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Extended Abstract (in Greek)

Στο ϑαλάσσιο περιβάλλον εξελίσσεται ταυτόχρονα ένα πλήθος κυµατικών ϕαινοµένων, αρ-

κετά από τα οποία ϐρίσκονται σε ουσιώδη σύζευξη µεταξύ τους. Το ϑαλασσινό νερό είναι

ένα ελαφρά συµπιεστό, ανοµοιογενές και αγώγιµο ϱευστό, το οποίο εδράζεται πάνω σε

ένα πολυστρωµατικό παραµορφώσιµο στερεό πυθµένα και περατώνεται σε µια ελεύθερη

επιφάνεια. Η προσοµοίωση της γένεσης και διάδοσης των κυµατισµών και η ακριβής περι-

γραφή των µετασχηµατισµών που υφίστανται στις παράκτιες περιοχές είναι απαραίτητη σε

σχέση µε τον σχεδιασµό των ϑαλάσσιων κατασκευών, την ασφάλεια καθώς και την πρόβ-

λεψη της εξέλιξης του προφίλ της ακτογραµµής.

΄Ενα από τα πιο ενδιαφέροντα και ενεργά πεδία έρευνας, τις τελευταίες δεκαετίες είναι

η µαθηµατική και αριθµητική µοντελοποίηση των επιφανειακών κυµατισµών ϐαρύτητας.

Αυτό αποτελεί και το αντικείµενο µελέτης της παρούσας εργασίας. Σηµαντικά ϑέµατα που

πρέπει να ληφθούν υπόψη είναι η εγκυρότητα του µαθηµατικού µοντέλου στις παράκτιες

περιοχές και σε ϐαθύτερα νερά, µεταβάσεις της ϱοής από υπερκρίσιµη σε υποκρίσιµη,

η ακριβής διακριτοποίηση της τοπογραφίας όπως και η εµφάνιση υγρών-στεγανών κι-

νούµενων συνόρων. Πολύ σηµαντικά ϑέµατα µοντελοποίησης είναι επίσης οι ϕυσικές

διαδικασίες των κυµάτων στην παράκτια Ϲώνη, όπου παρουσιάζεται το µεγαλύτερο εν-

διαφέρον εξέτασης. Στην περιοχή αυτή συναντώνται όλα τα χαρακτηριστικά κυµατικά

ϕαινόµενα όπως η ανάκλαση η διάθλαση καθώς και η τροποποίηση του πλάτους λόγω

ϱήχωσης. Σηµαντικά είναι επίσης και τα µη γραµµικά ϕαινόµενα όπως η τριβή λόγω του

πυθµένα, οι µη-γραµµικές αλληλεπιδράσεις µεταξύ διαφορετικών κυµατικών συνιστωσών

και η µεταφορά ενέργειας καθώς και η ϑραύση των κυµάτων.

Τα µοντέλα που χρησιµοποιούνται ευρέως τα τελευταία χρόνια είναι τα µοντέλα µέσου

ϐάθους, µε το πιο γνωστό από αυτά να είναι οι µη γραµµικές εξισώσεις ϱηχών υδάτων (Non

Linear Shallow WaterEquations- NSWE). Οι εξισώσεις αυτές είναι ικανές να µοντελοποιή-

σουν µερικά σηµαντικά ϕαινόµενα όπως η αναρρίχηση των κυµάτων σε ακτές αλλά δεν

είναι κατάλληλες για νερά µέσου η µεγαλύτερου ϐάθους όπου τα ϕαινόµενα διασποράς
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είναι ισχυρότερα από τα µη-γραµµικά ϕαινόµενα. Για αυτόν τον λόγο εισάγονται οι εξ-

ισώσεις τύπου Boussinesq (ΒΤ) οι οποίες περιέχουν όρους διασποράς. Αρκετά εκτεταµένα

ΒΤ µοντέλα, εφαρµόσιµα και σε ϐαθύτερα νερά, έχουν προταθεί τα τελευταία χρόνια όπως

για παράδειγµα [170,113,116, 120]. Από τα πιο γνωστά είναι αυτά των Nwogu [127] και

των Madsen και Sørensen [114]. Παρόλο που τα δύο αυτά µοντέλα έχουν διαφορετική

µορφή είναι και τα δύο εφαρµόσιµα σε νερά µέχρι kh ≈ 3, όπου k ο κυµαταριθµός και h

το ϐάθος του νερού σε ισορροπία.

Μέχρι πρόσφατα, τα αριθµητικά σχήµατα που χρησιµοποιούνταν για την επίλυση των

ΒΤ µοντέλων, ήταν ϐασισµένα στην µέθοδο πεπερασµένων διαφορών (ΜΠ∆) [1,20,67,68,114,

110,178]. Βασικό περιοριστικό κριτήριο αυτών, είναι η χρησιµοποίηση µόνο δοµηµένων

υπολογιστικών πλεγµάτων στα δισδιάστατα (2∆) προβλήµατα, ακόµα και για µη οµαλά

χωρία, το οποίο µπορεί να οδηγήσει σε µείωση της τάξης ακρίβειας των αριθµητικών σχη-

µάτων. Για αυτού του είδους τα προβλήµατα υιοθετήθηκαν οι µέθοδοι πεπερασµένων

στοιχείων (ΜΠΣ) και οι µέθοδοι πεπερασµένων όγκων (ΜΠΟ). Οι ΜΠΟ µέθοδοι συνήθως

απαιτούν λιγότερη υπολογιστική προσπάθεια σε σχέση µε αυτήν των ΜΠΣ και µπορούν

να διαχειριστούν καλύτερα τους µη-γραµµικούς όρους και τους όρους τοπογραφίας από

τις ΜΠ∆. Τα τελευταία χρόνια η ΜΠΟ είναι η πιο ευρέως χρησιµοποιούµενη µέθοδος για

την αριθµητική επίλυση των 2∆ NSWE.

Σε σχέση µε τις BT εξισώσεις, ο Nwogu [127] χρησιµοποίησε ένα ήµι-πεπλεγµένο

σχήµα Grank-Nicolson για την χρονική διακριτοποίηση των εξισώσεών του εφαρµόζοντας

κεντρικές διαφορές για την χωρική διακριτοποίηση ίδιας τάξης µε την τάξη των παραγώγων

στις εξισώσεις. Οι Wei και Kirby [179] δηµιούργησαν ένα τέταρτης τάξης σχήµα Π∆

χρησιµοποιώντας για προώθηση στον χρόνο ένα σχήµα πρόβλεψης τρίτης τάξης Adams-

Bashforth ακολουθούµενο από ένα σχήµα διόρθωσης τέταρτης τάξης Adams-Moulton. Το

αριθµητικό αυτό σχήµα ϐελτιώθηκε από τους Shi κ.ά. [147] εφαρµόζοντας το κατάλληλα

σε εναλλασσόµενα υπολογιστικά πλέγµατα (stagered grids). Η εφαρµογή των µεθόδων

πεπερασµένων όγκων στην επίλυση εξισώσεων τύπου Boussinesq δεν µπορεί να γίνει

άµεσα, λόγω των υπαρχόντων όρων διασποράς οι οποίοι πρέπει να διακριτοποιηθούν µε

υψηλό ϐαθµό ακρίβειας. Για αυτό το λόγο σχετικά πρόσφατα αναπτύχθηκαν υβριδικού

τύπου σχήµατα σύζευξης πεπερασµένων διαφορών και πεπερασµένων όγκων, [150,62,61,

24,148,163,142], όπου αντιµετωπίζουν το πρόβληµα είτε στη µία χωρική διάσταση είτε

στις δύο χωρικές διαστάσεις χρησιµοποιώντας µόνο δοµηµένα πλέγµατα. Επίσης δεν αν-

τιµετωπίζουν πλήρως και συνολικά τα τρία προς µελέτη στάδια της γένεσης, διάδοσης και



αναρρίχησης των κυµατισµών σε σύνθετη τοπογραφία, που αποτελεί κεντρικό στόχο στην

παρούσα εργασία. Μοναδική εξαίρεση είναι η εργασία των Asmar και Nwogu [59] όπου

παρουσιάζεται µια πρώτη προσπάθεια εφαρµογής της µεθόδου πεπερασµένων όγκων στις

εξισώσεις του Nwogu χρησιµοποιώντας µη δοµηµένα πλέγµατα όπου χρησιµοποιείται ένα

χαµηλής τάξης σχήµα.

Στόχος της παρούσας εργασίας είναι η υλοποίηση και παρουσίαση µιας νέας αρι-

ϑµητικής µεθόδου για την επίλυση ενός 2∆ ΒΤ µοντέλου αναπτύσσοντας µια υψηλής

τάξης ακρίβειας µέθοδο πεπερασµένων όγκων εφαρµόσιµη σε µη δοµηµένα υπολογιστικά

πλέγµατα. Η εργασία αυτή ϑα µπορούσαµε να πούµε ότι χωρίζεται σε τρεις ενότητες.

Στην πρώτη ενότητα διακριτοποιούνται (µε χρήση πεπερασµένων όγκων και διαφορών) και

συγκρίνονται στη µια διάσταση δυο ΒΤ µοντέλα. Αυτά του Nwogu [127] και αυτά των MS

[114] έτσι ώστε να επιλέξουµε το µοντέλο που ϑα διακριτοποιήσουµε στις δυο διαστάσεις.

Στη συνέχεια διακριτοποιούνται οι 2∆ NSWE µε δυο διαφορετικά σχήµατα πεπερασµένων

όγκων σε µη δοµηµένα πλέγµατα. ΄Ενα κεντροθετηµένο ανα κέντρο ϐάρους, όπου οι

άγνωστοι ¨τοποθετούνται¨ στο κέντρο ϐάρους των υπολογιστικών κελιών και ένα κεντρο-

ϑετηµένο ανά κόµβο, όπου οι άγνωστοι ¨τοποθετούνται¨ στον κόµβο των υπολογιστικών

κελιών. Γίνεται σύγκριση αυτών, υλοποιώντας υπολογιστικά προβλήµατα µε αναλυτική

λύση που προσοµοιώνουν σύνθετες δισδιάστατες επιφανειακές ϱοές. Στη συνέχεια και

µετά από επιλογή των εξισώσεων του Nwogu και του κεντροθετηµένου ανά κόµβο σχήµα-

τος πεπερασµένων όγκων, γίνεται υλοποίηση και παρουσίαση ενός νέου υπολογιστικού

µοντέλου για την διακριτοποίηση των επιλεγµένων εξισώσεων σε δυο διαστάσεις.

Πιο συγκεκριµένα στο δεύτερο κεφάλαιο της παρούσας εργασίας παρουσιάζονται τα

µαθηµατικά µοντέλα που χρησιµοποιούνται. Γίνεται εξαγωγή των εξισώσεων ϱηχών υδάτων,

των ΒΤ εξισώσεων MS και των εξισώσεων του Nwogu. Οι ΒΤ εξισώσεις ξαναγράφονται σε

συντηρητική µορφή η οποία είναι ιδανική για την σωστή αντιµετώπιση των εµφανιζόµενων

ασυνεχειών και την σωστή διαχείριση των πηγαίων όρων τοπογραφίας (ϐαθυµετρίας). Αυτή

η προσέγγιση των υβριδικών σχηµάτων είναι αρκετά χρήσιµη δεδοµένου ότι µπορούµε

εύκολα να µεταπηδήσουµε στις µη γραµµικές εξισώσεις ϱηχών υδάτων, αγνοώντας κατάλληλα

τους όρους διασποράς στα µαθηµατικά µοντέλα. Πιο συγκεκριµένα:

Ut + ∇ · H(U?) = S(U?) ον Ω × [0, t] ⊂ R2 × R+, (1)

µε U να δηλώνει το διάνυσµα των νέων µεταβλητών, U?
το διάνυσµα των µεταβλητών των

NSWE, H = [F,G] οι µη γραµµικοί όροι ϱοής και S = Sb + Sf + Sd οι πηγαίοι όροι.

Με H = H(x, t) ≥ 0 δηλώνεται το ολικό ϐάθος του νερού και u = [u, v]T
είναι το πεδίο



ταχυτήτων. η = η(x, t) είναι η µεταβολή της ελεύθερης επιφάνειας και h = h(x) η απόσταση

της τοπογραφίας από την στάθµη του νερού όταν ϐρίσκεται σε ηρεµία. Για τις εξισώσεις

των MS έχουµε:

U =


H

P̃?
1

P̃?
2

 , F(U?) =


Hu

Hu2 + 1
2gH2

Huv

 , G(U?) =


Hv

Hv2 + 1
2gH2

Huv

 ,

S(U?) = Sb + Sf + Sd =


0

−gHbx

−gHby

 +


0

−τ1

−τ2

 +


0

−ψ1

−ψ2

 (2)

όπου,

P? =

 P?
1

P?
2

 =

 Hu −
(
B + 1

3

)
h2

(
Pxx + Qxy

)
− hhx

(
1
3 Px + 1

6 Qy

)
− hhy

(
1
6 Qx

)
Hv −

(
B + 1

3

)
h2

(
Qyy + Pxy

)
− hhy

(
1
3 Qy + 1

6 Px

)
− hhx

(
1
6 Py

)  , (3)

ψ =

 ψ1

ψ2

 =

 −Bgh3
(
ηxxx + ηxyy

)
− hhx

(
2Bghηxx + Bghηyy

)
− hhy

(
Bghηxy

)
−Bgh3

(
ηyyy + ηxxy

)
− hhy

(
2Bghηyy + Bghηxx

)
− hhx

(
Bghηxy

)  . (4)

Οι πηγαίοι όροι συµπεριλαµβάνουν τους όρους τοπογραφίας Sb, τους όρους τριβής Sf και

ένα µέρος των όρων διασποράς Sd. Ο όρος P?
περιέχει όλους τους όρους µε χρονικές

παραγώγους ενώ ο όρος ψ περιέχει όρους διασποράς µε χωρικές παραγώγους.

Για τις εξισώσεις του Nwogu έχουµε:

P? =

 P?
1

P?
2

 = H
[
z2

a

2
∇(∇ · u) + za∇(∇ · hu) + u

]
, Sd =


−ψc

−uψc + ψMx

−vψc + ψMy

 , (5)

ψc = C +D = ∇ ·

[(
z2

a

2
−

h2

6

)
h∇(∇ · u) +

(
za +

h
2

)
h∇(∇ · hu)

]
(6)

και

ψM =

 ψMx

ψMy

 =

 HtA

HtB

 = Ht
z2

a

2
∇(∇ · u) + Htza∇(∇ · hu). (7)

µε όλους τους υπόλοιπους όρους να είναι όπως και παραπάνω.



Για την διακριτοποίηση των παραπάνω στη 1∆ χρησιµοποιούµε ένα υβριδικό σχήµα

πεπερασµένων όγκων / πεπερασµένων διαφορών. Πιο συγκεκριµένα και για τους µη

γραµµικούς όρους µεταφοράς όπως και για την διακριτοποίηση των όρων τοπογραφίας

χρησιµοποιούµε ένα σχήµα πεπερασµένων όγκων τύπου Godunov , ενώ για την δι-

ακριτοποίηση των όρων διασποράς χρησιµοποιούµε το σχήµα πεπερασµένων διαφορών.

Για την κατασκευή της αριθµητικής ϱοής χρησιµοποιούµε τον προσεγγιστικό επιλυτή

Riemann του Roe [139]. Οι όροι τοπογραφίας διακριτοποιούνται και αυτοί µε ανάντι

(upwind) τρόπο έτσι ώστε να διατηρείται το νερό σε ισορροπία ακόµα και µε την ύπαρξη

υγρών/στεγανών µετώπων. ΄Ενας πολύ σηµαντικός παράγοντας στην κατασκευή των αρι-

ϑµητικών σχηµάτων είναι η διατήρηση της ισορροπίας ανάµεσα στην διακριτή αριθµητική

ϱοή και την διακριτοποίηση των πηγαίων όρων. Τα σχήµατα που ικανοποιούν αυτήν την

ισορροπία είναι γνωστά µε την ονοµασία καλώς ισορροπηµένα (well-balanced) σχήµατα

[87,123,135,118,50,73]. Επιπρόσθετα προβλήµατα τα οποία αντιµετωπίζονται είναι η

διαχείριση του υγρού/στεγανού συνόρου, εφόσον είναι προφανές ότι οι εξισώσεις ορίζον-

ται για τις υγρές περιοχές και χρειάζεται ιδιαίτερη αντιµετώπιση για την µετάβαση από

τις στεγανές στις υγρές περιοχές. ΄Οπως έχει δειχθεί στα [136,51,91] προβλήµατα που

πρέπει να αντιµετωπιστούν είναι : (1) Η αναγνώριση των στεγανών κελιών, (2) ∆ιατήρηση

της ϱοής σε ισορροπία όταν συµπεριλαµβάνονται στεγανές περιοχές,(3) Ροή σε έναντι κλίση,

(4) ∆ιατήρηση µάζας και υπολογισµός ϑετικών τιµών ϐάθους.

Για την επέκταση του σχήµατος σε υψηλότερης τάξης χωρική ακρίβεια χρησιµοποιούµε

ένα τέταρτης τάξης MUSCL (Monotone Upstream-centered Schemes for Conservation

Laws) σχήµα παρεµβολής [185], πριν την αποτίµηση των αριθµητικών ϱοών [62,163,148].

Η αναπαράσταση της λύσης µεσω της παρεκβολής MUSCL γίνεται στις ποσότητες του

ϐάθους H της ταχύτητας u και της τοπογραφίας b. Και τα δυο µοντέλα που εξετάζουµε

περιέχουν χωρικές παραγώγους, µέχρι τρίτης τάξης. ΄Εχει δειχθεί ότι για να είναι το

σφάλµα αποκοπής µικρότερο από τους όρους διασποράς των εξισώσεων, ϑα πρέπει να

εφαρµοστεί τέταρτης τάξης ακρίβειας διακριτοποίηση στους όρους πρώτης παραγώγου. Για

αυτόν τον λόγο τους διακριτοποιούµε χρησιµοποιώντας ένα σχήµα κεντρικών διαφορών,

τέταρτης τάξης για τους όρους πρώτης παραγώγου, ένα σχήµα κεντρικών διαφορών τρίτης

τάξης για τους όρους τρίτης παραγώγου και ένα σχήµα δεύτερης τάξης για τους όρους

δεύτερης παραγώγου. Για την χρονική διακριτοποίηση των σχηµάτων χρησιµοποιούµε

την µέθοδο διακριτοποίησης τέταρτης τάξης των Adams-Moulton η οποία είναι ένα σχήµα

πρόβλεψης-διόρθωσης. Στη συνέχεια, και για κάθε χρονικό ϐήµα, εφόσον έχουµε λάβει



τις νέες µεταβλητές, χρειάζεται η ανάκτηση της ταχύτητας για κάθε υπολογιστικό κελί.

∆ιακριτοποιώντας τις σχέσεις (3) για τις εξισώσεις των MS και (5) για αυτές του Nwogu,

µε την µέθοδο πεπερασµένων διαφορών καταλήγουµε σε ένα προς επίλυση τριδιαγώνιο

γραµµικό σύστηµα. Χρησιµοποιούµε τον αλγόριθµο του Thomas για την επίλυσή του.

Οι συνοριακές συνθήκες που εφαρµόστηκαν είναι ανάκλασης και ελεύθερης ϱοής, σε

συνδυασµό µε ένα ¨στρώµα απορρόφησης¨ (sponge layer) το οποίο διαχέει την ενέργεια

των εισερχόµενων κυµάτων έτσι ώστε να περιοριστούν οι µη ϕυσικές ταλαντώσεις. Επίσης

υλοποιήθηκε η γεννήτρια κυµατισµών των Wei και Kirby [179] για τις εξισώσεις του Nwogu

και υλοποιήθηκε µια νέα µορφή της γεννήτριας κυµατισµών που περιγράφεται στο [138]

για τις εξισώσεις των MS.

Στη συνέχεια έγινε µελέτη και εξέλιξη µηχανισµών ϑραύσης. Η ϑραύση των κυµα-

τισµών είναι ένα πολύπλοκο ϕαινόµενο. Οι ΒΤ εξισώσεις δεν δέχονται µη οµαλές λύσεις

και έτσι, τα ϕυσικά µοντέλα που µελετάµε δεν είναι ικανά να περιγράψουν την παραπάνω

ϕυσική διαδικασία αφού η διακριτοποίηση των πεπερασµένων διαφορών που έχει γίνει

στους όρους διασποράς προκαλεί την γέννεση µη ϕυσικών ταλαντώσεων κατά την παρουσία

ισχυρών κλίσεων. Εφαρµόστηκαν και µελετήθηκαν τέσσερις µηχανισµοί ϑραύσης. ∆υο

µοντέλα τύπου eddy viscosity, των Roeber [142] και Kennedy κ.α [93] το οποία προσθέ-

τουν έναν όρο διάχυσης, στην εξίσωση ορµής, που ϐασίζεται στην τυρβώδη συνεκτικότητα

(eddy viscosity). Η διαφορά τους έγκειται τόσο στον τρόπο υπολογισµού της τυρβώδους

συνεκτικότητας αλλά και στο κριτήριο εισαγωγής του όρου. Τα υπόλοιπα δύο µοντέλα

που µελετήθηκαν είναι αυτό των Tonelli κ.ά. [163] και ένα νέο υβριδικό µοντέλο που

παρουσιάζεται στην παρούσα εργασία για πρώτη ϕορά. Είναι και τα δυο υβριδικού τύπου

και ϐασίζονται στην απλή ιδέα ότι οι ΒΤ εξισώσεις εκφυλίζονται στις µη-γραµµικές εξ-

ισώσεις ϱηχών υδάτων (NSWE) καθώς οι όροι διασποράς γίνονται αµελητέοι συγκριτικά

µε τους µη-γραµµικούς όρους. Πιο συγκεκριµένα, λύνουµε στο υπολογιστικό χωρίο είτε

µε εξισώσεις Boussinesq είτε µε τις µη-γραµµικές εξισώσεις ϱηχών υδάτων σύµφωνα µε

συγκεκριµένο κριτήριο. Επίσης παρουσιάζεται ένας νέος τρόπος απενεργοποίησης των

όρων διασποράς όποτε αυτό είναι αναγκαίο. Εκτεταµένα υπολογιστικά προβλήµατα και

σύγκριση των αριθµητικών µοντέλων µπορούν να ϐρεθούν στο τέταρτο κεφάλαιο.

Στο πέµπτο κεφάλαιο γίνεται παρουσίαση της µεθόδου πεπερασµένων όγκων για την

επίλυση των 2∆ µη γραµµικών εξισώσεων ϱηχών υδάτων. ∆υο σχήµατα εφαρµόζονται και

συγκρίνονται µε στόχο την επιλογή του καλύτερου ως προς την εφαρµογή και απόδοση.

΄Ενα κεντροθετηµένο ανά κέντρο ϐάρους και ένα κεντροθετηµένο ανά κόµβο. Στην πρώτη



προσέγγιση οι όγκοι ελέγχου που προκύπτουν είναι ίδιοι µε τα υπολογιστικά κελιά και οι

άγνωστοι ¨τοποθετούνται¨ στα ϐαρύκεντρα των τριγώνων. Στο κεντροθετηµένο ανά κόµβο

σχήµα τα δεδοµένα είναι κεντροθετηµένα ανά κόµβο και οι όγκοι ελέγχου που προκύπ-

τουν στην παραπάνω διακριτοποίηση σχηµατίζουν ένα υπολογιστικό πλέγµα δυικό του

αρχικού. Πιο συγκεκριµένα το σύνορο ενός όγκου ελέγχου, γύρο από ένα κόµβο, σχη-

µατίζεται ενώνοντας τα ϐαρύκεντρα των τριγώνων που έχουν το κόµβο ως µια κορυφή

τους. Η δοµή αυτή είναι ϐασισµένη στις ακµές ( edge-based structure). Ολοκληρώνοντας

τις εξισώσεις πάνω σε κάθε όγκο ελέγχου καταλήγουµε στην αριθµητική µορφή του νόµου

διατήρησης την οποία καλούµαστε να διακριτοποιήσουµε. Υποθέτοντας ότι η λύση είναι

σταθερή σε κάθε υπολογιστικό κελί λαµβάνουµε το πρώτης τάξης, χωρικά, σχήµα. Για τον

υπολογισµό της αριθµητικής ϱοής σε κάθε πλευρά του τριγώνου, για το κεντροθετηµένο

ανα κέντο ϐάρους σχήµα, και κατά µήκος της ακµής για το κεντροθετηµένο ανα κόµβο

σχήµα, καλούµαστε να επιλύσουµε ένα πρόβληµα Riemann. Χρησιµοποιούµε και εδώ

τον προσεγγιστικό επιλυτή Riemann του Roe. Το διάνυσµα της αριθµητικής ϱοής υπ-

ολογίζεται ϑεωρώντας οµοιόµορφη κατανοµή της ϱοής πάνω στο σύνορο του κελιού και

ίση µε την τιµή της στο µέσο της ακµής.

Η χρονική διακριτοποίηση επιτυγχάνεται µε την άµεση µέθοδο Runge-Kutta τεσσάρων

ϐηµάτων και χρησιµοποιείται λόγω της εκτεταµένης περιοχής ευστάθειας που έχει. Τα

πλέγµατα τα οποία χρησιµοποιούνται για την διακριτοποίηση του χωρίου είναι όλα µη

δοµηµένα. Επίσης γίνεται επέκταση του σχήµατος έτσι ώστε να είναι δεύτερης τάξης

χωρικής ακρίβειας. Αυτό επιτυγχάνεται µε γραµµική ανακατασκευή της λύσης σε κάθε

υπολογιστικό κελί. Η ανακατασκευή της λύσης γίνεται χρησιµοποιώντας ένα σχήµα τύπου

MUSCL σε 2∆ όπου η µέση τιµή της λύσης παραµένει σταθερή σε κάθε κελί.

Οι ανακατασκευασµένες τιµές εκατέρωθεν κάθε συνόρου κελιών, υπολογίζονται στο

µέσο αυτών, προτείνοντας και µια νέα µεθοδολογία, έτσι ώστε να µην υπάρχει ασυµβατ-

ότητα µε τον υπολογισµό της αριθµητικής ϱοής. Για να ϐρούµε τα παραπάνω για το

κεντροθετηµένο ανά κέντρο ϐάρους σχήµα, επιβάλλεται ο υπολογισµός των κλίσεων σε

κάθε τρίγωνο. ΄Εχουν υλοποιηθεί δύο περιπτώσεις. Στην πρώτη υπολογίζονται οι κλίσεις

χρησιµοποιώντας µόνο τα τρία γειτονικά κελιά κάθε τριγώνου ενώ στην δεύτερη χρησι-

µοποιούµε ένα πιο εκτεταµένο σύνολο τριγώνων. Για το κεντροθετηµένο ανά κόµβο σχήµα

οι κλίσεις υπολογίζονται σε κάθε υπολογιστικό κελί.

Στην συνέχεια έγινε κατάλληλη διαχείριση των συνοριακών συνθηκών. Για αυτόν τον

λόγο υιοθετήσαµε την προσέγγιση των ϕανταστικών κελιών (ghost cells) για το κεντρο-



ϑετηµένο ανά κέντρο ϐάρους σχήµα. Τα ϕανταστικά κελιά είναι επιπρόσθετα στρώµατα

κελιών έξω από το ϕυσικό µας πεδίο. Τα παραπάνω κελιά είναι ιδεατά παρόλο που έχουν

γεωµετρικές ποσότητες οι οποίες λαµβάνονται από τα εσωτερικά κελιά στο σύνορο. Στην

παρούσα εργασία τα ϐαρύκεντρα των ϕανταστικών κελιών είναι ο καθρέφτης των ϐαρυκέν-

τρων των συνοριακών κελιών. Για να καταλήξουµε σε ένα σωστό αριθµητικό σχήµα πρέπει

να επιτύχουµε µια σωστή διακριτοποίηση για τις διαφορικού τύπου συνοριακές συνθήκες.

Η ιδέα είναι να χρησιµοποιήσουµε την ασθενή µορφή για τον υπολογισµό των ϱοών σε

κάθε συνοριακή πλευρά τριγώνου. Σύµφωνα µε την ϑεωρία των χαρακτηριστικών αλλά και

αναλόγως την ϱοή επιβάλουµε στο σύνορο την τιµή του ϐάθους ή των ταχυτήτων. Ο τρόπος

αντιµετώπισης των συνοριακών συνθηκών διατηρεί την τάξη ακρίβειας του σχήµατος. Η

διακριτοποίηση του πηγαίου όρου γίνεται µε τέτοιο τρόπο έτσι ώστε να διατηρείται η ισορ-

ϱοπία ανάµεσα στην αριθµητική ϱοή και τον πηγαίο όρο για συνθήκες ισορροπίας. Για

να ισχύει το ίδιο και για το δεύτερης τάξης σχήµα ένας όρος διόρθωσης πρέπει να προστε-

ϑεί. Στην συνέχεια έγινε κατάλληλη διαχείριση για το κινούµενο σύνορο που εµφανίζεται

ανάµεσα σε υγρές και στεγανές περιοχές λόγω αλλαγής του ύψους του νερού. Τα Ϲητήµατα

που αντιµετωπίζονται και επιλύονται είναι όµοια µε αυτά της µιας διάστασης. Εκτός από

τα Ϲητήµατα (1)-(4) που προαναφέρθηκαν, επιβάλλεται και η συνεπής ανακατασκευή της

λύσης σε περιοχές υγρού/στεγανού λαµβάνοντας υπόψη ότι πρέπει να ισχύει ∇H = −∇b.

Ακόµα υλοποιήθηκε και η διακριτοποίηση του όρου της τριβής χρησιµοποιώντας µια

έµµεση µέθοδο. Η σύγκριση των δυο σχηµάτων επιτυγχάνεται υλοποιώντας προβλήµατα

αναφοράς που διαθέτουν αναλυτική λύση.

Μετά την υλοποίηση των παραπάνω και την επιλογή των εξισώσεων του Nwogu έναντι

αυτών των MS όπως και την επιλογή του κεντροθετηµένου ανά κόµβου σχήµατος πεπερασ-

µένων όγκων, παρουσιάζεται µια νέα µέθοδος διακριτοποίησης των 2∆ εξισώσεων του

Nwogu (1), (3)-(7). Μετά την ολοκλήρωση των παραπάνω στο υπολογιστικό χωρίο λαµβά-

νουµε τις εξισώσεις που ισχύουν σε κάθε υπολογιστικό κελί. Σε αυτές οι όροι µεταφοράς

και οι όροι τοπογραφίας διακριτοποιούνται µε τον ίδιο τρόπο που περιγράψαµε παραπάνω

για τις µη-γραµµικές εξισώσεις ϱηχών υδάτων.

Για την επέκταση της ακρίβειας στο χώρο και µάλιστα σε ένα τρίτης τάξης σχήµα έτσι

ώστε να µην ακυρώνονται οι όροι διασποράς από το χωρικό σφάλµα διακριτοποίησης,

χρησιµοποιούµε, όπως έχει προαναφερθεί ένα MUSCL σχήµα, ανακατασκευάζοντας τις

τιµές του ϐάθους H των ταχυτήτων U = [u, v]T
και της τοπογραφίας b στο µέσον της κάθε

ακµής. Για την ανακατασκευή των παραπάνω ποσοτήτων χρησιµοποιείται ένας συνδυ-



ασµός κεντρικών και ανάντι κλίσεων έτσι ώστε να αυξήσουµε την ακρίβεια της ϐασικής

MUSCL ανακατασκευής [173]. Το σχήµα είναι ακριβώς τρίτης τάξης ακρίβειας για γραµ-

µικά προβλήµατα [7,51,149]. Παρόλα αυτά, η παραπάνω ανακατασκευή µειώνει την αρ-

ιθµητική διάχυση που εισάγεται στους µη γραµµικούς όρους ϱοής και παρέχει ακριβείς

λύσεις για οµαλές ϱοές όπως δείχνουν τα αριθµητικά αποτελέσµατα των προβληµάτων

που παρουσιάζονται στο κεφάλαιο επτά αυτής της εργασίας. Σε περιπτώσεις όπου η

συνεισφορά των όρων διασποράς είναι αµελητέα, δηλαδή όταν επιλύονται µόνο οι µη

γραµµικές εξισώσεις ϱηχών υδάτων, η παραπάνω ανακατασκευή µπορεί να δηµιουργήσει

ακρότατα κυρίως όταν παρουσιάζονται ασυνέχειες στην λύση. Σε αυτές τις περιπτώσεις,

και για να µειώσουµε τις ταλαντώσεις στην λύση εφαρµόζεται ένας περιοριστής κλίσεων.

Για να περιορίσουµε την εµφάνιση των ταλαντώσεων στην αριθµητική λύση, επιβάλλεται

στην ανακατασκευή αυστηρή µονοτονία χρησιµοποιώντας τον µη-γραµµικό περιοριστή

κλίσεων Van Albada-Van Leer [7,51,173,176,75]. Οι όροι διασποράς διακριτοποιούνται

χρησιµοποιώντας το ϑεώρηµα απόκλισης όπως και µια τύπου-ακµής µέθοδο υπολογισµού

του διανύσµατος απόκλισης. Επιπρόσθετα για τους όρους διασποράς της εξίσωσης µάζας

είναι απαραίτητος ο ορισµός ενός νέου υπολογιστικού κελιού το οποίο αποτελείται από

δυο τρίγωνα που έχουν µια κοινή ακµή. Σε αυτό το τρίγωνο υπολογίζεται η κλίση της

απόκλισης η οποία αποτιµάται στο µέσον της κοινής πλευράς των δυο τριγώνων.

΄Οπως και στην 1∆ σε κάθε ϐήµα της RK είναι απαραίτητη η επίλυση ενός γραµµικού

συστήµατος για την ανάκτηση του πεδίου ταχυτήτων. Ο πίνακας που προκύπτει από την

διακριτοποίηση του (5) είναι αραιός και εξαρτάται από το πλέγµα που χρησιµοποιούµε.

Για αυτόν τον λόγο ο πίνακας υπολογίζεται πριν αρχίσει η χρονική επαναληπτική δι-

αδικασία και αποθηκεύεται σε συµπιεσµένη κατα γραµµές αραιή µορφή. Το γεγονός

ότι ο πίνακας δεν αλλάζει ανά χρονικό ϐήµα είναι υψίστης σηµασίας για τον µηχανισµό

ϑραύσης που περιγράφεται παρακάτω. Το γραµµικό σύστηµα, µετά από µελέτη του πί-

νακα, επιλύεται χρησιµοποιώντας την επαναληπτική µέθοδο BiCGSTAB. Οι συνοριακές

συνθήκες που υλοποιούνται είναι συνοριακές συνθήκες ανάκλασης και συνοριακές συν-

ϑήκες απορρόφησης. Για τις δεύτερες και µπροστά από αυτό το σύνορο ορίζεται ένα

απορροφητικό στρώµα. Σε αυτό το στρώµα η ελεύθερη επιφάνεια του νερού αποσβένεται

πολλαπλασιάζοντάς την µε ένα συντελεστή. Ακόµα υλοποιείται η γεννήτρια κυµάτων των

[179]. Τέλος επεκτείνονται στις 2∆ οι µηχανισµοί ϑραύσης των Kennedy [93], των Tonelli

κ.ά. [163] όπως και ο νέος υβριδικός µηχανισµός ϑραύσης. Επίσης επεκτείνεται στις 2∆ ο

νέος τρόπος απενεργοποίησης των όρων διασποράς, που παρουσιάστηκε στην 1∆. Ο τρόπος



αυτός είναι συµβατός µε το γεγονός ότι ο πίνακας του γραµµικού συστήµατος παραµένει

αµετάβλητος. Στο έβδοµο κεφάλαιο παρουσιάζονται τα αριθµητικά προβλήµατα σε δυο δι-

αστάσεις για το µοντέλο που περιγράφηκε παραπάνω. Τα αριθµητικά προβλήµατα έχουν

χωριστεί σε δύο κατηγορίες, σε µη ϑραυόµενους και ϑραυόµενους κυµατισµούς.

Συµπερασµατικά και αρχικά για την 1∆, αναπτύσσεται ένα υβριδικό συντηρητικό αρι-

ϑµητικό µοντέλο ΠΟ/Π∆ για την επίλυση και την σύγκριση των ΒΤ εξισώσεων του Nwogu

και των Madsen και Sørensen. Παρατηρούµε ότι για µη ϑραυόµενους, µακρείς κυµα-

τισµούς οι διαφορές ανάµεσα στις λύσεις που παράγονται από τις NSWE και από τις

ΒΤ εξισώσεις είναι πολύ µικρές. Παρόλο που οι NSWE επαρκούν σε κάποιες περιπ-

τώσεις όπως στον υπολογισµό της αναρρίχησης των κυµάτων και κάποιων γενικότερων

χαρακτηριστικών των διαδιδόµενων κυµατισµών, τα αποτελέσµατα των ΒΤ εξισώσεων εί-

ναι ακριβέστερα σε διασπειρόµενους κυµατισµούς και σε µεγαλύτερου ϐάθους νερό. Τα

δυο ΒΤ µοντέλα παρουσίασαν παρόµοια αποτελέσµατα συγκρινόµενα µε πειραµατικά δε-

δοµένα. Οι εξισώσεις του Νwogu υπερτερούν ελαφρώς και για αυτόν τον λόγο επιλέχθηκαν

για την διακριτοποίηση τους στις 2∆.

Στην δεύτερη ενότητα της παρούσας εργασίας γίνεται σύγκριση των δυο ϐασικών

τρόπων υλοποίησης των µεθόδων πεπερασµένων όγκων για µη δοµηµένα υπολογιστικά

πλέγµατα που προέρχονται από τριγωνισµούς. Συγκρίνουµε, µέσα σε ένα ελεγχόµενο

υπολογιστικό περιβάλλον, ένα κεντροθετηµένο ανά κέντρο ϐάρους υπολογιστικού κελιού

και ένα κεντροθετηµένο ανά κόµβο σχήµα, µε στόχο την επιλογή του ϐέλτιστου για την

διακριτοποίηση των ΒΤ εξισώσεων σε 2∆. Και τα δύο σχήµα συγκρίνονται µε αναλυτικές

λύσεις καταλήγοντας στο γεγονός ότι για την κεντροθετηµένη µέθοδο ανά κέντρο ϐάρους

υπολογιστικού κελιού προσέγγιση, η συµπεριφορά σύγκλισης εξαρτάται από το υπολο-

γιστικό πλέγµα που χρησιµοποιούµε, κάτι που δεν συµβαίνει στο κεντροθετηµένο ανά

κόµβο σχήµα. Επίσης η χρησιµοποίηση ϕανταστικών κελιών για τον υπολοισµό οριακών

συνθηκών, στο κεντροθετηµένο ανά κέντρο ϐάρους σχήµα µπορεί να οδηγήσει σε µείωση

ακρίβειας.

Στην συνέχεια, και χρησιµοποιώντας τις ΒΤ εξισώσεις του Nwogu και το κεντροθετη-

µένο ανά κόµβο σχήµα ΠΟ, υλοποιείται ένα νέο 2∆ µη δοµηµένο αριθµητικό µοντέλο

ΠΟ για τις προαναφερθείς εξισώσεις. Από όσο γνωρίζουµε είναι η πρώτη ϕορά που µια

προσέγγιση ΠΟ εφαρµόζεται σε ΒΤ εξισώσεις. Στη συνέχεια υλοποιήθηκαν διαφορετικού

τύπου µηχανισµοί ϑραύσης και παρουσιάστηκε για πρώτη ϕορά ένα νέο υβριδικό µοντέλο

ϑραύσης το οποίο χρησιµοποιεί ένα συνδυασµό κριτηρίων για την ενεργοποίηση του όπου



µόνο µια παράµετρος χρειάζεται να ϐαθµονοµηθεί. Το µοντέλο αποδείχθηκε αποτελεσ-

µατικό και ακριβές, συγκρινόµενο µε τα υπάρχοντα µοντέλα ϑραύσης που υπάρχουν την

ϐιβλιογραφεία και που επίσης υλοποιήθηκαν στην παρούσα εργασία.

Το αριθµητικό µοντέλο ϐαθµονοµήται χρησιµοποιώντας πειραµατικά αποτελέσµατα

προβληµάτων που µελετούν πληθώρα κυµατικών ϕαινοµένων. Σε όλα τα προβλήµατα

παρατηρήθηκε πολύ καλή συµφωνία των αριθµητικών αποτελεσµάτων µε πειραµατικά

δεδοµένα καθώς και µε λύσεις µοντέλων που µπορούν να ϐρεθούν στην ϐιβλιογραφία.





Chapter 1

Introduction

In the last two decades mathematical and numerical modeling of free surface flows in

realistic environments has been one of the most interesting and active research fields

in coastal engineering, where accurate simulations of nonlinear and dispersive water

waves are important and have largely replaced laboratory experiments for the design

of coastal structures. Important issues one has to consider include, the validity of

a mathematical model in near-shore zones as well as in deeper waters, transitions

between sub and super-critical flows, frequency dispersion and accurate numerical

treatment of natural topographies and wetting/drying processes. Significant research

effort has been expanded into advancing important simulation issues which include

representation of near-shore wave processes such as, shoaling, run-up, diffraction,

refraction and wave breaking. To this end, depth averaged models have gained a lot

of popularity, in terms of applicability and development, with the nonlinear shallow

water equations (NSWE) being one of the most applied models falling in this category.

The NSWE have been employed widely to model wave propagation and runup, see for

example [161, 162, 86, 32, 118, 27, 58, 50, 125, 91] among many others. The NSWE

model is currently accepted to mathematically describe a wide variety of free surface

flows under the effect of gravity and that it can be very useful for simulating long

wave hydrodynamics when the vertical acceleration of water particles can be neglected

and the flow can reasonably assumed to be nearly horizontal. In general, the NSWE

constitute a hyperbolic system of conservation laws with source terms present due to

the bed topography and friction (if other effects like Coriolis forces, are omitted).

Although the models utilizing the NSWE appear to be able to model important as-

pects of the flow and the general characteristics of the runup process they are not ap-

15
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propriate for deeper waters where frequency dispersion effects become more important

than nonlinearity. On the other hand, Boussinesq-type (BT) equations introduce dis-

persion terms and are more suitable in water where dispersion begins to have an effect

on the free surface. Under the assumption that nonlinearity and frequency dispersion

are weak, and in the same order of magnitude, Peregrine [133] derived the so called

standard Boussinesq equations for variable depth using the free surface displacement

and the depth averaged velocity as dependent variables. The standard Boussinesq

equations, written in terms of the depth averaged velocity, break down when the depth

is greater than one fifth of the equivalent deep water wavelength and as such are lim-

ited to relative shallow water. In addition the weakly nonlinear assumption limits the

largest wave height that can be accurately modeled. The linear dispersion characteris-

tics of the BT equations of Peregrine, rapidly diverge from the true behavior in deeper

water rendering the model invalid in theses situations.

In recent years, many researchers have proposed a number of extended BT systems

for which the dispersion relationship is valid up to the deep water limit, making the

BT models applicable in deeper water regions. Some widely used equations among

others are [183, 124, 113, 127, 20] and posses equivalent dispersion properties. These

extended models give a more accurate representation of the phase and group velocities

in intermediate water with water depth to wave length ration up to 1/2, and some-

times are referred as low-order enhanced BT equations. Witting [183] expressed the

depth-averaged momentum equations in terms of the velocity at the free surface and

dispersion was added using a fourth order Taylor expansion. Madsen et al. [113]

added extra dispersion terms to the original equations in order to improve the linear

dispersion characteristics and extended the procedure including a variable bottom to-

pography [114]. Nwogu [127] derived an extended system of equations, from the full

fluid equations, by using the velocity at an arbitrary depth and Beji and Nadaoka [20]

produced a BT system using Peregrine’s BT model. The most popular among the afore-

mentioned BT models are those of Nwogu [127] and Madsen and Sørensen (MS) [114].

Each model is different in the form and arrangement of the dispersive terms but they

both lead to dispersion relationships that could become Pade approximants to the exact

linear relationship, which give good results from shallow water up to a dimensionless

wavenumber of kh ≈ 3. In recent years, progress was made in to advancing the non-

linear and the dispersion terms and multiple BT models were proposed. We refer for
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example [179, 74, 68, 107, 21, 110, 111, 112, 106] among others which in turn are

more difficult to integrate and thus require more computational effort in their numerical

integration.

1.1 Numerical modeling

Many numerical schemes have been developed to solve BT equations. Until recently

most of them where based on the finite difference (FD) method, please refer for example

in [1, 20, 67, 68, 114, 110, 179]. The popularity of the FD schemes can be attributed

to the ease in which higher order derivatives can be approximated and to the well

structured resulted linear systems, which can be efficiently solved (e.g. tridiagonal

ones). Nwogu [127] used central differences of the same order as the derivatives in his

equations for the spatial discretisation and Madsen et al. [114, 113] used a straight

forward mid-centering finite difference approximation. A simpler method was suggested

by [179] were all first-order spatial derivatives were approximated using a fourth order

finite difference scheme to ensure that the truncation error of the numerical scheme

was less that that of the dispersion in the governing equations. Recently, Shi et al.

[146] used a spatially staggered scheme. Operational models such as FUNWAVE [147]

and COULWAVE [108, 94] are based on the finite-difference methodology. The earliest

application of the FD method [1, 179] showed that the truncation errors of low-order

approximation significantly affect the accuracy of the solution. This is because the

truncation errors of the FD approximations are of the same form as the dispersive

terms in the BT equations. Hence, these errors lead to the prediction of non-physical

dispersion or "numerical diffusion", hence a careful treatment of truncation errors is

necessary. The major limitation of the FD methods is that, for 2D formulations, one has

to use structured spatial meshes, even for irregular domains, which can lead to loss of

accuracy. Some negative aspects of this shortcoming can be avoided using curvilinear

coordinates [146], but considerable work may be needed to generate such grids for

arbitrary geometries and accuracy may be limited due to mapping problems. Another

problem with the FD method is the correct treatment of the boundary conditions.

