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Abstract 

4th-grade glioma (Glioblastoma multiforme) is the most aggressive type of brain cancer. 

Several mathematical models have been developed towards identifying the mechanism of 

tumor growth. In this thesis we try to figure out the main mathematic and implementation 

issues concerning a 3-dimensional (3D) model for appropriately simulating glioma growth in 

brain. A brief review on the models that have been proposed during the last decades for 

simulating glioma growth is initially provided. Afterwards a deep study is carried in the 

mathematical body of a 3D diffusive model, which exploits local tissue anisotropy and 

heterogeneity in brain with differentiated cancer cell proliferation schemes. Therefore, a 

virtual controllable case is presented for evaluating the accuracy, simulation time and 

storage & computational consistency of the various numerical schemes that have been 

implemented. Continuing, radiotherapy is introduced into the model and some first 

experimental results are presented. Concluding, we show a model for exploiting statistical 

tissue information and diffusion tensors extracted from atlases of healthy brain tissue. Lastly, 

after introducing the gross tumor volume, we present the proliferation – invasion – 

hypoxia – necrotic – angiogenesis (PIHNA) model and some in vivo experiments in mice. 

  



 
 

 

  



Περίληψη 

Το γλοίωμα 4ου βαθμού (πολύμορφο γλοιοβλάστωμα) είναι η πιο επιθετική μορφή 

εγκεφαλικού όγκου. Διάφορα μαθηματικά μοντέλα έχουν αναπτυχθεί προς τον εντοπισμό 

του μηχανισμού της ανάπτυξης του καρκίνου. Σε αυτή τη διατριβή προσπαθούμε να 

παρουσιάσουμε το μαθηματικό υπόβαθρο για ένα τρισδιάστατο μοντέλο που 

προσομοιώνει ικανοποιητικά την ανάπτυξη γλοιοβλαστώματος στον εγκέφαλο. Αφού 

κάνουμε μια ανασκόπηση των διαφόρων μοντέλων που έχουν προταθεί τις τελευταίες 

δεκαετίες για την ανάπτυξη του γλοιώματος, παραθέτουμε μια εις βάθος μελέτη των 

μαθηματικών στοιχείων ενός τρισδιάστατου μοντέλου διάχυσης, που εκμεταλλεύεται 

πληροφορία για την ανισοτροπική και ετερογενή διάχυση. Προς την κατεύθυνση αυτή, ένας 

εικονικός όγκος χρησιμοποιείται για την αξιολόγηση της ακρίβειας, του χρόνου εκτέλεσης 

και της υπολογιστικής πολυπλοκότητας που εμπεριέχουν διαφορετικές τεχνικές 

προσομοίωσης. Στη συνέχεια το μοντέλο προσαρμόζεται ώστε να μπορεί να προσομοιώσει 

ακτινοθεραπεία και παρουσιάζονται κάποια πειράματα σε αληθινά δεδομένα ασθενών. Στη 

συνέχεια παρουσιάζουμε ένα μοντέλο που εκμεταλλεύεται άτλαντες από υγιή εγκέφαλο 

προς τον εντοπισμό των περιοχών της φαιάς και της λευκής ουσίας (δεδομένα που 

χρειάζεται το μοντέλο).  Τέλος, παρουσιάζεται το μοντέλο PIHNA και κάποια αποτελέσματα 

in vivo πειραμάτων σε ποντίκια. 
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Thesis Outline 

Up to now, the various implementations of Diffusive models, introduced in chapter 1 and 2, 

lack a firm mathematical background on the derivation of the system, with concrete 

assumptions on the approximation scheme.  

The main objective of the 3rd and 4th chapters is to provide the direct formalisms of the 

derived linear system and implementation hints, for the widely used Finite Difference 

schemes, namely forward Euler, backward Euler, Crank Nikolson and θ-methods for the 

mathematical solving of the anisotropic, heterogeneous and 3D diffusion-reaction equation 

simulating either the growth of glioma or other phenomena where diffusive models are 

applicable. These formalisms are designed for 3D, heterogeneous and anisotropic brain 

tissue and entail the general form of proliferation rate 𝑓(𝑐), so that one could use any net 

proliferation rate. 

The 5th chapter of this thesis stresses the limitations and advantages of each modeling 

scheme and provides quantitative proof. Hence, engineers and bioinformaticians working 

with glioma models (or any model with similar diffusion – reaction behavior) could assess 

the limitations of the model that they are about to develop, especially for real clinical 

models.  

The 6th chapter presents some initial results applied on real MRIs taken from patient with 

diagnosed GBM. By comparing the results of the simulation, with these of the real data, 

there seems to be a good agreement. Moreover, for evaluation we adopt a scheme that uses 

solid metrics and provides objective comparison (JC, DS, VS metrics). 

The 7th chapter presents an extended methodology for modeling GBM and predicting the 

progress of glioblastoma multiforme in space and in time. The diffusion – reaction equation 

was used for simulating the spatiotemporal change of tumor cell concentration, taking into 

consideration partial gray and white matter concentration in each voxel, extracted from the 

SRI24 open brain atlas. 

Continuing, the 8th chapter presents the application of the proportional model of chapter 7 

for including radiotherapy. Despite the limited number of datasets, the evaluation results 

indicate that there might be a slight improvement in using the proposed model on 

glioblastoma multiforme. This is expected due to the several improvements introduced.  

By using anisotropy only on the portions of white matter, instead of all type of tissue, we 

better approximate the glioma migration along white fibers. Moreover, radiotherapy is 

usually applied in fractions and the linear quadratic model has been adjusted to this, 

contrary to previous diffusive models which use the quadratic model for a single dose. 

By incorporating the Gross Tumor Volumes in the model of Chapter 9 we utilize the 

information hidden in the several modalities of MRI, namely T1-contrast, T1 and T2. The 

results of applying the model on real clinical datasets indicate that there is improvement in 

model prognostics. 



 
 

The last Chapter (Chapter 10) extends the diffusive model to the PIHNA model, for 

accounting proliferation – invasion – hypoxia- necrosis and angiogenesis. We incorporate 

information provided by fluorescence molecular tomography data performed in-vivo into 

the PIHNA model. The outcome is validated against tumor evolution snapshots captured in 

vivo using advanced molecular probes in laboratory animals. The simulations are in line with 

in-vivo growth and the resected tumor morphology and suggest that space competition 

plays a dominant role in the evolution of the tumor under study.   



Thesis Contribution 

This thesis: 

 Shares the mathematical formalism of the anisotropic, heterogeneous and 3-

dimensional diffusion-reaction equation solution simulating glioma growth. 

◦ Engineers and bioinformaticians who want to develop their diffusive model can use 

this as a manual. 

 Introduces the vectorization operator 𝐹 for all three major cell proliferation rates 

(Gompertzian, Verhulst and Exponential). 

◦ 𝐹 can be used for switching from one proliferation rate to another. 

 Presents a detailed cross- performance analysis for the different numerical schemes 

used for model development in terms of accuracy, data imaging resolution, 

simulation time, storage and computational needs. 

◦ One can assess the limitations of the model he/she is about to develop and which 

implementation meets his/her needs. 

 Introduces solid metrics for the evaluation of the modeling result (Jaccard, Dice and 

Volume Similarity). 

◦ One can use the final brain imaging session of a patient as a ground truth for 

evaluating the results of modeling. 

 Introduces the use of continuous diffusion coefficients extracted from open-access 

normal brain atlases, instead of discrete values. 

◦ The model fully exploits the information about the white and gray matter from 

atlases 

 Uses atlases for identifying the matter type underlying the tumor. 

◦ The diffusion coefficients in the tumor region can be approximated. 

 Introduces non-zero diffusion coefficients for the Cerebrospinal fluid (CSF) 

◦ The model simulates cancer diffusion in CSF for large cancers. 

 Uses Diffusion Tensor MRI from atlases for computing 3x3 diffusion tensors, i.e. can 

model anisotropic growth of tumor. 

◦ The virtual tumor can grow anisotropically, as the migration of glioma cells is 

facilitated along white matter tracts. 

 Introduces the Linear Quadratic (LQ) model for simulating radiotherapy 

◦ The model can simulate radiotherapy 

 Introduces a method for approximating the radiobiology parameters 𝑎 and 𝛽 (used 

in LQ), personalized for any patient. 

◦ There is no need to have a-priori knowledge of the radiobiology parameters. 

 Introduces radiotherapy in multiple fractions. 

◦ Radiotherapy is usually applied in multiple fractions, but existing models use one 

single dose. 

 Introduces the LQ model in the proliferation – invasion – hypoxia- necrosis and 

angiogenesis (PIHNA) model 

◦ Radiotherapy can be modeled with PIHNA model. 



 
 

 Compares in-vivo experiments of the HeLa cancer cells in mice with in-silico 

experiments of the PIHNA model. 

◦ In vivo experiments are held for first time for the PIHNA model. 

Timetable 

As depicted in the graph below, my initial work was to extent the model proposed by 
Swanson et al. so as to include more terms and intrinsic details related to the cancer 
phenomenon. My first milestone was to develop the mathematical framework regarding the 
diffusion reaction equation for simulating glioma evolution and proliferation [Pub. 6. 10, 13-
20] and then to make a performance analysis of the implemented model [Pub. 2,9,11]. Later 
an open access atlas was used to add heterogeneity and anisotropy to the model by using 
continuous diffusion coefficients for first time [Pub. 3, 12]. Continuing, radiotherapy was 
simulated by introducing the Linear Quadratic Model [Pub. 1]. Lastly, the cancer cell 
populations were differentiated by separating them to normoxic, hypoxic and necrotic cells, 
and by simulating vasculature and angiogenesis evolution [Pub. 7-8]. 
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1. Introduction 

Cancer, known medically as a malignant neoplasm, is a broad group of various diseases, all 

involving unregulated cell growth. In cancer, cells divide and grow uncontrollably, forming 

malignant tumors, and invade nearby parts of the body. The cancer may also spread to more 

distant parts of the body through the lymphatic system or bloodstream. Not all tumors are 

cancerous. Benign tumors do not grow uncontrollably, do not invade neighboring tissues, 

and do not spread throughout the body. There are over 200 different known cancers that 

afflict humans [1]. 

Determining what causes cancer is complex. Many things are known to increase the risk of 

cancer, including tobacco use, certain infections, radiation, lack of physical activity, obesity, 

and environmental pollutants [2]. These can directly damage genes or combine with existing 

genetic faults within cells to cause the disease [3]. Approximately five to ten percent of 

cancers are entirely hereditary. 

Cancer can be detected in a number of ways, including the presence of certain signs and 

symptoms, screening tests, or medical imaging. Once a possible cancer is detected it is 

diagnosed by microscopic examination of a tissue sample. Cancer is usually treated with 

chemotherapy, radiation therapy and surgery. The chances of surviving the disease vary 

greatly by the type and location of the cancer and the extent of disease at the start of 

treatment. While cancer can affect people of all ages, and a few types of cancer are more 

common in children, the risk of developing cancer generally increases with age [4]. Figure 1 

depicts an example of a lung cancer case [5]. 

 
 

 
Figure 1 - Example of a lung tumor case. Left; A drawing of lung cancer; Right: a Magnetic Resonance Image of 
a lung cancer. The cancer is visible on the right-down part of the image [5]. 

1.1. Brain tumors 

Cancer causes more than 13% of all deaths worldwide with an estimation of 12 million 

deaths in 2030 [6][7]. In United States, 2.5% of cancer deaths are caused by brain tumors [8]. 

A brain tumor, or tumor, is an intracranial solid neoplasm, a tumor (defined as an abnormal 

growth of cells) within the brain or the central spinal canal. 



Glioma Growth Modeling 
 

 20 

Brain tumors include all tumors inside the 

cranium or in the central spinal canal. Figure 3 

presents a drawn representation of a brain 

tumor in cranium. Brain tumors are created by 

an abnormal and uncontrolled cell division, 

usually in the brain itself, but also in lymphatic 

tissue, in blood vessels, in the cranial nerves, in 

the brain envelopes (meninges), skull, pituitary 

gland, or pineal gland. Within the brain itself, 

the involved cells may be neurons or glial cells 

(which include astrocytes, oligodendrocytes, 

and ependymal cells). Brain tumors may also 

spread from cancers primarily located in other 

organs (metastatic tumors) [9]. An example of a 

metastatic tumor in brain from lung cancer is 

presented in Figure 2, shown on Magnetic 

Resonance Imaging (MRI), as the black arrow shows. 

Any brain tumor is inherently 

serious and life-threatening 

because of its invasive and 

infiltrative character in the limited 

space of the intracranial cavity. 

However, brain tumors (even 

malignant ones) are not invariably 

fatal, especially lipomas which are 

inherently benign. Brain tumors or 

intracranial neoplasms can be 

cancerous (malignant) or non-

cancerous (benign); however, the definitions of malignant or benign neoplasms differs from 

those commonly used in other types of cancerous or non-cancerous neoplasms in the body. 

Its threat level depends on the combination of factors like the type of tumor, its location, its 

size and its state of development. Because the brain is well protected by the skull, the early 

detection of a brain tumor occurs only when diagnostic tools are directed at the intracranial 

cavity. Usually detection occurs in advanced stages when the presence of the tumor has 

caused unexplained symptoms. 

1.1.1. Tumor classification 

In order to comprehend the fundamental expanding behavior of tumor cells, it is essential to 

study the invasive behavior of cancer by classifying tumors, considering a broad ground 

ranging from benign, to pre-malignant or malignant tumors. To begin with benign tumors, 

cells appear essentially normal and are grouped like normal tissues. Moreover, benign 

tumors are localized, mostly encapsulated and do not invade adjacent tissue. On the 

opposite, malignant-tumor cells grow in an unlimited and aggressive manner. Additionally, 

not only the grouped cells do not resemble normal tissues, but also they are arranged in a 

Figure 2 -Brain metastasis in the left 
cerebral hemisphere from lung cancer 
shown on T1-weighted magnetic resonance 
imaging with intravenous contrast 

Figure 3 - Example of brain tumor representation 
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disorganized structure. In other words, these cells infest the adjacent tissue, resulting in its 

limited or complete tenancy. Thus, infection is either massive, causing tissue hardening and 

deformation, or tentacular, infiltrating cells into structures of the adjacent normal tissue. 

The latter one is more important for prognosis, since it is commonly associated with 

metastasizing.  

Continuing, it is challenging to study how cell proliferation and tissue building determine the 

spatiotemporal development of tumor growth. It is noteworthy to mention that solid tumors 

are not only expanded by grouping of neoplasmatic cells, but also by normal tissues. More 

specifically, tumor growth takes place in pace with the growth of a cancer stroma, built from 

normal tissue. For this reason, normal tissue is actually determining the final tumor structure.  

Thereupon, three levels of viewing tumor development are introduced [10]. To summarize 

these levels are: the sub-cellular level, the cellular level and the tissue level. At first, the 

subcellular level where normal cells acquire a cancerous phenotype, due to gene 

modifications. Secondly, the cellular level is connected to cell shape, movement, etc. and, 

lastly, the tissue level is connected to the structure of tumors. To make things clear, the 

point of view for each level is presented in Figure 4. 

 

Figure 4 - The three different levels of studying tumour growth. (Left) The subcellular or gene level, (Center) 
the cellular level, studying cell properties and (Right) the tissue level, where the tissue morphology is studied. 

1.1.2. Glioma 

A glioma is a type of tumor that starts in the brain or spine. It is called a glioma because it 

arises from glial cells. The most common site of gliomas is the brain [11]. Gliomas make up 

~40-50% of all brain and central nervous system tumors and 80% of all malignant brain 

tumors [12][13]. Gliomas are categorized by cell type, by grade and by location. 
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Gliomas are classified according to the specific type of cell they share histological features 

with, but not necessarily originate from. The main types of gliomas are ependymomas 

(ependymal cells), astrocytomas (astrocytes), oligodendrogliomas (oligodendrocytes) and  

mixed gliomas (cells from different types of glia). 

Gliomas are further categorized according to their grade, which is determined by pathologic 

evaluation of the tumor. Of numerous grading systems in use, the most common is the 

World Health Organization (WHO) grading system for astrocytoma, under which tumors are 

graded from I (least aggressive tumor) to IV (most aggressive tumor). Low-grade gliomas 

[WHO grade II] are well-differentiated, are not benign but still portend a better prognosis for 

the patient. On the other hand high-grade [WHO grade III-IV] gliomas are undifferentiated or 

anaplastic, are malignant and carry a worse prognosis for the patient. An example of a low 

grade brain encapsulated cyst-like glioma in a 28 year old male is presented in Figure 5 (rear 

view on left, top view on right) [14]. 

 

Figure 6 - Representation of Tentorium cerebelli, which determines the classification of supratentorial and 
infratentorial gliomas. 

Figure 5 - Low grade glioma in a 28 year old male (July 2007) 
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Lastly, gliomas can be 

classified according to 

whether they are above or 

below a membrane in the 

brain called the Tentorium 

cerebelli. The tentorium 

separates the cerebrum 

(above) from the cerebellum 

(below), as Figure 7 depicts. 

Supratentorial gliomas are 

located above the tentorium, 

in the cerebrum and are 

mostly found in adults (70%). 

Infratentorial gliomas are 

found below the tentorium, in 

the cerebellum, and are 

mostly found in children 

(70%). Pontine gliomas are 

located in the pons of the 

brainstem. 

Out of these, classification according to grade is the most commonly used. High-grade 

gliomas are highly-vascular tumors and have a tendency to infiltrate. They have extensive 

areas of necrosis and hypoxia. Often tumor growth causes a breakdown of the blood-brain 

barrier in the vicinity of the tumor. As a rule, high-grade gliomas almost always grow back 

even after complete surgical excision. On the other hand, low-grade gliomas grow slowly, 

often over many years, and can be followed without treatment unless they grow and cause 

symptoms.  

1.1.3. Glioblastoma multiforme 

WHO grade IV astrocytoma, namely glioblastoma multiforme (GBM) accounts for 23.1% of 

brain tumors [13][15][16]. Despite extensive research on GBM during the last decades, 

mortality hasn’t changed significantly over the last years, with average life expectancy 

ranging at 12-14 months after diagnosis and only 4% of treated patients being alive after 5 

years [17][18][19][20][21]. Death is usually due to cerebral edema or increased intracranial 

pressure [22]. Figure 7 presents a sagittal MRI slice of GBM in a 15 year old boy [23]. 

Unfortunately, the causes of GBM are still undefined. It has been observed that GBM occurs 

more commonly in males, in aged people and to patients of low-grade astrocytoma that 

develop into a higher degree [24]. Alcohol consumption may also be a possible risk factor 

[25]. Moreover, GBM has been associated with the viruses SV40 [26], cytomegalovirus [27] 

and lead [28]. 

The diagnosis of GBM can be done by clinical imaging techniques, with MRI being the most 

common technique. When viewed with traditional imaging techniques, GBM often appears 

as ring-enhancing lesions with non-specific boundaries: due to very high cell invasiveness, 

Figure 7 - Glioblastoma of a 15 year old boy shown on MRI 
sagittal view. 
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unlike solid tumors, GBM does not form a solid and compact mass with cells dispersed 

around the lesion [29]. Figure 8 presents a representation of typical massif cancers (left) 

which appear as a bulk tumor with MRI and two types of GBM (center and right), where 

there are many individual cells dispersed around the lesion [30]. Therefore, this work studies 

how GBM boundaries can be predicted using a mathematical model. 

 

Figure 8 - Structural types of cancers. Left:  solid tumor tissue only; Center: tumor tissue and peripheral 
isolated tumor cells; Right: isolated tumor cells only. A typical GBM follows one of the two last types [30]. 

1.2. Medical imaging for identifying brain tumors 

Medical imaging is the technique and process used to create images of the human body in 

order either to reveal, diagnose, or examine disease or to study normal anatomy and 

physiology. Brain tumor therapy is highly dependent on diagnosis, which must be as close as 

possible at the early stages of disease. Since the asymptomatic period can last for a long 

period (months or ages), this is crucial to diagnose the disease before local expansion or 

metastatic invasion. Every indication should motivate every person to ask medical assistance, 

since the recognition of a symptom (e.g. persistent headaches, cough, swelling or hardening 

of the breast) may be the first step for early diagnosis of malignant neoplasia. Diagnosis is 

critical for identifying the type and the characteristics of a tumor. Misdiagnosis can often 

lead to an erroneous prognosis and treatment. 

Current diagnostic techniques provide the option to 

observe morphology, size and stage of the tumor and to 

indicate the proper treatment. The latest diagnostic 

approaches depend principally on non-surgical imaging 

techniques which use X-rays, powerful magnets or 

radioactive materials for producing images of the 

tumorous brain areas. These images are then processed, 

studied and analyzed by radiologists, expertise in 

diagnostic imaging techniques [31][32]. The latest 

commonly used imaging techniques are listed below. 

1.2.1. Radiography (X-ray) 

 Skull radiograph (X-rays) was a standard diagnostic tool 

in the past, but today it is used only when advanced 

techniques, such as magnetic resonance imaging, are not 

Figure 9 - First radiography by 
Wilhelm Röntgen of his wife 
Anna Bertha Ludwig's hand 
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available. Occasionally it may be useful to indicate calcification usually observed slow-

growing brain tumors. Astrocytoma is the most common calcified tumor, while 50-60% of 

oligodendroglioma, 70-80% of craniopharyngioma, 50% of ependymomas, 35% of 

ganglioglioma and 10% of meningiomas appear calcified. Figure 9 presents the first X-ray in 

history, taken by the inventor of X-rays (Wilhem Röntgen) on his wife’s hand [33]. 

 

Figure 10 - A patient is receiving a CT scan for cancer treatment planning. Outside the scanning room are the 
imaging computers that compile 2D axial slices of the patient which can give the physician a 3D understanding 
of the anatomy [34]. 

1.2.2. X-ray computed tomography (CT) 

The X-ray Computed Tomography (CT) is an X-ray examination which produces detailed 

cross-sectional images of the brain 

tissue. Instead of taking one picture, 

like in radiography, CT scanner 

produces several scans of brain tissue 

as it rotates around the patient's head. 

A computer then synthesizes these 

images and produces a sequential 

sequence of slices depicting the brain 

tissue. Unlike radiography, a CT scan 

has the potential to create detailed 

images of soft body tissue, such as 

brain tissue. CT scans tend to be better 

tolerated than MRI, due to short scan 

time, and is more sensitive to detecting 

acute hemorrhage, calcifications and 

osseous involvement. An example of CT 

scanner in action is presented in Figure 10 [34]. 

Figure 11- CT Angiography of abdominal aorta and 
arteries to the kidneys and intestines [35]. 



Glioma Growth Modeling 
 

 26 

1.2.3. Computed tomography angiography (CTA) 

Computed tomography angiography (CTA) is a computed tomography technique used to 

visualize arterial and venous vessels throughout the body. During this examination a 

contrast agent is injected intravenously into the patient. Then, the CTA scanner produces 

detailed images of blood vessels in the brain, which may help clinicians to plan surgery. 

Figure 11 presents as an example of a CTA of abdominal aorta and surrounding arteries [35]. 

1.2.4. Magnetic resonace imaging (MRI) 

Magnetic Resonance Imaging (MRI) is particularly useful for examining brain and spinal cord, 

considered the best technique to detect tumors in these locations. Therefore MRI is used for 

the studies of this work. The MRI images are usually more precise than those obtained by CT. 

One major drawback however is that MRI, as shown in Figure 12 [36] does not show the 

bones of the skull, like CT scans, making it difficult for the radiologist to discern the effects of 

tumors in skull. The MRI scans use radio waves and strong magnets instead of X-rays. The 

energy from the radio waves is 

absorbed and then released in a 

pattern linked to the tissue and 

certain diseases. Special computer 

software translates the pattern into a 

very detailed image which can be 

represented in 3 dimensions. In most 

cases the patient receives a contrast 

agent, called gadolinium (Gd), by 

intravenous injection prior to 

scanning in order to obtain clearer 

images [37]. Similarly to CTA, there is 

MR Angiography (MRA) [38] which 

usually produces lower details in 

blood vessels than CTA. Lastly, some 

different modalities of MRI used in 

this work are reviewed separately in 

later paragraphs.  

1.2.4.1. T1-weighted MRI 

T1 weighted MRI refer to a set of standard scans that depict differences in the spin lattice 

relaxation time (known as T1) of various tissues within the brain. T1 weighted images can be 

acquired using either spin-echo or gradient-echo sequences. T1 weighted contrast can be 

increased with the application of an inversion recovery radiofrequency pulse. Gradient-echo 

based T1-weighted sequences can be acquired very rapidly because of their ability to use 

short inter-pulse repetition times. T1-weighted sequences are often collected before and 

after infusion of T1-shortening MRI contrast agents [39]. In the brain T1-weighted scans 

provide appreciable contrast between gray and white matter, which is very important in our 

work. The right part of Figure 13 depicts an example of a T1 weighted MRI slice. 

Figure 12 - Example of a MRI taken on a normal 
brain. The skull is not very well indicated, but soft 
matter is [36]. 
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Figure 13- Different MRI modalities on the same patient; left: T2 weighted MRI; center: FLAIR; right: T2 
weighted MRI [40]. 

1.2.4.2. T2-weighted MRI 

T2 weighted MRI is another basic type of MRI [41]. Like the T1 weighted MRI, fat is 

differentiated from water, but in this case fat shows darker and water lighter. For example, 

in the case of cerebral and spinal study, the cerebrospinal fluid (CSF) will be lighter in T2 

weighted images. These scans are therefore particularly well suited to imaging edema with 

long echo time and repetition time. Because the spin echo sequence is less susceptible to 

inhomogeneities in the magnetic field, they are widely used in clinical praxis. The left part of 

Figure 13 depicts an example of a T2 weighted MRI slice. 

1.2.4.3. Fluid attenuated inversion recovery (FLAIR)  

Fluid Attenuated Inversion Recovery (FLAIR) is an inversion-recovery pulse sequence used to 

null signal from fluids. It can be used in brain imaging to suppress cerebrospinal fluid (CSF) so 

as to bring out the periventricular hyperintense lesions, such as multiple sclerosis plaques. 

By carefully choosing the inversion time (the time between the inversion and excitation 

pulses), the signal from any particular tissue can be suppressed [42]. The central part of 

Figure 13 depicts an example of a FLAIR slice. 

