probability pe, through the application of a crossover operator. The logic behind
crossover is that a chromosome may contain some “good” features (genes) that are highly
valued. If two chromosomes (parents) exchange their good features then there is a great
possibility that they will produce high performance chromosomes (offspring) that will
combine their good features. The expectation is that from generation to generation,
crossover will produce new higher quality chromosomes. Subsequently, each of the
newly formed chromosomes is selected with a probability p» to be mutated. Here one of
its genes is chosen randomly and its value is altered to a new one randomly generated.
Mutation produces new chromosomes that would never be created through crossover. In
this way, entirely new solutions are produced in each generation, enabling the algorithm

to search new paths and escape from possible local minima. Whereas reproduction



reduces the diversity of the population, mutation maintains a certain degree of
heterogeneity of solutions, which is necessary to avoid premature convergence of the
evolutionary process. However, mutation rates must be kept low, in order to prevent the
disturbance of the search process that would lead to some kind of random search.
Finally, if the convergence criterion has been met, the algorithm stops and the best

solution so far is returned; else it continues from the population’s evaluation step.

3.1.8.1 Type of problems solved

GAs were first applied to the optimal product design problem by Balakrishnan and
Jacob (1996), who dealt with the share of choices and the buyer’s welfare problem, by
employing the first choice rule. The authors provide a number of advantages that leaded
them to use this approach. The search is implemented from a set of points (equal to the
size of the population) rather than a single point, increasing in this way the method’s
exploratory capability. GAs do not require additional knowledge, such as the
differentiability of the function; instead they use the objective function directly. GAs do
not work with the parameters themselves but with a direct encoding of them, which
make them especially suited for discontinuous, high-dimensional, and multimodal
problem domains, like the optimal product design. Later, Alexouda and Paparrizos
(2001) applied GAs to the seller’s welfare problem for the optimal product line design,
while Alexouda (2004), as well as Balakrishnan et al. (2004) dealt with the share of
choices problem. All three approaches employed the first choice rule. The only approach
that uses probabilistic choice rules is that of Steiner and Hruschka (2003), who dealt

with the seller’s welfare problem.

3.1.8.2 Problem representation

Except for Balakrishnan et al. (2004), all other approaches adopted a binary
representation scheme. In Balakrishnan and Jacob (1996), each product is represented
by a chromosome, which is divided into K substrings that correspond to the product’s

attributes. Each substring consists of </« (the number of attribute’s k levels) genes that

Jk
take values (alleles) O or 1. Hence the length of a chromosome is P=+<¢ .| A value of 1
denotes the presence of the specific level in the corresponding attribute, and a value of 0

its absence. This representation has the restriction that exactly one gene must take the



value of 1 in each substring. For example, it is assumed that a personal computer
consists of the attributes processor (Single-core 3,8 GHz, Core-2 2,6 GHz, Core-4 2Ghz),
monitor (177, 197, 207, 24”), and hard disk (200 GB, 500 GB, 750 GB). Then a Core-2 2,6
GHz with 20” monitor and 750 GB hard disk will be represented by the chromosome
C={010 0010 001}. In Alexouda and Paparrizos (2001), Steiner and Hruschka (2003), and
Alexouda (2004), a chromosome corresponds to a line of products. Each chromosome is
composed of M*K substrings that represent the product’s attributes, each consisting of
Jx genes that take values O or 1. As before, a value of 1 denotes the presence of the
specific level in the corresponding attribute, and a value of 0 its absence. The restriction
that exactly one gene must take the value of 1 in each substring also holds here. The

J

length of each chromosome is P=M%* i< o . Referring to the personal computer
example, the chromosome D={010 0010 001|100 0001 010} represents a line of two
products; a Core-2 2,6 GHz with 20” monitor and 750 GB hard disk, and a single-core
3,8 GHz with 24” monitor and 500 GB hard disk.

Balakrishnan et al. (2004) use an integer representation scheme, where a chromosome
corresponds to a line of products, a gene to an attribute, and the gene’s values to
attribute levels. Hence, each chromosome is of length M*K, and is divided into M
substrings, each representing a product in the line. Within each substring, gene k can
take J. different values. The line of the two products described by chromosome D above,
1s represented in this case by chromosome E={233|142}. Here, the authors raise an
issue concerning the principal of minimal redundancy, according to which each member
of the space being searched should be represented by one chromosome only (Radcliffe,
1991). The integer representation scheme does not adhere to this principle, since the
same line of products can be represented by M! different chromosomes. The previous PC
product line, for instance, can also be represented by the chromosome E'={142|233} (the
two products exchange their positions). This could cause inefficiencies in the search
process, as the crossover between two identical products (E and E’) may result in two
completely different sets of offspring. On the other hand, it may prove to be an
advantage, as more members of the search space will probably be explored. In order to
alleviate this concern, they adopt an alternative representation scheme where the
substrings (products) in a chromosome are arranged in lexicographic order. That is,
product 111 is before 112 which is before 121 etc. In this encoding, called sorted
representation, the chromosome E would not exist. They tested both the sorted and the

unsorted representations.



3.1.8.3Genetic Algorithm’s parameters

Balakrishnan and Jacob (1996) modeled the problem with the use of matrices. The GA
population (number of chromosomes) has a size of N, and is stored in the matrix POPx+p.
Customers’ preferences (part-worths for each attribute level) are maintained in the
matrix BETArp. The utilities that each of the I customers assigns to each of the N
products (represented by chromosomes) are estimated in each generation, and stored in
the matrix PRODUTIL= BETA*POPT. For the share of choices problem the utility of
each customer’s status quo product is maintained in the matrix STATQUO. The
chromosome n is evaluated through the comparison of the n-th column in PRODUTIL
with the corresponding in STATQUO. The fitness of the chromosome is the number of
times that PRODUTIL(@,n)>STATQUO(,n), i=1...1, that is the number of customers that
prefer the new product to their status quo. For the buyer’s welfare problem the fitness of
the chromosome n is the sum of elements of the n-th column in PRODUTIL, that is the

aggregate utility value for the whole set of customers.

3.1.8.3.1 Initialization of the population

All five approaches initialize the GA population in a totally random manner.
Furthermore, Alexouda and Paparrizos (2001), Alexouda (2004), and Balakrishnan et al.
(2004), also assess the performance of a hybrid strategy in respect to the initialization of
the population. Before running the GA, a Beam Search heuristic is applied and the best
solution found is seeded into the genetic algorithm’s initial population, while the
remaining N-1 chromosomes are randomly generated. The population size is set to 100
(Balakrishnan and Jacob, 1996), 150 (Alexouda and Paparrizos, 2001; Steiner and
Hruschka, 2003), 180 (Alexouda, 2004), or 400 (Balakrishnan et al., 2004).

3.1.8.3.2 Reproduction

Except for Steiner and Hruschka (2003), all other approaches adopt an elitist strategy
for the process of reproduction, where the F fittest chromosomes are copied intact into
the next generation. Such an approach ensures that the best chromosomes will survive
to the subsequent generations. The value of F ranges from 4N/10 (Alexouda and
Paparrizos, 2001; Alexouda, 2004), to N/2 (Balakrishnan and Jacob, 1996; Balakrishnan
et al., 2004). Steiner and Hruschka (2003) employ a binary tournament selection

procedure, where N/2 pairs of chromosomes are randomly selected with replacement,



and from each pair only the chromosome with the higher fitness value survives to the
succeeding generation. This is a semi-random process, which ensures that the

chromosomes with higher fitness values have more probabilities to survive.

3.1.8.3.3 Crossover

In the approaches that adopt a binary representation scheme, the unit of interest in the
crossover procedure is the substring, in order for feasible solutions to be produced. In
Steiner and Hruschka (2003) for example, who use one-point crossover with probability

p=0.9 and random selection of the cross site, the crossover of the two parents
A =1{0100010 001|100 0001 010} and

B ={100 0100 010|010 0010 100},

after the second substring will generate the two offspring

A’={0100010 010|010 0010 100}  and

B’ ={100 0100 001|100 0001 010}.

Except for the above approach, the other ones employ a uniform crossover with the
probability p. taking the values 0.4 (Alexouda and Paparrizos, 2001), 0.45 (Alexouda,
2004) and 0.5 (Balakrishnan and Jacob, 1996). In the approach that employs an integer
representation scheme, the unit of interest in crossover is the gene. If for instance, the

two parents

S={122]323} and

T={141]421},

exchange their second and sixth genes, this will generate the offspring
S'={142] 321} and

T'={121]423}.

When the sorted representation is used, the offspring are sorted in lexicographic order
after the crossover operation. According to Radcliffe (1991), a forma specifies at certain
chromosome’s positions (called defining positions) particular values that all its instances

must contain. That is, if a chromosome 7 is an instance of a forma f, then  and £ both



contain the same values at the specified positions. Chromosomes S and T, for example,

both belong to the forma:
B = 1%% g%

where the * denotes a “don’t care” value. The principle of respect defines that the
crossover of two chromosomes that belong to same forma must produce offspring also
belonging to the same forma. Whereas in the unsorted representation the crossover is
“respectful”, the property does not hold in the sorted representation, due to the ordering

of the attributes after the crossover.

3.1.8.3.4 Mutation

Except for the one with the integer representation scheme, in all other approaches the
mutation operator is applied at the substring level. Chromosomes are randomly selected
(without replacement) with a probability p» (mutation rate). An attribute (substring) of
the selected chromosome is randomly picked and its level is altered. If, for instance,
chromosome A is chosen to be mutated at the second substring, a potential mutated
chromosome will be A’={010 1000 001|100 0001 010}. In Balakrishnan et al. (2004), the
mutation takes place at the gene level, while two different mutation operators are used.
Except for the standard mutation operator, a hybridized one is employed, which uses as
a mutator chromosome the best solution found by the Beam Search heuristic. Whenever
a chromosome is selected for mutation, a gene is randomly selected and its value is
either randomly changed using the standard mutation operator, or altered to the value
contained in the specific attribute of the mutator chromosome. In this way the good
attribute values of the BS best solution will be copied to the GA population. On the other
hand, this may result in premature convergence to the alleles of the mutator string. In
order to avoid this, the two mutator operators have equal probability to be applied. The
mutation rate takes a wide range of values: 0.05 (Steiner and Hruschka, 2003), 0.1
(Alexouda, 2004), 0.2 (Alexouda and Paparrizos, 2001), 0.3 (Balakrishnan and Jacob,
1996), or 0.4 (Balakrishnan et al., 2004).

3.1.8.3.5 Stopping criterion
From the entire set of chromosomes only the NN fittest are maintained to the next

generation, and the algorithm iterates until a stopping criterion is met. Balakrishnan



and Jacob (1996), Steiner and Hruschka, (2003), and Balakrishnan et al. (2004) employ
a moving average rule, where the algorithm terminates when the percentage change in
the average fitness of the best three chromosomes over the five previous generations is
less than 0.2% (convergence rate). In the other two approaches the procedure terminates
when the best solution does not improve in the last 10 (Alexouda and Paparrizos, 2001),

or 20 (Alexouda, 2004) generations.

3.1.8.4 Performance evaluation

3.1.8.4.1 Genetic Algorithm vs. Dynamic Programming

Balakrishnan and Jacob (1996) compared the results of their approach and the Dynamic
Programming approach (Kohli and Krishnamusti, 1987) with the complete enumeration
solutions in 192 data sets, in both the share of choices and buyer’s welfare problems. A
full factorial experimental design was generated using the factors and levels presented

in Table 3.2.

Table 3.2: Factors and levels used in the experiment

Factor Levels

Number of attributes 4 6 8
Number of attribute levels 2 3 4 5
Number of customers 100 200 300 400

The part-worths were randomly generated following a normal distribution, and
normalized within each customer to sum to 1. Random was also the generation of each
customer’s status quo product. Four replications were performed in each case resulting
in a total of 192 data sets. In the share of choices problem, the average best solution
provided by GA was 99.13% of the optimal product profile found by complete
enumeration, while the same value for the DP was 96.67%. GA also achieved a tighter

standard deviation (0.016) than that of DP (0.031). In the buyer’s welfare problem the



respective values were 99.92% for the GA with 0.0028 std, and 98.76% for the DP with
0.0165 std. The number of times that the optimal solution was found (hit rate) was 123
for the GA and 51 for the DP in the share of choices, and 175 for the GA and 82 for the
DP in the buyer’s welfare. The performance of GA was also compared with that of DP in
two larger problems of sizes 326,592 and 870,912, where an exhaustive search was
infeasible in tractable time. The data sets consisted of 200 customers, and 9 attributes
that take (9,8,7,6,2,2,3,3,3) or (9,8,8,7,6,2,2,3,3) levels, while ten replications for each
data set were performed. GA showed a better, worse, and equal performance compared
to DP in 11, 3, and 6 data sets for the share of choices, and in 8, 3, and 9 data sets

respectively for the buyer’s welfare.

3.1.8.4.2 Genetic Algorithm vs. Greedy Heuristic

Steiner and Hruschka (2003) compared the results of their approach and the Greedy
Heuristic approach (Green and Krieger 1985) with the complete enumeration solutions,
in the seller’s welfare problem. A factorial experimental design was generated using the

factors and levels presented in Table 3.3.

Table 3.3: Factors and levels used in the experiment

Factor Levels

Number of attributes 3 4 5
Number of attribute levels 2 3 4
Number of products in the line 2 3 4
Number of competing firms 1 2 3

From the 81 different cases a subset of 69 was considered. Four replications were
performed under each case, resulting in a total of 276 problems solved, where customer
part-worths, attribute level costs, and competitive products configuration were randomly
generated. The value of the solution found by GA was never less than 96.66% of the

optimal (minimum performance ratio), while the corresponding value for the GH was



87.22%. The optimal solution was found in 234 cases by the GA, and in 202 cases by the
GH, which corresponds to a hit ratio of 84.78% and 73.19% respectively. The solution
found by GA was strictly better than that found by GH in 66 cases, and strictly worse in
only 25.

3.1.8.4.3 Genetic Algorithm vs. Beam Search

Alexouda and Paparrizos (2001), Alexouda (2004), and Balakrishnan et al. (2004)
compared the performance of GA with that of BS, which was considered the state of the
art approach of the time. The first two approaches make a comparison of the two
methods with a full search method in the seller’s welfare and share of choices problems
respectively. Eight small problems were solved using different values for the number of
products in the line (2, 3), number of attributes (3, 4, 5, 6, 7, 8), and number of levels (3,
4, 5, 6). Ten replications were performed in each case, while the number of customers

was kept constant to 100. The results are shown in Table 3.4.

Table 3.4: Results of the comparison of the two methods

Seller’s welfare Share of choices
GA found optimal 73.75% 77.50%
BS found optimal 41.25% 45%
GA outperforms BS 53.75% 33.75%
BS outperforms GA 12.50% 12.50%
GA/optimal 0.9958 0.9951
BS/optimal 0.9806 0.9882

Furthermore, they compared the performance of a GA with completely random
initialization (GA1l), a GA where the initial population is seeded with the best BS

solution (GA2), and a BS heuristic, in problems with larger sizes where complete



enumeration is unfeasible. The number of customers was set to either 100 or 150 (Table

3.5).

Table 3.5: Results of the comparison of the three methods

Seller’s welfare Share of choices

1=100 1=150 =100 1=150
GA1 outperforms BS 93.88% 93.33% 47.92% 53.33%
BS outperforms GA1 6.11% 5.83% 33.33% 31.25%
GA2 outperforms BS 86.66% 80.83% 40% 43.33%
GA1 outperforms GA2 - - 31.67% 35%
GA2 outperforms GA1 - - 45.83 43.33%
GA1/ BS 1.0962 1.0794 - -
GA2/ BS 1.0853 1.0702 - -

Balakrishnan et al. (2004) defined eight different types of GA and hybrid GA procedures
(Table 3.6).



Table 3.6: Genetic Algorithm techniques defined

Type

GASM

GASSM

GAHM

GASHM

GASMBS

GASSMBS

GAHMBS

GASHMBS

Representation

Unsorted

Sorted

Unsorted

Sorted

Unsorted

Sorted

Unsorted

Sorted

Integration with BS

Hybrid Mutation

No

No

Yes

Yes

No

No

Yes

Yes

Seed with BS

No

No

No

No

Yes

Yes

Yes

Yes

A 2x2 full factorial experimental design was employed using the factors number of
products in the line (4 or 7), and number of attributes (7 or 9), with respective attribute
levels 6 37453 3)and (7355633 75), while the number of customers was 200. Two

replications were performed in each case. The values of GA parameters are illustrated in

Table 3.7.



Table 3.7: Values of the Genetic Algorithm parameters

Parameter Value
Mutation rate 0.04
Population size 400
Number of attributes to crossover (N=4, K=7) 10
Number of attributes to crossover (N=4, K=9) 17
Number of attributes to crossover (N=7, K=7) 12
Number of attributes to crossover (N=7, K=9) 21
Number of generations 500

After experimentation it was found that a mutation rate less than 0.04 resulted in a
premature convergence to suboptimal solutions, while higher values did not offered a
substantial improvement. In addition, higher number of attributes to crossover was
more beneficial in problems with smaller number of products in the line, as compared to

problems with larger product lines. The results are presented in Table 3.8.



Table 3.8: Results of the comparison of the 10 methods

Method Best solution found Average approximation of
(percentage of cases) best solution

GASM 12.5% 94.44%
GASSM 12.5% 94.21%
GAHM 12.5% 94.16%
GASHM 12.5% 94.15%
GASMBS 25% 94%
GASSMBS 0 93.35%
GAHMBS 0 92.82%
GASHMBS 0 92.32%

BS 0 89.53%
CPLEX 50% 82.68%

Another full factorial design (2x2x2) was employed, in order to assess the impact of the
number of products in line (4 or 7), the number of attributes (7 or 9), and the presence or

absence of attribute importance, to the following variables of interest:

e The best GA solution.
e The ratio of the best GA solution to the best BS solution.
e The number of unique chromosomes in the final population:
o With the best fitness.
o With fitness within the 5% of the best solution.
o With fitness between the 5% and 10% of the best solution.
e The worst chromosome in the final population.
e The average fitness in the final population.
e The standard deviation of chromosomes’ fitness in the final population.

e The number of generation at which the best solution was found.