The use of unstructured spatial meshes for 2D complex geometries, where the mesh

size can be adapted to local features such as, depth profile and complex boundaries,

has been put forward as a strategy to obtain more cost-effective models. In Sørensen et
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al. [152] it was estimated that the potential reduction factor, compared to structured

meshes, is of the order of 10 − 20. The most natural candidates for unstructured

methods are finite element (FE) methods and finite volume (FV) methods. The use of

FE methods in the solution of extended BT models has increased in the last ten years

(see [56] for a review) with promising results in terms of accuracy and efficiency, see

for example [4, 103, 178, 152, 184, 63, 64, 60, 190, 105]. Walkley et al. [178] showed,

using Nwogu’s equations, that the solution can produce non-physical dispersion, the

degree of which depends on the selected mesh size. Hence, the variation of mesh

size needs to be suitably controlled. The main disadvantage of the FE methodology

is that usually higher-order spatial derivatives present even in the low-order extended

Bousssinesq equations must be reduced. For example, third-order derivatives in low-

order extended models are usually reduced by introducing auxiliary variables to the

system of equations, resulting in additional equations to be solved. Although relatively

efficient schemes with higher-order accuracy can be derived within the FE framework,

significant complexities and stability issues may also arise, especially on arbitrary grids.

FV methods usually require significantly less computational effort than FE ones,

while non-linear advection terms and topography source terms can be more easily

treated when compared to FD methods. The advantages of the FV method for numer-

ically approximating the NSWE are well known also in terms of the topography and

wet/dry front treatment, we refer to [167, 51] and references therein for comprehensive

reviews. The FV formulation is probably, now days the most applied modeling strategy

for the numerically approximation of the 2D NSWE. The FV formalism can be applied

to both structured and unstructured computational meshes and as such the physical

domain under study can be divided into a certain number of finite control volumes,

and the equations, cast in integral form, can be applied individually to each one of

them. This procedure guarantees, a priori, the conservation of physical quantities likes

mass and momentum, is extremely flexible and conceptually simple. FV schemes have

been applied to solve the non-dispersive NSWE for a wide range of applications, like

flood propagation, dam-break flows, bore propagation as well as to long wave propaga-

tion and runup, see for example [161, 162, 34, 86, 170, 78, 30, 118, 27, 50, 125, 91]

among many others. Specifically, Godunov-type FV schemes based on Riemann solvers

have the advantage of solving the integral form of the nonlinear equations as fully con-

servative schemes with intrinsic shock capturing properties as well as with correctly
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incorporating the bed topography and treating accurately advancing wet/dry fronts

[170, 30, 86, 102, 167, 118, 51, 50, 91]. FV schemes can be categorized, in the main,

as of the cell-centered (CCFV) or the node-centered (NCFV) (also referred as vertex-

centered) type [9, 84, 75, 22, 119, 121]. A third approach also exists, the so called FV

of the edge-type, introduced in [17]. For the CCFV approach, the (finite) control volumes

used to satisfy the integral form of the equation are the mesh elements themselves, for

example triangles. For the NCFV approach, the control volumes are elements of the

mesh dual to the computational mesh. In a NCFV layout three possible definitions of

the control volumes exist; the centroid dual, created by connecting the centroids of the

triangular elements which are jointed to the concerned node; the Dirichlet tessellation

which is formed by connecting the centers of the circum-circles of the same element;

and finally the median dual obtained by linking the centroids of the elements and mid-

points of the edges around the node [9]. In the edge-type control volumes the nodes

are placed on the edges of an original triangulation, see [17, 41, 42] for details. Both

cell-centered and node-centered of the median dual type FV discretizations will be pre-

sented in this work and will be used to simulate complex 2D free surface water flows

by approximating the NSWE model. One of these formulations will be chosen in order

to be used for the discretization of a 2D Boussinesq-type model.

For most problems of practical interest the numerical treatment of the source terms

is a relatively standard procedure. For computing the topography source term within

the FV framework, considerable progress has been made and as such several numerical

and mathematical treatments have been proposed for balancing the flux gradient and

the source term, in order to properly compute stationary or almost stationary solutions.

This property is known as well-balancing and is currently a very active subject of

research, we refer to [51] and references therein. An other important problem, arising

in engineering applications is the appearance of dry areas, due to initial conditions or as

a result of the water motion. As such, the necessity to handle wetting and drying moving

boundaries (e.g. shoreline motion [27]) is a challenge that has attracted much attention.

Several approaches have been proposed in different models and numerical schemes,

using the NSWE equations [161] and, for Boussinesq-type equations, [108, 68] have

used an extrapolation technique to allow the models to handle moving boundaries.

Other techniques have been developed as to avoid dealing with wet/dry interfaces by

excluding the dry cells from the computational domain [30, 32], by artificially wetting
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dry cells [86] and by modeling the shore as porous or slotted [93].

Very recently, and in one spatial dimension, classical FV schemes (of the Godunov

type) have been modified to solve enhanced BT equations. In these modifications the

BT equations are re-written in a vector conservative like form and the FV method is

used to solve the nonlinear shallow water part of the equations, while the dispersive

terms are discretized by FD schemes resulting in hybrid FV/FD schemes. Frazao et al.

[66] were the first to introduce the hybrid modeling for the BT equations and concluded

that the hybrid solution produces more accurate results than the FD solution for wave

profiles that are initially steep. Erduran et al. [62, 61] developed a new fourth-order

hybrid FV/FD model for the 1D MS equations,by employing a MUSCL-type scheme with

Roe’s Riemann solver on the FV part of the equation. In addition, the a fourth-order

predictor corrector time stepping was used and the topography slopes were discretized

using the surface gradient method (SGM)[191]. Wet/dry fronts and wave breaking

treatment have not been considered in [62]. The application of the hybrid scheme

requires the governing equations to be recast to obtain a conservative part that suits the

FV discretization. MS equations have been also used by Borthwick et al. [24] where the

HLL Riemann solver was used and a wave breaking treatment was introduced. Lynett

et al. [108] used the equations from [104] while Cienfuegos et al. [46, 47] developed

a high-order FV scheme for the so-called Serre equations [11] which are recasted in

a convenient quasi conservative form. Both the MS and Nwogu’s models, but in non

conservative form, were numerically solved and compared in [148] utilizing again the

HLL solver along with the SGM. In [142] a fifth-order in space and fourth-order in time

scheme was used fot the equations of Nwogu. More, recent works, that use hybrid

FV/FD schemes are those in [150, 57, 91, 109, 147, 141, 94]. These hybrid schemes,

which combine the FV and FD methodology have been introduced for Boussinesq-type

equations as to incorporate the flexibility and shock-capturing capabilities of the FV

approach into dispersive wave models. This approach is particularly useful for short

and long wave interactions as the solution can be easily turned into entirely FV solution

of the NSWE by removing the higher-order Boussinesq terms, if needed.

Further, this hybrid approach has been extended to two space dimensions but for

uniform structured grids [163, 94, 164]. Although for structured grids hybrid FV/FD

schemes are relatively simple to implement, they can severely restrict the modeling

when dealing with 2D irregular geometries, similar to the FD method. For coastal flood-
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ing over complex topography and wave interaction with coastal structures, this leads to

a loss of accuracy or to the use of excessively refined grids. One approach to reduce the

effect of a structured grid was presented in [126], where the cut-cell approach was used

to solve the 2D Madsen and Sørensen [114] equations by a Godunov-type second order

FV scheme. The use of unstructured meshes provides geometrical flexibility and, in ad-

dition, mesh resolution can be more easily refined where needed, for example in shallow

regions or near structures. A first attempt to apply the unstructured FV methodology

on Nwogu’s extended equations was presented in [59], where a low order staggered FV

scheme was presented. The scheme does not account for topography sources neither

for accurate wet/dry front treatment. Additionally is of low order, imposing questions

in deeper waters where dispersive effects are predominant. Furthermore, important

flow problems such as run-up and wave breaking were not included.

1.2 Wave breaking

Wave breaking in the nearshore environment becomes an important modeling issue. As

a wave’s amplitude increases and reaches a critical level the wave crest steepens, the

front of the wave becomes vertical and then the crest of the wave overturns. It should be

noted that, wave breaking is a complex phenomenon, with substantial air entrainment,

turbulence that causes energy dissipation. At this point BT models are unable to

describe the physical procedure since the FD discretization of the dispersive terms

causes the generation of spurious oscillations if steep gradients are present. Thus, a

wave breaking mechanism has to be considered. A wave breaking model for the BT

equations requires two mechanisms to simulate the breaking process numerically. The

first one is a trigger mechanism related to the initiation and, possibly the termination,

of the breaking process. The second mechanism is an energy dissipation mechanism.

Three types of additional momentum dissipation methods for wave breaking exist:

The surface roller model [144, 115, 116, 151], the vorticity model and the eddy viscosity

model [93, 189, 142, 48, 90]. The last few years, a new approach has been used which

simply (under certain conditions) turns off the dispersive terms in the region where

breaking occurs [163, 164, 141, 91, 24].

In eddy viscosity models dissipation due to turbulence generated by wave breaking

and bore propagation is treated by a diffusion term in the momentum conservation
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equation in order to prevent numerical instabilities resulting from frequency and am-

plitude dispersion. The amount of dissipation is governed by the value of the eddy

viscosity coefficient, which is calibrated with experimental data. A breaking criterion is

used to decide exactly where and when the dissipation becomes active [49]. Heitner and

Housner [83] proposed an eddy viscosity model to dissipate energy for breaking waves.

Energy loss is limited to the front face of waves where the change of wave properties

exceeds a certain criteria. Zelt [189] treated wave breaking similarly in a Lagrangian

Boussinesq model to simulate solitary wave breaking and run-up. The same model

used from Wei et al. [180]. Karambas and Koutitas [90] used also an eddy viscosity

mechanism with the limitation that the formulation was not momentum preserving

and the setup prediction in the inner surf zone (in the investigation of the performance

for periodic waves) was very poor. Kennedy et al. [93] followed [83] and [189] but

with extensions to provide a more realistic description of the initiation and cessation

of wave breaking and were able to adequately reproduce wave height and setup for

regular waves breaking on planar beaches. The largest disadvantage in that formula-

tion is that, in some special cases, such as stationary hydraulic jumps, wave breaking

initiation is not recognized. Additionally, Cienfuegos et al.[47] showed that Kennedy et

al.’s eddy viscosity breaking model could hardly predict simultaneously accurate wave

height and asymmetry along the surf zone. Lynett [106] used the eddy viscosity model

of Kennedy et al. [93] with some modifications which regards the manner in which a

breaking event is initiated and reformulations of the models thresholds in terms of the

total water depth H. Nwogu and Demirbilek [128] present a more sophisticated eddy

viscosity model in which the eddy viscosity is expressed in terms of turbulent kinetic

energy and a length scale. Recently, Roeber et al. [142] adapt the approach of [83, 93]

and presented an eddy viscosity approach consistent with the conservative formulation

of the Boussinesq-type equations of Nwogu [127] in 1D, to account for breaking waves

in the surf zone.

Other methods are based on the surface roller concept introduced by Svendsen

[154]. These methods, like the eddy viscosity ones, add a flux gradient to the BT mo-

mentum equation [144, 151] but this approach stems on different hypothesis and ideas

than those on the eddy viscosity ones. The added term depends on the dynamically

determined roller thickness, the mean front slope of the breaker and other parameters

which must be tuned during the numerical implementation. The roller approach has
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been improved by [115, 116] and by [175, 89]. Recently Cienfuegos et al. [46, 47, 48]

considered the wave breaking energy dissipation through extra terms written both in

mass and momentum equations.

A relatively new approach, based on the assumption that Boussinesq equations

automatically degenerate into NSWE as dispersive terms become negligible compared

to nonlinear terms, developed the last few years. The idea introduced by [163, 164],

for the equations of MS [114], is to exploit the shock-capturing advantages of the

FV scheme within the framework of BT equations in order to model discontinuous

phenomena such as wave breaking and runup. These models take advantage of the

fact that in shallow water, the NSWE (under the FV framework) have the ability to

naturally embody bore propagation and the related energy dissipation. This feature

is interesting because of the similarity between spilling breakers and bores [134, 12].

Borthwick et. al. [24] introduced the above idea using as an indicator criterion, one

similar to the criterion used by Kennedy et al. [93]. Tonelli et al. [163, 164] introduced

a simple criterion (developed on a physical basis) in the numerical scheme to establish

which set of equations should be solved in each computational cell and recently they

applied an extended version of their hybrid model, including an additional criterion

for the switch back to the BT equations, to describe the transformation of irregular

waves[165]. Roeber et al. [141] utilize the local momentum gradients as an indicator

for deactivation of the dispersive terms. The above treatment has been developed for 1D

and 2D BT equations on structure meshes. Among the researchers that have followed

the same idea are also [160, 23, 147, 24, 130]. In all aforementioned works it is not

clear the way that wave breaking technique is implemented, with a concern about

method’s sensitivity to grid spacing [147].

1.3 Outline of the thesis

The existing discretizations for the BT models, as discussed so far, consist of FD or

hybrid FV/FD methods which are either for 1D BT equations or for 2D equations

using only structured meshes. No one has discussed the the study of the generation,

propagation and runup of the waves including complex topography holistically, which

is one of this thesis targets. With the exemption of [59] and to the best of our knowledge,

this is the first attempt to numerically solve enhanced BT equations on unstructured
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meshes by a higher- order FV scheme which exploits the advantages of the FV approach

and incorporates state of the art discretization for the topography and for the treatment

of wet/dry fronts

Hence, the aim of the present work is to present the development, application and

potentials of a novel higher-order FV scheme for the numerical integration of extended

BT equations on unstructured triangular meshes. The model should handle multiple

flow problems such as propagation in deeper water, shoaling, runup, wet/dry pro-

cesses, wave breaking etc. This work consist of three parts. The first part describes

the derivation and discretization of two 1D BT equations (Nwogu’s [127] and Madsen

and Sørensen’s equations [114]) through a hybrid FV/FD model. The second part of

this thesis presents the discretization of the NSWE, specifically two FV schemes are

implemented under the same framework and compared in order to find the one more

appropriate for the discretization of a 2D BT model. The last part describes the deriva-

tion of a novel unstructured FV scheme for the 2D Nwogu’s equations. The outline of

the remaining chapters of this thesis is as follows.

In Chapter 2, both Nwogu’s [127] and Madsen and Sørensen’s [114] models are

formulated in a conservative form of the NSWE. Nwogu’s extended BT equations are

formulated in a conservative like form, incorporating the time derivative component

of the dispersion terms into the vector of conserved variables with a flux term that

is identical to that of the NSWE. Both models are numerically solved, in one spatial

dimension, using a hybrid FV/FD scheme.

The numerical solution is described in Chapter 3 where a fourth-order Godunov-

type FV technique is used, based on the approximate Riemann solver of Roe with the

topography source term discretized in an upwind manner as to provide a well-balanced

scheme. As such, no special algorithms need to be implemented, e.g. extrapolation or

exclusion of dry cells, to accurately compute shoreline movements. Additionally four

wave breaking mechanisms are implemented and tested with one of them having a

novel approach.

These two models are compared in Chapter 4, as to determine their differences and

help us choose the BT equations that will be used for the 2D formulation. Suitable

numerical tests in one spatial dimension are implemented, to highlight the model dif-

ferences and compare the numerical results with analytic solution and/or benchmark

data.
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In Chapter 5 a brief review of FV schemes is described. Two FV approaches for

unstructured meshes ( a NCFV and a CCFV approach) are implemented and compared

for the 2D NSWE. A controlled environment for a fair and extensive comparison between

the two approaches is provided. The behavior of each approach is numerically tested,

individually, equipped with proposed modifications and improvements and their relative

behavior is compared in order to choose the FV framework in which we will discretize

the BT equations.

Chapter 6 presents the development of a NCFV scheme for the numerical integration

of the extended BT equations of Nwogu, on unstructured triangular meshes. The

equations are numerically solved employing a third order, node centered, Godunov type

FV technique that utilizes the approximate Riemann solver of Roe with the topography

source term discretized again in an upwind manner. Temporal accuracy is achieved

using a strong stability preserving Runge-Kutta time stepping. Furthermore two of the

wave breaking treatments presented in Chapter 3 are extended for 2D formulations.

Numerical tests for the 2D formulation are presented in Chapter 7. This the first

attempt (with the exemption of [59] ) to numerically solve enhanced BT equations on

unstructured meshes by a higher-order FV scheme wich exploits the advantages of the

FV approach and incorporates state of the art discretizations for the topography and

for the treatment of wet/dry fronts.





Chapter 2

Shallow water and Boussinesq-type

(BT) equations

In the last few decades mathematical modeling of free surface flows has been one of

the most interesting fields in coastal engineering. The modeling of free surface flows

is usually described, in the classical fluid mechanics framework, using the three di-

mensional Navier-Stokes (NS) equations, assuming the fluid to be Newtonian, viscous

and incompressible. However, the NS equations are computationally onerous thus the

depth-averaging assumption has been used to simplify the equations so that numer-

ical models can be of practical use. Depth-averaged models (or depth-integrated) are

derived using mass and momentum conservation under the assumption that the ve-

locity in the vertical direction is negligible. The most popular among these models is

that of the nonlinear shallow water equations (NSWE). This set of equations is particu-

larly well-suited for the study and numerical simulations of a large class of geophysical

flow phenomena, such as river flow, ocean circulation and coastal processes like, wave

propagation and runup. A large limitation of the NSWE model is that they are not appli-

cable in deeper waters where frequency dispersion effects become more important than

nonlinearity. On the other hand, Boussineq-type (BT) equations introduce dispersion

terms and are more suitable in waters where dispersion begins to have an effect on the

free surface, and thus have become an incresingly important predictive tool in coastal

engineering. As described in Chapter 1 a large number of BT equations exists. The

extended BT equations presented next are applicable for irregular wave propagation on

slowly varying bathymetry from deeper to shallow water.

In this chapter the mathematical models used in this work are presented. In Section

27
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2.1 the NSWE are derived in one and two dimensions. Sections 2.3 and 2.4 presents

the BT equations of Madsen and Sørensen (MS) [114] and Nowgu [127] respectively,

along with their dispersion properties. Both set of equations are re-written here in

a conservation like form in order to be numerically approximated by conservative FV

schemes and to able to handle shock-wave modeling. The last Section 2.5 presents an

important solution for the NSWE as well as for the BT models, the steady state solution.

2.1 The shallow water system of equations

The shallow water equations constitute a system of non-linear hyperbolic partial differ-

ential equations that fall in the category of conservation laws. They are derived from

the physical laws of the mass and momentum conservation and they are also called

balance laws due to significant source terms e.g. topography and friction. They are

valid for problems in which vertical dynamics can be neglected compared to horizontal

effects. To derive the equations, a Cartesian coordinate system is adopted and we refer

to Fig. 2.1 for the case of one (spatial) dimension (1D).

H (x, t)

η(x,t)

h(x)

T opography b(x)

u(x, t)

Figure 2.1: Definition sketch. One horizontal dimension.

2.1.1 Derivation of the non-linear shallow water equations

Conservation of mass

Considering that the fluid is ideal and incompressible, and ignoring Coriolis effects,

viscous terms and surface stresses, we can define that in the domain [x1 x2] the rate of

exchange of mass equals the mass flux which crosses the domain [x1 x2] where x ∈ R
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and t ∈ R+. The total mass can be defined as:∫ x2

x1
ρH(x, t)dx (2.1)

where x, t denote the space-time domain and ρ is the fluid density, H(x, t) ≥ 0 is the

total water depth and the rate of exchange of mass is given as:

∂

∂t

∫ x2

x1
ρH(x, t)dx. (2.2)

Integrating vertically the momentum density, we get the total mass flux:∫ H+b

b
ρu(x, t)dy = ρu(x, t)

∫ H+b

b
dy = ρu(x, t)H(x, t). (2.3)

So, the total mass flux which crosses x1 is (ρuH)|x1 and (ρuH)|x2 the one that crosses x2.

Consequently, the integral form of the conservation of mass has the form:

∂

∂t

∫ x2

x1

H(x, t) = (ρu)|x1 − (ρu)|x2 . (2.4)

Integrating (2.4) at the interval [t, t + ∆t] and assuming that both u(x, t) and H(x, t) are

differentiable we obtain:∫ t+∆t

t

∫ x2

x1

∂H
∂t

+
∂(Hu)
∂x

= 0, (2.5)

and the differential form of the conservation of mass on Ω ∈ R × R+
is now given as:

∂H
∂t

+
∂(Hu)
∂x

= 0 (2.6)

Conservation of momentum

Conservation of momentum concludes from Newton’s second law which states that, the

change in velocity (acceleration) with which an object moves is directly proportional to

the magnitude of the force applied to the object, and inversely proportional to the mass

of the object. In the region [x1 x2] it should hold that the momentum fluxes equals to

the total forces in x-direction (science we refer to 1D). The mass flux is defined by the

material derivative of the velocity:

D
Dt

∫ x2

x1

∫ H+b

b
ρudydx =

d
dt

∫ x2

x1

∫ H+b

b
ρudydx +

∫ x2

x1

∫ H+b

b
ρ
∂u2

∂x
dydx = (2.7)

=
d
dt

∫ x2

x1

ρHudx + (ρHu2)|x2 − (ρHu2)|x1 . (2.8)

The total force applied in the x-direction is the summation of the forces applied, such

as the pressure due to the topography b(x) and the pressure due to the wall. All other
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forces such as the Coriolis effect and wind stresses are neglected. The pressure applied

from the wall is given as:

g
[∫ H+b

b
ρ(y − H − b)dy

]x2

x1

=

[
−

1
2

gρH2
]x2

x1

, (2.9)

and the pressure applied from the bottom as:

−g
∫ x2

x1

ρH
db
dx

dx (2.10)

Hence, the total force in the x-direction is[
−

1
2

gρH2
]x2

x1

− g
∫ x2

x1

ρH
db
dx

dx, (2.11)

where g is the gravitational constant. The integral form of mass conservation has the

form:

d
dt

∫ x2

x1

Hudx + (Hu2)x2 − (Hu2)x1 =

[
−

1
2

gH2
]x2

x1

− g
∫ x2

x1

db
dx

dx. (2.12)

Assuming, like before, that the functions H(x, t) and u(x, t) are differentiable we obtain

the differential form of the mass conservation

∂(Hu)
∂t

+
∂(Hu2 + 1

2gH2)
∂x

= −gHbx. (2.13)

The resulting set of equations (2.6)-(2.13) can be rewritten in a vector conservative form:

∂U
∂t

+
∂F(U)
∂x

= S(U) on Ω × [0, t] ⊂ R × R+, (2.14)

where Ω × [0, t] is the space-time Cartesian domain over which solutions are sought, U

is the vector of the conserved variables, F is the nonlinear flux vector and S = Sb + Sf is

the source term which includes the bottom slope and the friction, given as:

U =

 H

Hu

 , F(U) =

 Hu

Hu2 + 1
2gH2

 ,
S(U) = Sb + Sf =

 0

−gHbx

 +

 0

−gHS f

 . (2.15)

For the friction term the Manning empirical form [91] is used in this work, where

S fx = n2
m

u|u|

H
4
3

, (2.16)

with nm being the Manning friction coefficient.
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The Jacobian matrix of the 1D NSWE (2.14) -(2.15) is

F′(U) =
∂F
∂U

= A =

 0 1

c2 − u2 2u

 (2.17)

with real eigenvalues

λ1 = u − c, λ2 = u + c

and the corresponding eigenvectros are

r1 = [1, u − c]T , r2 = [1, u + c]T . (2.18)

c =
√

gH is the wave’s celerity.

Following the same reasoning as before, we can derive the shallow water equations

in two spatial dimensions [170]. Again, ignoring Coriolis effects, viscous terms and

surface stresses the system of the 2D non-linear shallow water equations can be written

in conservation law form as:

∂U
∂t

+ ∇ · H( U) = L( U) on Ω × [0, t] ⊂ R2 × R+, (2.19)

where the vector of conserved variables and fluxes in x− and y− direction are given by

U =


H

Hu

Hv

 , H(U) = [F(U) G(U)] =


Hu Hv

Hu2 + 1
2gH2 Huv

Huv Hv2 + 1
2gH2

 ,
with u = [u, v]T

being the vector velocity field, H(x, y, t) ≥ 0 the flow depth (distance

from the bottom to the free surface). We also denote with q = [Hu,Hv]T = [qx, qy] the

unit discharge. The source term L(U) = [Sb + Sf] models the effects of the shape of the

bed topography and friction on the flow. geometrical source term, along the coordinate

directions, is given as Sb = Sbx + Sby where

Sbx =


0

−gH
∂b(x, y, t)

∂x
0

 and Sby =


0

0

−gH
∂b(x, y, t)

∂y

 . (2.20)
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The source term component Sf includes the bed friction stresses, that represent the

energy dissipation influence of the bed roughness on the flow, given as,

Sf =


0

−gHS f
x

−gHS f
y

 , (2.21)

where S fx and S fy are the friction loss slopes along the coordinate directions given as,

S fx =
n2

mu||u||
H

4
3

and S fy =
n2

mv||u||
H

4
3

, (2.22)

The Jacobian matrices of system (2.19) are given as,

∂F
∂U

= A =


0 1 0

c2 − u2 2u 0

−uv v u

 and
∂G
∂U

= B =


0 0 1

−uv v u

c2 − v2 0 2v

 (2.23)

with c =
√

gH being the wave celerity. The eigenvalues of the two matrices are:

λA
1 = u − c, λA

2 = u, λA
3 = u + c

and

λB
1 = v − c, λB

2 = v, λB
3 = v + c

respectively, while the corresponding eigenvectors are:

rA
1 = [1, u − c, v]T, rA

2 = [0, 0, c]T, rA
3 = [1, u + c, v]T

and

rB
1 = [1, u, v − c]T, rA

2 = [0, −c, 0]T, rA
3 = [1, u, v + c]T.

The eigenvectors and the eigenvalues of the Jacobian matrices are fundamental for

constructing the numerical schemes later on.

2.2 Derivation of Madsen and Sørensen’s (MS) Boussi-

nesq formulation

According to Madsen et al. [114], the set of the extended Boussinesq-type (BT) equations

should meet the following requirements:
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(a) The equations should be expressed in two horizontal dimensions in terms of the

surface elevation and the depth-integrated velocity components.

(b) The resulting linear dispersion characteristics should follow a celerity expression

which will be explained below.

As a starting point the standard form of the Boussinesq equations derived by Peregrine

[133] has been considered. Formulated in terms of depth-integrated velocities and

using ()t =
∂

∂t
, ()x =

∂

∂x
equations read as,

ηt + Px + Qy = 0, (2.24)

Pt +

(
P2

H

)
x

+

(PQ
H

)
y

+ gHηx + ψ̃1 = 0, (2.25)

Qt +

(
Q2

H

)
y

+

(PQ
H

)
x

+ gHηy + ψ̃2 = 0, (2.26)

in which

ψ̃1 = −
1
2

h2
(
Pxxt + Qxyt

)
+

1
6

h3
[(P

h

)
xxt

+

(Q
h

)
xyt

]
, (2.27)

ψ̃2 = −
1
2

h2
(
Qyyt + Pxyt

)
+

1
6

h3
[(Q

h

)
yyt

+

(P
h

)
xyt

]
, (2.28)

are the dispersive terms. As defined before, H is the total water depth, h is the still-

water depth, η is the surface elevation (see Fig. 2.1) and P = Hu and Q = Hv are the

depth-integrated velocity components in the x- and y-direction, respectively. We use P

and Q instead of Hu and Hv, for a more compact notation. The dispersion terms in the

above equations are expressed in terms of h, which means that nonlinear effects arising

from the difference between H and h have been neglected. Expanding the derivatives

at the second part at the right hand side in (2.27) and (2.28) and assuming that first

derivatives of h are small, so that higher derivatives and products of derivatives are

consequently neglected we obtain the following simplified form of (2.27) and (2.28).

ψ̃1 = −
1
3

h2
(
Pxxt + Qxyt

)
−

1
6

hhyQxt −
1
6

hhx

(
2Pxt + Qyt

)
, (2.29)

ψ̃2 = −
1
3

h2
(
Qyyt + Pxyt

)
−

1
6

hhxPyt −
1
6

hhy

(
2Qyt + Pxt

)
. (2.30)
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A classical procedure to simplify higher order terms is the introduction of the linear

long wave approximations [120]:

Pt ≈ −ghηx, (2.31)

Qt ≈ −ghηy. (2.32)

By spatial differentiation of (2.31)-(2.32) and assuming that the first derivatives of h are

small and with higher derivatives and products of derivatives neglected we obtain:

Pxxt + 2ghxηxx + ghηxxx ≈ 0, (2.33)

Pxyt + ghxηxy + ghyηxx + ghηxxy ≈ 0, (2.34)

Qyyt + 2ghyηyy + ghηyyy ≈ 0, (2.35)

Qxyt + ghyηxy + ghxηyy + ghηyyx ≈ 0. (2.36)

For example Pxxt type terms can be replaced by ηxxx type terms. In shallow water this

would make no difference to the solution, but in deeper water the form of the Boussinesq

terms is critical for the accuracy of the linear dispersion relation. Madsen et al. [114]

add equations (2.34) and (2.36) and multiply the summation with −Bh2
(where B is a

free parameter that determines the dispersion properties of the system). They also add

(2.35) and (2.36) obtaining the two terms:

ε1 = −Bh2
[ (

Pxxt + Qxyt

)
+ gh

(
ηxxx + ηxyy

)
+ ghx

(
2ηxx + ηyy

)
+ ghyηxy

]
,

ε2 = −Bh2
[ (

Qyyt + Pxyt

)
+ gh

(
ηyyy + ηyxx

)
+ ghy

(
ηxx + 2ηyy

)
+ ghxηxy

]
,

which are then added to ψ̃1 and ψ̃2 respectively. According to the long wave equation,

ε1 and ε2 will be insignificant in shallow water and they can be added to the standard

Boussinesq equations without affecting their accuracy. By doing so, the dispersion
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terms, then read as:

ψ̃1 = −

(
B +

1
3

)
h2

(
Pxxt + Qxyt

)
− Bgh3

(
ηxxx + ηxyy

)
− hhx

(
1
3

Pxt +
1
6

Qyt + 2Bghηxx + Bghηyy

)
− hhy

(
1
6

Qxt + Bghηxy

)
, (2.37)

ψ̃2 = −

(
B +

1
3

)
h2

(
Qyyt + Pxyt

)
− Bgh3

(
ηyyy + ηxxy

)
− hhy

(
1
3

Qyt +
1
6

Pxt + 2Bghηyy + Bghηxx

)
− hhx

(
1
6

Pyt + Bghηxy

)
. (2.38)

The value of the coefficient B was determined by matching the resulting linear disper-

sion relation with a polynomial expansion of Stokes first order theory combined with the

use of Padé’s approximant. A value of B = 1/15 has been defined by [114] as optimal.

With a stationary bathymetry b(x), equations (2.24)-(2.26) combined with the dispersive

terms (2.37)-(2.38) can be expressed in terms of the conserved variables H, P, Q since

ηt = (η + h)t = Ht, as

Ht + Px + Qy = 0, (2.39)

Pt +

(
P2

H

)
x

+

(PQ
H

)
y

+ gHηx + ψ̃1 = 0, (2.40)

Qt +

(
Q2

H

)
y

+

(PQ
H

)
x

+ gHηx + ψ̃2 = 0. (2.41)

Keeping in mind that topography b(x) is not changing with time we have:

gH∇η = ∇

(
gH2

2

)
+ gH∇b and ∇η = ∇H − ∇h (2.42)

thus,

Ht + Px + Qy = 0,

Pt +
(
Hu2

)
x

+ (Huv)y +

(
gH2

2

)
x

+ gHbx + ψ̃1 = 0,

Qt +
(
Hv2

)
y

+ (Huv)x +

(
gH2

2

)
y

+ gHby + ψ̃2 = 0,
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which is the same as

Ht + Px + Qy = 0, (2.43)

Pt +

(
Hu2 +

gH2

2

)
x

+ (Huv)y + gHbx + ψ̃1 = 0, (2.44)

Qt + (Huv)x +

(
Hv2 +

gH2

2

)
y

+ gHby + ψ̃2 = 0. (2.45)

In the absence of frequency dispersion, the equation reduce to (2.14), the NSWE in their

conservative form. Following the works in [62, 163], we re-write the above equations

splitting the dispersive terms in those with time derivatives and those who have only

spatial derivatives, obtaining:

ψ̃1 =

[
−

(
B +

1
3

)
h2

(
Pxx + Qxy

)
− hhx

(
1
3

Px +
1
6

Qy

)
− hhy

(
1
6

Qx

)]
t

− Bgh3
(
ηxxx + ηxyy

)
− hhx

(
2Bghηxx + Bghηyy

)
− hhy

(
Bghηxy

)
, (2.46)

ψ̃2 =

[
−

(
B +

1
3

)
h2

(
Qyy + Pxy

)
− hhy

(
1
3

Qy +
1
6

Px

)
− hhx

(
1
6

Py

)]
t

− Bgh3
(
ηyyy + ηxxy

)
− hhy

(
2Bghηyy + Bghηxx

)
− hhx

(
Bghηxy

)
. (2.47)

The vector conservative form now reads as:

Ut + ∇ · H(U?) = S(U?) on Ω × [0, t] ⊂ R2 × R+, (2.48)

where U is the vector of the new solution variables, U?
is the vector of the NSW con-

served variables, H = [F,G] are the nonlinear flux vectors and S = Sb + Sf + Sd is the

source term, given as

U =


H

P̃?
1

P̃?
2

 , F(U?) =


Hu

Hu2 + 1
2gH2

Huv

 , G(U?) =


Hv

Hv2 + 1
2gH2

Huv

 ,

S(U?) = Sb + Sf + Sd =


0

−gHbx

−gHby

 +


0

−τ1

−τ2

 +


0

−ψ1

−ψ2

 (2.49)
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in which:

P? =

 P?
1

P?
2

 =

 Hu −
(
B + 1

3

)
h2

(
Pxx + Qxy

)
− hhx

(
1
3 Px + 1

6 Qy

)
− hhy

(
1
6 Qx

)
Hv −

(
B + 1

3

)
h2

(
Qyy + Pxy

)
− hhy

(
1
3 Qy + 1

6 Px

)
− hhx

(
1
6 Py

)  , (2.50)

ψ =

 ψ1

ψ2

 =

 −Bgh3
(
ηxxx + ηxyy

)
− hhx

(
2Bghηxx + Bghηyy

)
− hhy

(
Bghηxy

)
−Bgh3

(
ηyyy + ηxxy

)
− hhy

(
2Bghηyy + Bghηxx

)
− hhx

(
Bghηxy

)  . (2.51)

The source term includes the bottom slope Sb, friction Sf (see (2.18)-(2.19)) and part of

the dispersive terms is included in Sd. The term P?
contains all time derivatives in the

momentum equation and the dispersion term ψ contains only spatial derivatives.

2.2.1 Linear dispersion properties and shoaling

Water waves transform, in both phase and energy, due to shoaling, refraction, diffrac-

tion and reflection. The degree of refraction, diffraction and reflection depends on the

dispersion relation while the degree of shoaling depends on the shoaling coefficient

which in turns depends on the topography’s steepness. To derive the dispersion rela-

tion corresponding to the equations of Madsen and Sørensen [113, 114] the following

standard procedure is adopted. We consider the linearized one-dimensional version of

equations (2.43)-(2.45) along with (2.46) and (2.47), which yields:

ηt + Px = 0, (2.52)

Pt + ghηx − Bgh3ηxxx −

(
B +

1
3

)
h2Pxxt − hx

(
2Bgh2ηxx +

1
3

hPxt

)
= 0. (2.53)

From the first equation we derive that ηt = −Px and by cross-differentiating

ηtt = −Pxt and ηxxtt = −Pxxxt. (2.54)

Differentiating the momentum equation in the x− direction, substituting into (2.54) and

dropping the terms with higher derivatives, we obtain the wave equation:

ηtt − ghηxx + Bgh3ηxxxx −

(
B +

1
3

)
h2ηxxtt = hx

(
gηx + (2B + 1)hηxtt − 5Bgh2ηxxx

)
. (2.55)

Consider a small amplitude wave with cyclic frequency ω, A the local wave’s amplitude

and φ the phase function, which is related to the local wave number k, by φx = k(x).

η(x, t) = A(x) exp i(ωt − φ(x)) (2.56)
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The water depth, the wave number and the wave amplitude are considered as slowly

varying functions in space thus, products of derivatives and higher derivatives of

these quantities will be neglected. Substituting (2.56) into (2.55) and neglecting all

x-derivatives of h, k and A we obtain:

−ω2 + ghk2 + Bgh3k4 −

(
B +

1
3

)
k2h2ω2 = 0

which leads to the linear dispersion relation for the MS equations,

C2 = gh
1 + Bk2h2

1 +
(
B + 1

3

)
k2h2

(2.57)

where C =
ω

k
is the wave celerity. The group velocity is given in terms of the celerity as

Cg =
1
2

(
1 +

2kh
sin 2kh

)
C. (2.58)

Shoaling is the effect by which surface waves entering shallower water increase in

wave height. It is caused by the fact that group velocity decreases with the reduction

of water depth. The linear shoaling equation is derived considering the MS equations

and assuming solutions of the form (2.56). Inserting (2.56) into the MS equations and

after some algebraic manipulations we get the linear shoaling relation:

Ax

A
= −S

hx

h
(2.59)

where S is a slope in a linear relation, called the shoaling coefficient and is defined as:

S =
a3 − a2a4

a1
(2.60)

with

a1 = 2
(
1 + 2Bk2h2 + B(B +

1
3

)k4h4
)
, (2.61)

a2 = 1 + 6Bk2h2 + 5B(B +
1
3

)k4h4, (2.62)

a3 = 1 +

(
4B −

2
3

)
k2h2 + B

(
3B +

2
3

)
k4h4

and (2.63)

α4 =

1 +
(
2B − 1

3

)
k2h2 + B

(
B + 1

3

)
k4h4

1 + 2Bk2h2 + B
(
B + 1

3

)
k4h4

 . (2.64)
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2.3 Derivation of Nwogu’s Boussinesq formulation

Nwogu in [127] derived an extended Boussinesq-type (BT) equation system of equations

from the Navier-Stokes equations by using the velocity in an arbitrary distance from the

still water level as one of the depended variables. The depth of the velocity variable was

used as a free parameter to optimize the dispersion characteristics of the equations.

The resulting linear dispersion relation of the equations is similar to that presented by

Madsen et al. [114]. Assuming that the fluid is inviscid and incompressible and that

the flow is irrotational, the governing equations for the fluid motion are the continuity

equation and Euler’s equations of motion. Two important length scales are the char-

acteristic water depth h0 for the vertical direction and a typical wavelength l for the

horizontal direction. The equations can be expressed in nondimensional form as:

µ2(ux + vy) + wz = 0, (2.65)

µ2ut + εµ2uux + εµ2vuy + εwuz + µ2 px = 0, (2.66)

µ2vt + εµ2uvx + εµ2vvy + εwvz + µ2 py = 0, (2.67)

εwt + ε2uwx + εvwy +
ε2

µ2 wwz + εpz + 1 = 0. (2.68)

The parameters ε =
a0

h0
and µ =

h0

l
are measures of nonlinearity and frequency dis-

persion respectively, and are assumed to be small. Equations (2.65)-(2.68) can be

expressed in terms of nondimensional, variables, defined as

x =
x∗

l
, y =

y∗

l
, z =

z∗

h0
, t =

√
gh0

l
t∗

where g is again the gravitational acceleration and ∗ is used to denote the dimensional

variables. The depended variables are then given as:

u =
h0

a0
√

gh0

u∗, v =
h0

a0
√

gh0

v∗, w =
h2

0

a0l
√

gh0

w∗, η =
η∗

a0
, h =

h∗

h0
, p =

p∗

ρga0

where [u, v,w] is the water particle velocity vector, p is the pressure and ρ is the fluid

density. In addition, the irrotational assumption leads to the relationships:

uy − vx = 0, vz − wy = 0, wx − uz = 0
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Further and in addition to the equations of motion (2.65)-(2.68), the flow satisfies

the kinematic boundary condition at the seabed and the free surface, along with the

dynamic boundary condition at the free surface, given as

w + µ2(uhx + vhy) = 0, at z = −h (2.69)

w − µ2ηt − εµ
2uηx − εµ

2vηy = 0, at z = εη (2.70)

p = 0, at z = εη. (2.71)

Integrating the continuity equation with respect to z, applying the Leibniz rule and the

bottom boundary condition we get:

w = −µ2
(
∂

∂x

∫ z

−h
udz +

∂

∂y

∫ z

−h
vdz

)
. (2.72)

Nwogu in [127] instead of using the bottom velocity or the depth averaged velocity as

the velocity variable, he used the velocity ua ≡ uza at an arbitrary elevation z = za(x, y).

Approximating the horizontal velocity u by a Taylor series expansion about this arbitrary

depth one gets:

u = u|za + (z − za)uz|za +
(z − za)2

2
uzz|za + · · · (2.73)

where u = [u, v]. Substitution of (2.72) into the irrotationality conditions and using

(2.73) yields to :

u = ua + µ2
(
z2

a

2
−

z2

2

)
∇(∇ · ua) + µ2(za − z)∇[∇ · (hua)] + O(µ4) (2.74)

The velocity w can be expressed, using (2.74) and (2.72), in terms of ua:

w = −µ2∇ · (hua) − µ2z∇ · ua + O(µ4). (2.75)

The pressure field is obtained by integrating the vertical momentum equation (2.68)

with respect to z and applying the boundary conditions at the free surface (2.70) and

(2.71):

p = η −
z
ε

+
∂

∂t

∫ εη

z
wdz + ε

∂

∂x

∫ εη

z
uwdz + ε

∂

∂y

∫ εη

z
vwdz −

ε

µ2 w2. (2.76)
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If we assume that O(ε) = O(µ2) � 1, the pressure field in terms of ua can be obtained

by substituting (2.74) and (2.75) in (2.76) then integrate and retain terms up to O(ε)

and O(µ2):

p = η −
z
ε

+ µ2z∇ · (huat) + µ2 z2

2
∇ · uat + O(ε2, εµ2, µ4) (2.77)

Integrating the continuity equation (2.65) and applying the kinematic boundary

conditions (2.69)-(2.70) results in:

ηt +
∂

∂x

∫ εη

−h
udz +

∂

∂y

∫ εη

−h
= 0. (2.78)

Following the same procedure for the horizontal momentum equations we get:

∂

∂t

∫ εη

−h
udz + ε

∂

∂x

∫ εη

−h
u2dz + ε

∂

∂y

∫ εη

−h
uvdz +

∂

∂x

∫ εη

−h
pdz − p|z=−hhx = 0, (2.79)

∂

∂t

∫ εη

−h
vdz + ε

∂

∂x

∫ εη

−h
uvdz + ε

∂

∂y

∫ εη

−h
v2dz +

∂

∂y

∫ εη

−h
pdz − p|z=−hhy = 0, (2.80)

where (2.65) and (2.69)-(2.71) have been used. Substituting (2.74), (2.75) and (2.77) to

(2.78)-(2.80) and integrating, retaining terms up to O(ε) and O(µ2), we obtain the BT

equations of Nwogu in non-dimensional form:

ηt + ∇ · [(h + εη)ua] + µ2∇ ·

{(
z2

a

2
−

h2

6

)
h∇(∇ · ua) +

(
za +

h
2

)
h∇[∇ · (hua)]

}
= 0,

uat + ∇η + ε(ua · ∇)ua + µ2
{

z2
a

2
∇(∇ · uat) + za∇[∇ · (huat)]

}
= 0.

This set of equations can model the horizontal propagation of irregular, multi-directional

waves in water of varying depth, provided O(ε) = 0(µ2) � 1, and O(∇h) = O(1). Dropping

a from ua and ∗ form dimensional variables we can rewrite the equations in dimensional

form as:

ηt + ∇ · (Hu) + ∇ ·

{(
z2

a

2
−

h2

6

)
h∇(∇ · u) +

(
za +

h
2

)
h∇[∇ · (hu)]

}
= 0, (2.81)

ut + g∇η + (u · ∇)u +

{
z2

a

2
∇(∇ · u) + za∇[∇ · (hu)]

}
t

= 0. (2.82)

The extended BT equations of Nwogu can model weakly non-linear and weakly disper-

sive water waves in variable depth and the applicable rage can be defined by the Stokes
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(S ) (or Ursell number) which relates the nonlinearity and dispersion as

S =
ε

µ2 = O(1).