1.2.4.4. Diffusion Tensor Imaging (DTI)  

Diffusion tensor imaging (DTI) is an application of Diffusion MRI (DMRI). DMRI measures the 

diffusion of water molecules in biological tissues [43]. DTI enables diffusion to be measured 

in multiple directions and the fractional anisotropy in each direction to be calculated for 

each voxel [44]. This enables researchers to make brain maps of fiber directions to examine 

the connectivity of different regions in the brain (using tractography). Indeed, DTI has been 

used in some experiments of this work for tracking the direction of white matter fibers in 

brain. Figure 14 presents the reconstruction of tracts in brain, projected on one MRI slice. 

The information used for this representation has been extracted from DTI data. 



Glioma Growth Modeling 
 

 28 

 

Figure 14 - Reconstruction of brain tracts by using DTI data, projected on a MRI slice [45]. 

1.2.5. Magnetic resonance spectroscopy (MRS) 

Magnetic Resonance Spectroscopy (MRS) or commonly mentioned as Nuclear Magnetic 

Resonance Spectroscopy (NMR), is similar to MRI, except that it enables the measurement of 

the interactions of radio waves with different atoms, such as hydrogen. The MRS images 

highlight some substances of brain tumors, called metabolites (such as choline, NAA, lactate), 

which are not clearly visible in MRI. The study of these metabolic substances in brain tumors 

provides the metabolic profile of the tumor, called metabolism, which is a powerful tool for 

helping the clinicians decide which treatment plans to provide. MRS can also be used after 

treatment in order to identify an abnormal range, i.e. if this area is a remaining tumor or it is 

more likely to be injured normal tissue [46]. An example of an MRS image of brain is 

presented in Figure 15a, with spectra of metabolites (b, c) and a metabolite map (d). 

 

Figure 15 - Magnetic resonance spectroscopic imaging (MRS) data obtained from a patient with low-grade 
oligodendroglioma; a. MR image with volume of interest selected in white and two-dimensional MRS grid in 
blue. Spectra are only acquired from the MRS voxels inside the volume of interest. The dotted line in a 
indicates the MRS voxels shown in b; b. Part of the spectral image showing MRS voxels with their 
corresponding spectra; c. Enlargement of the spectrum obtained from the voxel indicated in red in b and c. The 
spectrum shows a typical pattern for a low-grade brain tumor with increased choline, decreased NAA, and the 
doublet of lactate; d. Metabolite map showing the intensity distribution of the ratio of choline to NAA over the 
volume of interest with the highest intensity indicated in red at the position of the tumor [46]. 

1.2.6. Perfusion weighted imaging (PWI) 

Magnetic resonance perfusion or Perfusion Weighted Imaging (PWI) is another important 

imaging examination that uses an injected contrast agent (gadolinium) in order to discern 
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blood flow through brain tissues. This technique is based on the observation that brain 

tumors require more blood supply than normal brain areas. This means that the faster a 

tumor grows the more blood it requires. Therefore, PWI can provide clinicians with an 

insight into how fast a tumor is growing or help them by indicating the best position for 

biopsy resection [47].  

1.2.7. Positron emission tomography (PET) 

Positron emission tomography (PET) is a special 

examination based on the property of brain tumors to 

absorb greater amounts of glucose with respect to the 

healthy tissue. Therefore, glucose injected with a 

radioactive atom is administered through injection into 

the patient's blood. Afterwards, a special camera can 

generate an image of areas with high radioactivity 

inside the body. This image is not as detailed as a CT or 

MRI, but it can provide useful information on whether 

the abnormal areas that have been portrayed in other 

exams (such as MRIs) are either cancerous or non-

cancerous. PET is also useful after treatment, as it can 

provide information for necrotic tumor cells, since 

dead cells do not consume glucose. It is very common to 

see abnormal areas on MRI, after treatment: PET scans 

can help the clinicians determine whether the abnormal 

region is an unresected tumor or possibly injured tissue 

[48]. Figure 16 presents a PET scan on a 56 year old male taken with PET. Red areas show 

more accumulated tracer substance (called 18F-FDG) and blue areas are regions where low 

to no tracer have been accumulated [49]. 

1.2.8. Chest radiograph (CXR) 

A chest radiograph, commonly called a chest 

X-ray (CXR), is a radiograph of the chest used 

to diagnose conditions affecting the chest, its 

contents, and nearby structures. The purpose 

of this examination is to identify potential 

tumors in other organs of the body that have 

metastasized to the brain. Such an organ 

could be the lung, which in most cases gives 

brain metastases. Figure 17 presents an 

example of chest radiograph that shows a 

white area delineated with a yellow line. This 

represents a solid area in the lung, being a lung 

cancer [50]. 

  

Figure 16 - PET scan of the human 
brain. Red areas show more 
accumulated tracer substance (18F-
FDG) and blue areas are regions 
where low to no tracer have been 
accumulated. 

Figure 17 - Chest X-ray that shows a white 
area (yellow circle) that represents a solid 
area in the lung. This is a lung cancer [43]. 
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1.3. Diagnosing glioblastoma multiforme  

The most common problem with diagnosis and treatment of GBMs is that they are 
characterized by very high motility and invasiveness. They exhibit highly diffusive behavior, 
meaning that cells are diffused within a large area. As you can see in the schematic example 
of Figure 18, there are GBM cells that are diffused within the brain space. Thus, this means 
that there are cells beyond this area that cannot be visualized by the commonly imaging 
techniques, as the example of Figure 18 (right) shows. 

 

Figure 18- left: The cells of GBM do not constitute a bulk tumor. Oppositely, there are dispersed cells inside 
brain; Right: MRI cannot visualize all GBM cells, but only areas of high GBM cell density. 

This can be more clearly understood by studying treatment results in glioblastoma: Even if 

the clinician treats 2cm beyond the imaged bulk tumor, GBM is very possible to recur due to 

dispersed cells. As a schematic example, consider the case of Figure 19: Let the clinician take 

the MRI scan into account and allow some safety margin during treatment, as in Figure 19 

(left). As seen in Figure 19 (center), it is very possible to leave GBM cells back. These 

untreated cells may recur and cause death, as shown in Figure 19 (right). 

 

Figure 19 - left: The clinician defines a safety margin around the MRI scanned area; center: After treatment, 
there are GBM cells left; right: GBM recurs 
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1.4. Mathematical Modeling of biological processes 

A mathematical model uses mathematical language to describe a system. In this work, we 

try to address a mathematical description for 

GBM growth. At first we have to bear in mind 

the basic features that any typical 

mathematical model in biology must possess 

[51]. These are schematically described in 

Figure 20. Firstly, the model should be 

initiated within a realistic biological state. 

Additionally, the modeled biological 

processes should be understood and 

discretized as much as possibly, meaning that 

steps and real biological parameters should 

be isolated. Continuing, it is essential to 

allocate a mechanism that could simulate 

these steps and incorporates these 

parameters. Specifically, this mechanism 

could be described by a mathematical set of 

equations, like in our case. Going further, the 

next step is to study the model 

mathematically and come up with solutions 

that include realistic boundary and initial 

conditions. Lastly, after having acquired the 

theoretical results it is of great importance to 

go back in biological process with predictions, 

comments and suggestions for experiments 

that will either ascertain or disprove the 

developed model. At this level, model success 

is highly dependent on combining 

experimentation and theory together. Because, even if the experimental results indicate 

that the model is incorrect, this is the right way to reach a successful conclusion. In final 

consideration, mathematics is very important in biology, however this must be treated with 

seriousness. If mathematics is used for solving any biological process, without thoroughly 

studying the biological background, it is very possible to come up with solutions that not 

only do not contribute to corroborated conclusions, but also do harm. The theoretical 

literature abounds with many such articles [51]. 

Modeling the glioma case 

A lot of research is currently taking place on the mathematical modeling of the glioma 

growth procedure, especially glioblastoma multiforme. An efficient mathematical model for 

gliomas could help researchers and clinicians to get a better understanding of tumor growth 

pathology, to predict the aggressiveness of a patient’s tumor and to better define the 

margins of a tumor, so as to use them when applying resection, chemotherapy or 

Figure 20 - Mathematical modeling for a general 
biological process. 
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radiotherapy. Moreover, by importing therapy parameters into the model, the clinician can 

predict which therapy scheme is expected to yield better results for the patient.  
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2. Background 

In silico modeling is a modern application of computers for simulating biological processes. 

Especially, during the last decades, in silico modeling has been spread to all biology fields. 

Apart from mathematical modeling of human anatomy (e.g. heart modeling), pathological 

modeling has been widely studied in research institutes globally. Before studying the specific 

case of GBM, it is required to get a deeper insight into the general pathology models for 

tumor growth.  

2.1. General Cancer Modeling 

 Studying tumor expansion and simulating this according to mathematical models, has been 

an area of studies in cancer since late 90s’ 

[52][53][54][55]. Tumor growth has been 

studied by a series of models. The first 

models focused on tumor behavior in time. 

More specifically, the first proposed 

temporal models were based on either 

exponential, logistic or Gompertz laws [56] 

(Figure 21). As expected, these models 

were followed by spatial growth models in 

later years. Thus, one such deterministic 

model has been used to simulate cancer 

growth as a wave phenomenon, taking 

into account mitosis and nutrient 

depletion [55]. Moreover, deterministic 

models taking into account immune 

response [57] or mitotic rates changes [58] have 

been proposed. 

2.2. Glioma Modeling 

Unfortunately, the detection rates of the exact boundaries of GBM with common imaging 

techniques, such as magnetic resonance imaging (MRI), X-ray computed tomography (CT) 

and positron emission tomography (PET) are still poor [59][60][61]. Unlike solid tumors, for 

which simple exponential or geometric expansion could represent expansion of tumor 

volume, the GBM growth rate cannot be determined as the classical doubling rate [62], 

because GBM does not form a solid and compact mass with cells invading the surrounding 

lesion.  

Clearly, new mathematical formulations were necessary for studying this specific glioma 

case. Since early 90s, there has been a vast amount of research towards simulating and 

formulating the mechanisms of GBM development, both in macroscopic and microscopic 

levels. Microscopic models [63][64][65][66][67] study the intracellular biological interactions 

in cell level. 

Figure 21 - Virtual Tumor. A simulation of one half 
of the whole living tumor cell population (outer 
half sphere) and the complete necrotic (dead) 
tumor cell population (inner sphere). Coloration 
relates to cell-adhesion value—cells on the outer 
surface of the tumor all have zero cell to cell 
adhesion [56].  
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Mathematical modeling of glioma at the macroscopic level has represented the traditional 

framework in predicting glioma diffusion. Macroscopic models [68][52][69][70][71][72] 

[73][74] study the tumor behavior, velocity and mass deformation with using anatomical 

information derived from medical images. Kansal et al. [75] viewed the tumor as a 

Gompertzian population of cells and its growth as a dynamic process where proliferating and 

inactive classes of cells interact, without taking invasion into neighboring tissues into 

account. Moreover, Zizzari’s volumetric model [76] describes the proliferation of GBMs using 

tensor product splines and differential equations, the solutions of which give the 

spatiotemporal distribution of tumor cells. Finally, Tabatabai et al. [77] simulate real tumor 

asymmetric growth by accommodating the concept of increasing versus decreasing tumor 

radii, without incorporating the interactions between healthy and cancer cells at the tumor 

border and the competition of cells inside the tumor. However, even if these macroscopic 

models used growth and proliferation parameters, they don’t produce realistic clinical 

cancer growth representation as they lack taking invasion of tumor cells into account.  

2.3. The Diffusion – Reaction Equation model 

The trend in glioma research is to study biological and clinical factors involved in cancer 

diffusion through healthy tissue. Unlike solid tumors, for which simple exponential or 

geometric expansion represents expansion of tumor volume, the glioma growth rate cannot 

be determined as the classical doubling rate [10], because gliomas can migrate and 

proliferate.  

The class of macroscopic models that has been widely used for simulating this diffusive 

behavior is diffusive modeling [53]. Diffusive models simulate the change of glioma cell 

concentration in time and in space, by using two main terms of the Diffusion – Reaction 

Equation. The first that proposed a diffusive model for glioma growth was Murray in 1989 

[78]. Murray proposed the diffusion-reaction formalism as: 

𝜕𝑐

𝜕𝑡
→ −𝑑𝑖𝑣 (𝐽) + 𝑆(𝑐) − 𝑇(𝑐)⏟        

𝑓(𝑐)

 

1 

 

where 

 𝑐(𝐱, 𝑡) denotes the tumor cell concentration at position x at time t 

 𝐽 is the diffusion flux of cell that follows Flick’s law; 𝐽 = −𝐷∇𝑐 where ∇ and 𝑑𝑖𝑣 are 

the gradient and divergence operators respectively. This term expresses the 

diffusive behavior of tumor cells and the way they are dispersed in brain 

 𝑆(𝑐) denotes the source factor, representing the GBM cell proliferation 

 𝑇(𝑐) denotes the treatment, representing the GBM cell loss due to treatment. This 

is zero, when no treatment is applied. 

 The initial state of the model, 𝑐(𝑥, 0), is defined as the initial distribution of the 

cancerous cells.  

 The term 𝑓(𝑐) = 𝑆(𝑐) − 𝑇(𝑐) denotes the net proliferation rate. 
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This equation is the “ancestor” of most 

important works for glioma modeling. The 

general procedure for glioma modeling, as 

derived by Murray’s diffusive model, is 

presented in Figure 22. The initial concentration 

of tumor cells is estimated by using medical 

imaging techniques, like MRI, and tumor 

boundaries are delineated by a clinician. 

Afterwards the DRE model in applied on this 

initial state after the estimation of parameters of 

diffusion (diffusion coefficient) and invasion (cell 

proliferation rate and cell dead rate). Continuing, 

a validation algorithm is used to score the results 

and indicate whether the model should be 

reapplied with different parameters or not. 

The solution of the diffusion-reaction equation 

requires the application of numerical schemes, 

since there is no direct formula of its solution. 

The solution has to be approximated iteratively 

till time point of interest is reached. 

Net proliferation rates for untreated glioma 

In 1995 Tracqui [52] used the formulation of Equation 1 for simulating evolution of cell 

concentration by using two characteristic of tumor growth: proliferation and invasion. 

Tracqui proposed that the cells proliferate at exponential rate 𝜌, that is: 

𝑓(𝑐) = 𝜌𝑐

 

2 

Thus, Tracqui specified Equation 2 as:  

𝜕𝑐

𝜕𝑡
→ ∇ ∙ (𝐷∇𝑐) + 𝜌𝑐

 

3 

where 𝜌 denotes the proliferation rate of cells. Other proposed models [79], instead of 

geometrical rate, used either Verhulst law 

𝑓(𝑐) = 𝜌𝑐
𝑐𝑚 − 𝑐

𝑐𝑚
 

or Gompertz law 

4 

𝑓(𝑐) = 𝜌𝑐 ln
𝑐𝑚
𝑐

 

5 

where 𝑐𝑚  is the maximum value that concentration can reach (cell-space saturation). 

Equation 2 has been mainly used for simulating untreated gliomas, since no death term is 

included. 

Figure 22 - Generalized mathematical 
modeling of glioma growth 



Glioma Growth Modeling 
 

 36 

Estimation of parameters 

From the very beginning of diffusive models, one of the key issues was the estimation of 

parameters that are being used. The diffusion coefficient 𝐷 and the proliferation rate 𝜌 are 

the basic parameters for the diffusive models. The first estimation of them took place in 

1991, when Silbergeld [21] studied biological data and introduced two groups of glioma cells: 

the common ones and the resistant-to-first-chemotherapy ones. Parameter 𝐷 was firstly 

defined either at 𝐷 = 10−2𝑐𝑚2/𝑑𝑎𝑦 , with the percentage of cells resistant to 

chemotherapy being at 8%, or at 𝐷 = 10−3𝑐𝑚2/𝑑𝑎𝑦 without resistant cells, while ρ was 

defined at 𝜌 = 10−2/𝑑𝑎𝑦. 

Modern models use guiding indexes for defining parameters 𝐷 and 𝜌 according to glioma 

grade, velocities of growth and ratio 𝐷/𝜌 [80]. This log to log graph shown in Figure 23 

includes all parameter values found up to Jan. 2007 for both low- and high- grade gliomas. 

Low- grade gliomas are sited in bottom left rectangle (LGG), for 2mm/yr average velocities. 

Respectively, high grade gliomas (HCG) are positioned in the large rectangle, defined by 𝐷/𝜌 

of 2 to 20 𝑐𝑚2  and average velocities 

from 10mm/year to 200mm/year. On the 

left part gliomas with detectable mass, 

which can be cured with surgery, are 

placed.  

Continuing, for the heterogeneous brain 

matter for high- grade gliomas, it is 

suggested in [69] that a typical value for 

the proliferation rate is 𝜌=0.0012 (1/day). 

This value for low- grade gliomas can be 

defined at 𝜌=0.00012 (1/day).  

It is interesting to use the following table, 

reproduced from [81], where there is a 

list of the proposed values of each 

parameter that the latest glioma models 

use. Many of these parameters have been used in many experiments of the current work. 

Parameter (namely) Parameter 
Symbol 

Value Reference 

Growth Rate 𝜌 0.012 (1/𝑑𝑎𝑦) [82] 
Diffusion Coefficient (Gray matter) 𝐷𝐺  0.0013 (𝑐𝑚2/𝑑𝑎𝑦) [52] 
Diffusion Coefficient (White matter) 𝐷𝑊  5 𝐷𝐺  (𝑐𝑚2/𝑑𝑎𝑦) [69] 
Initial number of tumor cells 𝑁0 105 𝑐𝑒𝑙𝑙𝑠 [83][84] 
CT/MRI threshold density  400 (cells /𝑚𝑚2) [69] 
CT/MRI threshold radius  1.5 𝑐𝑚 [82] 
Cell death rate (chemotherapy) 𝑘 0.0196 (1/𝑑𝑎𝑦) [85] 
Number of fractions/ day 𝑛 1-conventional 

2-hyperfractionated 
[86] 
[87] 

Table 1 - The parameters of the diffusion model as proposed in the last 2 decades [81] 

  

Figure 23 - (Reproduced from [80]) – Log-log graph of 
𝑫 and  𝝆, for high- and low- grade gliomas 
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Resection modeling 

Getting this further, one of the crucial steps of glioma modeling was to the model cancer 

evolution after ectomy. This was firstly simulated in 1993 by setting the concentration of the 

ectomized area equal to zero and, then, allowing the surrounding malignant cells proliferate 

and diffuse until the sphere reaches 6cm diameter [52]. An example of ectomy, reproduced 

from, is given in Figure 24. The left part indicates the estimation of the initial tumor, the 

central part depicts the brain directly after resection and the right part indicates the 

recurred tumor after resection. 

 

Figure 24 - Tracqui’s simulation of a tumor resection. The parameter values of the model are 𝝆= 0.012 /day, 
𝑫=10-7 cm2/s [52] 

Low Grade Gliomas 

Up to 1996, diffusive models studied high-grade gliomas due to their remarkably fast 

invasion. However, studying low-grade gliomas was important as well. Hence, in 1996, 

Woodward [83] suggested that speed of growth in low-grade tumors should be 10% of the 

respective one in high-grade gliomas, yielding satisfactory results.  

Later in 2003, Mandonnet et al. [88] proposed that low-grade gliomas grew slowly, but 

linearly. This is mathematically derivable by Eq. 3, because the expanding velocity of a 

population, which follows only the diffusion and growth laws of this equation can be 

calculated as 2√𝜌𝐷. Mandonnet et al. used clinical data reproduced from 27 patients to 

estimate that the average tumor velocity was 2mm per year. 

Brain Tissue Heterogeneity 

Up to 2000, researchers didn’t take brain tissue anatomy into account. However, taking into 

account brain matter is of foremost importance, since the clinical observations of Giese 

indicate that migration of cancerous cells in myelin sheaths (white matter) is faster than the 

gray matter areas [89][90]. Thus, modeling of gliomas should take brain heterogeneity into 

account. 

Indeed, Swanson first introduced the problem of brain heterogeneity by setting different 

diffusion coefficient in white and gray matter [69]. Simulations of this proliferation – 

diffusion equation were performed on a 3D MR structural image of the brain, with 

segmentation of white and gray matter. More specifically, Eq. 3 continued to hold, but for 

spatially variable 𝐷: 
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𝜕𝑐

𝜕𝑡
→ ∇ ∙ (𝐷(𝐱)∇𝑐) + 𝜌𝑐

 

6 

 

where  𝐷(𝐱) is the local diffusion coefficient, being either 𝐷𝑔 or 𝐷𝑤 for 𝐱 being in gray or 

white matter respectively. Figure 25 presents an example of simulation of tumor invasion of 

a high-grade glioma in the superior cerebral hemisphere using Swanson’s model. The first 

two images are taken at diagnosis time and the last two at death. The first diagnosis and 

death images (a and c) are slices as seen by Swanson’s standard threshold of detection. The 

rest ones (b and d) have been calculated out to 1.25% of the threshold (boundary) cell 

concentration defining the sensitive threshold of detection. 

 

Figure 25 - Simulation of tumor invasion of a high-grade glioma in the superior cerebral hemisphere using 
Swanson’s model: (a) (b) at diagnosis; (c) (d) at death; (a) (c) as seen by Swanson’s standard threshold of 
detection; (b) (d) as calculated out to 1.25% of the threshold (boundary) cell concentration defining the 
sensitive threshold of detection [69]. 

Moreover, in order to have knowledge on the tissue type underlying the tumor, a brain atlas 

of normal brain was used. BrainWeb database [91] was available for extracting this 

information. Figure 26 shows an example of three different brain matter tissue types, taken 

from the BrainWeb atlas [92]. 

   

Figure 26- Example of tissue classes from Brainweb atlas brain (phantom). Left to Right: White matter, gray 
matter, CSF [92]. 
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Anisotropic Cell Migration 

In 2003 Price et al. opened the way for simulating the anisotropic growth of tumor along 

white matter fibers [16], in conjunction with the tracked fiber pathways [93]. Price et al. 

used T2- and Diffusion Tensor Imaging MRIs scans to determine whether DTI can identify 

abnormalities that appeared normal on T2. In order to incorporate the experimental findings 

supporting that the migration of glioma cells is facilitated along white fibers, in 2005, Jbabdi 

et al. and Clatz et al. [70][72] extended the model of Eq. 6 by introducing the local diffusion 

tensors derived from water diffusion, instead of gradient diffusion coefficients. Both models 

are based on MRIs and DTI-MRIs to take into account local geometry and directionality of 

white matter tracks, using the following advanced version of equation:  

𝜕𝑐

𝜕𝑡
→ ∇ ∙ (𝐃(𝐱)∇𝑐) + 𝜌𝑐

 

7 

 

where 𝐃(𝐱) is the local diffusion tensor which describes the directional tumor cell diffusion, 

i.e. a 3-by-3 symmetric positive definite matrix. 

Mass Deformation 

Apart from invasion directionality, Clatz et al. [72] used biomechanics to simulate the 

deformation of the surrounding area, due to tumor growth and pressure. This model uses a 

predictor of the mass effect induced by both the tumor proliferation and infiltration. Figure 

27shows an example of a simulation with that model, with the deformation of tissues 

presented. In 2007, Hogea et al. [74] extended the anisotropic model by introducing an 

advection term in Eq. 6, with a two-way coupling with the underlying tissue elastic 

deformation. 

 

Figure 27 - Simulation of displacement of the tissues induced by the tumor mass effect, using Clatz’s model [72] 

Chemotherapy Modeling 

Chemotherapy modeling is a quite blurred part of glioma models, which is mostly studied 

currently by researchers. Parameters that have to be taken into consideration should be 

extracted by histopathological and biostatistical data of specific patients [62]. Swanson has 

introduced a generalized net proliferation rate of chemotherapy as: 
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𝑓(𝑐) = 𝜌𝑐 − 𝐺(𝑡)𝑐

 

8 

where 𝐺(𝑡) is the temporal profile of the chemotherapy treatments, assuming a loss 

proportional to the strength or amount of therapy at a given time. Swanson sets 𝐺(𝑡) = 𝑘 

when the chemotherapy is being administered and 𝐺(𝑡) = 0 otherwise. 𝑘 is actually a 

measure of effectiveness of chemotherapy. Thus, in order therapy to be effective and size of 

tumor to decrease, 𝑘 should be larger than 𝜌, so that the net proliferation rate 𝑓(𝑐) is 

negative. This means the number of the dying cells is larger than the new born cells. 

An example of chemotherapy application on real clinical MRI data, using Eq. 8 has been 

reproduced from [94]. In this example, 𝑘 was intentionally set to the high value of 𝐺(𝑡) =

0.024, so as the cancer to have shrinking effect. The data (18 MRI slices) has been acquired 

by Universität des Saarlandes Klinikum (Germany) within the scope of the Contracancrum 

project [95]. Some modeling results are given in Figure 28. The 3-dimensional representation 

of the initial and after-chemotherapy states are presented, accompanied by a sampled series 

of four MRI slices. 

    

    

 
 

(a) (b) 
Figure 28- MRI and 3D representation of glioma in (a) initial state and (b) after chemotherapy simulation. 4 
slices out of 18 slices are presented 
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3. Mathematical analysis on glioma 
model 

The most common diffusive models use the diffusion-reaction equation (DRE) for simulating 

the spatiotemporal variation of tumor cell concentration. Nevertheless, despite the 

applications presented, there has been little work on studying the details of the 

mathematical solution and implementation of the 3 dimensional (3D) diffusion model and 

presenting a qualitative analysis of the algorithmic results. This work presents a complete 

mathematical framework on the solution of the DRE using different numerical schemes. This 

framework takes into account all characteristics of the latest models, such as brain tissue 

heterogeneity, anisotropic tumor cell migration, chemotherapy and resection modeling. 

3.1. Deriving the Equation with Fick’s Law  

Suppose that we have a 3 dimensional space Ω ⊂ ℝ3, in which some matter is diffused. Let 

also 𝑐: 𝛺 × [0, 𝑇] → ℝ be a function called concentration of the matter that is diffused in 

that medium. 

