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Abstract 

We report the first real time modular spectral and color imaging system 
based on the combination of snapshot spectral imaging, spectral estimation 
and color reproduction algorithms. A limited number of spectral bands are 
captured simultaneously, with the aid of specially designed camera, which 
are subsequently processed with spectral estimation algorithms to obtain a 
full spectrum per image pixel.  We have succeeded to demonstrate 
complete spectral cube calculation and display of millions of spectra in real-
time and to remove trade-off between spectral and spatial resolution. 
Besides accurate spectral mapping, our approach enables also reliable and 
device-independent color reproduction based on complete, per-pixel 
spectra. These achievements hold the promise to provide an indispensable 
tool in nondestructive analysis and in noninvasive diagnosis.   

 

 

  



 

[6] 

 

Table of Contents 
 

1 Introduction ......................................................................................................... 15 

1.1 Electromagnetic Radiation .............................................................................. 16 

1.2 Color ................................................................................................................ 19 

1.3 Color Spaces .................................................................................................... 19 

1.3.1 Red-Green-Blue (RGB) Color Space ...................................................... 19 

1.3.2 Hue-Saturation-Value (HSV) Space ........................................................ 20 

1.3.3 Hue-Lightness-Saturation (HLS) Space .................................................. 21 

1.3.4 Cyan-Magenta-Yellow (CMY) Color Space ........................................... 21 

1.4 CIE Color Spaces ............................................................................................ 22 

1.5 Metamerism ..................................................................................................... 24 

1.6 Spectral and Color Imaging ............................................................................. 25 

1.6.1 Color vs. Spectral Imaging ...................................................................... 26 

1.6.2 Multispectral Imaging and Color ............................................................. 26 

1.6.3 Single Exposure or Instantaneous Spectral Imagers ................................ 27 

1.6.4 Color Reproduction Media ...................................................................... 27 

1.6.5 Spectral Imaging and Applications .......................................................... 27 

1.7 Spectral Estimation .......................................................................................... 29 

2 Material and Methods .......................................................................................... 35 

2.1 Measures of Spectral Similarity ...................................................................... 35 

2.1.1 Root Mean Square Error (RMSE) ........................................................... 35 

2.1.2 Goodness of fit (GFC) ............................................................................. 35 

2.1.3 Spectral Angle Mapper (SAM) ................................................................ 35 

2.1.4 Euclidean Distance .................................................................................. 36 

2.1.5 Accuracy Validation Thresholds ............................................................. 36 

2.2 Test Samples .................................................................................................... 37 

2.2.1 Gretag Macbeth® Color Checker® CC................................................... 37 

2.2.2 Gretag Macbeth® Color Checker® SG ................................................... 37 

2.2.3 Wooden Pad with pigments with varnish variations ............................... 38 

2.2.4 Roscolux Films ........................................................................................ 38 



 

[7] 

 

2.2.5 Variable Frequency Targets ..................................................................... 39 

2.3 Hyper Spectral and Color Cameras ................................................................. 39 

2.3.1 MUSIS Hyper Spectral Camera .............................................................. 39 

2.3.2 xiQ - USB3 Vision Cameras ................................................................... 40 

3 Spectral Prediction from Filtered Color CCD Cameras ...................................... 42 

4 Spectral Estimation of Unknown Samples .......................................................... 43 

4.1.1 Gretag Macbeth® Color Checker SG Spectral Estimation Results ......... 43 

4.1.2 Pigments Wooden Pad with varnish variations ....................................... 49 

4.1.3 Roscolux Films ........................................................................................ 52 

5 Spectral Estimation Visible and Near Infrared .................................................... 53 

5.1 Spectral Estimation using 12 Narrow Spectral Bands ..................................... 53 

5.1.1 Gretag Macbeth® Color Checker SG Spectral Estimation Results ......... 54 

5.1.2 Pigments Wooden Pad with varnish variations ....................................... 55 

5.2 Spectral Estimation using 11 Narrow Spectral Bands ..................................... 56 

5.2.1 Gretag Macbeth® Color Checker SG Spectral Estimation Results ......... 56 

5.2.2 Pigments Wooden Pad with varnish variations ....................................... 57 

5.3 Spectral Estimation using 10 Narrow Spectral Bands ..................................... 58 

5.3.1 Gretag Macbeth® Color Checker SG Spectral Estimation Results ......... 59 

5.3.2 Pigments Wooden Pad with varnish variations ....................................... 60 

5.4 Spectral Estimation using 9 Narrow Spectral Bands ....................................... 61 

5.4.1 Gretag Macbeth® Color Checker SG Spectral Estimation Results ......... 61 

5.4.2 Pigments Wooden Pad with varnish variations ....................................... 62 

5.5 Improving Visible Spectral Estimation through NIR Spectral Estimation ...... 64 

6 Calculation of Color using Spectral Data ............................................................ 65 

6.1 Color Reproduction from Spectral Data using MUSIS HS Camera ................ 66 

6.2 Six Band Color Reproduction using Spectral Estimation................................ 66 

6.3 Six Band Color Reproduction ......................................................................... 71 

6.4 Weighted Six Band Color Reproduction ......................................................... 75 

6.5 Color Reproduction from Estimated Spectral Cube vs. Six Weighted Narrows 

Spectral Bands ..................................................................................................................... 79 

6.6 Color Reproduction Methods Summary .......................................................... 83 



 

[8] 

 

7 Six Band Color Reproduction System ................................................................. 84 

7.1 Channel unmixing ........................................................................................... 85 

7.2 Channel unmixing algorithm ........................................................................... 86 

7.3 Channel Unmxing based on experimental measurements ............................... 88 

8 A novel Real-Time Spectral and Color Imaging System .................................... 90 

8.1 System Description .......................................................................................... 90 

8.2 Optomechanical Engineering .......................................................................... 90 

8.3 Real Time Spectral Imaging ............................................................................ 91 

8.3.1 Microscopy Tile ....................................................................................... 92 

8.4 Real Time Color Imaging ................................................................................ 94 

8.5 Color Imaging Using Six Unmixed Spectral Bands ........................................ 95 

8.6 Spectral and Color Imaging Post Processing ................................................. 114 

8.7 Modulation Transfer Function ....................................................................... 114 

8.8 Color Gamut .................................................................................................. 118 

8.9 Metamerism ................................................................................................... 121 

8.10 Real-Time Spectral Mapping..................................................................... 124 

9 Conclusions ....................................................................................................... 125 

10 Discussion.......................................................................................................... 126 

11 Future Work....................................................................................................... 126 

12 References ......................................................................................................... 127 

 

  



 

[9] 

 

Table Figures of  

 

Figure 1-1 Spectral Cube Graphical Representation ............................................................. 15 

Figure 1-2 The electromagnetic waves that compose electromagnetic radiation can be 

imagined as a self-propagating transverse oscillating wave of electric and magnetic fields .. 17 

Figure 1-3 Artist’s impression, inspired by the work of the artist Maurits Cornelis 

Escher, of the continuous morphing between particle- and wave-like behaviour of light. 