2.3.1 Formulation of Nwogu’s BT equation in conservation-like form

The equations above contain the non-conservative variables u, v and η. We rewrite here

the equations in terms of the conservative variables H, Hu, Hv, i.e. in conservation

law form. Since it holds that H = h + η the mass equation (2.81) becomes:

Ht + ∇ · (Hu) + ∇ ·

{(
z2

a

2
−

h2

6

)
h∇(∇ · u) +

(
za +

h
2

)
h∇[∇ · (hu)]

}
= 0. (2.83)

For the momentum equation we multiply (2.82) with the total water depth H:

Hut + gH∇η + H(u · ∇)u + H
{

z2
a

2
∇(∇ · u) + za∇[∇ · (hu)]

}
t

= 0. (2.84)

and separating the two equations we write:

Hut + gHηx + Huux + Hvuy + H
{

z2
a

2
(uxx + vyx) + za

(
(hu)xx + (hv)yx

)}
t

= 0, (2.85)

Hvt + gHηy + Huvx + Hvvy + H
{

z2
a

2
(uxy + vyy) + za

(
(hu)xy + (hv)yy

)}
t

= 0. (2.86)

Using the relation (7.42) and that (Hu)t = Htu + Hut we have:

(Hu)t − Htu +

(
gH2

2

)
x

+ gHbx + Huux + Hvuy

+ H
{

z2
a

2
(uxx + vyx) + za

(
(hu)xx + (hv)yx

)}
t
= 0,

(Hv)t − Htv +

(
gH2

2

)
y

+ gHby + Huvx + Hvvy

+ H
{

z2
a

2
(uxy + vyy) + za

(
(hu)xy + (hv)yy

)}
t
= 0.
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Substituting now Ht from (2.83) to the above relations and after expanding the deriva-

tives and performing some calculations we obtain:

(Hu)t +

(
Hu2 +

1
2

gH2
)

x
+ (Hvu)y + u

{(
z2

a

2
−

h2

6

)
h(ux + vy)x +

(
za +

h
2

)
h
(
(hu)x + (hv)y

)
x

}
x

+ u
{(

z2
a

2
−

h2

6

)
h(ux + vy)y +

(
za +

h
2

)
h
(
(hu)x + (hv)y

)
y

}
y

+ H
{

z2
a

2
(uxx + vyx) + za

(
(hu)xx + (hv)yx

)}
t
= −gHbx,

(Hv)t +

(
Hv2 +

1
2

gH2
)

x
+ (Hvu)x + v

{
(
z2

a

2
−

h2

6
)h(ux + vy)x +

(
za +

h
2

)
h
(
(hu)x + (hv)y

)
x

}
x

+ v
{(

z2
a

2
−

h2

6

)
h(ux + vy)y +

(
za +

h
2

)
h
(
(hu)x + (hv)y

)
y

}
y

+ H
{

z2
a

2
(uxy + vyy) + za

(
(hu)xy + (hv)yy

)}
t
= −gHby.

The last two equations, along with mass equation (2.83), are now written in terms of

the conservative variables U? = [H,Hu,Hv]T
. The last terms in the left hand side of the

equations can be further rearranged, using the chain rule, yielding

(Hu + HA)t +

(
Hu2 +

1
2

gH2
)

x
+ (Huv)y + uC + uD = −gHbx + HtA, (2.87)

(Hv + HB)t + (Huv)x +

(
Hv2 +

1
2

gH2
)

y
+ vC + vD = −gHby + HtB (2.88)

where

A =

(
z2

a

2
(uxx + vyx) + za

(
(hu)xx + (hv)yx

))
,

B =

(
z2

a

2
(uxy + vyy) + za

(
(hu)xy + (hv)yy

))
,

C =

{(
z2

a

2
−

h2

6

)
h(ux + vy)x +

(
za +

h
2

)
h
(
(hu)x + (hv)y

)
x

}
x

and

D =

{(
z2

a

2
−

h2

6

)
h(ux + vy)y +

(
za +

h
2

)
h
(
(hu)x + (hv)y

)
y

}
y
.

The last terms on the right hand side of equation (2.87) and (2.88) contain the temporal

derivative Ht, which is directly given by the continuity equation (2.78) in terms of spatial

derivatives only.



44 CHAPTER 2. SHALLOW WATER AND BOUSSINESQ-TYPE (BT) EQUATIONS

Now, the resulting set of equations (2.83), (2.87) and (2.88) can be rewritten in a

vector conservative form (2.48) with :

U =


H

P?
1

P?
2

 , F(U?) =


Hu

Hu2 + 1
2gH2

Huv

 , G(U?) =


Hv

Huv

Hv2 + 1
2gH2

 , Sb =


0

−gHbx

−gHby

 ,

Sd =


−ψc

−uψc + ψMx

−vψc + ψMy

 , (2.89)

and Sf defined in (2.19), where

P?
1 = Hu + HA,

P?
2 = Hv + HB,

or in the more compact vector form

P? =

 P?
1

P?
2

 = H
[
z2

a

2
∇(∇ · u) + za∇(∇ · hu) + u

]
, (2.90)

ψc = C +D = ∇ ·

[(
z2

a

2
−

h2

6

)
h∇(∇ · u) +

(
za +

h
2

)
h∇(∇ · hu)

]
(2.91)

and

ψM =

 ψMx

ψMy

 =

 HtA

HtB

 = Ht
z2

a

2
∇(∇ · u) + Htza∇(∇ · hu). (2.92)

The governing equations (2.48) along with (2.89) have an identical flux term as the

NSWE and the new variables in P?
contain all time derivatives in the momentum equa-

tions, including part of the dispersion terms obtained from the chain rule.

2.3.2 Linear dispersion properties and shoaling

As in Section 2.2.1, the dispersion relation for this system of equations is derived from

the linearized version of the equations by assuming a steady periodic wave solution.

The linearized version of Nwogu’s equations, in one horizontal dimension with constant
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depth, can be expressed in dimensional form as:

ηx + hux +

(
z2

a

2
−

h2

6

)
huxxx +

(
za +

h
2

)
h2uxxx = 0,

ut + gηx +
z2

a

2
utxx + zahutxx = 0.

The dispersion and shoaling properties depend on the depth za, where the flow velocity

is evaluated. Introducing the parameter α =
1
2

(za

h

)2
+

(za

h

)
the above equations become:

ηx + hux +

(
α +

1
3

)
h3uxxx = 0, (2.93)

ut + gηx + αh2utxx = 0. (2.94)

Assuming a steady periodic profile of the form:

η(x, t) = Ã sin (kx − ωt), (2.95)

u(x, t) = B̃ sin (kx − ωt) (2.96)

where Ã, B̃ are the respective amplitudes. Substituting (2.95) and (2.96) into (2.93)

and (2.94) and performing some calculations we get:

−Ãω + hB̃k −
(
α +

1
3

)
h3B̃k3 = 0 (2.97)

−B̃ω + gÃk + αh2B̃ωk2 = 0. (2.98)

Solving the above for B̃ leads to:

B̃ =
Ãω

hk
(
1 −

(
α + 1

3

)
h2k2

) =
−Ãgk

−ω + αh2ωk2

which gives the dispersion relation for the equations of Nwogu:

C2 =
ω2

k2 = gh
1 −

(
α + 1

3

)
(kh)2

1 − α(kh)2 . (2.99)

It is obvious that depending on the velocity variable used or the value of α, different

dispersion relations are obtained. Nwogu [127] chose za as to obtain the best fit between

the linear dispersion relation of the model and the exact dispersion relation for a wide

range of water depths. By matching the celerity (2.99) and the celerity from the Airy
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wave theory and minimizing the error:

∫ π

0

(
|C −CAiry|

CAiry

)2

d(kh) +

∫ 2π

π

(
|C −CAiry|

CAiry

)2

d(kh),

Nwogu chose α = −0.39, which results in za = −0.531h, over the range of 0 ≤ h/L ≤ 0.5

or kh < π. Roeber et al. in [142, 141] determined an optimal value of za = −0.5208h that

results in a comparable error of 1% in the celerity for kh < π and much smaller error

of 4% at kh = 5 in comparison to Nwogu [127]. The group velocity for the equations of

Nwogu is given in terms of the celerity as [127]

Cg = C

1 −
(kh)2

3

[1 − α(kh)2]
[
1 −

(
α + 1

3

)
(kh)2

]
 (2.100)

Using the same approach presented by [114] (see Section 2.3.1) the linearized shoal-

ing equation (2.60) has the coefficients :

a1 = 2 +
(2kh)2

1 − α(kh)2

[
−α −

2
3

+ α

(
α +

1
3

)
(kh)2

]
, (2.101)

a2 = 3 +
(3kh)2

(1 − α(kh)2)2

[
−3α −

3
2

+ 3α(2α + 1)(kh)2 − 3α2
(
α +

1
3

)
(kh)4

]
, (2.102)

a3 = 2 +
(2kh)2

1 − α(kh)2

{
−α −

3
2

+

[
α

(
α +

5
6

)
−

za

3h
−

2α
3(1 − α(kh)2)

]
(kh)2

}
, (2.103)

a4 is the same as in Section 2.3.1

The linear dispersion relation, the group velocity and the shoaling equation pre-

sented for the extended BT equations can be compared against those for the linear

Stokes wave. The linear dispersion relation for the Stokes wave is given by

C2
A = gh

tanh(kh)
kh

(2.104)

and the group velocity is defined by

CgA = CA

1 −
(kh)2

3
(
1 − α(kh)2) [1 − (

α + 1
3

)
(kh)2

]
 . (2.105)

Finally the shoaling coefficient is:

S =
G

(
1 + 1

2G(1 − cosh(2kh))
)

(1 + G)2 (2.106)
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where G =
2kh

sin(2kh)
. The phase speeds for the two BT equations (using two different

values of za for Nwogu’s eqautions, the one used by Nwogu [127] and that used by

Roeber [142] ) are normalized with respect to the linear theory wave speed and plotted

in Fig. 2.2 as function of kh. Fig. 2.3 shows the group velocities normalized with CgA. It

is observed that the accuracy of both set of equations decreases for large values of kh,

i.e. in deeper water. Fig. 2.4 compares the shoaling coefficient produced by each set of

extended BT equations, normalized to the one of the Stokes theory. The S value given

by MS equations agrees reasonably well in the range of kh < 0.2π, and starts to deviate

as the water depth increases. Nwogu’s equations underestimate the S value in the

range of kh > 0.25π, and this underestimation increases with increasing water depth.

An extended study and compere of the linear dispersion characteristics and shoaling

properties of extended BT equations can be found in [101].
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2.4 Steady state solutions

An important property of NSWE (2.19), related to the source terms is that the system

admits non-trivial steady-states. Following from (2.19) these are given by

∇ · (hu) = 0, (2.107)

∇

(
||u||2

2
+ gH

)
+ curlu

 −v

u

 =

 −gS f
x

−gS f
y

 . (2.108)

From the above equilibrium some classes of steady state solutions can be derived,

[135, 123], which can help to asses the performance of a numerical scheme. In the

numerical applications one often requires the steady state solutions to be preserved

exactly, so that small perturbations of these solutions can be resolved without the need

of excessive mesh refinement. More details, on that, can be found in the next chapter.

A particular elementary solution, that holds for the NSWE and both the BT models,

and provides a benchmark for many numerical schemes is the so called flow (or lake) at

rest solution that is easily obtained from (2.48) assuming u = 0 and H+b = D(x, y, 0) = D

constant in the wet region of the computational domain Ω ∈ R. Then, we get the exact

solution

u = 0 ∀(x, y) ∈ Ω and t ≥ 0, (2.109)

H(x, y, t) =

D − b(x, y) if b(x, y) < D,

0 otherwise,
t ≥ 0. (2.110)

This solution represents flow at rest taking in to account the existence of wet/dry tran-

sitions as well and is of importance for the derivation of Finite Volume discretizations

presented later on in this study. It is worth saying that, this solution satisfies all the

mathematical models described in this chapter.

C-property

A numerical scheme that preserves exactly initial solutions of the lake at rest type

(2.109)-(2.110) is said to verify the exact C-property. A numerical scheme that preserves

an initial lake at rest solution within an accuracy higher than that of its truncation error

is said to verify the approximate C-property.





Chapter 3

Numerical method in One Dimension

A number of numerical schemes has been developed to compute approximate solutions

for BT equations. In the past few years, most of them are based on the finite difference

(FD) approach. Very recently, hybrid solutions, which combine the Finite Volume

(FV) and FD method have been introduced as to incorporate the flexibility and shock-

capturing capabilities of the FV method into dispersive wave models. In this chapter a

hybrid FV/FD approach is proposed for the BT equations of MS [114] and Nwogu [127]

in 1D. In Section 3.1 the two 1D mathematical formulations are presented in a vector

conservative-like form and in Section 3.2 a FV discretization for the advective part of

the equations and the topography source terms, is presented. Sections 3.3-3.5 describe

the discretization of the dispersion terms along with the time integration and in Section

3.6 the boundary conditions used in this work for 1D problems are presented. In the

last section a brief review for the wave breaking modeling of the BT models is presented

and four selected wave breaking treatments are extensively described.

3.1 One-Dimensional systems

Nwogu’s extended Boussinesq equation system, (2.48) along with (2.89), (2.90),(2.91)

and (2.92) can be written in one spatial dimension into the following system of equa-

tions:

Ut + F(U?)x = S(U?), (3.1)

51
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where again U is the vector of then new variables, U? = [h, Hu] the vector of the NSWE

physically conserved variables, F is the flux vector and S is the source term, with

U =

 H

P?

 , F(U?) =

 Hu

Hu2 + 1
2gH2

 ,
S(U?) = Sb + Sf + Sd =

 0

−gHbx

 +

 0

−τ

 +

 −ψC

−uψC + ψM

 (3.2)

in which

P? = Hu + Hza

(za

2
uxx + (hu)xx

)
, (3.3)

ψM = Htza

(za

2
uxx + (hu)xx

)
, (3.4)

ψC =

[(z2
a

2
−

h2

6

)
huxx +

(
za +

h
2

)
h(hu)xx

]
x

. (3.5)

P?
is the velocity-like function and contains all time-derivatives in the momentum

equation and a part of the dispersion terms, while Ht can be explicitly defined by

the continuity equation, so the dispersion terms ψC and ψM contain only spatial

derivatives.

Similarly, the equations derived by Madsen and Sørensen (2.48) along with (2.49),

(2.50) and (2.51) can be written in one dimensional form of (3.1) where now:

U =

 H

P?

 , F(U?) =

 Hu

Hu2 + 1
2gH2

 ,
S(U?) = Sb + Sf + Sd =

 0

−gHbx

 +

 0

−τ

 +

 0

−ψ

 (3.6)

in which

P? = Hu − (B +
1
3

)h2(Hu)xx −
1
3

hhx(Hu)x and (3.7)

ψ = Bgh3ηxxx2h2hxBgηxx. (3.8)

As in 2D, the source term S(U?) includes again the bottom slope Sb, friction Sf and part

of the dispersive terms is included in Sd. The velocity like function P?
contains all time

derivatives in the momentum equation and the dispersion term ψ contains only spatial

derivatives.
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Remark 1 We should keep in mind that, neglecting the dispersive terms in both the

Boussinesq type (BT) equations described above the 1D non-linear shallow water equa-

tion system (2.19) is obtained.

3.2 FV spatial discretization

3.2.1 Brief review

In one space dimension, a finite volume method is based on subdividing the spatial

domain into intervals, which are called grid cells, and keeping track of an approximation

to the integral of U over each of these volumes. In each time step we update these values

using approximations to the flux through the endpoints of the intervals. Denoting

Ci = [xi− 1
2
, xi+ 1

2
] the computational cell and considering a uniform gird spacing, for

simplicity, the value Un
i will approximate the average value over the ith cell at time tn

as,

Un
i =

1
∆x

∫ xi+
1
2

xi−
1
2

U(x, tn) ≡
1

∆x

∫
Ci

U(x, tn)dx, (3.9)

where ∆x = xi+ 1
2
− xi− 1

2
is the length of the cell. Integrating equation (2.14) along with

(2.15) (and without considering the dispersive terms) in Ci we get the semi-discrete form

of the conservation law:

∂

∂t

∫
Ci

Udx +

∫
Ci

F(U)xdx =

∫
Ci

S(U)dx⇒

∂

∂t
Ui +

1
∆x

[
F

(
Ui+ 1

2
, t
)
− F

(
Ui− 1

2
, t
)]

=
1

∆x

∫
Ci

S(U)dx.⇒

∂

∂t
Ui +

1
∆x

[
Fi+ 1

2
− Fi− 1

2

]
=

1
∆x

∫
Ci

S(U)dx. (3.10)

F(Ui− 1
2
) = Fi− 1

2
is called the numerical flux, corresponding to the intercell boundary at

x = xi− 1
2

between cells Ci and Ci−1. In general the numerical flux has the form

Fi− 1
2

= Fi− 1
2
(Ui−kL , . . . ,Ui+kR) (3.11)

where the non-negative integers kL and kR depend on the particular choice of numerical

flux. Integrating (3.11) in time from tn
to tn+1

and using an appropriate integration

rule we can conclude to either explicit or implicit time-stepping schemes. In explicit
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methods the arguments are evaluated at the data time level n and in implicit methods

arguments are evaluated at the unknown values at the new time level n + 1. The last

ones can also include data values at time n. In the absence of the source term equation

(3.10) takes the form:

∂

∂t
Ui +

1
∆x

[
Fi+ 1

2
− Fi− 1

2

]
= 0. (3.12)

The most important thing in deriving a corresponding numerical approximation is to

choose a formula for the numerical flux function. The numerical flux can be considered

as an approximation to the physical flux and should satisfy the consistency condition

[171, 102]. If we sum (3.12) over any set of continuous cells l ≤ j ≤ r, we obtain the

overall flux balance:

∂

∂t
∆x

r∑
j=l

U j +
[
Fr+ 1

2
− Fl− 1

2

]
= 0, (3.13)

which means that the total amount of the conserved variable U changes only because

of the fluxes through the end boundaries. The total mass within the computational

domain will be preserved or at least will vary correctly provided the boundary conditions

are properly imposed. This is called the telescopic property. Conservative methods as

the above, can be proved that if they are convergent, then they will converge to a weak

solution of the conservation laws [100]. For a convergent FV sceme (i.e. convergence to

the true solution of the differential equation as, ∆x,∆t → 0) two conditions must hold.

The first is that the method must be consistent with the differential equation and the

second is that it must be stable, meaning that the small errors made in each time step

do not grow too fast in later time steps. Conservative numerical methods are used in

order to compute properly (velocity, position) shock waves when these are a part of the

solution.

As mentioned before, the most crucial step in the construction of a numerical

method is the choice of the numerical flux. A very common approach are the Go-

dunov type methods or upwind methods. The first-order upwind method of Godunov

[76] is a conservative method of the form (3.12) where the numerical fluxes Fi+ 1
2

are

computed using the solutions of the Riemann problem locally. A Riemann problem
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centred at x = 0 has the form:

Ut + F(U)x = 0,

U(x, 0) =

Ule f t if x < 0,

Uright if x > 0.
(3.14)

The solution to a Riemann problem with piecewise constant initial data consists of

waves travelling at constant speeds away from the location of the jump discontinuity

in the initial data. It is assumed that at a given time n the initial data have a piece-

xi+ 1
2

xi+ 1
2

Ui

Ui+1

Ui+1

Figure 3.1: Computational cells and piecewise constant distribution for 1D problems.

wise constant distribution of the form (3.9). Figure 3.1 shows a possible distribution

of the data at cells i − 1, i, i + 1. We can see that the data are pairs of constant states

separated by discontinuities at intercell boundaries, (e.g. at xi− 1
2

and xi+ 1
2
). Then a

local Riemann problem can be defined, e.g. at xi+ 1
2
, of the form (3.14) with Ule f t = Un

i

and Uright = Un
i+1 In a Godunov-type method [76] the numerical fluxes used are derived

evaluating the real flux to the solution of the Riemann problems at xi− 1
2

and xi+ 1
2
. In

a practical computation the Riemann problem is solved billions of times making this

process the most demanding task in the numerical method. One can use approximate

Riemann solvers, which can provide effective computational tools at a competitive cost.

According to Toro [170], for the shallow water equations, approximate Riemann solvers

may lead to savings of the order of 20% with respect to the exact Riemann solvers. There

are two classes of approximate Riemann solvers. In the first class one computes an

approximate solution to a state and then the numerical flux is obtained by evaluating

the exact physical flux vector at this approximate state. In the second class of solvers

one obtains an approximation to the flux directly. Some approximate Riemann solvers

which belong to this category are the approximate Riemann solver of Roe [139],the
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one of Osher [131], HLL (Harten,Lax and van Leer) [82] and HLLC [168] approximate

Riemann solvers. In this study the approximate Riemann solver of Roe [139] is utilized.

One natural approach to define an approximate Riemann solution is to approximate

the non-linear system in (3.14) by some linearised problem defined locally at each cell

interface (Linearised Riemann Solvers):

Ut + F(U)x ≈ Ut + Ãi− 1
2
Ux = 0, (3.15)

where Ãi− 1
2

is a constant coefficient matrix, an approximation to the Jacobian matrix of

the system,F′(U) =
∂F
∂U

. Matrix Ãi− 1
2

should satisfy the following conditions:

• Ãi− 1
2

is diagonalizable with real eigenvalues in order (3.15) to by hyperbolic,

• Ãi− 1
2
→ F′(U) as Ui−1,Ui → U so that the method is consistent with the original

conservation law,

• Ãi− 1
2

(Ui − Ui−1) = F(Ui) − F(Ui−1).

Following the description of LeVeque [102], the approximate Riemann solution then,

consists of m waves proportional to the eigenvectors r̃p
i− 1

2
of Ãi− 1

2
, propagating with

speeds sp
i− 1

2
= λ̃

p
i− 1

2
given by the eigenvalues. For this linear Riemann problem, we can

write the solution as a linear combination of the eigenvector of the matrix Ãi− 1
2
:

∆Ui− 1
2

= Ui − Ui−1 =

m∑
p=1

α
p
i− 1

2
r̃p

i− 1
2

(3.16)

for the coefficients α
p
i− 1

2
and then setting W

p
i− 1

2
= α

p
i− 1

2
r̃p

i− 1
2

the p wave in the solution.

The linearised matrix Ãi− 1
2

should also follow the property that:

• If Ui−1 and Ui are connected to a single waveWp = Ui − Ui−1 in the true Riemann

solution, thenWp
should also be an eigenvector of Ãi− 1

2

Using the Ranking-Hugoniot condition and applying some calculations [102] the above

leads to the condition

Ãi− 1
2

(Ui − Ui−1) = F(Ui) − F(Ui−1).

For the Godunov type methods, like the one described so far, converge to discon-

tinuous entropy satisfying weak solutions but they are only first order accurate and
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numerically diffusive. Various second order methods such as Lax-Wendroff or Beam-

Warming [102] can be derived based on Taylor expansions. It is well known that these

schemes produce spurious (unphysical) oscillations in the vicinity of large gradients.

One way of resolving this problem is the derivation of non-linear methods which are

called Total Variation Diminishing methods (or TVD methods).

Total Variation Diminishing property

For a scalar conservation law of the form

ut + f (u)x = 0, (3.17)

u(x, 0) = u0(x),

with u(x, t) ∈ R, we can use the numerical conservative scheme :

un+1
i = un

i −
∆t
∆x

(
f n
i+ 1

2
− f n

i− 1
2

)
. (3.18)

The total variation of the exact solution of a scalar conservation law is

TV(u) =

∫
|ux|dx.

Harten [80] proved that a numerical scheme satisfies the TVD property if it holds that:

TV(un+1) ≤ TV(un) where TV(un+1) =
∑

i

|un+1
i+1 − un+1

i |.

The above property can be used in order to minimize the unphysical oscillations pro-

duced by the numerical schemes and allows convergence to shocks without spurious

oscillations. There are two approaches for constructing TVD methods, the flux limiter

approach and the slope limiter approach [50]. The idea in the flux-limiter methods is

the combination of a low-order flux formula that works well near discontinuities and

a higher order formula that works well in smooth regions [102, 171, 170]. Here will

focus on the second approach where the basic idea is to replace the piecewise constant

representation of the solution by some more accurate representation, say piecewise

linear. Van leer [174, 95, 96] introduced the idea of modifying the piecewise constant

data in the first-order Godunov method, as a first step, to achieve higher order of ac-

curacy. This means that instead of using the values Ui and Ui−1 interpolated values
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in either side of the face UL
and UR

, are used. This approach is known as the Mono-

tone Upsteam-Centred Scheme for Conservation Laws (MUCSL). The MUSCL approach

implies high-order accuracy obtained by data reconstruction and the reconstruction is

constrained so as to avoid spurious oscillations, and thus the justification of the word

monotone in the name of the scheme.

Going back to our scheme again and as mentioned before, we use the approximate

Riemann solver of Roe to compute the convective terms. For the approximate Riemann

solver the constant coefficient matrix Ãi− 1
2

is an approximation to the Jacobian matrix

(see Section 2.2.1) and is found in terms of the data states UR − UL = Ui − Ui−1 of the

Riemann problem [170, 102]. For the NSWE in one spatial dimension the matrix Ãi− 1
2

is simply the Jacobian evaluated at mean values:

H̃i− 1
2

=
HR + HL

2
, ũi− 1

2
=

uR
√

HR + uL
√

HL

2
(3.19)

where L = i − 1, R = i and has the form

Ãi− 1
2

=

 0 1

−ũ2 + gH̃ 2ũ

 . (3.20)

The eigenvalues of Ãi− 1
2

are λ̃1,2
i− 1

2
= ũi− 1

2
± c̃i− 1

2
, with corresponding eigenvectors

r̃1
i− 1

2
=

 1

λ̃1
i− 1

2

 , r̃2
i− 1

2
=

 1

λ̃2
i− 1

2


where c̃i− 1

2
=

√
g

HR + HL

2
is the celerity. The numerical fluxes of Roe can be defined as

Fi− 1
2

= F(Ûi− 1
2
) = Ãi− 1

2
Ûi− 1

2
(3.21)

where Ûi− 1
2

is the exact solution of the linear Riemann problem (3.15) at xi− 1
2
. The

solution of the Riemann problem is

Ûi− 1
2

= UR −
∑

p:λp>0

(αpr̃p)i− 1
2

= UL +
∑

p:λp<0

(αpr̃p)i− 1
2
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and combining the above we can write that

Ûi− 1
2

=
UL + UR

2
+

1
2

 ∑
p:λp<0

−
∑

p:λp>0

 (αpr̃p)i− 1
2

and then the Roe flux becomes

Fi− 1
2

= Ãi− 1
2
Ûi− 1

2
=

1
2

Ãi− 1
2

(
UL + UR

)
−

1
2

 ∑
p:λp<0

−
∑

p:λp>0

 (αpÃrp

)
i− 1

2
(3.22)

and since Ãi− 1
2
rp = λprp this yields:

Fi− 1
2

=
1
2

Ãi− 1
2

(
UL + UR

)
−

1
2

m∑
p=1

(
|λp|αprp

)
i− 1

2

=
1
2

(
F(UL) + F(UR)

)
−

1
2

m∑
p=1

(
|λp|αprp

)
i− 1

2
(3.23)

By denoting with ∆i−1/2(·) = (·)R
i−1/2 − (·)L

i−1/2 and FR,L
i−1/2 = F(UR,L

i−1/2), the numerical fluxes

can be re-written in a matrix form:

Fi−1/2 =
1
2

(
FR

i−1/2 + FL
i−1/2

)
−

1
2
|Ãi− 1

2
|∆i−1/2U =

1
2

(
FR

i−1/2 + FL
i−1/2

)
−

1
2

[
X|Λ|X−1

]
i−1/2

∆i−1/2U(3.24)

where the Roe average matrix Ãi−1/2 can be diagonalized, by the right and left eigen-

vector matrices Xi−1/2 and X−1
i−1/2, and with Λi−1/2 being the diagonal matrix with the

approximate eigenvalues in the diagonal.

3.2.2 Topography source term discretization

Up to now we have neglected source terms, such as the one due to the variable topog-

raphy for the NSWE. In realistic applications the bottom topography variations (bed)

add a source term to the equations. A hyperbolic conservation law with source terms,

in one dimension, has the form (3.1). When solving the NSWE the numerical bal-

ance between discrete numerical fluxes and the topography source discretisation is

very important. A scheme that respects this balance is known in the literature as a

well-balanced scheme. It is currently a very active subject of research, we refer for

example to [87, 123, 135, 118, 50, 73]. Well-balanced schemes preserve exactly steady

state solutions (see Section 2.5), so that small perturbations of these solutions can be

resolved without the need of excessive mesh refinement. The importance of satisfying
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well-balanced property is extremely high since we don’t introduce "numerical noise" in

the equations and we obtain the correct numerical solution. In order to achieve the well

balanced property in our schemes, we introduce the (topography source) flux vectors

∆Sn
i such that

1
∆x

∫
Ci

S(U) =
1

∆x
∆Sb

n
i .

Consequently (3.10) takes the form:

∂

∂t
Ui +

1
∆x

[
Fi+ 1

2
− Fi− 1

2

]
=

1
∆x

∆Sb
n
i . (3.25)

As it has been demonstrated in [18, 87], an upwind discretization scheme should

also be used for the topography source term, Sb, to avoid non-physical oscillations in

the solution by satisfying the C− property (see Section 2.5). To satisfy this, the dis-

crete topography source term should balance the corresponding non-zero flux terms,

and as such it must be linearized in the same way and evaluated in the same state

(Roe-averaged state) as the flux. The upwind discretization of the source term in (3.25)

provides the following two terms (in-going contributions) that are added to the corre-

sponding computational cell giving,

∆Sbi = S−bi+ 1
2

+ S+

bi− 1
2
. (3.26)

In order to compute S−
bi+ 1

2
and S+

bi− 1
2

we have to project the source term to the eigenvectors

of the Roe matrix (3.20):

S+

bi− 1
2

= Ã+Ã−1S̃bi− 1
2

=
1
2

(
Ã + |Ã|

)
Ã−1S̃bi− 1

2
=

1
2

(
I + |Ã|Ã−1

)
S̃bi− 1

2
⇒

S+

bi− 1
2

=
1
2

(
X̃

(
I + Λ̃−1|Λ̃|

)
X̃−1

)
S̃bi− 1

2
(3.27)

and

S−bi+ 1
2

=
1
2

(
I − |Ã|Ã−1

)
S̃bi+ 1

2
=

1
2

(
X̃

(
I − Λ̃−1|Λ̃|

)
X̃−1

)
S̃bi+ 1

2
. (3.28)

Using the weights of the decomposition of the source term onto the eigenvectors of the

Roe matrix

β̃i− 1
2

= X̃−1S̃bi− 1
2

and using the following discretization of the numerical source term

S̃bi− 1
2

=

 0

−g
HR + HL

2
(bR − bL),


i− 1

2

(3.29)
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where here, R = i and L = i − 1, we can re-write (3.27) and (3.28) into the form :

S+

bi− 1
2

=
1
2

m∑
p=1

[
β̃pr̃p

(
1 + sgn(λ̃p)

)]
i− 1

2
and (3.30)

S−bi+ 1
2

=
1
2

m∑
p=1

[
β̃pr̃p

(
1 − sgn(λ̃p)

)]
i+ 1

2
(3.31)

with

(β1,2)i− 1
2

= ±
ci− 1

2
(bi − bi−1)

2
. (3.32)

The advective numerical flux terms are now equal to the source term for a flow at

rest in (3.25), i.e. ∆Fn
i = ∆Sn

bi. After some factorizations we note that for each mesh cell:

u = 0(
bR − bL

)
= −

(
HR − HL

)
. (3.33)

The solution of the non-linear shallow water equations for a flow at rest as described

in chapter 2 is:

u(x, t) = 0 and H(x, t) = D − b(x, t)

where D > 0 a constant number such that D > max{b(x), x ∈ Ω}. For the above flow con-

dition Ut = 0, which means that the topography source terms balance the corresponding

non-zero flux terms F(U)x = Sb. Consequently a numerical scheme should keep the bal-

ance between the numerical fluxes and the numerical source term: Fi+ 1
2
− Fi− 1

2
= ∆Sbi.

3.2.3 Wet/dry front treatment

Most problems of practical interest involve wet and dry zones where the water inundates

or recedes and the difficulty in numerical modeling dry areas relates to the obvious fact

that the model equations are only defined for wet regions. In the boundary defined by

a wet/dry front special considerations and treatments are in need to accurately model

transitions between wet and dry areas while at the same time maintain high-order

spatial accuracy. As identified also in [136, 51, 91], the following issues have to be

addressed:
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Dry cell identification

Computational cells with water depth H , 0 but H � have to be identified and treated.

To identify dry cells, a common treatment is to use a wet/dry tolerance εw. If H in a

cell is computed lower to εw this cell is considered dry, i.e. H = 0, u = 0. The choise of

εw is not trivial and its value maybe related to the type of problem simulated and the

mesh size.

Conservation of the flow at rest with dry regions

A numerical scheme should correctly compute the flow at rest exact solution (??) re-

gardless of including wet/dry transitions and as such satisfy the extended C-property

[38]. If no modifications are made, the numerical schemes presented until now is not

well-balanced in this sense for adverse dry slopes (emerging topography). To deal with

this problem we have to redefine the bed elevation at the emerging dry cell following

[34, 33, 50, 125]. The reason for redefining the bed elevation is to obtain an exact bal-

ance at the front between the bed slope and the hydrostatic terms for steady conditions

and to avoid the appearance of spurious pressure forces. Considering the case where a

wet/dry front exists between computational cells with reconstructed face values L and

R. This redefinition (reduction) of the bed elevation is formulated as:

∆b =


HL, if HL > εwd and HR ≤ εwd and bR < (bR − bL),

(bL − bR), otherwise

(3.34)

in the calculation of Sb in equations (3.29). In case that this treatment is not applied

the water would climb over adverse bed slopes and the front will be wrongly diffused

[34, 33, 38, 50, 125]. We note here that, the above redefinition of the bed elevation is

not an actual reduction of the bed elevation value but is only applied in the calculation

of Sb in (3.29). The numerical treatment is similar if R is the wet side and L is identified

as dry.

Flow in motion over adverse slopes

With the above redefinition of the discretized topography one can treat situations of

emerging topography for a flow at rest. However, further modifications have to be made

for a flow in motion. At interfaces between a wet/dry front, we impose, additional to the
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above bed redefinition, the following temporary condition for the computation in (5.7),

following [38, 50, 125],

if
[
HL > εwd and HR ≤ εwd and HL < (bR − bL)

]
then uL = uR = 0. (3.35)

We note that, the actual velocity is not set to zero in the wet cell, but only assumed

as such at the face when computing the numerical flux and topography source term

contributions. As such, the solution at each wet/dry face is considered to be that cor-

responding to an emerging bottom situation for a water at rest and then, to compute

the time evolved solution, the numerical fluxes and sources corresponding to this ap-

proximate situation at the face are used. In this way, the wet/dry front is only allowed

to advance when the water gradient in the wet cell is larger than the bottom gradient

between cells. In addition, this numerical treatment avoids the appearance of negative

values for H as well as un-physical overtopping [38, 39, 50].

Depth positivity and mass conservation

In cases where the bed elevation of a dry cell is less to that of a wet cell (downhill

slope) the flow will continue to flood the dry cell and there is no need to modify the bed

slope. However, when the bed slope is steep, there is a possibility that more water, than

is actually contained in the wet cell, could be computed as flowing into the dry cell,

causing the water depth in the wet cell to become negative and the scheme to become

unstable.

In the present work and following [33] and [51], if this is the case, the cells with

negative depth after one time step are identified and their water depth values and

velocity components are set to zero. This adds a very small volume of water to the

system. Then, the same volume of water is subtracted from all the wet cells (in the

entire computational domain) in order to maintain mass conservation. This volume of

subtracted mass is very small and as it is uniformly distributed to all the wet cells in the

entire computational domain, an even smaller fraction of that mass volume is actually

subtracted from each wet cell. Consequently, the possibility of numerically drying a

wet cell during that procedure is almost non existent. The same procedure is adopted

for those cells that have been identified as almost dry (by εwd), and their water depth

was set to zero. Mass conservation has been monitored for the test cases considered in

this work and the wet-dry treatment presented here is found to ensure absolute mass

conservation.
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We emphasize here that, while the above treatment steps have been proven suc-

cessful for the NSWE, it is the first time that have been incorporated to the numerical

solution of dispersive models.

3.2.4 Higher order reconstruction

For the one-dimensional numerical scheme we have implemented a forth-order MUSCL-

type extrapolation schemes. More precisely, higher order accuracy in the calculation of

numerical fluxes is achieved by constructing (left and right) cell interface values using

the MUSCL-type extrapolation schemes prior to the evaluation of the numerical flux

[62, 163, 148]. The reconstruction schemes are performed to the variables of total

water depth H, velocity u, and also to the topography b, for the (i + 1
2 ) cell interface.

Remark 2 In general three choises exist for the presented reconstruction, using physical

(primitives), conservative or characteristic variables. The numerical flux function for Roe’s

approximate solver is basically a function of physical variables. Therefore, when either

conservative or characteristic variable reconstruction is performed, an additional step is

necessary to transform the state back to physical variables.

The fourth-order reconstruction scheme is given by Yamamoto et al. [186], and is

also given here for completeness:

HL
i+ 1

2
= Hi +

1
6

[
ϕ(r1)∆∗Hi− 1

2
+ 2ϕ

(
1
r1

)
∆∗Hi+ 1

2

]
and

HR
i+ 1

2
= Hi+1 −

1
6

[
2ϕ(r2)∆∗Hi+ 1

2
+ ϕ

(
1
r2

)
∆∗Hi+ 3

2

]
(3.36)

where ϕ is the van Leer nonlinear slope limiter function [102],

ϕ(r1) =
ri + |ri|

1 + |ri|
with r1 =

∆∗Hi+ 1
2

∆∗Hi− 1
2

, r2 =
∆∗Hi+ 3

2

∆∗Hi+ 1
2

and

∆∗Hi+ 1
2

= ∆Hi+ 1
2
−

1
6

(
∆Hi+ 3

2
− 2∆Hi+ 1

2
+ ∆Hi− 1

2

)
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where

∆Hi− 1
2

= minmod(∆Hi− 1
2
,∆Hi+ 1

2
,∆Hi+ 3

2
), (3.37)

∆Hi+ 1
2

= minmod(∆Hi+ 1
2
,∆Hi+ 3

2
,∆Hi− 1

2
), (3.38)

∆Hi+ 3
2

= minmod(∆Hi+ 3
2
,∆Hi− 1

2
,∆Hi+ 1

2
), (3.39)

∆Hi+1/2 = Hi+1 − Hi, (3.40)

with the minmod limiter function given as:

minmod(a, b, c) = sign(a) max
(
|a|, 2sign(a)b, 2sign(a)c

)
.

The same hold for the velocity u and the topography b reconstructed values.

Topography source term discretization

As mentioned before, in the presence of topography source terms, and in order to satisfy

the exact C-property, the topography source term should balance the corresponding

non-zero flux terms. While above holds for the first order scheme , i.e. if the (L) and

(R) are not reconstructed

(
UL = Ui−1 and UR = Ui

)
, this is not the case for higher order

schemes. Following the works in [87, 125] a correction term, Sb
?
, should be included

in the topography source discretization :

∆Sbi = S−bi+ 1
2

+ S+

bi− 1
2

+ Sb
?. (3.41)

The first terms on the right hand side is evaluated precisely as before (3.27)-(3.28),

except that the interface values are now those of the MUSCL reconstruction of the

solution within each cell. The final term is the source term integral approximated over

the mesh cell and is evaluated at the Roe average of the left and right states of the

linear reconstruction of the solution within the cell. This term reads as,

S?b
(
UL

i+ 1
2
,UR

i− 1
2

)
=


0

−g
HR

i− 1
2

+ HL
i+ 1

2

2

(
bR

i− 1
2
− bL

i+ 1
2

)
 .

The term vanishes for a first order scheme as bR
i− 1

2
= bL

i+ 1
2

= bi, while for flow at rest we

have in addition:

∂h
∂x

= −
∂b
∂x
⇒ bL

i+ 1
2
− bR

i− 1
2

= −

(
HL

i+ 1
2
− HR

i− 1
2

)
.
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3.3 FD discretization of the dispersion terms

Up to now we have described the discetization for the advective part of the BT equations,

i.e. the NSW equations flux functions, including the topography terms. Both in Nowgu’s

and Madsen and Sørensen’s BT models the dispersion terms contain spatial derivatives

up to third order. According to [179] a fourth-order accurate treatment of the first

order derivatives is required so that the truncation errors in the numerical schemes

are smaller than the dispersion terms present in the models. As such, we discretize

them using fourth-order central finite difference (FD) approximations for first order

derivatives, third order central difference approximations for third order derivatives and

second order for second order derivatives, resulting to finite-volume/finite-difference

schemes for both Boussinesq type-equations in one dimension

3.3.1 Discretization of the dispersion terms for Nwogu’s equations

In the conservative form of Nwogu’s equations, (2.89) with (2.91) and (2.92), the dis-

persive terms that contain only spatial derivatives is the term Sd = [−ψc − uψc + ψM]T.

Integrating the above we conclude to the term (ψc)i (the cell average of the term ψc ) in

the mass and the momentum equation.

(ψc)i =
1

∆x

∫
Ci

ψc

=
1

∆x

∫
Ci

[(z2
a

2
−

h2

6

)
huxx +

(
za +

h
2

)
h(hu)xx

]
x

=
1

∆x

{ z2
ai+1/2

2
−

h2
i+1/2

6

 hi+1/2(ui+1/2)xx +

(
zai+1/2 +

hi+1/2

2

)
hi+1/2(hi+1/2ui+1/2)xx


−

z2
ai−1/2

2
−

h2
i−1/2

6

 hi−1/2(ui−1/2)xx +

(
zai−1/2 +

hi−1/2

2

)
hi−1/2(hi−1/2ui−1/2)xx

 }.(3.42)

Substituting a cell averaged value φi (let φ denote u, hu) in to the Taylor series:

φ = φi+ 1
2

+ xφ′
i+ 1

2
+

x2

2
φ′′

i+ 1
2

+
x3

6
φ′′′

i+ 1
2

+
x4

24
φ′′′′

i+ 1
2

+ . . .

we can express a cell average value with the values defined at cell interfaces [94, 97].

Through manipulations of Taylor series expansions, the following discretization equa-
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tions can be derived and used for the discretization of (3.42):

φi+1/2 =
7(φi+1 + φi) − (φi+2 − φi−1)

12
+ O(∆x4), (3.43)

(φi+1/2)xx =
(φi+2 + φi−1) − (φi+1 − φi)

2∆x2 + O(∆x2). (3.44)

For the momentum equation we have to discretize the term ψM that contains a

second order derivative uxx and a time derivative Ht. The second order derivative is

discretized using:

(ui)xx =
ui−1 − 2ui + ui+1

∆x2 + O(∆x2), (3.45)

thus ψM is then given by

(ψM)i = (Hi)tzai

(
zai

2
ui−1 − 2ui + ui+1

∆x2 +
hi−1ui−1 − 2hiui + hi+1ui+1

∆x2

)
. (3.46)

with term (Hi)t explicitly obtained from the mass equation in terms of spatial derivatives

only.

3.3.2 Discretization of the dispersion terms for MS equations

For the Madsen and Sørensen’s equations, following [62], we discretize the term ψ, using

fourth-order central finite difference (FD) approximations for first order derivatives,

third order central difference approximations for third order derivatives and second

order for second order derivatives, so:

(φi)x =
φi−2 − 8φi−1 + 8φi+1 − φi+2

12∆x
+ O(∆x4), (3.47)

(φi)xxx =
φi+2 − 2φi+1 + 2φi−1 − φi−2

2∆x3 + O(∆x3). (3.48)

Applying (3.45), (3.47) and (3.48) in equation we get the discrete dispersion term:

ψi =
Bgh3

i

∆x3

[
ηi+2 + 2ηi+1 + 2ηi−1 − φi−2

]
−

Bgh2
i

6∆x3

[
(hi−2 − 8hi−1 + 8hi+1 − hi+2) (ηi−1 − 2ηi + ηi+1)

]
. (3.49)
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3.4 Time integration

Time integration scheme should at least much the order of truncation errors from the

spatial derivatives in the dispersion terms [179]. With third order spatial derivatives in

both equations we use the fourth-order predictor-corrector method proposed in [179].

Time integration for this scheme, is achieved in two stages, namely the third order

Adams-Basforth predictor stage and the fourth order Adams-Moulton corrector stage:

1. Predictor stage (Adams-Basforth method)

Up
i = Un

i +
∆tn

12∆x

[
23

(
−∆Fn

i + ∆Sn
bi

+ ∆xSn
di + ∆xSn

fi

)
− 16

(
−∆Fn−1

i + ∆Sn−1
bi

+ ∆xSn−1
di + ∆xSn−1

fi

)
+ 5

(
−∆Fn−2

i + ∆Sn−2
bi

+ ∆xSn−2
di + ∆xSn−2

fi

)]
(3.50)

2. Corrector stage (Adams-Moulton method)

Un+1
i = Un

i +
∆tn

24∆x

[
9
(
−∆Fp

i + ∆Sp
bi

+ ∆xSp
di + ∆xSp

fi

)
+ 19

(
−∆Fn

i + ∆Sn
bi

+ ∆xSn
di + ∆xSn

fi

)
− 5

(
−∆Fn−1

i + ∆Sn−1
bi

+ ∆xSn−1
di + ∆xSn−1

fi

)
+

(
−∆Fn−2

i + ∆Sn−2
bi

+ ∆xSn−2
di + ∆xSn−2

fi

)]
(3.51)

where ∆Fi and ∆Sbi are respectively the flux and bed source variations, obtained using

(3.24) and (3.27). Sdi is the discretization of the dispersion terms while Sfi is the friction

term.

The value of the time-step, ∆tn
that is used to integrate the governing equations over

time, is depended upon the CFL condition. For the one-dimensional solver

∆tn = CFL min
i

 ∆x

|un
i | +

√
gHn

i


where CFL is the Courant number between zero and one.
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3.5 Evaluation of the velocities

After each time step we obtain the new solution variables for the velocity like function,i.e

(3.3) for Nwogu’s model and (3.8) for the MS model. From these we have to recover the

velocity field. To achieve this we have to discretize (3.3) and (3.8) using the FD method.

The procedure is described in [91] but we detail here for completeness. For Nwogu’s

formulation

P?
i = (Hu)i + (Hza)i

(za

2
uxx + (hu)xx

)
i

using (3.45) to discretize the second order derivatives uxx and (hu)xx we get

P?
i = (Hu)i + (Hza)i

[
zai

2

(
ui−1 − 2ui + ui+1

∆x2

)
+

(
hi−1ui−1 − 2hiui + hi+1ui+1

∆x2

)]
. (3.52)

Reformulating the equation (3.52) we get:

αiui−1 + βiui + γiui+1 = P?
i , ∀ i = 1, . . . ,N (3.53)

where

αi = Hizai

(
zai

2∆x2 +
di−1

∆x2

)
, βi = Hi

(
1 −

z2
ai

∆x2 −
2zaidi

∆x2

)
and γi = Hizai

(
zai

2∆x2 +
di+1

∆x2

)
.(3.54)

The central difference scheme only involves left and right neighboring cells and thus

forms a tridiagonal linear system MV = C of equations in the form (see also [142]):

β1 γ1

α2 β2 γ2

. . .
. . .