We also assume open 𝑅 ⊂ Ω with smooth boundary 𝜕𝑅 = 𝐵. The mass balance of the 

studied matter in R for a time interval (t, t+Δt) is: 

mass created by internal source = mass growth + mass flux rate through 𝜕𝑅 

We assume that mass flux obeys Fick’s law [96]. According to this law, the flux goes from 

regions of high concentration to regions of low concentration, with a magnitude that is 

proportional to the concentration gradient. Thus, if 𝐽: 𝛺 × [0, 𝑇] → ℝ3 is the mass flux 

function, then according to Fick’s law: 

𝐽(𝐱, 𝑡) = −𝐃(𝐱)∇𝑐(𝐱, 𝑡), 𝐱 ∈ Ω, 𝑡 ∈ [0, 𝑇]

 

9 

where 𝐃(𝐱) is known as the diffusion coefficient tensor. 

If 𝑃𝑅(𝑡) is the rate in which the internal sources produce the diffused matter within R, then 

the law of mass conservation can be expressed as 

𝑃𝑅(𝑡) = ∫
𝜕𝑐(𝐱, 𝑡)

𝜕𝑡
𝑑𝐱

𝑅

+ ∫
𝐽(𝐱, 𝑡)

𝜕𝑡
𝐧𝑑𝑆

𝜕𝑅
 

10 

where n is the normal vector, with 𝐧 ⊥ 𝜕𝑅. If we assume that rate 𝑃𝑅(𝑡) can be expressed 

by the density 𝑝(𝒙, 𝑡) of internal matter production then 

𝑃𝑅(𝑡) = ∫ 𝑝(𝐱, 𝑡)𝑑𝐱

𝑅
 

11 

Then, by substituting Eq. 9 and Eq. 11 in Eq. 10, we get  
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∫ 𝑝(𝐱, 𝑡)𝑑𝐱

𝑅

= ∫
𝜕𝑐(𝐱, 𝑡)

𝜕𝑡
𝑑𝐱

𝑅

− ∫ 𝐷(𝐱)
𝜕𝑐(𝐱, 𝑡)

𝜕𝑛
𝑑𝑆

𝜕𝑅
 

12 

 

Where 
𝜕𝑐(𝐱,𝑡)

𝜕𝑛
≡ ∇𝑐(𝐱, 𝑡) ∙ 𝐧 is the directional derivative along the normal vector n.  

By using the divergence theorem, we can expressed the flux integral as  

∫ 𝐷(𝐱)
𝜕𝑐(𝐱, 𝑡)

𝜕𝑛
𝑑𝑆

𝜕𝑅

= ∫ 𝑑𝑖𝑣 (𝐃(𝐱)𝑔𝑟𝑎𝑑(𝑐(𝐱, 𝑡))) 𝑑𝐱

𝑅
 

13 

Thus, Eq. 12 can be now written as 

∫ 𝑝(𝐱, 𝑡)𝑑𝐱

𝑅

= ∫
𝜕𝑐(𝐱, 𝑡)

𝜕𝑡
𝑑𝐱

𝑅

− ∫ 𝑑𝑖𝑣 (𝐃(𝐱)𝑔𝑟𝑎𝑑(𝑐(𝐱, 𝑡))) 𝑑𝐱

𝑅
 

14 

or, equivalently:   

∫ (
𝜕𝑐(𝐱, 𝑡)

𝜕𝑡
− 𝑑𝑖𝑣 (𝐃(𝐱)𝑔𝑟𝑎𝑑(𝑐(𝐱, 𝑡))) − 𝑝(𝐱, 𝑡)) 𝑑𝐱

𝑅

= 0,∀𝑅 ⊂ Ω

 

15 

 

However, since Eq. 15 holds , ∀𝑅 ⊂ Ω , if 
𝜕𝑐(𝐱,𝑡)

𝜕𝑡
−𝑑𝑖𝑣 (𝐃(𝐱)𝑔𝑟𝑎𝑑(𝑐(𝐱, 𝑡)))− 𝑝(𝐱, 𝑡)  is 

constant, then it must be zero in R. Then 

𝜕𝑐(𝐱, 𝑡)

𝜕𝑡
− 𝑑𝑖𝑣 (𝐃(𝐱)𝑔𝑟𝑎𝑑(𝑐(𝐱, 𝑡))) = 𝑝(𝐱, 𝑡), 𝐱 ∈ Ω, 𝑡 > 0

 

16 

Equation 16 constitutes the mathematical expression of mass conservation law and is a local 

equation (i.e. holds at any point of Ω at any time).  

Continuing, 𝑝(𝒙, 𝑡)  can either be expressed as a function of 𝐱  and 𝑡 , or depend on 

concentration 𝑐(𝒙, 𝑡). In an absorbing medium we usually assume that the absorbed matter 

is proportional to matter concentration, i.e. 

𝑝(𝐱, 𝑡) = 𝑞(𝐱, 𝑡)𝑐(𝐱, 𝑡) + 𝑛(𝐱, 𝑡)

 

17 

where 𝑞(𝒙, 𝑡) expresses the absorbing identities, that generally change from point to point 

and 𝑛(𝒙, 𝑡) expresses the density of the internal sources of matter production. 

Thus, Eq. 16 can now be expressed as: 

𝜕𝑐(𝐱, 𝑡)

𝜕𝑡
− 𝑑𝑖𝑣 (𝐃(𝐱)𝑔𝑟𝑎𝑑(𝑐(𝐱, 𝑡))) = 𝑞(𝐱, 𝑡)𝑐(𝐱, 𝑡) + 𝑛(𝐱, 𝑡)

 

18 
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Especially for the case of cancer growth, this source term is proposed to depend on 

concentration, thus 𝑝(𝐱, 𝑡) = 𝑓(𝑐(𝐱, 𝑡)) . More specifically, exponential source term is 

mainly used, i.e. 𝑓(𝑐(𝐱, 𝑡)) = 𝜌𝑐(𝐱, 𝑡). If we set this value to 18, then  

𝜕𝑐(𝐱, 𝑡)

𝜕𝑡
= 𝑑𝑖𝑣 (𝐃(𝐱)𝑔𝑟𝑎𝑑(𝑐(𝐱, 𝑡))) + 𝑓(𝑐(𝐱, 𝑡))

 

19 

Equation 19 is a partial 2nd order differential equation. Before studying its solution, we must 

expand it in 3 dimensions. Assuming that the diffusion tensor at a point x=(x1, x2, x3) is 𝑫(𝐱) 

and is  

𝐃(x) = |

𝐷11(x) 𝐷12(x) 𝐷13(x)

𝐷12(x) 𝐷22(x) 𝐷23(x)

𝐷13(x) 𝐷23(x) 𝐷33(x)
|

 

20 

Eq. 19 can be expanded in 3 dimensions using the definitions of divergence (𝑑𝑖𝑣) and 

gradient (𝑔𝑟𝑎𝑑) operators as 

𝜕𝑐

𝜕𝑡
=∑∑

𝜕2𝑐

𝜕𝑥𝑖𝜕𝑥𝑗
𝐷𝑖𝑗

3

𝑗=1

3

𝑖=1

+∑
𝜕𝑐

𝜕𝑥𝑗

3

𝑗=1

(∑
𝜕𝐷𝑖𝑗

𝜕𝑥𝑖

3

𝑖=1

) + 𝑓(𝑐)

 

21 

3.2. Numerical Solving 

The equation 21 is a 2nd order partial differential equation. Such an equation can be solved 

using numerical methods. Some of the most commonly used numerical methods are 1) the 

Finite Differences Method, 2) the Finite Element method and the 3) Finite Volumes Method. 

In order to be able to find an approximation of the equation or its solution, we must ensure 

that we have set 

 The boundary conditions, i.e. either the value of concentration or its derivative at 

points that are on the boundary of our volume of interest.   

 The initial concentration 𝑐(𝐱, 0) 

For this model, we have used finite differences to study the solution of Eq. 21, since this 

method is mainly used in the most important models of glioma growth simulation. Later, 

we’ll see a solver with Finite Elements. 

The finite differences method is trying to approximate the solutions to differential equations 

using finite difference equations to approximate derivative. There are several ways for 

approximating the local derivatives. Some of the most popular are the forward Euler method, 

the backward Euler method, the Crank Nikolson method and the θ-methods. 

3.2.1. The Forward Euler Method 

Let’s study how the Forward Euler method approximates the solution of Eq. 21. If we 

quantify concentration 𝑐  as 𝑐(𝑛𝛥𝛵, 𝑖𝛥𝑋, 𝑗𝛥𝑌, 𝑘𝛥𝑍) ≡  𝐶𝑖,𝑗,𝑘
𝑛  and diffusion tensor as 

𝐷𝑝𝑞(𝑖𝛥𝑋, 𝑗𝛥𝑌, 𝑘𝛥𝑍) ≡  𝐷𝑝𝑞,𝑖,𝑗,𝑘
𝑛  for 𝑖 ∈ {0,… ,𝑁𝑋 − 1}, 𝑗 ∈ {0,… ,𝑁𝑌 − 1} , 𝑘 ∈ {0,… ,𝑁𝑍 −
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1} and 𝑝, 𝑞 ∈ {1,2,3} then the partial derivatives of Eq. 21 at point (𝑖𝛥𝑋, 𝑗𝛥𝑌, 𝑘𝛥𝑍) for 

Forward Euler method are approximated as: 

𝜕𝑐

𝜕𝑡
→
𝐶𝑖,𝑗,𝑘
𝑛+1 − 𝐶𝑖,𝑗,𝑘

𝑛

𝛥𝑇
 

𝜕𝑐

𝜕𝑥
→
𝐶𝑖+1,𝑗,𝑘
𝑛 − 𝐶𝑖−1,𝑗,𝑘

𝑛

2𝛥𝛸
 

𝜕2𝑐

𝜕𝑥2
→
𝐶𝑖+1,𝑗,𝑘
𝑛 − 2𝐶𝑖,𝑗,𝑘

𝑛 + 𝐶𝑖−1,𝑗,𝑘
𝑛

𝛥𝑋2
 

𝜕2𝑐

𝜕𝑥𝜕𝑦
→
𝐶𝑖+1,𝑗+1,𝑘
𝑛 +𝐶𝑖−1,𝑗−1,𝑘

𝑛 − 𝐶𝑖+1,𝑗−1,𝑘
𝑛 − 𝐶𝑖−1,𝑗+1,𝑘

𝑛

4𝛥𝑋𝛥𝑌
 

𝐷𝑝𝑞
𝜕𝑥

→
𝐷𝑝𝑞,𝑖+1,𝑗,𝑘 − 𝐷𝑝𝑞,𝑖−1,𝑗,𝑘

2𝛥𝛸
 

22 

and similarly for  
𝜕𝑐

𝜕𝑦
, 
𝜕𝑐

𝜕𝑧
, 
𝜕2𝑐

𝜕𝑦2
, 
𝜕2𝑐

𝜕𝑧2
,
𝜕2𝑐

𝜕𝑥𝜕𝑧
,
𝜕2𝑐

𝜕𝑦𝜕𝑧
,
𝐷𝑝𝑞

𝜕𝑦
 and 

𝐷𝑝𝑞

𝜕𝑧
.  

If any of the neighboring 𝐶𝑖,𝑗,𝑘
𝑛  is a boundary point, then its according value will be as defined 

during setting the boundary conditions (generally zero gradient). Before, continuing it is 

noteworthy to mention that, in order forward Euler method to be stable, we must choose 

𝛥𝑇, 𝛥𝑋, 𝛥𝛶 and 𝛥𝑍 that satisfy the following stability condition, which is derived from 

Courant–Friedrichs–Lewy condition [97]:  

𝛥𝑇 ≤ 𝑚𝑖𝑛𝑥,𝑦,𝑧(
1

2

1

𝐷11(𝑥, 𝑦, 𝑧)
𝛥𝑋2

+
𝐷22(𝑥, 𝑦, 𝑧)

𝛥𝑌2
+
𝐷33(𝑥, 𝑦, 𝑧)

𝛥𝑍2

)
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Deriving the Linear System 

Assuming that the previous condition holds, we carry on with substituting the 

approximations of local derivatives in Eq. 21. Thus, we derive 

𝐶𝑖,𝑗,𝑘
𝑛+1 − 𝐶𝑖,𝑗,𝑘

𝑛

𝛥𝑇
= [𝐴(𝑖, 𝑗, 𝑘)0 𝐴(𝑖, 𝑗, 𝑘)2 … 𝐴(𝑖, 𝑗, 𝑘)18] [

𝐶𝑖−1,𝑗−1,𝑘
𝑛

𝐶𝑖−1,𝑗,𝑘−1
𝑛

…
𝐶𝑖+1,𝑗+1,𝑘
𝑛

] + 𝑓(𝐶𝑖,𝑗,𝑘
𝑛 ) 

24 

where 

𝐴(𝑖, 𝑗, 𝑘)2 =
𝐷11,𝑖,𝑗,𝑘

𝛥𝑋2
−
𝐷11,𝑖+1,𝑗,𝑘 − 𝐷11,𝑖−1,𝑗,𝑘

4𝛥𝑋2
−
𝐷21,𝑖,𝑗+1,𝑘 − 𝐷21,𝑖,𝑗−1,𝑘

4𝛥𝑋𝛥𝑌
−
𝐷31,𝑖,𝑗,𝑘+1 − 𝐷31,𝑖,𝑗,𝑘−1

4𝛥𝑋𝛥𝑍
 

𝐴(𝑖, 𝑗, 𝑘)6 =
𝐷22,𝑖,𝑗,𝑘

𝛥𝑌2
−
𝐷12,𝑖+1,𝑗,𝑘 − 𝐷12,𝑖−1,𝑗,𝑘

4𝛥𝑋𝛥𝑌
−
𝐷22,𝑖,𝑗+1,𝑘 − 𝐷22,𝑖,𝑗−1,𝑘

4𝛥𝑌2
−
𝐷32,𝑖,𝑗,𝑘+1 − 𝐷32,𝑖,𝑗,𝑘−1

4𝛥𝑌𝛥𝑍
 

𝐴(𝑖, 𝑗, 𝑘)8 =
𝐷33,𝑖,𝑗,𝑘

𝛥𝑍2
−
𝐷13,𝑖+1,𝑗,𝑘 − 𝐷13,𝑖−1,𝑗,𝑘

4𝛥𝑋𝛥𝑍
−
𝐷23,𝑖,𝑗+1,𝑘 − 𝐷23,𝑖,𝑗−1,𝑘

4𝛥𝑌𝛥𝑍
−
𝐷33,𝑖,𝑗,𝑘+1 − 𝐷33,𝑖,𝑗,𝑘−1

4𝛥𝑍2
 

𝐴(𝑖, 𝑗, 𝑘)9 = −2
𝐷11,𝑖,𝑗,𝑘

𝛥𝑋2
− 2

𝐷22,𝑖,𝑗,𝑘

𝛥𝑌2
− 2

𝐷33,𝑖,𝑗,𝑘

𝛥𝑍2
 

𝐴(𝑖, 𝑗, 𝑘)10 =
𝐷33,𝑖,𝑗,𝑘

𝛥𝑍2
+
𝐷13,𝑖+1,𝑗,𝑘 − 𝐷13,𝑖−1,𝑗,𝑘

4𝛥𝑋𝛥𝑍
+
𝐷23,𝑖,𝑗+1,𝑘 − 𝐷23,𝑖,𝑗−1,𝑘

4𝛥𝑌𝛥𝑍
+
𝐷33,𝑖,𝑗,𝑘+1 − 𝐷33,𝑖,𝑗,𝑘−1

4𝛥𝑍2
 

𝐴(𝑖, 𝑗, 𝑘)12 =
𝐷22,𝑖,𝑗,𝑘

𝛥𝑌2
+
𝐷12,𝑖+1,𝑗,𝑘 − 𝐷12,𝑖−1,𝑗,𝑘

4𝛥𝑋𝛥𝑌
+
𝐷22,𝑖,𝑗+1,𝑘 − 𝐷22,𝑖,𝑗−1,𝑘

4𝛥𝑌2
+
𝐷32,𝑖,𝑗,𝑘+1 − 𝐷32,𝑖,𝑗,𝑘−1

4𝛥𝑌𝛥𝑍
 



Alexandros Roniotis, 2013 
 

 45 

[

Ε

𝐴(𝑖, 𝑗, 𝑘)16 =
𝐷11,𝑖,𝑗,𝑘

𝛥𝑋2
+
𝐷11,𝑖+1,𝑗,𝑘 − 𝐷11,𝑖−1,𝑗,𝑘

4𝛥𝑋2
+
𝐷21,𝑖,𝑗+1,𝑘 − 𝐷21,𝑖,𝑗−1,𝑘

4𝛥𝑋𝛥𝑌
+
𝐷31,𝑖,𝑗,𝑘+1 − 𝐷31,𝑖,𝑗,𝑘−1

4𝛥𝑋𝛥𝑍
 

𝐴(𝑖, 𝑗, 𝑘)0 = −𝐴(𝑖, 𝑗, 𝑘)4 = −𝐴(𝑖, 𝑗, 𝑘)14 = 𝐴(𝑖, 𝑗, 𝑘)18 =
𝐷12,𝑖,𝑗,𝑘

2𝛥𝑋𝛥𝑌
 

𝐴(𝑖, 𝑗, 𝑘)1 = −𝐴(𝑖, 𝑗, 𝑘)3 = −𝐴(𝑖, 𝑗, 𝑘)15 = 𝐴(𝑖, 𝑗, 𝑘)17 =
𝐷13,𝑖,𝑗,𝑘

2𝛥𝑋𝛥𝑍
 

𝐴(𝑖, 𝑗, 𝑘)5 = −𝐴(𝑖, 𝑗, 𝑘)7 = −𝐴(𝑖, 𝑗, 𝑘)11 = 𝐴(𝑖, 𝑗, 𝑘)13 =
𝐷23,𝑖,𝑗,𝑘

2𝛥𝑌𝛥𝑍
 

25 

Thus, if we get the vectorized version of 𝐶𝑖,𝑗,𝑘
𝑛  at time nΔΤ, as: 

  

 

Cn ≡ [𝐶0,0,0
𝑛 𝐶0,0,1

𝑛 … 𝐶0,0,𝑁𝑍−1
𝑛 𝐶0,1,0

𝑛 … 𝐶0,𝑁𝑌−2,𝑁𝑍−1
𝑛 𝐶0,𝑁𝑌−1,0

𝑛 … 𝐶1,0,0
𝑛 … 𝐶𝑁𝑋−1,𝑁𝑌−1,𝑁𝑍−1

𝑛
⏟                                                                

𝑁𝑋𝑁𝑌𝑁𝑍

]

𝑇

 
26 

the overall solution of the equation at time n+1 can be found by solving 

C𝑛+1 − Cn

𝛥𝑇
= ACn + 𝐹(Cn) 

27 

where A is a 𝑁𝑋𝑁𝑌𝑁𝑍×𝑁𝑋𝑁𝑌𝑁𝑍 matrix with its elements defined as 

A𝑚𝑙 =

{
 
 
 
 
 

 
 
 
 
 
𝐴(𝑖, 𝑗, 𝑘)0 , 𝑙 = 𝑚 −𝑁𝑌𝑁𝑍 −𝑁𝑍 𝐴(𝑖, 𝑗, 𝑘)10 , 𝑙 = 𝑚 + 1                   

𝐴(𝑖, 𝑗, 𝑘)1, 𝑙 = 𝑚 − 𝑁𝑌𝑁𝑍 − 1   𝐴(𝑖, 𝑗, 𝑘)11 , 𝑙 = 𝑚 + 𝑁𝑍 − 1        

𝐴(𝑖, 𝑗, 𝑘)2 , 𝑙 = 𝑚 − 𝑁𝑌𝑁𝑍           𝐴(𝑖, 𝑗, 𝑘)12 , 𝑙 = 𝑚 + 𝑁𝑍                

𝐴(𝑖, 𝑗, 𝑘)3 , 𝑙 = 𝑚 −𝑁𝑌𝑁𝑍 + 1   𝐴(𝑖, 𝑗, 𝑘)13 , 𝑙 = 𝑚 + 𝑁𝑍 + 1        

𝐴(𝑖, 𝑗, 𝑘)4 , 𝑙 = 𝑚 − 𝑁𝑌𝑁𝑍 +𝑁𝑍 𝐴(𝑖, 𝑗, 𝑘)14 , 𝑙 = 𝑚 + 𝑁𝑌𝑁𝑍 −𝑁𝑍
𝐴(𝑖, 𝑗, 𝑘)5 , 𝑙 = 𝑚 − 𝑁𝑍 − 1         𝐴(𝑖, 𝑗, 𝑘)15 , 𝑙 = 𝑚 + 𝑁𝑌𝑁𝑍 − 1  

𝐴(𝑖, 𝑗, 𝑘)6 , 𝑙 = 𝑚 − 𝑁𝑍                 𝐴(𝑖, 𝑗, 𝑘)16 , 𝑙 = 𝑚 +𝑁𝑌𝑁𝑍          

𝐴(𝑖, 𝑗, 𝑘)7 , 𝑙 = 𝑚 − 𝑁𝑍 + 1         𝐴(𝑖, 𝑗, 𝑘)17 , 𝑙 = 𝑚 + 𝑁𝑌𝑁𝑍 + 1  

𝐴(𝑖, 𝑗, 𝑘)8 , 𝑙 = 𝑚 − 1                    𝐴(𝑖, 𝑗, 𝑘)18 , 𝑙 = 𝑚 +𝑁𝑌𝑁𝑍 +𝑁𝑍
𝐴(𝑖, 𝑗, 𝑘)9 , 𝑙 = 𝑚                            0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                    

 

𝑚 = 𝑖𝑁𝑌𝑁𝑍 + 𝑗𝑁𝑍 + 𝑘 and 𝑚, 𝑙 ∈ {0, … ,𝑁𝑋𝑁𝑌𝑁𝑍 − 1} 

28 

and 𝐹(Cn) is the vectorized version of 𝑓(𝐶𝑖,𝑗,𝑘
𝑛 ): 

𝐹(𝑪𝑛) ≡ [𝑓(𝐶0,0,0
𝑛 ) 𝑓(𝐶0,0,1

𝑛 ) … 𝑓(𝐶𝑁𝑋−1,𝑁𝑌−1,𝑁𝑍−1
𝑛 )]

𝑇
 29 

The choice of the vectorization operator is discussed in later. 

The sparse matrix of the system 

Matrix 𝑨 is a 𝑁𝑋𝑁𝑌𝑁𝑍×𝑁𝑋𝑁𝑌𝑁𝑍  sparse matrix with 19 diagonals, as shown in Figure 29. The 

light pinkish areas values are zero and the dark blue lines are the non-zero diagonals. Note 

that the thicker lines are 3 diagonals in a row, while the thin ones are single. This form is 

called tridiagonal with fringes: It has one central and four more tridiagonal areas, while 

having four more single-diagonal areas [98]. . 
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Incorporating growth rate in the linear system 

One important stage of GBM modeling is choosing the operator 𝐹, according to the common 

net proliferation rates, namely the exponential, the Verhulst and the Gompertz laws.  

Exponential Rate 

If the net proliferation rate is exponential: 

𝑓(𝑐) = 𝜌𝑐 30 

then according to Eq. 29 

𝐹(𝑪𝑛) = [𝜌𝐶0,0,0
𝑛 𝜌𝐶0,0,1

𝑛 … 𝜌𝐶𝑁𝑋−1,𝑁𝑌−1,𝑁𝑍−1
𝑛 ]

𝑇
 31 

or equivalently 

𝐹(𝑪𝑛) = 𝜌𝑪𝑛 32 

Verhulst Rate 

If the net proliferation rate follows the Verhulst (or logistic) law: 

Figure 29 - The sparse matrix A and its 19 diagonals 
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[

Ε

𝑓(𝑐) = 𝜌𝑐
𝑐𝑚 − 𝑐

𝑐𝑚
 33 

where 𝑐𝑚 is the maximum value that concentration can reach, then according to Eq. 29: 

𝐹(𝑪𝑛) = [𝜌𝐶0,0,0
𝑛

𝑐𝑚 − 𝐶0,0,0
𝑛

𝑐𝑚
𝜌𝐶0,0,1

𝑛
𝑐𝑚 − 𝐶0,0,1

𝑛

𝑐𝑚
… 𝜌𝐶𝑁𝑋−1,𝑁𝑌−1,𝑁𝑍−1

𝑛
𝑐𝑚 − 𝐶𝑁𝑋−1,𝑁𝑌−1,𝑁𝑍−1

𝑛

𝑐𝑚
]

𝑇

 
34 

or equivalently 

𝐹(𝑪𝑛)

=
[

𝜌𝐶0,0,0
𝑛 0 … 0                             

0 𝜌𝐶0,0,1
𝑛 … 0                             

…
0

…
0

… …                             
… 𝜌𝐶𝑁𝑋−1,𝑁𝑌−1,𝑁𝑍−1

𝑛

] [
𝑐𝑚 − 𝐶0,0,0

𝑛

𝑐𝑚

𝑐𝑚 − 𝐶0,0,1
𝑛

𝑐𝑚
…

𝑐𝑚 − 𝐶𝑁𝑋−1,𝑁𝑌−1,𝑁𝑍−1
𝑛

𝑐𝑚
]

𝑇

 

=
𝜌

𝑐𝑚
[

𝐶0,0,0
𝑛 0 … 0                             

0 𝐶0,0,1
𝑛 … 0                             

…
0

…
0

… …                             
… 𝐶𝑁𝑋−1,𝑁𝑌−1,𝑁𝑍−1

𝑛

]([

𝑐𝑚
𝑐𝑚…
𝑐𝑚

] − [

𝐶0,0,0
𝑛

𝐶0,0,1
𝑛

…
𝐶𝑁𝑋−1,𝑁𝑌−1,𝑁𝑍−1
𝑛

]) 

35 

This that can be written as 

𝐹(𝑪𝑛) =
𝜌

𝑐𝑚
𝑑𝑖𝑎𝑔(𝑪𝑛)(𝑐𝑚𝟏

1×𝑁𝑋𝑁𝑌𝑁𝑍 − 𝑪𝑛) 

 

36 

where 

 diag of a 1 × 𝑁 vector V is a 𝑁 × 𝑁 matrix, which’s diagonal values are the values of 

V, i.e. diag(V)ij=V1i when i=j, and 0 when i≠j  

 𝟏𝑀×𝑁is a 𝑀 ×𝑁 vector with all its values equal to 1. 