Two product lines are considered different when at least one product exists in the one
but not in the other, while two products are considered to be different if they differ in
the level of at least one attribute. Ten replications were performed in each case resulting
in a total of 80 data sets. The eight GA instances, as well as the BS heuristic, were run
10 times for each data set, hence 6400 different GA runs were performed. The results
showed that GA techniques performed better or equally well as compared to BS in the
6140 cases (95.93%), performed strictly better in 5300 (82.81%), and underperformed in
260 (4.07%). The best GA solution reached a maximum difference of 12.75% with that of
the BS, and was on average 2.6% better. The maximum difference reached when the BS
solution was better was 6.1%. The hybridized GA methods always produced solutions at
least as good as the BS solution, and in the 80.2 % of cases produced strictly better

solutions.

An interesting finding is that GA techniques which employ the unsorted representation,
the standard mutation, and do not seed initial population with the best BS solution,
showed the best average performance. A possible reason is the fact that the sorted
representation scheme does not adhere to the principle of respect regarding the
crossover operation. In addition, the incorporation of the best BS solution into the initial
GA population, as well as the hybrid mutation operator probably make the algorithm
converge to an area of solutions around the seeded BS solution, which in some cases
may be suboptimal. Some loss in diversity of the final population may also be exhibited,
as the integrated techniques displayed the worst results in respect to the number of
unique chromosomes in the final population. Furthermore, integrated techniques suffer
from premature convergence, as they tend to produce the best solution earlier, and
result in the lowest standard deviation of chromosomes’ fitness in the final population.
Particularly, GA techniques without any hybridization (GASM, GASSM) provided final
solutions at least as good as that of the hybridization techniques in 52.37% of cases on
average, and strictly better on 35.12%. This indicates that the integration with the BS
heuristic does not improve the quality of the solution. The number of products and
number of attributes significantly affect (p<0.0001) the best GA solution, the ratio of the
best GA solution to the best BS solution, all three measures of unique chromosomes in
the final population, the standard deviation of chromosomes’ fitness in the final
population, and the number of generation at which the best solution was found; all in
the positive direction. Finally, the presence of attribute importance has a statistically
significant impact on the best GA solution, and the ratio of the best GA solution to the
best BS solution.



3.1.8.5 Sensitivity Analysis

Balakrishnan and Jacob (1996) conducted a sensitivity analysis of the GA performance
to changes in the values of its parameters, employing both the share of choices and the
buyer’s welfare criterion. A full factorial experimental design was generated using the

factors and levels presented in Table 3.9.

Table 3.9: Factors and levels included in the experiment

Factor Levels

Mutation rate 0 0.01 0.1 0.25 0.3
Attributes participating in the 0 K/4 K/2 3K/4
crossover

Population size 50 100 200
Degree of improvement in 2% 0.2%

stopping rule

The product category was assumed to consist of 8 attributes, each taking 5 levels, while
the number of customers was set to 400. For each of the two problems a total of 120 GA
runs were performed. In the share of choices, the average best solution provided by GA
was 96.8% of the optimal product profile found by complete enumeration, and was found
after 7.35 iterations (generations) on average. Hence GA reaches a near optimal solution
by evaluating only the one fourth of the percent of the total number of possible solutions,
which for the specific problem is 390625. Analyses of variance were performed to assess
the impact of the four parameters to the quality of the solution. A main effects model
had an R2? of 0.504 and was statistically significant (p<0.05). Larger population sizes
result in higher fitness of the best chromosome. As the number of attributes
participating in the crossover increase, the quality of the solution also increases. As it
was expected the tightening of the convergence parameter from 2% to 0.2% improves the
fitness of the best solution. Whereas mutation rate had no significant main effect

(p=0.175), the best algorithm’s performance was achieved at the highest mutation rate.



Similar results concerning the parameters’ impact in the solution’s quality were
exhibited in the buyer’s welfare problem, where a main effects model had an R? of 0.724
and was statistically significant (p<0.05). The average best solution provided by GA was
97.9% of the optimal product profile found by complete enumeration, and was found

after 8.48 iterations on average.

Steiner and Hruschka (2002) in another paper studied the sensitivity of the
approximation of the optimal solutions with regard to varying parameter values for
different problem sizes. A 12x5x3 factorial experiment was designed with 12 values of
population size in the range [30, 250] at increments of 20 chromosomes, 5 different
crossover probabilities (0.6, 0.7, 0.8, 0.9, 1), and 3 values of mutation rate (0, 0.01, 0.05).
The size of the search space varied from 12650 to 10586800 feasible product lines,
depending on the number of products in the line (2, 3, 4), number of attributes (2, 3, 4),
and number of levels (4, 5). The recommended GA parameter values depending on the

problem size after more than 1500 test runs are illustrated in Table 3.10.

Table 3.10: Recommended GA parameter values

Problem size 12650 79800 161700 3921225 10586800
Population size 130 150 230 250 250
Approximation of 99.5% 99% 98.3% 99.2% 97.5%
optimal

Crossover probability 1 0.9 1 1 1
Approximation of 99% 98.4% 97.6% 98.6% 96.8%
optimal

Mutation rate 0.05 0.05 0.05 0.01 0.01
Approximation of 98.9% 98.8% 97.7% 98.5% 96.8%

optimal




3.1.9 Lagrangian Relaxation with Branch and Bound

Camm et al. (2006) introduced a computationally efficient algorithm that guarantees
global optimality in the share of choices problem for designing a single product. They
developed an exact method that uses Lagrangian Relaxation with Branch and Bound for
finding provable optimal solutions to large scale problems, using a deterministic choice
rule. Branch and Bound (Land and Doig, 1960) constitutes an optimization algorithm
mainly used in discrete and combinatorial problems, which attempts to discard large
subsets of the entire set of feasible solutions without enumeration, by proving that the
global optimal solution cannot be contained in them. This procedure requires the
estimation of lower and upper bounds of the objective being optimized, so that the
search is limited to promising regions only. When the lower bound exceeds the upper
bound in a certain branch, then this branch is excluded from further search. In order to
calculate upper bounds the authors use Lagrangian Relaxation, a method that “relaxes”
hard problem constraints in order to create another problem that is less complex than
the initial. The constraints are moved into the objective function and a penalty is added
to the fitness of the solution if they are violated. The upper bounds provide an indication
of the quality of any feasible solution compared to the (unknown) optimal. The lower
bounds are created using heuristics that generate feasible solutions. The proposed
method is initialized with the use of a greedy algorithm that finds a feasible solution.
Next, a lagrangian dual problem is defined, by relaxing constraint (3), and the
subgradient optimization procedure of Downs and Camm (1996) is used for the
estimation of the values of the associated lagrangian multipliers. They use this
lagrangian problem as a quick attempt to improve on the initial greedy solution. The
search tree is initialized with the use of the best solution between the greedy and
lagrangian generated one, and a depth first strategy is employed. The algorithm
branches on constraints (2) in ascending order with respect to their cardinality (number
of levels within attribute). In this way, each level of the search tree corresponds to an
attribute. The authors use several logic rules to develop and prune the search tree, in
order to significantly decrease the number of variables on which they branch, thereby
reducing the time required to solve problems to verifiable optimality. The algorithm
found and verified the global optimum solution to 1 real and 32 simulated problems with
as many as 32 attributes and 112 levels. The required time ranged from 1.4 seconds to

40 minutes, depending on the problem complexity.



Belloni et al. (2008) proposed a Lagrangian Relaxation with Branch and Bound method
for identifying global optimal solutions in the seller’s welfare problem for designing a
line of products, using a deterministic choice rule. As the authors mention, the
lagrangian relaxation itself is not a practical algorithm, and most managers would
consider it too complicated and computationally intensive for implementation and
practical use. However, they use it to compute guaranteed optimal solutions, which are
then used to benchmark the solutions generated by other heuristic algorithms.
Heuristics are used to generate a feasible solution that has a fitness value (profit) of f. If
it is shown that any feasible solution which includes a certain product generates a
fitness value of less than f, then all solutions that contain the particular product are
excluded from further search. Lagrangian relaxation is employed for the estimation of
an upper bound on the fitness score that can be generated by a given set of solutions.
The constraint relaxed is that each consumer can purchase exactly one product. Hence,
for any solution in which the consumer selects more than one product, a penalty is
subtracted from the fitness of that solution. Similarly, when a consumer chooses less
than one product, a reward is added to the solution’s fitness. The method seeks for the
tightest possible upper bounds by varying the penalties which are applied to the
objective function when a solution does not satisfy the relaxed constraints. Finding tight
upper bounds helps ruling out portions of the feasible set as fast as possible. The
algorithm was applied to 12 simulated problems, as well as 2 versions of a real world
problem. The full problem had almost 5*10'> feasible solutions and the truncated
problem had over 147 billion feasible solutions. With a computer that evaluates 30,000
solutions per second, it would take 57 days to completely enumerate the truncated
problem, and over 5,000 years to exhaustively search the full problem. The method

solved in about 24 hours the truncated and in approximately one week the full problem.

3.1.10 Comparison of the algorithms

Belloni et al. (2005) measured the complexity of the problems evaluated in previous
studies from 1985 to 2005 using the log of the number of feasible product lines (Figure
3.2).



Figure 3.2: Size of problems solved (source: Belloni et al., 2005)
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Belloni et al. (2008) compared the performance of 9 different algorithms both in actual
and simulated data sets. The real problem had over 4.9%10'5 feasible solutions, and the
lagrangian relaxation with branch and bound took over a week to find the global
optimum. Except for algorithms’ performance, they report a subjective assessment of
relative difficulty, where “medium” or “high” level of difficulty denotes methods that
require some problem-specific fine tuning of parameter values. Table 3.11 illustrates the

results for ten trials of each method.



Table 3.11: Comparison of methods on the actual data set (source: Belloni et al., 2008)

Method Average Best performance as CPU Subjective
performance % of the optimal time difficulty
(%)

Lagrangian 100 - 1 Very high
relaxation  with week
branch and
bound
Coordinate 98.0 98.6 5.4 Low
ascent sec
Genetic 99.0 100 16.5 Medium
algorithm sec
Simulated 100 100 128.7 Medium
annealing sec
Divide and 99.6 100 12.5 Low
conquer sec
Greedy heuristic 98.4 98.4 3.5 Low

sec
Product 99.9 99.9 14.1 Low
swapping sec
Dynamic 94.4 97.4 5.5 High
programming sec
Bean search 93.9 98.6 1.9 High

sec
Nested 96.7 98.4 8.4 High

partitions sec




As the authors comment, among the more practical methods, the genetic algorithm,
simulated annealing, divide and conquer, and product swapping perform best, reaching
solutions that are on average within 1% of the optimum. The methods’ performance was
also evaluated using 12 simulated data sets. Table 3.12 presents the results for 10

problem instances for each data set.

In the simulated data sets the genetic algorithm and the simulated annealing manage to
accomplish at least as good performance as on the actual data set, whereas the divide
and conquer, and the product swapping perform slightly worse. The simulated data sets
enable the extraction of more general conclusions about the algorithms performance
than the single real data set. Hence, the genetic algorithm and the simulating annealing
seem to be the best methods to be applied to the optimal product line design problem,
since they provide excellent performance as well as the highest stability among all data
sets. Simulated annealing always reaches the global optimum (but cannot guarantee it)
with a small cost in time (more than two minutes), while genetic algorithm finds or

comes very close to the global optimum, requiring much less time (11-16 sec).



Table 3.12: Comparison of methods on the simulated data sets (source: Belloni et al.,

2008)

Method Average Finds Finds solution Average
performance optimal >95% of optimal CPU time
(%) solution (%) (sec)
(%)
Lagrangian 100 100 100 659.4

relaxation with

branch and

bound

Coordinate 96.0 15.8 65.8 0.6
ascent

Genetic 99.9 81.7 100 11.8
algorithm

Simulated 100 100 100 131.8
annealing

Divide and 98.7 45.8 97.5 0.7
conquer

Greedy 97.5 23.3 82.5 0.2
heuristic

Product 98.5 39.2 95.8 0.8
swapping

Dynamic 96.3 10.0 70.8 0.9

programming

Bean search 99.1 46.7 99.2 0.4

Nested 93.9 4.2 44.2 2.2

partitions




3.2 Programs and Systems

In this section the programs and systems that deal with the optimal product (line)
design problem are presented. All systems have been developed using one or more of the

algorithms discussed in the previous section.

3.2.1 DESOP-LINEOP

DESOP and LINEOP are the two modules that comprise the program developed by
Green and Krieger (1985), which was the first that dealt with the optimal product line
design problem. The choice rule is deterministic, the objective is the maximization of
market share, and the approach proceeds in two steps. In the first step, a reference set
of promising products is constructed through the use of DESOP. The input is a matrix
containing the part-worths of the I customers for each level of each attribute as well as a
matrix containing the configuration of each customer’s status quo product. The program
accepts up to 400 customers and 20 attributes, each taking up to 9 levels, while the total
number of levels must not exceed 80. The customers whose status quo product has
higher utility than the best possible product profile are removed. The user is provided
with summary descriptive data regarding the frequency with which each attribute
displays the highest part-worth, and he is able to remove a subset of levels or fix an
attribute at a certain level. Using the best in heuristic, the program generates the
reference set of products, as well as an IxM matrix with the utilities each customer
assigns to each of the candidate products. This utilities matrix along with the status quo
matrix are entered at the second step to the LINEOP, which selects the products from
the reference set that will comprise the product line. The program accepts up to 64
candidate products and produces a line of a maximum length of 30, using either the

Greedy or the Interchange heurist.

3.2.2 SIMOPT

SIMOPT (Green and Krieger, 1988) solves all three problems, directly from part-worth
data in a one step approach, using the Divide and Conquer heuristic. The user can
specify the subset compositions of the heuristic, which, according to authors, should be

formed so as to minimize the correlation of part-worths across subsets of attributes.



Attributes that are more closely related to each other should be assigned to the same
subset. Except for the customer part-worths matrix, the set of competitive product
profiles is also required, as the system uses probabilistic choice rules. Furthermore, the
user may optionally provide importance weights for each customer (reflecting the
frequency and/or the amount of purchase), background attributes or demographic
weights for use in market segment selection and market share forecasting. When the
Seller’s welfare is selected, costs/return data measured at the individual-attribute level
are required. The system provides the user with the capability to perform a sensitivity
analysis, in order to observe how market shares (or return) change for all competitors as
one varies the levels within each attribute in turn. Since in practice a manager will not
probably be interested just in maximizing market share or return, but needs to have a
picture of the tradeoff between them, SIMOPT also supports a Pareto frontier analysis.
The user is provided with all the undominated profiles with respect to return and share,

and can simulate giving up an amount of the one objective for an increase in the other.

3.2.3 GENESYS

Balakrishnan and Jacob (1995) developed the GENEtic algorithms based decision
support SYStem, which uses the triangulation methodology to increase the confidence in
the quality of the obtained solution for the single product design problem. According to it
the solution obtained with a certain method is considered “good”, if it is in the ball park
of the solution obtained through a maximally different heuristic. Using complete
enumeration for small problems, Genetic Algorithm, and Dynamic Programming,
GENESYS enables the user to avoid the solutions that are caught in local optima. The
system consists of a menu driven user interface, where the user can select a single
heuristic or the triangulation approach, as well as whether the share of choices or
buyer’s welfare problem will be solved. Customer part-worths and status quo products
are stored in a database, and the three solution methods are stored in a model base. The
DP implementation is as in Kohli and Krishnamusti (1987), and the GA as in
Balakrishnan and Jacob (1996).

3.2.4 MDSS



Alexouda (2004) developed a Marketing Decision Support System for solving all the
three problems in the optimal product line design, using a deterministic choice rule. The
system employs a one-step approach through a GA implementation (Alexouda and
Paparizzos, 2001). Borland C+ Builder 3 has been used for the construction of the
system, which consists of a database where the seller’s return data, as well as the
customer part-worths and status quo products are stored, a model base that contains the
GA implementation for each of the three problems as well as a complete enumeration
method for small problems, and a graphical user interface. Emphasis has been placed on
the friendliness of the user interface, which is menu-driven with common easy-of-use
features like grid formats, navigators for grids, and pop-up menus. Tools are available
that provide an easy to understand visible way to present options to the user, as well as
shortcuts that perform actions quickly. Except for the attribute optimization, the system
also offers a market simulation module that provides the user with the capability to
perform what-if analysis, and assess the likely degree of success of different product line

configurations to the market.

3.2.5 Advanced Simulation Module

ASM is a commercial system that was launched by Sawtooth Software in January 2003.
All three problems of the optimal product line design are supported, as well as a market
simulation module. The user can select between a deterministic and a probabilistic
choice rule, as well as among five different optimization methods: Complete
Enumeration, Grid Search, Gradient Search, Stochastic Search, and Genetic
Algorithms. Grid Search is similar to the Coordinate Ascent approach by Green et al.
(1989). In the Gradient Search, a combination of attributes to be altered simultaneously
1s found, through a Steepest Ascent method that locates the top of a peak in a response
surface. An initial solution is generated randomly or specified by the user. Each
attribute is changed (one at a time) and the resulting gain or loss in the objective is
measured. Then, the direction for changing all attributes simultaneously that results in
the largest improvement per unit change is decided. This is the direction of locally
Steepest Ascent for the response surface, called Gradient. A line search is conducted
next, beginning from the existing solution and moving in the direction specified by the
gradient. The first move is very small, and each subsequent move is twice as far from

the starting point. The results from the final three points are used to fit a quadratic



curve to the response surface, and the point that maximizes the quadratic function is
located. The response surface is evaluated at that point, and the solution is retained if it
1s better than the previous best. When no improvement is achieved from one iteration to
the next, the algorithm terminates. In Stochastic Search one attribute is randomly
altered at a time and if it results in an objective’s improvement the change is acceptable.
The process iterates for a prespecified number of times. The authors recommend using
either Grid or Stochastic Search from different starting points. If the same solution is
always obtained then this is probably the global optimum. Otherwise the search domain
should be reduced using the experience obtained, in order to conduct a complete
enumeration. When continuous attributes exist (e.g. price), the Gradient Search is the
most appropriate. Genetic Algorithms should be used when conditions limit the
capabilities of the other methods, for instance when the response surface is very

irregular with multiple peaks.