Credit: Nicolas Brunner and Jamie Simmonds........................................................................ 17 

Figure 1-4 Electromagnetic spectrum with visible light highlighted ............................ 18 

Figure 1-5 RGB Color Space ........................................................................................ 20 

Figure 1-6 HSV Color Space ........................................................................................ 20 

Figure 1-7 HLS Color Space ......................................................................................... 21 

Figure 1-8 CMY Color Space ....................................................................................... 21 

Figure 1-9 CIELAB Space ............................................................................................ 22 

Figure 1-10 DE Graphical and Quantitative Analysis Example ................................... 24 

Figure 2-1 Gretag Macbeth Color Checker CC............................................................. 37 

Figure 2-2 Gretag Macbeth Color Checker SG ............................................................. 37 

Figure 2-3 MUSIS HS Camera ..................................................................................... 40 

Figure 4-1 Spectral Estimation Macbeth SG (1) ........................................................... 43 

Figure 4-2 Spectral Estimation Macbeth SG (2) ........................................................... 44 

Figure 4-3 Spectral Estimation Macbeth SG (3) ........................................................... 44 

Figure 4-4 Spectral Estimation Macbeth SG (4) ........................................................... 45 

Figure 4-5 Spectral Estimation Macbeth SG (5) ........................................................... 45 

Figure 4-6 Spectral Estimation Macbeth SG (6) ........................................................... 46 

Figure 4-7 Spectral Estimation Macbeth SG (7) ........................................................... 46 

Figure 4-8 Macbeth SG 1st Quadrant Spectral Image Estimation ................................ 47 

Figure 4-9 Macbeth SG 2nd Quadrant Spectral Image Estimation ............................... 48 

Figure 4-10 Macbeth SG 3rd Quadrant Spectral Image Estimation.............................. 48 

Figure 4-11 Macbeth SG 4th Quadrant Spectral Image Estimation .............................. 49 

Figure 4-12 Spectral Estimation (Visible) Wooden Pad with Varnish (1) .................... 49 

Figure 4-13 Spectral Estimation (Visible) Wooden Pad with Varnish (2) .................... 50 

Figure 4-14 Spectral Estimation (Visible) Wooden Pad with Varnish (3) .................... 50 

Figure 4-15 Spectral Estimation (Visible) Wooden Pad with Varnish (4) .................... 51 

Figure 4-16 Spectral Estimation (Visible) Roscolux films ........................................... 52 

Figure 5-1 Twelve Spectral Bands for Spectral Estimation within the Visible and NIR

 ................................................................................................................................................. 53 

Figure 5-2 Spectral Estimation (12 Bands) Visible and NIR Macbeth SG ................... 54 

Figure 5-3 Spectral Estimation (Visible and NIR 12 Bands) Wooden Pad with Varnish

 ................................................................................................................................................. 55 

file:///E:/Jimacos/Dropbox/MsC/Thesis_/Thesis_rearrange.docx%23_Toc392713081
file:///E:/Jimacos/Dropbox/MsC/Thesis_/Thesis_rearrange.docx%23_Toc392713083


 

[10] 

 

Figure 5-4 Eleven Spectral Bands for Spectral Estimation within the Visible and NIR 56 

Figure 5-5 Spectral Estimation (11 Bands) Visible and NIR Macbeth SG ................... 56 

Figure 5-6 Spectral Estimation (Visible and NIR 11 Bands) Wooden Pad with Varnish 

(1) ............................................................................................................................................ 57 

Figure 5-7 Ten Spectral Bands for Spectral Estimation within the Visible and NIR .... 58 

Figure 5-8 Spectral Estimation (10 Bands) Visible and NIR Macbeth SG ................... 59 

Figure 5-9 Spectral Estimation (Visible and NIR 10 Bands) Wooden Pad with Varnish 

(1) ............................................................................................................................................ 60 

Figure 5-10 Eight Spectral Bands for Spectral Estimation within the Visible and NIR 61 

Figure 5-11 Spectral Estimation (9 Bands) Visible and NIR Macbeth SG (1) ............. 61 

Figure 5-12 Spectral Estimation (Visible and NIR 9 Bands) Wooden Pad with Varnish 

(1) ............................................................................................................................................ 62 

Figure 6-1: Six Spectral Bands and RGB ...................................................................... 66 

Figure 6-2 : CR Full and Estimated Spectral Cube (Quad 1,2,3,4 respectively) .......... 67 

Figure 6-3 : Spectral Power Distributions of the CIE Standard illuminants D50, D55 

and D65 ................................................................................................................................... 68 

Figure 6-4 CIELAB Metrics Quad 1 ............................................................................. 69 

Figure 6-5 CIELAB Metrics Quad 2 ............................................................................. 69 

Figure 6-6 CIELAB Metrics Quad 3 ............................................................................. 70 

Figure 6-7 CIELAB Metrics Quad 4 ............................................................................. 70 

Figure 6-8 : CR Full and Six Band Spectral Cube (Quad 1,2,3,4 respectively) ............ 72 

Figure 6-9 CIELAB Metrics Quad1 .............................................................................. 73 

Figure 6-10 CIELAB Metrics Quad2 ............................................................................ 73 

Figure 6-11 CIELAB Metrics Quad3 ............................................................................ 74 

Figure 6-12 CIELAB Metrics Quad4 ............................................................................ 74 

Figure 6-13 : CR Full Spectral Cube and Weighted Six Band (Quad 1,2,3,4 

respectively) ............................................................................................................................ 76 

Figure 6-14 CIELAB Metrics Quad1 ............................................................................ 77 

Figure 6-15 CIELAB Metrics Quad2 ............................................................................ 77 

Figure 6-16 CIELAB Metrics Quad3 ............................................................................ 78 

Figure 6-17 CIELAB Metrics Quad4 ............................................................................ 78 