Gompertz Rate 

If the net proliferation rate follows the Gompertz law: 

𝑓(𝑐) = 𝜌𝑐 ∙ ln (
𝑐𝑚
𝑐
) 37 

where 𝑐𝑚 is the maximum value that concentration can reach, then according to Eq. 29 

𝐹(𝑪𝑛) = [𝜌𝐶0,0,0
𝑛 (𝑙𝑛𝑐𝑚 − 𝑙𝑛𝐶0,0,0

𝑛 ) … 𝜌𝐶𝑁𝑋−1,𝑁𝑌−1,𝑁𝑍−1
𝑛 (𝑙𝑛𝑐𝑚 − 𝑙𝑛𝐶𝑁𝑋−1,𝑁𝑌−1,𝑁𝑍−1

𝑛 )]
𝑇

 38 

or equivalently 

𝐹(𝑪𝑛) = 𝜌 [

𝐶0,0,0
𝑛 0 … 0                             

0 𝐶0,0,1
𝑛 … 0                             

…
0

…
0

… …                             
… 𝐶𝑁𝑋−1,𝑁𝑌−1,𝑁𝑍−1

𝑛

](𝑙𝑛 [

𝑐𝑚
𝑐𝑚…
𝑐𝑚

] − 𝑙𝑛 [

𝐶0,0,0
𝑛

𝐶0,0,1
𝑛

…
𝐶𝑁𝑋−1,𝑁𝑌−1,𝑁𝑍−1
𝑛

]) 39 

This can be written as 

𝐹(𝑪𝑛) = 𝜌𝑑𝑖𝑎𝑔(𝑪𝑛)(𝑙𝑛(𝑐𝑚𝟏
1×𝑁𝑋𝑁𝑌𝑁𝑍) − 𝑙𝑛𝑪𝑛) 40 
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Table 1 summarizes the derived vectorization operator F for the commonly used exponential, 

logistic and Gompertz proliferation rates. 

Proliferation 
Rate 

Constant 
Rate 𝒇(𝒄) Vectorization Operator 𝐹(Cn) 

Exponential 𝑓(𝑐) = 𝜌𝑐 𝐹(𝑪𝑛) = 𝜌𝑪𝑛 
Verhulst 
(logistic) 

𝑓(𝑐) = 𝜌𝑐
𝑐𝑚 − 𝑐

𝑐𝑚
 𝐹(𝑪𝑛) =

𝜌

𝑐𝑚
𝑑𝑖𝑎𝑔(𝑪𝑛)(𝑐𝑚𝟏

1×𝑁𝑋𝑁𝑌𝑁𝑍 − 𝑪𝑛) 

Gompertz 𝑓(𝑐) = 𝜌𝑐 ∙ ln (
𝑐

𝑐𝑚
) 𝐹(𝑪𝑛) = 𝜌𝑑𝑖𝑎𝑔(𝑪𝑛)(𝑙𝑛(𝑐𝑚𝟏

1×𝑁𝑋𝑁𝑌𝑁𝑍) − 𝑙𝑛𝑪𝑛) 

𝑑𝑖𝑎𝑔 [

𝑥1
𝑥2
…
𝑥𝑁

] = [

𝑥1 0
0 𝑥2

… 0
0

… …
0 0

… …
… 𝑥𝑁

] 

 

𝟏1×𝑁 =

[
 
 
 
 
1
1
…
1
1]
 
 
 
 

}
 
 

 
 

𝑁 

Table 2 – Summary of vectorization factor 𝑭 for different proliferation rates 

The final linear system 

After having acquired Eq. 27, a direct solution can be found by iteratively calculating 

C𝑛+1 = (I+𝛥𝑇A)Cn + 𝛥𝑇 ∙ 𝐹(Cn)

 

41 

where 𝐈 is the 𝑁𝑋𝑁𝑌𝑁𝑍×𝑁𝑋𝑁𝑌𝑁𝑍  identity matrix. In order this iteration to be able to start, 

we must provide the initial concentration C0. 

This is the solution of the forward Euler method. This is called forward, because the next-

time approximation of concentration can be directly approximated as a linear combination 

of the previous-time approximation. This is a very easy to implement solution, but numerical 

stability has to be ensured by Eq. 23. 

3.2.2. The Backward Euler Method 

Let’s now study the backward Euler method in approximation of the local derivatives in the 

internal points of Eq. 21. Finding a solution using the Backward Euler scheme is desirable, 

because there is no constraint in the numerical stability of this method. According to the 

backward Euler method, the local derivatives can now be approximated as: 

𝜕𝑐

𝜕𝑡
→
𝐶𝑖,𝑗,𝑘
𝑛+1 − 𝐶𝑖,𝑗,𝑘

𝑛

𝛥𝑇
 

𝜕𝑐

𝜕𝑥
→
𝐶𝑖+1,𝑗,𝑘
𝑛+1 − 𝐶𝑖−1,𝑗,𝑘

𝑛+1

2𝛥𝛸
 

𝜕2𝑐

𝜕𝑥2
→
𝐶𝑖+1,𝑗,𝑘
𝑛+1 − 2𝐶𝑖,𝑗,𝑘

𝑛+1 + 𝐶𝑖−1,𝑗,𝑘
𝑛+1

𝛥𝑋2
 

𝜕2𝑐

𝜕𝑥𝜕𝑦
→
𝐶𝑖+1,𝑗+1,𝑘
𝑛+1 +𝐶𝑖−1,𝑗−1,𝑘

𝑛+1 − 𝐶𝑖+1,𝑗−1,𝑘
𝑛+1 − 𝐶𝑖−1,𝑗+1,𝑘

𝑛+1

4𝛥𝑋𝛥𝑌
 

𝐷𝑝𝑞

𝜕𝑥
→
𝐷𝑝𝑞,𝑖+1,𝑗,𝑘 − 𝐷𝑝𝑞,𝑖−1,𝑗,𝑘

2𝛥𝛸
 

42 
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[

Ε

and similarly for 
𝜕𝑐

𝜕𝑦
, 
𝜕𝑐

𝜕𝑧
, 
𝜕2𝑐

𝜕𝑦2
, 
𝜕2𝑐

𝜕𝑧2
,
𝜕2𝑐

𝜕𝑥𝜕𝑧
,
𝜕2𝑐

𝜕𝑦𝜕𝑧
,
𝐷𝑝𝑞

𝜕𝑦
 and 

𝐷𝑝𝑞

𝜕𝑧
.  

Linear System Derivation 

Similarly to the forward Euler, by substituting the approximations of local derivatives in Eq. 

21, we get 

C𝑛+1 − Cn

𝛥𝑇
= ACn+1 + 𝐹(Cn+1) 

43 

where 𝐀 is exactly the same matrix of Eq. 27 and F is the same vectorization operator of Eq. 

29. The formulations of 𝐹(Cn)  and 𝐹(Cn+1)  for exponential, Verhulst and Gompertz 

proliferation rates hold as in Forward Euler. 

The final linear system 

After having acquired equation (3.39), the concentration of the glioma cells at time t can be 

found by iteratively solving the linear system 

(I-𝛥𝑇A)C𝑛+1 − 𝛥𝑇 ∙ 𝐹(C𝑛+1) = C𝑛

 

44 

till fictitious time t is reached, starting with given C0. The linear system at each iteration is 

big and can be expressed with a big, sparse, symmetric and positive definite matrix, thus an 

iterative method for solving linear systems, e.g. the conjugate gradient method can be used. 

Unconditional stability and accuracy are advantages of the backward Euler method, in 

contrary to computational and storage load that has to be performed 

3.2.3. The θ-Methods 

The θ-methods can be used for the approximation of the local derivatives in the internal 

points of Eq. 21. The θ-methods use the balancing parameter 𝜃 ∈ [0,1] so as to combine 

forward and backward schemes. According to the θ-methods, the local derivatives can now 

be approximated as: 

𝜕𝑐

𝜕𝑡
→
𝐶𝑖,𝑗,𝑘
𝑛+1 − 𝐶𝑖,𝑗,𝑘

𝑛

𝛥𝑇
 

𝜕𝑐

𝜕𝑥
→ (1 − 𝜃)

𝐶𝑖+1,𝑗,𝑘
𝑛 − 𝐶𝑖−1,𝑗,𝑘

𝑛

2𝛥𝛸
+ 𝜃

𝐶𝑖+1,𝑗,𝑘
𝑛+1 − 𝐶𝑖−1,𝑗,𝑘

𝑛+1

2𝛥𝛸
 

𝜕2𝑐

𝜕𝑥2
→ (1 − 𝜃)

𝐶𝑖+1,𝑗,𝑘
𝑛 − 2𝐶𝑖,𝑗,𝑘

𝑛 + 𝐶𝑖−1,𝑗,𝑘
𝑛

𝛥𝑋2
+ 𝜃

𝐶𝑖+1,𝑗,𝑘
𝑛+1 − 2𝐶𝑖,𝑗,𝑘

𝑛+1 + 𝐶𝑖−1,𝑗,𝑘
𝑛+1

𝛥𝑋2
 

𝜕2𝑐

𝜕𝑥𝜕𝑦
→ (1 − 𝜃)

𝐶𝑖+1,𝑗+1,𝑘
𝑛 +𝐶𝑖−1,𝑗−1,𝑘

𝑛 − 𝐶𝑖+1,𝑗−1,𝑘
𝑛 − 𝐶𝑖−1,𝑗+1,𝑘

𝑛

4𝛥𝑋𝛥𝑌
+ 

𝜃
𝐶𝑖+1,𝑗+1,𝑘
𝑛+1 +𝐶𝑖−1,𝑗−1,𝑘

𝑛+1 − 𝐶𝑖+1,𝑗−1,𝑘
𝑛+1 − 𝐶𝑖−1,𝑗+1,𝑘

𝑛+1

4𝛥𝑋𝛥𝑌
 

𝐷𝑝𝑞
𝜕𝑥

→
𝐷𝑝𝑞,𝑖+1,𝑗,𝑘 − 𝐷𝑝𝑞,𝑖−1,𝑗,𝑘

2𝛥𝛸
 

𝑐 → (1 − 𝜃)𝐶𝑖,𝑗,𝑘
𝑛 +𝜃𝐶𝑖,𝑗,𝑘

𝑛+1 

45 
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and similarly for 
𝜕𝑐

𝜕𝑦
, 
𝜕𝑐

𝜕𝑧
, 
𝜕2𝑐

𝜕𝑦2
, 
𝜕2𝑐

𝜕𝑧2
,
𝜕2𝑐

𝜕𝑥𝜕𝑧
,
𝜕2𝑐

𝜕𝑦𝜕𝑧
,
𝐷𝑝𝑞

𝜕𝑦
 and 

𝐷𝑝𝑞

𝜕𝑧
.  

Note that Backward Euler, Forward Euler and Crank-Nikolson are θ-methods, for θ=1,0 and 

0.5 respectively. 

Linear System Derivation 

Similarly to the forward and backward Euler, by substituting the approximations of local 

derivative, we derive 

C𝑛+1 − Cn

𝛥𝑇
= (1 − 𝜃)ACn + 𝜃ACn+1 + (1 − 𝜃)𝐹(Cn) + 𝜃𝐹(Cn+1) 

46 

where 𝐀 is exactly the same matrix of Eq. 27 and F is the same vectorization operator of Eq. 

29. The formulations of 𝐹(Cn)  and 𝐹(Cn+1)  for exponential, Verhulst and Gompertz 

proliferation rates hold as in Forward Euler. 

The final linear system 

After having acquired Eq. 46 the concentration of the glioma cells at time t can be found by 

iteratively solving the following linear system of equations: 

(𝐈 − 𝜃𝛥𝑇A)C
𝑛+1

− 𝜃𝛥𝑇𝐹(Cn+1) = (𝐈 + (1 − 𝜃)𝛥𝑇A)Cn + (1 − 𝜃)𝛥𝑇𝐹(Cn) 47 

As, in backward Euler, a method for solving linear systems is required. A discussion on the 

choice of parameter θ, for the commonly used exponential proliferation rate 𝑓(𝑐) = 𝜌𝑐, is 

described in the next section.  

The θ-method is a more accurate method than Backward Euler, is flexible due to choice of θ, 

is unconditionally stable, but a high computational and storage load has to be performed as 

well. 

Choice of θ 

After having acquired the formulation of the linear system, it is interesting to choose the 

parameter 𝜃 with care. If we neglect the diffusion term in Eq. 47, we obtain the scheme 

C𝑛+1 − Cn

𝛥𝑇
= (1 − 𝜃)𝐹(Cn) + 𝜃𝐹(Cn+1) 

48 

For simplicity, it is supposed that the net proliferation rate is exponential, thus 

C𝑛+1 − Cn

𝛥𝑇
= (1 − 𝜃)𝜌Cn + 𝜃𝜌Cn+1 

49 

or equivalently  

Cn+1 =
1 + 𝜌𝛥𝑇 − 𝜃𝜌𝛥𝑇

1 − 𝜃𝜌𝛥𝑇
Cn 

50 

If the initial concentration is C0 then, iteratively, we get 
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Cn = (
1 + 𝜌𝛥𝑇 − 𝜃𝜌𝛥𝑇

1 − 𝜃𝜌𝛥𝑇
)
𝑛

C0 
51 

However, the analytical solution for the exponential law is 

Cn = 𝑒𝑛𝜌𝛥𝑇C0 52 

Thus, by substituting Eq. 52 to Eq. 51, we derive 

(𝑒𝜌𝛥𝑇)𝑛 = (
1 + 𝜌𝛥𝑇 − 𝜃𝜌𝛥𝑇

1 − 𝜃𝜌𝛥𝑇
)
𝑛

 
53 

which gives the relationship 

𝜃 =
1 + 𝜌𝛥𝑇 − 𝑒𝜌𝛥𝑇

𝜌𝛥𝑇(1 − 𝑒𝜌𝛥𝑇)
 

54 

or 

𝜃 =
1

𝜌𝛥𝑇
−

1

1 − 𝑒𝜌𝛥𝑇
 

55 

This is a good estimate for parameter θ. This estimate could also be used for Verlhust or 

Gompertz proliferation rate.  

3.2.4. The Crank Nikolson Method 

The Crank Nikolson method is widely used for diffusion equations, because it is 

unconditionally stable. The approximate solutions can still contain spurious oscillations if the 

ratio of time step to the square of space step is large (typically larger than 1/2). When this 

holds, backward Euler method is often used, which is both stable and immune to oscillations. 

Otherwise, Crank Nikolson scheme is more accurate than backward Euler.  

The Crank Nikolson scheme is a θ-method for θ=½. Thus, everything said for θ-methods in 

the previous chapter applies here, for θ=
1

2
. Thus, the concentration of the glioma cells at 

time t can be found by iteratively solving the following linear system of equations: 

(𝐈 −
1

2
𝛥𝑇A)C𝐧+𝟏 −

1

2
𝛥𝑇𝐹(Cn+1) = (𝐈 +

1

2
𝛥𝑇A)Cn +

1

2
𝛥𝑇𝐹(Cn) 

56 

Summary 

Now, we can present collectively the formulation of the iterative linear systems that 

produce the solution of the diffusion Eq. 21. Table 3 presents the derived linear systems 

according to the numerical scheme that is used. 
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Numerical 
Scheme 

Linear System of Equations 

Forward 
Euler C𝑛+1 = (I+𝛥𝑇A)Cn + 𝛥𝑇 ∙ 𝐹(Cn) 

Backward 
Euler 

(I-𝛥𝑇A)C𝑛+1 − 𝛥𝑇 ∙ 𝐹(C𝑛+1) = C𝑛 

θ-Methods (𝐈 − 𝜃𝛥𝑇A)C
𝑛+1

− 𝜃𝛥𝑇𝐹(Cn+1) = (𝐈 + (1 − 𝜃)𝛥𝑇A)Cn + (1 − 𝜃)𝛥𝑇𝐹(Cn) 
Crank 

Nikolson 
(𝐈 −

1

2
𝛥𝑇A)C𝐧+𝟏 −

1

2
𝛥𝑇𝐹(Cn+1) = (𝐈 +

1

2
𝛥𝑇A)Cn +

1

2
𝛥𝑇𝐹(Cn) 

Table 3 - Direct expressions of the iterative linear system that are used for solving Eq. 21.  
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4. Implementation 

After having acquired the mathematical formalism of the linear system that solves Eq. 21 we 

are ready to describe an approach of the model implementation in 3D. This approach has 

been already been implemented in C++ and the author can be contacted for more 

information or more code sharing. This section describes the steps of implementation. 

4.1. Grid Initialization 

At first, we have to initialize the grid of the points, where finite differences are going to be 

applied. A visualization of this discrete 3D space is presented in Figure 30. Suppose that 𝑁3 

MRI images of 𝑁1 × 𝑁2 pixels are initially available with local image information 𝐼(𝑥1, 𝑥2, 𝑥3),

𝑥𝑖 ∈ {0,… ,𝑁𝑖 − 1} and 𝑖 ∈ {1,2,3}. Image information at each point (𝑥1, 𝑥2, 𝑥3) may include 

intensity, local diffusion tensor and the initial tumor cell concentration.  

 

Figure 30 - A representation of a series of MRI images 

Moreover, suppose that the distances between two consecutive points in direction of 𝑥1, 𝑥2 

and 𝑥3 are physically interpreted to 𝑑1, 𝑑2 and 𝑑3 (𝑚𝑚) respectively within brain. One could 

directly use all the 𝑁1𝑁2𝑁3 points of the initial brain space in the grid, so as to have more 

accurate results. However, by keeping all points on the grid, computational load and storage 

requirements increase. Oppositely, for instance, if one reduces the initial 𝑁1 × 𝑁2 ×𝑁3 

space to a 
𝑁1

2
×
𝑁2

2
×
𝑁3

2
, then computational load and storage decrease to 

1

8
. Thus, reducing 

initial data to less grid points (and sacrificing accuracy), is vital for the computational 

complexity of the model. In order to reduce the available data, one can sample local 

information 𝐼. 

The initial 𝑁1 × 𝑁2 × 𝑁3 grid can be sampled at every 𝑁𝑆1, 𝑁𝑆2 and 𝑁𝑆3 points, as Figure 31 

shows. This is done by setting the sampled information as 

𝐼𝑆(𝑥1, 𝑥2, 𝑥3) ≡ 𝐼𝑆(𝑁𝑆1𝑥1, 𝑁𝑆2𝑥2, 𝑁𝑆3𝑥3), 𝑥𝑖 ∈ {0,… , ⌊
𝑁𝑖−1

𝑁𝑆𝑖
⌋} 57 
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Figure 31 - Sampling of a MRI slice along the direction x, with 𝑵𝐒𝟏 =4 

Then, the new grid (Figure 32), on which the model will work on, has 𝑁𝑋 × 𝑁𝑌 ×𝑁𝑍  

dimension, where: 

𝑁𝑋=⌊
𝑁1

𝑁𝑆1
⌋, 𝑁𝑌=⌊

𝑁2

𝑁𝑆2
⌋ and 𝑁𝑍=⌊

𝑁3

𝑁𝑆3
⌋ 58 

and the distance steps inside the brain are now 

𝛥𝑋=𝑁𝑆1𝑑1, 𝛥𝑌=𝑁𝑆2𝑑2 and 𝛥𝑍=𝑁𝑆3𝑑3. 59 

 

Figure 32 - The initialized grid and the dimensional interpretation to brain 

4.2. Structures 

This section presents a detailed formalism of the required structures for implementing the 

growth simulation program. Firstly, the information 𝐼𝑆(𝑥1, 𝑥2, 𝑥3) of each point (𝑥1, 𝑥2, 𝑥3) is 

stored in a structure called Point. The structure can be implemented as shown in Figure 33 

(left). C_0 at iteration 𝑛 + 1 is the concentration 𝐶𝑥1,𝑥2,𝑥3
𝑛 , while C_1 is 𝐶𝑥1,𝑥2,𝑥3

𝑛+1 . A[19] is 

an array containing the 19 non-zero local values of matrix A, as estimated by Eq. 28. 

is_boundary is a boolean variable, expressing if boundary conditions apply at this point. 
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Finally, intensity is the local intensity of the medical image, while D is the 3x3 local 

diffusion tensor.  

 

Figure 33 - (Left) Information structure Point for each point of the grid. (Right) The 1D array each position of 
which points to the information structure of the respective point. 

One instance of this structure is associated with each point of the grid. Thus a 3D  𝑁𝑋 × 𝑁𝑌 ×

𝑁𝑍 array of such structures should be used. Instead of using a 3𝐷 array, a 𝑁𝑋𝑁𝑌𝑁𝑍 row is 

used (Figure 33). The information structure for any point (𝑥1, 𝑥2, 𝑥3), 𝑥1 ∈ {0,… ,𝑁𝑋 −

1}, 𝑥2 ∈ {0,… ,𝑁𝑌 − 1}  and 𝑥3 ∈ {0,… ,𝑁𝑍 − 1} is pointed at the position 𝑥1𝑁𝑌𝑁𝑍 + 𝑥2𝑁𝑍 +

𝑥3 of this 1D array. 

Another structure that is used represents the matrix A. As already described, matrix A is a 

𝑁𝑋𝑁𝑌𝑁𝑍 × 𝑁𝑋𝑁𝑌𝑁𝑍 19-diagonal sparse matrix. Note that for a 128 × 128 × 128 grid, the 

matrix has almost 4.4 quadrillion positions, only 40 million of which are non-zero. A cannot 

be stored in a compact format, since it is very large and it is surely inefficient to allocate 

storage for all elements. Obviously, some kind of indexed storage scheme is required. The 

scheme that is used is called row-indexed sparse storage mode and is well described in [98]. 

It requires about two times the number of nonzero matrix elements.  

If 𝑁 = 𝑁𝑋𝑁𝑌𝑁𝑍, then in order to represent the 𝑁 × 𝑁 matrix of the model, the scheme uses 

two 1D arrays, sa and ija with 19𝑁 locations. Array sa stores double values, while ija 

integers. The storage rules are: 

 The first 𝑁 locations of sa store A’s diagonal values, in order. 

 Each of the first 𝑁 locations of ija stores the index of the array sa that contains the 

first off-diagonal element of the corresponding row of the matrix. If there are no off-

diagonal elements for that row, it is one greater than the index in sa of the most 

recently stored element of a previous row. 

 Location 0 of ija is always equal to 𝑁 + 1. 

 Location 𝑁 of ija is one greater than the index in sa of the last off-diagonal element of 

the last row. 

 Entries in ija at locations >𝑁 + 1 contain A’s off-diagonal values, ordered by rows, and 

within each row, ordered by column. 

 Entries in sa at locations >𝑁 + 1 contain the column number of the corresponding 

element in sa. 
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These rules result in an elegant storage scheme. As an example consider the matrix of Figure 

34 (up). The row-indexed storage representation of this matrix is given in Figure 34 (down).  

 

Figure 34 - (Up) Example of a 5x5 matrix. (Down) The representation of the row-indexed sparse matrix, after 
using the related rules. 

4.3. Initialization of Structures 

The first step of simulation is the initialization of the grid information. For each point of the 

grid, the relevant information structure is loaded. Initial concentration C_0, intensity, 

the diffusion tensor D and the boundary conditions at each point are loaded from file. C_1 

and A[19] are initialized with zero values.  

After having loaded the information for all grid points, A[19] is calculated for each point 

using Eq. 28. As explained earlier, A[19]for a point (𝑥1, 𝑥2, 𝑥3) represents the 19 nonzero 

elements of the (𝑥1𝑁𝑌𝑁𝑍 + 𝑥2𝑁𝑍 + 𝑥3)-th row of matrix A (see Figure 35). Thus, at this point, 

the row-indexed version of A, can be created by using the rules of the preceding paragraph. 