3.2.6 Discussion

Marketing systems that deal with the optimal product line design problem have evolved
considerably among the past 25 years. Among the five systems presented, four are
purely academic and only one is a commercial product. A lot of work has been done since
the launch of the first program (Green and Krieger, 1985), which could only solve
problems of limited size (not more than 400 customers and 80 attribute levels in total).
However, among the algorithms that achieved the highest performance in the problem,
only GAs have been incorporated into marketing systems. Whereas GAs have been used
to systems that solve both the Single Product (GENESYS) and the Product Line Design
problem (MDSS and ASM), all systems provide the decision maker only with a single
best solution. As mentioned before, the manager that will make the final decision is
usually interested in having a range of good solutions, so that he can select the one

which satisfies a number of subjective criteria.



4 The Market Research

The market research surveys that companies conduct nowadays are mostly descriptive,
focusing on the collection of demographic consumer data. Whereas providing valuable
information for product promotion and advertising decisions, demographic data cannot
support the firm’s decision makers in new product design, development and positioning
applications. Such decisions require tools that will assist product managers in estimating
consumer preferences with regard to the various product characteristics. This kind of
information can be further used for predicting the customer’s purchasing behavior, and
design products that will maximize the company’s profits. As discussed in the previous
chapter, in order for the customer preferences concerning a product category to be
measured, the product is described in terms of a set of atiributes. Furthermore, every
product attribute is broken down into a number of levels. A statistical technique that
enables the estimation of a numerical value (called part-worth) for each attribute level is

Conjoint Analysis (Green and Rao, 1971).

4.1 Conjoint Analysis

Conjoint Analysis was developed by Paul Green, a professor of the Wharton School of
the University of Pennsylvania, and has its origins in Mathematical Psychology. Orme
(2006) divides Conjoint Analysis into 3 different types: a) Conjoint Value Analysis, b)
Adaptive Conjoint Analysis, and ¢) Choice-based Conjoint Analysis.

Conjoint Value Analysis is the traditional full profile approach, where each product

profile is represented by the entire set of attributes. The first step in this approach is the



determination of the set of attributes that will be used for the product representation.
The number of attributes must be kept as small as possible, in order to minimize the
respondent’s burden. Next the levels for each attribute are decided. The following step is
the construction of the product profiles that the respondents will evaluate. If the
number of possible profiles is relatively small (up to 18) then a full factorial design may
be employed, where the respondents evaluate all the possible combinations of attribute
levels. When, however, the number of possible profiles is large, a fractional factorial
design must be employed, where the respondents evaluate only a limited number of
representative product profiles. The analyst must also decide the way that the profiles
will be provided to the respondent: cards where products are described according to their
attribute levels, visual products presented in personal computers, or even the products
themselves in their natural form. The next step is the determination of the way that the
respondents will evaluate the profiles. A rating scale from 1 to 10 or to 100 can be used
for each profile, or the respondent can rank the profiles from the most to the least
preferred. A market research survey is usually conducted for data collection, where
respondents provide information either by answering questions or by filling in
questionnaires. Specially designed computer programs can also be used for collecting
data from distance. The method that will be used for data analysis depends on the way
information was collected. In Conjoint Value Analysis linear regression or dummy

variable regression are typically used.

4.2 The survey

In order for the models proposed in the present thesis to be tested with the use of real
world data, a market survey was conducted. The survey concerns the consumer
preferences with regard to fresh milk in the Greek retailing sector. The Greek retailing
market in milk is composed of four large players and a number of other small companies
that only have a local distribution of their products in 1-4 prefectures. More than 30

products are offered to the market that belong to three main categories:
1. fresh cow milk,
2. high pasteurized cow milk,

3. fresh goat milk.



These products vary with regard to the size, the package and a number of other
attributes. One of the small players of the specific market is a company located in the
island of Crete in the prefecture of Chania (company ALPHA from now on). ALPHA is
currently offering only a limited number of products to the specific market, which all
belong to the category of fresh goat milk. ALPHA will be used as a case study of a niche
player who wishes to become a large player in the market, through the design of a new
line of products. Using the product line design approach introduced in this thesis,
ALPHA will redesign its fresh goat milk products, while entering the market of fresh
and high pasteurized cow milk. Since the data needed for applying the proposed models
are the customer partworths concerning the milk product attributes, a conjoint market

survey was conducted.

The design of the survey was made in cooperation with the company’s marketing
managers. Specifically, four attributes were identified as having impact to a customer’s
purchasing decision: the type of the milk, the percentage of fat included in the milk, the
product’s size, and the product’s packaging. The main types of milk offered in the
market are the three that have already been described. Two levels were specified for the
fat percentage: 1.5% and 3.5%. Four product sizes are available in the market: 0.5 liter,
1 liter, 1.5 liter, and 2 liter. Finally, fresh milk is offered in two different types of
package: paper and plastic. The 4 attributes with the corresponding levels are

illustrated in Table 4.1.

Table 4.1: Attribute and levels included in the study

Attribute Levels

Size (/) 0.5 1 1.5 2
Milk Fresh High Goat
type pasteurized

Fat 1,5% 3,5%

Package Paper Plastic




The partworths for each attribute level will be estimated with the application of
Conjoint Value Analysis. Ranking a list of hypothetical full profile milk products was
chosen as the customer preference elicitation process, since it provides the respondents
with the minimum possible burden. The number of possible product profiles is 48, which
constitutes a very large number for a full factorial approach. Hence, a fractional
factorial approach is adopted, where 16 hypothetical were created (Table 4.2) with the
use of the Orthogonal Design option of the statistical program SPSS 16.



Table 4.2: The hypothetical milk profiles

Milk type Fat Size () Package
Goat 3.5% 0.5 Plastic
High 3.5% 1 Plastic
pasteurized

High 1.5% 1.5 Plastic
pasteurized

Fresh 1.5% 0.5 Paper
Fresh 1.5% 1 Paper
Goat 3.5% 1.5 Paper
Fresh 3.5% 1.5 Paper
Fresh 1.5% 2 Plastic
High 1.5% 0.5 Paper
pasteurized

Fresh 3.5% 0.5 Plastic
Fresh 3.5% 2 Paper
Goat 1.5% 1 Paper
Fresh 3.5% 1 Plastic
Fresh 1.5% 1.5 Plastic
High 3.5% 2 Paper
pasteurized

Goat 1.5% 2 Plastic

Six more hypothetical milk profiles were created (Table 4.3), where four of the profiles

were designed to be efficient choice sets that have statistically optimal utility and level



balance (Huber and Zwerina, 1996), while the other two had all attributes duplicated

except for one.

Table 4.3: The profiles for the holdout task

Milk type Fat Size () Package
Fresh 3.5% 0.5 Plastic
High 1.5% 1 Plastic
pasteurized

Goat 3.5% 1.5 Paper
Fresh 1.5% 2 Paper
Fresh 3.5% 1 Plastic
High 3.5% 1 Plastic
pasteurized

Except for the conjoint data, each respondent provided personal information
(demographic characteristics) and information concerning his milk usage patterns, by

answering the set of questions illustrated in Table 4.4.



Table 4.4: The demographics part of the questionnaire

1. What is your sex? ] Male

1 Female
2. Whatisyourage? .
3. What is your family status? 0 Single
| Married without children
| Married with children
4. What is your education level? O Primary school
1 High school
! University
5. Occupational status? -/ Unemployed

"1 Free lancer

1 Public servant

1 Private servant

| Student

"] Pupil
6. How often do you buy milk? 1 4-7 times a week
1 1-3 times a week
11-3 times a month
"1 less than once a month
7. How do you use milk (multiple choice)? 0 Consumption

] Cooking




' Other
8. How often do you exercise? ") Daily
1 2-4 times a week

[1 3-4 times a month

[1 less than 3 times a month

9. Are you concerned about nutrition U Not at all
components?
Little
' Moderately
' Very

Data collection was completed in different super-markets in the city of Chania within
the period April-December 2008. The target group was frequent milk buyers. A total of
482 consumers were interviewed with the use of a simple random sampling procedure.
Each respondent completed an anonymous questionnaire, which consisted of the Tables
4.2, 4.3, and 4.4. After filling in Table 4.4, each respondent ranked the profiles shown in
Table 4.2 from the most to the least preferred, in order for the partworths for each
product attribute to be estimated. Finally, each respondent completed a holdout task by
selecting one among the 6 alternative milk profiles of Table 4.3. The data from the
holdout task will be used for the validation of the market simulation model that is

presented in the next chapter.

4.3 The results of the survey

The data set was cleaned and the sample was reduced to 480 respondents. The following
figures provide for illustrative purposes a brief description of the results concerning

Table 4.4.



Figure 4.1: Survey results
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The results indicate that the customer sample is representative of the average human
being (before the data collection there was a concern that most subjects would be
undergraduates). The data above will be used after the design of ALPHA’s product line,
for posititioning and advertising purposes, and thus will not be further analyzed in the
present thesis. The data from Table 4.2 were used for the estimation of part-worths for
the 480 respondents with the use of Conjoint Analysis provided by the SPSS 16
software. These data along with the respondents’ holdout choices will be used as the

input to the models introduced in the subsequent chapters.



5 Market Simulation Model

In this chapter an innovative market simulation model is developed, that will be used
for simulating the choice process of the group of customers each time a company

optimizes its product line.

5.1 Introduction

More and more companies today try to forecast the market penetration of a new concept
before it enters the production stage. In this context, marketing managers include
consumer preference modeling in the early stages of new product development. Market
Simulations assist a manager in developing an effective marketing strategy through
performing what-if questions. The manager can simulate market behaviour on new
product introductions, product line extensions, or product modifications. He can
implement scenarios of introducing different product configurations to the market, and
predict conditional choice shares, estimate the direct and cross elasticity of price
changes, or form the logical guide to strategic simulations that anticipate competitive
responses (Orme, 2006). Customer brand switching behavior can be revealed, enabling
the firm to design new products that take share from its competitors without

cannibalizing its existing product line.

One of the most popular approaches among marketing practitioners is the simulation of
market behavior on new product introductions using conjoint data. Consumer
preferences for the various product attributes are estimated through conjoint analysis,
and are used to predict the hypothetical market shares that different product
configurations might gain. In this way, conjoint market simulation assists managers in

reducing the uncertainty when designing new products for a specific market.



The effectiveness of a market simulation depends on the level of accuracy in the product
market shares prediction. This requires the proper modeling of human choice behavior,
a task of high complexity, since it involves the integration of sophisticated theoretical
assumptions into mathematical models (choice models). As Baier and Gaul (2001) note,
the determination of an adequate choice model is the most cumbersome task in market
simulation situations. Allenby et al. (2005) stress the complexity of human behavior, and
propose the adjustment of choice models to better predict it. Popular choice models
usually applied in market simulations are the BTL, and the MNL. Despite their
extensive usage, these models fail to represent similarity among alternatives in the
choice rule, suffering from the well known Independence from Irrelevant Alternatives
bias. As a result they tend to overestimate the market shares of similar products. The
first choice rule on the other hand, where the consumer is assumed to deterministically
select the most preferred product, overestimates the choice shares of the highest rated

alternatives.

A number of approaches have been developed that overcome the above limitations,
whereas other models focus on the optimization of market shares prediction. However,
an integrated approach that efficiently addresses both issues has not been proposed yet.
In this chapter, a market simulation model will be developed that effectively combines
the satisfaction of the critical theoretical properties that a market simulation should
reflect, with high predictive accuracy on market shares estimation. It will be shown that
calibrating choice models using data from the products’ multiattribute analysis by each

customer, can substantially improve the effectiveness of market simulators.

5.2 Market Simulations

Before starting a market simulation the consumers’ preferences must be elicited,
usually with the use of Conjoint Analysis. The partworths estimated through Conjoint
Analysis form the product utility values for each individual. Product utility values are
then converted to choice probabilities through the use of a choice model like the BTL or
the MNL. Next, a market scenario is formulated where n customers have to select one
product among m alternatives. For each customer i, a vector of product choice
..... Pin] 1s calculated, and the total choice likelihood for a product j

results from the aggregation of its choice probabilities across the whole customer base:



CPj:Zi:ng,-. Finally, the simulated market share for each product j is estimated:

MS=100*CP, /3" CP, %.

Numerous simulations may be conducted by altering the configuration of one or more
products and observe the relative change in market shares. In this way, the outcome of
different competitive market strategies may be anticipated. Market simulations can
capture cross-elasticity effects between different brands or attributes, answer what-if
questions about new product launches, product modifications, or product line extensions
given a current competitive environment, reveal price/sales elasticities and guide pricing

strategy (Orme, 2006).

5.3 Critical properties of market simulations

Two critical properties enable a market simulation to track the complexity of market

behavior; differential impact and differential substitution (Orme and Huber, 2000).

5.3.1 Differential Impact

When a current feature is modified or a new one is added, the selection probabilities of
the items in the choice set will be differentially impacted. People who like speed prefer
sport cars, whereas a person who likes luxury and safety might prefer a limousine.
Hence, if the horsepower of a sport car is increased, its sales can be significantly raised,
since potential sport cars buyers give high importance to the car’s acceleration. On the
contrary, the same action will probably have small impact on the sales volume of a
limousine, as candidate limousine buyers do not consider the car’s acceleration as an
important attribute. While such complex patterns of interactions can be represented as
cross terms in an aggregate-level model, Huber et al. (2001) state that the modeling of
interaction terms in the utility function is complicated, as their number can grow
uncontrollable large, leading to overfitting or misspecification problems. They
recommend the aggregation of heterogeneous individuals, each following a different
preference model, as a more efficient way to represent the differential impact that a
certain feature may have on specific brands. This constitutes a more stable modeling

approach than the curve-fitting exercise of the cross term, and has the additional



advantage of being more managerial actionable. In addition, the heterogeneity account
permits the reflection of idiosyncratic individual preferences in market simulations, in
the context of a simple additive model. Allenby et al. (2005) also favor the use of a main-
effects model for each individual, since the interactions between the parameters
reflecting the alternatives and the characteristics of the respondents could result in
unmanageably large aggregate models. They argue that exploring the impact of
alternative scenarios on a product’s market share is more accurate with respondent-
level parameters. Simulating markets at the individual level enables managers to
identify the critical marginal consumers, who are most likely to change their selection,
and may also help them to design new product offerings, which will exceed the

consumer’s purchasing threshold.

5.3.2 Differential Substitution

Differential substitution refers to the assumption that when a new product enters a
market it gains share mostly from the similar products, rather than from the dissimilar
ones. This is also known as the “similarity hypothesis” (Tversky, 1972). This property is
very important, since the two popular choice models, BTL and MNL, do not exhibit
differential substitution. Instead, they follow the proportionality assumption, according
to which the ratio of the shares of any two products of the market is independent from
the rest products. The outcome of this property, also known as Independence from
Irrelevant Alternatives (IIA), is that a new product takes share from all existing products
in proportion to their current shares (no similarity effect). The limitation of the ITA bias
is explained through the red/blue bus paradox (Ben-Akiva and Lerman, 1985), where
two alternative means of transportation, a car and a red bus, are equally valued by an
individual, thus they have 50% likelihood to be chosen. Now we assume that another
bus which differs only in color (blue) from the existing one (thus offering the same utility
to the individual) enters the choice set. Since the three alternatives have the same
utility value, a proportional model will predict 33.3% final share for each of them.
However, in reality it is expected that the new product (blue bus) will take share mostly
from products that are similar to it (red bus), instead of dissimilar ones (car). In such a
case the car’s choice likelihood will probably remain close to 50%, and the two buses will
share the rest 50%. The market shares of the alternatives closest to the launched one

are usually reduced, due to the greater substitution that occurs between them (negative



similarity effect). The IIA bias prevents the model from postulating any pattern of
differential substitutability among alternatives, hence the cross-elasticity of the
probability of product i with respect to a change in Uk is the same for all i with £k
(Baltas and Doyle, 2001).

While representing real world purchasing situations more effectively than proportional
models, choice models that reflect substitutability have shown low predictive accuracy
due to the “attraction effect”, according to which the introduction of a new product raises
the attractiveness for the category it belongs to. This assumption is also known as
“share inflation” or the “rich supply” effect, where the existence of similar alternatives
increases their desirability (positive similarity effect). According to Huber and Puto
(1983) the addition of a new alternative to a customer’s choice set, initially results in a
global attraction effect, where a general shift of preferences occurs toward the new item.
Next, a local substitution effect takes place, where the new product takes shares mainly
from similar items in the set. This explains the relatively good predictive performance

that proportional models show, as the two effects counterbalance each other.

5.4 Previous Approaches

As far as predictive accuracy is concerned, the state of the art market simulation
approach, which is widely used in commercial applications, is the SIMOPT (SIMulation
and OPTimization) product-positioning model (Krieger et al., 2004). In this model
market behavior is simulated through the calibration of the exponent a of the

Pessemier’s model:

Py= UJ‘/Z Uy
=

This is implemented with the use of the ALPHA rule as follows: Assuming that
“external” market shares are known, the ‘optimal’ a is calculated so that the simulated
choice shares are as close as possible to the external. The model can be applied to
individual level conjoint data and exhibit the differential impact property. On the other
hand, the SIMOPT approach does not display differential substitution, since the
Pessemier’s model is an extension of BTL model that also suffers from the IIA bias. The

fact that the same choice model is used for the whole customer sample constitutes



another limitation of the ALPHA rule, since findings from consumer behavior research

indicate that every individual follows a different choice pattern.