Figure 6-18 : CR Full and Six Band Spectral Cube (Quad 1,2,3,4 respectively) .......... 80 

Figure 6-19 CIELAB Metrics Quad1 ............................................................................ 81 

Figure 6-20 CIELAB Metrics Quad2 ............................................................................ 81 

Figure 6-21 CIELAB Metrics Quad3 ............................................................................ 82 

Figure 6-22 CIELAB Metrics Quad4 ............................................................................ 82 

Figure 7-1: Transmission spectra for products FF01 422/503/572 (a) and FF01 

464/542/639 (b), Semrock, Rochester, NY, www.semrock.com. ........................................... 84 

Figure 7-2 Spectral Unmixing - Color Patches Choice with minimum error ................ 87 



 

[11] 

 

Figure 7-3 Spectral Unmixing - Color Patches Choice with maximum error ............... 87 

Figure 7-4 Spectral Unmixing Results Macbeth CC TBPF1 ........................................ 89 

Figure 7-5 Spectral Unmixing Results Macbeth CC TBPF2 ........................................ 89 

Figure 7-6 Sample output optical signals from a tunable diffraction grating 

monochromator ....................................................................................................................... 88 

Figure 8-1 Diagonal Experimental Setup ...................................................................... 91 

Figure 8-2  Spectral Estimation (Visible) Microscopy Tile - Hematoxylin, DAB ....... 93 

Figure 8-3 Microscopy Tile RGB ................................................................................. 93 

Figure 8-4 RGB Spectral Sensitivity Coupled with TBPF1.......................................... 97 

Figure 8-5 RGB Spectral Sensitivity Coupled with TBPF2.......................................... 97 

Figure 8-6 RGB (Left Column) and RGB_Unmixed (Right Column) Images Macbeth 

SG Quad1-4 Respectively ....................................................................................................... 98 

Figure 8-7 CIELAB Metrics Quad 1 RGB vs. Unmixed RGB ..................................... 99 

Figure 8-8 CIELAB Metrics Quad 2 RGB vs. Unmixed RGB ..................................... 99 

Figure 8-9 CIELAB Metrics Quad 3 RGB vs. Unmixed RGB ................................... 100 

Figure 8-10 CIELAB Metrics Quad 4 RGB vs. Unmixed RGB ................................. 100 

Figure 8-11 RGB (Left Column) and TBP1 (Right Column) Images Macbeth SG 

Quad1-4 Respectively ........................................................................................................... 101 

Figure 8-12 CIELAB Metrics Quad 1 RGB vs. TBP1 ................................................ 102 

Figure 8-13 CIELAB Metrics Quad 2 RGB vs. TBP1 ................................................ 102 

Figure 8-14 CIELAB Metrics Quad 3 RGB vs. TBP1 ................................................ 103 

Figure 8-15 CIELAB Metrics Quad 4 RGB vs. TBP1 ................................................ 103 

Figure 8-16 RGB (Left Column) and TBP1_Unmixed (Right Column) Images Macbeth 

SG Quad1-4 Respectively ..................................................................................................... 104 

Figure 8-17 CIELAB Metrics Quad 1 RGB vs. TBP1_Unmixed ............................... 105 

Figure 8-18 CIELAB Metrics Quad 2 RGB vs. TBP1_Unmixed ............................... 105 

Figure 8-19 CIELAB Metrics Quad 3 RGB vs. TBP1_Unmixed ............................... 106 

Figure 8-20 CIELAB Metrics Quad 4 RGB vs. TBP1_Unmixed ............................... 106 

Figure 8-21 RGB (Left Column) and TBP2 (Right Column) Images Macbeth SG 

Quad1-4 Respectively ........................................................................................................... 107 

Figure 8-22 CIELAB Metrics Quad 1 RGB vs. TBP2 ................................................ 108 

Figure 8-23 CIELAB Metrics Quad 2 RGB vs. TBP2 ................................................ 108 

Figure 8-24 CIELAB Metrics Quad 3 RGB vs. TBP2 ................................................ 109 

Figure 8-25 CIELAB Metrics Quad 4 RGB vs. TBP2 ................................................ 109 

Figure 8-26  RGB (Left Column) and TBP2_Unmixed (Right Column) Images 

Macbeth SG Quad1-4 Respectively ...................................................................................... 110 

Figure 8-27 CIELAB Metrics Quad 1 RGB vs. TBP2_Unmixed ............................... 111 

Figure 8-28 CIELAB Metrics Quad 2 RGB vs. TBP2_Unmixed ............................... 111 

Figure 8-29 CIELAB Metrics Quad 3 RGB vs. TBP2_Unmixed ............................... 112 



 

[12] 

 

Figure 8-30 CIELAB Metrics Quad 4 RGB vs. TBP2_Unmixed ............................... 112 

Figure 8-32 Perfect Line Edges before and after passing through a low-frequency 

pattern (left), high-frequency pattern (right), their corresponding MTF value (bottom). ..... 115 

Figure 8-33 Contrast expressed as a square wave at different levels of resolution ..... 116 

Figure 8-34 System's Modulation Transfer Function .................................................. 117 

Figure 8-35 MTF of Estimated Band 560nm vs. Measured MTF ............................... 118 

Figure 8-36 Color Gamut TBPF1 Mixed .................................................................... 119 

Figure 8-37 Color Gamut TBPF1 Unmixed ................................................................ 119 

Figure 8-38 Color Gamut TBPF2 Mixed .................................................................... 120 

Figure 8-39 Color Gamut TBPF2 Unmixed ................................................................ 120 

Figure 8-40 Color Gamut Garida Imaging System (Six Unmixed Spectral Narrow 

Bands) .................................................................................................................................... 121 

Figure 8-41 Spectral Reflectance of Macbeth Normal and Metameric Patches ......... 122 

Figure 8-42 METACOW test target ............................................................................ 123 

Figure 8-43 METACOW Six Weighted Bands Color Reproduction .......................... 123 

Figure 8-44 (a) Biopsy Image of Immunostained Biopsy (b) Measured and Estimated 

Spectrum (c) Spectral Map for Hematoxilin immunostain (d) Spectral Map for DAB 

Immunostain .......................................................................................................................... 124 

 

Table of Tables 

 

Table 3-1 Spectral Estimation Algorithm Comparison ................................................. 42 

Table 3-2 Spectral Estimation using Narrow Spectral Bands ....................................... 42 