In our model, a slightly modified version of the C function described in [98] was used, in 

order to create the row-indexed scheme. The function is called sprsin and its code is given 

in Code 1. 
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Figure 35 - 19 A[∙] values for the grid point (x_1,x_2,x_3 ). 

void sprsin(Point *a, double thresh, double *sA, unsigned long *ijA) 

{ 

 //a:  the information struct of figure 4.1 (Left) 

 //thresh: Each A element with value <than thresh is truncated  

 //N1N2N3: the global variable for the product NX*NY*NZ 

 int m,n,k; 

 int nmax=19*N1N2N3; 

 //Store diagonal elements 

 for (m=0;m<N1N2N3;m++) 

  sA[m]=A(a,m,m); 

 //Store the first off diagonal element 

 ijA[0]=N1N2N3+1; 

 k=N1N2N3; 

 //Start loop 

 for (m=0;m<N1N2N3;m++)  

 { 

  //Choose only n's that are within matrix dimensions 

  for (int i=0;i<19;i++)  

  { 

   n=n_est(m,i); 

   if(m!=n && n>=0 && n<N1N2N3)  

   { 

    if(fabs(A(a,m,n))>=thresh) 

    { 

     if (++k>nmax) 

     { 

      fprintf(stderr,"sprsin: sa, ija small"); 

      exit(-1); 

     } 

     sA[k]=A(a,m,n); 

     ijA[k]=n; 

    } 

   } 

  } 

  ijA[m+1]=k+1; 

 } 

} 

int n_est(int m, int index) //See 3.23 

{ 

 switch(index) 

 { 

  case 9: 

   return m; 

  case 16: 
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   return m+N2N3; 

  case 2:  

   return m-N2N3; 

  case 12: 

   return m+N3; 

  case 6:  

   return m-N3; 

  case 10: 

   return m+1; 

  case 8:  

   return m-1; 

  case 18: 

   return m+N2N3+N3; 

  case 0: 

   return m-N2N3-N3; 

  case 14: 

   return m+N2N3-N3; 

  case 4: 

   return m-N2N3+N3; 

  case 17: 

   return m+N2N3+1; 

  case 1: 

   return m-N2N3-1; 

  case 15: 

   return m+N2N3-1; 

  case 3: 

   return m-N2N3+1; 

  case 13: 

   return m+N3+1; 

  case 5: 

   return m-N3-1; 

  case 11: 

   return m+N3-1; 

  case 7: 

   return m-N3+1; 

 } 

 return 0; 

} 

double A(Point *Volume, int m, int n) //Returns Amn (See 3.23) 

{ 

 //Check if n,m are within limits 

 if(n<0 || n>=N1N2N3 || m<0 || m>=N1N2N3) 

 { 

  fprintf(stderr, "Error: Tried to access A with invalid indeces."); 

  exit(-1); 

 } 

 if(n==m) 

  return(Volume[m].A[9]); 

 if(n==m+N2N3) 

  return(Volume[m].A[16]); 

 if(n==m-N2*N3) 

  return(Volume[m].A[2]); 

 if(n==m+N3) 

  return(Volume[m].A[12]); 

 if(n==m-N3) 

  return(Volume[m].A[6]); 

 if(n==m+1) 

  return(Volume[m].A[10]); 

 if(n==m-1) 

  return(Volume[m].A[8]); 

 if(n==m+N2*N3+N3 || n==m-N2*N3-N3) 

  return(Volume[m].A[18]); 

 if(n==m+N2*N3-N3 || n==m-N2*N3+N3) 

  return(-Volume[m].A[18]); 

 if(n==m+N2*N3+1 || n==m-N2*N3-1) 

  return(Volume[m].A[17]); 

 if(n==m+N2*N3-1 || n==m-N2*N3+1) 

  return(-Volume[m].A[17]); 

 if(n==m+N3+1 || n==m-N3-1) 

  return(Volume[m].A[13]); 

 if(n==m+N3-1 || n==m-N3+1) 

  return(-Volume[m].A[13]); 

 return(0);   

} 
Code 1- Function sprsin() that creates the row-indexed representation of a matrix and its subroutines 
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4.4. Solving the Linear system 

Continuing, after having stored the big sparse matrix A, using sprsin(), the next step it to 

create the linear system that is going to be solved numerically. Suppose that the net 

proliferation rate is geometric. Then Eq. 41, Eq. 44 and Eq. 47 become 

Cn+1 = ((1 + 𝜌𝛥𝑇)𝐈 + 𝛥𝑇A)C
𝑛

 60 

((1 − 𝜌𝛥𝑇)𝐈 − 𝛥𝑇A)C
𝑛+1

= Cn 61 

and 

((1 − 𝜌𝜃𝛥𝑇)𝐈 − 𝜃𝛥𝑇A)C
𝑛+1

= ((1 + (1 − 𝜃)𝜌𝛥𝑇)𝐈 + (1 − 𝜃)𝛥𝑇A)Cn 62 

Similarly, we work for other net proliferation schemes of 𝑓(𝑐). 

4.4.1. Forward Euler 

In order to create and solve Eq. 60, matrix A has to be initially multiplied by 𝛥𝑇. After 

this, (1 + 𝜌𝛥𝑇) should be added to each diagonal of 𝛥𝑇𝐀. In order to achieve this 

using the sparse array representation, we use the following two functions of Code 2.  

void sprsl(double L, double *sA, unsigned long *ijA) 

{ 

 //Multiply sparse matrix A with the number L 

 for (int i=0;i<ijA[ijA[0]-1];i++)  

 { 

  sA[i]=L*sA[i]; 

 } 

} 

 

void sprsI(double lamda, double *sA, unsigned long *ijA) 

{ 

 //Compute A+λI 

 for (int i=0; i<ijA[0]-1; i++)  

  sA[i]=lamda+sA[i]; 

} 
Code 2 - Functions sprsI() and sprsl() 

Thus, by using the two functions of Code 1, ((1 + 𝜌𝛥𝑇)𝐈 + 𝛥𝑇A) of Eq. 60 can been 

computed. In order to achieve this, the functions are called as  

 sprsl(ΔT, sa, ija); 

 sprsI(1+ΔT*ρ,sa, ija); 

The next step is to iteratively solve the system. In order to be able to resolve this, two 1 ×

𝑁𝑋𝑁𝑌𝑁𝑍  vectors 𝐶𝑛  and 𝐶𝑛+1have to be allocated. After this, the vector Cn  has to be 

initialized. When the first iteration is met (i.e. 𝑛 =0) Cn is initialized by setting its values 

equal to the initial concentration C0. For n>0, 𝐶𝑛 is initialized by setting this equal to the 

previous state concentration 𝐶𝑛−1 (i.e. 𝐶𝑛+1 of the previous state.  

At each iteration, 𝐶𝑛+1 is approximated by just calculating the product of matrix ((1 +

𝜌𝛥𝑇)𝐈 + 𝛥𝑇A) by 𝐶𝑛. In order to do that we use function sprax(), the implementation of 

which is presented in Code 3. This is called as sprsax(Cn,Cn+1,sa,ija). 
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void sprsax(double *x, double *b, double *sA, unsigned long *ijA) 

{       //Computes Ax=b (b is unknown) 

 int i,k; 

 

 if (ijA[0] != N1N2N3+1) 

 { 

  fprintf(stderr,"sprsax: mismatched vector and matrix"); 

  exit(-1); 

 } 

 for (i=0;i<ijA[0]-1;i++)  

 { 

  b[i]=sA[i]*x[i]; 

  for(k=ijA[i];k<ijA[i+1];k++)  

  { 

   b[i] += sA[k]*x[ijA[k]]; 

  } 

 } 

} 
Code 3 - Function sprsax that estimates b=Ax 

By using all these function, the eventual implementation of forward Euler scheme can be 

summarized in the following code. 

void ForwardEuler(Point *Volume,unsigned int days, double DT, double *sa, unsigned 

long *ija) //DT is ΔΤ (in days)  

      //days is the total simulation time 

{ 

 //Declarations 

 ... 

 double *Cn; 

 double *Cn_plus_1;    //Cn+1  

 //Create Sparse matrix ((1+ρΔΤ)I+ΔΤ*A) 

 sprsin(Volume, 0, sa, ija);   //A 

 sprsl(DT, sa, ija);    //Multiply by ΔT 

 sprsI(1+DT*r,sa, ija);   //Add (1+ΔΤ*ρ)I 

 //Allocate memory for vector C and Cn+1 

 Cn..., Cn_plus_1 ...  

 //Initialize Cn and Cn+1 

 for(int i=0;i<N1N2N3;i++) 

 { 

  Cn[i]=Volume[i].concentration[0]; // Cn=C0 

  Cn_plus_1[i]=0; 

 } 

 //Start iterations 

 for(t=0; t< int (days/DT); t++) 

 { 

  sprsax(Cn,Cn_plus_1,sa,ija); //Solve ((1+ρΔΤ)I+ΔΤ*A)*Cn=Cn+1} 

  //Update values of Cn, for the next iteration 

  for(int i=0;i<N1N2N3;i++) 

   Cn[i]=Cn_plus_1[i]; 

 }  

 //Here, C_plus_1 is the approximated concentration at time n=days 

 ...Use/return C_plus_1 

 //Deallocate memory 

 Free... 

} 
Code 4 - Implementation of the forward Euler scheme 

4.4.2. Backward Euler 

We work similarly for deriving the system of the backward Euler scheme; however an 

iterative method has to be used here for solving the system. Firstly, ((1 − 𝜌𝛥𝑇)𝐈 − 𝛥𝑇A) of 

Eq. 61 is created by calling  

 sprsl(-DT, sa, ija);   //Multiply by –DT (-ΔΤ*A) 

 sprsI(1-DT*r,sa, ija); //Add (1-ρΔΤ)I) 
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The next step is to iteratively solve the system. As in forward Euler, two 1 × 𝑁𝑋𝑁𝑌𝑁𝑍 vectors 

𝐶𝑛 and 𝐶𝑛+1 have to be used. At each iteration the emerging system is solved by using the 

iterative biconjugate gradient method for sparse matrices that is provided in [98]. The code 

for implementing the biconjugate gradient method is given in Code 5.  

void linbcg(double *b, double *x, const int itol, const double tol, const int itmax , 

double *sa, unsigned long *ija) 

{ 

/*Solves Ax=b by iterative conjugate gradient method (x is unknown). x should be set 

to an initial guess of the solution, 0 otherwise. itol is 1,2,3 or 4 (see [98]), itmax 

is the maximum number of iterations, tol is the desired convergence tolerance.*/ 

 

 double err,ak,akden,bk,bkden=1.0,bknum,bnrm,dxnrm,xnrm,zm1nrm,znrm; 

 const double EPS=1.0e-14; 

 int j, iter; 

 

 int n=N1N2N3; 

 

 double *p,*pp,*r,*rr,*z,*zz; 

 //Allocate memory for p, pp, r, rr, z and zz 

 p = (double *)malloc(N1N2N3*sizeof(double)); 

 pp = (double *)malloc(N1N2N3*sizeof(double)); 

 r = (double *)malloc(N1N2N3*sizeof(double)); 

 rr = (double *)malloc(N1N2N3*sizeof(double)); 

 z = (double *)malloc(N1N2N3*sizeof(double)); 

 zz = (double *)malloc(N1N2N3*sizeof(double)); 

 // 

  

 iter=0; 

 atimes(x,r,0,sa,ija); 

 for (j=0;j<n;j++) { 

  r[j]=b[j]-r[j]; 

  rr[j]=r[j]; 

 } 

 if (itol == 1) { 

  bnrm=snrm(b,itol); 

  asolve(r,z,0, sa, ija); 

 } 

 else if (itol == 2) { 

  asolve(b,z,0, sa, ija); 

  bnrm=snrm(z,itol); 

  asolve(r,z,0, sa, ija); 

 } 

 else if (itol == 3 || itol == 4) { 

  asolve(b,z,0, sa, ija); 

  bnrm=snrm(z,itol); 

  asolve(r,z,0, sa, ija); 

  znrm=snrm(z,itol); 

 } else fprintf(stderr,"illegal itol in linbcg"); 

 //cout << fixed << setprecision(6); 

 while (iter < itmax) { 

  ++iter; 

  asolve(rr,zz,1, sa, ija); 

  for (bknum=0.0,j=0;j<n;j++) bknum += z[j]*rr[j]; 

  if (iter == 1) { 

   for (j=0;j<n;j++) { 

    p[j]=z[j]; 

    pp[j]=zz[j]; 

   } 

  } else { 

   bk=bknum/bkden; 

   for (j=0;j<n;j++) { 

    p[j]=bk*p[j]+z[j]; 

    pp[j]=bk*pp[j]+zz[j]; 

   } 

  } 

  bkden=bknum; 

  atimes(p,z,0, sa, ija); 

  for (akden=0.0,j=0;j<n;j++) akden += z[j]*pp[j]; 

  ak=bknum/akden; 

  atimes(pp,zz,1, sa, ija); 

  for (j=0;j<n;j++) { 

   x[j] += ak*p[j]; 
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   r[j] -= ak*z[j]; 

   rr[j] -= ak*zz[j]; 

  } 

  asolve(r,z,0, sa, ija); 

  if (itol == 1) 

   err=snrm(r,itol)/bnrm; 

  else if (itol == 2) 

   err=snrm(z,itol)/bnrm; 

  else if (itol == 3 || itol == 4) { 

   zm1nrm=znrm; 

   znrm=snrm(z,itol); 

   if (fabs(zm1nrm-znrm) > EPS*znrm) { 

    dxnrm=fabs(ak)*snrm(p,itol); 

    err=znrm/fabs(zm1nrm-znrm)*dxnrm; 

   } else { 

    err=znrm/bnrm; 

    continue; 

   } 

   xnrm=snrm(x,itol); 

   if (err <= 0.5*xnrm) err /= xnrm; 

   else { 

    err=znrm/bnrm; 

    continue; 

   } 

  } 

  //cout << "iter=" << setw(4) << iter+1 << setw(12) << err << endl; 

  if (err <= tol) break; 

 } 

 

 //Free memory 

 free(p); p=NULL; 

 free(pp); pp=NULL; 

 free(r); r=NULL; 

 free(rr); rr=NULL; 

 free(z); z=NULL; 

 free(zz); zz=NULL; 

 // 

} 

void atimes(double *x, double *r, const int itrnsp, double *sa_p, unsigned long 

*ija_p) 

{ 

 if (itrnsp) sprstx(sa_p,ija_p,x,r); 

 else sprsax(x,r,sa_p,ija_p); 

} 

double snrm(double *sx, const int itol) 

{ 

 int i,isamax; 

 double ans; 

 

 int n=N1N2N3; 

 if (itol <= 3) { 

  ans = 0.0; 

  for (i=0;i<n;i++) ans += sx[i]*sx[i]; 

  return sqrt(ans); 

 } else { 

  isamax=0; 

  for (i=0;i<n;i++) { 

   if (fabs(sx[i]) > fabs(sx[isamax])) isamax=i; 

  } 

  return fabs(sx[isamax]); 

 } 

} 

void asolve(double *b, double *x, const int itrnsp, double *sa_p, unsigned long 

*ija_p) 

{ 

 int i; 

 

 int n=N1N2N3; 

 for(i=0;i<n;i++) x[i]=(sa_p[i] != 0.0 ? b[i]/sa_p[i] : b[i]); 

} 

void sprstx(double *sa, unsigned long *ija, double *x, double *b) 

{ 

 int i,j,k; 

 

 int n=N1N2N3; 

 if (ija[0] != (n+1)) 
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  fprintf(stderr,"mismatched vector and matrix in sprstx"); 

 for (i=0;i<n;i++) b[i]=sa[i]*x[i]; 

 for (i=0;i<n;i++) { 

  for (k=ija[i];k<ija[i+1];k++) { 

   j=ija[k]; 

   b[j] += sa[k]*x[i]; 

  } 

 } 

} 
Code 5 - Function linbcg that solves Ax=b and its subroutines 

By using all these functions, the eventual implementation of backward Euler scheme, is the 

same with that of Code 4, with just altering line sprsax(Cn,Cn_plus_1,sa,ija); to 
linbcg(Cn,Cn_plus_1,ITOL,TOL,ITMAX, sa, ija);  

4.4.3. θ-methods 

Continuing, the implementation of the solution of Eq. 62 is presented. Note that the forward 

part, i.e. ((1 − 𝜌𝜃𝛥𝑇)𝐈 − 𝜃𝛥𝑇A)  and the backward part, i.e. ((1 + (1 − 𝜃)𝜌𝛥𝑇)𝐈 +

(1 − 𝜃)𝛥𝑇A)  use the same A matrix. Thus, one more row-indexed sparse matrix is 

necessary, for representing both sides of the equation. The implementation of θ-method is 

given in Code 6.  

void theta(Point *Volume,unsigned int days, double DT, double *sa, unsigned long *ija, 

double *sa2, unsigned long *ija2, double th)  

      //DT is ΔΤ (in days)  

      //days is the total simulation time 

      //sa2 and ija2 implement the 2nd sparse array. 

      //th is θ in [0,1]. Crank Nikolson scheme is applied for θ=0.5 

{ 

 //Declarations 

 ... 

 double *B,Cn; 

 double *Cn_plus_1;    //Cn+1  

 //Create Sparse matrix A1=((1+(1-θ)ρΔΤ)I+(1-θ)ΔT*A) 

 sprsin(Volume, 0, sa, ija);   //A 

 sprsl((1-th)*DT, sa, ija);   //Multiply by (1-θ)ΔT 

 sprsI(1+(1-th)*DT*r,sa, ija);  //Add (1+(1-θ)ρΔΤ)I 

 //Create Sparse matrix A2=(1-θρΔΤ)I-θΔT*A) 

 sprsin(Volume, 0, sa2, ija2);  //A 

 sprsl(-th*DT, sa2, ija2);   //Multiply A by -θΔT 

 sprsI(1-th*DT*r,sa2, ija2);   //Add (1-θρΔΤ)I 

 //Allocate memory for vector C and Cn+1 

 Cn..., Cn_plus_1 ...  

 //Initialize Cn and Cn+1 

 for(int i=0;i<N1N2N3;i++) 

 { 

  Cn[i]=Volume[i].concentration[0]; // Cn=C0 

  Cn_plus_1[i]=0; 

 } 

 for(t=0; t< int (days/DT); t++) //Start iterations 

 {       //Solve A2Cn+1=A1Cn 

 

  sprsax(Cn,B,sa,ija); //Compute B=A1Cn=((1+(1-θ)ρΔΤ)I+(1-θ)ΔT*A)Cn 

  linbcg(B,Cn_plus_1,ITOL,TOL,ITMAX, sa2, ija2); //Solve A2*Cn+1=B 

  for(int i=0;i<N1N2N3;i++) //Update values of Cn, for the next iteration 

   Cn[i]=Cn_plus_1[i]; 

 }  

 //Here, C_plus_1 is the approximated concentration at time n=days 

 ...Use/return C_plus_1 

 //Deallocate memory 

 Free... 

} 
Code 6 - Implementation of the θ-methods 
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5. Qualitative and Quantitative Analysis 

After having derived the system of equations, iterative solution of which yields the 
approximated glioma cell concentration at a desired time, it is essential to evaluate 
the performance of the different numerical schemes that have been implemented 
(Forward, Backward Euler and θ-methods) [99]. As described earlier, due to spatial 
dependence of diffusion tensor 𝐃, an analytical solution of Eq. 19 cannot be acquired, 
so it is impossible to mathematically compare the performance of each used scheme. 
Therefore, a simplified test case of the pure diffusion equation is used, for which 
there is a known analytical continuous expression of the solution: 

𝜕𝑐

𝜕𝑡
= ∇ ∙ (D∇𝑐) 

63 

Hence, the magnitude of each numerical scheme deviation from the real solution 

can be studied, which serves here as ‘ground truth’ for validating the different 

numerical approximations. 

  

Figure 36- Left: The initial spherical tumor of radius α. Right: The tumor cell concentration according to r at 
time t=0 

5.1. Pure diffusion modeling 

To validate our methodology, it is assumed that tumor growth in 3 dimensional, 

homogeneous, unbounded and isotropic (i.e. 𝐷 is constant) region and exhibits a pure 

diffusion behavior (i.e. Eq. 63 holds). The tumor has initially a concentration 𝑐0 and it is 

constrained in a sphere of radius 𝑎 (  

Figure 36). Due to symmetry, the concentration of glioma cells depends only on the distance 

𝑟 from the center of the sphere (i.e. the distance from the center computed along the 

orange line of Figure 37) and it is given by the expression [100]: 

𝐶(𝑟, 𝑡) =
1

2
𝑐0 (𝑒𝑟𝑓 (

𝑎 − 𝑟

2√𝐷𝑡
) + 𝑒𝑟𝑓 (

𝑎 + 𝑟

2√𝐷𝑡
)) −

𝑐0
𝑟
√
𝐷𝑡

𝜋
(𝑒𝑥𝑝 (−

(𝑎 − 𝑟)2

4𝐷𝑡
) − 𝑒𝑥𝑝 (−

(𝑎 + 𝑟)2

4𝐷𝑡
)) 
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where 𝑒𝑟𝑓 is the error function: 
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𝑒𝑟𝑓(𝑥) =
2

√𝜋
∫𝑒−𝑡

2
𝑑𝑡

𝑥

0
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The initial concentration 𝐶(𝑟, 0) is presented in Figure 36 (right). Thus, the solution of Eq. 63 

can be approximated by the implemented numerical schemes, with Eq. 64 serving as ground 

truth for validating these approximations. 

5.2. Testing and Simulation Description  

In our tests, the model is adapted to approximate the solution of Eq. 63 by using the 

parameters that are presented in Table 4.  

Parameter Value Unit 
Growth rate 𝑓(𝑐) 0 1/𝑑𝑎𝑦 

Diffusion Tensor 𝐷 0,1 × [
1 0 0
0 1 0
0 0 1

] 𝑚𝑚2/𝑑𝑎𝑦 

Initial tumour radius 𝑎 10 𝑚𝑚 
Grid ΔX= ΔY= ΔZ 1 𝑚𝑚 
Time Step 𝛥𝑇 12 (0.5) ℎ𝑜𝑢𝑟𝑠 (𝑑𝑎𝑦𝑠) 
Grid Resolution 𝑁𝑋 × 𝑁𝑌 × 𝑁𝑍 128 × 128 × 128 𝑝𝑜𝑖𝑛𝑡𝑠 
Initial concentration 𝑐0 104 𝑐𝑒𝑙𝑙𝑠/𝑚𝑚3 
Simulation Days 𝑇 1000 days 

Table 4 – Model parameters for pure diffusion experiment 

Five different simulations were run for 1000 fictitious days, using Forward Euler, three θ-

methods for θ=0.25, θ=0.5 (Crank NIkolson) and θ=0.75, and Backward Euler performed on a 

Pentium 4 at 3.8 GHz with 4GB RAM. 

  

Figure 37 - Left: with orange: The direction on the central slice of the grid (𝑵𝒁/2) along which the 
concentration is sampled. Right: The evolution of 𝑪(𝒓) after 100th, 500th and 1000th day. Dots are the 
approximations of 𝑪(𝒓) with the Crank Nikolson scheme. 

Figure 37 presents the evolution of cell concentration in time, with respect to r, with lines 

corresponding to results from analytical expression of Eq. 64, while dots representing what 

simulation with Crank Nikolson yields.  This figure shows a very good agreement between 
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these results; however a more rigorous investigation would require an error estimation 

analysis.∎ 

When designing a model, engineers should not ignore the computational limitations of the 

model. The processing power and storage capacity of the computers that are used in clinical 

practice should be seriously taken into account, since a resource-demanding model would 

turn out to be cumbersome when no access to supercomputers is possible. This chapter 

stresses the limitations and advantages of each modeling scheme and provides quantitative 

proof. Hence, engineers and bioinformaticians working with glioma models (or any model 

with similar diffusion – reaction behavior) could assess the limitations of the model that they 

are about to develop, especially for real clinical models. Therefore, even if one method (e.g. 

Finite Elements) would initially seem as the most accurate, this work indicates specific 

tradeoffs (such as simulation time, storage and computational needs) that can cause 

computational problems on the main-stream computers of hospitals and may alter the 

preference to this method. 
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5.3. Analysis on Finite Differences 

Normalized mean absolute error 

In order to estimate the error that each numerical scheme yields, the normalized mean 

absolute error 𝑒 is introduced. Due to symmetry, 𝑒 at a time 𝑡 = 𝑛𝛥𝑇 is computed as 

𝑒 =
1

𝑁
∑ |

𝐶(𝑖𝛥𝑋,𝑛𝛥𝑇)−𝐶
𝑖,
𝑁
2
,
𝑁
2

𝑛

𝑐0
|𝑁

𝑖=1 ×100% 
66 

 

Table 5 shows the estimated error for each scheme on day 100, 500 and 1000 of simulation. 

Moreover, the overall simulation times are also reported, with the forward Euler scheme 

being 6.5 times faster than the next faster scheme. The highest 𝑒 for all five schemes is on 

day 100 while it decreases to values ≤0.5% on the 1000th day. Forward Euler error is the 

lowest on the 100th day, i.e. 2.24%, but eventually overcomes all other schemes, reaching 

0.50% on 1000th day. Backward Euler expresses the worst performance on early days, but 

eventually yields the best results of all schemes on day 1000, with 𝑒=0.39%.  

Numerical 
Scheme 

100 days 500 days 1000 days 
Simulation 

Time 

Forward Euler 
(θ=0) 

2.24% 0.67% 0.50% 27’53” 

θ-Methods 
(θ=0.25) 

2.32% 0.59% 0.48% 182’13” 

Crank Nikolson 2.41% 0.51% 0.45% 190’01” 
θ-Methods 

(θ=0.75) 
2.54% 0.46% 0.42% 205’16” 

Backward 
Euler (θ=1) 

2.69% 0.48% 0.39% 226’11” 

Table 5 - Mean absolute error and execution time for approximating Eq. 63 using various numerical schemes. 

In order to make a better comparative study of the numerical schemes performance, Figure 

38 presents the logarithmic graph of 𝑒 in time for each scheme. It is noticeable that all 

schemes initially produce very high errors, with the best performance carried by forward 

Euler with 𝑒 =12%. A possible explanation is that the initial concentration 𝐶(𝑟, 0) has an 

abrupt step descent at 𝑟 = 10𝑚𝑚 , as seen in Figure 36 (right). This makes the 

approximation of the local partial derivatives at the edge of this step erroneous for all 

schemes. However, as simulation continues, 𝑒  tends to significantly decrease 𝑒  for all 

schemes.  

Continuing, one can observe that 𝑒 decreases to values <1% for all schemes on day 190, 203, 

252, 287 and 308 for forward Euler, 0.25-method, Crank Nikolson, 0.75-method and 

backward Euler, respectively. Forward Euler error has the most descent till day 274, but later 

decreases smoothly and overcomes all other schemes. Generally, it is noticeable that the 

smoother one scheme decreases at start, the better performance it expresses at the end. 

Indeed, the backward Euler method starts with the smoothest decrease, but eventually 

yields the lowest error, at 0.39%. Moreover, one can observe that there is a decrease in 𝑒 till 

day 270, 365, 451, 557 and 644 for forward Euler, 0.25-method, Crank Nikolson, 0.75-
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method and backward Euler, respectively. After these days, error decreases very smoothly 

till all schemes acquire balancing values.  

 
Figure 38- Mean absolute error for approximating Eq. 63 using different numerical schemes. 

As a conclusion, the backward Euler method seems to yield the more accurate 

approximations of 𝐶(𝑟, 𝑡), but with the worst simulation times. If there is urgent need for 

faster simulations, one could use some faster models, such as the Crank Nikolson scheme, 

since the error is still below 0.45%. Similarly, if there is room for sacrificing accuracy for the 

fastest scheme, then the forward Euler scheme should be used, since it is 8.07 times faster 

than backward Euler. Even if one chooses the forward Euler, that is the worst case scenario, 

error 𝑒 doesn’t overcome 0.5%. 

Effect of grid resolution 

A very interesting study would be watching how accuracy is influenced by the change of 

𝛥𝑋, 𝛥𝑌 and 𝛥𝑍, i.e. the resolution of grid. We have used five different grid resolutions for 

approximating a pure-diffusion sphere of initial radius 𝑎=10mm in a cubic space of 

120x120x120mm.  

Grid 
Grid size 
(𝑵x 𝑵x 𝑵) 

𝜟𝑿 = 𝜟𝒀  = 𝜟𝒁 
(mm) 

Sphere radius 
(pixels) 

Simulation 
Time 

1 120x120x120 1.0000 12.0000 65’ 58” 
2 60x60x60 2.0000 6.00000 7’26” 
3 30x30x30 4.0000 3.00000 57” 
4 15x15x15 8.0000 1.50000 7” 
5 10x10x10 12.000 1.00000 2” 

Table 6 - Grid and radius dimensions and simulation times for the experiment. 