Matsatsinis and Samaras (2000), propose the selection of a different choice model for
each consumer, through the study of the distribution of the total utilities he assigns to
the set of products. Particularly, they consider the distribution’s Range (r=Unax-Unin),
Kurtosis (k) and Skewness (s), for selecting the choice model that better describes each
consumer’s purchasing pattern. The values of these three coefficients constitute the
input that triggers a total of 27 if-then rules, which comprise a knowledge base
containing 8 different brand choice models (Matsatsinis and Siskos, 1999). Two of the
models used arise from the calibration at the individual level of the Pessemier and the
MNL models, with the use of r as the exponent. Their approach displays differential
impact, since customer preferences are estimated at the individual level using the
UTASTAR (Siskos and Yannacopoulos, 1985) preference disaggregation method.
Differential substitution is not adequately reflected, since six of the choice models used

are subject to the IIA property.

The VOICE decision support model (Krieger and Green, 2002) optimizes a firm’s market
share for a specified product/service, taking as input the customer’s stated: a) attribute
performance scores for each product, b) attribute importance ratings, and c) constant
sum probabilities of choosing each product. A grid search heuristic is used which, at the
individual level, modifies the importance ratings and estimates an “optimal” exponent a
for the Pessemier model that, together, best reproduce the vector of constant sum
likelihoods. Since each consumer is dealt with individually, there is a great possibility
that the previous procedure overfits to the constant sum probabilities provided by the
consumer. To ameliorate this concern, they put a constraint to the extent that the
modified attribute weights can differ from the customer supplied. While constituting an
innovative approach, their model is quite hard to use in practice due to the large amount
of data required by the respondents. Actually, psychologists have questioned the
interviewee’s ability to provide valid attribute weights, arguing that the results tend to

be unstable and highly influenced by the decision context (Tversky and Simonson, 1993).



5.5 The proposed approach

The aim of the proposed approach is twofold. First, high performance in predicting
actual product market shares has to be displayed. This will be achieved through the
calibration of the choice model’s exponent at the individual level. Second, compliance
with the theoretical properties mentioned in Section 5.3 has to be accomplished.
Differential impact, as well as differential substitution must be exhibited, through the
reflection of both the substitutability and the attraction effect. A corrective method is

developed for this purpose.

5.5.1 Calibration of the choice model

According to Orme and dJohnson (2006), an appropriate and theoretically justified
method for tuning simulated results to more closely fit real market shares is the
adjustment of the exponent used in choice models. In the proposed model the approaches
of SIMOPT and MARKEX are extend through the individual calibration of the
Pessemier model, through the assumption that exponent a depends not only on the
range of the product utilities distribution but also on its kurtosis and skewness. This
assumption is based on studies that relate the values of the three coefficients with the
level of difficulty a customer expresses in making a choice among a set of competing
alternatives (Matsatsinis and Samaras, 2000; Tsafarakis et al., 2008). Previous research
on consumer behavior has related the value of the choice model’s exponent to the
expertise of the decision maker, or the level of customer’s involvement into the
purchasing decision. The proposed approach is more practical for a manager to apply it,
since r, k, s are easy to measure coefficients. In order to find the relationship between
exponent a and the three coefficients that better simulates market behavior, the
performance of all the possible linear combinations among them will be assessed (Table

5.1).



Table 5.1: Variations of the choice model’s exponent

Case Exponent

1 Rri+ Kk;+ Ss;
2 Rr;+ KK;

3 Rr; + Ss;

4 Kk; + Ss;

5 Rr;

6 KK

7 Ss;

In case 1 for example, the model’s exponent for an individual i is given by the following

equation:
ai = Rri + Kx; + Ss;, 17)

where the parameters R, K, and S have the same value across the customer sample, in

order to prevent the model from individually overfitting.

An experiment using artificial data will be conducted, where the predictive accuracy of
the ALPHA rule will be compared with the seven different approaches shown in Table
5.1. The data sets where the eight models will be tested consist of simulated part-worths
for each respondent, as well as hypothetical market scenarios with different product
configurations. The market is assumed to comprise 8 competitive products, each
consisting of 9 attributes which can take 9 different levels. Initially, the part-worth
functions of 5,000 hypothetical respondents are estimated. This large number of
respondents represents the total target population, whose purchasing behavior is to be
simulated. Part-worths for each attribute level are randomly drawn from a uniform
distribution in the range [0, 1]. The market scenario is formulated next, through the
random selection of the level of each of the 9 attributes for every product. Using the
simulated part-worths in combination with the products’ configuration, the utility value
that every respondent assigns to each product is calculated. These error free utilities are
used for the estimation of the “actual” market shares for each scenario, assuming that
the individual will always choose the alternative with the highest utility value within
the set. The sample of the population on which the models will be tested is then
constructed, through the choice of 800 from the 5,000 respondents. In order for potential



errors derived from the procedure of measuring the customers’ preferences to be
simulated, error terms are added to the sample’s “true” utilities. These error terms
follow a normal distribution with zero mean and variance obtained from the following

equation (Wittink and Cattin, 1981):

o o oo ), s
o, +o, 1-PEV

wheres’is the variance of the error term,s’is the variance of the distribution of the

value of an alternative’s utility across respondents, and PEV is the Percentage of Error
Variance on preferences, which is set to 0.35. Next the part-worths are standardized by
setting the lowest level of each attribute to zero, and rescaling the sum of the best

attribute levels to unity.

Since the aim of the models is to predict with the highest possible accuracy the behavior
of the market, they will be calibrated through the estimation of individual exponents a..
The calibration is implemented through the calculation of the optimal R, K, and S
parameters used in each case. The objective is that the market shares that the model
simulates, should most closely resemble the real market shares. In case 1 for example,
the optimization of the three parameters is an optimization problem formulated as

follows:

find R, K, S that minimize f= Y |RS, =SS, ||, j=1,2,...m, R, K, S eNR

J

where RSj are the real shares and SSj are the shares simulated by the model.

The choice models’ exponent usually takes real values greater than or equal to 1. The
values of the r and % coefficients for the whole customer sample are positive, thus for the
cases 2-7 a full search in the range [1, 300] is implemented with step 0.1 for the R and K
as well as the a exponent of the ALPHA rule. The s coefficient takes both positive and
negative values thus a full search is performed in the range [-150, 150] with step 0.1 for
the S parameter. However, for case 1 the complexity for a full search of the three
variables (R, K and S) is extremely high, requiring too much CPU time and computer
memory to be implemented. Hence, two methods will be applied for solving the

optimization problem: a stochastic logarithmic approach, and a genetic algorithm.



5.5.2 Stochastic Logarithmic Approach

The method consists of two main parts. In the first part, a single path of points is
followed, beginning from a certain initial point. At each point of the path, only the set of
its neighbors is examined, so that the next point in the path is selected towards the
direction of the neighbor corresponding to the minimum value of f. At each iteration of
the algorithm, the neighboring region is decreased until it reduces to a single point,
which is selected as a solution of the optimization problem. The second part introduces a
stochastic factor, which assigns probabilities to every neighbor point of the current
examined point and then selects the next point among the neighboring ones by
exploiting these probabilities. In the considered case, the probabilities assigned to each
point are inversely proportional to criterion f. This way, different paths are examined
depending on the probabilities and the randomness. Thus, in the second part, the
experiment needs to be iterated many times and the best solution among all
experiments is returned as the most appropriate. As a result, the algorithm is repeated

in several experiments, say m, and within each experiment at n iterations.

The three variables R, K, and S are concatenated into a three dimensional vector, say x.
It is now assumed that at the current n-th iteration of the algorithm and at the m-th
experiment, a point Xxm(n) has been selected. In the previous notation, the dependence of
the point x on the iteration and experiment has been added. Then, the next point
xm(n+1) is then obtained by evaluating f among all its neighbors. The neighboring region
N(x,,(n),6(n)={yeR’:

y=x,(n)+5(n)p, peG’}

1s defined as: (19)
where G={-1,0,1} and J(n) is an integer indicating the step size of the neighborhood
region. At each iteration, the step size o(n) is reduced such that o(n+1)=0(n)/2
until §(n) = 1. Initially, a high value for 6(n) is chosen in order to cover the largest part

of the space. This constitutes the first part of the algorithm.

In the second part, probabilities are assigned for each neighboring point of the current
point Xm(n). In particular, if the three-dimensional neighbors of xm(n) is denoted as yi,

i=1,...,|N|, where |N| stands for the number of elements of the set N in (19), then



probabilities which are inversely proportional to the f can be calculated for each point

Sy

yi,. That is, p=l-pe, =l

Zf(y,»)

NJ|.

A cumulative probability function is then constructed for all yi i.e., qi=zi_ P> =1,...,
j=

| N|, with go=0. Using a given random number r, uniformly distributed in the range [O,
1], the next point at the (n+1)-th iteration xm(n+I) is chosen among the neighbors yi as

follows:
x,(n+1)={y, € N(x, (n),6(n):q,, <r<q,}.

The algorithm is repeated until §(n) =1 and for several experiments and the value that
minimizes f over all iterations and experiments is selected as the most appropriate. That

is, for one experiment, the optimal value X = argmin f(X,,(i)) corresponding to the
for alliterations

minimum criterion is returned. Then, the algorithm is repeated for many experiments

and the best value over all experiments is returned, i.e., X= argmin f(Xx]) is selected.

for all experimens

5.5.3 Genetic Algorithm

Another possible solution for the above mentioned optimization problem is the use of an
Evolution Program. In contrast to enumerative search techniques, such as Dynamic
Programming, which may break down on complex problems of moderate size,
evolutionary programs provide unique flexibility and robustness on such problems. For
this reason, a Genetic Algorithm approach is adopted next. The approach seems to be
very efficient for the particular optimization problem, given the size and dimensionality
of the search space and the multimodal nature of the objective function. Possible
solutions of the optimization problem, i.e., sets of parameters, are represented by
chromosomes whose genetic material consists of frame numbers (indices). Chromosomes

are thus represented by index vectors x=(x,x,,x;) following an integer number

encoding scheme, that is, using integer numbers for the representation of chromosome

elements (genes)x;,i=1,...,.3. The reason for selecting integer number (instead of

binary) representation is that all genetic operators, such as crossover and mutation,



should only be applied to genes xi;, and not to arbitrary bits of their binary
representation. An initial population of P chromosomes, X(0)={X,,...,X,} is then

generated by selecting P sets of frames whose feature vectors reside in extreme locations
of the feature vector trajectory, as described in the temporal variation approach. Since
there exists some knowledge about the distribution of local optima, the above approach
exploits the temporal relation of feature vectors and increases the possibility of locating

sets of feature vectors with small correlation within the first few GA cycles.

The metric f(x) is used as an objective function to estimate the performance of all
chromosomes x;,i=1,...,P in a given population. However, a fitness function is used to

map objective values to fitness values, following a rank-based normalization scheme. In

particular, chromosomes X, are ranked in ascending order of f(x), since the objective
function is to be minimized. Let rank(x;)e{l,...,P} be the rank of chromosome
X;,i=1,...,P (rank=1 corresponds to the best chromosome and rank=P to the worst).

Defining an arbitrary fitness value F; for the best chromosome, the fitness F(x,) of the

i-th chromosome is given by the linear function
F(x,)=F, —[rank(x,)-1]D, i=1,...,P (20)

where D is a decrement rate. The major advantage of the rank-based normalization is
that, since fitness values are uniformly distributed, it prevents the generation of super
chromosomes, avoiding premature convergence to local minima. Furthermore, by simply
adjusting the two parameters Fp and D, it is very easy to control the selective pressure

of the algorithm, effectively influencing its convergence speed to a global minimum.

After fitness values, F(X,),i=1,...,P, have been calculated for all members of the

current population, parent selection is then applied so that a fitter chromosome gives a
higher number of offspring and thus has a higher chance of survival in the next
generation. The roulette wheel selection procedure (Goldberg, 1989) is used for parent
selection, by assigning each chromosome a probability of selection proportional to its
fitness value. The roulette wheel selection is one of the most popular methods, because it
ensures that each chromosome has a growth rate proportional to its fitness value. Note
also that due to rank-based normalization, selection probabilities remain constant

between generations.



A set of new chromosomes (offspring) is then produced by mating the selected parent
chromosomes and applying a crossover operator. The genetic material of the parents is
combined in a random way in order to produce the genetic material of the offspring. A
more general technique, that is employed in this application, is the uniform crossover,
where each parent gene is considered to be a potential crossover point. This means that

two parents
.0 0 0 11 1
a,=(a,,a,,...,ay) and a, =(q,,a,,...,ay)

generate the following two offspring:

’ K K Sk ' 1-s 1-s. 1-s
a,=(a",ay,....,a;)) and a; =(a, ",a, *,...,a; "
where s;, i=1,...,K are random numbers taking values 0 or 1 with equal probabilities, so
that each component comes from the first or the second parent. In the examined

problem, K=3.

Although single-point crossover is considered to be inferior to other techniques, no
evidence has been reported in favor of uniform, multi-point or other types of crossover
operators (such as arithmetical, segmented, or shuffle) (Michalewicz, 1994). Instead, this
selection is heavily problem-dependent, and in the examined case uniform crossover has

exhibited slightly better performance in the experiments.

The next step is to apply mutation to the newly created chromosomes, introducing
random gene variations that are useful for restoring lost genetic material, or for
producing new material that corresponds to new search areas. Uniform mutation is the
most common mutation operator and is selected for the optimization problem under

consideration. In particular, each offspring gene x; is replaced by a randomly generated
onex, , with probability p, . That is, a random number r €[0,1] is generated for each
gene and replacement takes place ifr < p, ; otherwise the gene remains intact. Other

alternatives, such as non-uniform, boundary, or swap operators, are also possible. Non-
uniform mutation is in general preferable in numerical optimization problems with
respect to accuracy and convergence speed, but did not achieve better performance in

the problem under consideration.

Once new chromosomes have been generated for a given populationX(n), n>0, the

next generation population, X(n +1), is formed by inserting these new chromosomes into



X(n) and deleting an appropriate number of older chromosomes, so that each

population consists of P members. The exact number of old chromosomes to be replaced
by new ones defines the replacement strategy of the GA and greatly affects its
convergence rate. An elitist strategy has been selected for replacement, where a small
percentage of the best chromosomes is copied into the succeeding generation together

with their offspring, improving the convergence speed of the algorithm.

Several GA cycles take place by repeating the procedures of fitness evaluation, parent
selection, crossover and mutation, until the population converges to an optimal solution.
The GA terminates when the best chromosome fitness remains constant for a large

number of generations, indicating that further optimization is unlikely.

5.5.4 Stochastic Logarithmic Search vs. Genetic Algorithm

In order for the performance of the two methods to be evaluated, they are applied to the
results of a market survey conducted in Paris, for the design of a new Cretan olive oil
product (Siskos et al., 2001). A total of 204 olive oil consumers tasted 6 different olive
oils, rank them from the most to the least preferred, and rated them in 5 attributes:
image (4 levels), color (3 levels), odour (3 levels), taste (3 levels), and package (4 levels).
The customers’ ranking data are used as external shares, assuming that a consumer
always purchases the product that ranks first. The customers’ marginal utilities
(partworths) are derived from the application of UTASTAR. About 300,000 different
values of the three parameters (R, K and S) are generated, for which the distribution of f

is shown in Figure 5.1.
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Figure 5.1: The distribution of the values of the f for more than 300,000 different values
of the R, K and S.

The same figure presents the minimum value derived by the application of the
Stochastic Logarithmic method (dotted vertical line) and the Genetic Algorithm method
(solid vertical line). The value for the stochastic approach is 33.85, while for the genetic
1s 32.65. It can be observed that the genetic method gives much better results than the
stochastic logarithmic approach. The genetic method is terminated after 2000 iteration

cycles. Table 5.2 shows the relatively cost of the methods used.

Table 5.2: Comparison of the computational complexity of the two proposed algorithms

Method Best Score Average Computational Time
(sec)
Obtained
Stochastic Logarithmic Search  33.85 3.4
Genetic Algorithm 32.65 1

Additionally, the effect of different genetic parameters on the selection of the optimal

value is depicted on Figure 5.2.
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Figure 5.2: The best obtained values of f using the GA at different mutation rates and

for 2000 iteration cycles and cross over probability of 20%

Particularly, Figure 5.2 illustrates the minimum value obtained for the same number of
cycles (2000 in this case) using different mutation rate probabilities. The cross over
selection probability is 20% in this case. As is observed the best results are derived for a
mutation rate of about 7.5%. Similarly, the effect of cross over probability of the results
1s shown 1s Figure 5.3. Again, 2000 iteration cycles has been selected while the mutation
rate is the best obtained, 1.e., 7.5%. It is clear that a cross over probability of 20% gives

the best performance.
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Figure 5.3: The best obtained values of f using the genetic algorithm at different cross-

over rates and for 2000 iteration cycles and mutation of 20%.



The full search approach demands a great computational complexity. The stochastic
approach reduces this complexity but the fact that the method should be iterated using
different experiments increases relatively the cost as well. Instead, the genetic method
results in best performance while demanding the smaller computational cost. Hence, for
the rest of study the method that will be used for optimizing the value of R, K, and S, is
Genetic Algorithms.