Table 4-1 Macbeth SG Spectral Estimation Quantitative Results ................................ 47 

Table 4-2 Wooden Pad Spectral Estimation Quantitative Results ................................ 51 

Table 4-3 Roscolux Films Spectral Estimation Quantitative Results ........................... 52 

Table 5-1 Macbeth SG Spectral Estimation (12 Bands) Visible and IR Quantitative 

Results ..................................................................................................................................... 54 

Table 5-2 Wooden Pad Spectral Estimation (12 Bands) Visible and NIR Quantitative 

Results ..................................................................................................................................... 55 

Table 5-3 Macbeth SG Spectral Estimation (11 Bands) Visible and IR Quantitative 

Results ..................................................................................................................................... 57 

Table 5-4 Wooden Pad Spectral Estimation (11 Bands) Visible and NIR Quantitative 

Results ..................................................................................................................................... 58 

Table 5-5 Macbeth SG Spectral Estimation (10 Bands) Visible and IR Quantitative 

Results ..................................................................................................................................... 59 

Table 5-6 Wooden Pad Spectral Estimation (10 Bands) Visible and NIR Quantitative 

Results ..................................................................................................................................... 60 



 

[13] 

 

Table 5-7 Macbeth SG Spectral Estimation (9 Bands) Visible and IR Quantitative 

Results ..................................................................................................................................... 62 

Table 5-8 Wooden Pad Spectral Estimation (9 Bands) Visible and NIR Quantitative 

Results ..................................................................................................................................... 63 

Table 5-9 Macbeth SG Spectral Estimation Visible and IR Quantitative Results ........ 63 

Table 5-10 Wooden Pad Spectral Estimation Visible and NIR Quantitative Results ... 63 

Table 5-11 Macbeth SG Spectral Estimation Visible vs. Visible with NIR ................. 64 

Table 5-12 Wooden Pad Spectral Visible vs. Visible with NIR ................................... 64 

Table 6-1: Color Difference Results ............................................................................. 68 

Table 6-2: Color Difference Results ............................................................................. 75 

Table 6-3: Color Difference Results ............................................................................. 79 

Table 6-4: Color Difference Results ............................................................................. 83 

Table 6-5 Color Difference Results Summary .............................................................. 83 

Table 8-1 Microscopy Tile Films Spectral Estimation Quantitative Results ................ 93 

Table 8-2 Color Reproduction Quantitative Results Comparison ............................... 113 

  



 

[14] 

 

  



 

[15] 

 

1 Introduction 

Over the last two decades, the field of optical imaging has developed very rapidly 

providing color imaging (CI) systems with very high resolution that nowadays allow 3D 

imaging as well as video capture with a very high frame rate. These systems try to emulate 

human vision in order to reproduce a result (image) that resembles the actual scene as it was 

perceived by a human eye. Usually these systems produce three-dimensional data (RGB is 

more commonly used) where each of the three dimensions represents the intensity and 

chrominance of light.  

Although CI systems can provide an accurate representation of the scene at hand, there 

is a great deal of information that cannot be perceived with these systems or the “naked” eye; 

information that may dwell within the visible spectrum or beyond it, i.e. UV or Infrared 

regions of the EM-Spectrum.  In order to acquire this “hidden” information, spectral imaging 

systems are used.  

Spectral Imaging (SI) is the application of reflectance spectroscopy to every pixel in a 

spatial image. Every spatial image captured represents a different wavelength within the 

electromagnetic spectrum and each pixel represents the spectral power distribution of the 

scene at that point. The stack of images created from this system is the so called spectral cube 

(Figure 1-1), and the data is represented in multidimensional, spanning spatial and spectral 

dimensions (x, y, λ).  

 

Figure 1-1 Spectral Cube Graphical Representation 

 

Spectroscopy can be used to detect individual absorption features due to specific 

chemical bonds in a solid, liquid, or gas. Solids can be either crystalline (i.e. minerals) or 
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amorphous (such as glass). Every material is formed by chemical bonds and has the potential 

for detection with spectroscopy. Actual detection is dependent on the spectral coverage, 

spectral and spatial resolution, and signal-to-noise of the SI system, the abundance of the 

material and the strength of absorption features for that material in the wavelength region 

measured.  

SI systems are widely used nowadays in numerous fields such as medicine, astronomy, 

industry, military etc. and, due to the continuous need to improve the preexisting techniques 

and methods, many innovations and advances were developed.  

The information provided by these systems, which is usually not discernible to the 

human eye, allows useful facts and phenomena to be revealed. Unfortunately, SI systems are 

expensive and sizable, which makes them inaccessible for many applications, and the 

acquisition and computational time needed is very high, which prevents the system from 

observing any dynamically developing phenomena. Moreover, high fidelity color can be 

reproduced with post-processing using the spectral cube acquired which effectively does not 

allow real time color imaging for an SI system.  

To address these limitations, real-time snapshot spectral imaging systems need to be 

developed that allow simultaneous multispectral imaging and have lower cost and size. We 

have developed and propose a novel real-time multispectral imaging system that can 

simultaneously acquire six spectral bands and provide spectral information in any desired 

wavelength within the visible spectrum, as well as reproduce high fidelity color in real-time. 

Within this Master Thesis, basic concepts about color and spectral imaging will be 

discussed as well as the development and validation of the proposed real-time spectral 

imager. 

1.1 Electromagnetic Radiation 

Electromagnetic radiation (EM radiation or EMR) is one of the fundamental 

phenomena of electromagnetism, behaving as waves and also as photon particles propagating 

through space, carrying radiant energy (Figure 1-2). In a vacuum, it propagates at a 

characteristic speed, the speed of light, normally in straight lines. EMR is emitted and 

absorbed by charged particles. As an electromagnetic wave, it has both electric and magnetic 

field components, which oscillate in a fixed relationship to one another, perpendicular to each 

other and perpendicular to the direction of energy and wave propagation. 
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Figure 1-2 The electromagnetic waves that compose electromagnetic radiation can be imagined as a self-

propagating transverse oscillating wave of electric and magnetic fields 

The modern theory that explains the nature of light includes the notion of wave–

particle duality (Figure 1-3). More generally, the theory states that everything has both a 

particle nature and a wave nature, and various experiments can be done to bring out one or the 

other. The particle nature is more easily discerned if an object has a large mass, and it was not 

until a bold proposition by Louis de Broglie in 1924 that the scientific community realized 

that electrons also exhibited wave–particle duality.  