In Figure 39 the approximated (dots) and the real (line) values of concentration for the five 

different grids are presented. The model parameters are presented in Table 6. As expected, 

100 200 300 400 500 600 700 800 900 1000

10
0

10
1

 

 

Backward Euler

8=0.25

Crank Nikolson

8=0.75

Forward Euler



Glioma Growth Modeling 
 

 70 

as the grid resolution decreases (i.e. 𝛥𝑋 increases), the accuracy of approximation seems to 

decrease. For very low grid resolution, the simulation is highly erroneous. 

 
                                        (a)                                                                          (b) 

 
                                        (c)                                                                          (d) 

 
                                        (e)                                                                         

Figure 39 - (a, b, c, d, e) Approximation (red dots) of real solution (black line) taken in three moments for 
ΔΧ=ΔY=ΔΖ=1, 2, 4, 8 and 12 mm respectively 
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Continuing, we present how error 𝑒 changes in time for the five different grids of our 

experiment.  Figure 40 presents how error changes in time for the first day to the 1000th. We 

indeed see that the error is increasing as 𝛥𝑋 increases.  

    
                                        (a)                                                                          (b) 

   

                                        (c)                                                                          (d) 

 

                                        (e) 

Figure 40 - (a, b, c, d, e) Error e taken in time for ΔΧ=ΔY=ΔΖ=1, 2, 4, 8 and 12 mm respectively 

Lastly, all these errors are plotted in the same figure (Figure 41), in order to be easily 

comparable. As seen, the lowest 𝑒 occurs for the smallest 𝛥𝛸=1mm and does not overcome 
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0.04%. However, as 𝛥𝛸 increases, error 𝑒 increases.  For 𝛥𝛸=2, 4, 8 and 12mm the lowest 

error is 0.10%, 0.39%, 1.69% and 3.67%.  

 

Figure 41- Error e in the first 1000 days for five different grids with ΔX=1, 2, 4, 8 and 12mm. 

Table 7 summarizes the error 𝑒 in days 100, 500 and 1000, with the last column giving mean 

𝑒. This is noteworthy to mention that halving of grid size from 120x120x120 (grid-1) to 

60x60x60 (grid-2) yields a 157% increase in mean 𝑒 and halving from 60x60x60 (grid-2) to 

30x30x30 (grid-3) produces a 250% increase. However, halving of grid size 30x30x30 (grid-3) 

to size 15x15x15 (grid-4) results in a 453% increase in mean error. This means that the error 

rises rapidly as the grid size decreases. 

Grid Day 100 Day 500 Day 1000 Mean 𝒆 

1 0.11% 0.06% 0.04% 0.07% 
2 0.15% 0.18% 0.10% 0.18% 
3 0.37% 0.69% 0.39% 0.63% 
4 6.61% 2.88% 1.69% 3.49% 
5 8.73% 6.31% 3.67% 6.44% 

Table 7- Error 𝒆 for the five different grids in day 100, 500 and 1000. The last column is the mean error e during 
these 1000 days. 

Effect of time step 

It is important to check the effect of time step 𝛥𝛵 in simulation accuracy. We have used 

three different numerical schemes (Forward Euler, Crank Nikolson and Backward Euler) in 

order to estimate the error 𝑒 for approximating the concentration of cells for 1000 fictitious 

days of diffusion. The spatial steps 𝛥𝑋, 𝛥𝑌 and 𝛥Z were set to 1mm and the experiments 

where run on a 60x60x60 cubic grid and a sphere of 6mm. 

Table 8 presents the mean error �̅� for the 1000 days of overall simulation. It is observed that 

the minimum �̅� is 0.0888%, performed by the Crank Nikolson scheme for 𝛥𝑇 = 2 days. 
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Almost the same is the minimum �̅� for the cases for Forward Euler and Backward Euler 

methods, which are 0.79% and 1.01% higher than Crank Nikolson minimum, respectively. 

Someone could also notice that for 𝛥𝑇 =0.001 and 𝛥𝑇 =0.01, the errors for all schemes are 

the same. Especially for Forward Euler, this holds for ΔT values from 0.001 to 0.1. This 

indicates that there is a balancing value for 𝛥𝛵 under which no more accuracy can be 

achieved. This value of 𝛥𝑇 is around 0.1 for the Forward Euler method and around 0.01 for 

Crank Nikolson and Forward Euler methods.  

Continuing, as expected, �̅� generally increases as 𝛥𝑇 increases, for all schemes. For Forward 

Euler, �̅�  increases as 𝛥𝑇  increases, but when 𝛥𝑇  changes from 1 to 1.5 days, a slight 

decrease of 1.4% is observed. 𝛥𝑇=1.5 is the threshold, over which the model is instable. For 

Backward Euler, �̅� generally increases smoothly as 𝛥𝑇 increases, with a small decrease of 

3.38% from 𝛥𝑇=0.5 to 1 days. The error �̅� for the Crank Nikolson scheme shows a “basin” 

like behavior, since it starts at 0.0897% for 𝛥𝑇=0.001, rises smoothly to 0.0984% for 𝛥𝑇=0.5, 

falls at 0.0888% at 𝛥𝛵=1 and gradually increases from there. 

Mean error 𝒆 in the 1000 days of simulation 

ΔΤ (days) 𝒆 for Forward Euler 𝒆 for Backward Euler 𝒆 for Crank Nikolson 

0.001 0.0895% 0.0898% 0.0897% 
0.01 0.0895% 0.0898% 0.0897% 
0.05 0.0895% 0.0905% 0.0900% 
0.1 0.0895% 0.0916% 0.0905% 
0.5 0.0934% 0.1036% 0.0984% 
1 0.0998% 0.1001% 0.0896% 
1.5 0.0984% 0.1053% 0.0892% 
2 

Instable 

0.1106% 0.0888% 
3 0.1218% 0.0913% 
4 0.1338% 0.0938% 
5 0.1458% 0.0967% 
50 0.7047% 1.5355% 

Table 8 - Mean error 𝒆 for changing 𝜟𝑻, using the Forward Euler, the Crank Nikolson and the Backward Euler 
numerical schemes.  

As far as the performance of the three different schemes is concerned, one could say that 

the Crank Nikolson scheme shows the lowest �̅� for higher 𝛥𝛵. Figure 42 presents the mean 

error �̅� according to 𝛥𝑇 for the three different schemes. It is interesting to note that Crank 

Nikolson scheme, for 𝛥𝑇=4, has almost the same accuracy with the respective case for 

𝛥𝑇=0.1 of Backward Euler. Similarly, it has the same accuracy with the Forward Euler 

scheme for 𝛥𝑇=0.5. Thus a time step 40 times bigger than that of Backward Euler yields 

equivalent results. For lower time steps (around 0.1 days), Forward Euler yields the lowest �̅�, 

but simulation takes time. ∎ 

By comparing different schemes of Finite Differences, we conclude that Explicit methods 

(Forward Euler) run faster, but are prone to errors. On the other hand, implicit methods 

(Backward Euler, Crank Nikolson, θ-methods) produce lower errors, but are computationally 
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greedy. Especially, Backward Euler has performed the most accurate approximation of the 

real solution, but also results in the worst simulation time. Moreover, the error increases 

rapidly as the grid resolution decreases. Finally, Forward Euler yields good approximation for 

small simulation time steps 𝛥𝛵, but Crank Nikolson yields the low error for higher values of 

𝛥𝛵. 

 

Figure 42- Mean error 𝒆 for changing 𝜟𝑻, using the Forward Euler, the Crank Nikolson and the Backward Euler 
numerical schemes. The mean error has been calculated for 1000 days simulations. 

5.4. Comparison with Finite Elements 

The diffusive model has also been implemented with the Finite Element Method, using 

commercial software (COMSOL), in order to compare its efficiency to that of the Finite 

Differences model. The model uses tetrahedral Lagrange Quadratic Elements. Figure 43 

presents an example of a meshed brain using Finite Elements with COMSOL. 

Like Finite Differences, the solution requires the construction of a large sparse matrix, having 

its elements randomly located. Biconjugate gradient methods can be used for the solver, but 

the rate of convergence is slow and the quality of the approximate solution may be sensitive 

to roundoff errors [101]. Thus, there are limitations in the dimensions of the emerging 

sparse matrix. 

Finite Elements and Finite Differences have been compared at approximating Eq. 64 on the 

same sphere presented earlier. Four different experiments have been performed for 

different grid resolutions, with the Finite Elements having used 125.000, 166.375, 216.000 

and 343.000 elements, respectively. For the same experiments, Finite Differences have used 

the same number of cubic elements (voxels). When designing a model, developers should 

not ignore the computational limitations of the model. The process power and storage 

capacity of the computers that are used in clinical practice should be taken into account, 

since a resource-demanding model would turn out to be cumbersome when no access to 
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supercomputers is possible. The above comparison issues are elaborated in the following 

subsections. 

   

Figure 43 - An example of meshing 3-dimensional brain using COMSOL Lagrange Quadratic elements for mesh 
generation 

Accuracy 

The accuracy of the models has been studied, by estimating the deviation of the 

approximated solution 𝐶𝑎𝑝𝑝𝑟(𝑟, 𝑡)  from the real solution 𝐶(𝑟, 𝑡) . The error E of the 

approximation at a distance 𝑟 from the center of the sphere, is estimated as: 

𝐸(𝑟) = |𝐶𝑎𝑝𝑝𝑟(𝑟, 𝑡) −𝐶(𝑟, 𝑡)| 
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where 𝑡 is set to 1000 days. The accuracy of the models is estimated by calculating the mean 

normalized error �̅� as follows: 

�̅� =
1

𝛥
∫ 𝐸(𝑟)

𝛥

𝑟=0

× 100% 
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Table 9 presents the comparative results of approximating the pure diffusion equation with 

Lagrange Quadratic Finite Elements, Forward Euler, Crank Nikolson and Backward Euler. The 

first row presents the total number of elements of the mesh. The columns present the mean 

error of approximation at the 1000th day of diffusion simulation for each model.  

Scheme 125.000 166.375 216.000 343.000 

Finite 
Elements 

2.97% 0.16% 0.06% - 

Backward 
Euler 

2.99% 0.15% 0.06% 0.04% 

Forward Euler 4.09% 0.21% 0.10% 0.08% 

Crank 
Nikolson 

3.16% 0.17% 0.08% 0.07% 

Table 9- Error  �̅� After 1000 Days For Different Grid Resolutions 
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In the first case (125.000 elements), Finite Elements achieved slightly lower error than that 

of Backward Euler and lower than Forward Euler. For 166.375 elements, Finite Elements 

produced higher error than Backward Euler and lower than Forward Euler. For 216.000 

elements, Finite Elements produced the same error with Backward Euler and lower than 

Forward Euler. Lastly, for 343.000 elements, Finite Elements caused memory overflow and 

could not approximate the solution. On the other hand, Backward Euler produced the lowest 

error, at 0.04%. 

Simulation Time 

Table III presents the simulation time of each of the previous experiments, dependant on 

the grid resolution. It is observed that simulation time Finite Elements in the first experiment 

(125.000 elements) is 5.16 times higher than Backward Euler and 31 times higher than Finite 

Elements. In the second case, simulation time for Finite Elements is 2.8 times higher than 

Backward Euler and 52.69 times higher than Forward Euler. Lastly, in the third case, Finite 

Elements has 1.93 times higher simulation time than BE and 27.2 times higher than Finite 

Elements. 

Scheme 125.000 166.375 216.000 343.000 

Finite 
Elements 

31” 20’ 12” 151’ 3” - 

Backward 
Euler 

6” 7’ 12” 78’ 5” 210’ 25” 

Forward Euler 1” 23” 5’ 32” 35’ 48” 

Crank 
Nikolson 

6” 6’ 59” 64’1” 198’ 12” 

Table 10 – Simulation time for different grid resolutions 

Storage and Computational Consistency  

One important issue governing the comparison of 

the models that have been implemented with 

Finite Elements and Finite Differences, is their 

computational consistency. If the grid resolution 

of the mesh exceeds some limits, then the storage 

of the sparse matrix and the solving of the solution 

are practically impossible [98]. This is important, 

since a developer of such a system should bear in 

mind that clinicians may not have access to 

supercomputers or grid services, thus they have to 

adjust their products to realistic conditions. 

In this experiment, different grid resolutions have 

been used for approximating Eq. 64.  Figure 44 

presents the maximum element number that the computer can handle without memory 

overflow. As observed in the chart, Finite Elements Method “crashes” with total element 

number being almost 10% of the respective number of Finite Differences models. ∎ 

Figure 44 - The maximum number of elements, 
for which no memory overflow is performed 
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Summary 

By comparing Finite Differences with Finite Elements, it is observed that Finite Elements do 

not provide additional accuracy to the model. On the other hand, Finite Differences need 

less simulation time and extend the limitation of the total element number to almost 10 

times more than the number of Finite Elements. This extends the accuracy potentials of 

Finite Differences into higher levels, because they can use higher resolution than Finite 

Elements.  

This analysis indicates that Finite Differences are practically more suitable for the needs of a 

glioma diffusive model. Therefore we select Finite Differences for further applying the model 

to real clinical cases. 
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6. Application on real tumors 

According to the results of the previous chapter, we select Backward Euler for further 

applying the model to a real clinical case. Therefore all steps till the final result of simulation 

are presented. This chapter presents an example of model application. 

6.1. Initial Patient Dataset 

Figure 45 presents a series of 27 MRI slices of a 58 year old patient, taken from the Harvard 

Medical School database [102], with white areas reflecting glioblastoma multiforme, being 

delineated by a clinician. The patient passed away after 112 days and no therapy was 

applied, because of the advanced stage of the tumor at the time of diagnosis. 
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Figure 45 - 27 MRI slices taken from a patient with glioma at the first day that glioma was diagnosed in 17 April 
2007  – The tumor areas have been defined with white color. 

These slices have been interpolated and represented in 3 dimensions by using the 

Mathworks Matlab software (2010a). Figure 46 - Different angles of the 3D visualization of 

initial tumors, extracted from MRIs of Figure 45 depicts the representation of the tumor in 

the skull at the time of diagnosis taken from different angles, on which the model is applied. 

           

Figure 46 - Different angles of the 3D visualization of initial tumors, extracted from MRIs of Figure 45 
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6.2. Simulation Parameters 

The glioma of the patient was classified to high-grade glioma, namely GBM. The geometrical 

proliferation rate ρ was set, according to Table 1, at 𝜌 = 0.012 day−1. Moreover, 𝐷𝑖𝑗(𝐱) 

was set to 𝑤𝑖(𝐱)𝐷(𝐱) for 𝑖 = 𝑗 and zero otherwise, where 𝑤𝑖(𝐱) ∈ [0,1] expresses the local 

anisotropic migration of cells along the direction 𝑖 (x, y or z axis) and 𝐷(𝐱) is the local 

diffusion coefficient. 𝐷(𝐱) equals 𝐷𝑔 = 0.13𝑚𝑚
2/𝑑𝑎𝑦  when point x is located in gray 

matter and 𝐷𝑤 = 0.65𝑚𝑚
2/𝑑𝑎𝑦 when in white matter. Furthermore, local anisotropy 

parameter 𝑤𝑖(𝐱) was estimated according to [103][104], the initial concentration was 

defined at 200 𝑐𝑒𝑙𝑙𝑠/𝑚𝑚3 and the density threshold for detection at 400𝑐𝑒𝑙𝑙𝑠/𝑚𝑚3. Lastly, 

the grid distances 𝛥𝑋, 𝛥𝛶 and 𝛥𝑍 were defined at 1𝑚𝑚, 1𝑚𝑚 and 3𝑚𝑚 respectively, time 

step was defined at 0.5 days and overall simulation time at 112 days, when the patient 

passed away. Table 11 summarizes these parameters. 

Parameter Value Unit 
Proliferation scheme 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐𝑎𝑙 − 

Proliferation Rate 𝜌 0.012 day−1 
Diffusion Coefficient 

in white matter 
𝐷𝑤 0.65 𝑚𝑚2/𝑑𝑎𝑦 

Diffusion Coefficient 
in gray matter 

𝐷𝑔 0.13 𝑚𝑚2/𝑑𝑎𝑦 

Initial concentration 𝑐0 200 𝑐𝑒𝑙𝑙𝑠/𝑚𝑚3 

Grid 

𝛥𝛸 1 

𝑚𝑚 𝛥𝑌 1 

𝛥𝑍 3 
Time Step 𝛥𝑇 12 (0.5) ℎ𝑜𝑢𝑟𝑠 (𝑑𝑎𝑦𝑠) 

Simulation Days 𝑇 112 Days 
Detection Threshold 𝑇ℎ 400 𝑐𝑒𝑙𝑙𝑠/𝑚𝑚3 

Table 11- Simulation parameters 

 

Figure 47 - Different angles of the 3D visualization of simulated tumor, after 112 fictitious days 
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6.3. Simulation Results 

Figure 47 presents the produced result of the simulation of our model, after 112 days, after 

applying the detection threshold 𝑇ℎ. The numerical method that has been used for the 

iterative solution of the diffusion equation is the Backward Euler scheme. Similarly, Figure 48 

presents how these results are reconstructed back to MRI images (the first four are omitted). 

 

 

Figure 48 - Reconstructed MRI images for the simulated volume at the time of 112 days 



Alexandros Roniotis, 2013 
 

 83 

[

Ε

6.4. Final Patient Dataset 

Similarly, to initial dataset, Figure 49 presents the real final dataset at the time of death and 

Figure 50 presents its 3-dimensional representation. This will be used for cross validation of 

the simulation results. 

 

 

Figure 49 - Real MRI images at the time of death 
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Figure 50 - Different angles of the 3D visualization of final tumors, extracted from MRIs of Figure 49 

6.5. Cross validation 

For having a better view of the results, we present the following table of images (Figure 51). 

The first column includes some images of the initial data at the first day of diagnosis. The 

second column contains the respective images of the simulated data after 112 days, while 

the third column contains the real data of the images after 112 days. The first impression on 

the results is that simulated data is quite similar to real data. 

First Day Simulated Data (112 days) Real Data (112 days) 

   

   

   

Figure 51 - Results Comparement: (left) Initial Data, (central) Simulated and (right) real data after 112 days. 
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However, it is important to make a quantitative evaluation of the agreement between the 

simulated tumor and the final tumor. For evaluation we use a scheme that uses solid metrics 

and provides objective comparison. Therefore, if we use the final tumor as golden ground 

truth, then we can adopt the Jaccard (JC), Dice (DS) and Volume Similarity (VS) metrics for 

identifying similarity [105]. JC, DS and VS are defined as: 

JC=TP/ (FP+TP+FN) 
DS=2TP/ (FP+2TP+FN)  
VS=1-|FP-FN|/(FP+2TP+FN) 

 
69 

TP (True Positive) is the number of tumor voxels belonging to both the ground truth and 

simulated result, FP (False Positive) is the number of tumor voxels belonging to simulated 

result but not belonging to ground truth and FN (False Negative) is the number of tumor 

voxels belonging to ground truth but not belonging to simulated tumor. In this case, TP, FP 

and FN are 8515, 356 and 299 voxels, respectively. Thus, the metrics are JC=92.86%, 

DS=96.30% and VS=99.68%. 

Summary 

This chapter presents some initial results applied on real MRIs taken from patient with 

diagnosed GBM. By comparing the results of the simulation, with these of the real data, 

there seems to be a good agreement. Moreover, for evaluation we adopt a scheme that uses 

solid metrics and provides objective comparison (JC, DS, VS metrics).  
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7. Merging model with brain atlases 

The diffusive model of the previous chapter takes into consideration the heterogeneous 

velocity of glioma in gray and white matter, by using two different discrete diffusion 

coefficients in these two areas. Moreover, by using Diffusion Tensor Imaging, it simulates 

the anisotropic migration of glioma cells, which is facilitated along white fibers, assuming 

diffusion tensors with different diffusion coefficients along each candidate direction of 

growth. This chapter extends this concept by fully exploiting the proportions of white and 

gray matter extracted by normal brain atlases, rather than discretizing diffusion coefficients. 

Moreover, the proportions of white and gray matter, as well as the diffusion tensors, are 

extracted by the respective atlases, thus no DTI processing is needed. This novel model has 

been applied on real data and the results indicate that prognostication rates can be 

improved. 

7.1. Methods 

cInstead of using two discrete values 

for diffusion coefficients in white 

matter (WM) and gray matter (GM) 

(depicted in Figure 52 ), the model 

uses continuous values, indicating 

the proportion of white and gray 

matter in each voxel. Moreover, it 

has been observed in some cases 

that a portion of cancer cells can 

spread in the cerebrospinal fluid 

(CSF), causing symptoms similar to 

meningitis - headaches, sickness, 

and problems with sight and 

movement [106][107]. For large 

glioma, in which proliferating cells may leak to CSF, this could be simulated by setting a non-

zero diffusion coefficient for CSF voxels. The proportion of gray, white matter and CSF in 

each voxel of the patient data has been extracted from the SRI24 atlas [104][108], which is 

an MRI-based atlas of normal adult human brain anatomy, generated by registering images 

of 24 normal brains. In order to apply the model the patient, MRI data is initially registered 

and interpolated to the normal atlas slices. Then, glioblastoma is annotated and delineated 

on the interpolated patient data by an expert radiologist, before simulating the growth of 

tumor using this new proposed method. Our hypothesis is that the proposed proportional 

model can, in most cases, predict glioma growth more effectively than the two standard 

diffusive models: uniform radial growth across all tissue types and faster diffusion in white 

matter. An overview of the modeling flow is presented in Figure 53, which depicts the 

simulation procedure. 

Figure 52 -  White and Gray matter brain tissue [110]  
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Figure 53 - Flow and overview of the proposed model 

7.1.1. Tissue heterogeneity and anisotropic diffusion model  

Our biologically based modeling efforts are based on the hypothesis that glioma can be 

characterized by two net rates, namely proliferation and invasion, which are included in the 

diffusion - reaction equation (recall Eq. 19). Diffusion (invasion) term incorporates the brain 

tissue heterogeneity, taking into account that high grade glioma invasion in white matter is 5 

times faster than in gray matter [90], by using locally different diffusion coefficients, 𝐷(𝐱). 

Moreover, in order to simulate the anisotropic invasion of glioma along white matter fibers, 

the local coefficients are multiplied by a matrix 𝐖 that describes the anisotropy of cell 

diffusion along the 3-dimensional directions for each voxel. If the diagonal fiber directions 

are ignored, the local diffusion weighting tensor 𝐖(x) is an array of the following form: 

𝐖(x) = [

𝑤𝑥(x) 0 0

0 𝑤𝑦(x) 0

0 0 𝑤𝑧(x)

] 

70 

Here, 𝑤𝑖(𝐱) ∈ [0,1], 𝑖 = 𝑥, 𝑦, 𝑧  is the directional diffusion weight, which denotes the 

anisotropic diffusion of cell migration along the respective direction in position 𝐱.𝐖 denotes 

the contribution of each axis to the local direction of white fibers, while 𝐷(𝐱) actually 

denotes the scale of this parameter. Thus, by using these definitions, the local diffusion 

tensor 𝐃 in Eq. 19 is expressed as: 
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𝐃(𝐱) = 𝐷(𝐱)𝐖(𝐱) 71 
 

And the spatiotemporal diffusion reaction equation that describes glioma growth is 

equivalent to: 

𝜕𝑐

𝜕𝑡
= 𝑑𝑖𝑣 ((𝐷(𝐱)W(x))∇𝑐) + 𝑓(𝑐) 

72 
 

7.1.2. Using proportional local diffusion coefficients  

In diffusive models where tissue heterogeneity is simulated by using local diffusion 

coefficients, 𝐷(𝐱) takes two discrete values, that is 𝐷𝑔 when voxel x is located in gray matter 

and 𝐷𝑤 when in white matter tissue. Usually, a fivefold difference between these two values 

is used, but this can also reach a 100-fold difference in very aggressive high grade glioma 

[90]. Thus, the brain is segmented into gray and white matter, either by automatic 

segmentation or by mapping the real medical images on normal tissue atlases, for which a 

proportion of white and gray matter cells is provided. In the latter case, real images are 

firstly registered to the atlas. Then, each image voxel is classified either as white or gray 

matter, according to the proportion of white and gray matter in the respective atlas 

position. Consequently, if a voxel of the real data is mapped to a voxel in the atlas, for which 

the proportion of gray matter cells is 51% and the proportion of white matter cells is 49%, 

then older approaches would classify this voxel as gray matter. However, this totally ignores 

the existence of white matter and, hence, important information is truncated. Moreover, 

such models do not simulate glioma diffusion to CSF, although it has been observed that 

glioma cells may spread in the fluid. 

What the current model suggests is to extend this idea and to fully utilize the continuous 

information on tissue matter, provided by atlases, such as the SRI24 normal brain atlas. 

Except for the T1 and T2 MRI maps, such atlases provide the proportion Pw(x) of white 

matter, the proportion Pg(x) of gray matter and the proportion PCSF(x) of CSF in each voxel x. 

Thus, after registering medical data on the atlas and setting the diffusion coefficient 

constants to Dg, Dw and DCSF in white, gray matter and CSF, respectively, the proportional 

local diffusion coefficient 𝐷(𝐱) can be calculated at each voxel 𝐱 as follows: 

𝐷(𝐱) = 𝑃𝑔(𝐱)𝐷𝑔 + 𝑃𝑤(𝐱)𝐷𝑤 + 𝑃𝐶𝑆𝐹(𝐱)𝐷𝐶𝑆𝐹 
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Hence, the model makes a total use of the proportion of white/gray matter in brain areas. 

Indeed, in the previous example, for which the proportion of gray and white matter is 51% 

and 49% respectively, the voxel was classified as in gray matter, thus the respective diffusion 

coefficient is 𝐷(𝐱)= Dg. On the other hand, the proportional 𝐷(𝐱) for the same example is 

𝐷(𝐱) = 0.51𝐷𝑔 +  0.49𝐷𝑤, fully exploiting the atlas information of tissue proportion. 