. . .

αN−1 βN−1 γN−1

αN βN





u1

u2
...

un−1

uN


=



P∗1
P∗2
...

P∗N−1

P∗N


(3.55)

with M a symmetric and positive definite matrix when topography is not introduced, V

the velocity vector, and C the vector that contains P?
i , i = 1, . . . ,N obtained from the

spatial solver. An efficient Thomas algorithm [65] was implemented to solve the system

for obtaining the velocity up
i in the predictor step and un+1

i in the corrector one, from the

respective variables P?
i .



70 CHAPTER 3. NUMERICAL METHOD IN ONE DIMENSION

For the MS equations the velocity like function has the form:

P?
i = (Hu)i −

[
(B +

1
3

)h2(Hu)xx −
1
3

hhx(Hu)x

]
i

(3.56)

which requires the approximation of first and second order derivatives. Using again

(3.45) for the term (Hu)xx, (3.47) for hx and for (Hu)x we use the central difference

(Hiui)x =
Hi+1ui+1 − Hi−1ui−1

2∆x
.

Equation (3.56) results again in a tridiagonal linear system of equations in the form of

(3.55) with coefficients, see also [62, 163, 148]:

α̃i =

[
−k1 +

k2

72

]
, β̃i = 1 + 2k1, γ̃i = −

[
k1 +

k2

72

]
.

in which

k1 =

(
B +

1
3

) (
h2

i

∆x2

)
and k2 =

hi

∆x2
(hi−2 − 8hi−1 + 8hi+1 − hi+2) .

Both matrices can be pre-calculated and used through a numerical simulation.

As suggested by Wei et al. [179], the corrector stage is repeated until the rela-

tive error between two succesive results reaches a prescribed tolerance. This error is

computed for each of the variables H and u and is defined as

e =

∑
i

∣∣∣vn+1
i − ṽn+1

i

∣∣∣∣∣∣∑i vn+1
i

∣∣∣
where v denotes any of the variables and ṽ denotes the previous estimate. In this work

the values computed in the corrector step are considered to be the final next time step

(n + 1) values when e < 10−4
. The scheme usually converges to the prescribed tolerance

in one or two iterations science the predictor step provides very accurate results.

3.6 Boundary conditions and wave generator

To completely define the differential problem, boundary conditions need to be intro-

duced. Two types of boundary conditions are used in this work: outflow an solid

(reflective) wall. Since we use a fourth order MUSCL scheme the usage of three ghost

cells, in each boundary, are required in order to determine the values of the nodes
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closest to the boundary. An outflow boundary condition should allow all energy prop-

agating towards the boundary to pass through so that no waves are reflected back in

to the solution domain. For that reason the values of H and u at the ghost cells are

extrapolated from the interior cells [148, 91, 102] while sponge layers are placed in

front of each boundary. More precisely on this layer the surface elevation was damped

by multiplying its value by a coefficient m(x) defined as [185]:

m(x) =

√
1 −

(
x − d(x)

Ls

)2

(3.57)

where Ls is the sponge layer width and d(x) is the normalized distance between the cell

center with coordinate x and the absorbing boundary. Our numerical experience and

that in [185] show that

L ≤ Ls ≤ 1.5L, (3.58)

i.e. the width of the sponge layer is proportional to the wavelength. Solid walls are

treated as impermeable and fully reflective, therefore the normal flux at these bound-

aries must be zero. This concludes that the velocity u−g at the ghost cells must be set

as u−g = −ug from the interior, and an odd and even extrapolation is used for H.

A number of tests require the generation and propagation of monochromatic periodic

waves. In order to produce these waves we follow the approach of adding to the mass

equation an internal source term of periodic variation in time. In [181] a source function

method for the generation of regular and irregular surface waves, using the equations

of Nwogu, was derived. In this work, and for the equations of Nwogu [127], this source

function wave-making method is adopted in order to let the reflected waves outgo

through the wave generator freely. The form of the source function in 1D is:

S (x, t) = D∗ exp
(
−γ(x − xs)2

)
sin (−ωt) (3.59)

in which

γ =
80
δ2L2

where L is the wave length, ω the wave frequency, xs is the location of the center of the

wave-making area, δ is a parameter that influence the width of the wave generator and
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D∗ is the source function’s amplitude:

D∗ =
2
√
γA0

(
ω2 − α1gk4h3

)
ωk
√
π exp (k2/4γ)

[
1 − α(kh)2] (3.60)

where h is the still water level at the wave generation region, A0 the wave amplitude, k

the wave number, α = −0.39 and α1 = α + 1/3.

Remark 3 To determine the range of values for δ, we performed several tests to verify

its effect to the calculating wave height in condition with variance of relative water depth

(h/L), input wave height and effective mesh size. It is concluded that, when the water

depth is shallow, the value of δ should be large, but when the water depth is deep, its

value should be small and that its value has the same variance trend with relative wave

height. The typical value of δ ∈ [0.2, 0.8] for the model tests.

Up to now, for the MS equations one way to create regular waves is the use of

Dirichlet type boundary conditions see [163]. This way is very inefficient since the

produced wave has larger amplitude and highly frequency oscillations can be developed.

Additionally this method is only for very small amplitude waves and does not allow for

the waves returning to the inflow region and passing out of the domain. Very recently

and for the equations of MS, [138] developed an internal wave generator based on

the approach of [177]. The limitation of this approach is the complex nature of the

generator , since to values must be calibrated, along with the non-physical meaning

of the function used. We use and develop the internal source function approach from

[138]. The internal wave generator has the form of (3.59) with

D∗ =
2CA0

√
γ

√
π

, (3.61)

with

γ =
bw

L2 .

The width of the generation region results strongly dependent on the value attributed

to the parameter γ which also influences the amplitude of the signal obtained. A0 is the

desired wave’s amplitude, C is the wave’s speed and bw has been chosen as to give the

expression the correct physical. The values of the bw have to be calibrated in order to

obtain the signal sought. Te use of the Gaussian function to distribute the generated
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wave over several mesh points is similar in principle to the method described by [179].

However further investigation is needed to derive a method for generating waves in a

MS model.

Next we apply the two wave generation models to generate monochromatic waves

with different periods T = 1.27, 2.02s The domain length is [−20, 20m], grid size ∆x =

0.01m, sponge layer width is 5m and the CFL used is 0.5. The source function width (δ)

for the equations of Nwogu is kept the same for all the waves presented and equals to

0.3. For the first wave (T = 1.27s), the still water level is h = 0.5m, amplitude A = 0.025m

and wavelength L = 2.2361m, while for the second case (T = 2.02.) h = 0.4 and A = 0.01,

corresponding to wavelengths L = 3.63. The parameter bw for the equations of MS is 15

for the first wave and 80 for the second wave.
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Figure 3.2: Snapshots of surface elevation at t = 20s. T = 1.27s (up), T = 2.02s (down).

The generated waves shown in Fig. 3.2, are quite good and the corresponding wave

heights are very close to the target one. Moreover, the two equations generate almost

the same waves which propagate in a constant form. This indicates that the wave

generator for the MS equations can be used despite its arbitrary form.

3.7 Wave breaking modeling

Accurate simulation of wave breaking is an important modeling issue in near-shore en-

vironments. It dissipates wave energy through the generation of turbulence, including

substantial air entrainment. Since the wave’s amplitude increases due to shoaling, the

wave’s front becomes vertical and the wave’s crest overturns. BT equations are un-

able to describe this phenomenon and an additional mechanism is necessary. A wave

breaking model for the BT equations requires two mechanisms to simulate the breaking

process numerically. The first one is a "trigger mechanism" related to the initiation and,

possibly the termination, of the breaking process. The second mechanism is an energy
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dissipation mechanism.

Existing wave breaking trigger models can be classified, in the main, into (a) phase-

averaged breaking models and (b) phase resolving breaking models. Phase-averaged

trigger models include wave characteristics which are representative of one full phase

of the wave. Their limited use to BT models is attributed to the necessity of an al-

gorithm that separates individuals waves in order to obtain the wave characteristics

such as, wave height and wave length. Extension of these parameterizations to 2D

wave cases, and especially for unstructured numerical meshes remains a very difficult

task. A review of these wave breaking criteria can be found in Okamoto et al. [129] and

references therein.

On the other hand, phase-resolving models use information at certain locations of

the wave. There exist mainly two types of phase-resolving wave breaking mechanisms

related to the the initiation and termination of the breaking process. The first one is

controlled by the local slope angle [144] and the second by the vertical speed of the free

surface elevation [93]. In the present work, we consider wave breaking criteria of the

phase-resolving type and we propose a combination of trigger mechanisms which can

be classified as to fall in between of the two aforementioned phase-resolving approaches

(namely the local slope and vertical speed variations).

For the energy dissipation a local switch from the BT model to the NSW model

can be performed when a wave is characterized as ready to break, by suppressing the

dispersion terms. This approach allows for a natural treatment of breaking waves as

shocks and we can take advantage of the shock capturing properties of the developed

unstructured FV scheme. In addition, by making this decision, i.e. switching locally

to NSW equations, we conserve mass and momentum across the wave front of waves

characterized as breaking ones. Furthermore, this switching allows a spatial charac-

terization of the computational domain to pre- and post-breaking areas and as such

an accurate description of both non-breaking (governed by the BT model) and breaking

waves (governed by the NSW model) transformations and treatment of shoreline mo-

tion. Such an approach leads to hybrid (one- and two-dimensional) BT-NSW models

and has gained attention by several researchers in the past few years, please refer to

[25, 163, 164, 91, 147, 141, 130, 160, 165].

In this work two different approaches are implemented and tested here for numeri-

cally resolving the wave breaking problem within the FV framework, an eddy viscosity



3.7. WAVE BREAKING MODELING 75

approach and a hybrid BT-NSW one.

3.7.1 Eddy Viscosity Models

Eddy viscosity models have the longest history in application. These involve extending

the momentum equation by the addition of a dissipation term. which implies that a

contribution to flow momentum is imposed when breaking occurs, in contrast to the

momentum-conserving bore process in the non-dispersive theory. In situations where

dissipation is imposed globally and spatial variations in viscosity are small, this effect

is minor. However, at the onset of breaking or in models where dissipation is localized

and spatial gradients of viscsocity are large, this momentum source effect can be quite

severe, and should be avoided by correctly specifying the dissipation term. In this

work, and for the 1D problem two eddy viscosity models are implemented and tested

for comparison purposes and are presented next for completeness.

Kennedy’s et al. wave breaking model [93] Kennedy et al. [93] used the eddy

viscocity-type formulation to incorporate the equations of Wei et al. [180] with a wave

breaking mechanism in order to model the turbulent mixing and dissipation caused by

breaking. The mass conservation equation remains unchanged while, an extra eddy

viscosity term is added to the momentum equation. So, for the equations of Nwogu

(3.1), (3.2) and for MS BT equations (3.1) and (3.6) the source term Sf can be re-written

as

Sf =

 0

−τ + Rb

 (3.62)

where

Rb = (ν(Hu)x)x (3.63)

with ν = Bδ2
bHηt the eddy viscosity, which is a function of both space and time and is

determined in a similar manner to [189], but with several differences. δb is a mixing

length coefficient with value δb = 1.2 and the quantity B varies smoothly from 0 to 1 so
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as to avoid an impulsive start of breaking and the resulting instability. It is given as

B =


1 if ηt ≥ 2η∗t
ηt

η∗t
if η∗t < ηt ≤ 2η∗t

0 if ηt ≤ 2η∗t

(3.64)

the parameter η∗t determines the onset and the cessation of breaking and takes the

value:

η∗t =


η(F)

t if t ≥ T ∗

η(I)
t +

t − t0

T ∗
(η(F)

t − η
(I)
t ) if 0 < t − t0 ≤ T ∗

(3.65)

where T ∗ is the transition time, t0 is the time that breaking was initiated, and thus

t − t0 is the age of the breaking event. The breaking event begins when ηt exceeds some

initial threshold value, but as breaking develops, the wave will continue to break even

if Ht drops below this value. The values of η(I)
t , η(F)

t and T ∗ used here (following [93]) are

c1
√

gη, c2
√

gη and c3
√
η/g respectively. The values of c1, c2, c3 are problem depended.

The largest disadvantage of the above model is that, in some special cases, such as

stationary hydraulic jumps, the criterion may not work and wave breaking initiation

will not recognized. It is worth to mention that in the present work, no artificial filtering

is used in any of the wave breaking models described.

Roeber’s et al. wave breaking model [142] Roeber et al. [142] derived a modified

version of Kennedy’s eddy viscosity wave breaking model (described above), to incor-

porate the Boussinesq-type equations of Nwogu, written in a conservative form in 1D.

The eddy viscosity term added to the momentum equation is (3.63) but in order to

determine the eddy viscosity ν a different indicator is used. Kennedy et al. [93] use

a velocity indicator derived from ηt in contrast to Rober et al. [142] who used (Hu)x

as the indicator to be consistent with the numerical formulation and to better detect

stationary or slow-moving hydraulic jumps that might otherwise not be detected from

ηt. Thus

ν = BH|(Hu)x| (3.66)
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in which

B = 1 −
(Hu)x

U1
for |(Hu)x| ≥ U2, (3.67)

where U1, U2 denote the flow speeds at the onset and termination of the wave-breaking

process and must be calibrated through laboratory experiments. They are expresed

in terms of the shallow water celerity as U1 = B1
√

hH and U2 = B2
√

hH where B1, B2

are calibration coefficients. Breaking begins when |(Hu)x| ≥ U1 and continues as long

as |(Hu)x| ≥ U2. The above criterion may result in breaking on the back of the wave’s

crest since short period waves may have large values of |(Hu)x| on both the front and

the back of the crest. In order to avoid this, Roeber replaced (Hu)x in (3.66) and (3.67)

by 0.5 [|(Hu)x| + (Hu)x] which becomes zero on the back of the crest. The breaking

term stays active for a duration equal to T ∗ = 5
√

H/g, accounting for the continuing

dissipation process behind the broken waves, where the momentum gradient would

not exceed the breaking thresholds.

3.7.2 Hybrid wave breaking models

The approach of Hybrid wave breaking models has gained a lot of popularity the last few

years, due to their simplicity and efficiency. Following this approach one simply (under

certain conditions) turns off the dispersive part of the BT equations in the region where

breaking occurs [163, 164, 141, 91, 24]. The hybrid idea is based on the assumption

that Boussinesq equations automatically degenerate into NSWE as dispersive terms

become negligible compared to nonlinear terms. Howecer, considerations exist in the

criteria chosen to characterize wave breaking, the proper switching between the BT

equations and to the NSW ones, range of applicability and grid sensitivity. In this

approach we first estimate the location of breaking waves using explicit criteria and then

the NSW equations are applied on the breaking regions and BT equations elsewhere.

In this work we implement and test two Hybrid models,for Nwogu’s equations.

Hybrid(ε) model

Tonelli and Petti in [163, 164] and for the MS BT model, developed a criterion which

is based on the similarity between spilling breakers and moving hydraulic jumps, con-

cluding this criterion to be the ratio of surface elevation to water depth, ε =
η

d
. When a
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wave moves towards a beach, water depth decreases more rapidly than the wave length

due to shoaling, so µ2
decreases and ε increases. The proposed numerical approach

of [163] solves NSWE in the region where non-linearity prevails and the BT equations

elsewhere. The threshold value of the criterion used in order to establish which set of

equations should be solved in each computational cell is set to 0.8. Also, in order to

make the scheme more stable, once NSW equations have been applied, the value has

to drop below 0.35-0.55 for BT equations to be applied again [165]. This approach has

been proven successful in many applications, with its main advantage being its sim-

plicity since no calibration parameters are needed, refer to [91, 130, 147] for example.

However, the above criterion maybe proven inadequate, especially if waves propagate

over a near-shore bar, when numerical wave breaking ceases before all the wave en-

ergy is dissipated. This is due to the static application of this breaking approach while

a mechanism is needed that tracks propagating breaking fronts. In addition, all the

applications of this criterion, thus far, have been restricted to 1D or 2D computations

on structured meshes.

Wave breaking criteria and the New Hybrid model

An alternative hybrid model was presented in [24] for the Madsen and Sørensen [114]

BT model, where it was assumed that wave breaking occurs when the vertical velocity

component at the free surface exceeds a value proportional to the shallow water wave

phase celerity,ηt > γ where 0.35 ≤ γ ≤ 0.65 such that is a calibration constant which

maybe affected by the scale of the wave under consideration. A value of γ = 0.3 was

used for breaking solitary waves on a sloping beach in [24]. In general, this criterion

for breaking initiation is similar to one used by Kennedy et al. [93] and can be derived

considering the nonlinear advection equation for the free surface [49]. However, like

Kennedy et al’s eddy viscosity approach, this criterion is inefficient for stably computing

stationary (breaking or partially breaking) hydraulic jumps since in these cases ηt ≈ 0.

In the light of the above mentioned works, we propose here the combination of two

phase-resolving criteria for triggering wave breaking modeling within our FV scheme.

Namely,

• the surface variation criterion: ηt ≥ γ
√

gh with γ ∈ [0.35, 0.65] and

• the local slope angle criterion: ηx ≥ tan(φc) where φc is the critical front face angle
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at the initiation of breaking.

The first criterion flags for breaking when ηt is positive, as breaking starts on the

front face of the wave and has the advantage that can be easily calculated during the

running of the model. The second criterion acts complementary to the first one and

is based on the critical front slope approach in [55, 60]. Depending on the BT model

used and the breaker type, e.g. spilling or plunging, the critical slope values are in the

range of φc ∈ [14◦, 33◦]. For certain BT models this has been considered as the least

sensitive breaking threshold, with the correct breaking location predicted for φc ≈ 30◦,

see for example [106, 160], and is is the value adopted in this work. This value for φc is

relatively large for this criterion to trigger by its own the breaking process, for different

test cases, in our BT model, but is sufficient to detect breaking hydraulic jumps thus,

correcting the limitation of the first criterion.

In the numerical scheme, and for each mesh node in the computational domain

at every time step, we first check if at least one of the above criteria is satisfied, and

flag the relative computational cell as a breaking or a non-breaking one. Since we

refer to 1D formulation, it is relatively easy to distinguish between different breaking

waves. Every consecutive group of breaking nodes constitute a breaking wave. With

this information in hand, we can treat each wave individually and find certain wave

characteristics such as the wave height. The wave front of each breaking wave will be

then handled as a bore by the NSW equations and as long as they are governed by

these equations the shock will keep dissipating energy.

However, we should take into account that bores stop breaking when their Froude

number drops below a critical value. The wave’s Froude number (Fr) determines the

bore’s shape and the transition from one kind of bore to another. If Fr >> 1, a bore

is purely breaking and will consist of a steep front and if the Froude number drops

below a certain value Frc non-breaking undular bores have been observed, see [160]

and references therein. Thus, an additional criterion is needed to determine when

to switch back to the BT equations for non-breaking bores, allowing for the breaking

process to stop. The criterion introduced by [160] is adopted here and is based on the

analogy between a broken wave and a bore in the sense of a simple transition between

two uniform levels. The wave’s Froude number is defined as:

Fr =

√
(2H2/H1 + 1)2 − 1

8
(3.68)
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where H1 is the water depth at the wave’s trough and H2 the water depth at the wave’s

crest. Since we have tracked each breaking wave individually (with its own dynamic

list), it is relatively straightforward to find H1 and H2 for each wave. We simply approx-

imate them by finding the minimum and maximum water depth respectively, from all

the breaking nodes corresponding to that wave. If Fr ≤ Frc all the breaking points of

that wave are un-flagged and the wave is considered non-breaking. Following [160] the

critical value for Frc was set equal to 1.3 in our computations.

Figure 3.3: Definition sketch for a broken wave and the switching zones fron BT to

NSWE

For each breaking wave, the computational region lNS W (see Fig. 3.3) along the

wave direction, over which we switch to NSWE, is roughly centered around the wave

front. However, non-physical effects may appear at the interface between a region

governed by the BT equations and a region that is governed by the NSW model. This

is due to the relatively strong variations that may exist in the solution, which affect

the estimation of the dispersive terms [147, 160, 130]. In [160] the shallow water

region was extended assuming that the lNS W length must be larger than the order of

magnitude of the physical length of the wave roller. The length of the roller can be

defined as lr ≈ 2.9(H2 − H1) and the extend lNS W ≈ 2.5lr, which is the value adopted in

the present work.

Suppression of the dispersive terms methodology

After the characterization of the breaking regions the NSW model has to be applied

computationally in each one of them. This is a very blurred process, since up to now
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and to our knowledge, no author, in the existing literature, has been very clear to the

definition of that process. In order to solve the NSWE in the computational cells that

have been identified as breaking we have to suppress the dispersive terms ψc and ψM in

equation (3.2). We have also to keep in mind that the tridiagonal matrix M in equation

(3.55) have been extracted using P?
from (3.3) which contains the term ψM. This

means that we must be very careful when switching to the NSWE to keep the balance

of the dispersive terms for every computational cell in eq. (3.1). Several researchers,

that have followed the hybrid wave breaking modeling in 1D, for example [163, 142],

mention that the tridiagonal matrices are constant in time and can be pre-factored,

inverted and stored to be used only once at each time iteration. The above approach

implies that when a wave breaking mechanism is active, the solution of the tridiagonal

system, in each time step, involves the undisturbed matrix M along with the right

hand side that comes from the spatial solver but without considering the dispersive

terms in the computational cells characterized as breaking. This leads to numerical

instabilities on the wave breaking fronts since equation (2.43)is not satisfied, for the

breaking computational cells.

Another way to suppress the dispersive terms is to recalculate the tridiagonal matrix

M at each time iteration. Each line of the matrix that corresponds to a breaking cell

is discretized without considering the term Hzα
(zα

2
uxx + (hu)xx

)
in (3.3), leading to the

corresponding line of the Identity matrix. Like before, the right hand side that comes

form the spatial solver is calculated without considering the dispersive terms at cells

considered as breaking. This treatment is inadequate in regions where dispersion terms

are not negligible when compared to the nonlinear terms, since nonphysical oscillations

present at the switching points between the BT equations and the NSW ones. An

additional concern, following this approach, is the limitation of the recalculation of the

matrix in each time step. Matrix M is symmetric and positive definite (when bottom

topography is neglected). Changing its rows may lead to large condition number causing

instabilities in the solution of the linear system.

Furthermore in 2D computations where unstructured meshes are used, the matrix

of the linear system can not be changed due to its storage (see Section 6.4). Thus any

change in that matrix would result in a large increase in the computational cost. For the

above reasons concerning both 1D and 2D formulations, we developed a new method-

ology to handle the switching between the two models (dispersive/non-dispersive) as:
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0. Starting with the solution vector Un
P, P

? = 1, . . . ,N, at time tn
,

1. For all computational cells an [Hn+1
1 ,Hn+1

2 , . . . ,Hn+1
N ]T

solution is computed from

the mass equation using the BT model (named from now on Hn+1
BT solution).

1.1 If breaking has been activated (according to our criteria) for a number of

computational cells say Nbr < N, an additional solution vector is computed

by subtracting the dispersive terms ψc from Hn+1
BT at these breaking cells, i.e.

obtaining a NSW solution for Hn+1
at these cells only. This solution is named

Hn+1
BT/S W from now on.

2. Then, for all computational cells the P?(n+1)
BT = [P?(n+1)

1 , P?(n+1)
2 , · · · , P?(n+1)

N ]T
BT solution

from the momentum equation is computed, using the approximation ∂tHn+1 ≈

Hn+1
BT −Hn

∆tn+1 for the ψM computation in (3.4).

2.1 If breaking has been activated for a number of computational cells, an ad-

ditional solution (named P?(n+1)
BT/S W ) is computed by subtracting the dispersive

terms ψc and ψM from P?(n+1)
BT at these cells i.e. obtaining a NSW momentum

solution (Hu)n+1
for the breaking cells, since for the NSW equations P? = Hu.

For theses cells only it is easy now to compute un+1
S W = [un+1

1 , . . . , un+1
Nbr

]T
S W which

will be a subset of the actual velocity solution sought.

3. Then, the linear system MV = C from (3.55) is solved with C = [P?,n+1
1 ,P?,n+1

2 , · · · ,P?,n+1
N ]T

BT

to obtain an approximation of the velocity vector, named un+1
BT = [un+1

1 , . . . , un+1
N ]T

BT .

4. The final solution at t = tn+1
will be that of Hn+1

BT/S W for the total water depth and

Pn+1
BT/S W for the momentum equations. For the velocity field vector the solution,

denoted as un+1
BT/S W , is derived from the un+1

BT vector with its values at the breaking

nodes replaced by those of un+1
S W .



Chapter 4

Numerical test and results in one

dimension

The numerical schemes for both BT models presented in Chapter 3 have been applied

to standard tests cases designed to validate the numerical treatment of the dispersion

terms in the governing equations and the wave breaking treatments. Special attention

was paid to comparing both BT models to the NSWE for reproducing challenging ex-

perimental results. We have classified the numerical tests in two main categories. The

non-breaking wave cases in Sections 4.1-4.2 and the breaking wave cases, in Section

4.5-4.8. Numerical tests in Sections 4.2 and 4.3 includes both categories.

4.1 The Carrier and Greenspan (1958) solutions

We first check the validity of the proposed well-balanced discretization and wet/dry

front treatment by focusing on moving shoreline problems for waves running up and

down uniform sloping beaches. These problems have analytical solutions which were

derived by Carrier and Greenspan [37] by making use of the NSWE. These classical

tests have been used frequently for assessing the quality of various shoreline boundary

condition techniques used in the NSWE, see for example [86, 32, 30, 118]. Thus, for

consistency the dispersive (µ2
) terms are usually ignored in the numerical simulations

of these problems, see for example [108, 47, 164], or considered to be very small [68]. In

the current presentation, and only for these test cases, we chose to ignore the dispersive

terms. Details on initial and boundary conditions, as well as the analytical solutions,

can be found in the original work of Carrier and Greenspan [37] and in [32, 118].

83
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Non-dimensional variables are defined to compare with the analytical solutions as

follows

x∗ = x/l, η∗ = η/(αl), u∗ = u/
√

gαl t∗ = t/
√

l/(αg)

where l is the characteristic length scale an α the beach slope.

4.1.1 Carrier and Greenspan periodic wave solution

For the first case a monochromatic wave is let runup and rundown on a plane beach

with α = 1/30. The solution represents the motion of a periodic wave of a dimensionless

amplitude A∗ = 0.6 and frequency ω∗ = 1 traveling shoreward and being reflected out to

sea generating a standing wave on the beach with A∗/4 maximum vertical excursion of

the shoreline. The characteristic length scale l = 20m. The computational parameters

used where ∆x = 0.00625m, Cr = 0.45 and εwd = 5 · 10−6m. The small value of ∆x has

been chosen as to provide a high resolution at the shoreline, see for example [164].

Fig. 4.1 presents comparisons between the numerical free surface and the analytical

one, at different times t∗ ∈ [2T, 2T ∗ + T ∗/2] where T ∗ is the dimensionless period of the

oscillations. The qualitative agreement is very good even after a few periods.

Figure 4.1: The Carrier and Greenspan periodic wave solution: comparison between

analytical (solid line) and numerical (red dashed line) results for the free surface eleva-

tion at different times t∗ ∈ [2T ∗, 2T ∗ + T ∗/2].

The numerical shoreline position xs was measured as the position of the last wet cell

(i.e. where H ≥ εwd) along the beach. Theoretically, the shoreline boundary is defined
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by the relations

H(xs, t) = 0 and us ≡ u(xs, t) =
dxs

dt
.

Inevitably, the numerical solution produced by the conservative FV scheme is an ap-

proximation to the above relations since the zero depth condition is never met [27]. Fig.

4.2 compares the computed and analytical time series of the shoreline position and

velocity. Very good accuracy is shown for the vertical sinusoidal motion of the shore-

line while for the non-sinusoidal variation of the shoreline velocity small discrepancies

are presented when the velocity is close to zero. The velocity results compare well with

others in the literature, see for example [68, 164]. It should be pointed here that, the

shoreline velocity computation is a difficult task and as such is not correctly captured

by some runup models thus, in the literature only variations of the shoreline position

are usually presented.

Figure 4.2: The Carrier and Greenspan periodic wave solution: comparison between

analytical and numerical results for the shoreline position (left) and shoreline velocity

(right)for t∗ ∈ [T ∗, 2T ∗]

4.1.2 The Carrier and Greenspan transient solution

In this case the initial water surface elevation is assumed to be depressed near the

shoreline, the fluid is held motionless and then released at t∗ = 0. For this case α = 1/50

and l = 20m. In [37] a small parameter e was used to characterize the surface elevation

profile. For e < 0.23 non-breaking waves are produced and the results presented here

are for e = 0.1. In the wave’s evolution, the shoreline rises above the still water level of

value e and then the water surface elevation asymptotical settles back to it. As such,



86 CHAPTER 4. NUMERICAL TEST AND RESULTS IN ONE DIMENSION

this test is particularly valuable in testing the ability of the model to compute (nearly)

steady states. The computational parameters are the same as in the previous case.

Fig. 4.3 presents the comparisons between the numerical free surface and the ana-

lytical one, scaled with parameter e, at different times t∗. The numerical model provides

qualitative excellent agreement with the analytic solution. The solution asymptotically

reaches an almost steady state which is accurately predicted by the model verifying the

extended C-property.

Figure 4.3: The Carrier and Greenspan transient solution: comparison between ana-

lytical (solid line) and numerical (red dashed line) results for the free surface elevation

at different times t∗.

In Fig. 4.4 the computed and analytical time series of the shoreline position and

velocity are presented. It can be observed that the shoreline position asymptotically

settles to e and the numerical model remains stable and with good accuracy for this

slow convergence. On the other hand, the error on the shoreline velocity slightly in-

creases when the velocity reaches very small values at rundown and exhibits a slightly

oscillatory behavior. However, this error remains controlled and diminishing since the

numerical solution fully recovers in a short time. This is an expected behavior since

the method uses the threshold parameter εwd to define the last wet cell. Hence, the

introduced error is mainly artificial since the velocity is calculated from the conserved

variables as un+1
s = (Hu)n+1

s /Hn+1
s , with (Hu)n+1

s being a few orders of magnitude less that

Hn+1
s and practically almost zero. Nevertheless, small spurious errors in the velocity or

depth at wet/dry fronts which are below a certain level, e.g. 10−4
, are not a concern

in practical simulations as long as the solution remains stable for long time. Here, the
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numerical solution reaches stably the expected steady state.

Figure 4.4: The Carrier and Greenspan transient solution: comparison between analyt-

ical and numerical results for the shoreline position (left) and shoreline velocity (right)

for t∗ ∈ [0, 20]

4.2 Solitary wave propagation

One of the most standard tests of the stability and conservative properties of numer-

ical schemes based on BT equations is the propagation of solitary waves over a flat

(b(x) = 0),long distance frictionless and with constant depth channel. The solitary wave

maintains its shape, speed and amplitude as it travels down this channel due to an

exact balance between the nonlinear terms that steepen the wave and the dispersion

terms that flatten the wave. A numerical model must handle this balance. A combi-

nation of numerical errors from poorly balanced schemes and truncation of numerical

approximations can lead to serious reductions in the wave height and celerity.

The model is applied to simulate the propagation of solitary waves over a constant

depth. The initial wave surface elevation η and velocity of u can be found in [179]

for Nwogu’s equations and in [163] for MS equations (see Appendix). Three solitary

waves of A = 0.045, 0.9, 0.135m propagate in a numerical wave channel of 500m (x ∈

[−50, 450m])and of constant depth h = 0.45m. Each wave corresponds to a different

parameter ε = 0.1, 0.2, 0.3 respectively. The initial position of the solitary wave is at

x = 0m. We note here that, the given initial conditions (and analytical solutions) are

only asymptotically equivalent to the solutions of the models being solved numerically,

so the wave being input in the numerical models does not correspond exactly to solitary

waveforms predicted by the models. As a result, the initial waves undergo an evolution
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at the beginning of the computation to adjust the free surface to a steady profile [163,

179]. Following [179] we reduce all differencing errors to a size that is small relative

to all retained terms in the model equations. The scheme used, leads to a truncation

error of O
(
∆x4

µ2

)
relative to the model dispersive terms at O

(
µ2

)
. In contrast, the leading

term, of the dispersive terms themselves are finite-differenced to second order accuracy,

leading to errors of O
(
∆x2

)
relative to the actual dispersive terms. For that reason we

have choose ∆x = 0.025. The CFL number used was 0.3.

Fig. 4.5 shows the surface profiles for the three solitary waves at various times

for both formulations. The results indicate that, for both BT models the initial wave

undergoes an evolution at the start of the wave channel, with the result that a modified

solitary is formed together with a small dispersive tail. The amplitude of the tail and the

initial deviation of the wave’s height both increase with increasing initial wave height.

As depicted in Fig. 4.6, in Nwogu’s formulation the solitary wave increases slightly,

at the beginning of the propagation and results to a higher wave than the initial one.

This results partially from the fact that the analytical solution used as initial condition

is only asymptotically equivalent to the model, so that the wave does not correspond

exactly to a solitary waveform as predicted by the model [179]. For the MS formulation,

and at the first stages of the propagation, the wave changes shape and becomes higher

but eventually results to shorter wave heights than the initial ones. The train of small

waves, formed are severe but are soon left behind. This transformation is imputed to

the low-order approximation of the velocity, given to the model as initial condition. In

Fig. 4.7 the solitary wave forms are compared to the analytical solution at two widely

separated instances in time. The two waves are translated by a distance predicted

through an analytical phase speed C. It can be seen that the numerical predicted

phase speed is somewhat smaller than the analytically predicted one and that the

difference increases with increasing nonlinearity.

In order to check the conservation of mass we examine the relative mass error,

which is defined as:

Relative mass error =
mn − mI

mI

where mI
is the total mass in the computational domain at time step 0 (t0) and mn

is

the total mass at time step tn. Fig. 4.8 shows the relative mass error for the two sets of

equations examined here and for the solitary wave with ε = 0.1. The relative mass error

occurred is of order O(10−14).
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Figure 4.5: Solitary wave propagation (A/h = 0.1, 0.2, 0.3 from top to bottom) at times

t = 0, 50, 100, 150, 200s for Nwogu’s (left) and MS (right) formulations
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Figure 4.6: Amplitude variations of solitary waves for ε = 0.1, 0.2 0.3 from top to bottom

4.3 Head on collision of two solitary waves

The counter-propagation of two symmetric solitary waves in a flat frictionless channel

is tested here. Their collision presents additional challenges to the models by the

sudden change of nonlinear and dispersion characteristics. This head-on collision is

characterized by the change of shape, along with a small phase-shift of the waves as a

consequence of the nonlinearity and dispersion. In a 300m long channel with h = 1m two

solitary waves with an equal initial height of A/h = 0.3 are placed in positions x = 35m

and x = 265m and start to propagate in the opposite directions. This higher values

of A/h corresponds to stronger nonlinearity in the incident waves, when compared to

the previous test case, since both models which are based on equations derived under

the assumption that terms of O(ε2, εµ2, µ4) can be neglected. The initial wave surface

elevation and velocity can be found in [179] and [163], similar to the previous test case.

The computational parameters used were ∆x = 0.1m and Cr = 0.4.

Fig. 4.9 shows the surface profiles at times t
√

g/d = 0, 101.2 and 200. Similar

to the previous test case and due to the incompatibility between the analytical and
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Figure 4.7: The solitary wave’s (A/d = 0.1, 0.2, 0.3 from top to bottom) shape at t = 50s
and t = 150s for Nwogu’s (left) and MS (right) formulations
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Figure 4.8: Conservation of mass

numerical solutions, the numerical waves initially undergo an evolution and two slightly

higher solitary waves are formed which then propagate with a constant amplitude

(A/h = 0.3135 for Nwogu’s equations and A/h = 0.295 for the MS ones) until collision,

along with small dispersive tails which are left behind. At t
√

g/h = 101.2 the wave

gets its highest pick, A/h = 0.66 for Nwogu’s formulation and A/h = 0.61 for the MS

formulation. At t
√

g/h = 200 the numerical wave profiles are very close to the initial

solitary waveform. After the collision we observe that the numerical solution has a

small phase shift compared to the analytic one. The dispersive tails are more intense

for the MS model due to the discrepancy between the analytical solution given as input

to the model and the solitary wave solution of the numerical model. We remark here

that, nonlinear effects for both Nwogu’s and the MS model can be reasonably accounted

for up to A/h ≈ 0.3.

4.4 Solitary wave run-up on a plane beach

Solitary wave run-up on a plane beach is one of the most intensively studied problems

in long-wave modeling. Synolakis [157] carried out laboratory experiments for incident

solitary waves of multiple relative amplitudes, in order to study propagation, breaking

and run-up over a planar beach with a slope 1 : 19.85. Many researchers have used this

data set to validate numerical models [189, 108, 23, 164, 91, 142, 47, 187, 161]. With

this test case we asses the ability of our model to describe shoreline motions and wave
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Figure 4.9: Surface profiles of solitary waves at times t
√

g/d = 0, 101.2, 200 (from top

to bottom) with A/d = 0.3 propagating in opposite directions in a channel of constant

depth.

breaking, when it occurs. Experimental data are available form [157] for the surface

elevation at different times. Two different cases were considered here. For the first case

the incident wave height is A/h = 0.04 and for the second one A/h = 0.28. According

to Synolakis [157] wave breaking occurred during run-down when A/h > 0.044 and

hence breaking did not occur for the first case (although it very nearly broke on the

run-down). The A/h = 0.28 wave broke strongly both in the run-up and the run-down

phases of the motion. The topography of the problem has the form

b(x) =


−x tan β, x ≤ cot β

−1, x > cot β
(4.1)

and Fig. 4.10 shows a schematic view of the experiments with A indicating the incident

wave height, β the beach angle and h the depth of the stagnant water. An initial solitary
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wave is placed at point x1 that is located at half wavelength from the toe of the beach,

located at x0. The initial surface profile η and velocity u can be found in [179] for the

equations of Nwogu and [157] for the MS equations (see Appendix). Also, a Manning

coefficient of nm = 0.01 was used in order to define the glass surface roughness used in

the experiments. For both cases the computational domain is x ∈ [−2, 100m] and the

h

β

A

x1x0

Figure 4.10: Set up for the numerical test of the solitary wave run-up on a plane beach.

numerical parameters used were ∆x = 0.05, CFL=0.4, εwd = 5 · 10−6
. The still water level

is h = 1m.

Remark 4 Solitary waves that propagate in a long friction less channel will reach a

permanent form. At that point the dispersive tail lags behind the initial wave. The

obtained initial wave is the permanent form solitary wave solution of the desired height

which is the correct initial solutions to be used within the BT models.

4.4.1 Case I

Fig. 4.11 shows a comparison of the surface profiles from the BT models and the

NLSWE, along with experimental data, when A/h = 0.04 for different non dimensional

times. Until time t
√

g/h = 32 the wave approaches the shoreline and we observe that

the NSWE slightly over-predict the solution while the numerical results of Nwogu’s

and MS give identical results for this non-breaking case. Observe that, due to the

well-balanced wet/dry treatment applied in the shoreline no unphysical overtopping or

water movement appears in the solution at the wet/dry front. By time t
√

g/h = 32 the

wave begins to runup the beach and after that the solutions of the three models are

almost identical converging to the same solution. The experimental observation that
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the wave nearly broke during rundown can be seen at t
√

g/h = 62 where all numerical

solutions look similar to that of a hydraulic jump. The measured maximum run up

in [157] for this problem was R ≈ 0.156 while for all computational models here was

almost identical with a value R ≈ 0.161.

4.4.2 Case II

The next case involves the run-up and run-down of a solitary wave with A/h = 0.28 on

the same beach. This is a demanding test case since breaking occurs both in the run-

up and the run-down process. We have resided to implement the breaking mechanisms

only in BT equations of Nwogu for two reasons.

• Better performance of the BT equations of Nwogu versus the MS equations up

have been observed to the non-breaking cases, involving solitary waves, since

there is no analytic solution to be used as initial condition, in contrast to the

asymptotic solution of [179] for the equations of Nwogu.

• Both the Hybrid(ε) and eddy viscosity model have been tested for the equations of

MS, see for example [163, 164, 138]

• Kazolea and Delis [91] have also tested the 1D FV/FD model for both the equa-

tions of MS and Nwogu including the wave breaking mechanism of [163]. The

two BT numerical models provided considerable more accurate results for highly

dispaersive waves over increasing water depths, with Nwogu’s model having a

precedence over the MS one.

The computational parameters used are the same as in case (a). The four different

wave breaking mechanisms presented in Section 3.7 are implemented and tested. For

the eddy viscosity model of Kennedy the values that determines the onset and the

cessation of breaking are η(I)
t = 0.45 and η(F)

t = 0.15. The transition time used here

is T? = 5
√

h/g. Numerical results using the eddy viscosity model of Roeber, using

B1 = 0.5 and B2 = 0.25 are simultaneously presented. Additionally, the two Hybrid

models are presented in the same Figures, using for the surface variation breaking

criterion ηt ≥ γ
√

gh and γ was set to 0.6.

Fig 4.12 and Fig 4.13 show at the left column the two hybrid models compered with

experimental data and the same for the two eddy viscosity formulations at the right
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Figure 4.11: Free surface elevation of solitary wave run-up on a plane beach for A/h =

0.04.
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column. Until time t
√

g/h = 10 the solitary propagates to the shore and the computed

results are all the same, as expected, since wave breaking has not initiate yet. The

breaking procedure starts around t
√

g/h = 15 where small differences between the

models are observed. The two eddy viscosity models have the same behavior up to this

time. The solitary wave using the Hybrid(ε) is slightly faster and sharper in the bore

front compered to the one obtained by the New Hybrid model. As the wave shoals, it

is clear that at the initial stages the NSW equations under-predict the wave height and

phase. The wave breaking is represented as a bore storing the water spilled from the

breaking wave behind the bore.

Wave breaking has fully developed by the time t
√

g/h = 20 where all the models

under-predict the wave height. The eddy viscosity model of Roeber suffers from oscil-

lations at the back of the wave and it is also more diffusive at the front of the solitary.

Similar observations have been made in [164]. Other researchers in [142, 189, 108]

used the same eddy viscosity model up to now have used sparser grids introducing

numerical diffusion which act a stabilized mechanism. The Hybrid(ε) model is slightly

faster that the New Hybrid one and also gives the worst prediction for the wave height.

The BT model, when used the Hybrid formulations, reduce to the NSWE during the

breaking event so the computed front becomes steeper. This is not the case in the

actual wave which is not discontinuous but contains air bubbles and turbulence. Be-

cause of the volume conservation in all models, the computed solution fully recovers

until the water reaches the maximun run-up point around t
√

g/h = 45.

As the water recedes a breaking wave is created at t
√

g/h = 55 near the still wa-

ter level. All formulations simulates the process as a hydraulic jump. According to

Kennedy et al. [93] the largest disadvantage of the eddy viscosity model is that, in

some cases, such as stationary hydraulic jumps, breaking initiation is not recognized.

For that reason oscillations at the numerical solution of both the eddy viscosity models

where observed after t
√

g/h = 55 and the solution became unstable since no artificial

numerical filtering is imposed in any eddy viscosity model. Thus, no results for these

models are include in Fig. 4.14 for times t
√

g/h = 60, t
√

g/h = 70 and t
√

g/h = 80.

Zelt [189] has also mentioned that it might also be necessary to treat that backwash

bore by a completely different breaking algorithm in place of the artificial viscosity

model. On the other hand the hybrid breaking models have better agreement with the

experimental data.
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Figure 4.12: Free surface elevation of solitary wave run-up on a plane beach for A/h =

0.28. Comparison of eddy viscosity models (left) and Hybrid models (right)
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Figure 4.13: Free surface elevation of solitary wave run-up on a plane beach for A/h =

0.28. Comparison of eddy viscosity models (left) and Hybrid models (right)
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Figure 4.14: Free surface elevation of solitary wave run-up on a plane beach for A/h =

0.28. Hybrid models.
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4.5 Regular wave propagation over a submerged bar

Beji and Battjes [19] conducted a laboratory experiment to examine sinusoidal wave

propagation over a submerged bar. This test was first used by [53] to verify Delft

Hydraulics numerical model HISWA, and has been used extensively in the literature

for model validation see [187, 148, 142, 164], among others. The experiments were

conducted in a 37.7m long, 0.8m wide, and 0.75m high wave flume. A hydraulically

driven, piston-type random wave generator was located at the left side of the flume and

a 1 : 25 plane beach with coarse material was placed at the right side to serve as a wave

absorber. The submerged trapezoidal bar was 0.3m high with front slope of 1 : 20 and

lee slope of 1 : 10 separated by a level plateau 2m in length. We consider here three test

cases described in Table 4.1.

Table 4.1: Experimental wave characteristics for Beji and Battjes [19] Tests.

Test T (sec) H(m) h/L Breaking type

(a) 2.020 0.020 0.11 non-breaking

(b) 1.010 0.041 0.27 non-breaking

(c) 2.525 0.054 0.0835 plunging breaker
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Bar

Figure 4.15: Regular wave propagation over a submerged bar: definition of bed topog-

raphy and wave gauges.

The test configuration consists of a 23m channel with a constant depth of h = 0.4m.