 

 

Figure 1-3 Artist’s impression, inspired by the work of the artist Maurits Cornelis Escher, of the continuous 

morphing between particle- and wave-like behaviour of light. Credit: Nicolas Brunner and Jamie 

Simmonds 

EMR is characterized by the frequency or wavelength of its wave. The electromagnetic 

spectrum, in order of increasing frequency and decreasing wavelength, consists of radio 

waves, microwaves, infrared radiation, visible light, ultraviolet radiation, X-rays and gamma 

rays (Figure 1-4). The eyes of various organisms sense a somewhat variable but relatively 

small range of frequencies of EMR called the visible spectrum or light. Higher frequencies 

correspond to proportionately more energy carried by each photon; for instance, a single 

gamma ray photon carries far more energy than a single photon of visible light. 

Electromagnetic radiation is associated with EM fields that are free to propagate 

themselves without the continuing influence of the moving charges that produced them, 

because they have achieved sufficient distance from those charges. Thus, EMR is sometimes 
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referred to as the far field. In this language, the near field refers to EM fields near the charges 

and current that directly produced them, as for example with simple magnets and static 

electricity phenomena. In EMR, the magnetic and electric fields are each induced by changes 

in the other type of field, thus propagating itself as a wave. This close relationship assures that 

both types of fields in EMR stand in phase and in a fixed ratio of intensity to each other, with 

maxima and nodes in each found at the same places in space. 

Electric and magnetic fields obey the properties of superposition, so fields due to 

particular particles or time-varying electric or magnetic fields contribute to the fields due to 

other causes. (As these fields are vector fields, all magnetic and electric field vectors add 

together according to vector addition.) These properties cause various phenomena including 

refraction and diffraction. For instance, a travelling EM wave incident on an atomic structure 

induces oscillation in the atoms, thereby causing them to emit their own EM waves. These 

emissions then alter the impinging wave through interference. 

 

Figure 1-4 Electromagnetic spectrum with visible light highlighted 

EMR carries energy—sometimes called radiant energy—through space continuously 

away from the source (this is not true of the near-field part of the EM field). EMR also carries 

both momentum and angular momentum. These properties may all be imparted to matter with 

which it interacts. EMR is produced from other types of energy when created, and it is 

converted to other types of energy when it is destroyed. The photon is the quantum of the 

electromagnetic interaction, and is the basic "unit" or constituent of all forms of EMR. The 

quantum nature of light becomes more apparent at high frequencies (thus high photon 

energy). Such photons behave more like particles than lower-frequency photons do. 

In classical physics, EMR is considered to be produced when charged particles are 

accelerated by forces acting on them. Electrons are responsible for emission of most EMR 

because they have low mass, and therefore are easily accelerated by a variety of mechanisms. 

Rapidly moving electrons are most sharply accelerated when they encounter a region of force, 

so they are responsible for producing much of the highest frequency electromagnetic radiation 
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observed in nature. Quantum processes can also produce EMR, such as when atomic nuclei 

undergo gamma decay, and processes such as neutral pion decay. 

The effects of EMR upon biological systems (and also to many other chemical systems, 

under standard conditions) depends both upon the radiation's power and frequency. For lower 

frequencies of EMR up to those of visible light (i.e., radio, microwave, infrared), the damage 

done to cells and also to many ordinary materials under such conditions is determined mainly 

by heating effects, and thus by the radiation power. By contrast, for higher frequency 

radiations at ultraviolet frequencies and above (i.e., X-rays and gamma rays) the damage to 

chemical materials and living cells by EMR is far larger than that done by simple heating, due 

to the ability of single photons in such high frequency EMR to damage individual molecules 

chemically. 

1.2 Color 

Color is the characterization of the human visual perception property that can be 

identified as red, blue, green or other. It derives from the light spectrum in the range of 

400nm to 700nm. Eye Light receptors have a certain spectral sensitivity, which combined 

with incoming light produces the color perception as we know it. In our effort to imprint daily 

scenes and objects, optical instruments, called (color) cameras, which record images are used. 

Color cameras are three-band real time devices that emulate human vision. Thus, the three 

channels used are the primary channels that the human eye can perceive (three types of cone-

receptors): Red, Green, and Blue (RGB). By defining a color space, colors can be identified 

numerically by their coordinates. 

1.3 Color Spaces 

Most color spaces are defined [1] for practical use in representation and computation 

and they do not necessarily relate to the way that humans perceive color.  Device dependent 

color spaces can be categorized as: Additive (RGB, HSV, and HLS) and Subtractive (CMY, 

CMYK or spaces with five or more channels).  

1.3.1 Red-Green-Blue (RGB) Color Space 

RGB color space is represented by a unity cube (Figure 1-5) and uses additive color 

mixing, which means that the resulting color is a product of combination of light of two or 

more channels. So, its color is represented as a triplet (R, G, and B) and all colors are located 

within the cube.  
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Figure 1-5 RGB Color Space 

There are other color spaces based on the RGB [2]. Some are: sRGB, ROMM RGB, 

Adobe RGB 98, Apple RGB, NTSC RGB, and EBU RGB. They are used as interchange 

spaces to communicate color or as working spaces in imaging applications. The difference 

between them can be: on the type (rendered or un-rendered), on the Encoding (8-bit, 10-bit, 

etc.), on the Gamut and White Point. 

1.3.2 Hue-Saturation-Value (HSV) Space 

HSV, also known as HSB (Hue, Saturation, and Brightness) has a hexagon shape 

(Figure 1-6). It is easier to comprehend since color is defined in terms of hue and saturation 

instead of additive or subtractive color components. Hue represents the angle of the vertical 

axes. Saturation indicates the strength of the color and it increases by moving from the center 

to edge of the hexagon. Value indicates the darkness of the color. At the top of the hexagon 

colors have maximum intensity. Finally, HSV is a transformation of the RGB color space. 

 

Figure 1-6 HSV Color Space 
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1.3.3 Hue-Lightness-Saturation (HLS) Space 

HLS, also known as HSI (Hue, Saturation, and Intensity) has a double cone shape 

(Figure 1-7) and is similar to the HSV color space.  Hue and Saturation are defined as with 

the HSV model while Lightness (vertical axes) indicates the darkness of color.  