5.5.5 Evaluation of the different approaches

In order for the performance of the eight approaches to be to assessed, 50 replications
are executed. In each replication, random part-worths and product configurations are
generated, while different data sets are used for model calibration and evaluation
following the Principle of Model Validation (Elrod, 2001). According to this principle, if a
model is estimated from a sample, and needs to be generalized to the total population,
then different portions of the sample should be used for evaluation and estimation
purposes. Thus, the models are calibrated with the use of 400 respondents, and are then
applied to a different evaluation sample of 400 respondents. The calibration sample is
only used for the estimation of the R, K, S and a parameters, whereas the models’
performance is measured using the evaluation sample. The Mean Absolute Error
between the simulated shares and the real market shares for each model is used as the
main performance measure:

MAE=Y |RS, -5, @1)

i=1

where m is the number of products, RS, are the real andss, are the simulated market

share for product i. The mean value and the standard deviation of each of the 4

parameters across the 50 calibration sets are presented in Table 5.3:



Table 5.3: Parameters’ mean values and the standard deviations across the 50

calibration sets

Model Parameter Mean Std
1 R 9.6156 14.1424
K 14.5159 21. 6499
S 0.1066 0.4546
2 R 10.6386 16.6659
K 16.8929 25.9584
3 R 19.3679 14.8433
S 0.0558 0.3078
4 K 0.0047 0.0222
S 34.3969 25.0943
5 R 22.576 15.0266
6 K 37.64 26.0959
7 S 39.544 101.6717
Alpha A 128.28 116.2849

Table 5.4 shows the mean value of MAFE for the 8 models both for the calibration and the

evaluation sets across the 50 replications.

Table 5.4: Mean MAE values for the 8 models in the calibration and the evaluation sets*

Model Calibration Evaluation

1 14.6612>*>%78  16.8721%**>%78
2 14.9283’ 17.2429’

3 15.0986’ 17.3465’

4 15.0049’ 17.2852’

5 15.0704’ 17.5573’

6 14.9909’ 17.3041’

7 36.5781 37.5036

8 (Alpha) 14.9603’ 17.2214’

*Statistical significant differences between two means are denoted by superscript numbers

attached to the superior mean (p<0.1).



The results indicate that the 1st approach outperforms the others, the 7t performs
significantly worse and there are no significant differences among the others. The first
two approaches exhibit a somewhat better calibration performance than the ALPHA
rule, while only the 1st gives a slightly lower MAE in the evaluation sample; hence it is

the one that is proposed for use.

5.5.6 The Corrective Method

Since the Pessemier model is subject to the IIA property, it will be adjusted for
similarity in order to account for differential substitution between alternatives. This is
implemented through the application of a corrective method to the results of the choice
models (choice probabilities for each product) at the individual level. The degree of
similarity S; among two products i and j is measured with the use of the attribute

partworths:

Si=1-( 2] Ui -Uji 1)/2, (22)

where Uiz is the partworth of attribute k for product i.

Initially the similarity matrix is created through the estimation of the similarity degree
for every pair of products. The degree of similarity of product i to all other products,
defined as its “total similarity” (Paffrath, 1997), is calculated by summing up the
elements of column i. The correction is implemented through the division of the choice
probability of each alternative by its corresponding total similarity. Finally, the

corrected shares are normalized in order to sum up to 100%.

The effectiveness of the corrective method will be empirically assessed using six criteria
established by Paffrath (1997) that all methods designed to minimize the IIA bias
should met. According to the first criterion, the method should account for product
similarity, so that when a new item is introduced to the market, it gains more share
from the relatively similar items to it and less share from the relatively dissimilar ones.
The application of the method should be at the individual level (criterion 2), and it must
depend both on the customer’s importance structure (criterion 3), and on all product’s
attributes (criterion 4). Slight product changes should only lead to slight changes in

similarity and therefore only to minimal changes in its share (criterion 5). The



worsening of a product (e.g. an increase in its price) should not lead to an improvement

of its share (criterion 6).

The proposed method is indeed applied to each consumer separately (criterion 2), and
the part-worths that form the similarity degree (equation 7) depend both on the
attribute importance weights (criterion 3), and the attribute values (criterion 4). In
order for the compliance of the method with the rest criteria to be assessed, the method
will be applied to the following case. Two products consisting of two attributes are
evaluated by an individual (Table 5.5), and their choice probabilities are estimated using

the BTL model.

Table 5.5: Product Evaluations

Part-worth of Part-worth of Utility

Attribute 1 Attribute 2 Value
Product 1 0.95 0.05 1
Product 2 0.05 0.95 1
Product 3 0.94 0.06 1

The two products have equal utility values, thus it is expected that the choice
probability for each will be 50%. Now a third product, highly correlated to product 1,
enters the choice set. The application of the BTL model without correction for similarity,
predicts that product 3 gains equal share from the other two (proportionality), resulting
in a 33% final share for each of the three items (IIA bias). If this was true in practice,
the choice probability of product 2 could be minimized, through the entrance to the
choice set of a number of very similar extensions of product 1. This is a fault simulation
of reality, since a person who prefers, for example, driving to work, will probably take
his car no matter how many different buses are available. The similarity matrix for the

corrective method is created next (Table 5.6).



Table 5.6: The Similarity Matrix

Product1 Product2 Product3

Product 1 1 0.1 0.99
Product 2 0.1 1 0.11
Product 3 0.99 0.11 1
Total Similarity 2.09 1.21 2.1

The application of the corrective method results in 26.86% simulated share for product
1, 46.41% for product 2, and 26.73% for product 3. Although the three alternatives share
the same utility value, product 3 gains more share (23.14%) from the almost identical
product 1 (substitution), and only a small amount (3.59%) from the dissimilar product 2,
showing that the similarity among products has been successfully incorporated into the
choice process (criterion 1). Furthermore, the attraction effect has been effectively
addressed, since the almost identical products 1 and 3 receive total share that exceeds

the 50%.

Now the level of attribute 2 of product 1 is altered, and its part-worth changes from 0.05
to 0.01. The similarity degree of product 1 is reduced from 2.09 to 2.05, and the item
becomes more dissimilar to the other two. The slight product modification resulted in
only a small change in its similarity degree, due to the linear transformation function
used, and therefore its share dropped insignificantly from 26.86% to 26.15% (criterion
5). Furthermore the increase in the product’s share due to the corrective method (lower
similarity), does not compensate the decrease due to its lower utility (0.96), thus the
worsening of the product does not lead to an improvement in its share (criterion 6). This
1s an advantage of corrective methods that use linear transformation functions instead
of convex (e.g., negative exponential), which may overestimate small product changes,
resulting in large changes in choice shares. In such cases, a drop in an item’s utility may
result in an increased share, due to the excessive improvement caused by the decreased

similarity.

5.6 A Monte Carlo study for the model’s performance evaluation

A Monte Carlo experiment was designed in order for the predictive accuracy of the

proposed approach to be to compared with that of the ALPHA rule, and 3 more



traditional choice models: the BTL, the Lesourne, and the MNL. Based on previous
studies in market simulation models (Baier and Gaul, 2001) as well as the design of
previous Monte Carlo studies for conjoint data (Vriens et al., 1996), eight independent
factors were specified as having potential impact on the performance of the models, each

varying at two levels (Table 5.7).

Table 5.7: Factors included in the study

Factor Levels

1 Number of simulated respondents 100 500

2 Number of segments 2 4

3 Number of alternatives 4 8

4 Number of attributes 5 9

5 Number of levels 3 6

6 Segment heterogeneity Homogeneous  Heterogeneous
7 Percentage of error variance on preferences 5% 35%

8 Similarity among alternatives Dissimilar Similar

5.6.1 Factors included in the study

The effect of the sample size on the models’ performance will be evaluated using the
levels 100 and 500, since the number of respondents reported in the majority of
commercial uses of conjoint analysis, was as low as 30 and as high as 1000 with a mean
of 268 (Wittink et al., 1994). In order to determine whether the number of segments has
an impact on the models’ results, a two and a four segment situation is selected
according to the related literature (Wedel and Steenkamp, 1989). The influence of the
segments’ heterogeneity will be assessed by setting the variance of the part-worths’
distribution within each segment to either 0.05 for the homogeneous or 0.1 for the
heterogeneous situation (Hagerty, 1985). The number of alternatives is set to 4 or 8
(Baier and Gaul, 2001), in order to test the implications of the size of the choice set (the
number of products from which the customer selects) to the models’ performance. Five
and nine was arranged for the low and high number of attributes conditions
respectively, as in Huber et al. (1993). For simplicity, equal number of levels was chosen

for each attribute, within a range widely used in conjoint studies (i.e. 3 and 6). The 5%



and 35% percentages of error variance on preferences (Wedel and Steenkamp, 1989) will
show the sensitivity of the models’ predictive accuracy to the noise added when
measuring customer preferences. Finally, the effect of the existence of similar
alternatives in the choice set is investigated, in order to assess the models’ tolerance
with the ITA bias. A fractionated factorial design with 12 different profiles is employed
(Table 5.8), as derived from Addelman’s (1962) basic plans.

Table 5.8: The factor-level combinations

Profile Responde Segme Alternat Attribu Levels Varia  Error Similar
nts nts ives tes nce ity
1 100 4 8 5 6 0.1 0.35 No
2 500 4 8 5 3 0.05 0.35 No
3 500 4 4 9 6 0.05 0.05 No
4 500 2 8 5 6 0.1 0.05 Yes
5 500 2 4 9 6 0.1 0.35 No
6 500 2 8 9 3 0.05 0.35 Yes
7 100 2 8 9 3 0.1 0.05 No
8 100 2 4 5 6 0.05 0.35 Yes
9 100 4 4 9 3 0.1 0.35 Yes
10 100 2 4 5 3 0.05 0.05 No
11 500 4 4 5 3 0.1 0.05 Yes
12 100 4 8 9 6 0.05 0.05 Yes

5.6.2 Data generation

Thirty replications were performed for each combination, resulting in a total of 360
synthetic data sets. The data sets consist of simulated part-worths for each respondent,
as well as hypothetical market scenarios with different product configurations. Initially
the part-worth functions of 5,000 hypothetical respondents are estimated, who belong to
2 or 4 equally sized segments. Part-worths for each attribute level are randomly drawn
from a normal distribution, with a different mean for each segment selected within the

range [0, 1]. The variance of the distribution within each segment is set to either 0.05 or



0.1. Next, the market scenario is formulated through the choice of the level of each
attribute for every product. When no similar alternatives exist in the choice set, the
selection of the attribute levels is totally random for all products. In the other case, it is
assumed that there exist two groups of similar alternatives, consisting of 1 and 3, or 2
and 6 products, depending on the level of the factor Number of alternatives. Following
Baier and Gaul (2001), the same level on the first 3 or 5 attributes is set for the
alternatives within each group, whereas the remaining 2 or 4 attributes are assigned

levels at random.

The utility value assigned by the respondents to each product is calculated with the use
of the simulated part-worths along with the products’ configuration. The “real” market
shares are estimated for each scenario, with the use of the error free utilities and
assuming a deterministic first choice rule for each individual. Then the sample of the
population on which the models will be assessed is constructed, by selecting 200 or 1,000
from the 5,000 respondents (equal number from each segment). Error terms are added
to the sample’s “true” utilities, following a normal distribution with zero mean and 0.05
or 0.35 Percentage of Error Variance on preferences according to equation (18). The two
models are calibrated with the use of 100 or 500 respondents, and are then applied to a
different evaluation sample of 100 or 500 respondents respectively. The calibration
sample is only used for the estimation of the R, K and S parameters of the proposed
model and the a exponent of the ALPHA rule, whereas the performance of the five

models is measured using the evaluation sample.

5.6.3 Results of the Monte Carlo study

The mean value and standard deviation of each of the 4 parameters (R, K, S and a)

across all the 360 calibration sets are presented in Table 5.9.

Table 5.9: Parameters’ values across all calibration sets

Proposed model ALPHA
R K S A

Mean  Std Mean  Std Mean Std Mean Std

8.74 11.85 12,75 13.11  -0.08 6.8 1156 106.8




As it is observed, the K parameter has the highest mean value and the lowest coefficient
of variation (standard deviation to mean ratio), meaning that kurtosis is the coefficient
with the highest impact, followed by the range of the utilities, whereas the effect of
skewnes is rather limited. The mean values of MAE deriving from the calibration of the
proposed approach and the ALPHA model are illustrated in Table 5.10, where the

results with and without the application of the corrective method are given.

Table 5.10: Mean MAE values for the calibration of the 2 models with and without

correction for similarity™*

Proposed ALPHA

no correction  with correction  no correction  with correction
1 2 3 4

14.7126* 22.4189" 15.0141** 22.8941

*Statistical significant differences between two means are denoted by superscript numbers attached to the superior mean
(p<0.1).

After the proposed model and the ALPHA model have been calibrated, they are applied
to the corresponding evaluation data set, both with and without the corrective method,
along with the three traditional models. In accordance with previous studies comparing
the predictive accuracy of consumer choice models (Currim, 1982), the following

prediction measures between the simulated and the real market shares are used:

e Mean Absolute Error (MAE=Z| RS, =SS, 1),
J

e Mean Percentage Error (MPE=Z| RS]. — SS‘/. /RS]. ),

J
e and Mean Square Error (MSE=Z(RSJ. =SS, ).
j

Table 5.11 presents the mean values of the three measures deriving from the application

of the 5 models across the 360 evaluation sets.



Table 5.11: Mean values for the three error measures in the evaluation sets*

MAE MPE MSE

Proposed no correction 1 15.80%*%>%7 237234367 73234367

with correction 2 23.89"%7 3.53%>%7 11.02%%7
ALPHA rule no correction 3 16.12%*>%7  2.52%%%7  7.48¥%>07

with correction 4 24.38°7 3.61%% 11.26>°%7
Bradley Terry Luce 5 55.96’ 9.35’ 25.49’
Lesourne 6 52.061% 8.44>7 23.42°7
MultiNomial Logit 7 59.57 9.81 27.24

*Statistical significant differences between two means are denoted by superscript numbers attached to the superior mean

(p<0.1).

As it was expected the MAE of the proposed model for the calibration set is lower than
that for the corresponding evaluation set, but the mean difference is relatively small
(6.7%). This shows that the model avoids overfitting to the calibration set, and achieves
high performance on the evaluation set too. The proposed approach outperforms the
ALPHA rule in all cases, while the clear superiority of both approaches over the
traditional models is obvious. The incorporation of the corrective method results in a
50% loss in prediction performance. This is reasonable, since the study is based on
simulated data, and the real shares have been generated using the first choice rule,
hence human subjectivity is not reflected. Yet, the mean error of the models with the
corrective method remains less than half of the error derived from the traditional
models. More clear conclusions about the performance of the corrective method will be

drawn in the next section where real world data are used.

The mean values of MAE of each model under the different levels of the 8 factors

included in the simulation are shown in Table 5.12.



Table 5.12: Mean MAE values under each of the factor levels for each model

Factor

Respondents

Segments

Alternatives

Attributes

Levels

Segment

Heterogeneity

Similarity of

Alternatives

Error Variance

Level

100

500

Homogeneous

Heterogeneous

Similar

Dissimilar

5%

35%

Proposed model

no correction

16.5729
15.3069*
16.1085
15.9714

12.6780*
19.1856
17.6947

14.1852*

17.0158

14.8640*

15.9566

15.9232
17.5827
14.2971*
12.5447*

19.3351

with
correction

24.6496

23.9513**

25.0726

24.5284

19.7930*

28.8080

28.3923

20.2087*

33.4907

15.1102*

23.7555

24.2071

25.3799

23.9617**

23.6590*

25.3985

ALPHA rule

no correction

16.7431

15.5137*

16.3272

16.0295**

13.0711*

19.2018

17.8285

14.4282*

17.1702

15.0866*

16.1619

16.0948

17.8328

14.4240*

12.6940*

19.5627

with
correction

24.1859

23.0701**

25.6989

24.9879

20.3518*

28.4220

28.5579

20.2159*

33.4801

15.2938*

24.4939

24.2183

24.8121

23.2211%**

23.2025*

25.1148

Bradley

Terry Luce

54.7115**

57.2196

63.7151

48.2160*

47.3152*

64.6159

57.8080

54.1231**

57.3012

54.6299**

61.2276

50.7036*

59.3911

52.5401*

56.4006

55.5305

Lesourne

50.1077*

54.0143

58.5955

45.5265*

43.8257*

60.2963

53.5855

50.5365**

53.8031

50.3189**

56.4835

47.6385*

56.1344

47.9876*

52.7935

51.3285%*

Multi
Nomial

Logit

58.221**

60.9306

67.6043

51.5472*

51.3155*
67.8360

62.3540

56.7976*

60.8693

58.2822**

64.6991

54.4525*

63.2165

55.9350*

60.4176

58.7340%*

The difference between the two means, generated under the levels of the corresponding design factor, is significant:

* at the 0.01 level,

** at the 0.1 level.



As observed, the proposed approach does not underperform on any factor level. The two
calibrated models perform better when applied to more respondents, managing to
accomplish better calibration as the sample increases. On the contrary, traditional models
exhibit a 6.5% error increase for 5 times more respondents, failing to take advantage of the
larger data set and to improve their forecasting performance. If the number of segments is
doubled, the traditional models display a 23% increase in the predictive accuracy. This
factor, as well as the segment heterogeneity, does not impact the performance of the two
calibrated models. Traditional models reflect a 17% difference in performance between the
2 different levels of segment heterogeneity. When the number of alternatives is doubled, the
calibrated approaches exhibit a 50% loss in forecasting accuracy without the corrective
method and a 46% with the incorporation of the method. A 20% increase in performance is
displayed between the 5 and the 9 attribute situation, as well as the 3 and the 6 level
situation. When there are similar alternatives in the choice set, the calibrated models
encounter an 18% performance drop. The incorporation of the corrective method reduces
the percentage of losses to only 5%. The same holds in case that 7 times more noise is
added, where the calibrated models exhibit a 54% raise in the mean prediction error, while

the addition of the corrective method diminishes the increase to only 7%.