The bathymetry consists of 1 : 20 front slope and 1 : 10 back slope separated by

a plateau of 2m in length. The dimension of the computational domain was set to

x ∈ [−10, 29] with the grid size ∆x = 0.04m. The CFL number used is 0.3 and the

sponge layer width Ls = 4.9, 2.0, 5.2 for cases (a)-(c) respectively. Sinusoidal waves

were generated at x = 0. The waves propagated onshore and shoal along the front

slope of the bar, forcing development of higher harmonics which are then released

from the carrier frequency on the lee side of the bar as the water depth parameter kh
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increases rapidly. Depth gauges which measure the free surface elevation are placed

along x = 10.5, 12.5, 13.5, 14.5, 15.5, 17.3, 19 and 21m. The numerical data from both

formulations are presented and compared with experimental data, for non-breaking

cases (a) and (b).
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Figure 4.16: Time series of surface elevation at wave gauges for periodic wave propa-

gation over a submerged bar for case (a).

Fig. 4.16 presents the results for case (a). Both formulations present a good agree-

ment with the experimental data. The MS results slightly lag behind the Nwogu’s ones.

As the waves travel on the front slope lose their symmetry and bound harmonics are

generated while on the plateau of the bar energy is transferred to higher harmonics

mainly the second one. The schemes perform very well up to WG 8, showing only a

phase shift for the MS formulation, despite the fact that the waves propagate down-
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slope, and the physical process of wave propagation in to deeper water results in reduc-

tion in the potential energy consistent with increase in group velocity. After WG 9 some

discrepancies with the data appear. This is due to the release of higher harmonics and

the inability of the BT models presented here to fully resolve these harmonics released

at the lee side of the bar.

The modeling of wave configuration for case (b) , is shown in Fig. 4.17. Since the

incoming wave is characterized as short wave [19], it does not develop any tail waves as

it grows in amplitude, keeps the vertical symmetry and appears as higher order Stokes

wave. Excellent agreement is observed between numerical and experimental data, at

WGs 4-6. The wave decomposition as it enters deeper region is not as drastic as in

case (a) but second order harmonics are released with kh > 6 (see WG 9) which the

models are unable to resolve. We should keep in mind that, for Nwogu’s equation, and

by using the za value proposed by Roeber [142] the model produces lager wavelengths

and smaller amplitudes for short period waves in deeper waters. At the next gauges

the models recover since the main energy is contained in waves with kh <= 3 [142].

It should be noted that part of the discrepancies between the laboratory data and the

models result might be due to the experimental setup [138, 142].

The next case presented is case (c), where wave breaking occurs on the top of the

bar. In this test case the wave’s period is T = 2.525s and the wave’s height is 0.054m.

The sponge layer width used was Ls = 7.18m. Every other computational parameter

remains the same. The wave breaking that occurs is of the plunging type. Since

the eddy viscosity models presented have been proved inadequate in some cases (see

Section 4.5) we have decided to compare and discuss only Hybrid breaking models.

Since we are interested only on the breaking behavior of the model and due to the

inability of the BT equations to fully resolve higher harmonics released at the lee side

of the bar [92], as it was demonstrated for the cases (a) and (b), only four wave gauges

where placed at x = 6, 12, 13, 14m respectively.

The numerical time series of surface elevation, for the two hybrid breaking models,

at the four wave gauges are plotted against the test data in Fig. 4.18, where the different

behavior between the two models is depicted. At x = 6m the two models coincide as

expected, since the wave breaking starts around x = 12m. At that gauge, and in all

gauges that follow, the wave shape is well-reproduced by the new hybrid model but is

over-predicted by the hybrid(ε) model, resulting in a different wave shape in the last
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Figure 4.17: Time series of surface elevation at wave gauges for periodic wave propa-

gation over a submerged bar for case (b).
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gauge. These results are due to inability of this model to dissipate correctly the wave

energy of the broken waves on the top of the bar, since wave breaking ceases before all

the wave energy is dissipated, as discussed in Section 3.7.2. This is clearly shown in

Fig. 4.19 where the wave-by-wave treatment and the lNS W area for the two BT models

is illustrated. For the new hybrid model the onset of breaking is correctly predicted

and the wave breaking mechanism follows the wave front leading to a wave height

decay. For the hybrid(ε) model the criterion used seems to be poor, since the initiation

of breaking delays and remains active for less time than necessary. Fig. 4.19 covers

approximately one period.
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Figure 4.18: Time series of surface elevation at wave gauges for periodic wave breaking

over a submerged bar for case (c)
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Figure 4.19: Spatial snapshot of breaking wave propagation over a bar for the New

Hybrid model (left) and the Hybrid(ε) model (right). Between two consecutive vertical

lines, the flow is governed by NSW equations

4.6 Solitary wave propagation over fringing reefs

Two relatively new challenging test cases that examine the ability of the model in han-

dling simultaneously nonlinear dispersive waves together with wave breaking and bore

propagation are presented in this section. The experiments were carried out at the

O.H. Hinsdale Wave Research Laboratory at Oregon State University from 2007-2009.

Two flumes were used. The first one is 48.8m long, 2.16m wide and 2.1m high and the

second has length of 104m, a width of 3.66m and a height of 4.57m with a reef crest.

Multiple wave gauges that measure the free surface elevation and the velocity profile

have placed appropriate, for each case, along the flume’s center line. Fig. 4.20 shows

a schematic view of the flumes along with the position of the wave gauges, for the two

test cases.

4.6.1 Dry reef

The first test case involves a bathymetry which consists of a 1/5 sloping fore reef

and a 1m high reef flat. A steep solitary wave is generated at the left boundary and
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Figure 4.20: Schematics of flume experiments over fringing reefs. (a) 48.8-m flume. (b)

104-m flume. Figure is obtained from [142]

.

propagated downstream. The computational domain used in this test is [0, 45m] with

a grid step ∆x = 0.05. CFL=0.3 and εwd = 1 · 10−6
. Wall boundary conditions were placed

at both ends of the computational domain. As suggested in [142], nm = 0.012 was

used to define the roughness of the concrete surface. 14 wave gauges were placed at

x = 10, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 29, 32 and 36m to record the free surface waves.

This is a very demanding test case since the strong nonlinearity of the solitary wave is

over the weak nonlinear properties of the governing equations.

Fig. 4.22 shows the evolution of the water surface profile for various times. The

solitary waves propagates undisturbed downstream until it reaches the toe of the slope

where shoaling begins due to the topography. The wave steepens at the front but

it does not form a plunging breaker over the steep 1/5 slope. As the wave surges

over the reef, it undergoes a gradual transition from sub to supercritical flow, in the

laboratory experiment. The numerical model simulates the process at time t = 17.97s

as a collapsing bore. The water inundates the reef flat, propagates over the dry reef and

then is reflected by the wall. the wave propagation is well simulated as the celerity of

the wave front is accurately predicted. Around time t = 20.52s a momentarily stationary

hydraulic jump is deformed at the apex of the reef, which is recognized and treated by
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the wave breaking mechanism used.

Fig. 4.23 compares the computed and recorded surface elevation time series at the

specific wave gauges. Like [166] only the uprush phase is considered here because

the actual reflection at the end wall could not reproduced numerically due to the pres-

ence of lateral openings in the flume. WGs 1-6 show the propagation and shoaling of

the solitary wave over the incline bottom topography. The numerical solution agrees

reasonably well with the experimental data. The wave’s arrival along with the solitary

wave’s amplitude are very well captured. An under prediction is observed at WG 6 at

the run-down process, which result in a slightly over prediction of the wave’s amplitude,

at the WGs 7-10, which are located on the reef.

4.6.2 Submerged reef

In a computational domain for x ∈ [0, 83.7m] the topography includes a fore reef slope

of 1/12, a 0.2m reef crest and a water depth h = 2.5m. The reef crest is then exposed by

6cm and submerges the flat with h = 14cm. This test case involves a 0.75m high solitary

wave i.e. A/h = 0.3. The computational parameters used were the same as the dry reef

case. Experimental results for the free surface waves were recorded at 14 resistance

wave gauges. We refer to [142] for the experimental set up and gauge locations.

Fig. 4.24 compares the measured and computed wave profiles,for BT model and

the NSW equations, as the numerical solitary wave propagates. Until time t = 32.5

the solitary wave propagates onshore and shoals due to the inclined bathymetry. As a

result of shoaling the wave breaks around t = 34.5s forming a plunging breaker. Both

models are mimicking the breaker as a collapsing bore that slightly underestimates the

wave height but conserved the total mass. Then the broken wave propagates on the

back slope of the reef generating a super-critical flow that displays the stagnant water

on the reef flat. While the bore propagates downstream a hydraulic jump develops at the

back of the reef which becomes stationary momentarily around t = 40s. The use of the

new hybrid model is crucial, since it handles simultaneously with the hydraulic jump

and the propagating bore, recognizing correctly different bore fronts. The propagating

bore is reflected by the wall around time t = 41s and by time t = 54s has overtoped the

reef crest generating a hydraulic jump on the fore reef and a reflected bore at the back

of the reef that travels downstream. At this point and as the water rushes down the

fore reef, the flow transitions from flux to dispersion-dominated through the hydraulic
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Figure 4.21: Evolution of the water surface profile for the test case of solitary wave

propagation over a dry reef (cont. in Fig. 4.19)
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Figure 4.22: Evolution of the water surface profile for the test case of solitary wave

propagation over a dry reef.
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Figure 4.23: Time series of free surface elevation at wave gauges for the submerged reef

case.
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jump. NSW treat this jump as a propagating shock while the BT equations reproduces

correctly the decaying undular bore produced by the hydraulic jump.

Fig. 4.26 compares the computed and recorded surface elevation time series at

specific wave gauges. The recorded data from the wave gauges at x ≤ 50.4m shows the

effect of the Airy type waves on the free surface. The hydraulic jump developed at the

fore reef produced a train of waves over the increasing water depth and the resulting

undulations were intensified as higher harmonics were released. As a matter of fact,

wave gauges near the toe of the slope recorded highly dispersive waves of kd > 30

[142]. The BT model used managed to reproduce these highly dispersive waves with

the correct phase and height strengths for this difficult problem and seems to compare

in favor with the results presented in [142] and [166]. The results in [166] appear to

be slower and smoother, compared to the experimental data and this is due to the

nonphysical usage of the NSW equations in the region were the undular bore is formed

and propagate. The time series at x = 58.1m present the initial and subsequently

overtoppings at the reef crest and confirm the efficiency of the proposed wet/dry front

treatment. The numerical model reproduced these overtoppings at the correct phase

but slightly overestimated the height of the arrival waves. At the gauges located at

x = 65.2m and 72.6m the arrival of the initial wave, the first reflected bore from the end

wall, its subsequent reflection from the back reef as well as any subsequent reflections

are almost correctly reproduced by the numerical model, verifying also the correct

numerical boundary treatment.
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Figure 4.24: Evolution of normalized surface profile and wave transformation over an

exposed reef for A/h = 0.3 and 1/12 slope (continued in Fig 4.25.
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Figure 4.25: Evolution of normalized surface profile and wave transformation over an

exposed reef for A/h = 0.3 and 1/12 slope.
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Figure 4.26: Time series of free surface elevation at wave gauges for the submerged reef

case.



Chapter 5

Finite Volume methods on

unstructured meshes

The general 2D FV approach requires partitioning a computational domain Ω ⊂ R2
into

a set of non overlapping control volumes and numerical implementation of an integral

conservation law over each control volume. In this Chapter two types of finite volume

schemes are considered for the NSWE. A Node Centered Finite Volume (NCFV) and a

Cell Centered Finite Volume (CCFV) approach. In the NCFV scheme solution values

are defined at the mesh nodes while for the CCFV schemes solutions are defined at

the centroid of the control volumes. A brief review of the grid terminology used here

is presented in Section 5.1. The two FV approaches for the 2D NSWE are described

in Section 5.2 along with the topography source term discretization in Section 5.3.

Sections 5.4-5.6 present the wet/dry treatment used in this work along with the friction

descritization and the time integration. Finally, a comparison of the two FV schemes is

presented using numerical tests with known analytical solutions.

5.1 Grid terminology

In this work, an initial conforming triangulation of Ω composes the so-called primal

mesh. The median-dual partition is used to generate non-overlapping control volumes

for the node-centered discretization. These control volumes cover the entire computa-

tional domain and compose a mesh that is dual to the primal mesh. For CCFV schemes

the primary triangular cells serve as control volumes. The locations of discrete solu-

tions are called data points while the cell boundaries are called faces and the term edge

115
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refers to a line connecting the neighboring data points.Each face is characterized by

two vectors, the edge vector, which connects the data points of the cells sharing the

face and the direct-area vector, which is normal to the face and has amplitude equal to

the face length.

The grids used in this work can be classified as regular or irregular ones. Regular

grids are derived by a smooth mapping from grids with a periodic node connectivity and

periodic cell distribution and include, but not limited to, grids derived from Cartesian

ones. Four types of grids are considered in the present work: (I) Equilateral triangu-

lar grids; (II) Regular triangular grids derived from regular quadrilateral grids where

squared cell are divided by the diagonals in four cells; (III) Regular triangular grids

derived from quadrilateral grids by the same diagonal splitting of each quadrangle; and

(IV) Randomly perturbed (distorted) grids. For the randomly perturbed grids generated

in the present work, grid irregularities are introduced by perturbing the grid nodes of

a type-I equilateral triangular grid, from their original positions by random shifts. For

the production of such perturbed grids, we define the random perturbation in each

dimension defined as 0.4r∆x, where r ∈ [−1/2, 1/2] is a random number and ∆x is the

local mesh size along the given dimension. These representative grid types, constructed

and used in this work, are shown in Fig. 5.1 and can be considered as typical of those

usually applied for the numerical solution of the NSWE. Our main interest is the accu-

racy and stability properties of FV schemes on general irregular (mostly unstructured)

grids with a minimum set of constraints. In particular, we do not require any grid

smoothness, neither on individual grids nor in the limit of grid refinement. The major

requirement, in order to perform convergence studies and fair comparison between the

two types of schemes, for a sequence of refined grids is to satisfy the consistency refine-

ment property [159, 54, 55]. This property requires the maximum distance across the

grid cells to decrease consistently with increase of the total number of grid data points,

N. In particular the maximum distance should tend to zero as N−1/2
. As such this

property enables meaningful assessment of the asymptotic order of convergence. For a

given computational domain, and with out loss of generality, with dimensions Lx×Ly in

the x− and y−direction respectively, we define a subdivision of Lx by Nx line segments,

namely ∆x = Lx/Nx and depending on the grid type the corresponding subdivision ∆y

of Ly can be easily determined. As such, we define the characteristic length (effective

mesh size) for each grid as hN =

√
Lx×Ly

N . For a consistently refined grid we half ∆x
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(a) Equilateral (Type-I) (b) Orthogonal (Type-II)

(c) Orthogonal (Type-III) (d) Distorted (Type-IV)

Figure 5.1: Representative grid types

hence defining ∆x′ = ∆x/2 and it follows that, for the new refined grid h′N ' hN/2 and

N′ ' 4N. If a continued inconsistent refinement is applied instead, the discretization

error convergence eventually degrates.

For a fair comparison between NCFV and CCFV schemes we need to derive equivalent

meshes based on the degrees of freedom i.e. grid data points N. As such, and following

from the above, equivalent grids can be easily defined as those having the same hN and

by keeping in mind that for a CCFV scheme N corresponds to the number of triangular

cells in a computational mesh while for a NCFV scheme to the mesh nodes (denoted

as N?
). In Table 1 typical grid values are presented for a computational domain with

Lx = Ly = 1.

In order to measure the irregularity introduced on a grid, i.e the deviation from a

type-I grid, we use the ratio between the circum-radius (R) and in-radius (r) of each

triangle that is A = R
r . For a type-(I) grid A = 2 for the internal triangles, for type-II and

type-III grids A = 1 +
√

2 while for a type-IV distorted grid A ≥ 2. In Fig. 2 a metrics
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Table 5.1: Typical grid values for characteristic length and degrees of freedom

Grid Type
Type-I & -IV Type-II Type-III

Nx N N? hN h?N N N? hN h?N N N? hN h?N
15 527 297 0.0436 0.0580 900 481 0.033 0.0455 450 256 0.0471 0.0625

30 2074 1102 0.0220 0.0301 3600 1861 0.0166 0.0231 1800 961 0.0235 0.0322

60 8349 4305 0.0109 0.0152 14400 7321 0.0083 0.0116 7200 3721 0.0117 0.0163

120 33258 16888 0.0055 0.0077 57600 29041 0.0041 0.0058 28800 14641 0.0058 0.0082

240 133237 67137 0.0027 0.0039 230400 115681 0.0020 0.0029 115200 58081 0.0029 0.0041

comparison for a consistently refined type-(IV) distorted grid with its equilateral and or-

thogonal counterparts is presented, in order to demonstrate the consistent production

of all distorted grids. The metrics of the equilateral type-I grid are not equal to 2 for the

100% of the triangles due to the existence of orthogonal triangles at the left and right

boundaries of the domain (see Fig. 5.1). From Fig. 5.2 it is evident that the distorted

(type-IV) grid is closer to the equilateral (type-I) grid than the orthogonal ones. However,

as it will become clearer later on, this metric is not adequate for the orthogonal types of

grids since other geometrical characteristics are also involved, which eventually affect

the performance of a numerical scheme on these types of grids.

Figure 5.2: Distribution of Grids Metrics

5.2 Finite Volume (FV) approaches to conservation laws

A FV scheme can be categorized, in the main, as of the cell-centered (CCFV) or the node-

centered (NCFV) (also referred as vertex-centered) type [9, 84, 75, 22, 119, 121]. A third

approach also exists, the so called FV of the edge type introduced in [17]. First we have

to define the general formalism of the finite volume methods. Following the notation of



5.2. FINITE VOLUME (FV) APPROACHES TO CONSERVATION LAWS 119

[121, 125, 51] we consider a conforming triangulation T hN of the computational domain

Ω to be a set of finitely many triangular subsets Tp ⊂ Ω, i = 1, 2, . . . ,N, such that the

following conditions are satisfied:

• Ω =
⋃

p∈{1,2,...,N} Tp,

• every Tp is closed,

• for two Tp,Tq ∈ T
hN with p , q their interiors satisfy T̊p ∩ T̊q = ∅,

• every one-dimensional face of any Tp ∈ T
hN is either a subset of ∂Ω or a face of

another Tq, q , p.

This triangulation T hN constitutes our primal grid. For the CCFV approach, the finite

control volumes used to satisfy the integral form of the equation are the mesh elements

themselves (the primal grid). For the NCFV approach,the control volumes are elements

of the mesh dual to the primal one. In a NCFV layout three possible definitions of the

control volumes exists: the centroid dual, created by connecting the centroids of the

triangular elements which are joined to the concerned node, the Dirichlet tessellation

which is formed by connecting the centers of the circume-circles of the same element

and finally the median dual obtained by linking the centroids of the elements and

midpoints of the edges around the node [9]. In the edge type control volumes the nodes

are placed on the edges of an original triangulation see [17, 41, 42] for details. In this

work, from the NCFV approaches the median dual approach will be implemented and

tested.

Integrating a system of conservation laws

Ut + ∇ · H(U) = L on Ω × [0, t] ⊂ R2 × R+, (5.1)

over a computational domain Ω we obtain the integral form of (5.1):

∂

∂t

"
Ω

UdΩ +

"
Ω

(
∇ · H

)
dΩ =

"
Ω

LdΩ. (5.2)

Application of the Gauss divergence theorem to the flux integral leads to

∂

∂t

"
Ω

UdΩ +

∮
Γ

(
H · ñ

)
dΓ =

"
Ω

LdΩ, (5.3)

where Γ is the boundary of the volume Ω and ñ = [̃nx, ñy]T
is the unit outward normal

vector. By denoting:

UP =
1
|ΩP|

"
Ω

UdΩ
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the average value of the conserved quantities over a volume ΩP ⊂ Ω at a given time,

equation (5.3) can be written for every cell as,

∂Up

∂t
= −

1
|ΩP|

∮
∂ΓP

(
Fñx + Gñy

)
dΓ +

1
|ΩP|

"
ΩP

LdΩ. (5.4)

5.2.1 Node-centered FV scheme on triangles

We first present NCFV approximations, following [125], where the control volumes are

elements of the mesh dual to the primal grid T hN . The boundary ∂CP of the control

volume CP around each internal node P is defined by connecting the barycenters of

the surrounding triangles (having P as a common vertex) with the mid-points of the

corresponding edges that meet at node P (see Fig. 5.3).

Figure 5.3: Control cell definitions, for an internal mesh node (left) and a boundary

node (right), for the NCFV scheme

We define ∂CPQ = ∂CP∩∂CQ and M as the midpoint of edge PQ. The outward normal

vector to ∂CPQ is nPQ = [nPQx, nPQy]T
, while ñPQ =

[̃
nPQx, ñPQy

]T
is the corresponding unit

vector. If nPQ,1 is normal to G1M (with a norm equal to the length of G1M), and nPQ,2 is

normal to MG2, then:

nPQ =

∫
∂CPQ

ñ dl = nPQ,1 + nPQ,2,

where dl is measured along ∂CPQ. The subcell TPQ is the union of triangles G1MP and

MG2P.

For a boundary mesh node P the definition of the control cell is described also in

Fig. 5.3. The outward normal vector to M1PM2 is nP = [nPx, nPy]T
, while ñP =

[̃
nPx, ñPy

]T

is the corresponding unit vector. If nP,1 is normal to M1P (with a norm equal to the

length of M1P), while nP,2 is normal to PM2 then:

nP =

∫
M1PM2

ñ dl = nP,1 + nP,2,
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where dl is measured along M1PM2. Further in the case of a boundary node P, ∂CPQ =

M2G2 and if nPQ,2 is normal to MG2 then:

nPQ =

∫
∂CPQ

ñ dl = nPQ,2,

where dl is measured along ∂CPQ.

If Γ is the domain’s boundary and KP := {Q ∈ N | ∂CP ∩ ∂CQ , 0}, the set of

neighboring nodes to P then, ∂CP for a boundary node is described as:

∂CP =
⋃

Q∈KP

∂CPQ + (∂CP ∩ Γ) .

Following from equation (5.4), and splitting the integral of the source term in a sum

of integrals over the subcells TPQ, Q ∈ KP, the integral form of the equation on the

constructed volume gives

∂UP

∂t
= −

1
|CP|

∑
Q∈KP

{∫
∂CPQ

(
Fñx + Gñy

)
dl

}
−

1
|CP|

∫
∂CP∩Γ

(
Fñx + Gñy

)
dl

+
1
|CP|

∑
Q∈KP

{"
TPQ

L dxdy
}
. (5.5)

We then introduce the flux vectors

ΦPQ =

∫
∂CPQ

(
Fñx + Gñy

)
dl

and

ΦP,out =

∫
∂CP∩Γ

(
Fñx + Gñy

)
dl.

Hence, equation (5.5) becomes

∂UP

∂t
= −

1
|CP|

∑
Q∈KP

ΦPQ −
1
|CP|
ΦP,out +

1
|CP|

∑
Q∈KP

{"
TPQ.

L dxdy
}
. (5.6)

For all edges of the unstructured mesh the flux vector ΦPQ should be computed

and added (with the proper sign) to the flux sum of the two adjacent cells CP and CQ

respectively. This flux vector is approximated assuming a uniform distribution of H

over ∂CPQ, equal to its value at the midpoint M of edge PQ, thus

ΦPQ =

∫
∂CPQ

(
Fñx + Gñy

)
dl ≈

(
Fñx + Gñy

)
M

∥∥∥nPQ

∥∥∥ =
(
FnPQx + GnPQy

)
M
.

A fundamental aspect of FV methods is the idea of substituting the true flux at the

control volume faces by a numerical flux function, a Lipschitz continuous function of
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two face values, UL
PQ and UR

PQ. The key ingredient is the choice of this numerical flux

function. In general this function is calculated as an exact or even better approximate

local solution of the Riemann problem posed at the face. As such, and in order to

evaluate the scalar product Z = H · ñ = FnPQx + GnPQy at M and the corresponding

flux vector, a one dimensional Riemann problem is assumed between the left (L) and

right (R) states existing at the two sides of point M, defined by the vectors UL
PQ and

UR
PQ respectively. In the present work, this Riemann problem is solved using the well

known approximate Riemann solver of Roe [139]. Considering a simplified Riemann

problem solved in an exact way, Roe’s solver is widely used. The solver is based on the

assumption that the Jacobian matrix (7) is constant and calculated using consistency

and conservation conditions. Thus,

ΦPQ =
1
2

{
Z

(
UL

PQ,nPQ

)
+ Z

(
UR

PQ,nPQ

) }
−

1
2

∣∣∣∣̃JPQ

∣∣∣∣ (UR
PQ − UL

PQ

)
, (5.7)

where J̃PQ is the Jacobian matrix, computed using the Roe-averaged values of the

primitive variables, W = [H, u, v]T, and

∣∣∣∣̃JPQ

∣∣∣∣ is defined as

∣∣∣∣̃JPQ

∣∣∣∣ =

(
P̃

∣∣∣∣Λ̃∣∣∣∣ P̃−1
)

PQ
,

with |Λ| being the diagonal matrix containing the absolute values of the eigenvalues of

J. The ˜ denotes that the matrices are computed using the Roe-averaged values of the

primitive variables as,

H̃ =
√

HL · HR, c̃ =

√
g

HL + HR

2
, ũ =

√
HLuL +

√
HRuR

√
HL +

√
HR

, ṽ =

√
HLvL +

√
HRvR

√
HL +

√
HR

.

Equation (5.7) can be alternatively written in the following form, which was used during

our implementation

ΦPQ = Z
(
UL

PQ,nPQ

)
+ J̃−PQ

(
UR

PQ − UL
PQ

)
, (5.8)

where J̃−PQ =
(
P̃Λ̃−P̃−1

)
PQ

, Λ̃− = diag

{̃
λ−i

}
, with λ̃−i = min

(̃
λi, 0

)
, i = 1, 2, 3 and

Z
(
UL

PQ, nPQ

)
= FLnPQx + GLnPQy =


H

(
u nPQx + v nPQy

)
Hu

(
u nPQx + v nPQy

)
+

1
2

gH2nPQx

Hv
(
u nPQx + v nPQy

)
+

1
2

gH2nPQy


L

.



5.2. FINITE VOLUME (FV) APPROACHES TO CONSERVATION LAWS 123

For a first order in space scheme the left and right states are approximated with their

corresponding values at data points P and Q respectively i.e. UL
PQ = UP and UR

PQ = UQ.

The initial Roe scheme may allow nonphysical numerical solutions (expansion shocks),

[102]. As such, and in order to ensure that the entropy condition is respected in the

numerical solution, an entropy correction may be added [81, 140, 52, 102, 171].

We remark here that, modified versions of Roe’s solver as well as other approximate

Riemann solvers, e.g. of the HLL-type, can be applied for the construction of the

numerical flux, with some of them being very successful in dealing with the solution of

the NSWE, we refer for example to [171, 44, 170, 39, 78, 71, 169, 167, 73] among others.

The choice of Roe’s solver in this work is justified by its wide popularity and applicability

and more importantly by the well established numerical treatment of the topography

source terms in order to satisfy the C-property, which can be easily incorporated in this

solver.

Second-order scheme for the node-centered numerical flux

In order to improve the spatial accuracy of the scheme more mesh cells should be

considered when computing the numerical flux on the cell faces. Most FV implementa-

tions on unstructured triangular grids calculate the left and right states at a cell face

assuming that the solution varies linearly in each cell, starting from the given initial

constant or average solution values of adjacent cells. As such, the second order scheme

implemented in the numerical solver is based on a MUSCL [173] reconstruction of the

primitive variables, W = [H, u, v]T
, which is exact for linear initial data, using a slope

limiter to control the total variation of the reconstructed field.

For the NCFV approach the MUSCL scheme is applied for each edge; the left and

right states of the primitive variables, W, at the midpoint M of edge PQ are then

approximated as

wL
i,PQ = wi,P +

1
2

rPQ · (∇wi)P , (5.9)

wR
i,PQ = wi,Q −

1
2

rPQ · (∇wi)Q , (5.10)

with wi the component of W and rPQ the vector connecting nodes P and Q. In order

to prevent oscillations from developing in the numerical solution strict monotonicity

in the reconstruction is enforced by using van Albada-van Leer edge-based nonlinear
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slope limiter [172, 75, 176, 5] resulting in reconstructed values

wL
i,PQ = wi,P +

1
2

LIM

(
(∇wi)

upw

P · rPQ, (∇wi)cent · rPQ

)
;

wR
i,PQ = wi,Q −

1
2

LIM

(
(∇wi)

upw

Q · rPQ, (∇wi)cent · rPQ

)
,

where

(∇wi)cent · rPQ = wi,Q − wi,P,

(∇wi)
upw

P = 2 (∇wi)P − (∇wi)cent,

(∇wi)
upw

Q = 2 (∇wi)Q − (∇wi)cent,

and

LIM (a, b) =


(
a2 + e

)
b +

(
b2 + e

)
a

a2 + b2 + 2e
if ab > 0,

0 if ab ≤ 0,
(5.11)

where 0 < e << 1, used to prevent division by zero (e = 10−16
in our implementation) and

prevents the activation of the limiter in smooth flow regions [176]. Slope limiters sup-

press the numerical oscillations in a non-linear manner by prohibiting the generation

of any new local extrema at the cell interface. As it was pointed out in [2, 3], edge-

based limiters may not preserve mean values in the cell, however, can greatly reduce

the number of times the limiter is invoked. Edge-based limiters chatter far less than

the volume-cell limiters and thus achieve better iterative convergence to steady-state.

In addition, the above limiter is differentiable for linearly varying flow variables. Other

limiters can be also applied [75, 155, 85, 22], however, and for consistency, all the

results presented later in this work were produced with the above described limiter.

The gradient (∇W)P has to be computed in each mesh node P by applying the Green-

Gauss theorem in the region ΩP, see Fig. 4, described by the union of all triangles

which share the vertex P, following [9, 8, 10]. (∇W)P is computed as integral averaged

by taking into account that the discrete solution of W varies linearly, which means that

the gradient is constant on ΩP (Green-Gauss linear reconstruction). As such,"
ΩP

∇widA =

∮
∂ΩP

wiñ dl,

which can be proven to result in

(∇wi)P =
1
|CP|

∑
Q∈KP

1
2

(
wi,P + wi,Q

)
nPQ. (5.12)
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Figure 5.4: Definition of the region where the gradient for the NCFV scheme is computed

The choice of the Green-Gauss (G-G) linear reconstruction in this work is motivated

mainly by the fact that the G-G reconstruction represents a linear function exactly for

NCVF discretizations on triangles [8]. Even though the gradient calculation is exact

whenever the numerical solution varies linearly over the support of the reconstruction,

the mesh nodes on the NCFV approach usually are not located at the gravity centers of

median dual control volumes and as such the cell averaging property for wL
i,PQ in (5.9) ,

i.e.

1
|Cp|

"
CP

wL
i,PQdxdy = wi,P,

and the local maximum principle are only approximately satisfied using the G-G tech-

nique [10]. Nevertheless, the above condition is not strictly necessary for the numerical

scheme to be conservative and the application of the limiter function yields a FV scheme

possessing a global extremum diminishing property [13]. Other reconstruction tech-

niques such as of least squares (both un-weighted and weighted) can be used but their

accuracy (especially for CCFV discretizations) may fail to provide suitable gradient es-

timates, and not only, for stretched curved meshes, [? ? ] and as such provide a

reduced order of accuracy.

In case that node P is a boundary one (see Fig. 5.3) the previous formula is modified

as follows:

(∇wi)P =
1
|CP|

∑
Q∈KP

1
2

(
wi,P + wi,Q

)
nPQ + wi,P

(
nP,1 + nP,2

) .
We note here that, the same reconstruction procedure is used to compute the gradi-
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ent for the bed elevation B(x, y), which is needed for the discretization of the bed slope

source term, as it will become clear in later sections.

Treatment of the Boundary Conditions for the NCFV scheme

In the NCFV approach the degrees of freedom (i.e. data points) are located directly

on the boundary; consequently this approach is well suited for Dirichlet boundary

conditions. However, a fundamental problem arises in the node-based discretization

when two adjacent faces (with a boundary node at their intersection) have different

type of boundary conditions [119]. Boundary conditions based on mesh faces rather

than mesh vertices should be better adopted and a weak formulation is used, where

the boundary condition is introduced into the residual through a modified boundary

flux, as shown in Fig. 5.3. In this way the boundary conditions are formulated here

in a similar way for both the node-centered and cell-centered discretizations (with the

advantage of not using ghost cells in the node-centered approach).

In order to obtain a correct numerical model for shallow flow problems an adequate

discretization procedure for the different types of boundary conditions is in need. The

idea of using the weak formulation to calculate the flux at the boundary face can be

used in the description of inflow, outflow, and wall boundary conditions. The sufficient

conditions imposed at the boundaries combined with equations obtained from char-

acteristic theory give the information needed for the calculation of the boundary flux.

According to the theory of characteristics [84, 171], the Riemann invariants of the 1D

NSWE are,

R± = u ± 2c

which are conserved along dx/dt = u ± c, respectively, when the contribution of the

source terms are neglected. R+
and R− represent the state to the left and right of a

boundary face, respectively. Assuming that the right side of the boundary is outside

the computational domain the inward R− condition can be replaced by the boundary

condition itself. For the 2D equations the conservation of the outward Riemann invari-

ant for the NCVF approach, and refereing for example at the face PM1 in Fig. 5.3, is

given as

uP · ñP,1 + 2
√

ghP = u? · ñP,1 + 2
√

gh?, (5.13)
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where P and ? denote the variables at the boundary node P and interface (boundary)

variables respectively. Equation (5.13) is combined with the boundary conditions for

a given flow regime to compute the normal flux at the boundary in a weak form. In

general, the normal flux using the interface variables is given as

ΦP,out = Z
(
U?,nP,1

)
=


H?

(
u? nP,1x + v? nP,1y

)
H?u?

(
u? nP,1x + v? nP,1y

)
+

1
2

g(H?)2nP,1x

H?v?
(
u? nP,1x + v?, nP,1y

)
+

1
2

g(H?)2nP,1y

 (5.14)

and according to equation (5.6) this flux is added to the control volume of node P.

According to the theory of characteristics, [84, 29, 36], and according to the flow

regime the following situations have to be considered:

(1) Subcritical inflow. In this case two characteristics "enter" the computational do-

main, so two conditions must be imposed. When the u? · ñ is imposed the water

depth H?
is calculated from equation (5.13) as

H? =
(
(uP · ñP,1 − u? · ñP,1)/(2

√
g) +

√
hP

)2
.

When the discharge q? = H?u? is imposed, H?
can be obtained by solving itera-

tively for c? =
√

gH?

2(c?)3 − (uP · ñP,1 + 2cP)(c?)2 + gq? · ñP,1 = 0.

(2) Subcritical outflow. In this case only one characteristic "enters" the domain, so

only one condition is required at the boundary. In the case the water depth h?

is imposed, and keeping in mind that the normal and tangential velocities to the

boundary face are respectively

uP · ñP,1 = uPñP,1x + vPñP,1y

and

uP · t̃P,1 = −uPñP,1y + vPñP,1x,

equation (5.13) gives for the boundary normal velocity

u? · ñ = uP · ñ + 2
√

g(
√

HP −
√

H?).
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Then the transverse velocity is passively advected [171], so u? · t̃P,1 = uP · t̃P,1.

Transforming back to the Cartesian system using

u? = (u? · ñP,1x)̃nP,1x − (u? · t̃P,1)̃nP,1y

and

v? = (u? · ñP,1)̃nP,1y + (u? · t̃P,1)̃nP,1x,

the normal flux (5.14) can be calculated.

(3) Supercritical inflow. All characteristics "enter" the domain, so all the variables

H?, u?, v? must be imposed and no numerical boundary conditions are needed.

(4) Supercritical outflow. All characteristics "exit" the domain, so none of the variables

must be imposed and

H? = HP, u? = uP.

(5) Wall boundary. For solid boundary walls u? · ñP,1 = 0 in (5.14) is imposed for slip

wall and u? · ñP,1 = u? · t̃P,1 = 0 for no-slip wall, with h? computed by using (5.13).

Remark 5 We point out that we always have to verify that the flow regime is subcritical

or not by checking if(
uP · ñP,1 − cP

)(
uP · ñP,1 + cP

)
≤ 0

is satisfied or not by the numerical values obtained and modify the boundary treatment

accordingly.

Remark 6 For periodic boundary conditions we assure that there is a one-to-one cor-

respondence between the nodes and edges of the two periodic boundaries. Then, the

values of the conserved variables at the "inlet" periodic boundary are set equal to the

corresponding ones at the "outlet" periodic boundary.

The above boundary treatment preserves the second order accuracy of the scheme

for smooth flows as the boundary node values, used for the computation of the bound-

ary fluxes, have been calculated with second order accuracy. The location of the degrees

of freedom directly on the boundary in the node-centered discretization scheme sim-

plifies the implementation of the various types of boundary conditions. Additionally,

boundary conditions based on mesh faces are compatible with the edge-based formu-

lation of the computational procedure.
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5.2.2 Cell-centered schemes on triangles

We now construct CCFV approximations on the primal T hN grid. In this approach, the

control volumes are identical with the grid cells Tp, p = 1, . . . ,N, and the flow variables

are located at the centroids of the triangular cells, see Fig. 5.5. The set of indices of

the neighboring triangles of Tp is denoted by

K(p) := {q ∈ N | Tp ∩ Tq is a face of Tp}.

Following from (6) the integration of the equations over the control volume formed by

the triangle Tp is given by

∂Up

∂t
= −

1
|Tp|

∑
q∈K(p)

{∫
∂Tq∩∂Tp

(
Fñqx + Gñqy

)
dl

}
+

1
|Tp|

"
Tp

LdΩ, (5.15)

with |Tp| being the area of the triangle and ñq = [̃nqx , ñqy]
T

the outer (with respect to Tp)

unit normal vector at the face ∂Tq ∩ ∂Tp.

Figure 5.5: Control cell definition, for an internal mesh node, for the CCFV scheme

We then again introduce the flux vectors at each cell face

Φq =

∫
∂Tq∩∂Tp

(
Fñqx + Gñqy

)
dl.

Hence, equation (5.15) becomes

∂Up

∂t
= −

1
|Tp|

∑
q∈K(p)

Φq +
1
|Tp|

"
Tp

LdΩ. (5.16)

With the usual choice of a one-point quadrature rule and assuming a uniform

distribution of H over each face, equal to its value at the midpoint M we have

Φq ≈
(
Fñqx + Gñqy

)
M
|∂Tq ∩ ∂Tp| =

(
Fñqx + Gñqy

)
M

∥∥∥nq

∥∥∥ =
(
Fnqx + Gnqy

)
M
.
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Again following from the NCFV approach the approximate Riemann solver of Roe is

utilized and as such

Φq = Z
(
UL

p,nq

)
+ J̃−LR

(
UR

q − UL
p

)
. (5.17)

A first order in space scheme again results if the left and right states are approximated

with their corresponding values at points p and q respectively i.e. UL
p = Up and UR

q = Uq.

Second-order scheme for the cell-centered numerical flux

For the CCFV approach the MUSCL reconstruction scheme is also applied. It is impor-

tant to note here that we wish to use the same edge-type slope limiter as for the NCFV

scheme in order to calculate the left and right states at a cell face. In order to do so two

different approaches were compared for calculating the extrapolated values, wL
and wR

.

Naive calculation of reconstructed values. Since we wish to apply the edge-based

modified van Albada limiter (in order to have the advantages stated earlier) we are

forced to compute reconstructed values at the intersection point D of face ∂Tq ∩ ∂Tp

and pq, see Fig. 5.6, as we have to compare with the reference value wi,q − wi,p. Thus,

Figure 5.6: Linear representation for the CCFV schemes

we start by computing

(wi,p)L
D = wi,p + rpD · ∇wi,p, (5.18)

(wi,q)R
D = wi,q − rDq · ∇wi,q, (5.19)
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where D in general does not coincide with M, r is the position vectors relative to the

centroid of the cells and ∇w the gradient operator, yet to be defined. It is easy to show

that such reconstruction is now conservative in the sense that

1
|Tp|

"
Tp

(wi,p)L
Ddxdy = wi,p. (5.20)

As it was pointed out in [85], when (5.20) holds the resulting numerical scheme will

satisfy a local maximum principle for an appropriate restriction on the time-step as

long as the reconstructed values within each cell do not lead to any new extrema at the

midpoints of the faces of that cell.

Then for the limited version, using (5.11), and since point D does not in general

coincide with the midpoint of pq the ratio of the corresponding lengths has to be used

resulting in,

(wi,p)L
D = wi,p +

||rpD||

||rpq||
LIM

(
(∇wi)

upw
p · rpq, (∇wi)cent · rpq

)
; (5.21)

(wi,q)R
D = wi,q −

||rDq||

||rpq||
LIM

(
(∇wi)

upw
q · rpq, (∇wi)cent · rpq

)
, (5.22)

where now the limiter arguments are given as

(∇wi)cent · rpq = wi,q − wi,p,

(∇wi)
upw
p = 2 (∇wi)p − (∇wi)cent,

(∇wi)
upw
q = 2 (∇wi)q − (∇wi)cent.

In an ideal unstructured grid, the variables are extrapolated to the center M of the cell

face and as such a one-point interpolation of the surface integral will be second order

accurate. If the variables are extrapolated to a different location, then the one-point

interpolation is expected to be only first-order accurate, especially for types of grids

where the distance between M and D is large [85].

To see this and refereing to Fig. 5.6, let us consider the case where the centroidal

values at p and q are equal. Then, the gradient is normal to pq. As a result the value

at M is different from the value at p and q, as well as to that at D, being an extremum

when compared to cell averages. If a limiting procedure is applied in the computation of

the reconstructed values at M (by comparing with the difference between the values at

p and q as in (29) and (30)) the limiter will clip the gradients at both p and q, regardless

of the limiter used [15]. This will result in a first order flux computation since now the
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values at M are equal to the cell average ones. With the correction proposed next the

problem described above is avoided.

Corrected calculation of reconstructed values. The above inconsistency, i.e. the

non-coincidence between M, where the numerical fluxes are enforced, and D, where

the reconstructed values are computed, should be corrected. The first order error term

introduced with the above reconstruction is a function of the distance between the

optimal location M and the extrapolated location D. Hence, a novel way of applying an

edge-based limiter to a CCFV scheme is presented in this work. First we compute the

limited reconstructed values (5.21) and (5.22) at point D and then a simple directional

correction is applied in order to calculate the reconstructed values at M (which will

then be used on the Riemann solver). As such, and refereing to Fig. 5.6, this correction

reads as

wL
i,p = (wi,p)L

D + rDM · (∇wi)p, (5.23)

wR
i,q = (wi,q)R

D + rDM · (∇wi)q. (5.24)

As the gradient used in this correction term is unlimited we expect that accurate gra-

dient computations would result in an accurate correction, in the sense of retaining

second order accuracy. In addition, and as it would be clear from the numerical tests,

the effect of this correction would be more pronounced in cases where the distance

between D and M is large.

Keeping in mind that we want to keep a common framework for both the NCFV and

the CCFV approach it remains to define appropriate gradient operators with which to

create a linear reconstruction of the solution within each cell.

Three element (compact stencil) gradient. Our first choice for calculating the gra-

dient operator is the one that makes use of the three neighboring triangles of Tp, i.e.

those in K(p), which is often called the von Neumann neighboring of Tp [9]. For this

choice, the gradient is computed in the region, Cc
p, defined by the centroids of the three

triangles, by taking into account that the gradient is constant (G-G linear reconstruc-

tion), see Fig. 5.7. As such,"
Cc

p

∇widA =

∮
∂Cc

p

wiñ dl,
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which results in

∇wi,p =
1
|Cc

p|

∑
q,r∈K(p)

r,q

1
2

(
wi,q + wi,r

)
nqr.

Figure 5.7: CCFV compact (top) and wide (bottom) stencils used for gradient recon-

struction

Extended element (wide stencil) gradient. In this case, and in order to increase the

support of the computational stencil, the gradient is computed in the region, Cw
p , which

is defined for every Tp by connecting the barycenters of the triangles Tl, l = 1, . . . ,m,

having a common vertex with Tp [9]. This set of indices is denoted by

K′(p) := {l ∈ N | Tp ∩ Tl is a vertex of Tp}.

The G-G linear reconstruction in this case results in

∇wi,p =
1
|Cw

p |

∑
l,r∈K′(p)

r,l

1
2

(
wi,l + wi,r

)
nlr,

where nlr is the outward unit normal vector to the edge connecting the barycenters of

triangles Tl and Tr.

It can be instructive to compare the number of points involved in gradient computa-

tions with the two different stencils for a grid consisting of equilateral triangles (type-I).

In this case the two methods use 3 and 12 points in their stencils respectively. Hav-

ing identified the support stencil and the number of points involved in computing the

gradient, it would be interesting to determine whether these gradients are centered at
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the centroid of the cell with O
(
(∆x)2, (∆y)2

)
. It should be stated that a gradient estimate

of O(∆x,∆y) is sufficient for second-order accuracy of the overall scheme. However, a

gradient which is properly centered at the centroid for a regular triangular grid turns

out to be advantageous in mimicking a Fromm-type [173] of construction with favorable

dispersion characteristics, at least for one-dimensional flows. It can be inferred that,

even for this limiting case of equilateral triangles, the x− and y− gradients computed

using three-point stencils are not properly centered. On the contrary, the 12−point

stencil yields a perfectly centered gradient. Although perfect centering of the x− and

y− components of the gradient, in the limiting case of equilateral triangles, is an at-

tribute for any multidimensional reconstruction procedure it is equally important to

ensure that the implementation of limiters can be readily carried out in the prescribed

framework.

Treatment of the Boundary Conditions for the CCFV scheme

To treat boundary conditions in CCFV approach we adopt the very popular approach of

ghost cells. The ghost cells are additional layers of grid cells outside the physical domain

(see Fig. 8). The cells are only virtual, although geometrical quantities are associated

with them. The geometrical quantities are usually taken from the corresponding cell

at the boundary. Here, in most cases, the barycenter of the ghost cell is the mirror of

the barycenter of the boundary cell relative to the boundary, see Fig. 5.8. Every other

quantity is computed as mentioned in the above sections. The purpose of the ghost

cells is to simplify the computation of the fluxes, gradients etc. along the boundaries.