 

Figure 1-7 HLS Color Space 

 

1.3.4 Cyan-Magenta-Yellow (CMY) Color Space 

CMY, as RGB, defines colors within a unity cube (Figure 1-8) by the subtractive color-

mixing model. Using the Subtractive color model, the color that a surface displays depends 

not on the parts that were absorbed but on the parts of the visible spectrum that were not and 

therefore remained visible. It can be inferred that the CMY system is a complement of the 

RGB. 

 

Figure 1-8 CMY Color Space 
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1.4 CIE Color Spaces 

CIE Color Spaces are device-independent and are used to provide a quantitative 

measure for all colors.  

1.4.1.1 CIEXYZ 

CIEXYZ color space was one of the first attempts to emulate human color perception. 

The chromaticity coordinates are derived from the normalization of the tristimulus values 

XYZ.  

1.4.1.2 CIELUV 

CIELUV color space is a simple transformation of the CIE XYZ 1931 Color Space that 

provides perceptual uniformity.  

1.4.1.3 CIELAB 

CIELAB is a nonlinear transformation of the CIE XYZ 1931 Color Space. It is 

produced by plotting, along three axes at right angles to one another, the quantities L*, a* and 

b*.  It describes all the colors visible to the human eye and was created to serve as a device-

independent model to be used as a reference. 

 

Figure 1-9 CIELAB Space 

In Figure 1-9, the central vertical axis represents lightness (signified as L*) whose 

values run from 0 (black) to 100 (white). This scale is closely related to Munsell's value axis 

except that the value of each step is much greater. This is the same lightness valuation used in 

CIELUV. 

The color axes are based on the fact that a color cannot be both red and green, or both 

blue and yellow, as these colors oppose each other. On each axis the values run from positive 
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to negative. On the a-a' axis, positive values indicate amounts of red while negative values 

indicate amounts of green. On the b-b' axis, yellow is positive and blue is negative. For both 

axes, zero is neutral gray. 

Therefore, values are only needed for two color axes and for the lightness or grayscale 

axis (L*), which is separate (unlike in RGB, CMY or XYZ where lightness depends on 

relative amounts of the three color channels). 

1.4.1.4 CIE Color Difference Formulas 

1.4.1.4.1 CIE 1976(L*a*b*) color difference or CIELAB Color difference 
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∗ )2 + (𝑎2
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1.4.1.4.2 CIE94 color difference 
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𝛥𝑆𝐿 = 1, 𝑆𝐶 = 1 + 𝐾1𝐶1

∗, 𝑆𝐻 = 1 + 𝐾2𝐶1
∗  

𝛥𝐶𝑎𝑏
∗ = 𝐶1

∗ − 𝐶2
∗ 𝑘𝐿 = 1,𝐾1 = 0.045 , 𝐾2 = 0.015 

  

 𝛥𝐻𝑎𝑏
∗  is the Hue difference 

 𝛥𝐶𝑎𝑏
∗  is the chromasity difference 

When evaluating Color difference using CIELAB, numerically if the result of 𝛥𝛦𝑎𝑏
∗  is 

lower than 5, then high fidelity color reproduction can be performed with no significant 

perceptual differences from the origin. Two Images with Color Difference 𝛥𝛦𝑎𝑏
∗  below 2.3 or 

less are indistinguishable from one another.   

CIE94 is another color difference model that under reference conditions [3] equals 

ΔE94*. In any other case, ΔE94* becomes smaller than ΔΕab*. 

A graphical analysis of the Color Difference [4] is presented in Figure 1-10. “Vector 

Plots” are used to represent the difference between a*b* and C* L*. The tail represents the 

measured values and the head the calculated values. The length of each vector represents the 

magnitude of the chromatic error.  Depending on the direction of the vector, Chroma or 

lightness error is indicated (as seen in the figure). Finally, for all the data measured, a 
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statistical analysis is performed to show the magnitude and the distribution of the color 

difference in both ΔΕab* and ΔE94*. 

 

Figure 1-10 DE Graphical and Quantitative Analysis Example 

1.5 Metamerism 

Human vision, as well as any RGB Imaging system, has some limitations due to 

phenomena like metamerism. Metamerism [5] is a phenomenon in which two colors match 

one another, but they have different spectral signature. The amount of difference between the 

Spectral Signatures of the object determines the degree of metamerism [6]. There are many 

factors that affect the degree of metamerism such as: 

 Illuminant 

 Observer 

 Geometry 

 Device 

Illuminant metamerism occurs when the color of two spectrally matched samples - 

that are viewed under illuminants with different Spectral Power Distribution - is perceived 

differently by the observer. Observer metamerism [6] describes the different perception of 

color between two individuals (inter-observer metamerism) or one individual himself (intra-

observer metamerism).  In order to quantify the intra-observer metamerism, a single 
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individual repeated an experiment 20 times. Geometry metamerism mostly affects samples 

that have different surface characteristics e.g. matt or gloss. Samples viewed under different 

geometry can approximately match if their surface characteristics are the same, whereas with 

different characteristics the color perceived can be quite different. Lastly, device or cross-

media metamerism describes the different color perception between visualization systems. 

For example, the eye has different spectral sensitivity than a camera [8], thus different 

metameric matches can occur from the same samples. Accordingly, using two instruments 

(cameras, spectrophotometers etc.) with different spectral sensitivities [9] can result in the 

same issue.   

Metamerism is a phenomenon with great significance since it can affect our ability to 

capture objects-scenes-samples with high color accuracy that can match the original one. 

Thus, many methods have been proposed to overcome this phenomenon. Acquiring the 

Spectral Power Distribution –SPD - of an object (e.g. reflectance spectra) can result in high 

accuracy color reproduction - independent of metamerism. A well-known method to acquire 

spectral reflectance is the use of Spectral Imaging Devices.  

1.6 Spectral and Color Imaging 

Spectral Imaging (SI) devices collect and process information across the 

electromagnetic spectrum at every location in an image plane. In general, the number of 

channels in SI exceeds the number of channels of an RGB system.  

Humans build sensors and processing systems to provide the same type of capability 

for application in agriculture, mineralogy, physics, and surveillance and other fields of 

science. Spectral sensors collect information as a set of 'images'. Each image represents a 

range of the electromagnetic spectrum and is also known as a spectral band. Spectral sensors 

look at objects using a vast portion of the electromagnetic spectrum. Certain objects leave 

unique 'fingerprints' across the electromagnetic spectrum. These 'fingerprints' are known as 

spectral signatures and enable identification of the materials that make up a scanned object. 

For example, having the spectral signature for oil helps mineralogists find new oil fields. 