5.7 A real world application

In order to test the performance of the model in real world conditions, the data from the
market survey (chapter 4) were used. The data from Table 4.2 were used for the estimation
at the individual level of the part-worths for every level of each attribute. Next, the
customer sample was randomly divided into two equal groups of 240 respondents each. The
proposed model and the ALPHA rule were calibrated, by estimating the values of the R, K,
S and a parameters that best predict the holdout choices for the first group. Table 5.13
shows the MAE resulted from the models’ calibration.



Table 5.13: Mean absolute error for the calibration of the 2 models with and without

correction for similarity*

Proposed ALPHA

no correction — with correction — no correction — with correction
1 2 3 4

229168’ 19.9566"* 23.7051 20.8449"°

*Statistical significant differences between two means are denoted by superscript numbers attached to the superior mean

(p<0.1).

The parameters estimated (Table 5.14) were used in the second group, in order to assess

the predictive accuracy of the five models.

Table 5.14: Parameters’ values derived from models’ calibration

Proposed model ALPHA
R K S A
1.47 5.64 -1.57 15.94

Table 5.15 presents the MAE, the MPE and the MSE for the application of the five models

on the second group of respondents.



Table 5.15: The values for the three error measures on the evaluation group

*

Proposed no

model correction
with
correction

ALPHA no

rule correction
with
correction

Bradley Terry Luce

Lesourne

MultiNomial Logit

5
6
7

AE
23.74%4567

20.8 11,3,4,5,6,7

24.653>%7

21 971,3,5,6,7

42.99209’

41.6241°7
43.7552

PE
3.5924567

1,3,4,5,6,7
3.11

3.817°%

3 241,3,5,6,7

6.612’

6.048>7
6.914

LSE
11.05%4567

1,3,4,5,6,7
9.86

11.903>%7

10 461,3,5,6,7

20.033’

20.816>7
21.537

*Statistical significant differences between two means are denoted by superscript numbers attached to the superior mean

(p<0.1).

As the results indicate, the proposed approach outperforms the ALPHA rule and the
traditional models in the real world application as well. The model achieves a better fit to
real data, since the difference in MAFE between calibration and evaluation is only 4%. The

addition of the corrective method improves the performance of the calibrated models,

resulting in a 14% mean reduction in error prediction.



6 Particle Swarm Optimization

In this chapter the optimization part of the Optimal Product Line Design problem is
implemented with the use of Particle Swarm Optimization, a nature inspired intelligence
technique introduced by Kennedy and Eberhart (1995) that has been successfully applied to
a wide variety of optimization problems of high complexity. The performance of the
proposed approach is benchmarked against Genetic Algorithms, the only population-based
algorithm that has been currently applied to the problem. For simplicity reasons, the BTL

choice model is employed to implement the comparison of the two algorithms.

6.1 Introduction

As discussed in a previous chapter, almost all approaches that have been applied to the
Optimal Product Line Design problem aim at finding a better approximation of the global
optimal solution. Whereas this may be a reasonable target in the Operational Research
domain, marketing managers focus on other more practical issues. For example, when
optimizing a firm’s market share, the introduction of product line A may result in 25%
market share for the firm. At the same time, a product line B may result in 24% market
share but its production cost may be 40% less than that of product line A. Whereas product
line A seems to be the best choice, achieving the highest performance concerning the
optimization objective (market share), product line B constitutes a better option for the firm
taking into account the significantly lower production cost. As long as single-objective
optimization algorithms are used in the Optimal Product Line Design problem, such a

drawback can only be alleviated with an algorithm that provides a number of alternative



good solutions to the problem. Genetic Algorithms (GA), which belong to the class of
population-based algorithms, have been successfully applied to the optimal product line
design problem, displaying high performance in the provision of both an optimal solution

and a set of good near-optimal solutions.

In this chapter, a new population-based optimization algorithm called Particle Swarm
Optimization (PSO) is proposed for solving the Optimal Product Line Design problem. Since
this approach is the first to employ PSO on the specific problem, the PSO algorithm and its
variants will be presented first, and then the algorithm’s parameters will be fine tuned and
the best approach will be selected. Finally, the effectiveness of the approach will be
evaluated, through a comparison of the performance of PSO with that of GAs, regarding a

number of variables of interest.

6.2 Original Algorithm

Particle swarm optimization is a population-based swarm intelligence algorithm. It was
originally proposed by Kennedy and Eberhart (1995) as a simulation of the social behaviour
of social organisms such as bird flocking and fish schooling. PSO uses the physical
movements of the individuals in the swarm and has a flexible and well-balanced
mechanism to enhance and adapt to the global and local exploration abilities. Most
applications of PSO have concentrated on the optimization in continuous spaces, while
recently some work has been done to the discrete optimization problem. Recent complete
surveys for the Particle Swarm Optimization can be found in Banks et al. (2007, 2008) and
Poli et al. (2007). The wide use of PSO, mainly during the last years, is due to the number of
advantages that this method has compared to other optimization methods. Some of the key
advantages are that this optimization method does not need the calculation of derivatives,
that the knowledge of good solutions is retained by all particles and that particles in the
swarm share information between them. Furthermore, PSO is less sensitive to the nature
of the objective function, can be used for stochastic objective functions and can easily escape

from local minima. Concerning its implementation, PSO can easily be programmed, has few



parameters to regulate and the assessment of the optimum is independent of the initial

solution.

The PSO algorithm works as follows. First a set of P particles (population) is randomly
initialized, where a particle is a solution to the problem. The size of the population (P)
remains constant throughout the algorithm’s iterations. The position of each particle is
represented by a d-dimensional vector in problem space si = (siz, Siz,..., Sid), 1 = 1, 2,..., P,
s€R and its performance is evaluated on the predefined fitness function. Thus, each
particle is randomly placed in the d-dimensional space as a candidate solution. The velocity
of the i-th particle vi = (vis, viz,..., Via), ue R is defined as the change of its position. The
flying direction of each particle is the dynamical interaction of individual and social flying
experience. The algorithm completes the optimization through following the personal best
solution of each particle and the global best value of the whole swarm, or the local best
value of a part of the whole swarm depending of the population topology that is selected in
the algorithm. Each particle adjusts its trajectory toward its own previous best position
and the previous best position attained by any particle of the swarm, namely piq and pgd.

The velocities and positions of particles are updated using the following formulas:
vyt +D)=v, () +crand(p, —s,())+c,rand (pgd —S,4(1) (23)
S+ =5, +v,(+1) (24)

where ¢t is the iteration counter; c; and cz are the acceleration coefficients; randl1, rand2 are
two random numbers in [0, 1]. The acceleration coefficients c¢: and c2 control how far a
particle will move in a single iteration. Typically, these are both set equal to a value of 2,
although assigning different values to c¢; and c2 sometimes leads to improved performance.
Eberhart et al. (1996) proposed the limiting of the speed of each particle to a range [-vmax,
vmax] in order to reduce the possibility of particle moving out of the problem’s space.
Usually a value +4 is used. The newly formed particles are evaluated according to the
objective function, and the algorithm iterates for a predetermined number of
generations (iterations), or until a convergence criterion has been met. Finally, the

best solution obtained across all generations is returned. The size of the population (P)



remains constant throughout the algorithm’s iterations. A pseudocode of the Particle Swarm

Optimization algorithm is presented in the following.

Initialization
Select the number of neighbourhoods
Select the number of particles for each neighbourhood
Generate the initial population of the particles
Evaluate the fitness of each particle according to the objective function
Keep the optimum solution of each particle
Keep the optimum particle of each neighbourhood
Keep the optimum particle of the whole swarm
Main Phase
Do until the maximum number of generations has been reached
Calculate the velocity of each particle according to function
Calculate the new position of each particle according to function
Evaluate the new fitness of each particle
Update the optimum solution of each particle
Update the optimum particle of each neighbourhood
Update the optimum particle of the whole swarm
Enddo

Return the best solution/set of solutions.



In the following sections, an analytical presentation of the main variants of the PSO algorithm is

given.

6.2.1 Inertia Weight

An improvement of the initial algorithm was proposed by Shi and Eberhart (1998) which
uses an inertia weight w. The inertia weight controls the impact of previous histories of
velocities on current velocity. The particle adjusts its trajectory based on information about
its previous best performance and the best performance of its neighbors. The inertia weight
w 1s also used to control the convergence behavior of the PSO. The velocities of particles are

updated, now, using the following formula:
v (t+)=wy () +crand(p, —s,0)+crand(p,, —s,(1)) (25)

In order to reduce this weight over the iterations, allowing the algorithm to exploit some

specific areas, the inertia weight w is updated according to the following equation:

Wiax = Wanin -
w=w,,  ——D%_min ey (26)
iter, ..

where Wmax, Wnin are the maximum and minimum values that the inertia weight can take,
iter 1s the current iteration (generation) of the algorithm and iterme is the maximum

number of 1terations.

6.2.2 Constriction Factor

Clerc and Kennedy, 2002 proposed a constriction factor in order to prevent explosion, to
ensure convergence and to eliminate the parameter that restricts the velocities of the

particles. The velocities of particles are updated, now, using the following formula:
vyt +1) = (v, () +crand(p, —s,(1))+c,rand, (pgd =5,4(1)) (27)

where:
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‘2—0—\/02—40
and:
c=c +c,,c>4. (29)

It should be noted that a number of theoretical studies have shown that the convergence
behavior of PSO is sensitive to the values of the inertia weight, the acceleration coefficients
and the constriction factor (Engelbrecht, 2007). The choice of values for PSO parameters

that will ensure convergence to an equilibrium point is problem dependent.

6.2.3 Population topology

There are two kinds of population topology for the Particle Swarm Optimization, the global
best (gbest) population topology and the local best (Ibest) population topology (Engelbrecht,
2007). In the gbest PSO the neighbourhood for each particle is the entire swarm. The social
network employed by the gbest PSO reflects the star topology, where all particles are
interconnected. Thus, the velocities of each particle are updated based on the information
obtained from the best particle of the whole swarm. In the lbest PSO each particle has a
smaller neighborhood. In this case the network topology reflects to the ring topology, where
each particle communicates with only N other members of the swarm. The communication
1s, usually, achieved with the indices of the particles. Thus, if the size of the neighbourhood
is equal to 2 the selected neighbours for the particle i are the particles i-1 and i+1. Thus,
the velocities of each particle are updated based on the information obtained from the best
particle of the neighborhood. The use of particle indices for the creation of the neighborhood
is preferred because it is very difficult and computational expensive to calculate distances
between all the particles in order to find the neighbours of each particle. Furthermore, if
the indices are used then a particle may belong to more than one neighbourhood, having

the possibility to spread a good solution in different neighborhoods. Usually the gbest PSO



converges faster than the lbest PSO. On the other hand the lbest PSO has larger diversity

in the solutions and, thus, it is more difficult to being trapped in a local minimum.

6.2.4 Discrete Particle Swarm Optimization

The basic PSO algorithm and its variants have successfully operated for continuous
optimization functions. In order to extend the application to discrete spaces, Kennedy and
Eberhart (1997) proposed a discrete binary version of PSO where a particle moves in a state
space restricted to zero and one on each dimension and where each v; represents the
probability of bit s; taking the value 1. Thus, the particles’ trajectories are defined as the
changes in the probability and v; is a measure of individual’s current probability of taking 1.
If the velocity is high it is more likely to choose 1, and lower values favour choosing 0. A
sigmoid function is applied to transform the velocity from real number space to probability

space:
sig(u,, ) =1/1+exp(—u,) (30)

In the binary version of PSO, the velocities of the particles are updated using the equations
(23), (25) or (27) depended on which version of the PSO is used while the positions of the

particles are updated using the following equation:

1,if rand; <sig(v;; )

su(t+1)=4 (31)

0, otherwise

where rands is a uniform random number in [0, 1].

6.3 The proposed approach

The customers’ utility functions are estimated at the individual-level, and are converted to
choice likelihoods through probabilistic choice rules. The share of choices problem will be

solved, where the goal is the maximization of a firm’s market share. The application of the



model to other problems (seller’s return, buyer’s welfare) is straightforward. In such a

context the problem is formulated as follows.

6.3.1 Problem formulation

When probabilistic choice rules are used, the market is assumed to consist of [N competitive
products with known configurations, including the M candidate items for the firm’s line.

The parameters used to formulate the problem are described below:

£ ={1,2,...N}1s the set of products that comprise the market.

02=1{12,..K}is the set of K attributes that comprise the product.

@, =1{1,2,...,J,} 1is the set of Jr levels of attribute k.

¥ ={1,2,..,M}1is the set of products to be designed (¥ c = ).

6=1{,2,..,1} is the set of I customers.

wijk=1s the part-worth that customer i ¢ 9 assigns to level je @, of attribute ke 2.

The following decision variable is also used:

1,if thelevelof product’s m attributek is j,
X Jkm = { (32)

0, otherwise

In contrast to the deterministic choice rule formulation, customers do not have a status quo
product, and do not deterministically choose the highest utility alternative. Instead, each of
the N alternatives has a certain probability to be selected, which depends on its utility
value. Using the BTL model, the probability that customer i will choose product m 1is

estimated as follows:

Bm:UimZU . icOme¥,necE (33)

nex

where Uin the utility that customer i assigns to product m (sum of its part-worths):



ul.m:ZZwkajkm, i€0,jed®  keQmeY¥Y (34)

keQ jed,

In this context the problem is formulated as the following non-linear program:

max » > P, (35)

me¥ ied
subject to
D X =1, keQmeV¥ (36)
Je@y
X = 0,1 integer (37)

Constraint (36) requires each product in the line to be assigned exactly one level of each
attribute. The objective function (35) maximizes the market share of the m products

(probability to be purchased) of the company’s line.

6.3.2 Solution Representation

One of the most critical issues when developing a PSO algorithm is the solution
representation. PSO has been employed in the optimization of various continuous nonlinear
functions, but the applications of PSO on discrete problems are still limited. In this section,
the potential formulations of the PSO algorithm for the Optimal Product Line Design are
described, which is a combinatorial optimization problem. The goal is to construct a direct
relationship between the PSO particles and the problem domain. Since PSO was initially
developed for optimization in continuous search spaces, the mapping that yields the best
results when converting from continuous domain to the discrete domain required by the
problem will be explored. For this reason the performance of three integer and two binary

mapping rules is compared.

6.3.2.1Integer Representation



In an integer representation scheme, a search space of S=M*K dimension is setup. Each
dimension has a discrete set of possible values limited to the range [1, Ji]. For example,
consider a problem where a line comprises two products, each consisting of three attributes,

which can take three different levels. A possible solution would be:
2111332, (38)

where in the first product, level two appears in attribute one, and level one appears in
attributes two and three, while in the second product, level three appears in attributes one
and two, and level two appears in attribute three. In this case, the PSO population is
represented as a PxS two-dimensional array consisting of P particles, each represented as a
vector of S product attributes. Thus, a particle flies in an S-dimensional search space. An

attribute i1s internally represented as an integer value indicating the selected level during

the course of PSO.

In dealing with the Task Assignment Problem, Salman, Ahmad and Al-Madani (2002) map
an n-task assignment instance into the corresponding n-coordinate particle position. The
real values in the particles’ positions are converted to integers by dropping the sign and the
fractional part. This approach is employed through the further limitation of the integer
value to the range [0, Ji -1], and it is given the name “Fix”. Laskari, Parsopoulos and
Vrahatis (2002) propose a PSO algorithm for Integer Programming, where the real values
in the particles’ positions are truncated to the nearest integer. In order for this approach to
be applied to the product line design problem, the absolute value of the truncated particles’
positions is taken, and the values are limited as before. This mapping is called “Trunc”.
Finally, a mapping will be tested where the values x in the particles’ positions are first
limited to the range [0, Jr-1] through the function Y=x mod Jk, which gives the remainder of
the division of x by J&. Y is then converted to integer through dropping its fractional part.
This mapping is called “Mod”. A line of two products for example are to be represented,
each consisting of three attributes, which can take three levels (0, 1, 2). Table 6.1 illustrates
the different product lines in which the same random particle corresponds, using the three

Integer mapping rules.



Table 6.1: Different integer mappings for a potential product line

Product 1 Product 2
Attributes 1 2 3 1 2 3
Particle 1.3 -21 0.6 -04 19 4.7
Fix 1 2 0 0 1 2
Trunc 1 2 1 0 2 2
Mod 1 0 0 2 1 1

As it 1s observed, when the three mapping rules are used, a specific particle corresponds to
three different product lines. In the second attribute of product 1 for instance, the
corresponding particle’s value is -2.1. Under the Fix mapping, the sign is first dropped (-
2.1-2.1), and then the fractional part (2.1—2). Under the Trunc mapping, the value is first
truncated to the nearest integer (-2.1—-2), and then its absolute value is taken (-2—2).
Under the Mod mapping, the remainder of the division of -2.1 by 3 (0.9) is taken first, and
then the fractional part is dropped (0.9—0). In the third attribute of product 2, where the
particle’s value is 4.7, the Fix and Trunc mappings result in values 4 and 5 respectively,
which are then both altered to a value of 2, since they exceed the range [0, 2]. The
remainder of the division of 4.7 by 3 is 1.7, which results in a value of 1 if the fractional

part is dropped (Mod mapping).

6.3.2.2Binary Representation
In a binary representation scheme the solution (38) would be represented as: 010 100

100001 001 010.

Here each particle dimension represents an attribute level. A value of 1 denotes that the
specific level is assigned to the corresponding attribute. Therefore each particle flies in the
S=M*K*J» dimension space. Since exactly one level must be assigned to each attribute, the
particle is divided into parts, each describing a single attribute. Within each part exactly
one dimension must take a value of 1 and all the others must take a value of 0. Tasgetiren
et al. (2004) propose a heuristic rule called Smallest Position Value (SPV) to enable the

continuous PSO algorithm to be applied to the Single Machine Total Weighted Tardiness



problem. In order for this rule to be applied to the product line design problem, it is
modified as follows. Within each particle’s part the dimension with the smallest real value
takes a value of 1, and the rest take a value of 0. Liao, Tseng and Luarn (2007), apply to the
Flowshop Scheduling problem a small modification of the discrete version of PSO for binary
problems (6.2.4). The particle’s velocity is converted to the change of probability, which is
the chance of the binary variable taking the value 1. In the problem under investigation,
the dimension with the highest velocity within each particle’s part takes a value of 1, and

the rest take a value of 0.