The primitive variables in the ghost cells (H?, u?, v?) are obtained from the boundary

conditions.

Following from Section 4.1.2 the conservation of the outward Riemann invariant is

now given as

uL · ñ + 2
√

gHL = u? · ñ + 2
√

gH?, (5.25)

where L and ? denote the (reconstructed) variables at the left (inside) and interface

(boundary) variables respectively. Equation (5.25) is again combined with the boundary

conditions for a given flow regime to compute the normal flux at the boundary in a weak
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Figure 5.8: Ghost cells for CCFV schemes, general formulation (top) and for periodic

boundary conditions (bottom)

form. Following from that the normal flux using the interface variables is now given as

Φ? = Z
(
U?,n

)
=


H?

(
u? nx + v? ny

)
H?u?

(
u? nx + v? ny

)
+

1
2

g(H?)2nx

H?v?
(
u? nx + v?, ny

)
+

1
2

g(H?)2ny

 . (5.26)

Remark 7 For periodic boundary conditions we assure that there is a one-to-one corre-

spondence between the nodes and faces of the two periodic boundaries; ghost cells are

produced for periodic boundary conditions by duplicating and shifting the internal bound-

ary cells of the corresponding periodic boundary (Fig. 5.8). The conserved variables and

the gradients (since we cannot compute the gradients at the ghost cells) at each ghost

cell are set equal to the ones of the duplicated internal cell of the corresponding periodic

boundary.

At this point it is important to demonstrate the different characteristics of the grids

used, with respect to the distance between points D (intersection point of face ∂Tq∩∂Tp

and pq ) and M (the middle of a cell’s face, where the numerical fluxes are enforced)

for internal faces, as well as boundary ones, for the CCFV formulation. Typical be-

haviors for the four types of grids used in this work are exhibited in Fig. 5.9. For

the Equilateral (type-I) grids and at the face between two equilateral cells, points D

and M coincide. On the contrary, when the face belongs to cells incorporating at least

one non-equilateral cell, then D and M do not coincide, with the maximum deviation
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observed on the corresponding boundaries. For the Orthogonal (type-II) grids on a face

being the hypotenuse of the orthogonal triangle D and Mcoincide, while in any other

case a large distance between the two points exists. On the boundary faces, D and

M coincide. For the Orthogonal (type-III) grids, and for all the internal faces. D and

M coincide, while a large difference is present on the boundary faces (when periodic

boundary conditions are not used). For the Distorted (type-IV) grids there is always a

difference between the locations of points D and M.

Figure 5.9: Schematic representation for the location of D and M on the different grid

types

Moreover, in orthogonal (type-II) grids, the midpoint M of the common face between

two adjacent triangles may lie outside the control volume used to compute the gradient

with the compact stencil, see Fig. 5.10. This is not the case when the wide stencil

gradient is used. In addition, as can be seen in Fig. 5.10, there is a relatively large

distance between the barycenter of the control volume and that of the gradient volume.

These can constitute reasons for a reduced effectiveness of the proposed correction in

the reconstruction (equations (31) and (32)), when the compact gradient stencil is used,
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with the type-II orthogonal grids as it will be clear from the numerical tests later on.

Figure 5.10: Relative positions between M and the gradient volume for the compact

stencil

All the above geometric characteristics should be taken into account when a CCFV

scheme is applied in a particular grid type, as well as in the interpretation of the

results. The above geometric characteristics also justify the proposed correction to the

reconstruction of the extrapolated values, following from (31) and (32).

5.3 Topography source term discretizations

In order to satisfy the numerical balance between the topography source and the nu-

merical fluxes and as such to achieve the well-balanced property in our 2D unstruc-

tured schemes, we introduce the (topography source) flux vectors Ψ such that, for the

CCVF and NCVF scheme respectively as"
Tp

R (U) dxdy =
∑

q∈K(p)

Ψq and

"
CP

R (U) dxdy =
∑
Q∈KP

ΨPQ.

This discrete flux vector of the source term depends on the values of the variables on

the boundary of the computational cell for each approach, and on the corresponding

normal vector. As it has been shown in [18] and [17], an upwind discretization scheme

should be also used for the bed topography elevation source term to avoid non-physical

oscillations in the solution by satisfying the C−property in hydrostatic flow conditions

(flow at rest). In order to achieve this the source term integral is projected onto the
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eigenvectors of the flux Jacobian J̃ and in its linearized form can be written in the

following way:

Ψ = P̃P̃−1R̃.

In order to obtain the exact hydrostatic solution (and as such satisfy the exact C-

property) the topography source term should balance the corresponding non-zero flux

terms, so it must be linearized in the same way and evaluated in the same state (Roe-

averaged state) as the flux terms. The upwind discretization of the face source term

provides the following two terms (in-going and out-going contributions) that are added

to the corresponding computational cells respectively:

Ψ− = P̃I−P̃−1R̃, Ψ̃+ = P̃I+P̃−1R̃,

where I± = Λ̃±Λ̃−1
and R̃ is a proper discrete representation of the topography source.

With some algebraic manipulation we obtain:

Ψ− =
1
2

P̃
(
I −

∣∣∣∣Λ̃∣∣∣∣ Λ̃−1
)

P̃−1R̃ (5.27)

and similarly:

Ψ+ =
1
2

P̃
(
I +

∣∣∣∣Λ̃∣∣∣∣ Λ̃−1P̃−1R̃
)
. (5.28)

The face normal source term R̃ in the above equations is approximated in the following

manner, in order to balance the corresponding flux terms in hydrostatic conditions, for

the CCFV and NCVF scheme respectively

R̃|q =


0

−g
HL + HR

2

(
BR − BL

)
nqx

−g
HL + HR

2

(
BR − BL

)
nqy


q

and R̃|PQ =


0

−g
HL + HR

2

(
BR − BL

)
nPQx

−g
HL + HR

2

(
BR − BL

)
nPQy


PQ

.

For both FV approaches the numerical flux terms should now equal the source term

for hydrostatic conditions (flow at rest), i.e.,

Z
(
UL,n

)
+

(
P̃Λ̃−P̃−1

) (
UR − UL

)
=

1
2

P̃
(
I −

∣∣∣∣Λ̃∣∣∣∣ Λ̃−1
)

P̃−1R̃, (5.29)

which should give at a cell face: u = v = 0, BR − BL = −
(
HR − HL

)
. While equation

(5.29) holds for first order scheme, i.e. if the (L) and (R) values are not reconstructed,

this is not the case for the second order MUSCL discretization. As such, and following

[87] for the CCVF approach and [125] (where an analytical proof can also be found)
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for the NCFV approach, a term, Ψ̃, should be added to the source term discretization

(righthand side of (5.29)) for maintaining the correct balance. For the CCVF and NCFV

schemes the terms to be added respectively read

Ψ̃ |q=


0

−g
HL + Hp

2

(
BL − Bp

)
nqx

−g
HL + Hp

2

(
BL − Bp

)
nqy

 and Ψ̃|PQ =


0

−g
HL + HP

2

(
BL − BP

)
nPQx

−g
HL + HP

2

(
BL − BP

)
nPQy

 .

The above terms vanish for the first order schemes as BL = Bp ( and BL = BP) and for

hydrostatic conditions we have: BL − Bp = −
(
HL − Hp

)
(and BL − BP = −

(
HL − HP

)
).

The above added high-order corrections of the topography source terms gives an

exact balance between the numerical flux and slope source terms for the flow at rest

problem resulting in a fully second-order scheme. We note here that, the above treat-

ment correctly enforces the well-balance property for the steady solution in (13) when

B(x, y) < H0 ∀(x, y) ∈ Ω, i.e. totally wetted computational domain.

5.4 Wet-dry front treatment and mass conservation

As it was described in one dimension (see section 3.2.3) , further modifications are

needed in the boundary defined by a wet dry front in order to accurately model the

transitions between wet and dry areas while at the same time maintain higher order

spatial accuracy. As in one dimension we have to deal with the following issues:

Dry cell identification As described before, in order to identify dry cells we have

to define a tolerance parameter εwd. If the water depth in a computational cell is

below that value the cell is cosidered dry and we set W = [0, 0, 0]T. The value of εwd is

computed according to the dual grid geometrical characteristics. This value must be

small compered to the mesh size and has the desirable property of approaching zero as

hN approaches zero in order to converge to an exact solution. Following [136] a robust

definition of εwd is

εwd =

(
hN

Lre f

)2

(5.30)
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where hN is the characteristic mesh length and Lre f
is a reference geometrical dimension

of the spatial domain calculated as:

Lre f = max
P,Q
||xP − xQ||inf ,

where P and Q are the mesh nodes with coordinates xP and xQ respectively.

Consistent depth reconstruction in dry regions In the presence of wet/dry fronts

over topography there should be a consistent computation between ∇H and ∇b for

achieving proper second order accuracy. It is obvious that, for a wet/wet steady case in

each computational cell ∇H = −∇b. Following from that, in the MUSCL reconstruction

for hydrostatic conditions we must have inside (at faces) of each computational P−cell

that

bL − bP = −(HL − HP)⇒ (∇b)P = −(∇H)P (5.31)

and similar for an adjacent Q−cell (∇b)Q = −(∇H)Q. In cells with wet/dry interfaces

it is obvious that this is not the case anymore when dry cells are involved in the ∇H

calculation since more cells (the dry ones) actually contribute to the reconstruction

of ∇b but not in that of ∇H. As such, a simple improvement was proposed in [51]

to maintain formally full second order accuracy in the case of wet/dry bed. If in the

gradient calculation of a wet cell a dry cell is involved we correct the HL
and/or HR

reconstructed face values by forcing

HL = HP − (bL − bP) and/or HR = HQ − (bR − bQ)

By doing so, compatible reconstructed vales for H are computed and the balance in

equation (5.31) is achieved.

Conservation of the flow at rest with dry regions The redefinition of bed elevation

(in the calculation of S̃bPQ) in order to obtain an exact balance at the front between the

bed slope and the hydrostatic terms for steady conditions is (see section 3.2.3) :

∆b =


−(HR − HL), if HL > εwd and HR ≤ εwd and HR < (bR − bL),

(bL − bR), otherwise.



5.5. FRICTION TERM DISCRETIZATION 141

Flow in motion over adverse slopes In two dimensions, at the faces having a wet/dry

front we impose, additional to the above bed redefinition, the following temporary con-

dition for the computation of the corresponding numerical fluxes and source terms,

following [38, 50, 125],

if
[
HL > εwd and HR ≤ εwd and HL < (bR − bL)

]
then uL = uR = vL = vR = 0.

The numerical treatment is similar if R is the wet side and L is identified as dry.

Depth positivity and mass conservation See section 3.2.3.

5.5 Friction term discretization

According to [33, 123, 122, 145] a pointwise explicit treatment of the friction term pro-

duces numerical oscillations when the roughness coefficient is high. To handle properly

the friction term we follow the proposed technique by [33, 145, 122]. Starting from a

separate implicit formulation for the friction terms one can have for the momentum

variables at the ith cell

(Hu)n+1
i = (Hu)∗i − (gHiS f

x )n+1
i ∆tn

(5.32)

(Hv)n+1
i = (Hv)∗i − (gHiS f

y )n+1
i ∆tn

(5.33)

where the values signalled with ∗ are computed, without taking into account the friction

forces, using any FV scheme that has been described to the previous sections. Setting

R f =
n2

m||u||

H
4
3

we can write for the first equation (5.32) (and similar for equation (5.33)):

(Hu)n+1
i = (Hu)∗i − (gHiuiR f )n+1

i ∆tn

= (Hu)∗i − (gHiui)n+1
i

[
(1 − θ)(R f )n+1

i + θ(R f )n
i

]
∆tn

By separating implicit and explicit parts we get

(Hu)n+1
i

[
1 + (1 − θ)g(R f )n+1

i ∆tn
]

= (Hu)∗i − g(Hu)n
i θ(R f )n

i ∆tn
(5.34)
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and considering (R f )n+1 ' (R f )∗ we can write equation (5.34) as

(Hu)n+1
i =

(Hu)∗i − θg(Hu)n
i (R f )n

i ∆tn

1 + (1 − θ)g(R f )∗i ∆tn .

In a similar way we can obtain

(Hv)n+1
i =

(Hv)∗i − θg(Hv)n
i (R f )n

i ∆tn

1 + (1 − θ)g(R f )∗i ∆tn .

The parameter θ is the implicitness parameter. When θ = 0 the friction source term

is computed totally implicit and when θ = 1 is computed in totally explicit manner.

The above treatment can be incorporated in the Runge-Kutta time-stepping procedure

in a straight forward manner. According to [123] and [122] the explicit discretization

of the friction terms interferes with the CFL stability condition and an additional limit

on the time step size for both first- and second- order approaches is required using

a grid of a given mesh size otherwise stability can only be ensured by refining the

grid. Both possibilities offer stability at a high computational cost especially near

wet/dry fronts which are characterized by small values of water depth and friction term

domination over the bed slope terms. On the other hand, the implicit discretization of

the friction terms is not time dependent and as such it does not require further time

step restrictions other than the CFL condition. However an implicit treatment has an

effect on the order of convergence [51].

5.6 Time integration

In the previous sections we considered the spatial discretization procedures within the

FV framework. In order to obtain a fully discrete scheme, we must discretize the time

evolution operator. In the present work an explicit modified four stage Runge-Kutta (RK)

scheme, due to its enhanced stability region, [98, 99], was implemented for integration

over time for both the NCFV and CCVF approach. By denoting L(U) the discrete spatial

operator the discretized form of equations (14) and (23) can be written as:

∂Ui

∂t
= L(U). (5.35)
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The RK scheme is described as follows:

U(0)
i = Un

i ;

U(k)
i = U(0)

i + ak ∆tnL
(
U(k−1)

i

)
, for k = 1, ..., 4;

Un+1
i = U(4)

i ,

where ∆tn = tn+1 − tn
is the time step. The optimal values (in the sense of the CFL

condition) for ak are the following, [98, 99]:

a1 = 0.11, a2 = 0.26, a3 = 0.5 and a4 = 1.0.

As it is stated in [98, 99], when we use the parameter a3 = 0.5, it can be shown

that the corresponding RK method is second-order accurate in time in both linear and

non-linear cases. Also in the same references it was noted that, although the standard

four stage RK scheme (which is fourth order accurate in time in the linear case) is

well adapted to centered approximations, the best four stage RK scheme for upwind

approximations, which allows large time steps, is only second order accurate in time.

The above scheme reduces to Euler integration for k = 1 and a1 = 1.

If RP is the minimum distance from vertex P to ∂CP, then the global time step ∆tn
is

estimated for the NCFV scheme by the CFL stability condition as

∆tn = CFL ·min
P

 RP(√
u2 + v2 + c

)n

P

 . (5.36)

Similar for the CCVF approach, if Rp is the minimum distance from the barycenter

to the faces of the triangle Tp then ∆tn
is estimated by the CFL stability condition as

∆tn = CFL ·min
p

 Rp(√
u2 + v2 + c

)n

p

 . (5.37)

5.7 Comparison of CCFV and NCFV discretization for

the NSW equations

In the work of Delis et al.[51] an extended comparison of a cell centered and a node

centered unstructured finite volume discretization for the NSW equations is presented

and discussed. In this section we will talk about it briefly in order to provide justification

for our choice of approach, namely the NCFV one for the construction of the numerical
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scheme for the extended 2D BT equations. Table ?? presents a summary of the schemes

presented previously for the NSCFV and the different CCFV formulations for the NSWE.

Three numerical tests are presented here in order to explore the performance of the

Table 5.2: Summary and description of the Finite Volume schemes

Scheme Description

NCFV Node-Centered FV Scheme

CCFVc1 Cell-Centered FV compact (naive) reconstruction stencil

CCFVc2 Cell-Centered FV compact reconstruction stencil (corrected)

CCFVw1 Cell-Centered FV wide (naive) reconstruction stencil

CCFVw2 Cell-Centered FV wide reconstruction stencil (corrected)

schemes. Additional numerical results can be found in [51].Convergence studies for the

numerical convergence rates, computed for problems with known analytical solution,for

both formulations, are presented. For unstructured meshes, and in order to measure

solution error, the volume weighted norm LK of the error has to be used [? ], defined

as

||Ui − Uex
i ||LK(Ω) =

(∑N
i=1 |Ωi|(Ui − Uex

i )K∑N
i=1 |Ωi|

) 1
K

,

where Uex
i is the exact solution and Ui the numerical one, defined at node i for the

NCFV scheme and at cell center of Ti for the CCFV scheme, of the conserved variables

(H, Hu and Hv), while Ωi is the corresponding volume and N is the number of the

corresponding data points.

For steady state solutions (as well as for time dependent solutions converging to

steady states) we consider the solution as being convergent when the norm of the water

height (as well as for the u and v) drops to machine accuracy (≈ 10−15
), i.e.

||τ(h)||L1 ≤ 10−15. (5.38)

The CFL value used in all the test cases that follow was set to 0.9 unless otherwise

stated.

5.7.1 The traveling vortex solution

To verify the numerical order of accuracy (in terms of the flux discretization and limiting

procedures) for both FV formulations and suppress the influence of other modifications

introduced here for the topography, wet/dry front and boundary treatment, we present
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a test case of a traveling vortex. Following from [137, 136] on a computational domain

Ω = [0, 1] × [0, 1] we simulate a vortex with center starting at (xc, yc) = (0.5, 0.5) and

moving from left to right with velocity u = [6, 0]T
. Periodic boundary conditions are

applied to the left and right and weak far field conditions at the top and bottom. The

initial solution is given by

H(rc, 0) = 10 +


1
g

(
1
5ω

)2(
φ(ωrc) − φ(π)

)
if ωrc ≤ π

0 else

with

φ(z) = 2 cos(z) + 2z sin(z) +
1
8

cos(2z) +
z
4

sin(2z) +
3
4

z2

and velocity

u0 = u +


15

(
1 + cos(ωrc)

)(
yc − y, x − xc

)T
ifωrc ≤ π

0 else

,

where rc denotes the distance from the vortex core, ω = 4π the angular wave frequency

and g = 1 the gravitational constant for this case.

In Fig. 5.11 the results of the NCFV scheme using the type-IV distorted grid (with

H?
N = 0.0039m) are presented, in terms of contour plots of the solution for depth H

up to time t = 1/6, when the vortex is back to its initial position. Next we report grid

convergence studies on all different grids, having been consistently refined, and for the

five schemes considered in this work (see Table 3). In Fig. 5.12 convergence results

in the L2 norm for the NCFV scheme are presented. As it can be seen also in Table 4

in the Appendix, convergence results for H exhibit a higher than two asymptotic rate.

The results show that we achieve the expected second order of accuracy in both the L1

and L2 norm, and more importantly an almost identical behavior for all grid types is

exhibited for all conserved variables.

In Fig. 5.13 the corresponding convergence results for the CCFVc1 scheme are

presented. A completely different behavior (compared to that of the NCFV scheme) is

exhibited since second order accuracy was only achieved for equilateral (type-I) and

orthogonal (type-III) grids. For the other two types of grids the asymptotic rate of

convergence was reduced to one for the orthogonal (type-II) grid and slightly higher than

one for the distorted (type-IV) grid. This behavior was expected as in type-I and type-III

grids point D coincides with point M (see Fig. 5.9), and as such there is a consistency
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Figure 5.11: Traveling vortex: Contour plots for h (left) and at y = 0 (right), t = 1/6

Figure 5.12: Traveling vortex: Convergence results for the NCFV scheme at t = 1/6
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between the evaluation of the reconstructed values and the flux computation in each

face of the triangular volumes. Contrary to this, for type-II and type-IV grids, there

is a difference between points D and M, larger and constant for most faces in type-II

girds, smaller and variable between different cells in type-IV, resulting in the different

convergence behaviors obtained.

Figure 5.13: Traveling vortex: Convergence results for the CCFVc1 scheme at t = 1/6

Figure 5.14: Traveling vortex: Convergence results for the CCFVc2 scheme at t = 1/6

Next and in Fig. 5.14, the corresponding convergence results for the CCFVc2 scheme

are presented. The application of the proposed correction term for the compact gradient

computation scheme managed to considerably improve the convergence results for the

distorted (type-IV) grids, while only slightly improvements are evident for orthogonal

(type-II) grids. The reason for that lies in the larger distance between D and M for the

type-II grids (see Fig. 5.9) and is also attributed to the fact that point M lies outside

the gradient volume (Fig. 5.10).

In Fig. 5.15 the corresponding convergence results for the CCFVw1 scheme are pre-

sented which are shown to exhibit an almost identical behavior with the results of the
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Figure 5.15: Traveling vortex: Convergence results for the CCFVw1 scheme at t = 1/6

Figure 5.16: Traveling vortex: Convergence results for the CCFVw2 scheme at t = 1/6
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CCFVc1 scheme (Fig. 5.13). The application of the proposed correction for this scheme

(with the wide stencil gradient computation) resulted in a dramatic improvement of the

results, as it can be observed in Fig. 5.16 for the CCFVw2 scheme results. Now we

achieve the expected second order of accuracy in both norms, and more importantly al-

most identical behavior for all grid types, similar to the results obtained from the NCFV

scheme. In addition the accuracy of the numerical solution has been greatly improved

in all types of grids compared to that for the CCFVw1 scheme. This shows that the

proposed correction for the calculation of the reconstructed values is more effectively

combined with the wide stencil of gradient calculation, since this term (in Eq. (5.23)

and (5.24)) is unlimited.

Finally, comparative convergence results for h (in the L1 norm) are presented in

Fig. 5.17, for all schemes, and for each grid used. For type-I and type-III grids, the

convergence rates are almost identical, as expected, regardless of the scheme used,

since for the CCFV schemes locations D and M now coincide. It is worth noting that

the CCFV schemes provide better numerical accuracy than the NCFV one on equiva-

lent grids for this test case. For the other two grid types the results summarize the

observations made above, concerning the effects of the proposed correction for the face

reconstructed values for the CCFV formulation.

5.7.2 Thacker’s planar solution

Few analytical solutions are available for the 2D NSWE with free moving boundary,

involving run-up and run-down phenomena (wetting-drying-wetting). The 2D analytical

solution of the NSWE compared here is due to Thacker [158]. Thacker’s solutions have

been used by a number of researchers in order to evaluate their numerical models, we

refer for example in [86, 108, 70, 40, 118, 35, 136, 6, 31, 117, 137, 125]. The test

cases chosen here are considered in some of the above mentioned references as being

perhaps the most difficult for a numerical model. One major difficulty is the correct

determination of the wet region with acceptable accuracy. The motion is oscillatory

with a small enough amplitude limit, imposed by the long wave assumption, and since

bottom frictions are not included in the model there is no energy dissipation. The flow

takes place inside a parabola of revolution, defining as such the bottom topography, on
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Figure 5.17: Traveling vortex: Convergence comparisons for h in all grids for all schemes
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a computational Ω = [−2, 2] × [−2, 2] domain as

B(x, y) = B(rc) = 1 − h0

(
1 −

r2

a2

)
,

where r =
√

x2 + y2, h0 is the water depth at the center point for a zero elevation and a

is the distance from the center point to the zero elevation of the shoreline.

In this case elevation profile leads to an exact solution of the form

h(x, y, t) = 1 +
ηh0

a2

(
2x cos(ωt) + 2y sin(ωt) − η

)
,

u =
[
−ηω sin(ωt), ηω cos(ωt)

]T

where ω =
√

2gh0/a. The free parameters chosen here are a = 1, η = 0.5m and h0 = 0.1m,

while the exact solution evaluated at t = 0 is used as initial condition for the free surface

elevation and velocity field. The solution is periodic with a period T = 2π/ω. The exact

solution, though relatively simple, represents a severe test case for most 2D methods

[86, 40, 117] and it is not driven by external boundary conditions.

First and in Fig. 5.18, a 3D view of the numerical solution along with a contour

comparison with the exact solution for h at t = 4T is presented. These results have

been obtained using the CCFVw2 scheme on a distorted type-IV grid with hN = 0.0219m.

Qualitative very similar results were obtained for the other two schemes and grids used.

No visible distortions can be observed in the numerical solution which remains almost

perfectly circular during the complete 4 periods and almost indistinguishable from the

exact solution.

Next, in Fig. 5.19 we compare the numerical results and the analytical solutions at

t = 4T for the shoreline, the velocity field and the velocities along y = 0, for the three

schemes on the same distorted grid. The moving shoreline is accurately computed with

no signs of spurious oscillations and the planar form of the free surface maintained

throughout the computation. As it is mentioned in several works, see for example

[86, 70, 40, 117], to obtain accurate approximations of the velocity field is a much

more difficult issue. As it can be observed, for the u velocity, only small discrepancies

are present, close to the wet/dry front interface and where the water depth is vanishing.

Despite this difficulty, the position of the wet/dry fronts have been accurately captured

and more importantly this perturbation is not amplified for long time simulations and

doesn’t seem to disturb the accuracy of the moving shoreline predictions. The results
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Figure 5.18: Thacker’s Planar: Numerical results for the CCFVw2 scheme using the

distorted type-IV grid for time t = 4T , 3D view (left) and contour plots for h between the

analytical (dashed line) and numerical solution

presented appear more accurate than those in [86, 117] and compare in favor with

those presented in [70? ] where a similar grid resolution was applied.

To study the effect of the grid resolution on the scheme’s performance we present

the same results obtained with the finer distorted grid in Fig. 5.20. The improvement in

accuracy for the shoreline and velocities is evident. More importantly, this improvement

is more pronounced for the NCFV scheme compared to the CCFV ones, where the

discrepancies are of the same magnitude to the coarse mesh. We note here that, the

results for the NCFV scheme were obtained with half the degrees of freedom compared

to the CCFV ones, for both grid resolutions.

In Fig. 5.21 comparative convergence results for h (in the L1 norm) for all schemes

and for grid type-IV, are presented. All three schemes exhibit very similar asymptotic

behavior for this test problem with the two CCFV schemes show almost identical be-

havior and achieve a slightly better accuracy compared to the NCFV one. For a more

extensive comparison, including convergence results, between all schemes and for each

grid used, please refer to [51].

5.7.3 A 2D potential solution with topography

To test convergence in the presence of the topography source term and as such the well-

balanced discretization as well as the proposed boundary treatment, we consider here a
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Figure 5.19: Thacker’s Planar: Shoreline and velocities at t = 4T on the type-IV grid

(h?N = 0.0308) for the NCVF scheme (top), the CCFVc2 (middle) and the CCFVw2 scheme

(bottom) with hN = 0.0219
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Figure 5.20: Thacker’s Planar: Shoreline and velocities at t = 4T on the type-IV grid

(h?N = 0.0154) for the NCVF scheme (top), the CCFVc2 (middle) and the CCFVw2 scheme

(bottom) with hN = 0.0110
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Figure 5.21: Thacker’s Planar: Convergence comparisons for h in grid type-IV.

particular member of the family of 2D exact solutions presented in [135] which satisfies

the frictionless steady state equations (10) and (11). On a domain Ω = [−1, 1] × [−1, 1]

we consider a solution for the water depth in which the velocity field is divergence-free,

and obtained from the harmonic function ψ = xy as

u =
[∂ψ
∂y
,−
∂ψ

∂x

]T
.

The water depth is taken as H = ψ + α, while the bed height is computed as

B(x, y) = g−1
(
30 −

||∇ψ||2

2

)
− ψ − α.

We take α = 1.5 and the gravity acceleration g = 10 for this case. In addition, the

bottom and top boundaries are sub-critical inlets, while the left and right boundaries

are sub-critical outlets since the Froude number never exceeds one in the domain.

Starting the computations from the exact solution we march towards steady-state.

Fig. 5.22 presents the iterative convergence histories for the water height residual

obtained with the NCFV and the CCFVw2 schemes and on the Distorted grid. Sim-

ilar results were obtained for u and v. The solution converged to machine accuracy

for all different refinements. The NCFV shows a fastest convergence (less iterations)

in each refinement, compered to the CCFVw2 scheme. Additionally, looking on the

convergence behavior, the largest differences between the different type of grids in the

CCFVw2 scheme, is due to the geometrical properties of the boundary cells and the

application of the compact gradient stencil on them. For the NCVF formulation the re-

sults verify the second order accuracy of the scheme including the topography source

term discretization and boundary conditions implementation.
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Figure 5.22: 2D potential solution: h residual convergence for the NCFV and the

CCFVw2 schemes

Figure 5.23: 2D potential solution: Convergence results for the NCFV and the CCFVw2

schemes
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5.7.4 Discussion

In Section 5.7 an extended comparison of the CCFV and NCFV discretizations for the

NSWE was presented. More precisely, a NCFV of the median dual type and two CCFV

formulations have been considered in order to compare them and study their rela-

tive performance, robustness and effectiveness, within a controlled environment for

a fair and extensive comparison. Both FV schemes used the same approaches for

the well-balancing and the accurate treatment of wet/dry fronts,customized in each

formulation. From the above comparison some major conclusions can be drawn.

1. In terms of the convergence behavior to second order, the NCFV scheme exhibited

consistently identical behavior on all grid types, for all conserved variables and in

different norms used, for all the test problems considered. This is probably due to

the way that the control volume (in the dual mesh) is constructed, which is more

uniform for the different types of grids than those in the CCFV approach (where

the control volumes are the primal mesh triangles themselves). To this end, the

NCFV scheme is not affected by the grid geometry and as such any grid type can

be adequate for implementing and studying such a scheme.

2. The edge based limiting procedure which was implemented in the MUSCL recon-

struction was proved inadequate for the CCFV schemes since the center of the

face were numerical fluxes are evaluated does not coincide in general with the lo-

cation to which reconstructed values are computed, leading to an order reduction.

On the other side it was proved very effective for the NCFV formulation.

3. The proposed correction when applied to CCFV schemes greatly improves the

convergence behavior and the order reduction. When applied to the wider stencil

(CCFVw2) an almost identical behavior with the NCFV scheme is achieved, but

we must always keep in mind the extra computational cost introduced.

4. NCFV has the advantage of not using ghost cells for the boundary treatment in

addition to CCFV formulations where the effect of the grid’s geometrical charac-

teristics at the boundaries can lead to an order reduction.

5. Wet/dry treatment is accurate for both FV approaches, accurately predicted mov-

ing shorelines and remained stable and non-oscillatory for long simulation times

on all grid types.
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For the above reasons the NCFV scheme for the NSW equations has been chosen in

order to be extended as to include dispresion characteristics for deeper water simula-

tions.



Chapter 6

An unstructured FV scheme for BT

equations

Until now and in 2D we have assumed that the dispersion terms of the equations

of Nwogu (2.48), (2.89) and MS (2.48), (2.49) were zero. In this case both equations

degenerate to the NSWE which described and discretized in the previous sections of

this chapter. After the discretization and the comparison of the two one dimensional

Boussinesq-type equations and the NSWE in Chapter 3, it was revealed that although

the NSWE can be sufficient in some cases to predict maximum runup values and the

general characteristics of propagating waves, the two BT numerical models provided

considerable more accurate results for highly dispersive waves over increasing water

depths, with Nwogu’s model having a precedence over the MS one. For that reason

Nwogu’s model has been chosen in order to be discretized in two dimensions under

an unstructured FV framework and a novel approach is presented in Sections 6.1-6.6.

A new methodology is presented in Section 6.7 to handle wave breaking over complex

bathymetries using the proposed model of Nwogu.

Following the same procedure as in Section 5.2, we integrate the BT equations of

Nwogu (2.89), written in a conservation like form, over the computational domain. After

integration of the equations over each computational cell, CP, and application of Gauss

159
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divergence theorem to the flux integral the equations reads as:

∂UP

∂t
= −

1
|CP|

∮
∂ΓP

(
Fñx + Gñy

)
dΓ +

1
|CP|

"
CP

LdΩ⇒

∂UP

∂t
= −

1
|CP|

∮
∂ΓP

(
Fñx + Gñy

)
dΓ +

1
|CP|

"
CP

Sbdxdy +
1
|CP|

"
CP

Sfdxdy

+
1
|CP|

"
CP

Sddxdy. (6.1)

In the above equation, the advection terms (the first integral at the right handside)

and the source terms due to the topography Sb are discretized in the same way as

the one described in Chapter 5. The approximate Riemann solver of Roe [139] is

used for the advective fluxes (see Section 5.2.1) along with a well balanced topography

source term upwinding (see Section 5.3) and accurate numerical treatment of wet/dry

fronts. Higher-order spatial accuracy is achieved trough a MUSCL-type reconstruction

technique.

6.1 Higher-order reconstruction

In Section 5.2 a second-order scheme for the NCFV formulation was described. The

MUSCL methodology of van Leer [173] can be extended to node-centered unstructured

formulations in order to reach higher order spatial accuracy. As described in Section

5.2, this extension relies on the evaluation of the fluxes with extrapolated U?R
PQ and U?L

PQ

at the midpoint M of the edge PQ. So for each component wi of the primitive variables

W = [H, u, v] (5.10) and (5.9) hold where the extrapolation gradients (∇w)L,R
are

obtained using a combination of centered and upwind gradients in order to increase

the accuracy of the basic MUSCL reconstruction. Following [7, 51, 149] and using

(5.11) we define

(∇wi)u
P = 2(∇wi)P − (∇wi)cent, (6.2)

(∇wi)u
Q = 2(∇wi)Q − (∇wi)cent, (6.3)

as the upwind gradients at nodes P and Q respectively, with (∇wi)P and (∇wi)Q the

average of the gradients on the computational cell CP and CQ. Then the extrapolation
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gradients (∇w)L,R
can be obtained [7] as

(∇wi)L = (1 − β)(∇wi)cent · rPQ + β(∇wi)u
P · rPQ, (6.4)

(∇wi)R = (1 − β)(∇wi)cent · rPQ + β(∇wi)u
Q · rPQ, (6.5)

which for β = 1/3 leads to a third-order accurate reconstruction for linear problems.

Nevertheless, this reconstruction reduces the numerical dissipation introduced in the

nonlinear flux computations and, as it would become clear from the numerical results,

produces accurate solutions for smooth flow conditions. However, in cases where the

contribution of the dispersive terms is negligible e.g. when only NSW part of the model

has to be solved, the reconstruction presented above can create extrema particularly

in the presence of shocks in the solution since monotonicity is not preserved. In this

situations and to reduce the oscillations in the solution, a slope limiting procedure has

to be used. To prevent such oscillations from developing in the numerical solution

strict monotonicity in the reconstruction is enforced by using Van Albada-Van Leer

edge-based nonlinear slope limiter [7, 51, 172, 176, 75] resulting in reconstructed

values:

wL
i,PQ = wi,P +

1
2

Φ
(
(∇wi)u

P · rPQ, (∇wi)cent · rPQ
)

(∇wi)L · rPQ, (6.6)

wR
i,PQ = wi,Q +

1
2

Φ
(
(∇wi)u

Q · rPQ, (∇wi)cent · rPQ

)
(∇wi)R · rPQ, (6.7)

where the Φ is the nonlinear limiter function defined as

Φ(a, b) =
ab + |ab| + e
a2 + b2 + e

(6.8)

where 0 < e << 1, used to prevent divizion by zero (e = 10−16
in our implementation)

and prevents the activation of the limiter in smooth flow regions [176]. Limiter (6.6)

has been constructed as to restore higher order accuracy in all norms. In addition,

the above limiter is differentiable for linearly varying flow variables. Continuous dif-

ferentiability helps in achieving smooth transitions between discontinuous jumps with

first-order representation and sharp but continuous gradients, which require higher-

order consistency.

Again, the same reconstruction procedures are used to compute the bed elevation

b(x), at either side of a cell’s face, which are needed for the discretization of the bed

slope source term, as it will become clear in later sections.
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Remark 8 Using physical variables, i.e. W = [H, u, v], for the presented reconstruction,

is cheapest since fewer transformations are necessary and the gradients that have to be

computed for the reconstruction can be re-used to compute dispersive terms later on. Fur-

thermore in [14] an extensive study was presented comparing conservative and physical

variable reconstructions, for 2D unstructured FV schemes solving the NSW equations.

concluding that physical variable reconstructions is advantageous in some cases.

6.2 Divergence edge-based formula

For the the discretization of the dipsersive terms Sd in 2.89, the gradient (∇w)P and the

divergence of the velocity vector (∇ · u)P, have to be computed in each mesh node. For

the gradient computation the edge formula, described in Section 5.2.1 is used. In this

section we present an edge formula for the integral average divergence of the velocity

vector, over the region ΩP, (see Fig. 5.4) . Again, following from the divergence theorem,

approximating the line integrals by trapezoidal quadrature and rearranging we get,

∫
ΩP

∇ · udΩ =

∮
∂ΩP

u · ñdl =
∑
Q∈KP

3
2

(uP + uQ) · nPQ.

Thus, the integral average of the divergence at a cell node is given by

(∇ · u)P =
3
|ΩP|

∑
Q∈KP

1
2

(uP + uQ) · nPQ =
1
|CP|

∑
Q∈KP

1
2

(uP + uQ) · nPQ, (6.9)

since of |CP| =
1
3 |ΩP| in the median-dual formulation. In the case that P is a boundary

node, and referring again on Fig. 5.4, the integral average of the divergence is computed

as

(∇ · u)P =
1
|CP|

∑
Q∈KP

1
2

(uP + uQ) · nPQ + up · (nP,1 + nP,2)

 . (6.10)

6.3 Discretization of the dispersion terms

The mass equation in (6.1) contains the integral average of the dispersive term ψC in

the source term Sd. To produce the discrete average, that approximates this term, we
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use the divergence theorem, which leads to

(ψc)P =
1
|CP|

"
CP

ψcdΩ =
1
|CP|

"
CP

∇ ·

[(
z2

a

2
−

h2

6

)
h∇(∇ · u) +

(
za +

h
2

)
h∇(∇ · hu)

]
=

1
|CP|

∮
∂CP

[(
z2

a

2
−

h2

6

)
h∇(∇ · u) +

(
za +

h
2

)
h∇(∇ · hu)

]
· ñdl

=
1
|CP|

∑
Q∈KP

{∫
∂CPQ

[(
z2

a

2
−

h2

6

)
h∇(∇ · u)

]
· ñdl +

∫
∂CPQ

[(
za +

h
2

)
h∇(∇ · hu)

]
· ñdl

}

As for the nonlinear flux vector ΦPQ, and for all edges, the above integrals should

computed and added to the computational cells CP. Like before, we assume a uniform

distribution of the integrated quantities over ∂CPQ equal to their values at the midpoint

M of the edge PQ thus,∫
∂CPQ

(
z2

a

2
−

h2

6

)
h∇(∇ · u) · ñdl ≈

[(
z2

a

2
−

h2

6

)
h
]

M

[
∇(∇ · u) · nPQ

]
M , (6.11)

∫
∂CPQ

(
za +

h
2

)
h∇(∇ · hu) · ñdl ≈

[(
za +

h
2

)
h
]

M

[
∇(∇ · hu) · nPQ

]
M . (6.12)

The right hand side terms in (6.11) and (6.12) require the evaluation of the gradient

of the divergence of the velocity vector and hu along the edge midpoints M. Hence,

the evaluation of the gradient of a quantity w at M requires the definition of a new

computational cell constructed by the union of the two triangles which share edge PQ

(see Fig. 6.1). By denoting with

Figure 6.1: Computational cells for the gradient of the divergence: internal cell (left)

and boundary cell (right)

KPQ :=
{
R ∈ N | R is a vertex of MPQ and RQ ∈ ∂MPQ

}
,
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the Green-Gauss reconstruction gives"
MPQ

∇wdΩ =

∮
∂MPQ

wñRQdl =
∑

R,Q∈KPQ
R,Q

1
2

(
wR + wQ

)
nRQ

that leads to

(∇w)M =
1
|MPQ|

∑
R,Q∈KPQ

R,Q

1
2

(
wR + wQ

)
nRQ, (6.13)

with nRQ the vector normal to the edge RQ. In case of a boundary node cell MPQ

is reduced to the triangle PQR (see Fig. 6.1) and the computed value from (6.13) is

assigned to M. Next, it is obvious that, to calculate [∇(∇ ·u)]M and [∇(∇ · hu)]M in (6.11)

and (6.12), formula (6.13) can be applied with the integral averages of the divergence

(∇ · u)R and (∇ · hu)R at nodes R ∈ KPQ computed using (6.9).

Next, for the the dispersive source terms in the momentum equations we have

1
|CP|

"
CP

−uψc + ψMdΩ = −uP

"
CP

ψcdΩ +
1
|CP|

"
CP

ψMdΩ.

The first term of the right hand side of the equation is discretized as before and the

second term takes the discrete form:

(ψM)P =
1
|CP|

"
CP

ψMdΩ =
1
|CP|

"
CP

Ht
z2

a

2
∇(∇ · u) + Htza∇(∇ · hu)dΩ

=
1
|CP|

"
CP

Ht
z2

a

2
∇(∇ · u)dΩ +

1
|CP|

"
CP

Htza∇(∇ · hu)dΩ

≈

[
Ht

z2
a

2

]
P
|CP| [∇(∇ · u)]P + [Htza]P |CP| [∇(∇ · hu)]P ,

where the divergence (∇ · u)P and (∇ · hu)P are computed again using formula (6.9).

6.4 Time integration and velocity field recovery

Since a higher-order spatial scheme is used, the necessity of at least a third-order

scheme in time is crucial in order to be compatible with the third-order spatial scheme.

For that reason we use the third order explicit Strong Stability-Preserving Runge-Kutta

(SSP-RK) method was adopted [77, 153]. This SSP-RK method is commonly called

the third order TVD Runge-Kutta scheme. Having defined L(U) the discrete spatial
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operator (see Section 5.4) the third-order SSP-RK method is described as follows:

U(1)
P = U(n)

P + ∆tnL
(
U(n)

)
;

U(2)
P =

3
4

U(n)
P +

3
4

U(1)
P + ∆tn 1

4
L

(
U(1)

)
;

U(n+1)
P =

1
3

U(n)
P +

2
3

U(2)
P + ∆tn 2

3
L

(
U(2)

)
;

where ∆tn = tn+1− tn
is the time step and it is estimated using the CFL stability condition

(5.36).

After each RK step a linear system MV = C,with M ∈ R2N×2N
, V = [u1,u2, · · · ,uN] and

C = [P?
1 ,P

?
2 , · · · ,P

?
N], has to be solved to obtain the velocities u, v from P? = [P?

1 P?
2 ]T

, the

vector of variables from the momentum equation obtained from the FV solver. Matrix

M is constructed from the discretization of P?
and is a grid depended sparse matrix

without a standard structure. Keeping in mind that u is our unknown vector, each two

lines of the matrix correspond to a node P on the grid and for each such node we have,

H(i)
P

[
z2

a

2
∇(∇ · u) + za∇(∇ · hu) + u

](i)

P
= P?(i)

P , i = 1, 2, n + 1. (6.14)

Now, the gradients ∇(∇ · u)P and ∇(∇ · hu)P need to be computed again by applying the

formulas used in the previous sections for the gradient and divergence discretizations.

However, it is important here to keep the unknown information used in (6.14) at the

minimum possible level and exploit already computed geometrical information. To this

end, for the gradient computations in (6.14), and refereing also to formula (5.12), the

arithmetic average in (5.12) can be replaced by the values at the midpoints M of the

edges. Hence, and dropping the superscript index, (6.14) now reads as

HP

 (z2
a)P

2
1
|CP|

∑
Q∈KP

(∇ · u)MnPQ +
(za)P

|CP|

∑
Q∈KP

(∇ · hu)MnPQ + uP

 = P?
P, (6.15)

and is now obvious that we have to compute ∇ · u and ∇ · hu at M. Refereeing again

to Fig. 6.1, the computational cell MPQ, used previously for the computation of the

gradients at M, can be utilized using the idea behind formula (6.9) for these divergence

computations. Hence, the discrete averages of the divergence can be computed as

follows for (∇ · u),

(∇·u)M =
1
|MPQ|

"
MPQ

∇·udΩ =
1
|MPQ|

∮
∂TPQ

u·ñdl ≈
1
|MPQ|

∑
R,Q∈KPQ

R,Q

1
2

(
uR + uQ

)
·nRQ.(6.16)



166 CHAPTER 6. AN UNSTRUCTURED FV SCHEME FOR BT EQUATIONS

A similar computation is used for the calculation of (∇ · hu). By performing the above

approximation we restrict the unknown information used in (6.15), i.e. values of u,

only to that coming from the nodes that are neighbors of node P, i.e. nodes Q ∈ KP.

Substituting the above relationship to the first addend of the left hand side of equa-

tion (6.15) gives

(z2
a)P

2
1
|CP|

∑
Q∈KP

 1
|MPQ|

∑
R,Q∈KPQ

R,Q

1
2

(
uR + uQ

)
· nRQ

 nPQ =

(z2
a)P

2|CP|

∑
Q∈KP

 1
2|MPQ|

∑
R,Q∈KPQ

R,Q

uR ·
(
nPR + nRQ

) nPQ,

which can be further rewritten as

(z2
a)P

2|CP|

∑
Q∈KP

 1
2|MPQ|


∑

R,Q∈KP∩KPQ
R,Q

uR ·
(
nPR + nRQ

)
+ uP · (nS P + nPR)


 nPQ,

leading to the more compact presentation

(z2
a)P

2
1
|CP|

∑
Q∈KP

(∇ · u)MnPQ =
(z2

a)P

2|CP|

∑
Q∈KP

(
AQxuQ + AQyvQ + APxuP + APyvP

)
(6.17)

where AQx,AQy,APx,APy ∈ R
2

and depend only on the geometric characteristics quan-

tities nPQ, the vectors normal to the edges of ∂MPQ and the area |MPQ|. The same is

valid for the second add end on the left hand side of (6.15) with the difference that

the velocity coefficients are now also depended from the steel water level h. Thus, the

sparse 2N × 2N linear system to be solved can be presented as

(z2
a)P

2|CP|

∑
Q∈KP

(
[AQxAQy]uQ + [APxAPy]uP

)
+

(za)P

|CP|

∑
Q∈KP

(
[BQxBQy]uQ + [BPxBPy]uP

)
+IuP =

1
HP

P?
P, (6.18)

with P = 1, . . . ,N. Any two consecutive rows of the system’s matrix M, corresponding to

each node P, have nonzero entries that correspond to the coefficients of the unknown

velocities at node P and its neighbors Q ∈ KP. More specifically, the columns of the

2 × 2 matrices in (6.18) are given by

AQx =
1

2|MPQ|

∑
R,Q∈KP∩KPQ

(nPRx + nRQx)nPQ, AQy =
1

2|MPQ|

∑
R,Q∈KP∩KPQ

(nPRy + nRQy)nPQ,
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BQx =
1

2|MPQ|

∑
R,Q∈KP∩KPQ

hR(nPRx + nRQx)nPQ, BQy =
1

2|MPQ|

∑
R,Q∈KP∩KPQ

hR(nPRy + nRQy)nPQ,

APx =
1

2|MPQ|
(nS Px + nPRx)nPQ, APy =

1
2|MPQ|

(nS Py + nPRy)nPQ,

BPx =
1

2|MPQ|
hP(nS Px + nPRx)nPQ, BPy =

1
2|MPQ|

hP(nS Py + nPRy)nPQ.