The precision of these sensors is typically measured in spectral resolution, which is the 

width of each band of the spectrum that is captured. If the scanner picks up on a large number 

of fairly small wavelengths, it is possible to identify objects even if said objects are only 

captured in a handful of pixels. However, spatial resolution is as important a factor as spectral 

resolution is. If the pixels are too large, then multiple objects are captured in the same pixel 

and become difficult to identify. If the pixels are too small, then the energy captured by each 

sensor-cell is low, and the decreased signal-to-noise ratio reduces the reliability of measured 

features. 
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1.6.1 Color vs. Spectral Imaging  

As aforementioned, color imaging devices are subjectable to the phenomenon of 

metamerism while spectral imaging devices can help overcome it. In various studies [10]-[11] 

the two methods are compared in order to specifically answer if spectral imaging ensures 

higher color accuracy independent of illumination, observer and geometric conditions. 

Ideally, in order to accurately reproduce color from spectral data [5], spectral data is needed 

from 380nm to 780nm with 5nm integral along with the spectral sensitivity of the observer 

and the SPD of the wanted illuminant. In case this data is available in higher integral (e.g. 10 

or 20nm) or its range is smaller than indicated (e.g. 420 – 700nm), interpolation or 

extrapolation of the data is suggested to meet the aforementioned requirements. This means 

that there is a need of a different narrow band filter for every 5 nm – Hyperspectral Imaging.  

Other studies indicate that an optimum-minimum number of filters can be selected for 

accurate color reproduction [12]-[19] –Multispectral Imaging. The filters used can be readily-

available filters or Tunable Filters [20] such as Liquid Crystal Tunable Filters (LCTF) and 

Acousto-Optical Tunable Filter (AOTF). These systems reproduce color of higher quality and 

accuracy than common RGB Imaging systems and with a lower degree of metamerism.  

Moreover, in order to achieve high-fidelity color reproduction, depending on the 

reproduction medium, the data acquired must be accompanied by information regarding the 

illumination of the scene, spectral sensitivity of the camera used and imaging conditions.   

1.6.2 Multispectral Imaging and Color 

Most Multispectral Imaging systems usually employ a monochrome camera and 

interchangeable filters, usually less than 10.  Another approach to Multispectral Imaging 

systems is the use of one [17], two [21][22] or more [19] RGB or CMYK Cameras [23], or a 

single stereo Camera [24][25], along with readily available Triple or Quadruple band pass 

filters. The filters modify the spectral sensitivities of the camera and are optimally selected in 

order to cover the largest possible part of the visible spectrum. The two cameras can be set up 

perpendicular to one another and with the use of a beam splitter or a dichroic mirror the image 

is projected to both cameras. Alternatively, a stereoscopic configuration with two cameras or 

a single 3D can be used, where in both cases 3D depth information is also available whilst 

stereo matching algorithms are employed to ensure that there is no spatial displacement 

between the two cameras-images. In the case where more than two RGB cameras are used, a 

side-by-side configuration is applied and the final image is evaluated by superimposing the 

images from each camera source. That configuration also allows real-time multispectral color 

video capture by employing GPU processing.  

 Usually, the bands acquired are wider and limited in comparison to a Hyperspectral 

Imaging System.  Thus, Spectral Estimation can be performed to reduce the system integral, 

in which case priori data is needed for an accurate estimation.  
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1.6.3 Single Exposure or Instantaneous Spectral Imagers 

In order to record spectral images, tunable filtered-based Spectral Imaging Systems are 

used. Those systems record spectral images in a time-sequentially manner and obtain the 

spectra from post hoc assembly of the time-sequential data. This reveals a major disadvantage 

of these systems. When we have phenomena that change on a time scale that is shorter than 

the duration required for recording the spectral cube, the SI systems described cannot perform 

accurately and give accurate Spectral data. Furthermore, the scene recorded by SI systems 

must be static otherwise problems will be created in the co-registration of the Spectral 

Images, which is needed in order to provide accurate spectra.  

There are numerous applications (i.e. biomedical or others) that require Spectral 

Imaging and analysis of transient moving scenes. This is why “Single shot” or 

“Instantaneous” spectral imagers have been created [26]. SE systems have many advantages 

over SI systems such as: fast acquisition of accurately registered images, high device 

robustness and reliability, low cost etc. However, there are many trade-offs in order to 

achieve all of the above.  Due to current technological limitations there is a trade-off between 

spatial and spectral resolution. That means that SE imagers allow us to capture a small 

number of spectral images. So, when we have stationary and invariant scenes we use the 

Spectral Imaging systems described above since the spatial and spectral resolutions are 

superior to the ones on SE. However, when the acquisition of a small number of 

predetermined bands is demanded, SE systems are preferred. 

1.6.4 Color Reproduction Media 

In many cases, the quality of the reproduced color is affected by the reproduction 

media employed i.e. screen, printers, etc.  

For this reason, spectral printing models were created that employ more than just the 

colors used by a commercial printer, in order to have more degrees of freedom and reproduce 

color with colorimetric and spectral accuracy. Multi-ink printer models employ various 

spectral separation algorithms [16][27][28] so as to create the least metameric reproduction 

relative to the original object.  

Another reproduction media that could achieve high colorimetric and spectral accuracy 

is the screen. As with the printer aspect, more than 3 colors are introduced to achieve that. 

Six-Color gamut display was introduced [14] which, along with a 16-band multispectral 

system, could achieve natural color reproduction with high-fidelity. 

1.6.5 Spectral Imaging and Applications 

Color and Spectral Imaging nowadays is employed in a huge variety of application. As 

aforementioned, Color Imaging systems have some limitations-constraints that can be 
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surpassed using Spectral Imaging. These applications include medical devices (such as 

endoscopes, microscopes etc.), telemedicine, image-art archiving, high resolution printing and 

many more.  

In art-preservation and image archiving, the use of Spectral Imaging systems, besides 

achieving better color accuracy also provide information about the object’s physical 

properties.  In general, color imaging systems were used to capture and store art painting and 

images but those came along with the limitations of those systems regarding the illumination, 

reproduction medium, viewing conditions, etc. thus making it difficult for an accurate light or 

hard copy of the object in question. Various methods were proposed, [29][30][31] where 

spectral imaging systems were designed to achieve high accuracy image archives. In most 

cases, a monochrome camera along with a Liquid Crystal Tunable Filters (LCTF) or an RGB 

commercial camera coupled with interference filters was used. Using a LCTF the system can 

acquire spectral images with a high resolution of 5nm, but that accuracy might be redundant 

since most of these application are acquired in the visible region of the spectrum, where sharp 

transitions from high to low reflectance (and vice-versa) are very rare, thus reducing the 

accuracy of the image acquisition may not result in loss of accuracy.  The loss of 

measurement can be substituted using spectral estimation algorithms or interpolation of the 

data acquired. That can also resolve in a high-accuracy system with lower cost and hardware 

complexity. Finally, another approach to image archiving is the fusion of high-resolution 

lightness image with a low-spatial resolution multi-band image to generate a high-spatial 

resolution spectral image.  