6.3.3 A comparison of the different mappings’ performance

In order the most suitable mapping between the problem solution (line of products) and the
particle to be found, the performance of the five different mappings is compared with the
use of artificial data sets. This is implemented through the design of a fractional factorial

experiment with five factors, each taking two levels (Table 6.2).

Table 6.2: Factors and levels used in the experiment

Factor Levels
Number of attributes 3 6
Number of attribute levels 4 7
Number of products in the line 2 4
Number of competing firms 3 5
Number of customers 100 500

The data sets where the five mappings will be tested consist of simulated part-worths for
each customer, as well as hypothetical market scenarios with different configurations of
competitive products. The market is assumed to consist of 3/5 competing firms, each
offering 2/4 different products, which is also the number of products that our company
plans to introduce. Each product consists of 3/6 attributes which can take 4/7 different

levels. The individual-level part-worths for each attribute level, are randomly drawn from a



uniform distribution in the range [0, 1]. The part-worths are normalized within each
customer, by setting the lowest level of each attribute to zero, and rescaling the sum of the
best attribute levels to unity. In order for the market scenario to be formulated, each
attribute level for each competitive product is randomly selected. Using the simulated part-
worths along with the products’ configuration, the utility value that each consumer assigns
to each product is calculated. Finally, by adding the potential products under design and
applying the choice model, the fitness of each possible solution is estimated. Eight
combinations of the factors above were generated based on Addelman’s (1962) basic plans.
Twenty replications were performed for each of the eight profiles, resulting in a total of
eight hundred runs of the algorithm for the five different mappings. The parameters used
in the PSO algorithm (Table 6.3) are typical values found in the related literature (Kennedy
& Eberhard, 2001).

Table 6.3: PSO parameters used in the experiment

Parameter Value
Population size 50

Cq 2

(o 2
Wnax 0.9
Wnin 0.1

X 0.728
Number of iterations 1000

Table 6.4 shows the average fitness among the twenty replications that each mapping
achieved in each profile. Fitness values are represented as a percentage of the best value

obtained from among all mappings.



Table 6.4: Mean fitness values for each mapping

Profile Discr Fix SPV Trunc Mod

1 1 0.9952 09972  0.9948  0.9950
2 1 0.9952 09976  0.9948  0.9948
3 1 0.9925 09984  0.9937  0.9928
4 1 0.9970 09982  0.9976  0.9965
5 1 0.9873  0.9948 0.9873  0.9870
6 1 0.9953 0.9970 0.9958  0.9954
7 1 0.9918 0.9964 0.9912  0.9906
8 1 0.9964  0.9994  0.9964  0.9952
Mean 1 0.9938 09973  0.9939 0.9934

The superiority of the binary approaches over the integer ones is obvious. The Discr
mapping strictly outperforms the other mappings in all profiles. The average values of the
mean, maximum, and minimum number of iterations at which the best solution was found,
as well as the time required by the algorithm to complete the one thousand iterations, are

presented in Table 6.5.

Table 6.5. Values for iteration best fitness found and algorithm completion time

Measure Discr Fix SPV Trunc Mod
Iteration best Mean 569.1 16.2 488.4 73.8 39.2
fitness found  Max 701.9 23.7 690.3 268.7 95.6

Min 404.7 9.5 289.3 11.2 10.1
CPU Time* 56.9 8.2 47.1 247 31.3

* CPU Time is measured in seconds on a 2.4 core 2 duo PC with 4GB of RAM

As it is observed, integer mappings require less number of iterations to find the solution
than do the binary mappings, but take more time to complete each iteration. The
approaches that will be further tested are the Discr, as it achieves the higher fitness, and

the SPV, as it achieves the second higher fitness in shorter computational time.



6.3.4 PSO configuration

This section evaluates the performance of the two binary mappings combined with different
configurations of the PSO algorithm. Specifically the performance of the simple PSO will be
compared with the PSO with inertia weight, the PSO with constriction factor, and the PSO
with both inertia and constriction. The previous designed experiment is used here as well,

and the results are i1llustrated in Table 6.6.



Table 6.6: A comparison of different PSO configurations under the two binary mappings

Discr Discr ~ with Discr with Discr with Inertia & SPV SPV with  SPV with SPV with Inertia
Constriction  Inertia Constriction Constriction  Inertia & Constriction
1 0.9952 0.9948 0.9937 0.9933 0.9941  0.9976 0.9956 1
2 0.9960 0.9952 0.9941 0.9945 0.9941  0.9980 0.9960 1
3 0.9961 0.9972 0.9953 0.9945 0.9930  0.9992 0.9976 1
@ 4 0.9982 0.9976 0.9976 0.9976 0.9970  0.9988 0.9982 1
zé_ 5 0.9903 0.9857 0.9863 0.9869 0.9846  0.9960 0.9926 1
6 0.9922 0.9914 0.9902 0.9902 0.9887  0.9953 0.9937 1
7 0.9919 0.9884 0.9884 0.9890 0.9861  0.9942 0.9919 1
8 0.9970 0.9969 0.9958 0.9958 0.9952  0.9982 0.9976 1
Mean Fitness* 0.9946 0.9934 0.9926 0.9927 0.9916  0.9971 0.9954
Iteration best Mean 505.3 569.4 329.2 506.1 502.6 685.9 696.2 783.9
fitness found  Max 695 709.4 531.2 757.4 680.4 815.4 806.2 860.6
Min 413.2 410.8 114 357.4 373.6 545.4 514.6 402.4

CPU Time** 49 55.1 31.9 48.9 48.5 65.9 66.9 75.3




*Fitness values are represented as a percentage of the best value obtained from among all

PSO configurations

** CPU Time 1s measured in seconds on a 2.4 core 2 duo PC with 4GB of RAM

The use of the extra parameters helps the SPV approach to outperform the Discr approach,
requiring however more iterations and computational time. The SPV with inertia and

constriction strictly outperforms the other approaches in all profiles.

6.3.5 Population topology

In the present section the performance of the PSO algorithm with inertia and constriction
under the SPV mapping will be assessed, with use of different population topologies.
Specifically, the gbest topology and a number of different [best topologies will be tested,
with use of the same experiment as before. Here, a complete enumeration of the search
space in each problem instance is also implemented, in order for the algorithm’s
approximation of the optimum solution to be to evaluated. The values of the PSO
parameters are the same as in Table 6.3, except for the size of the population. Through the
evaluation of the algorithm’s performance using 9 different population sizes, from 20 to 90,
it was found that a size of 60 gave the best results. Ten different topologies are tested; from
1 neighborhood comprising 60 particles (gbest topology), to 30 neighborhoods comprising of
two particles each. Table 6.7 illustrates the mean values of the best fitness as a percentage
of the optimum, the iteration in which best fitness was found, and the computational time,

across the 160 runs for each topology.



Table 6.7: Performance evaluation of ten different PSO topologies

Topology

Gbest

Ibest2

Ibest3

Ibest4

Ibest5

Ibest6

|lbest10

Ilbest12

|lbest15

Ilbest30

Number

neighborhoods

10

12

15

30

of Neighborhood

size

60

30

20

15

12

10

Best

Fitness

0.9946

0.9948

0.9954

0.9955

0.9960

0.9966

0.9965

0.9957

0.9951

0.9949

Iteration best

fitness found

863

892.75

812.75

932.25

940.75

781.5

853.5

788.75

802.25

789.25

CPU

Time*

80.20

84.44

85.43

86.49

87.72

88.73

91.98

99.88

104.04

117.56

* CPU Time is measured in seconds on a 2.4 core 2 duo PC with 4GB of RAM

The first finding is that the /best topology strictly outperforms the gbest topology, since the
latter gives the worst mean value of the best fitness across the ten different topologies. As
the number of neighborhoods increases the algorithm’s performance also increases until the
topology of 6 neighborhoods, each consisting of 10 particles. A decline in the algorithm’s
performance is observed from this point until the final topology of thirty, 2-paricle
neighborhoods. The CPU time increases as the number of neighborhoods increases, since a

topology with more neighborhoods requires that more local bests have to be calculated and

stored in each iteration.



6.4 A comparison of Particle Swarm Optimization with Genetic

Algorithms

This section will benchmark the performance of PSO against current state of the art
algorithms. Previous studies have shown that Genetic Algorithms outperform Dynamic
Programming (Balakrishnan and Jacob, 1996), as well as Beam Search (Alexouda and
Paparrizos, 2001; Balakrishnan et al.,, 2004), and together with Simulated Annealing
provided the best performance among the 9 most important algorithms that have been
applied to the problem (Belloni et al., 2008). Since Simulated Annealing is a single-best
approach, the performance of PSO will be compared with that of GAs. The performance of
PSO and GAs will be compared without the incorporation of retaliatory responses from
competition, an issue that will be elaborated in the subsequent section. Based on the
results of the preceding analysis, the approach that will be applied is the PSO with inertia
and constriction under the SPV mapping, using a topology of 6 neighborhoods each
consisting of 10 particles. The other PSO parameters are the same as in Table 6.3, except
for the number of iterations which is not fixed. Instead, a convergence criterion is employed,
according to which the algorithm will terminate when the best solution is not improved for
20 succeeding generations. As for the GA configuration, the findings of previous studies

which benchmark GAs against other approaches will be used.

6.4.1 Genetic Algorithm implementation

Genetic Algorithms will be implemented with the use of an integer representation scheme
(instead of a binary) as in Balakrishnan et al. (2004), since all genetic operators (crossover,
mutation) have to be applied to entire attributes (genes), (instead of a portion of binary bits
that form an attribute) in order for feasible solutions to be produced. The size of the GA
population 1s set to 100 (Balakrishnan and Jacob, 1996), and a random initialization is
performed. In accordance with the findings of the sensitivity analysis performed by Steiner
and Hruschka (2002), the crossover probability is set to 0.9, and the mutation rate to 0.04.
A uniform crossover process is adopted, where half of the attributes exchange values
between the two parents. An elitist strategy is employed as the reproduction process, where

the 40 best chromosomes are selected to survive into the succeeding generation, as in



Alexouda and Paparrizos (2001). The moving average rule is adopted as the convergence
criterion, where the algorithm stops iterating when the increase of the mean fitness value

of the best 3 chromosomes is less than 0.2%, in comparison to the last 5 generations.

6.4.2 Performance results

Given that conjoint methods are being applied to more and more complex settings, it is
important to demonstrate that PSO scales to more realistic larger problems than the
previous solved, in which GAs have already been tested. For this reason, a fractional
factorial experiment was designed, consisting of 5 factors each varying at two levels (Table

6.8).

Table 6.8: Factors and levels used in the experiment

Factor Levels
Number of attributes 5 9
Number of attribute levels 4 8
Number of products in the line 6 9
Number of competing firms 5 8
Number of customers 200 700

In a problem instance with 9 attributes and 8 levels per attribute the possible combinations
for a single product are 134,217,728, while for a line of 9 products the number of possible
solutions is over 10%°. Finding and verifying the global optimal solution through complete
enumeration of the search space in problems of such sizes would require more than a month
of computational time. Hence, the best solutions provided by PSO and GA will not be
compared with the optimum. Instead, a relative comparison of the two algorithms’

performance will be made regarding a number of variables of interest. As before eight



profiles were created and 20 replicates were generated for each, which results in a total of
160 different data sets. In order for the two algorithms to be compared with regard to the
best solution found, the ratio of the best solution found by PSO to that found by GA will be
calculate, as well as the percentage of problem instances in which a) PSO finds a better
solution than GA, and b) GA finds a better solution than PSO. Table 6.9 presents the mean

values across the 160 data sets.

Table 6.9: Performance results regarding the best solution found by the PSO and GA

Average PSO/GA 1.0126
PSO better than GA 23.12%
GA better than PSO 20.62%

PSO found a better solution than GA in 37 out of the 160 runs (23.12%), GA found a better
solution than PSO in 33 runs (20.62%), while in 90 runs (56.25%) the two algorithms gave
the same best fitness. On average, PSO performs 1.26% better than the GA. The average
iteration where best solution was found is also estimated, as well as the time required for
the algorithms to converge, and the average fitness of the solutions in the final population,
and the fitness of the worst solution in the final population. The last two variables are
calculated as a percentage of the best solution found by the two algorithms in each problem,
and will enable the evaluation the quality of the entire set of solutions that each algorithm
provides. Furthermore, the diversity of the alternative solutions is assessed through the
estimation of the number of unique solutions in the final population, the percentage of
unique solutions whose fitness is at least 95% of the best solution’s fitness and the standard
deviation of their fitness. Two solutions are considered different if they differ in at least one
product, and two products are considered different if they differ in the level of at least one

attribute. The mean values of the above variables of interest are illustrated in Table 6.10.



Table 6.10: Mean values of the variables of interest for PSO and GA

Variable PSO GA
Iteration best solution was found 775.62  32.37
Computational Time* 86.96 14.51
Percentage of unique solutions in the final population 85% 48%
Percentage of unique solutions with fitness at least 95% of the best 38.3% 9%
Average fitness of the solutions in the final population 94.97% 96.72%
Worst solution’s fitness in the final population 85.68% 89.44%
Standard deviation of solutions’ fitness in the final population 0.016 0.009

* CPU Time is measured in seconds on a 2.4 core 2 duo PC with 4GB of RAM

Whereas PSO completes each iteration 4 times faster than GA, it requires 6 times more
computational time to converge. Fifty one out of the sixty (85%) final solutions proposed by
PSO are unique, while only 48 out of the 100 are unique in the GA’s final population. The
average fitness of the final population is higher in GA (94.72%) than in PSO (92.97%) due to
the higher number of identical solutions in the GA’s final population. The wider range of
good solutions that PSO provides is also indicated from the percentage of unique solutions
whose fitness is at least 95% of the best solution’s fitness, which 1s 38.3% (23 out of the 60
solutions) for PSO and only 9% for GA (9/100). The low performance of GA in the specific
variable is an outcome of the reproduction and crossover processes, which essentially
recycle the same genes (attribute levels) among the different solutions, resulting in a final
population that contains many copies of 3-5 good chromosomes. This explains the 7 times
higher standard deviation of fitness values in the final population of PSO compared to that
of GA. The low diversity of the GA’s final population can be mitigated by an increase in the
mutation probability, since mutation can produce chromosomes that correspond to new
undiscovered regions of the search space. Higher mutation rates were tested, but whereas

this increased the GA’s population diversity, it significantly impacted the fitness of the best



solution (a 3%-5% reduction), since higher mutation increases the randomness of the
search. Larger GA’s population sizes were also explored, but the gain was too small in
relation to the extra time required for the algorithm to converge. Another effect of the
reproduction process is the early elimination of the bad solutions. As a consequence, GA
performs better (89.44%) in the worst solution’s fitness in the final population compared to
PSO (86.68%). The results indicate that PSO provides the decision maker with a wide range
(51 out of 60) of unique high quality solutions (94.97% average fitness), among which he can
choose the best 20 (which exhibit fitness over 95% of the best solution) for further
evaluation. GA on the other hand, while running 6 times faster than PSO, it converges to a
final population of low diversity with multiple copies of less than 10 good solutions. Such a
small set of unique chromosomes can be too restrictive in many situations, since the
solutions may proved to be almost identical, representing product lines that differ in only a
single attribute level of one product. On the contrary, PSO searches a much larger part of
the entire solution space, in an acceptable amount of time for a marketing application (less
than one and a half minute). The neighborhood topology enables PSO to converge to several
local optima (usually the same as the number of neighborhoods) and provide a broad range

of good solutions around them.



7 Modeling competitive reactions

In this chapter the retaliatory actions from competitors are modeled in a game theoretic
concept. Each firm is treated as a Nash player that optimizes its product line using PSO
until a market equilibrium is reached. The approach will be demonstrated through a

scenario based on the data from the milk survey.

7.1 Introduction

As illustrated in chapter 3, a number of optimization algorithms have been applied to the
problem, guaranteeing even the global optimality for the single product design problem.
However, all studies treat the competition as being static, where the companies that
participate to the market do not react to the new entrant’s move, staying with the product
line configurations that were already offering. It is obvious that this does not constitute a
proper representation of real world conditions. A model that is based in such an assumption
can only provide an instant picture of the market that is valid only for a short period after
the introduction of the new product line. However, companies which are about to spend a
lot of money in developing and launching their new products are interested for the market
share and profits obtained in the longer term. Only when competitors have made their
moves and the market has stabilized the new entrant can recover its investment and obtain

some profit.

Recent approaches that optimize product line designs using conjoint data neglect to

explicitly consider potential retaliating moves from the competitors. Actually, only two



approaches have incorporated competitive reactions using game theory in the conjoint
analysis context. Choi and DeSarbo (1993) apply a specialized branch and bound
optimization algorithm, while modeling the competitive responses in a Nash equilibrium
framework. Green and Krieger (1997), also employ the Nash equilibrium concept with the
use of divide and conquer heuristic. While being the first studies to apply game theory to
the product design, both approaches solve only the single product design, using traditional
single-best optimization approaches. A possible reason for which a dynamic competition
approach has not yet been considered in the Optimal Product Line Design problem is that
conjoint attributes are typically discrete. In a discrete space the existence of a Nash
equilibrium cannot be guaranteed through an analytical closed-form solution. Even if a

Nash equilibrium is found, its uniqueness cannot be proved.