The number of geometrical entries in each summation is always two, while the number

of entries in the summation
∑

Q∈KP
is equal to the number of the neighbors of P. This

means that the maximum non-zero elements of the matrix M in each row P in (6.18)

are two times the number of the neighbors of P plus one.

Remark 9 In the case where the dispersion terms are zero in the model equations, i.e.

only the nonlinear part of the shallow water equations is to be solved, matrix M ≡ I, the

identity matrix, as expected.

Remark 10 The division by the total water depth HP in the right hand side of system

(40) can cause numerical difficulties if HP ≤ εwd or if HP = 0, i.e. for dry cells. In these

cases the components of the right hand side that correspond to dry cell have to be set

equal to zero.

6.4.1 Solution of the linear system

The 2N × 2N matrix M of the linear system is sparse and structurally symmetric but

is also mesh dependent. The properties of the sparse matrix vary depending on the

physical situation of each problem solved, the type of the grid used and the number of

the nodes on the grid. The most popular format, for storing general sparse matrices

with Nz non-zero entries, like the one that is produced here, is the compressed sparse

row (CSR) format [143]. The linear system was solved, at every time step, using Bi-

Conjugate Gradient Stabilized method (BiCGStab) [143] which is an iterative method

for the numerical solution of non-symmetric linear systems. This is a Krylov subspace

method and was used here with a residual error tolerance of 5 · 10−6
with the numerical

solution for the velocities at the previous time step given as initial guess. The choice

of this method was justified after a check on the eigenspectrum of different matrices

was performed. To this end, we produced different matrices using different triangular
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meshes and different physical conditions e.g. spatial dimensions and values of con-

stant depth h, in order to check the spectrum of eigenvalues for each such produced

matrix. For sparse and relatively sparse meshes all the eigenvalues were close to unity

but if grids were refined the resulting matrices had much larger spread of complex

eigenvalues.

An extended study for the behavior of the linear systems, produced by different kind

of grids and different initial conditions has been performed in [69]. We present here, for

completeness, the behavior of the solution of the linear systems using different iterative

methods and three preconditioners. The sparse matrix M, has been produced by the

distorted grid (type IV) (see Chapter 5). In table 6.1 the number of the non-zero elements

(Nz) of the matrices produced from two different still water levels (h = 1m and h = 100m)

using a consisted refinement (see Section 5.1). The dimension of the numerical domain

is (x, y) ∈ [0, 1] × [0, 1].

Nx h = 1m h = 100m
15 7715 7713

30 29746 29741

60 118293 7714

Table 6.1: Non-zero elements for two different still water levels (type IV).

Nx is the node number along the x axis. In this study [69] the right hand side

of the system Mx = b is the sum of the columns of the matrix M. The number of

iterations required by four different iterative methods to converge, is presented in Table

6.2. More precisely, Generalized Minimum RESidual method (GMRES), BIConjugate

Gradient Stabilized method (BICGSTAB),Conjugate Gradiennt method (CG),Transpose-

Free Quasi-Minimal Residual method(TFQMR)

Nx GMRES BICGTAB CG TFQMR

15 1999 581 - 649

30 - - - -

60 - 3365 - -

Table 6.2: Number of iterations for the linear systems produced using h = 1m.

Since the iterations for solving the linear system were increased as the mesh was

refined the use of an effective preconditioner was necessary. Three well known precon-

ditioners, based on Incomplete LU factorization (ILU0, ILUT and ILUk), are implemented
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and tested using the SPARSKIT package [143]. A general ILU factorization process com-

putes a sparse lower triangular matrix L and a sparse upper triangular matrix U so

that the residual matrix LU − M satisfies certain constrains such as having zero en-

tries in some locations and it can be derived by performing Gaussian elimination and

dropping some elements in predetermined non-diagonal positions. Two threshold val-

ues were used, for the element dropping, the fill-in value (l f il) and the drop tolerance

value (dpt). Tables 6.3-6.5 present the number of iterations for each iterative method,

using the ILUT preconditioner with l f il = 300 and dpt = 10−5
, the ILU0 and the ILUk

preconditioner with l f il = 300 respectively.

Nx GMRES BICGTAB CG TFQMR

15 4 5 5 5

30 6 7 7 7

60 8 9 - 9

Table 6.3: Number of iterations for the linear systems produced using h = 1m, the ILUT

preconditioner with l f il = 300 and dpt = 10−5

Nx GMRES BICGTAB CG TFQMR

15 206 181 - 187

30 499 363 - 361

60 1326 729 - 777

Table 6.4: Number of iterations for the linear systems produced using h = 1m, the ILU0

preconditioner

The ILU0 factorization technique is appropriate for small sparse matrices but is

inefficient as matrices become larger. ILUk results as the best preconditioner for these

matrices, since ILUk preconditioner is closer to the inverse of the matrix M due to the

maintenance of all elements. One should keep in mind that the computational time

cost using ILUk is greater than using ILUT.

Nx GMRES BICGTAB CG TFQMR

15 2 3 2 3

30 2 3 2 3

60 3 3 3 3

Table 6.5: Number of iterations for the linear systems produced using h = 1m, the ILUk

preconditioner with l f il = 300.

Further the reverse Cuthill{McKee (RCM) algorithm [72]was incorporated in our

solver in order to reorder the matrix elements as to minimize its bandwidth. Table 6.7



170 CHAPTER 6. AN UNSTRUCTURED FV SCHEME FOR BT EQUATIONS

displays iterations and computational time needed for the top two performing iterative

methods up to now (GMRES and BICGSTAB) using ILUT and ILUk preconditioners. T is

the total computational time, Tp is the time needed for the preconditioner computation

and Tr is the time needed for the reordering process.

GMRES BICGSTAB

Nx it T Tp Tr it T Tp Tr

l f il = 300 15 9 0.019 0.015 5.11E-4 11 0.017 0.012 3.1E-4

dpt = 10−5
30 24 0.21 0.015 1.92E-3 23 0.21 0.015 1.93E-3

ILUT+RCM 60 781 15.3 2.22 7.5E-3 225 6.14 2.48 7.36E-3

GMRES BICGSTAB

Nx it T Tp Tr it T Tp Tr

l f il = 300 15 4 0.01 0.015 5.32E-4 5 0.01 0.013 5.25E-4

dpt = 10−10
30 5 0.17 0.15 1.89E-3 5 0.174 0.15 1.83E-3

ILUT+RCM 60 6 2.33 2.22 4.55E-3 7 2.38 2.25 7.326E-3

Table 6.6: Number of iterations for the linear systems produced using h = 1m (up)

h = 100m (down) and the ILUT preconditioner.

GMRES BICGSTAB

Nx it T Tp Tr it T Tp Tr

l f il = 300 15 3 0.019 0.017 5.4E-4 3 0.021 0.019 5.099E-4

30 4 0.22 0.21 1.88E-3 5 0.22 0.21 1.86E-3

ILUk+RCM 60 4 3.45 3.38 5.35E-3 5 3.16 3.06 7.56E-3

Table 6.7: Number of iterations for the linear systems produced using h = 100m and

the ILUk preconditioner.

Conclusively the best combination (examining iterations and the convergence time)

for the numerical solution of the sparse linear system under study is:

• For the systems result using shallow and intermediate still water level, GMRES

or BICGSATB solvers using ILUT and RCM is the best combination.

• For deeper water the results using iterative methods combined with ILUT (dpt =

10−10
) are similar to those obtained using ILUk.

Finally, in the present work, we implemented the ILUT preconditioner from SPARSKIT

package [143]. A drop-tolerance of 1·10−5
was used, combined with a maximum fill-in of

50-200 elements per row, depending on the problem testing. One should keep in mind

that mesh independence is rarely achieved with ILUT preconditioner [67]. Convergence
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to the solution was obtained in one or two steps for the test problems presented in

Chapter 7.

Remark 11 The way this linear system is constructed and solved is important for the

proposed wave breaking treatment presented later on. The system’s matrix is constructed

at the beginning of each simulation and as such its structure is stored in CSR format at

a preprocessing stage and subsequently utilized to solve the linear system at each time

step. So its data structure can not be changed during the time marching process in a

numerical simulation.

6.5 Boundary conditions and the internal source func-

tion

Two types of boundary conditions have been considered here. Wall and outflow bound-

ary conditions. Since we follow the node-centered type FV approach, the degrees of

freedom are located directly on the boundary and boundary conditions based on mesh

faces have been adopted. to this end the weak formulation is used which is extensively

described in Section 5.3.1. The idea of using the weak formulation to calculate the

flux (and dispersion terms) at the boundary has been used in the description of wall

(solid) and outflow boundary conditions. In the present work, no analytical investiga-

tion of the numerical treatment of boundary conditions is performed because of the

complexity of the model. Instead, this important property is studied using a somehow

heuristic approach based on several benchmark tests. Our objective is to ensure that

the discretized counterparts of boundary conditions do not introduce any numerical

instability in the system and at the same time preserves the spatial accuracy of the

numerical scheme used in the inner region.

In a computational domain Ω and for a solid, impermeable and fully reflective wall

the kinematic boundary condition can be stated as

u · ñ = 0 for x ∈ ∂Ω, (6.19)

where ñ the unit outward normal vector. In the continuous case, a free surface bound-

ary condition can be derived form the mass equation in (6.1) over Ω written as

∂

∂t

"
Ω

HdΩ +

∫
∂Ω

[
Hu +

(
z2

a

2
−

h2

6

)
h∇(∇ · u) +

(
za +

h
2

)
h∇(∇ · hu)

]
· ñdl = 0. (6.20)
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By conservation of mass, we require that the rate of change of the excess volume to be

zero since there is no loss or gain of mass through the wall. Hence, (6.19) implies that

along the wall[(
z2

a

2
−

h2

6

)
h∇(∇ · u) +

(
za +

h
2

)
h∇(∇ · hu)

]
· ñ = 0, (6.21)

that will completely satisfy (6.20). Thus, and refereing for example in Fig. 1 for faces

M1P and PM1, it follows form (6.19) and (6.21) that, for system (2.46) integrated at a

boundary cell, the line integrals in (6.11) and (6.12) along faces M1P and PM1 should

be zero. Then the normal advective flux, ΦP,Γ, at the boundary, in a weak form, is the

one given by (5.14).

Absorbing boundaries should dissipate the energy of incoming waves perfectly, in

order to eliminate unphysical reflections. In front of this kind of boundaries a sponge

layer is defined. On this layer, the surface elevation was damped by multiplying its

value by a coefficient m(x) defined as [185]

m(x) =

√
1 −

(
x − d(x)

Ls

)2

(6.22)

where Ls is the sponge layer width (where L ≤ Ls ≤ 1.5L) and d(x) is the normal distance

between the cell center with coordinates x and the absorbing boundary. This coefficient

was applied in the cells of the sponge layer inside the Runge-Kutta time stepping. Since

longer wave lengths require longer sponge layers, we have to increase the numerical

domain when using a sponge layer and dealing with long waves, such as solitary waves,

in order to fully damp the wave motion resulting in an increased computational coast.

A combination of an open (outflow) boundary condition and sponge layer can handle

both short and long waves and thus reduce the computational cost.

For the wave generation in the 2D model presented in this section we use the in-

ternal wave generation of Wei et al. [181]. This source function was obtained using

Fourier transform and Green’s functions to solve the linearized and non-homogeneous

equations of Peregrine and Nwogu models. In the present model, this source function

wave-making method is adopted in order to let the reflected waves outgo through the

wave generator freely. The internal wave generation along with the sponge layer we con-

sider to be more attractive than a wave absorbing-generating boundary condition since

the source function inside the numerical domain does not interact with the reflected

waves, and the sponge layer is able to absorb both long and short waves. Like 1D
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described in section 3.6 a source function S (x, t) is added in to the mass conservation

equation at each time step. The form of the source function in 2D is now:

S (x, t) = D∗ exp
(
−γ(x − xs)2

)
sin(λy − ωt) (6.23)

in which λ = κ sin θ is the wave number in the y-direction and θ is the wave’s incident

angle. All the other parameters can be found in Section 3.6.

6.6 Wave breaking treatment

As presented in Chapter 3 four main categories of wave breaking treatment have been

developed for Boussinesq-type equations the past few years. The surface roller model,

the vorticity model, the eddy viscosity model and hybrid models. In this work, and for

the 2D formulation, two wave breaking models are implemented and tested within the

FV frame. The first one is the eddy viscosity wave breaking treatment of Kennedy [93]

and the second one is the hybrid model introduced by [163]. The first three categories

involve addition of a dissipative term to the momentum (or/and the mass) equation with

prescribed criteria for onset and termination of wave breaking and energy dissipation

rates.

6.6.1 Eddy viscosity wave breaking treatment of Kennedy et al.[93]

As described for the 1D FV model for the equations of Nwogu [127] (see Chapter 3), the

mass conservation equation remains unchanged while an eddy viscosity term is added

to the momentum conservation equation. So the conservative-like form of the equations

of Nwogu is (2.48) with (2.89) where now the source terms vector is S = Sb + Sd + Sf with

Sf =


0

−τ1 + Rbx

−τ2 + Rby

 . (6.24)

The eddy viscosity terms have the form

Rb =

 Rbx

Rby

 =

 ∇ · R̃bx

∇ · R̃by

 (6.25)
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with

R̃bx =

 ν(Hu)x

ν
2

(
(Hu)y + (Hv)x

)  and R̃by =

 ν
2

(
(Hu)y + (Hv)x

)
ν(Hv)y

 .
The above terms can be sown that they conserve the overall momentum [93]. The eddy

viscosity is given by

ν = Bδ2
bHηt (6.26)

with δb is a mixing length coefficient. According to [93] values between 0.5 and 1.5

give very similar results with the one of 1.2 giving the best ones. The quantity B as

in one dimension varies smoothly from 0 to 1 so as to account for the initiation and

termination of wave breaking and to avoid an impulsive start of breaking.

B =


1, ηt ≥ 2η?t
ηt
η?t
− 1, η?t ≤ ηt ≤ 2η?t

0, ηt ≤ η
?
t

with η?t =


η(F)

t , t ≥ T?

η(I)
t + t−t0

T? (η(F)
t − η

(I)
t ), 0 ≤ t − t0

which accounts for the initiation and termination of the breaking procedure. The

magnitude of η?t decreases in time from some initial value η(I)
t to a final value η(F)

t . T?
is

the transition time and t0 the time that breaking begins. The values of η(I)
t and η(F)

t are

case depended. For the test cases used here good agreement with the laboratory data

is obtained with 0.3
√

gh ≤ ηI
t ≤ 0.7

√
gh and 0.15

√
gh ≤ ηF

t ≤ 0.4
√

gh. The transition

time used here is T? = 7
√

h/g.

In order to discretize the breaking terms we follow the FV framework introduced up

to now. Integrating the eddy viscosity terms over a computational cell and applying the

divergence theorem we obtain:

(Rb)P =
1
|CP|

"
CP

RbdΩ =
1
|CP|

"
CP

 ∇ · R̃by

∇ · R̃bx

 dΩ =
1
|CP|

∑
Q∈KP

∫
∂CPQ

 R̃bx · ñ

R̃by · ñ

 dl.

The above vector is approximated assuming a uniform distribution of Rb · ñ over ∂CPQ

and equal to its value at the midpoint M of edge PQ, thus

(Rb)P ≈
1
|CP|

∑
Q∈KP

 R̃bx · nPQ

R̃by · nPQ


M

(6.27)
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The right hand side terms in equation (6.27) require the evaluation of R̃bx and R̃by

along the edge midpoints M. Hence we use the computational cell MPQ (see Fig. )

constructed by the union of the two triangles that share edge PQ. The Green-Gauss

reconstruction that concludes to the equation (6.13) is used for the computation of

the vectors ∇(Hu),∇(Hv) and consequently for the terms R̃bx and R̃by. The value of the

eddy viscosity term at M, νM is computed as the arithmetic average of the eddy viscosity

values at nodes P and Q (νP and νQ respectively). Furthermore ηt which is necessary

for the computation of νP and B is explicitly obtained from the mass equation.

6.6.2 Hybrid wave breaking treatment

The hybrid BT-NSW approach has been widely used for 2D BT models, the last few

years, due to its simplicity and efficiency [163, 141, 147]. Like 1D formulation, con-

siderations still exist in the criteria chosen to characterize wave breaking, the proper

switching between the BT equations and to the NSW ones, range of applicability and grid

sensitivity. In addition, this approach has never been applied to unstructured meshes

before the present work, to the best of our knowledge. Tonelli and Petti in [163, 164]

for the MS BT model ans Shi et. al. [147] for the equations of Chen [43] developed a 2D

wave breaking treatment but only for structured meshes. In this approach, and like

1D formulation described in Section 3.7.2, we first estimate the location of breaking

waves using explicit criteria and then the NSW equations are applied on the breaking

regions and BT equations elsewhere. The criterion used is the ratio of surface eleva-

tion to water depth, ε =
η

d
and is set to 0.8. So, the proposed numerical approach of

[163] solves NSWE in the region where ε > 0.8 and BT elsewhere. Also, in order to

make the scheme more stable, once NSW equations have been applied, the value has to

drop below 0.35-0.55 for BT equations to be applied again [165]. The limitation of this

treatment remains the static application of this breaking approach (see Section 3.7.2).

This approach is also applied in this work and we name the model that utilizes this

approach Hybrid(ε).

It should be stress here that, application of any hybrid approach to the unstructured

FV scheme presented here is not straightforward and a special treatment is in need

to perform a stable switch between the BT and NSW model which minimizes mesh

dependence and stability issues on finer meshes.
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Wave breaking criteria and the New Hybrid model

Following the idea introduced in Section .3.7.2 for the 1D model we extend the the com-

bination of two phase-resolving criteria for triggering wave breaking modeling within

our FV scheme for the 2D approach. Namely, the two criteria used are:

• the surface variation criterion: ηt ≥ γ
√

gh with γ ∈ [0.35, 0.65] and

• the local slope angle criterion: ||∇η||2 ≥ tan(φc) where φc is the critical front face

angle at the initiation of breaking.

As in 1D, the first criterion flags for breaking when ηt is positive, as breaking starts

on the front face of the wave and has the advantage that can be easily calculated during

the running of the model. The second criterion acts complementary to the first one and

is based on the critical front slope approach in [55, 60]. The value used in this work is

φc ≈ 30◦ and even thought it is relatively large for this criterion to trigger by its own the

breaking process, it is sufficient to detect breaking hydraulic jumps thus, correcting

the limitation of the first criterion.

In the numerical scheme and for each mesh node in the computational domain

at every time step, we check if at least one of the above criteria is satisfied, and flag

the relative node as a breaking or a non-breaking one. Then, each breaking wave,

with its corresponding breaking mesh nodes, has to be identified. Thus, for each

breaking wave we have to create a distinct dynamic list that contains all of its nodes

characterized as breaking ones. To achieve this, and as such distinguish between

different breaking waves, the following procedure is performed: a flagged breaking

node is randomly chosen and its neighbors in the mesh data structure are identified.

From these neighboring nodes we check which ones have been flagged as breaking ones

and we add them to the list. We continue by following the same procedure for the next

element in the list until we reach the last element on the list (for which its breaking

neighboring nodes are already in the list).

The next step to the proposed New Hybrid model, is to characterize the non-breaking

bores and switch back to the BT equations, allowing for the breaking process to stop.

We are keeping in mind that bores stop breaking when their Froude (Fr) number drops

below a critical value. Since we have distinguished the different breaking waves (with

its own dynamic list) we can treat each wave individually. It is easy to find the water

depth at the wave’s trough and the water depth at the wave’s crest and then use eq.
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(3.68) in order to find the wave’s Fr number. If Fr ≤ Frc all the breaking points of

that wave are un-flagged and the wave is considered non-breaking. Following [160] the

critical value for Frc was set equal to 1.3 in our computations.

Finally an extension of each wave breaking region is performed, according to the

corresponding wave’s height. Knowing all the breaking nodes in each dynamic list,

we find the nodes that posses the maximum and minimum values of x-coordinate

(xmax, xmin), and those that posses the maximum and minimum value of y-coordinate.

Further and for the x-direction, if ∆xb = xmax− xmin < lNS W (see Section 3.7) we extend the

wave breaking region, including to the dynamical list the nodes that lay in the interval

[xmin − 0.5 ∗ (∆xb − lNS W), xmax + 0.5 ∗ (∆xb − lNS W)] × [ymin, ymax].

Suppression of the dispersive terms methodology

After the characterization of the breaking regions the NSW model has to be applied

computationally in each one of them. This means that all dispersive terms, ψc and

ψM in (1) have to be suppressed at mesh nodes triggered as breaking ones. Sev-

eral researchers have followed similar approach in their hybrid models, we refer to

[163, 164, 165, 141, 147] for 2D applications. In the aforementioned works, a FV/FD

approach has been adopted on structured meshes. The corresponding two linear sys-

tems produced (along the x− and y−direction respectively) for the velocity field recovery

(see Section 5.9) are tridiagonal ones which can be more easily adapted in time since

the equations corresponding to breaking nodes theoretically must be as those in the

identity matrix, since the dispersive terms are suppressed. However, in [163] and [141]

it was state that the matrices where precalculated and used throughout the computa-

tions.

As we stated in Remark 11, also for our unstructured solver the matrix of the lin-

ear system can not be changed due to its storage in the compressed sparse row (CSR)

format. Any change in the matrix structure through time marching would result in a

large increase in the computational cost. Furthermore, is not clear how the switch-

ing between the two models is implemented, with an additional concern for issues of

sensitivity to grid spacing. According to [147] there is a discontinuity at the switching

point between the BT equations and NSW ones.This have been observed in our tests as

well. This discontinuity is introduced to the dispersive terms of the BT equations caus-

ing spurious oscillations at the switching points. The frequency of these oscillations
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increases with grid refinement, producing instabilities.

For the above reasons there is the need of a robust and efficient implementation of

the switching procedure. A methodology to stably handle the switching between the

two models is developed within the unstructured FV framework of the present work

and is detailed below:

0. Starting with the solution vector Un
P, P = 1, . . . ,N, at time tn

,

1. For all computational cells an [Hn+1
1 ,Hn+1

2 , . . . ,Hn+1
N ]T

solution is computed from

the mass equation using the BT model (named from now on Hn+1
BT solution).

1.1 If breaking has been activated (according to our criteria) for a number of

computational cells say Nbr < N, an additional solution vector is computed

by subtracting the dispersive terms ψc from Hn+1
BT at these breaking cells, i.e.

obtaining a NSW solution for Hn+1
at these cells only. This solution is named

Hn+1
BT/S W from now on.

2. Then, for all computational cells the Pn+1
BT = [Pn+1

1 ,Pn+1
2 , · · · ,Pn+1

N ]T
BT solution from

the momentum equation is computed, using the approximation ∂tHn+1 ≈
Hn+1

BT −Hn

∆tn+1

for the ψM computation in (4).

2.1 If breaking has been activated for a number of computational cells, an ad-

ditional solution (named Pn+1
BT/S W ) is computed by subtracting the dispersive

terms ψc and ψM from Pn+1
BT at these cells i.e. obtaining a NSW momentum so-

lution

[
(Hu)n+1, (Hv)n+1

]T
for the breaking cells, since for the NSW equations

P = [P1, P2]T = [Hu, Hv]T. For theses cells only it is easy now to compute

un+1
S W = [un+1

1 , . . . ,un+1
Nbr

]T
S W which will be a subset of the actual velocity solution

sought.

3. Then, the linear system MV = C from (18) is solved with C = [Pn+1
1 ,Pn+1

2 , · · · ,Pn+1
N ]T

BT

to obtain an approximation of the velocity vector, named un+1
BT = [un+1

1 , . . . ,un+1
N ]T

BT .

4. The final solution at t = tn+1
will be that of Hn+1

BT/S W for the total water depth and

Pn+1
BT/S W for the momentum equations. For the velocity field vector the solution,

denoted as un+1
BT/S W , is derived from the un+1

BT vector with its values at the breaking

nodes replaced by those of un+1
S W .



Chapter 7

Numerical test and results in two

dimensions

In this Chapter numerical tests and results in two horizontal dimensions are pre-

sented in order to validate the numerical model described in Chapters 5-6. Section 7.1

presents one of the most common test cases for BT models while Section 7.2 examines

the spatial accuracy and efficiency of the proposed numerical approach. Sections 7.3-

7.6 examine non-breaking test cases while Sections 7.7-7.11 examine wave breaking

test cases comparing the wave breaking mechanisms presented in Section 6.6. All the

numerical results are compared with experimental data.

7.1 2D Solitary wave propagation in a channel

This test case is the 2D extension of the test case in Section 4.2. As described in

Section 4.2 a solitary wave should maintain its shape and speed as it travels down a flat

fritionless channel. The purpose of this test case is to show that our numerical model

keep the balance between the nonlinear terms that steepen the wave and the dispersive

terms that flatten the wave. In this numerical experiment, we consider a 2500m long

and h = 10m deep channel. The overall dimension of the numerical channel are for

(x, y) ∈ [−100m, 2400m] × [−5, 5m]. The initial condition used corresponds to a A = 2m

high solitary wave, i.e. A/h = 0.2, initially positioned at x = 200m. The initial wave

surface elevation η and velocity u can be found in [179]. As shown also in the test case

described in Section 4.2 the initial waves undergo an evolution at the beginning of the

computation to adjust the free surface to a steady profile [179, 163, 187] since the given

179
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initial conditions (and analytical solution) are only asymptotically equivalent to the

solution of the model being solved numerically. For that reason, the wave being input

in the numerical model does not correspond exactly to solitary waveforms predicted by

the model. For the computation a triangular grid consisting of equilateral triangles,

with side length of 0.75m, was used, leading to a mesh of N = 53, 304 nodes. The CFL

number used was set equal to 0.65.

Figure 7.1: Solitary wave profiles along a channel of constant depth

Fig. 7.1 shows the initial solitary wave and the computed waveforms along the
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channel for y = 0 at 5,60, 120, and 180s using the third order FV scheme. The wave

height increases slightly (A = 12.01m) at the very beginning producing also a very small

dispersive tail, due to the the specific initial condition used. Then the computed wave-

form stabilizes with A ≈ 1.99m and the wave height remains steady for the remainder

of the simulation. The computed permanent waveform maintains its symmetry and

phase speed which are very close to the (asymptotic) analytical solution.

7.2 Spatial accuracy and efficiency

As an indication of the accuracy and efficiency of the proposed numerical approach,

we consider the propagation of a solitary wave of amplitude A = 0.1m over an undis-

turbed depth h = 1m. The wave is initially centered at x = 50m and the spatial domain

(x, y) ∈ [0, 300m] × [0, 5m]. Again, the approximate solution from [179] is used as initial

condition. As there does not exist any closed form solitary wave solution for the Nwogu

equations, the error E(η) is computed by comparing with a numerical reference solu-

tion at t = 30s, given by a fine (uniform) unstructured mesh (Type-II) of N = 232, 849

nodes and the CFL number used was set equal to 0.4 (as to decrease the temporal

errors). This type of mesh is chosen as to be able to obtain such a comparison with the

reference solution. The major requirement, in order to perform convergence studies,

for a sequence of refined grids, is to satisfy a consistency refinement property [51] (see

also Section 5.1).

In Table 7.1 and Fig. 7.2 the L2 and L∞ errors and asymptotic orders of conver-

gence are presented. The asymptotic order obtained is close to the optimal one for the

presented third order scheme.

N hN ||E(η)||2 R ||E(η)||∞ R

1504 1.0940 3.90E-03 - 2.74E-02 -

3907 0.6788 9.05E-04 2.10 7.01E-03 1.97

15013 0.3463 1.40E-004 2.70 1.20E-03 2.55

58825 0.1749 1.85E-005 2.92 1.72E-04 2.80

Table 7.1: Propagation of a solitary wave: L2 and L∞ error norms and convergence rates

(R) for η

Next, computational times measured in seconds (CPU times) versus accuracy are

presented in Fig. 7.3 for the same grids used above. In addition, the total and per time-
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Figure 7.2: Convergence rates for the propagation of a solitary wave

step CPU times for the solutions of the 2N×2N sparse linear system, using the BiCGStab

method, are also given. The CPU time to advance the model one time-step grows like

O(||E(η)||−1) (linearly) while the time needed by the BiCGStab like O(||E(η)||−0.85), for the

finer grids. However, and due to the increase of the number of time steps needed on

finer grids, the total CPU time grows approximately like O(||E(η)||−1.25) while the total

time needed by the BiCGStab like O(||E(η)||−1.5) and starts to dominate the overall time,

as grids get refined.

Figure 7.3: CPU times as a function of accuracy in the L2 norm

To asses the effect the increase of the number of grid points N has to the storage

requirements of the non-zero elements (Nz) of the 2N × 2N sparse linear system and to
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the computational efficiency, we present relevant comparison in Fig. 7.4. As expected,

the Nz entries grow linearly with respect to N. The BiCGStab CPU time per time step

scales like O(N3/2) however, the total CPU time per time step is growing like O(N5/4),

close to linear. We would like to point here that, reasonable work has been done to

optimize the implementation of the numerical model.

Figure 7.4: Non-zero elements as a function of N (left) and CPU times as a function of

N (right)

7.3 Solitary interaction with a vertical circular cylinder

In this test case, the propagation and scattering of a solitary wave by a vertical circular

cylinder is numerically investigated. In [4], laboratory experiments to investigate the

interaction of a solitary wave with a vertical cylinder were conducted and the relevant

data has been used to validate numerical models, e.g. in [4, 59, 185]. In a wave

flume with dimensions (x, y) ∈ [−4, 10m] × [0, 0.55m] and an undisturbed water depth

h = 0.15m, a 0.16m-diameter circular cylinder was placed (x, y) = (4.5, 0.275). The

solitary wave with wave amplitude A = 0.0375m was initially centered at x = 0m, with

its shape given again by the sech− profile solution from [179], leading to a wave with

nonlinearity ε = A/h = 0.25.

Six wave gauges were used to measure the water surface elevation at the following

locations: WG1= (4.4, 0.275), WG2= (4.5, 0.170), WG3= (4.5, 0.045), WG4= (4.6, 0.275),

WG5= (4.975, 0.275), and WG6= (5.375, 0.275). Absorbing boundary conditions with a
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sponge layer width Ls = 3m where placed from the upstream and downstream bound-

aries, while wall boundary conditions were imposed at side walls. The cylinder is repre-

sented as a discrete topography function in the numerical model. A triangular grid was

used, which was refined around the cylinder edge using the h−enrichment technique

from [125] leading to a mesh of N = 10, 609 nodes with maximum edge length equal to

0.03m and minimum 0.01m. A detail of the mesh and the gauge locations are shown in

Fig. 7.5. The CFL number used was set equal to 0.45.

Figure 7.5: Mesh and wave gauge locations for the solitary wave-cylinder interaction

Fig. 7.6 presents a sequence of snapshots of the evolution of the solitary wave and

the wave-cylinder interaction. We emphasize here the absence of motion around the

cylinder before its interaction with the wave, verifying the well-balanced property of the

scheme in the presence of wet/dry fronts. After the solitary wave has impinged on the

cylinder short scattered waves are generated. These short waves propagate upsrteam,

and the main wave recovers to solitary shape.

Numerical and measured surface water elevation time histories at the six wave

gauges are compared in Fig. 7.7. In addition, we compare the numerical solution of

the Boussinesq model and that of the NSWE. The numerical solution of the Boussinesq

model provided very accurate results in terms of the wave elevation and phase speed,

for almost all gauges, that are comparable to those obtained in [185] by a Navier-Stokes

solver. It should be noted that, even though the circular form of the cylinder can not be

perfectly represented by the grid, the obtained results were stable and very satisfactory.

On the other hand, the predicted solution using the NSWE is highly inaccurate since,

as expected, the solitary wave can not maintained its shape and phase speed using

this model. This leads to wave steepening and subsequent transformations creating a
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Figure 7.6: Solitary wave-cylinder interaction: 3D view of the free surface at different

time instances

faster wave with the wrong shape and phase speed.

7.4 2D run-up of a solitary wave on a conical island

To investigate solitary wave runup on a conical island, large-scale laboratory exper-

iments were performed and presented in [28] motivated largely by the fact that dur-

ing several events in the 1990s, involving large tsunami waves, unexpectedly large

run-up heights were observed on the lee side of small islands. The produced data

sets have been frequently used to validate runup models, we refer for example to

[104, 161, 162, 108, 26, 86, 67, 125, 187, 45, 164] among others. The laboratory

experiments were performed in a large-scale basin at the US Army Engineer Water-

ways Experimental Station, for the study of three dimensional tsunami run-up on an
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Figure 7.7: Solitary wave-cylinder interaction: numerical and experimental results for

η at WG1-WG6 (from top to bottom)

idealized conical island, see [28, 188] for a detailed description and data. These exper-

iments were also studied by analytical means in [88].

In a 25×30m basin with a conical island situated near the center, a directional wave-

maker was used to produce planar solitary waves of specified crest lengths and heights.

The island had a base diameter of 7.2m, a top diameter of 2.2m, and it was 0.625m high

with a side slope 1 : 4. A series of gauges were distributed around the island within the

experimental setup in order to measure the free surface elevation. Here we compare the

present model with measured data, for both free surface elevation at five wave gauges

specified and maximum run-up around the island. It should be mentioned that, the

waves generated in the laboratory are dispersive hence this constitutes an almost ideal
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test for the accuracy of the present model.

In our numerical model the computational domain was for (x, y) ∈ [−5, 28m] ×

[0, 30m]. At the beginning of each simulation the propagating solitary wave was ini-

tially centered at x = 0m, with its shape given again by the fourth-order sech−profile

solution from [179]. Sponge layers with width Ls = 3m were imposed at the upstream

and downstream boundaries of the computational domain while wall boundary condi-

tions were imposed at side walls. Two cases were reproduced by generating two different

incoming waves in a constant depth h = 0.32m. The first (case B) is with A/h = 0.09m

and the second (case C) with A = 0.18m. These values are slightly lower than the target

experimental ones because they have been chosen to better represent the recorded data

at WG2 downstream of the wavemaker and thus the incident wave conditions to the

conical island [108, 67, 187, 164]. Bed friction is neglected following [26, 86], based on

the findings in [104], where it was noted that, the computed results are not sensitive

to the surface roughness coefficient due to the steep 1:4 slope of the conical island.

When the length of an incoming wave in the long-shore direction is much larger than

the base diameter of the island, as in our simulations, a serious run-up is expected at

the lee side of the island due to wave refraction around the island that generates two

trapped waves. For the experiments with A/h = 0.09 it was reported in [161] that wave

breaking occurred locally on the lee side of the island where the waves collide, whereas

with A/h = 0.18 it was reported that wave breaking occurred every where around the

island. However, the wave breaking was not too energetic and was characterized as a

gentle spilling in [28] and as it will be demonstrated next it does not seems to have a

large effect on the numerical results.

For both cases, and after an initial refinement (enrichment), to represent the conical

island, the mesh produced N = 40, 855 nodes with maximum edge length equal to 0.2

and minimum 0.07. The grid used is an Orthogonal (Type II) one. Part of the final

mesh can be seen in Figure 7.8 and wave gauge locations. Wave Gauges (WG) 6 and

9 are located near the front face of the island, with WG 9 situated very near the initial

shoreline. WG 16 and 22 are also located at the initial shoreline, where WG 16 is on

the side of the island and WG 22 on the lee side. The actual gauges position in the

physical domain where (6.82, 13.05), (9.36, 13.80), (10.36, 13.80), (12.96, 11.22) and

(15.56, 13.80) respectively. The CFL value used in this case was set equal to 0.6. The

calculated εwd ≈ 5 · 10−6
for this case.
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Figure 7.8: Runup of solitary waves on a conical island: mesh and wave gauge locations

Figs 7.9 and 7.10 present a sequence of screenshots, for case B and C respectively,

depicting the evolution of the solitary waves as they hit the circular island and show the

refraction and trapping of the solitary waves over the island slope. It can be observed

that the incident solitary waves generate an initial high run-up in the front side of the

island and we emphasize here the absence of motion around the island up to this time.

Without utilizing the well-balance wet/dry front treatment presented in Section 5.3 the

model would have artificially initiated unphysical motion over the wet/dry interface

corrupting the numerical solution. After the maximum magnitude has been reached,

the wave runs down the inundated area back to the initial waterline while a portion of

the refracted waves propagates around the island towards the lee side, generating two

trapped waves at each side of the island. After a short time, these two waves collide at

the lee side generating the second high runup. Then, these waves pass through each

other and go further propagating around the island. The free surface is rather smooth

with indistinguishable frequency dispersion before the wave wraps around the island.

As the solitary wave travels down the basin, high-frequency dispersive waves become

evident around the island especially on the lee side. Test case C with A/h = 0.18 provides

a vivid depiction of the generation and propagation of the dispersive waves. Fig. 7.10

shows the generation of the first group of dispersive waves as the trapped waves wrap
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around the island and collide on the lee side. After the collision, the second group of

dispersive waves is generated due to energy leakage from the two trapped waves that

continue to wrap around to the front. The interaction of the first and second groups

of dispersive waves generates a mesh-like wave pattern behind the island. Similar

observations and results where presented in [187]. It should be noted here that these

high-frequency dispersive waves can not be reproduced with a NSWE model see for

example [125].

The wave gauges were used to record the transformations of the solitary wave around

the island in terms of the free surface elevation and phase speed. With reference to

Fig. 7.11 the computed and measured time series at WGs 6, 9, 16 and 22 are pre-

sented. These gauges provide sufficient coverage of the representative wave conditions

in the experiment. The measured data at WG 2 provided a reference for adjustment

of the timing of the computed waveforms [187]. For both cases, the numerical results

show a very good agreement with the measured time series including the depression

(at the rundown) following the leading wave. Deviations between the numerical and

experimental results are becoming more apparent at later times and qualitatively these

deviations are similar to those found in the literature. As it was noted in [67], the likely

reason for the observed discrepancies after the initial runup is that the front waveforms

of the experimental solitary wave were generated more accurately than the rear, which

also included a spurious tail, as has been discussed previously in [28, 88]. The model

accurately describes the phase of the peak, but slightly overestimates the leading wave

amplitude at WG 9 for both cases and WG 22 for case B. These small discrepancies are

very likely due to dissipative breaking effects (especially for case C), which are not ac-

counted for in the present model. However, it does not seem that the effects of breaking

affected the stability of our model and the inundation around the island, as it can be

observed in Fig. 7.11(b) from the results obtained for WG 22.

The maximum run-up is compared with the measured values in Fig. 7.12. For

both test cases the match between the computed and measured run-up around the

island is very accurate, and is similar or even better to that achieved in previous cited

references. The runup on the lee side of the island, caused by the collision of the edge

waves circling the island, is well captured for both cases. For case B, as emphasized in

[104], the maximum run-up measured at the lee side is actually of the same order of

magnitude to that at the front side, but focused on a small area. Our numerical results



190 CHAPTER 7. NUMERICAL TEST AND RESULTS IN TWO DIMENSIONS

Figure 7.9: Evolution of the solitary wave around the conical island for A/h = 0.09 (case

B)
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Figure 7.10: Evolution of the solitary wave around the conical island for A/h = 0.18
(case C)
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(a) (b)

Figure 7.11: Time series of surface elevation at wave gauges around the conical island:

(a) A/h = 0.09; (b) A/h = 0.18
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agree with this observation. The inundated area during the run-up is much wider at

the front of the island, where almost the entire front is effected, than the lee side but

the maximum amplitudes are almost similar.

(a) (b)

Figure 7.12: Experimental measurments and numerical runup around the conical

island with (a) A/h = 0.09 and (b) A/h = 0.181

7.5 Wave propagation over a semicircular shoal

In this test case we compare the numerical model against the experimental measure-

ments of Whalin [182] for regular waves propagating over a semi-circular shoal. This

has become a standard test case for 2D dispersive numerical models to test nonlinear

refraction and diffraction, we refer for example [114, 103, 178, 152, 63, 64, 60, 163].

Whalin carried out a set of experiments on wave trains propagating over a semicircular

shoal to study the focusing effect induced by the bottom topography. The wave tank

was of size 25.6m× 6.096 and its middle portion consisted in a semi-circular shoal lead-

ing the water depth to decrease from 0.4572 m (at the wavemaker) to 0.1524m (at the

end of the tank). The water depth is described by

h(x, y) =


0.4572 x ≤ 10.67 − Λ(y),

0.4572 + 0.04(10.67 − Λ(y) − x) 10.67 − Λ(y) < x < 18.29 − Λ(y),

0.1524 x ≥ 18.29 − Λ(y),
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where Λ(y) =
√

6.096y − y2. A detail of the resulting bottom topography is shown in Fig.

7.13.

Figure 7.13: Shoaling of regular waves: semicircular bottom topography

In the present work, three sets of experiments were carried out:

(a) T = 1.0s, A = 0.0195m, h/L = 0.306, ε = 0.0426, kh = 1.922 and S = 0.456;

(b) T = 2.0s, A = 0.0075m, h/L = 0.117, ε = 0.0165, kh = 0.735 and S = 1.198;

(c) T = 3.0s, A = 0.0068m, h/L = 0.074, ε = 0.015, kh = 0.468 and S = 2.676.

To be able to apply appropriate length sponge layers, upstream and downstream, as

well as of using the wave-making internal source function from section 5.2 at x = 0m,

the dimensions of the computational domain were set to (x, y) ∈ [−10, 36m]× [0, 6.096m].

For cases of T = 1s and T = 2s, δ = 0.5 in (47) and Ls = 6m in (46) while for T = 3s,

δ = 0.8 and Ls = 9m was used. For the computations a relatively sparse triangular grid

was used, consisting of equilateral triangles with side length of 0.1m, leading to a mesh

of N = 32, 766 nodes. The CFL number used was set equal to 0.5 for all cases.

Test case (a) is a quite demanding one due to the high dispersion degree, i.e. S =

0.456. For example, the standard Boussinesq equations cannot provide a reasonable

result due to the rapidly increasing error of the dispersion relation [114]. Fig. 7.14 gives

an illustration of the fully developed 3D free surface elevation for the case of T = 1s.

In addition to the obvious shoaling, the semicircular shoal and refraction effects focus

the waves at x ≈ 21.5m along the centerline. The incoming waves are linear in the

deeper portion of the tank, but as they propagate onto the topography they become

steeper due to shoaling. After the focusing, wave energy gradually spreads out due to
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diffraction. Fig. 7.15 compares the spatial evolution of the first and second harmonics

with the experimental data, based on a Fourier analysis of the time series of the surface

elevation. The water surface elevation was measured along the centreline of the tank,

with distance 0.5m apart, and harmonic analysis was performed to obtain the amplitude

of frequency components. It can be observed that both the first and second harmonics

increase in magnitude in the focal zone and the numerical harmonics are consistent

with the laboratory data but slightly underestimate it.

Figure 7.14: Shoaling of regular waves: perspective view of the free surface (top) and

surface elevation along the centerline at t = 40s for T = 1s
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Figure 7.15: Shoaling of regular waves: comparison of the computed and experimental

results for the wave amplitudes for the first and second harmonics along the centerline

for T = 1s

The other two cases have weaker dispersive degree but a higher relative nonlinearity.

Fig. 7.16 gives an illustration of the 3D wave patterns after t = 48.5s and the surface

elevation along the centerline for the case of T = 2s. For this relative longer wave, in

addition to the obvious shoaling, the semicircular shoal focus the waves at x ≈ 19.2m

along the centerline, earlier than in the previous case. The incoming waves are linear,

but after the focusing on the shoal, higher harmonics become significant due to non-

linear effects. The energy transfer to higher harmonics is presented in Fig. 7.17 where

the spatial evolution of the first, second and third harmonics is compared with the

experimental data. As the waves propagate over the shoal, nonlinear effects from wave-

wave and wave-bed interactions become more evident, leading to the rapid growth of

the second and third harmonics. The results are consistent and in very good agreement

with the experimental data, where the modulation of the harmonic amplitude can be

seen in all cases. The results are similar or compare in favor to previous studies using

weakly nonlinear and dispersive BT models.

Fig. 7.18 gives an illustration of the fully developed wave patterns after t = 48s

and the surface elevation along the centerline for the case of T = 3s. For this test

case with nearly shallow water conditions, the combined refraction-diffraction over the

semicircular shoal becomes more complicated due to significant relative nonlinearity.



7.5. WAVE PROPAGATION OVER A SEMICIRCULAR SHOAL 197

Figure 7.16: Shoaling of regular waves: perspective view of the free surface (top) and

surface elevation along the centerline at t = 48.5s for T = 2s

The wave focusing phenomenon is again evident. The harmonic analysis presented in

Fig. 7.19 shows that the numerical results overestimate the first harmonic amplitude

and underestimate the second and third harmonics. This same trend has been pre-

sented also in most previous studies, we refer for example in [114, 103, 60, 163? ?