7.1.3. The SRI24 atlas 

The SRI24 atlas [104] is an MRI-based atlas of normal adult human brain anatomy, generated 

by registering images of 24 normal brains. This atlas provides the proportions Pg of white 

and Pw of gray matter at each position of the brain, which can be registered to the clinical 
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datasets of the patients.  The data is provided in 155 slices with 240×240 pixels, for both 

stripped and unstripped skull. 

 

Figure 54 - Channels of the SRI24 atlas (axial slices) [108] 

Apart from the matter proportions, the atlas provides the dominant eigenvectors of the 

diffusion tensor. These eigenvectors have been extracted from DTI, by computing the 

covariance matrices of the distribution of the 3D Gaussian probability which simulates the 

diffusion of water. Thus, they can be directly used for simulating the anisotropic migration of 

glioma cells along white matter fibers, as they represent the directions towards which the 

water diffusion extends mostly. 

By mapping clinical MRI data to a brain matter atlas, it is possible to approximate the 

required tissue information/ composition in the tumor area, since this is not possible to 

extract from the real MRI. Hence, using local diffusion coefficients on real MRI images 

becomes possible, even if the lesion “hides” the underlying tissue.” 
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Figure 54 presents some slices for the different channels of the SRI24 atlas. In our model we 

use SPGR (normal brain for registration) and all proportions 𝑃𝑤, 𝑃𝑔, 𝑃𝐶𝑆𝐹 (i.e the columns 

named pWM, pGM and pCSF). 

7.1.4. The local diffusion weighting factor  

In order to simulate the anisotropic growth of glioma along white matter tracts [109], the 

model uses the 3-by-3 local diffusion weighting tensor 𝐖, which represents towards which 

direction the distribution of water diffusion extends the farthest. Moreover, SRI24 atlas 

provides the dominant eigenvectors of the diffusion tensor, which are produced as the 

covariance matrices of the 3D Gaussian probability distribution that models the water 

diffusion, at each voxel 𝐱. These eigenvectors have been extracted from DTI.  

Thus, since the vector 𝐖(x) = [

𝑤𝑥(x) 0 0

0 𝑤𝑦(x) 0

0 0 𝑤𝑧(x)

]  is diagonal and [

𝑤𝑥(x)

𝑤𝑦(x)

𝑤𝑧(x)

]  is an 

eigenvector of 𝐖  (this is directly provided by SRI24), 𝐖  is directly provided by the 

eigenvectors of SRI24 atlas. 

7.2. Data and Simulation 

The model uses T1-MRIs taken from patients diagnosed with malignant glioblastoma 

multiforme. Such data for 9 patients has been provided by the Department for Pediatric 

Hematology and Oncology at the University Hospital of the Saarland, in Germany, for the 

needs of the ContraCancrum project [95], which aims at developing a composite multilevel 

platform for simulating malignant tumor development and response to therapeutic 

schedules. For all these datasets provided by Saarland University, there are two or more 

sessions taken on different dates, while therapy or surgery information has been provided, 

for tracking glioma development. However, because of its aggressive nature, the GBM is 

usually excised after diagnosis and for this reason only one case (without surgery or therapy) 

was found by the time this work was written. However, 8 more cases were found where the 

partially excised tumor was followed up with imaging examinations while the patient 

received radiotherapy and simulations were performed in those specific intervals. 

7.2.1. Data Preprocessing 

The proposed model requires that both atlas and real data are registered and have the same 

form and size before applying modeling Eq. 72. In our test case, the patient dataset consists 

of 29 T1-MRI slices with unstripped skull (255×255 pixel images), while the SRI24 atlas 

provides 155 slices of normal brain (240×240 pixel images), with stripped and unstripped 

skull. Figure 55 (a) shows the 8th slice of the patient dataset, where the tumor has its largest 

size. The tumor has been identified on the left frontal lobe. Images (b) and (c) depict the 

99th slice of the SRI24 atlas normal brain, unstripped and stripped respectively. These are 

the most similar images to the real slice shown in (a). 

Initially, the patient dataset has to be aligned to the midsagittal line, for correcting skew 

distortion before registering to the atlas using the MIPAV Application [110]. Next, the skull in 
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the patient dataset is removed to match the stripped atlas images using fully-automated 

skull stripping technique, namely the Brain Extraction Tool (BET) [111]. 

 

Figure 55 - (a) 8th slice of the initial 29-slice patient dataset before registration (b) the most similar to (a) 
unstripped slice of normal brain atlas (99th slice), (c) similar to (b) for stripped brain, (d) the 99th slice of the 
patient dataset after registration and interpolation, (e) the 99th image after skull stripping, (f) is annotated (d) 

The final registration step is done using the Optimized Automatic Registration 3D approach, 

by MIPAV. This method iteratively determines an optimal transformation of the image that 

globally minimizes a cost function (correlation ratio in our case), starting from the lowest 

resolution of the target image and moving to the highest (i.e. a simple blurring filter was 

applied to downgrade the resolution of the image). The optimum transformation is 

determined by the minimization of the correlation ratio (between target and reference 

images) computed for several rotation angles which vary from -30 to 30 degrees over the 

grid. The reference, as well as the target image are resampled and interpolated (using 

trilinear interpolation) to create high resolution isotropic voxels. Finally, the registration of 

the two images is completed by calculations performed to the center of mass from both 

images. The derived unstripped, registered and interpolated patient dataset consists of 155 

slices with dimension 240×240 and being registered to the atlas. Figure 55 (d) presents the 

99th slice of the registered to the atlas patient dataset and (e) presents the same slice after 

skull stripping. 

The last step before handing data over simulation is the delineation of the initial tumor 

boundaries provided by expert radiologists from the University of Saarland using the 

annotation and segmentation platform DoctorEye [112][113]. The delineated slice is shown 

in Figure 55 (f) (in white). Summarizing, after acquiring the stripped, registered, interpolated 

and annotated dataset, diffusion simulation can be performed. A screenshot of the DrEye 
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tool during annotation is presented in Figure 56, where different areas (green, red, blue, 

yellow) have been selected. 

 

Figure 56 – DrEye screenshot: different areas of interest may be annotated accordingly using respective labels 
in different colors. 

Patient image data can now be directly mapped to the SRI24 atlas, where D(x) and W(x) for 

solving Eq. 72 are available. Following the current example, Figure 57 (a-d) presents the 

respective mappings of the Pw, Pg, PCSF and one of the three coordinates of the dominant 

eigenvector (wz). It is important to mention that because these coefficients depict 

proportions of brain matter and directionality measures, the image values are ranged in 

[0,1]. On the other hand MRIs in Figure 55 (a-d) take discrete intensity values in [0, 1, …, 

255]. 

 

Figure 57 - The SRI24 atlas mappings for the proportion of (a) white matter (Pw), (b) gray matter (Pg) and (c) 
cerebrospinal fluid (PCSF) and the one out of the three dominant eigenvector images (wz), respective to the 
example of Figure 55 
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7.2.2. Model Parameters 

As already mentioned, one real temporal glioma case was chosen on the basis that no 

surgery was performed and no therapy given to the patient (Figure 55) for demonstrating 

our method in detail, consisting of two sets of 29 T1-MRI slices, taken from two different 

post-treatment sessions. The respective T2 MRIs were also available and were used for 

estimating how well the model parameters D and ρ, extracted from bibliography [81], 

approached the values derived with the method proposed by Harpold et al. [80][114]. 

This specific patient suffered from inoperable glioblastoma and did receive irradiation for 2 

months, till 17-12-2009, concurrently with temolozolomide treatment. Then, the tumor was 

stable for 16 days and progressed again. The first dataset of MRI slices after treatment was 

acquired on 31-3-2010, while the second set on 31-5-2010. Thus, the tumor progression 

within that 60-day post-treatment period can be approximated as a free-growth procedure, 

i.e. 𝑇(𝑡)=0. Similarly, the rest 8 datasets were intentionally picked from similar cases (with 

post-operation relapse of tumor), so as to model glioma growth as free- growth procedure 

for the respective period of time for each case.  

The proliferation parameter 𝜌 was set to the constant value of ρ=0.012 day-1 corresponding 

to the observed rate of high-glioma of previous chapters. Similarly, the constant values 𝐷𝑤 

and 𝐷𝑔 for diffusion were set as 0.010 mm2/day and 0.002 mm2/day respectively. These 

values were found to meet the values derived with the method proposed by Harpold et al. 

[80], for estimating the ratio D/ρ by using the two T1 and T2 MRI sessions. For the rest 8 

cases, ρ was set to the constant value 0.012 day-1. On the other hand, 𝐷𝑤 and 𝐷𝑔 were 

picked from bibliography, for high glioma values, to optimally correspond to the respective 

values of D, estimated by Harpold’s method for ρ=0.012 day-1. 

Continuing, because the CSF is rarely invaded by glioma cells, a first approach adopted for 

simulating diffusion in CSF was to set a very small diffusive coefficient as DCSF=0.01 DW. The 

value of DCSF was not arbitrarily chosen, but it has been estimated by applying the method of 

Harpold et al. on a different provided dataset where CSF has been infected by glioma cells. 

Thus, the ratio DCSF/ρ was estimated in the CSF area, by using two T1 and T2 MRI sessions. 

Moreover, the initial concentration for the tumor voxels was set at 200 cells/mm3 and the 

Verhulst law parameter for the maximum concentration was defined as cm=106 cells/mm3. 

Lastly, the simulation grid dimensions were defined as 𝛥𝑋 =  𝛥𝑌 = 𝛥𝑍 = 1𝑚𝑚, the time 

step was defined as 𝛥𝑇 = 1ℎ(1/24 𝑑𝑎𝑦) and the overall modeling time of cell progression 

was 60 days, as in the real clinical case. 

7.3. Results 

After extracting the required datasets using the SRI24 atlas and after defining the simulation 

parameters, the proposed model of Eq. 72 can be applied on the real annotated clinical case. 

Figure 58 (a) presents the 99th slice of the initial tumor, as produced after data preprocessing 

and (b) shows the respective simulated glioma concentration after 60 days of progression, 

mapped on the initial dataset. On the other hand, Figure 58 (c) presents the respective real 

final tumor, as provided by the clinicians. Lastly, Figure 58 (d) depicts the 3-dimensional 
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perspective of the initial brain tumor. Figure 58 (e) presents the simulated tumor after 60 

days, while (f) presents the real tumor, derived after registering and interpolating the real 

tumor (second session) to the atlas. The visualization threshold of the simulated tumor 

concentration was set to 400 cells / mm3. 

In order to better evaluate the efficiency and the practical usefulness of the model, it is 

important to conduct a large number of simulations with real data, especially datasets with 

the characteristic fingering invasion of glioma. However, from the figures reported here, 

there seems to be a good qualitative agreement between the real and the simulated tumor 

growth. The next step is to evaluate the performance of the proposed model using all nine 

datasets, comparing it to the two standard diffusive models: uniform radial growth across all 

tissue types and faster diffusion in white matter with discrete diffusion coefficients. 

 

Figure 58 - Some simulation results; Up: the 99th slice of the (a) initial tumor, (b) the simulated final tumor, 
mapped on (a), and the (c) real final tumor. Down: the 3-dimensional reconstructions of (d) the initial 
annotated tumor, (e) the simulated tumor after 60 days and (e) the real annotated tumor after 60 days. 

7.4. Cross Validation 

We have made simulations on a series of nine datasets in order to compare the simulated 

tumor with the final actual tumor, as annotated by the radiologists. In the eight other cases 

however, the tumor was treated with radiotherapy which isn’t currently taken into 

consideration in the models compared. For evaluation, we used the scheme Jaccard (JC), 

Dice Similarity (DS) and Volume Similarity (VS) metrics that we used earlier. 

The evaluation metrics have been calculated on the simulation results of the nine patient 

datasets. On each dataset, three different models have been applied; the proportional 

model, the model with uniform tumor growth and the model with discrete values for 𝐷(𝐱). 

After running all three models for each dataset, the metrics for each one have been 

calculated. Finally, the average metrics for each model have been estimated.  
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Figure 59 - Scatter plot of JC, DS and VS (%) for 9 cases where the proportional, the discrete and the uniform 
growth models have been applied 

The scatter plots of the three metrics are presented in Figure 59 For the proportional model, 

the average JC is 0.54% higher than the discrete model and 3.39% higher than the uniform 

growth model. Similarly, the average DS for the proportional model is 0.48% and 3.07% 

higher than the discrete and the uniform model, respectively. Lastly, the average VS is 0.19% 

and 1.49% higher for the proposed model, compared to the results of the discrete and the 

uniform growth model, respectively. Thus, the results indicate that there is a potential 

advantage of the probabilistic diffusion coefficients over uniform and discrete diffusion 

parameters. ∎ 

Summary 

The first applications on real patient datasets, of the continuous proportional diffusion 

coefficients, proposed in this work, instead of the discrete two-value coefficients, seem to 

slightly improve the average performance of these models. This indicates that using 

proportions of tissue matter on each voxel, instead of classifying them either in GM or WM, 

valuable information is not truncated and the model simulates more accurately the actual 

tumor growth. 

The proportional model requires the a priori knowledge of white matter, gray matter and 

CSF proportions and the directions of the white matter tracts in brain. Therefore, structural 

and statistical information of brain is extracted by open-access brain atlases, such as SRI24. 

By mapping clinical MRI data to a brain matter atlas, it is possible to approximate the 

required tissue information / composition in the tumor area, since it is not possible to 

extract from the real MRI data we had in this work. Hence, simulation using local diffusion 

coefficients on real MRI images becomes possible, even if the lesion “hides” the underlying 

tissue. This of course, is an approximation and the added value can only be assessed through 

extending the gold truth experiments / results presented herein. However, is should be 

stressed that GBM follow ups without surgery are rare since surgery is performed in almost 

all cases after diagnosis rendering impossible to assess actual temporal tumor evolution.  

Apart from the commonly used gray matter and white matter tissue information, CSF 

proportion is also provided and utilized for simulating the rare cases of glioma, in which the 

cerebrospinal fluid has been invaded by tumor cells. Tumor expansion in CSF has been 

modeled by applying a non-zero diffusion coefficient. In the current experiments, the initial 

tumor size was not so large to allow tumor cells migrate into CSF, as in real cases. However, 

in experiments for large glioblastoma, where CSF might get infected, tumor cells have 
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appeared in the CSF areas. Therapy has been simulated with the current model, after 

adjusting the treatment term 𝑇(𝑡), and is presented in next chapter.  
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8. Radiotherapy 

The characteristics of GBM lead to aggressive treatment strategies that most often include 

surgery, irradiation and chemotherapy. The mathematical approaches that were used for 

simulating GBM growth inevitably raised the need for incorporating techniques for therapy 

simulation. Including therapy parameters in GBM models could help the clinicians optimize 

therapy schemes, as they could predict the response of patients to different therapeutic 

plans. 

This work presents the results of applying a linear quadratic model for simulating the effects 

of radiotherapy on real clinical datasets. The model used is the diffusive GBM model of the 

previous chapter, after ignoring the effect of CSF, with some extensions. This study extends 

our prior model with in silico prediction of tumor growth to incorporate the effects of 

radiotherapy in real clinical datasets. Compared to previous model this approach includes 

some improvements: 

 The application of the linear quadratic model on our previous model for simulating 

radiotherapy. 

 The simulation of radiotherapy in multiple fractions by using the linear quadratic 

model. 

 The evaluation of radiotherapy simulation by using Jaccard, Dice and Volume 

similarity metrics. 

 The anisotropic diffusion of cells only in white matter areas, excluding gray matter 

tissue. 

8.1. Methods 

This study makes use of the proportional diffusion model presented in the previous section, 

accounting for proportional diffusion coefficients, ignoring diffusion in CSF (𝐷𝐶𝑆𝐹 = 0). This 

work extends the previous model by improving Eq. 73, so as to turn off anisotropic migration 

in gray matter tissue. In order to apply anisotropy only to white tissues, as noticed in clinical 

praxis, the identity matrix 𝐈𝟑 is used for changing Eq. 73 to the following formalism: 

𝐃(𝐱) = 𝑃𝑔(𝐱)𝐷𝑔𝐈𝟑  +  𝑃𝑤(𝐱)𝐷𝑤𝐖(𝐱) 
 

74 
 

8.1.1. The Linear Quadratic model  

This work investigates an extension of the preceding proportional glioma model to include 

the effects of the radiotherapy using the Linear Quadratic Model. According to the model, 

the probability of cells surviving 𝑆 following a single dose of radiation 𝑅(𝐱, 𝑡) was observed 

to follow this relationship [115]: 

𝑆(𝑅) = 𝑒𝑥𝑝(−𝑎𝑅 − 𝛽𝑅2) 75 
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where linear 𝛼 (Gy-1) and quadratic 𝛽 (Gy-2) are the radiobiology parameters, which are 

interpreted biologically as repairable single and lethal double-strand breaks to the cell’s DNA, 

respectively [116]. In our case, where the clinical datasets have been extracted from patients 

with radiation in a number of fractions with the same dose, Eq. 75 turns to the following 

equation [117]: 

𝑆(𝑅) = 𝑒𝑥𝑝(−𝑎𝑅 − 𝛽𝑅𝑟)  
 

76 

where 𝑟 is the dose per fraction and 𝑅 = 𝑛𝑟 is the total dose for 𝑛 fractions. In general, fast-

proliferating cells, like GBM, have a high tissue response 𝛼/𝛽. In our experiment, we use a 

constant ratio 𝛼/𝛽=10 that is widely used in clinical applications for highly developing 

cancer and has been extracted from empirical dose response data [114]. Thus, if 4b is used 

for approximating cell proliferation, the overall proliferation term 𝑓(𝑐) for Eq. 72 turns out 

to be the following. 

𝑓(𝑐) = {

(𝜌 − (1 −  𝑒−𝑎𝑅(𝑡)−𝛽𝑅(𝑡)𝑟(𝑡))) 𝑐
𝑐𝑚 − 𝑐

𝑐𝑚
, 𝑡 ∈ therapy

𝜌𝑐
𝑐𝑚 − 𝑐

𝑐𝑚
, 𝑡 ∉ therapy
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8.1.2. Clinical Datasets and Model Settings 

The model uses T1- and T2-MRIs (255x255 pixel slices) taken from six patients diagnosed 

with malignant glioblastoma multiforme and cured with radiotherapy. The datasets were 

provided by Saarland University, Germany, for the needs of the ContraCancrum project [95]. 

For each dataset there is information provided for the dose and the fractions. Moreover, 

there are two or more sessions taken on different dates for tracking glioma development 

and evaluation simulation result. 

The simulation workflow is similar to that of the previous section, with 𝑓(𝑐) adjusted to Eq. 

77. The clinical datasets have been firstly registered and interpolated to the atlas. After 

registration, the datasets are delineated by expert radiologists by using DoctorEye 

(mentioned earlier). In order to solve the DRE, the Crank Nikolson numerical scheme has 

been implemented in three dimensions. We used ρ=0.012 day-1, 𝐷𝑤=0.010 mm2/day, 𝐷𝑔= 

0.002 mm2/day, 𝑐0 =106 cells/mm3. For the solver of Finite Differences, we used a grid with 

dimensions 𝛥𝑋 =  𝛥𝑌 = 𝛥𝑍 = 1𝑚𝑚 and a stable time step of 𝛥𝑇 = 1ℎ. 

8.1.3. Radiotherapy Settings 

Before applying the model, it is appropriate to estimate the values of the radiobiology 

parameters 𝛼 and 𝛽. The method used is that of Rockne et al. [114], by projecting the 

temporal tumor curves for different values of 𝑎 on the real datasets. Estimating radius is 

ideal for spherical tumors however GBM has very complex shape. Thus, instead of tumor 

radii, the estimated total number of GBM cells is used for identifying the value of 𝑎 that 

minimizes the error between simulated and actual target total GBM cells. 
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Figure 60 - The curves depict the total number of GBM cells for one patient for eight values of 𝒂 ranging from 0 

(no effect of radiotherapy) to 0.021 𝑮𝒚−𝟏 after applying the diffusive model. The same plot shows the three 
different points of real cell numbers, estimated after segmenting the tumors on three MRI datasets on the 

respective days. The optimal value of 𝒂 lies around 0.006 𝑮𝒚−𝟏. 

Figure 60 presents a set of simulated curves extracted for one specific patient after applying 

seven different values of 𝑎. The real tumor total cells are marked on the curve for three 

different MRI provided (the three green points on day 1, 15 and 70). The patient was treated 

with a total dose of 60 Gy at 2 Gy per fraction and 5 fractions per week for 6 weeks. 

Treatment starts 21 days after the first MRI and finishes on day 56. Each different curve is 

extracted by simulating radiotherapy for 0.003 increments of 𝑎, starting from zero (no effect) 

and reaching 0.021 𝐺𝑦−1. One can see that the optimal value for 𝑎, that minimizes the error 

from the total number of cells is 𝑎 =0.006 𝐺𝑦−1 . The same process is followed for 

approximating the radiobiology parameters for the rest five patients. Table 12 presents the 

patient specific parameters for all the patients. 

Patient Age 𝒂 (𝑮𝒚−𝟏) 𝑹 (𝑮𝒚) 𝒓 (𝑮𝒚) 𝒏 

1 47 0.114 60 2 30 
2 64 0.003 48 3 16 
3 52 0.006 60 2 30 
4 41 0.211 58 2 29 
5 73 0.000 42 3 14 
6 56 0.013 60 2 30 

Table 12 - Summary of model parameters for all six patients with glioblastoma multiforme included in the 
study 
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8.2. Results 

After defining all simulation parameters, the diffusive model has been applied on the clinical 

datasets of MRIs. Figure 61 presents the simulated results for the 4th patient 21 days after 

the end of radiotherapy (100 days after diagnosis). The hot areas depict the resulting 

simulated tumor projected on the real MRI dataset. The real dataset has been extracted on 

the same day of simulation. 

 

Figure 61 - The simulated cell concentration (hot areas) projected on the real patient data on the 100th day 
after diagnosis and 21 days after the last fraction of radiotherapy 

For this specific patient, radiotherapy caused shrinkage of the tumor, which cannot be 

clearly seen on the simulation results of Figure 61. In order to have a better understanding 

of the shrinkage effect of radiotherapy, we use a line intersecting the point with the 

maximum concentration. Then, concentration is estimated along this line and presented on 

a graph. This is applied both on the real initial MRIs (day 1) and the simulated final result. 

Figure 62 (left) shows the initial MRI with the intersection line projected, while Figure 62 

(right) presents the graph of the concentration of GBM along this line. The red curve shows 

the initial estimated concentration along this line, while the blue curve shows the simulated 

concentration of radiotherapy along the same line. In order to have a better visualization of 

the shrinkage effect, we also provide Figure 63 that depicts the change of the total number 

of cells in time (for 100 days). It is obvious that the tumor has shrunk considerably.  
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Figure 62 - The graph presents the tumor cell concentration for the initial day (diagnosis day) and the 100th 
day after diagnosis (21th day after the last fraction of radiotherapy). These values have been calculated along 
the yellow line shown on the left MRI slice, which comes across the point with the maximum concentration 
value 

 

Figure 63 - The temporal change of the number of glioma cells for the 4th patient for 100 days. The last 
radiotherapy session was carried on day 79. 

8.2.1. Cross validation 

We have made simulations on a series of six datasets in order to compare the simulated 

tumor with the final actual tumor, as annotated by the radiologists. Similarly to all previous 

simulations, the annotated final tumor serves as a golden ground truth and the Jaccard (JC), 

Dice (DS) and Volume Similarity (VS) metrics are adopted.  
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Figure 64 depicts the scatter plots of the three metrics for each patient. The average 

resulting JC, DS and VS values for all patients are 95.21%, 98.09% and 99.62%. These values 

are 2.1%, 4.01% and 1.89% higher than the respective results for discrete diffusion 

coefficients and 6.45%, 8.49% and 4.07% than the uniform tumor growth model. 

 

Figure 64- Scatter plot of JC, DS and VS (%) for six cases where the proportional, the discrete and the uniform 
growth models have been applied 

∎ 

Summary 

Radiotherapy is usually applied in fractions and the linear quadratic model has been 

adjusted to this, contrary to previous diffusive models which use the quadratic model for a 

single dose. By using the formalism of Eq. 76, the diffusive model incorporates this idea. 

  

0 2 4 6
85

90

95

100

J
C

 (
%

)

0 2 4 6
85

90

95

100

D
S

 (
%

)

patient

0 2 4 6
85

90

95

100

V
S

 (
%

)

 

 

Proportional coefficients

Discrete Coefficients

Uniform growth



Alexandros Roniotis, 2013 
 

 105 

[

Ε

9. Introducing Gross Tumor Volume 

In this work we propose an extended model of GBM growth including the brain deformation 

(mass effect) induced by the tumor invasion. Furthermore, we propose to make the link 

between the classification of tumors in Gross Tumor Volumes (GTV) proposed in some 

protocols for radiotherapy treatment [118] and the two distinct invasion behaviors: 

 The GTV1 is associated with the expansion component. Because it does not infiltrate 

the tissue, this proliferation is directly correlated with a volume increase. By creating 

new cells, the GTV1 pushes away the surrounding structures. It is therefore 

responsible for the major mechanical mass effect. The GTV1 is thus described in our 

model with a new stress equation. 

 The GTV2 is associated with the diffusion component. It invades adjacent structures 

by a diffusion process and is responsible for the infiltration in white and gray matter. 

This diffusion component expands faster than the GTV1 but exhibit little mass-effect. 

The GTV2 is thus described in our model with the reaction-diffusion equation we 

already have designed. 

In our model T1-contrast enhanced MRI is used for delineating GTV1, while T2 MRI is used 

for delineating GTV2 [72]. An example of the usual GTV segmentation can be seen on Figure 

65. The model is initialized using a standard segmented patient MRI.  

 

Figure 65 - MR images of a patient (left) T2; (right) GTV1 (dark red) and GTV2 (light blue) segmentations 
overlaid on the T2 MRI. 