7.2 A Nash equilibrium approach

The above problems will be faced in the present thesis through the employment of an
empirical sequential iterative process for computing a Nash equilibrium, if it actually
exists. The market will be considered to be dynamic, where a new entrant introduces a line
of products, and the incumbent firms respond by optimizing their products’ configuration
according to the objective function (equation 35). This is a game where each player (firm)
acts with perfect information, by observing the competitors’ earlier moves. The process
continues until a Nash equilibrium (@f there exists at least one) is reached. A Nash
equilibrium 1s a situation where, given the objective function, none of the players that
participate to the game can make any further gains (market share increase) by moving
(altering attribute levels) unilaterally. Since an analytical closed-form solution cannot be
calculated, the problem will be solved using an iterative tatonnement process. Tatonnement
process is a term used in game theory to describe the process by which markets find their
way to equilibrium. The tatonnement process can be either simultaneous, where all players
form their strategies at the same time, or sequentially, where each player moves in turn, in
a sequential predetermined order. In real markets, companies usually observe competitors’
moves and then alter their strategies, rather than acting all together in a simultaneous

manner. Hence, a sequential tatonnement process is employed, like in Choi and DeSarbo



(1993), and Green and Krieger (1997), since this constitutes a better representation of real

world circumstances.

7.2.1 An illustrative real world case

The proposed approach will be demonstrated using actual conjoint data from the real
market survey concerning milk buyers. According to the scenario, ALPHA plans to become
one of the largest players in the Greek retail market of milk, by redesigning its product
line. As mentioned in chapter 4, four companies are the main players in the market. For
illustrative purposes, it is assumed that each competitor is currently offering 3 different
products. Under such a scenario, a game of five players (including the new entrant) is
formulated, where each alters each product strategy (optimizes its product line) in a
sequential predetermined order, until a Nash equilibrium is reached. Table 7.1 presents the
current market scenario, with the initial product configurations of the four incumbent
firms, together with the corresponding total market share for each firm. Each product is
described with four integers, each representing the selected level of the corresponding
attribute. For example, the product 4312 describes a 2-litre, Goat milk, with 1.5% fat in a
plastic package.

Table 7.1: The existing situation of the market before the entrance of the new firm

Firms Products Market Share
(%)
1 2 3
BETA 2111 1221 3312 30.86
GAMMA 4122 3211 1322 28.02
DELTA 3122 2212 4311 25.44

EPSILON 1111 4222 2321 15.68




The game begins when the new entrant (ALPHA) introduces a line of three new products,
becoming the fifth player of the market. ALPHA designs its line based on consumers’
preferences (parth-worhts) and the current competitive products’ configuration (Table 13),
using the PSO algorithm. The best solution that PSO provides is the 3112 2221 1321. The
new market shares are now ALPHA:25.44%, BETA:20.15%, GAMMA:22.03%,
DELTA:19.64%, EPSILON:12.74%. The entrance of ALPHA to the market results in a 35%
reduction in BETA’s share and a 20% reduction in the share of the rest three firms. ALPHA
competes mostly with BETA, since two of their product are almost identical, differing only
in the level of a single attribute. As a consequence, it is expected that the first player that
will react to the launch of ALPHA’s product line is probably BETA, which will try to
redesign its line and win back the lost market share. In such a situation, BETA will
optimize its product line based on the new market scenario that includes ALPHA, and the
consumer’s part-worths, which for the purpose of the study are considered stable. In total,
there are 24 different sequences of competitive moves when ALPHA initiates the game. The
order of movement for the incumbent firms must be determined exogenously, usually
through managerial judgment. For illustrative purposes it is assumed that the players will
respond in a lexicographic order. In such a case, a Nash equilibrium is found after 8 moves,
with GAMMA being the last to react. A ninth move will not be made, since neither DELTA
nor any of the rest players can find a new solution that will result in an increase in their
market share. The product configurations after the market has reached the Nash

equilibrium along with the final market shares are shown in Table 7.2.



Table 7.2: The new situation of the market after the Nash equilibrium has been reached

Firms Products Market Share
(%)
1 2 3
ALPHA 1212 2221 1321 22.31
BETA 2111 4211 2322 22.74
GAMMA 4121 3211 4321 23.42
DELTA 3122 2212 3111 19.38
EPSILON 1221 4222 2321 12.15

The configuration of more than half of the products that form the market has changed
compared to the initial market scenario shown in Table 7.1. Significant differences are also
displayed in the firms’ market shares. BETA exhibited the greatest loss due to the entrance
of ALPHA, and GAMMA was the firm that managed to improve its position after the
stabilization of the market. This indicates that when the market is treated as dynamic, the

outcome of the optimization process is substantially different from the static case.

Now it is assumed that the market initially comprises 5 players, with ALPHA participating
with its initial product line 3112 2221 1321. The sequence in which firms move is changed
from ALPHA-BETA-GAMMA-DELTA-EPSILON to GAMMA-EPSILON-DELTA-BETA-
ALPHA. The market reaches a Nash equilibrium after 9 moves this time, with BETA being
the last acting player. The final market shares in this case are: ALPHA:20.16%,
BETA:24.09%, GAMMA:21.50%, DELTA:20.91%, EPSILON:13.34%. As it is observed, the
order in which the firms make their moves affects the final outcome, since this time BETA
and DELTA gained more from the competitive game than the other three players. An
interesting finding is that the “first mover advantage” comes under question in the second
scenario, since GAMMA that initiated the sequence exhibited a small decline in its share
compared to the first scenario. On the other hand, the player that makes the last move

(GAMMA in the first, BETA in the second scenario) seems to be in a favored position.



However, both issues constitute empirical findings that cannot be easily generalized.
Probably the first mover advantage would hold, if the first player could foresee the future
moves of the competition. In the proposed approach where a player cannot predict the
future competitors’ actions but has, on the contrary, perfect information concerning the
other players’ previous moves, the last moving firm is in a position to optimize its product
line without encountering any further competitive reactions. Since however, the firm that
will make the last move cannot be determined in advance, the value of such a finding is

rather limited.

An issue that must be further examined is the fact that each firm optimizes its entire
product line every time it makes a move. This seems to be a quite strong assumption, since
in real markets production as well as advertisement costs would prevent firms to alter more
than a couple of products every time they observe a competitive action. Nevertheless,
modeling competitive reactions in the concept of Nash equilibrium provides useful insights,

such as identifying those attribute levels that can stay intact in the long term.



8 The System

The models described in the previous chapters were all developed with the use of the
R2008a edition of the MATLAB programming language. The user interface of the system
was built with the use of the Microsoft Visual Basic 2008 express edition programming
language. In this section, the system that incorporates the proposed models is presented.
The case study example that was described in the previous chapter will be used for the

1llustration of the system.

The customers’ partworths constitute the main input of the system. The user is provided

with 3 choices for entering the customers’ partworths:
1. Importing from a database.
2. Importing from a Spreadsheet.
3. Entering the data manually into a form.

The partworths are entered through the “Load Partworths” selection from the “File” menu.
After the procedure has been completed the loaded partworths can be accessed through the
“Data Set” tab (Figure 8.1)



Figure 8.1: The partworths matrix
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In order for the system to process these partworths, the attributes that represent the
product together with the corresponding levels must be entered to the system. The user
must give the name of each attribute and the corresponding levels separated by semicolons.
The attribute levels must be entered in the same order as they appear in the file containing
the partworths. A short description for each attribute may also be given. The process is
accomplished through the “Enter product configuration” selection from the “File” menu

which opens the “Attribute Levels” tab (Figure 8.2).



Figure 8.2: The attributes and levels that form the products
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After completing the above process, the number of firms (players) that form the market
must be set. This is implemented through pressing the “Enter Players’ parameters” button
in the “Attribute Levels” tab. This opens a textbox where the number of players (excluding

the new entrant) that will participate to the game must be entered (Figure 8.2).

The product configuration of the incumbent firms of the market (players) along with the
corresponding market shares must be entered next. These data constitute the second and
last input of the system. This is implemented with through the “Player Parameters” tab
that opens after the number of players has been set (Figure 8.3).



Figure 8.3: The product configurations of the incumbent firms
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Next, the current market shares of the current competitors must be entered through the
“Enter market shares” selection from the “Players” menu. This opens the ‘Market Shares”
tab, where the name of each firm along with its market share must be entered in a new

line. For a new entrant only its name is entered.

The last step is the determination of the values of the PSO parameters that will be used in
the optimization process. This is implemented through the “Define parameters” selection

from the “P.S.0.” menu (Figure 8.4).



Figure 8.4: Determination of the PSO parameters
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Now the simulation of the game is ready to begin through the selection of the “Run” choice
from the “File” menu. Initially, the market simulation model is calibrated with the use of
the customer partworths and the competitors’ current market shares. When this process is
completed the “Simulation” tab opens. Here each competitor (player) is represented through
an orange-green disk. The player that is currently optimizing its product line is denoted by
a purple color. A progress bar shows the percentage of completion of the optimization

process of the active player (Figure 8.5).



Figure 8.5: Simulation of the market
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When the simulation is completed the “Product Line Configuration” tab opens. Here the 20

best solutions (product line configurations) for the new entrant are illustrated (Figure 8.6).



Figure 8.6: The 20 best product line configurations for the new firm.
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The user can select one of the 20 solutions and open the “Market Shares” tab, to see the

final market share for each competitor under the selected scenario (Figure 8.7).



Figure 8.7: The final firms’ market shares under a specific solution
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Now the user has all the required information for assessing the different solutions and

selecting the most beneficial.



9 Concluding remarks

The Optimal Product Line Design is a NP-hard combinatorial optimization problem, where
several approaches have been applied over the past thirty years. The three main critical
properties of the problem are the simulation of customer choice behavior, the optimization
algorithm employed, and the modeling of competitors’ reactions. Most approaches have
employed deterministic choice rules for simulating the customer choice process, in order to
reduce the problem’s complexity, which however, suffer from serious limitations. Market
simulation models have never been employed in any approach or marketing system, since
they significantly raise the algorithm’s complexity. However, the large increase in
computers’ speed, as well as the advances in optimization algorithms, can now compensate

the extra complexity that market simulation models add to the problem.

As far as optimization algorithms are concerned, survey results have shown that methods
that work with full product profiles (Genetic Algorithms, Simulated Annealing) perform
better than methods that work with partial product profiles (Dynamic Programming, Beam
Search). This holds because the latter methods investigate in each iteration, only the most
promising solutions and disregard the others, thus it is possible that they disregard (near)
optimal solutions in a very early stage. Until now, global optimality has been guaranteed in
tractable time, only for the Single Product Design problem, with the use of Lagrangian
Relaxation with Branch and Bound. Among the methods that have been applied to the
Optimal Product Line Design problem, Genetic Algorithms and Simulating Annealing have
shown the best performance. Genetic Algorithms have an extra benefit compared to
Simulating Annealing, as they work with a set of candidate solutions rather than a single
one. In this way they provide the decision maker with a wide range of different product
lines, which constitutes an important issue in real world marketing problems. Genetic
Algorithms provide the manager with the capability to select among a set of high quality
product lines the one that best satisfies the company’s objectives. Genetic Algorithms
constitute also the most advanced optimization method that has been incorporated into a

marketing system that deals with the problem.



However the GA-based marketing systems have been implemented in such a way that
provide the decision maker with only a single best solution, thus they fail to capitalize on
the method’s main advantage. Furthermore, the issue of dynamic competition has received
very little attention in the current literature. Retaliatory actions have only been considered
for the single product design problem, using basic traditional optimization algorithms.
There is still no approach that incorporates competitors’ responses to the optimization of a
Product Line Design. In addition, dynamic competition options have not yet been embedded

into any marketing system that deals with the problem.

In the present thesis, an integrated approach for dealing with the Optimal Product Line
Design problem was developed. A user friendly marketing system was also presented,
which incorporates the innovative methods developed for the three properties of the

problem.

The first property, simulating market behavior, constitutes one of the most critical success
factors of new product design and development. The effectiveness of a market simulation
depends on the forecasting accuracy of the shares estimation algorithm, as well as the
proper modeling of human choice behavior. The latter was clearly illustrated through the
differences in the tested models’ performance between the simulated and the real data set.
Whereas the calibration of the choice models is an adequate procedure for the achievement
of high predictive accuracy in synthetic data sets, the incorporation of a corrective method
into the choice rule is necessary when dealing with real world data. Traditional market
simulation approaches either fail to achieve low prediction errors, or do not correctly
represent customer purchasing behavior. An integrated market simulation model that
performs well on both issues was developed. The study showed that the calibration of choice
models using the range, kurtosis, and skewness of the customer’s product utilities
distribution, maximizes their predicting validity. In particular, the calibration of the
Pessemier model using as exponent the linear combination of the three coefficients, gives
better results than the ALPHA rule, which is the current state of the art approach in
commercial applications. The model displays the differential impact that an attribute may
have on particular alternatives, as well as the substitution and the attraction effects among
different products, through the incorporation of the corrective method into the choice rule.

The value of the corrective method was illustrated on the real world scenario, where it



enabled the model to effectively deal with the similar items in the choice set, and improve

its performance.

Next, a novel approach for attribute level optimization was presented, where product lines
are constructed directly from customer part-worths using the Particle Swarm Optimization
Algorithm. Since this is the first reported application of the PSO algorithm to the Optimal
Product Line Design problem, various enhancements of the basic PSO algorithm were
evaluated, and the best values for the algorithm’s tuning parameters were explored through
an experimental design. In a comparison of five different mappings that relate the
continuous space in which particles fly with the discrete domain required by the problem,
the Smallest Position Value rule gave the best results. Furthermore, it was showed that the
PSO topology that mostly fits to the problem is the one with 6 neighborhoods each
comprising 10 particles, and that the incorporation of both an inertia weight and a
constriction factor improved the algorithm’s performance. Compared to the Genetic
Algorithm approach, PSO performed better as it displayed a 1.26% mean improvement in
the quality of the best solution found, but required on average 6 times more computational
time to converge. However, the main contribution of the PSO approach is the generation of
a wide range of different near optimal solutions. 85% of the final solutions provided are
unique, and the fitness of half of them is within the 5% of the best value. Given such a set
of different yet high quality product lines, the firm can select the one that satisfies a
number of secondary objectives which are not included in the share of choices calculation

such as strategic fit, production costs, technological feasibility etc.

Finally, a dynamic approach for the Product Line Design problem was developed, where
each firm optimizes its strategy using the Particle Swarm Optimization algorithm, until a
Nash equilibrium is reached. The incorporation of game theoretic concepts resulted in
totally different solutions than that obtained in the static case. Hence, product lines that
might look attractive in the short run, may proved to be suboptimal in the longer term. The
modeling of retaliatory actions from competitors through the Nash equilibrium framework
provided useful insights. In a situation where no analytical closed-form solution can be
provided, the player that initiates the game, and the sequence in which firms act constitute
determinant factors of the final outcome as well as the speed of convergence. Furthermore,

since the proposed approach treats all firms as Nash players, where none of them can



foresee the others’ next moves, the first mover advantage does not seem to hold. Instead,
late-movers may be in a better position, since they are able to act with perfect information,
by observing the competitors’ previous moves. While the Nash equilibrium constitutes a
theoretical concept that employs highly simplifying assumptions, its incorporation to the
product optimization framework reveals valuable information for a firm such as the product
attributes that resist to the retaliatory moves from competitors, or the incumbent firms

that will benefit most in the long term.

Whereas the presented methodology is the first to integrate the three critical properties of
the optimal product line design problem, it does not come without limitations. The market
simulation model is still at an early stage of its development. Much of the support for the
approach is provided on the basis of simulations, which can only reflect the model that
generated these simulated data. Hence, the model’s performance needs to be further
evaluated in a wider range of real world cases and situations. Furthermore, due to the
discrete nature of most conjoint attributes the existence of a Nash equilibrium cannot be
guaranteed. Even if one exists, it has to be computed empirically through an iterative
sequential process, and still its uniqueness can hardly be proved. The existence of multiple
equilibria is not a desirable property for a firm, since there is no information concerning the
probability with which each of them may occur. There is still much work to be done in this

direction.

Nevertheless, the developed system constitutes a useful tool for marketing managers
involved in new product design decisions. A firm can evaluate the potential success of a set
of new product concepts before they enter the production stage, using data obtained from a
market survey. The effective modeling of customer choice behavior and competitors’
retaliatory moves assists managers in minimizing the uncertainty and risks associated with
new product launches. The high predictive accuracy of the system’s underlying methodology
supports the design of optimal products that will significantly contribute to the firm’s
profitability, without cannibalizing its existing product line. The presented system is the
first that provides the user with a wide variety of good near-optimal solutions. The
significance of this innovative property can be illustrated by a managerially important
issue raised by Balakrishnan et al. (2004): The fact that the optimization of the selected

objective (market share, profit) is done at the product line level, may result in large



variances in share among the products that form the line. This will probably cause
dissatisfaction among the product managers, especially to those assigned a low-share
product. The existence of different high quality product line configurations might mitigate
this undesirable organizational conflict through the selection of the product line which,
while providing a close to the optimal overall market share, it gives the minimum possible

variation in the expected share among the different items of the line.

This may also constitute an interesting area for future research: The use of an
algorithm that optimizes different objectives at the same time, for example market
share maximization, and minimum variation in the expected share among the
different items of the line. This would require the application of Multi-Objective
optimization approaches, instead of the single-objective algorithms that has been
employed so far to the optimal product line design problem. A multi-objective
approach along with a Pareto Optimal analysis will enable the firm to concurrently
optimize two or more conflicting goals (e.g. production cost minimization, and
market share maximization), while setting a number of constraints (e.g. market
share not less than 20%). Another promising future research area is the use of
dynamic models not only for representing the competitive reactions of the firms, but
also for modeling the way that customer preferences change over time. So far,
customer preferences are measured once and are considered stable for the rest of
the simulation. However, it is accepted that consumer preferences in the real world
are changing over time. In such an approach, the market would stabilize to different

equilibria over time, depending on the change in customer part-worths.
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