]. These discrepancies between numerical results and laboratory data were attributed

to the shorter evolution distance for this test case or to the presence of free reflected

waves.
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Figure 7.17: Shoaling of regular waves: comparison of the computed and experimental

results for the wave amplitudes for the first, second and third harmonics along the

centerline for T = 2s

7.6 Wave propagation over an elliptic shoal

In this test we study monochromatic wave propagation over a shoal. Berkhoff et al. [16]

carried out an experiment to study the refraction and diffraction of 2D monochromatic

waves over a complex bathymetry. Many researchers have used this test to validate

their Boussinesq models, although this is a standard test to verify models based on

the mild-slope equations. We refer for example to [179, 163, 138, 178, 132, 109]. The

model set up and bottom geometry is shown in Fig. 7.20. The wave tank was 20m

wide and 22m long, and the bottom topography consists of an elliptic shoal, over an

inclined slope of 1/50, forming a 20◦ angle with the x axis. The maximum water depth is

h = 0.45m at the wave maker, which is placed at y = −10m. The bathymetry is described

by the formula b = b f + bs, where

b f (x, y) =


(5.82 + yr)/50, if yr ≤ −5.82,

0, otherwise

(7.1)
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Figure 7.18: Shoaling of regular waves: perspective view of the free surface (top) and

surface elevation along the centerline at t = 48s for T = 3s

and

bs(x, y) =


−0.3 + 1

2

√
1 −

(
xr
5

)2
−

(
4yr
15

)2
, if

(
xr
4

)2
+

(
yr
3

)2
≤ 1,

0, otherwise,
(7.2)

where xr = x cos(20◦) − y sin(20◦), yr = x sin(20◦) + y cos(20◦). The incoming wave has

period T = 1s and amplitude A = 0.0232m while nonlinearity is ε = 0.3 and Stokes

number is S = 1.13. Surface elevation was measured at sections xm = 0 and ym =
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Figure 7.19: Shoaling of regular waves: comparison of the computed and experimental

results for the wave amplitudes for the first, second and third harmonics along the

centerline for T = 3s

[1.0, 3.0, 5.0, 7.0, 9.0] as shown in Fig. 7.20 and the mean wave height is computed.
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Figure 7.20: Bottom topography and position of experimental sections for the wave

propagation over an elliptic shoal test case

The computational domain is [−10, 10] × [−13, 15]. The grid consists of triangles
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with edge size of 0.1m and has been refined in the region of the shoal with hN = 0.05.

The sponge layers of 2.5m width, are placed at the top and the bottom of the domain

and a CFL value of 0.3 is used. The simulation period is 50s and the ten last waves are

employed to estimate wave height, using the zero-up crossing technique.

The results normalized by the incoming wave amplitude are reported to Fig. 7.21.

The agreement between the numerical results and the experimental data are quite

satisfactory and comparable to the results found in the literature [179, 163, 138, 178,

132, 109]. Wave’s focusing occurs behind the shoal, due to refraction and wave height

is well reproduced. In section 5 (see Fig. 7.20) the maximum amplification factor is well

predicted instead to other results in the literature [163, 179] which is underestimated.

These results demonstrate that wave refraction and diffraction can be well simulated

by the numerical model.

7.7 Solitary wave run-up on a plane beach

The below test cases are an extension of one dimensional test cases described in Section

4.4. The incident wave height for the case considered here is A/h = 0.28. As described

before, the wave broke strongly both in the run-up and the run-down phases of the

motion. The 2D topography of the problem in two dimension has the form

b(x, y) =


−x tan β, x ≤ cot β

−1, x > cot β
(7.3)

A solitary wave is placed at point that is located at half wavelength from the toe of the

beach. The initial surface profile for η and velocity u (with v = 0) was computed again

with the semi-analytical solution from [179]. Also, a Manning coefficient of nm = 0.01

is used in order to define the glass surface roughness used in the experiments. We

consider a computational domain of (x, y) ∈ [−20, 60m]× [0, 0.8m]. The numerical model

use a triangular grid consisting of equilateral triangles with side length of hN = 0.05m

leading to a mesh of N = 30, 428 nodes, the CFL number is Cr = 0.35 and a sponge layer

is applied offshore with length of 5m. The threshold value is εwd = 1.d − 5

Fig 7.22 and 7.23 compares the measured surface profiles and the models results

for different non-dimensional times. Numerical results using the hybrid wave breaking

model 6.6.2 (with ∂tη
(I) = 0.55

√
gh and ∂tη

(F) = 0.15
√

gh) and the eddy viscosity model
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Figure 7.21: Wave diffraction over an elliptic shoal. Comparison of the computed

average wave height with the experimental data [16] in sections 1-5 and 7

6.6.1 are simultaneously presented. Until time t
√

g/h = 10 the solitary propagates

through the shore and the two models are identical, as expected, since wave breaking

starts around t
√

g/h = 15. The experimental wave breaks around t
√

g/h = 20. The

numerical solution for the new hybrid model, is represented like a bore storing the water
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spilled from the breaking wave behind the front. We can see the different approaches

of the two wave breaking models. In the eddy viscosity model the wave breaking is

simulated as a triangular bore. The numerical results agree well with the experimental

data. Similar behavior has been observed by other researchers too [189, 47, 108]. At

time t
√

g/h = 25 the bore collapses at the shore and the results shows good qualitative

agreement except the front face of the bore which is due to the different bore head

at breaking time. After that the wave starts to run-up. The time of maximun runup

occurs at t
√

g/h = 45. up to that time the computed solution fully recovers due to the

volume conservation in both models. As the water recedes a breaking wave is created

at t
√

g/h = 55 near the still water level. The numerical solution is approximated as a

hydraulic jump. According to Kennedy et al. [93] the largest disadvantage of the eddy

viscosity model is that, in some cases, such as stationary hydraulic jumps, breaking

initiation is not recognized. For that reason oscillations at the numerical solution of

the eddy viscosity model where observed after t
√

g/h = 55 and the solution became

unstable. Thus, no results for this model are include in Fig. 7.23 for times t
√

g/h = 70

and t
√

g/h = 80. Zelt [189] has also mentioned that it might also be necessary to

treat that backwash bore by a completely different breaking algorithm in place of the

artificial viscosity model. On the other hand, the new hybrid breaking model has better

agreement with the experimental data. Although the numerical scheme used is of

third-order spatial accuracy, the numerical results are very similar to those obtained

by the 1D FV/FD scheme (see Section 4.4) which is fourth order formally in space.

Figure 7.24 shows distinct runup regimes for breaking and non-breaking waves

where maximum vertical runup is scaled by the water depth. Both measure and com-

puted runup results along with the theoretical runup law of Synolakis [157] are de-

picted. The current predictions are in close agreement with the experimental data

for breaking and non-breaking events. There is a distinct transition between the two

events, with the data to the right of the transition represent spilling and plunging break-

ers. Our model simulates the runup of plunging breakers extremely well indicating that

the proposed wave breaking treatment dissipates correctly the energy, associated to the

wave breaking, providing stable results without implementing artificial smoothing or

filtering.
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Figure 7.22: Free surface elevation of solitary wave run-up on a plane beach for A/d =

0.28 (cont)

7.8 Breaking waves on a sloping beach

Hansen and Svendsen [79] performed a number of regular wave test on plane slopes

in order to study wave shoaling and breaking on a beach. Waves were generated over

a 0.36m horizontal bottom, propagated shoaled and broke over a slope of 1 : 32.26.

Multiple tests were performed including plunging breakers, plunging-spilling breakers

and spilling breakers and many authors have used the experimental data for model

validation. We refer for example to [93, 164, 147, 90, 48, 175].

Two of these experiments, producing breaker types ranging from gentle spilling

to strong plunging, are recreated numerically, described in Table 7.2. We consider

T (s) regular wave’s period, H(m) the incident wave height and S the corresponding

Stokes number. The computational domain is 52m long and 1m wide were (x, y) ∈
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Figure 7.23: Free surface elevation of solitary wave runup on a plane beach for A/d =

0.28
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Figure 7.24: The normalized maximum runup of solitary waves up a 1:19.85 beach ver-

sus the normalized wave height. Solid line and circles denote computed and measured

data. Dashed line denote the runup law.
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[−26, 26m] × [0, 1m]. For the computation a triangular grid was used, consisting of

equilateral triangles with side length hN = 0.025, leading to a mesh of N = 49, 956

nodes. The CFL value used was 0.35 and γ = 0.6. A sponge layer of Ls = 10m is applied

at the offshore boundary of the domain and the wave-making internal source function

is used at a distance 14.78m of the toe of the beach. Bottom friction is not considered

in this test case. The free surface elevation is reordered at gauges which are placed

every 0.1m along the center-line. The time series are analyzed evaluating the mean

wave height and the position of the mean water level (MWL). The numerical results are

compared to the experimental data. Figure ?? shows computed and measured wave

heights and mean water level as the wave propagates up the slope.

Table 7.2: Experimental wave characteristics for Hansen and Svendsen Tests.

Test T (sec) H(m) S Breaking type

031041 3.333 0.043 17.5588 Spilling-plunging

051041 2.0 0.036 4.8077 Spilling

The computational domain is 52m long and 2m wide. The sloping beach starts at a

distance of 26m from the offshore boundary and the internal wave generator has been

placed at a distance of 14.78m from the toe of the beach (see Fig. 7.25). A sponge

layer is placed in front of the offshore boundary and for the cases considered here

Ls = 10, 10.4m for Test 041041,051041 respectively. For the computation a triangular

grid was used, consisting of equilateral triangles with side length of 0.5m, leading to a

mesh of N = 24, 996 nodes. The CFL number used was set to 0.3 and δ = 3.0 in all

cases.

Figure 7.25: Definition sketch of the numerical domain for the test cases of Hansen

and Svendsen [79]

Fig. 7.26 illustrates the wave-by-wave treatment and the lNS W area along the cen-

terline for our hybrid model and for test case 031041, at two time instances. As they
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propagate shore-word, the waves gradually steepen, due to shoaling, and the surface

variation criterion flags for breaking first. After a while the waves are fully broken and

energy is dissipated while propagating shore-word leading to a progressive decrease of

the wave breaker heights and front slopes. The surface variation criterion is active on

each bore front until the fronts reach the shoreline. Individual breaking fronts can be

seen as they are tracked by the model.
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Figure 7.26: Spatial snapshots, along the centerline, of regular waves over a slop-

ing beach with the flow between two consecutive vertical lines governed by the NSW

equations

The numerical results of the hybrid model and the eddy viscosity one, using ∂tη
(I) =

0.5
√

gh and ∂tη
(F) = 0.15

√
gh, are compared to the experimental data in Fig. 7.27 for

case 031041. The results show the computed and measured wave heights and MWL as

the wave propagates shoal and breaks up the slope. Both sets of wave breaking formu-

lations predict reasonably well the location of the breaking event, that happens slightly

earlier compared to the experimental data. This is due to the overshoaling produced in

the numerical wave, which is closely connected to the nature of the weakly nonlinear

weakly dispersive BT model used here, [93]. The differences in the wave height predic-

tion at the swash zone, between the two models is attributed to the different nature of

the wave breaking mechanisms. The hybrid mechanism represents the breaking wave

as a shock storing the water spilled from the breaking wave behind the front while

the eddy viscosity formulation initiates a diffusion coefficient added to the momentum



208 CHAPTER 7. NUMERICAL TEST AND RESULTS IN TWO DIMENSIONS

equation which models the turbulent mixing and dissipation caused by breaking. Wave

heights in the inner surf zone tend to be over predicted by the eddy viscosity model and

this has also been observed in [93, 147]. In the wave set-up results, a small discrep-

ancy between the measured data and the numerical results can be observed and its is

due to the transformation of the regular wave, as expected, since the Stokes number

in this case is 17.558 and is far away of the limits of the BT equations of Nwogu.
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Figure 7.27: Computed and measured wave heights(top) and set-up (bottom) for the

Hansen and Svendsen plunging breaker 031041

In Fig. 7.28, results of the hybrid model and the eddy viscosity one are compared to

the experimental data in for case 051041. Wave shoaling is again predicted moderately

well for both the hybrid and the eddy viscosity model, along with a somewhat premature

breaking. Again, the numerical prediction of the wave height in the inner surf zone is

better for the hybrid model compared to the eddy viscosity one. The same behavior can

be observed on the set-up computations.
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Figure 7.28: Computed and measured wave heights(top) and set-up (bottom) for the

Hansen and Svendsen spilling breaker 051041

7.9 Regular wave propagation over a submerged bar

Next, and for 2D, the regular wave propagation over a submerged bar test is imple-

mented. This test is extensively described (for 1D) in section 4.5 where test’s configura-

tion can be found. The experimental set-up was conceived to investigate the frequency

dispersion characteristics and nonlinear interaction of complex wave propagation phe-

nomena. As the wave propagates over a submerged bar multiple transformations occur,

such as non-linear shoaling, amplification of bound harmonics and wave breaking.Two

case are implemented using the 2D unstructured FV model. Case (a) and (c) (see section

4.5).

For the test case (a), and to be able to apply appropriate length sponge layers, up-

stream and downstream, as well as of using the wave-making internal source function

from Section 6.5 at x = 0m, the dimensions of the computational domain were set to

(x, y) ∈ [−10, 30mm] × [0, 0.8m]. δ in the wave generation function is 0.8 and Ls = 6.5m.

For the computation a triangular grid was used, consisting of equilateral triangles with

side length of 0.05m, leading to a mesh of N = 72, 679 nodes. The CFL number used

was set equal to 0.4. The free-surface elevations are recorded at eight gauges over and
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behind the bar as in the laboratory experiment. They have been placed along the flume

at x = 2.0, 5.7, 10.5, 13.5, 15.7, 19.0 m. The definition of the computational domain

along the centerline as well as the wave gauge locations are shown in Fig. 4.15. In

the wave evolution for the first non-breaking case (a) and, regular waves are generated

and propagated without changing their shape, until they reach the front slope. On the

slope the waves shoal since nonlinear effects cause the waves to steepen. The wave

amplitude grows and the surface profile becomes asymmetric. The back slope causes

the waves to breakup into independent waves traveling at their own speed. Hence,

bound higher harmonics are developed along the front slope, which are then released

from the the carrier frequency on the lee side of the bar as the water depth param-

eter kh increases rapidly. Fig. shows the results for case (a). The numerical results

provide good agreement with the experimental data for WG 4 and 5, reproducing the

wave transformations over the front slope and immediately behind the front slope. The

numerical results maintain relatively good agreement with the experimental data at WG

6-8 over the crest and the lee-slope, where the waveform undergoes significant trans-

formation with high frequency dispersion. Discrepancies arise behind the bar over the

flat bottom between numerical and experimental data for WG 9-11, where higher har-

monics are released. As it was commented in [142], a spectral analysis shows evidence

of fourth and fifth-order harmonics of 6 < kh < 10, which cannot be (fully) resolved

by the governing equations, but do not contain significant energy to affect the overall

performance of the model.

For the test case (c) the dimensions of the computational domain were set to (x, y) ∈

[−26, 26m] × [0, 0.8m] with sponge layer widths is set to Ls = 10.m at both ends of the

computational domain. For the computation a triangular grid was used, consisting of

equilateral triangles with side length of hN = 0.014m, leading to a mesh of N = 25, 078

nodes. The CFL number used was set equal to 0.35 with the value of γ now set to 0.3.

All other computational parameters are like before. Since we are interested only on the

breaking behavior of the model and due to the inability of the BT model to fully resolve

the higher harmonics released at the lee side of the bar [92], only four wave gauges

were placed at x = 6, 12, 13 and 14m respectively as shown in Fig. ??, along with the

problem’s geometry along the centerline.

In the wave evolution, waves shoal along the front slope, since nonlinear effects

cause the waves propagating along this slope to steepen and broke at the beginning of
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(a) (b)

Figure 7.29: Time series of surface elevation at wave gauges for periodic wave propa-

gation over a submerged bar

the bar crest. Breaking is classified as plunging. In the lee side, the back slope causes

the wave train to breakup into independent waves traveling at their own speed. Hence,

bound higher harmonics are developed along the front slope, which are then released

from the carrier frequency on the lee side of the bar as the water depth parameter kh

increases rapidly. Fig. 7.30 illustrates the wave-by-wave treatment and the lNS W area
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along the centerline for our hybrid model at different time instances (covering roughly

one wave period). The onset of breaking is correctly predicted close to the beginning

of the bar crest and continues along the flat of the bar leading to a wave height decay.

Individual breaking fronts can be seen again as they are tracked by the model.

Fig. 7.31 shows the computed and recorded wave forms at the four wave gauges

of interest. The numerical results of the new hybrid model are compared with those

produce by the Hybrid(ε) model and the experimental ones. The wave shape is well-

reproduced by the new hybrid model for all wave gauges. The wave height decay on the

top of the bar compare very well with the experimental data. The results obtained with

the Hybrid(ε) model, although they are in phase with the experimental data, overesti-

mate the predicted wave height resulting in a different wave shape at the last gauge.

These results are due to the inability of this model to dissipate correctly the wave en-

ergy of the broken waves on the top of the bar, since wave breaking ceases before all

the wave energy is dissipated as discussed in section 6.6.2. One way to overcome this

problem would have been to pre-specify the region on the bar top to be governed by the

NSW model but this can not be consider as a universal approach in the application of

this model.

7.10 Solitary wave propagation over a two dimensional

reef

The next experimental test case initially presented in [142] is on solitary wave transfor-

mations over an idealized fringing reef and examines the model’s capability in handling

nonlinear dispersive waves along with wave breaking and bore propagation. It is an

extension of the 1d test case presented in Section 4.6.2. The 2D test presented here,

include a steep slope along with a reef crest in order to represent fringing reefs, found

in tropical environments. The computational domain is (x, y) ∈ [0, 83.7m] × [0, 1.1m]

and the topography includes a fore reef slope of 1/12 a 0.2m reef crest and a water

depth h = 2.5m. The reef crest is then exposed by 6cm and submerges the flat with

h = 0.14m. This test case involves a 0.75m high solitary wave which gives a dimen-

sionless wave high of A/h = 0.3. The computational mesh used has hN = 0.05 leading

to N = 43, 563 mesh nodes. A CFL number of 0.35 was used, the wet/dry threshold

parameter εwd = 1.d − 6 and γ = 0.6. Wall boundary conditions were placed at each
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Figure 7.30: Spatial snapshots along the centerline of regular waves breaking over a

bar with the flow between two consecutive vertical lines governed by the NSW equations
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Figure 7.31: Time series of surface elevation at wave gauges for periodic wave breaking

over a bar
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boundary of the computational domain and as suggested in [141] a Manning coefficient

nm = 0.012s/m1/3
was used, to define the roughness of the concrete surface of the reef.

Experimental results for the free surface elevation were recorded at 14 wave gauges

[142] along the centerline of the computational domain.

Figs 7.32 and 7.33 compare the measured and computed wave profiles as the nu-

merical solitary wave propagates. The numerical solutions of the new hybrid BT model

is compared also with that of the NSW equations. As the initially symmetric solitary

wave shoals across the toe of the slope at x = 25.9m, it begins to skew to the front

with the NSW equations forming a vertically-faced propagating bore. Experimentally

the wave begins to break around t = 33s developing a plunging breaker on the top of

the reef crest that collapsed around t = 34.5s. Both models are mimicking the breaker

as a collapsing bore that slightly underestimates the wave height but conserved the

total mass. By time t = 35.5s the broken wave begins to travel down the back slope of

the reef crest generating a supercritical flow that displaces the initially stagnant water,

generating a hydraulic jump off the back reef and a downstream propagating bore fu-

eled by the supercritical flow mass and momentum transfer. Laboratory observations

indicated this generation of the hydraulic jump and an overturning of the free surface

off the back reef along with a turbulent bore propagating down stream. Around t = 40s

the momentum flux balances at the flow discontinuity and the hydraulic jump becomes

stationary momentarily, while the bore continues to propagate downstream. The hy-

brid model predicts correctly the phase and amplitude of the discontinuities indicating

the correct energy dissipation during wave breaking.

At subsequent times, the end wall reflects a bore back that by time t = 54s has

overtoped the reef crest generating a hydraulic jump on the fore reef and a reflected

bore at the back of the reef that travels again downstream. At this point, and as the

water rushes down the fore reef, the flow transitions from flux to dispersion-dominated

through the hydraulic jump. The hydraulic jump generates an offshore propagating

undular bore, which transforms into a train of dispersive waves over the increasing

water depth. The created bore at the fore reef propagates as a shock for the NSW

equations offshore due to the hyperbolic character of the equations, as can be seen in

Figure 7.33. The NSW model totaly smooths the results with an additional phase shift.

On the other hand, the BT model reproduces correctly the decaying undular bore as

well as the subsequent higher harmonics released at later times.
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Figure 7.32: Evolution of surface profiles and wave transformations over an exposed

reef for A/h = 0.3 and 1/12 slope
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Figure 7.33: Evolution of surface profiles and wave transformations over an exposed

reef for A/h = 0.3 and 1/12 slope
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The use of the proposed breaking criteria is critical, in this particularly challenging

test case, in order to capture the stationary and nearly stationary jumps and reflected

bores on the flow profile. The evolution of the breaking regions can be seen in Fig. 7.34.

Stationary hydraulic jumps are correctly recognized by the local slope angle criterion

in all instances. The development of an undular bore in the flow justifies the use of

the critical Froude termination criterion which correctly recognizes the non-breaking

undular bore which is resolved by the BT model as it travels in deeper waters.
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Figure 7.34: Spatial snapshots along the centerline of a solitary wave propagation over

a two-dimensional reef with the flow between two consecutive vertical lines governed

by the NSW equations

Figs 7.35 and 7.36 compare the computed and recorded surface elevation time

series at specific wave gauges. Fig. 7.35 compares the computed and recorded surface

elevation time series at the wave gauges before the reef and Fig. 7.36 after the reef.

The recorded data from the wave gauges at x ≤ 50.4m shows the effect of the dispersive

waves on the free surface. The produced train of waves over the increasing water depth

and the resulting undulations were intensified as higher harmonics were released. As
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a matter of fact, wave gauges near the toe of the slope recorded highly dispersive waves

of kd > 30 [142]. The hybrid BT model managed to reproduce these highly dispersive

waves with the correct phase and height strengths. The computational results are

comparable to those obtained by the 1D FV/FD model (see Section 4.6.2). The 2D New

Hybrid breaking model, seems to be more efficient recognizing and handling undular

bores due to the 2D nature of the solver. More over the efficiency of the wet/dry front

treatment is confirmed from the time series of the WG which is placed on the reef (at

x = 58.05m).
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Figure 7.35: Time series of the normalized free surface at the wave gauges before the

reef
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Figure 7.36: Time series of the normalized free surface at the wave gauges on top and

after the reef

7.11 Solitary wave propagation over a three-dimensional

reef

Swing and Lynett [156] performed two laboratory experiments at the O.H Hinsdale Wave

Research Laboratory of Oregon State University, to study specific phenomena, that are

known to occur when solitary waves approach a shoreline, such as shoaling, refraction,

breaking and turbulence. The basin is 48.8m long 26, 5m wide and 2.1m deep.

7.11.1 Case I.

For the first benchmark case, a complex bathymetry from x = 10.2m to x = 2.5m

consisting of a 1 : 30 is connected with a triangular reef flat submerged between 7.5cm

and 9cm below the still water level. The offshore shelf edge has an elevation of 0.71m

with the apex located at x = 12.6m. The steepest slope of the shelf is at the apex and



7.11. SOLITARY WAVE PROPAGATION OVER A THREE-DIMENSIONAL REEF 221

becomes milder moving along the shelf edge toward the basin side walls. The planar

beach continues to x = 31m and then becomes level until the back of the basin.

Seventeen wave gauges which measure the free surface elevation, three of them

are also Acoustic Doppler Velocimeters (ADVs), in alongshore and cross-shore ar-

rays which measure the velocity. Gauges 1 − 7 are located at y = 0m and x =

7.5, 11.5, 13, 15, 17, 21, 25m, gauges 8−13 are located at y = 5m and x = 7.5, 11.5, 13, 15, 17, 21, 25

and gauges 14−17 are located along x = 25m and y = 2, 5, 7, 10m.. ADV 1-3 are placed at

(13.0, 0.0)m, (21.0, 0.0) and (21.0, 5.0)m. An unstructured mesh refined along the shelf

with N = 87, 961 nodes has been created for this problem with hN = 0.1m at the refined

region. The CFL value used was 0.4 and γ = 0.6. A solitary wave of 0.39m in height

is placed along x = 5m at time t = 0s. Fig 7.37 shows a series of snapshots of the free

surface which propagates over the shallow water shelf, creating a strongly plunging

breaker. At time t = 3s the solitary propagates unchanged since the topography is

flat until x = 10m. As the wave approaches the shelf apex, breaking begins along the

center-line. The bore front propagates onshore, while the wave along the sides shoals.

Up to time t = 8s a plunging wave has been developed along the entire length of the

reef edge and a new bore has been developed at the apex of the shelf, which propagates

over and away from the sill. The flow transition into a surge moving up the initially

dry slope propagating over the reef and slope complex. At t = 16s a third bore-front

is visible further onshore and it is a portion of the first bore which has been reflected

off the top of the planar beach generating an offshore flow. Six seconds later the third

bore-front converges at the apex of the shelf as a refraction phenomenon, while the flow

at the top continues to move forward. At t = 35s and along the self edge, the offshore

flow leads to the formation of a nearly stationary hydraulic jump. The last snapshot

shows the reflection from the downstream boundary which has propagate on the slope

and a second run-up is observed.

The solitary wave as it propagates on the 3D reef is presented in Fig 7.37. Fig. 7.38

shows the time series of the computed surface elevation recorded measurements at WG

1-7, located along the center-line. The first two wave gauges show the solitary wave

as it travels in the constant depth portion of the tank and the arrival of the wave is

almost correctly predicted. Moving onshore, at WG 3, the front face of the bore-front

is approaching in a vertical shape, just prior to breaking. By the time t = 6s the bore-

front has reached WG 4 ans wave breaking has begun as revealed by the decay in wave



222 CHAPTER 7. NUMERICAL TEST AND RESULTS IN TWO DIMENSIONS

Figure 7.37: Water surface for solitary wave propagation on a 3D reef at different times
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height. At the next two gauges the height of the bore-front has decreased significantly

as it travels further onshore. The second bore-front created at the apex of the reef is

depicted in WG 3 around t = 10s and can be sown as it travels onshore and interacts

with the third one at WG 6 around t = 20s. The third bore-front is a reflected bore

created on the reef slope and ten travels off-shore. The model agrees equally well with

the measurements at the remaining wave gauges.

Fig. 7.39 shows the time series of the surface elevation for the wave gauges located

along y = 5m, while Fig. 7.40 shows the same for the wave gauges located at the edge

of the reef flat. Finally Fig. 7.41 compares recorder and computed velocity components

in the x and y directions at three of the gauges.

7.11.2 Case II.

The second benchmark cases utilizes the same topography as the previous case but with

a concert cone of 6m diameter and 0.45m height fitted to the appex of the reef between

x = 14m and 20m. Nine wave gauges where placed to measure the free surface elevation

along with three ADVs alongshore and cross-shore to measure the velocity as shown in

Fig. 7.42. Gauges 1, 2, 3, 7 where located at y = 0m and at x = 7.5, 13.0, 21.0, 25m respec-

tively, while gauges 4, 5, 6, 8 where located at y = 5m and x = 7.5, 13, 21, 25m. ADVs 1-3

are placed at (13.0, 0.0)m, (21.0, 0.0) and (21.0,−5.0)m respectively. The computational

domain is extended from x = 0m to x = −5m with a constant water depth of 0.78m.

The same unstructured mesh,with the first benchmark case, was used. The CFL value

used was 0.4 and γ = 0.6. A solitary wave of 0.39m in height is placed along x = 5m

at time t = 0s. It should be mentioned that, A/h = 0.5 in this problem which consti-

tutes a particular demanding case for the BT model used due to its high nonlinearity.

Fig. 7.43 shows the computed water surfaces at various times. At the initial stages the

wave front becomes very steep as the solitary wave advances on the self. The solitary

wave begins to break along the centerline around t = 5s, when it crosses the shelf’s

apex. By time t = 6.5s the resulting surge completely overtops the cone while the wave

along the basin’s sides continuous to shoal. By time t = 8.5s the refracted waves and

the diffracted waves collide on the shelf. The refracted waves collide at the lee side of

the cone as edge waves which propagate around the two sides of the cone. The waters

withdraws from the cone and the borefront from the diffracted wave propagates onshore

and reinforces the refracted waves from the reef edge. A new bore is created from the
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Figure 7.38: Time series of surface elevation for solitary wave propagation on a 3D reef

along the centerline
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Figure 7.39: Time series of surface elevation for solitary wave propagation on a 3D reef

along y = 5m.
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Figure 7.40: Time series of surface elevation for solitary wave propagation on a 3D reef

for the wave gauges located at the edge of the reef flat.
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Figure 7.41: Time series of cross-shore and long-shore velocity for benchmark1.
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Figure 7.42: Three-dimensional reef problem geometry along with wave gauges’s and

ADVs’s locations

drawdown of the water and collides with the refracted waves.

Fig. 7.44 presents the time series of the computed surface elevation recorded mea-

surements at WGs 1-9. At the first two gauges the arrival of the wave is almost correctly

predicted. WG 2 is located at the point where wave breaking is initiated. The collision

of the refracted and diffracted waves at the lee side of the cone is almost exactly com-

puted by the model without an over-prediction of the the wave height as can be seen

from the results in WG 3 around time t = 8s. The data and model comparisons at

WGs 4, 5, 6, 8 and 9, located at the north side of the shelf, indicate that the numerical

model predicts wave shoaling, refraction and breaking on the shelf accurately. The

onshore propagation of the diffracted waves and the subsequent water recession is well

predicted as indicated by the results at WG 7. We note her that, after time t = 40s

the numerical results start to deviate from the measurements due to late arrival of the

numerical reflected waves from the extended computational domain.

Finally, in Fig. 7.45 the velocity time series measurements are compared with the

numerical ones at the different ADVs locations. The hybrid BT model matches the u-

components of the velocity reasonably well by predicting correctly peak velocities as well

as the entire trend in time of the u− velocity profiles. The v- velocity results where not

compared with measurements from ADV 1 and ADV 2 since the measurement values

were too small, a similar observation has been made in [147]. The production of the

v-component of the velocity is well predicted by the numerical model at the location of

ADV 3. It is noted that, the measurements at ADV 3 record the initial wave’s shoaling,

breaking and refraction.
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Figure 7.43: Water surface for solitary wave propagation on a 3D reef at different times
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Figure 7.44: Time series of surface elevation for solitary wave propagation on a 3D reef
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Figure 7.45: Time series of velocity components at the different ADVs for solitary wave

propagation on a 3D reef



Chapter 8

Conclusions

As a wide number of topics have been touched upon, the conclusions from this thesis

are many. This thesis has three main parts each of them providing different concluding

remarks. The most important of these are highlighted in Section 8.1. Some recommen-

dations for further research are also provided in Section 8.2

8.1 Summary and concluding remarks

The first part of this thesis describes the development of an 1D alternative hybrid FV/FD

conservative numerical model with shock-capturing capabilities for solving Nwogu’s

and MS equations, formulated as to have identical flux terms as to the NSWE. The

application of a fourth-order conservative Godunov-type FV method for the evaluation

of the advective fluxes makes the proposed scheme shock-capturing. An improved nu-

merical treatment for the topography source terms and the conservative computation

of wet/dry fronts results to a well-balanced scheme. Further multiple wave break-

ing models for the BT equations presented, introducing also a new more stable hybrid

BT/NSWE modeling for breaking waves. This new approach is of the hybrid-type mean-

ing that the strategy proposed is that of switching to NSWE, by locally suppressing the

dispersion terms in the vicinity of a breaking wave. A stable methodology is developed

for the smooth transition between the two models within our FV framework, when wave

breaking occurs in a numerical simulation. With this methodology, any non-physical

mix of the two models is avoided and there is no need for any numerical filtering to be

applied.

Special attention was paid to comparing both BT models to the NSWE confirming
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that for long wave’s that don’t break, differences between NSWE and BT models where

small. Although the NSWE can be suefficient in some cases to predict maximum

runup values and the general characteristics of propagating waves, the two BT models

provided considerable more accurate results for highly dispersive waves over increasing

water depth. The two models showed a good agreement with "challenging" experimental

data, with Nwogu’s equations to slightly perform better behavior than MS equations.

The second part of this work consists of comparing two types of FV schemes for the

2D NSWE. A CCFV and a NCFV one. Both FV approaches are widely used nowdays

individual advantages of each of the two approaches have been extensively presented

in the literature but except [51] and this work there exists no consensus about which

approach offers more advantages. We compare these two FV schemes and study their

relative performance, robustness and effectiveness, with a controlled environment for a

fair and extensive comparison. Both schemes compared to analytical solutions and con-

vergence studies have been performed along with grid refinement studies. Concluding

remarks from this comparison can be found in Section 5.7.4. The most advantageous

of them is that for the CCFV approach different convergence behavior is exhibited (with

an order reduction) for grids where the center of the face does not coincide with the

reconstruction location, while the NCFV scheme exhibited identical convergence be-

havior on all grids. Further, the effects of the grid’s geometry at the boundary can lead

to order reduction for the CCFV scheme (if the center of the face does not coincide with

the reconstruction location), even for good quality grids.

Thereafter and using the BT equations of Nwogu and the NCFV approach, a new

2D unstructured FV numerical model has been developed for the aforementioned BT

equations. To the best of our knowledge this is the first time that this FV approach is

applied in extended BT equations for unstructured triangular meshes. The edge-based

structure adopted can provide computational efficiency, since most of the geometric

quantities needed can be calculated in a pre-processing stage. The BT equations formu-

lated as to have identical flux terms as to the NSWE. The conservative formulation and

the higher order FV scheme enhance the applicability of the model without altering its

dispersion characteristic. The well-balanced topography and wet/dry front discretiza-

tions provided accurate, conservative and stable wave propagation and run-up. Using

the NCFV formulations we impose boundary conditions through weak formulation and

no ghost cells have to be used.
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The numerical model was validated against standard test cases of non-breaking/breaking

wave propagation over variable topographies with emphasis to comparisons with ex-

perimental results. We observed that the 2D numerical problems presented in Chapter

7 have similar or better results than the 1D problems presented in Chapter 4. We must

keep in mind that the numerical scheme in 1D is of fourth-order accurate while the one

in 2D is of third-order accurate. In all test cases, the presented results were in good

agreement with experimental data and previously published solutions within the limits

of applicability of the equations.

Different types of wave breaking mechanisms have implemented for the BT model

presented. The New Hybrid model has been extended to 2D and was proved more

stable and accurate than others applied in this work. A certain combination of criteria

is established to characterize the initiation of wave breaking based on the free surface

elevation and the local slope angle, with only few parameters needing to be calibrated

depending on the test case. More precisely, in the test cases considered in this work,

only the parameter that governs the surface variation criterion had to be adjusted and

only for the case of regular waves propagating over a submerged bar.The complementary

nature of these two criteria was proven efficient and robust in tracking broken wave

fronts as well as stationary breaking or partially breaking hydraulic jumps. In addition

the methodology for the smooth transition between the two models, when wave breaking

occurs is extended in 2D. Like before no numerical filtering is applied. In conclusion it

is relatively straight forward to extend existing SWE codes that use (unstructured) FV

schemes as to include dispersion characteristics for deeper water simulations.

8.2 Future Work/Recommendations

We conjecture that the present approach can be applied to other BT models (w.g.

Madsen and Sørensen [112],standard Boussinesq). Furthermore, it would be relatively

straight forward to extend existing SWE codes that use (unstructured) FV schemes as

to include dispersion characteristics for deeper water simulations. The conservative

form of the equations along with a conservative FV scheme is ideal for shock capturing

when moving from deeper to shallow water.

For deeper water the weakly nonlinear, weakly dispersive equations (like Nwogu’s

and MS) can be prove inadequate. See for example the performance of the equations
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in the test cases 4.5 and 7.9 (wave propagation over a submerged bar), at the back of

the bar where kh grows and its out of the range of the equations. So extension of the

proposed methodology to highly nonlinear BT models can be performed.

Further the quest for extending to even higherorder spatial accuracy for FV schemes

that combine state of the art techniques for the leading order terms such as, Riemman

solvers, higher order reconstruction, well-balanced discretizations and wet/dry front

treatment is an ongoing process.

The algorithms presented here and all the test cases executed as a single process

(on a single core) on a 2.5Gz Intel Core i5 processor. Ideally, they could be implemented

on parallel platforms, allowing more rapid calculations, especially for real life problems,

in which the computational domains are large.



Appendix A

Initial conditions

Some solitary wave solutions for extended Boussinesq models are presented next.

These solutions have been used as initial conditions from the numerical models pre-

sented in this work, since no-analytical solutions for the equations of Nwogu [127] or

for those of MS [114] exist.

Wei et al. [179] have derived an approximate solitary wave solution for the BT

equations of Nwogu [127]. Using the 1D Nwogu’s equations in dimensionless form in

constant depth h we denote µ = kh and ε = A/h. Substituting the velocity potential

to the equations, retaining terms that are consistent with the BT equations and after

some calculations we obtain:

η = A1sech2(B(x −Ct)) + A2sech4(B(x −Ct)) (A.1)

ua = Asech(B(x − ct)) (A.2)

where

A =
C2 − 1
εC

, (A.3)

B =

{
C2 − 1

4µ
[
(α + 1/3) − αC2]}1/2

, (A.4)

A1 =
C2 − 1

3ε2 [
(α + 1/3) − αC2] , (A.5)

A2 = −
(C2 − 1)2

2εC2

[
(α + 1/3) + 2αC2

][
(α + 1/3) − αC2] , (A.6)
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C can be found solving the equation:

2α(C2)3 − (3α + 1/3 + 2αε) (C2)2 + 2ε (α + 1/3) (C2) + α + 1/3 = 0. (A.7)

The corresponding dimensional expressions for A, B, A1, A2 are:

A =
C2 − gh

C
, (A.8)

B =

{
C2 − gh

4
[
(α + 1/3) gh3 − αh2C2]}1/2

, (A.9)

A1 =
C2 − gh

3
[
(α + 1/3) gh − αC2]h, (A.10)

A2 = −
(C2 − gh)2

2ghC2

[
(α + 1/3) gh + 2αC2

][
(α + 1/3) gh − αC2] h. (A.11)

Synolakis [157] used the following surface profile to derive a result for the maximum

runup of a solitary wave climbing up a sloping beach. A solitary wave centered at x = X1

at t = 0 has the following surface profile:

η(x, 0) =
A
h

sech2 (γ(x − X1)) , (A.12)

where

γ =

√
3A
4h3

and using the lowest-order approximation, the horizontal depth-averaged velocity is

given as:

u =

√
gh
h

Asech2 (γ(x − X1)) . (A.13)

This approximation has been used by [163] as an initial condition to validate their

model.
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propagation in shallow water: A finite element model. Int. J. Num. Meth. Fluids,

16:447, 1993.

[5] E. Audusse and M.-O. Bristeau. A well-balanced positivity preserving second

order scheme for shallow water flows on unstructured meshes. J. Comp. Phys.,

206:311, 2005.

[6] F. Aureli, P. Maranzoni, and C. Ziveri. A weighted surface-depth gradient method

for the numerical integration of the 2D shallow water equations with topography.

Advances in Water Resources, 31:962, 2008.

[7] T. J. Barth. Aspects of unstructured grids and finite volume solvers for the Euler

and Navier-Stokes equations. In Special Course on Unstructured Grid Methods

for advection Dominated Flows, AGARD report 787, 1992.

[8] T. J. Barth. Numerical Methods and Error Estimation for Conservation laws on

Structured and Unstructured Meshes. VKI Computational Fluid Dynamics Lecture

Series, 2003.

[9] T. J. Barth and D. C. Jespersen. The design and application of upwind schemes

on unstructured meshes. AIAA paper 89-0366, 1989.

237



238 BIBLIOGRAPHY

[10] T. J. Barth and M. Ohlberger. Finite volume methods: foundation and analysis.

In E. Stein, R. de Borst, and T.R. Hudges, editors, Encyclopedia of Computational

Mechanics. John Wiley and Sons Ltd., 2004.

[11] E. Barthelemy. Nonlinear shallow water theories for coastal waves. Surveys in

Geophysics, 25(3-4):315–337, 2004.

[12] D. R. Basco and I. A. Svendsen. Modeling turbulent bore propagation in the sur-

fzone. In Proceedings of the 19th International Conference on Coastal Engineering,

1984.

[13] P. Batten, C. Lambert, and D. M. Causon. Positively conservative high-resolution

convection schemes for unstructured elements. Int. J. Num. Meth. Fluids,

39:1821, 1996.

[14] L. Begnudelli and B. F. Sanders. Adaptive Godunov-based model for flood simu-

lation. J. Hydraul. Eng.- ASCE, 134:714, 2008.

[15] M. Berger, M. J. Aftosmis, and S. M. Murman. Analysis of slope limiters on

irregular grids. AIAA paper 2005-0490, 43rd AIAA Aerospace Sciences Meeting

and Exhibit:Reno, Nevada, 2005.

[16] J. C. E. Berkhoff, N. Booy, and A. C. Radder. Verification of numerical wave

propagation models for simple harmonic linear water waves. Coast. Eng., 6:255–

279, 1982.

[17] A. Bermudez, A. Dervieux, J. A. Desideri, and M. E. Vázquez. Upwind schemes

for the two-dimensional shallow water equations with variable depth using un-

structured meshes. Comput. Methods Appl. Mech. Eng., 155:49, 1998.

[18] A. Bermudez and M. E. Vázquez-Cendón. Upwind methods for hyperbolic con-

servation laws with source terms. Computers and Fluids, 23:1049, 1994.

[19] S. Betji and J. A. Battjes. Experimental investigations of wave propagation over

a bar. Coastal Engineering, 19:151, 1993.

[20] S. Betji and K. Nadaoka. A formal derivation and numerical modelling of the

improved Boussinesq equations for varying depth. Ocean Engineering, 23-8:691–

704, 1996.



BIBLIOGRAPHY 239

[21] H. B. Bingham, P. A. Madsen, and D. R. Fuhrman. Velocity potential formulations

of highly accurate Boussinesq-type models. Coast. Eng., 56:467, 2009.

[22] J. Blazek. Computational Fluid Dynamics. Elsevier, Amsterdam, 2006.

[23] P. Bonneton, E. Barthelemy, J. D. Carter, F. Chazel, and S. T. Cien. Recent

advances in Serre-Green naghdi modelling for wave transformation, breaking

and runup processes. European Journal of Mechanics - B/Fluids, 30:589–597,

2011.

[24] A. G. L. Borthwick, M. Ford, B. P. Weston, P. H. Taylor, and P. K. Stansby.

Solitary wave transformation, breaking and run-up at a beach. In Proceedings of

the institution of Civil Engineers, Maritime Engineering 159, Issue MA3, September

2006.

[25] A. G. L. Borthwick, M. Ford, B. P. Weston, P. H. Taylor, and P. K. Stansby. Solitary

wave transformation, breaking and run-up at a beach. Maritime Engineering,

159:97–105, 2006.

[26] S. F. Bradford and B. F. Sanders. Finite-volume model for shallow-water flooding

of arbitary topography. J. Hydraul. Eng.-ASCE, 128:289, 2002.

[27] R. Briganti and N. Dodd. Shoreline motion in nonlinear shallow water coastal

models. Coast. Eng., 56:495, 2009.

[28] M. J. Briggs, C. E. Synolakis, G. S. Harkins, and D. R. Green. Laboratoty ex-

periments of tsunami runup on a circular island. Pure Appl. Geophys., 144:569,

1995.

[29] M. O. Bristeau and B. Coussin. Boundary conditions for the shallow water equa-

tions solved by kinetic schemes. Raport de Recherche No 4282, INRIA, 2001.

[30] M. Brocchini, R. Bernetti, A. Mancinelli, and G. Albertini. An efficient solver for

nearshore flows based on the WAF method. Coastal Eng., 43:105, 2001.

[31] M. Brocchini and N. Dodd. Nonlinear shallow water equations modeling for

coastal engineering. J. Waterway, Port, Coastal, Ocean Eng., 134:104, 2008.



240 BIBLIOGRAPHY

[32] M. Brocchini, R. S. Svendsen, R. S. Prasad, and G. Bellotti. A comparison of two

different types of shoreline boundary conditions. Comput. Methods Appl. Mech.

Eng., 191:4475–4496, 2002.

[33] P. Brufau, P. Garcı́a-Navarro, and M. E. Vázquez-Cendón. Zero mass error using

unsteady wetting-drying coditions in shallow flows over dry irregular topography.

Int. J. Num. Meth. Fluids, 45:1047–1082, 2004.

[34] P. Brufau, M. E. Vázquez-Cendón, and P. Gracı́a-Navarro. A numerical model for

the flooding and drying of irregular domain. Int. J. Num. Meth. Fluids, 39:247,

2002.

[35] S. Bunya, E.J. Kubatko, J.J. Westerink, and C. Dawson. A wetting and drying

treatment for the Runge-Kutta discontinuous Galerkin solution to the shallow

water equations. Comput. Methods Appl. Mech. Eng., 198:1548, 2009.

[36] J. Burguete, J. Murillo, and P. Garcia-Navarro. Numerical boundary conditions

for globally mass conservative methods to solve shallow-water equations and

applied to river flow. Int. J. Num. Meth. Fluids, 51:585, 2006.

[37] G. F. Carrier and H.P. Greenspan. Water waves of finite amplitude on a sloping

beach. J. Fluid Mech., 4:97–109, 1958.

[38] M. J. Castro, A. M. Ferreiro, J. A. Garcı́a-Rodriguez, J. M. González-Vida,
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