9.1. Methods 

9.1.1. Real Initial and Final Dataset 

As already mentioned, the model of this chapter follows the same procedure of the previous 

chapter. T1, T2 and T1-contrast (with gadolinium) are required MRI modalities for the 

purposes of this method. Therefore, a dataset of a 54 year old male patient with diagnosed 
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GBM has been acquired for the needs of the ContraCancrum project, providing these 

modalities. The initial MRI session used here, has been extracted on 5th day after therapy (on 

16-2-2010), while the final MRI session has been produced on 15-7-2010, without treatment 

in between.  Both sessions include 19 slices of 256x256-pixel MRI images. Figure 66 shows 

some sample slices of the initial dataset (3 modalities), where tumor can be identified at the 

right part of the brain. Figure 67 presents the respective slices for the final dataset. 

T1 

    

T1-
contrast 

    

T2 

    
Figure 66 - Slice 11, 13, 15 and 17 (out of 19) taken from the initial dataset on Feb 16, 2010 

 

T1 

    

T1-
contrast 

    

T2 

    
Figure 67 - Slice 11, 13, 15 and 17 (out of 19) taken from the final dataset on July 15, 2010 
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9.1.2. Annotation of GTV1 and GTV2 

Radiologists from Universität des Saarlandes Klinikum (Germany) have used the platform of 

DrEye for delineating the areas of GTV1 and GTV2 on T1-contrast and T2 MRIs, respectively. 

However, before annotation, the slices have been registered and interpolated to the SRI24 

atlas following with the same procedure as in previous model, producing 150 slices of 

240x240 pixels. 

Figure 68 (a-c) shows an example of GTV1 and GTV2 annotations on T1-contrast and T2 70th 

slice and their merged version on T2, for the initial session. Similarly, (d-f) show the 

respective slices for the real final tumor. 

GTV1 segmentation on T1-contrast 

 
a 

GTV2 segmentation on T2 

 
b 

GTV1/GTV2 segmentation on T2 

 
c 

GTV1 segmentation on T1-contrast 

 
d 

GTV2 segmentation on T2 

 
e 

GTV1/GTV2 segmentation on T2 

 
f 

Figure 68 -  Annotations of (a) GTV1 on T1 contrast, (b) GTV2 on T2, and GTV1 + GTV2 on (c) T1-contrast and (d) 
T2  for the real initial tumor. (d-f) the respective of (a-c) for the final tumor. 

9.1.3. Simulation 

After annotation, the next step is to move to the simulation process. Initially, the initial 

tumor slices are translated into a 3 dimensional grid, which allows us apply the diffusion 

equation. In order to set the initial concentration of tumor cells, we initially set 𝑇ℎ,𝑔𝑡𝑣2=8000 

cells/mm3 around the borders of GTV2 and 𝑇ℎ,𝑔𝑡𝑣1=35000cells/mm3 around the borders of 

GTV1 [52]. Then we solve the steady state version of DRE with numerical integration until 

equilibrium is nearly reached. At the end we derive the interpolated concentration between 

the two initial contours of GTVs. Figure 69 presents various angles of the 3D representation 

of the initial tumor, with skull, GTV1, GTV2 and ventricle plotted for 𝑇ℎ,𝑔𝑡𝑣1 and 𝑇ℎ,𝑔𝑡𝑣2.  
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GTV1+GTV2+Ventricle+Skull 

  

  
Figure 69 – GTV1 and GTV2 of the initial tumor are plotted within the brain, with skull and ventricle drawn.  

After setting up the initial concentration, the simulation starts over 180 fictitious days. Every 

1 day the algorithm computes the mass deformation caused by the increasing tumor, by 

solving a stress function using COMSOL tool [72]. This stress is translated into new gray and 

white matter proportions, thus new diffusion coefficients are then used. 

9.2. Results 

Figure 70 shows a cross check of the real initial, real final and simulated final tumor after 

thresholding GTV1 and GTV2 areas with 𝑇ℎ,𝑔𝑡𝑣1 and 𝑇ℎ,𝑔𝑡𝑣2. From a first view, a very good 

agreement is observed with fingering being predicted. In order to have a better perspective 

of the real and simulated tumor, Figure 71 presents a cross presentation with transparent 

parts of GTV1 so as to check the overlapping areas. It is easy to notice that there is a very 

good agreement between real final and simulated results. 
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GTV1+GTV2+Ventricle+Skull 
Real Initial Real Final Simulated Final 

   

   

   

   

   
Figure 70 – Different angles of the real initial, real final and simulated final tumors depicting GTV1, GTV2, 
ventricle and skull. 
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Real Initial Initial & Real Final 

 
 

Real Final Initial & Simulated Final 

  
Simulated Final Simulated Final & Real Final 

     
Figure 71 – Cross presentation of GTV1 (left column): real initial, real final and simulated final tumor; (right 
column) cross check of initial over real final, initial over simulated final and simulated over real final tumor. 

9.3. Cross validation 

Similarly to all previous simulations, the final tumor (GTV1 only) serves as a golden ground 

truth and the Jaccard (JC), Dice (DS) and Volume Similarity (VS) metrics are adopted. In order 

to locate the TP, TN, FP, FN we use the evaluation plugin of DrEye. Figure 72 (left) presents 

an example of evaluation using this tool for a specific slice and (right) the produced results 

for the entire tumor. The metrics were computed as JC=82.06%, DS=91.93% and VS=95.20%. 

 

 

 

Figure 72 – (left) Example of evaluation using DrEye for a specific slice and (right) the estimated values for TP, 
FP, TN, FN for the entire tumor.  
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10. Proliferation–Invasion–Hypoxia– 
Necrosis–Angiogenesis model 

During the last decades, especially via the EU intuitive related to the Virtual Physiological 

Human, significant progress has been made in advancing In silico computational models to 

produce accurate and reliable tumor growth simulations. However, currently most attempts 

to validate the outcome of the models are either done in-vitro or ex-vivo after tumor 

resection. In this work, we incorporate information provided by fluorescence molecular 

tomography data performed in-vivo into a new mathematical model that describes tumor 

growth and builds upon the diffusive model by incorporating the angiogenic net rates and 

different concentration of cell populations (normoxic, hypoxic and necrotic). This work 

presents the proliferation- invasion- hypoxia- necrosis- angiogenesis (PIHNA) model in two 

dimensions. The outcome is validated against tumor evolution snapshots captured in vivo 

using advanced molecular probes in laboratory animals. 

10.1. Introducing the PIHNA model  

The previous model assumes that cancerous cells proliferate at a constant global rate which 

is independent of nutrients availability and the cell population has the same type. In order to 

incorporate nutrient availability and oxygenation, the model of Eq. 19 can be altered to the 

proliferation- invasion- hypoxia- necrosis- angiogenesis (PIHNA) model [119][115]. This 

model includes three different types of cell population, normoxic, hypoxic and necrotic, 

while vasculature and angiogenic factors (e.g. VEGF) have also been incorporated into the 

model. 

The emerging system of equations for these three types of cells, endothelial cells 

(vasculature) and angiogenic factors are: 

𝜕𝑐

𝜕𝑡
= ∇ ∙ (D(1 − 𝑇)∇𝑐) + 𝜌𝑐(1 − 𝑇) + 𝛾ℎ𝑉 − 𝛽𝑐(1 − 𝑉) − 𝑎𝑛𝑛𝑐 

𝜕ℎ

𝜕𝑡
= ∇ ∙ (D(1 − 𝑇)∇ℎ) − 𝛾ℎ𝑉 + 𝛽𝑐(1 − 𝑉) − (𝑎ℎ(1 − 𝑉) + 𝑎𝑛𝑛)ℎ 

𝜕𝑛

𝜕𝑡
= 𝑎ℎℎ(1 − 𝑉) + 𝑎𝑛𝑛(𝑐 + ℎ + 𝑣)                                               
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𝜕𝑣

𝜕𝑡
= ∇ ∙ (𝐷𝑣(1 − 𝑇)∇𝑣) + 𝜇

𝑎

𝐾𝑚 + 𝑎
𝑣(1 − 𝑇) − 𝑎𝑛𝑛𝑣 

𝜕𝑎

𝜕𝑡
= ∇ ∙ (𝐷𝑎∇𝑎) + 𝛿𝑐𝑐 + 𝛿ℎℎ − 𝑞𝜇

𝛼

𝐾𝑚 + 𝛼
𝑣(1 − 𝑇) − 𝜔𝑎𝑣 − 𝜆𝑎 

where 𝑉 = 𝑣/(𝑐 + ℎ + 𝑣) , 𝑇 = (𝑐 + ℎ + 𝑣 + 𝑛)/𝑘 . In first equation 𝑐(𝒙, 𝑡)  is the 

concentration of normoxic cells at position x at time t. The cells diffuse at a rate 𝐷, 

proliferate at a rate ρ, turn to hypoxic at a rate 𝛽 or turn directly to necrotic (due to contact 

death) at a rate 𝑎𝑛.  
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Similarly, ℎ(𝒙, 𝑡) is the concentration of hypoxic cells, which diffuse at a rate 𝐷, turn back to 

normoxic at a rate 𝛾 or turn to necrotic at a rate 𝑎ℎ.  

Continuing, 𝑛(𝒙, 𝑡) is the concentration of necrotic cells, while 𝑣(𝒙, 𝑡) and 𝑎(𝒙, 𝑡) are the 

vasculature (endothelial cells linked to oxygenation) and concentration of angiogenic factors, 

respectively. Vasculature disperses at a rate 𝐷𝑣, increases at a rate 𝑎𝑣 = 𝜇
𝑎

𝐾𝑚+𝑎
 and turns to 

necrotic cells at rate 𝑎𝑛.  

Lastly, angiogenic factors are produced by normoxic cells at rate 𝛿𝑐 and by hypoxic cells at 

rate 𝛿ℎ, decay at a rate 𝜆 and are washed out by vessels at rate 𝜔. In the last two equations, 

𝜇 is the proliferation rate of endothelial cells, 𝐾𝑚 is the Michaelis – Menten constant of 

response of endothelial cells to angiogenic factors and 𝑞 is the consumption of angiogenic 

factors per endothelial cell proliferation. 

10.2. In vivo tumor growth 

What has been achieved so far is a noteworthy number of computational (in silico) attempts 

to study the various phases and scales of cancer describing different levels of biocomplexity. 

Most of the approaches in in-silico oncology have been targeted to the provision of insight 

into the tumor growth mechanisms (cancer biology modeling). Yet, a parallel need of crucial 

importance is to serve the above models with advanced anatomical and functional imaging 

methods able to localize and image the tumor, while being appropriate for in vivo staining, 

such as fluorescence molecular probes, and proteins. 

Advances in biomedical imaging technologies brought about in recent years have 

revolutionized the way we approach a variety of medical and biological questions. Novel 

technological approaches have shed light into biological processes and function, with the 

field of in vivo molecular imaging recognized as one of the most influential for translational 

research [120][121]. By connecting gene activity with physiology the molecular basis of 

health and disease can be studied and understood. Important factors of disease and 

especially cancer, such as angiogenesis, hypoxia, metabolism and the pathways regulating 

the response to external stimuli can now be targeted and monitored at a very early stage 

and at a molecular level.  

In the field of optical tomographic imaging, increasingly used for pre-clinical research, a wide 

variety of probes have been developed enabling the specific targeting of many different 

molecular functions. In addition the ability to use fluorescing proteins with animal cancer 

models makes monitoring the progress of disease straightforward. Optical tomographic 

techniques can provide 3D imaging of fluorescence light emitted from the probe or protein 

[120]. In the case studied and presented here a Fluorescence Molecular Tomography (FMT) 

system is used to image signal emitted from HeLa cancer cells expressing the red emitting 

protein Katushka injected subcutaneously in the hind limb flank of mice. Imaging performed 

longitudinally provides a direct monitoring of the growing tumor[122]. 
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10.2.1. Animal preparation 

For the studies presented here Rag1-/- immunodeficient mice were used. Katushka 

expressing HeLa cancer cells were injected subcutaneously and grown as xenografts in the 

hind limb flanks. Initially 5x105 cells were injected and tumours were allowed to grow until 

4-10mm in diameter. Animals were kept anaesthetized using isoflurane throughout the 

preparation and imaging procedures. A small tumour (typically <1mm diameter) was 

generally visible within 4-5 days following the injection, at which point imaging was initiated, 

while the mice were sacrificed 11-20 days after implantation, depending on tumour size. 

10.2.2. Experimental Procedure 

The experimental system used for in vivo imaging is depicted in Figure 73 - The experimental 

setup for in vivo tomographic imaging. It comprises a series of laser sources employed 

according to the fluorescence target. A diode laser (Soliton-GmbH, Germany) emitting at 

592nm was used to excite Katushka as close to the absorption maximum as possible. A 

cooled 16-bit CCD (Andor BV-434, Belfast, Northern Ireland) camera was used for the 

detection of signals. Light collection was performed through a 50mm Macro f/2.8 objective 

(SIGMA Corporation, Tokyo, Japan) and different interference bandpass filters (Andover 

Corporation, USA) for isolating the fluorescence and excitation signals. In the case presented 

here, fluorescence was acquired using a 700/75nm filter, whereas no filter was used for the 

excitation. The system can be operated in both transmission and reflection geometry, 

however, in this study only reflection measurements were done since the targets were 

superficially located. An optical scanner was employed to scan the laser source into the 

desired points on the surface of the subject. In all experiments described here 49 

illumination points were used in a 7x7 arrangement. 

 

Figure 73 - The experimental setup for in vivo tomographic imaging 
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10.3. Tomographic Imaging 

Tomographic imaging was performed by raster scanning the laser source into selected 

illumination points on the subject, taking care that the scanning area covers the targeted 

tumor. For each illumination point two measurements are recorded sequentially, by 

selecting the appropriate filters as described above: the excitation light diffusely reflected 

back to the camera and the fluorescence light emitted by the Katushka expressing cancer 

cells. The two measurements were then combined in the tomographic algorithm to produce 

the 3D reconstructions. Light propagation was modeled by Diffusion Theory, while a 

normalized calculation approach was used to combine the two acquired intensities [123]. 

Reconstructions were performed with an iterative method without solving directly for the 

fluorescence due to the size of the weight matrix [124]. The mesh used for the 

reconstructions was 26x26x6 voxels in size with an axial resolution of 0.5mm and a depth 

resolution of 0.8mm. The result is a 3D reconstruction of the fluorescence intensity that can 

be associated to the cancer tumor and when longitudinal studies are performed, monitor its 

growth over time. 

10.4. Results 

In this section the results from in vivo imaging and the in silico model applied to the 

requirements of the specific mouse model are presented. 

10.4.1. In vivo tumor growth  

As described above to monitor tumor growth in vivo animals were imaged for several days 

and fluorescence data were analyzed for each imaging session in order to obtain the growth 

curve of the tumor. Characteristic images of the excitation and fluorescence signals recorded 

during the study can be seen in Figure 74b and c. These excitation and fluorescence were 

obtained by summing up the raw images for all illumination points. Data in Figure 74 

correspond to day 9 after the injection of the HeLa cells and a clear tumor can be observed 

with a size of circa 3-4mm. 

 
 

Figure 74 - 2D raw data obtained during in vivo imaging of tumor growth in a mouse model. a) 3D fluorescence 
reconstruction image showing the tumor in the flank of the mouse. b) image of the excitation light showing the 
scanning area and c) image of the fluorescence light emitted by the Katushka expressing HeLa cells. 

Figure 74a presents the fluorescence reconstruction in 3D overlaid on the white light image 

of the animal. The data from the reconstructions from each day were then used to obtain 

the growth curve of the specific tumor. This was performed by calculating the mean 
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fluorescence intensity of the reconstruction and then plotting against time (days). Results 

are presented in Figure 75 (red-square-pointed line) where reconstructed fluorescence 

intensity is plotted as a function of time after injection. A fast onset of growth is observed 

for the first 3 days, which is then slowed down until a plateau is reached after the 7th day. 

This behavior can be explained by the increasing competition among cancer cells for space 

and nutrients as tumor grows and can be simulated by the in silico model presented in the 

following section. 

10.4.2. In silico tumor growth 

In order to simulate tumor growth, we used the mathematical model described in section III. 

The system of equations (1) were solved in a 100×100 grid spanning an overall area of 𝐿 × 𝐿 

for 𝐿 = 2𝑐𝑚 and the temporal resolution was set to 𝜏 = 8ℎ. The parameters used in the 

model are depicted in Table 13. The proliferation rate of HeLa cells is set according to [125]. 

To simplify modeling, in all simulations described here vasculature is assumed homogeneous.  

Parameter Value Nondimensionalized Parameter Value Nondimensionalized 

𝑇𝑐 18.24 (
𝑑𝑎𝑦𝑠

𝑐𝑒𝑙𝑙
) 𝑇𝑐 𝛿𝑐 7.59 10−16 (

𝑚𝑚𝑜𝑙

𝑐𝑒𝑙𝑙 𝑑𝑎𝑦
) 

𝜏𝑘

𝑎𝑚𝑎𝑥
𝛿𝑐 

𝜌 
𝑙𝑛2

𝜏
(
1

𝑑𝑎𝑦
) 𝜏𝜌/𝑇𝑐 𝛿ℎ 1.43 10−12 (

𝑚𝑚𝑜𝑙

𝑐𝑒𝑙𝑙 𝑑𝑎𝑦
) 

𝜏𝑘

𝑎𝑚𝑎𝑥
𝛿ℎ 

𝛾 0.05 (
1

𝑑𝑎𝑦
) 𝜏𝛾 𝛽 

𝜌

10
(
1

𝑑𝑎𝑦
) 

𝜌

10
 

𝑎𝑛 0 (
1

𝑑𝑎𝑦
) 0 𝐷,𝐷𝑣  10−11 (

𝑐𝑚2

𝑠
) 𝜏

𝐿2
𝐷 

𝑎ℎ 
𝜌

20
(
1

𝑑𝑎𝑦
) 

𝜌

20
 𝜒𝑣  9.36 10−7 (

1

𝑑𝑎𝑦
) 𝜏

𝐿2
𝜒𝑣 

𝐷𝑎 2.9 10−7 (
𝑐𝑚2

𝑠
) 𝜏

𝐿2
𝐷𝑎 𝜆 

𝑙𝑛2

64
(
1

𝑚𝑖𝑛
) 𝜏𝜆 

𝐾𝑚 5.75 10−7 (
𝑚𝑚𝑜𝑙

𝑐𝑚3
) 

𝐾𝑚
𝑎𝑚𝑎𝑥

 𝜔 2.17 10−6 (
1

𝑐𝑒𝑙𝑙 𝑑𝑎𝑦
) 𝜏𝑘𝜔 

𝜇 
𝑙𝑛2

15
(
1

𝑑𝑎𝑦
) 𝜏𝜇    

Table 13 - The parameters for PIHNA model simulation and their nondimensionalized versions 

As described in the previous section, the reconstructed tumor can provide information 

regarding the spatial concentration of the viable HeLa cell population at the time of 

measurement and produce the growth curve of the specific tumor. As shown in Figure 75a, 

we first initialized the spatial concentration of the normoxic cells according to the 

fluorescence information of a 2D-depth slice assuming that the concentration of the hypoxic 

cells can be neglected in the initial step. The fluorescence intensity was normalized in a way 

to force the peak of the concentration to reach 1. In addition to that, a multivariate normal 

distribution (Figure 75c) has also been used to approximate the initial spatial distribution of 

normoxic cells. The rest initial normalized populations were uniformly set at ℎ0 = 0, 𝑛0 = 0,

𝑎0 = 0 and 𝑣0 = 0.005. Tumor growth has been simulated for 12 fictitious days. 
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Before feeding the model with parameters, they were nondimensionalized according the 

formulas shown in Table 13. The new positions 𝑥 are found according to 𝑥 =
𝑥

𝐿
 and the time 

is changed to �̂� =
𝑡

𝜏
. Lastly, the concentration 𝑐, ℎ, 𝑛 and 𝑣 of normoxic, hypoxic, necrotic and 

endothelial cells, respectively, is nondimensionalized according to the capacity of cells 𝑘 =

2.39 108
𝑐𝑒𝑙𝑙𝑠

𝑐𝑚3 , thus �̂� =
𝑐

𝑘
, ℎ̂ =

ℎ

𝑘
, �̂� =

𝑛

𝑘
 and 𝑣 =

𝑣

𝑘
. Similarly, the maximum value of 

angiogenesis is altered according to the formula �̂� =
𝑎

𝑎𝑚𝑎𝑥
, where 𝑎𝑚𝑎𝑥 = 5.75 10

−6 𝑚𝑚𝑜𝑙

𝑐𝑚3 . 

 

Figure 75 - a) The initial distribution of normoxic cells used in simulations as obtained from a depth slice of the 
3D fluoesence reconstruction and b) the corresponding tumor growth over timeas predicted by the in silico 
model (blue line)and as measured from the in vivo data (red line). c) A multivariate normal distribution 
approximates the initial normoxic concnetration and d) the correpsonding in silico prediction of tumor growth 
(blue line) compared with the in vivo data (red line). 

As can be seen in Figure 75, initializing the cancer cell population according to the in-vivo 

imaging data (Figure 75a), the viable cancer cell population is in line with the in-vivo 

observations and well approximates the fast growth of the first days and the following 

slowdown phase of tumor cells (Figure 75b). Interestingly, as can be seen in Figure 76b the 

size and shape predictions of the final tumor are very similar to the ex-vivo data (Figure 76a). 

Specifically, the diameter of the real tumor has grown from 0.4cm on day 9 (first day of 

measurements) to 0.7cm on day 17, while the simulated final tumor has a diameter of 

0.68cm. On the contrary, as can be seen in Figure 75d the normal distribution (Figure 75c) is 

unable to approximate the slowdown phase of tumor growth that is observed in vivo under 

the same set of parameters neither can predict the size and shape of the real tumor (Figure 

76c).∎ 

Summary 

The simulations show the importance of proper initialization in predicting the evolution of 

tumor. It is observed that the shape of the initial cancer strongly affects the shape of the 

simulated tumor, thus it is very important to appropriately initialize normoxic populations 
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according to clinical data. In simulations, where normoxic population has been initialized 

according to real data, it is observed that the eventual shape is similar to real final tumor. 

Moreover, the model has succeeded in approaching the real final tumor diameter. More 

specifically, the real tumor diameter has increased 42.86%, while the simulated has 

increased 44.12%. 

In order to evaluate the robustness and response behavior of the model, we also tested it 

against a variety of parameter values including the dispersal rate of HeLa cells, the rate at 

which normoxic cells convert to hypoxic under inadequate oxygen, the relative amount of 

vasculature supplying the tissue. This analysis has revealed that a low motility rate is 

important for the tumor growth to reach a plateau, an increased cellular proliferation rate 

leads to a faster onset of growth and that the level of vascularization must be significantly 

high to slow down the conversion of normoxic cells to hypoxic and eventually to necrotic. 

Furthermore, the simulations suggest that space competition is a key determinant for 

explaining the growth behavior of the tumor under study, although oxygen competition 

among cancer cells can also be important when different metabolic demands are considered. 

 

Figure 76 - a) white light image showing the tumor the day the mouse was sacrificed (day 17). The tumor is 
approximately 7mm in diameter. b) initialized with the distribution of Figure 75a, the in silico tumor 
approximates the in vivo tumor morphology and the predicted tumor size is approximately 6.8mm in diameter 
after 9 fictitious days contrary to c) the in silico tumor, which was initialized with the distribution of Figure 75c. 
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General Conclusions 

Up to now, the various implementations of Diffusive models lack a firm mathematical 

background on the derivation of the system, with concrete assumptions on the 

approximation scheme. When designing a model, engineers should not ignore the 

computational limitations of the model. The processing power and storage capacity of the 

computers that are used in clinical practice should be seriously taken into account, since a 

resource-demanding model would turn out to be cumbersome when no access to 

supercomputers is possible.  

The results of this thesis indicate that even if one method (e.g. Finite Elements) would 

initially seem as the most accurate, this work indicates specific tradeoffs (such as simulation 

time, storage and computational needs) that can cause computational problems on the 

main-stream computers of hospitals and may alter the preference to this method. This is 

something that should be studied more thoroughly with other techniques, such as Finite 

Volumes or some “smarter” modalities of Finite Elements. 

The evaluation of the schemes used for solving the diffusion – reaction equation uses solid 

metrics and provides objective comparison (JC, DS, VS metrics). It is essential to study how 

these metrics fluctuate depending on the ground truth annotation; the ground truth is an 

imaging session delineated by the clinician. Especially for glioma, clinicians have to guess 

where the cancerous area is, as the tumor is invisible.  

One aspect not thoroughly studied here, although introduced, is the effect of tumor growth 

to the mass deformation of the brain. This deformation is likely to affect the model, as the 

areas of white and gray matter, and the white fiber tracts have been moved. 

Moreover, the reported cases in this work do not show mass effect, nor the characteristic 

diffusive fingers of glioblastoma, which should be further studied with larger and more 

aggressive gliomas. 

The first approach of setting a non-zero diffusion coefficient to CSF, which has been followed 

here, has not yet been studied in depth for real cases where CSF invasion has been 

diagnosed by radiologists. For these cases it would be interesting to study if fluid dynamics 

could better approximate the migration of cells in CSF and simulate solid/fluid structure 

interaction. 

The simulations for PIHNA model show the importance of proper initialization in predicting 

the evolution of tumor. It is observed that the shape of the initial cancer strongly affects the 

shape of the simulated tumor, thus it is very important to appropriately initialize normoxic 

populations according to clinical data. In simulations, where normoxic population has been 

initialized according to real data, it is observed that the eventual shape is similar to real final 

tumor. A very crucial space for study here is the interpretation (mapping) of MRIs to 

cancerous cell populations and their initialization. 
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In order to evaluate the robustness and response behavior of the PIHNA model, we also 

tested it against a variety of parameter values including the dispersal rate of HeLa cells, the 

rate at which normoxic cells convert to hypoxic under inadequate oxygen, the relative 

amount of vasculature supplying the tissue. This analysis has revealed that a low motility 

rate is important for the tumor growth to reach a plateau, an increased cellular proliferation 

rate leads to a faster onset of growth and that the level of vascularization must be 

significantly high to slow down the conversion of normoxic cells to hypoxic and eventually to 

necrotic. Furthermore, the simulations suggest that space competition is a key determinant 

for explaining the growth behavior of the tumor under study, although oxygen competition 

among cancer cells can also be important when different metabolic demands are considered. 

All these observations have to be studied and verified in more detail. 
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