High-accuracy color reproduction is also very important in the field of medicine. For 

example, electronic endoscopes [32] were developed that used a color CCD camera with 

RGB broad filters, along with spectral estimation and color reproduction, or Fujinon 

intelligent chromoendoscopy (FICE) [33] filters. Specifically, Fujinon performs spectral 

estimation and then assigns spectral images to RGB in order to generate a final F.I.C.E. 

Processed Image in order to emphasize color differences and detect abnormal parts. The 

choice of filters varies, depending on the disease that needs to be detected.  

Another aspect of medical applications is telemedicine, where the accuracy of the 

reproduced image at the observation is crucial to be as high as possible for an accurate 

medical diagnosis. So a Multispectral System is proposed [34], where the multispectral data 

are acquired along with the illumination spectrum, which afterwards is removed from the 

acquired so to have independent from illumination spectral reflectance. Finally, in order to 

have an accurate color reproduction of the object at the observation site, the illumination of 

that site is needed along with the object’s spectra, since human vision changes its spectral 

sensitivity according to the illumination environment. Also, sometimes Color Imaging might 

not be sufficient for the diagnosis of certain diseases. For example in dermatology, some skin 

diseases cannot be detected-rendered accurately by using a color imaging system, while a 
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multispectral imaging system can provide accurate color reproduction along with other useful 

spectral information [35]. 

1.7 Spectral Estimation 

Spectral Estimation is broadly used in order to project low dimensionality data, such as 

RGB or a small number of spectral bands, to high dimensionality data, such as a complete 

spectral cube. Over the years many method have been proposed that result in high accuracy 

estimation such as Wiener estimation, R matrix, Linear Projection, interpolation etc. 

One of the broadly used, linear condition method, is Wiener Estimation [36]-[39] 

which in most cases requires a priori knowledge of a reference sample (spectral and/or RGB 

data), such as Gretag Macbeth® Color Checker CC. In the work of Stigell et al [36], spectral 

estimation was performed using the RGB data of a color camera along with a priori 

knowledge. After evaluating the estimation matrix using the aforementioned data, the spectral 

reflectance of the sample in question can be estimated.  

Another variation of Wiener Estimation was an edge preserving spatio-spectral 

estimation derived by Bayesian inference introduced by Shen et al. [37]. In this case, a six-

channel camera was used and the noise of the system was also taken into account. That meant 

that the estimation matrix also contained the noise covariance matrix, which as stated, is 

updated after Wiener denoising, and propagated to the spectral reconstruction filter achieving 

the combination of denoising and spectral reconstruction into a single operator. The use of 

that filter minimized the RMS error of the spectral reconstruction in comparison to standard 

Wiener estimation methods.  

A different approach was introduced by Shen et al [38], where an adaptive Wiener 

estimation was performed. The training samples were chosen by adaptive selection on how 

similar these were to the candidate sample. The estimation matrix for this method must be 

calculated for every pixel which increased the computational time in contrast with the 

conventional Wiener estimation. It was inferred that if the number of channels used for input 

was not large (6-7 bands) then the results were better than standard Wiener estimation and in 

case that more channel were used (11+) the results were slightly better or close to the standard 

Wiener Estimation.  

By dividing a three channel image into several blocks, Murakami et al [39] proposed a 

method where Spectral Estimation was performed for each block using different estimation 

matrix for each one. The use of different estimation matrices for each block made the method 

spatial-adaptive since each estimation matrix was calculated from data derived from multiple 

points in the scene acquired. The computational time for this process was higher than the 

traditional Wiener Estimation but no so much. This piecewise approach of Wiener Estimation 
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can provide accurate results with the use of three channels and with reasonable computational 

cost.  

On the basis that no prior knowledge is needed, the work of Shimano [40] proposed a 

new model to estimate reflectance spectra. In this case a multiband system was used, whose 

channel responses and channel noise variance were know. Those in conjunction with a 

Wiener filter allow the estimation of reflectance spectra without any prior knowledge of the 

spectral information of the object in question.  

When non-linearity is introduced the results of the estimation can be degraded. A 

solution to this is the study of Shen et al [41] where the reflectance spectra are estimated from 

multichannel camera responses based on high-order polynomials and partial least squares. 

That solves the non-linearity and compared to other methods, both colorimetric and 

spectrophotometric, according to the papers, it provides better results than Wiener and 

polynomial regression solved by ordinary least squares. 

Other methods – algorithms can be employed in order to accurate estimate reflectance 

spectra. Studies, such as [42] by Mansouri et al, introduced linear projection algorithms like 

PCA, Wavelets and Fourier analysis. These algorithms calculate the basis functions of a linear 

model of reflectance spectra using the aforementioned a priori data. An improvement of the 

previous work was adaptive PCA [43] from Mansouri et al. This variation of PCA derives 

basis functions like PCA but it employed an algorithm that selected the estimated reflectance 

spectra for each sample, according to their relativity with the training set, just like the 

aforementioned adaptive Wiener algorithm. In the same premise, Oh-Seol Kwon et al [44] 

proposed an algorithm that uses aPCA in order to reduce the estimation error of the surface 

spectral reflectance. In this case the adaptive part is performed by dividing the input training 

data into populations according to color using Lloyd algorithm. With this method, it is 

implied that the variance of the estimation error is reduced when using 3-Band RGB cameras 

as input to estimate reflectance spectra.  

Another improvement of classic PCA was presented by Harifi et al [45], where six 

basis functions – eigenvectors are used, instead of three that are normally used in PCA with 

RGB input. For six eigenvectors to be produced, a non-linear regression method was 

employed in order to estimate the color coordinates of the sample under a different light 

source. The light source estimated was A with 1964 standard observer from its color 

specification under D65 illuminant with 1964 standard observer. By obtaining two sets of 

tristimulus values (one with D65 and one with A illuminant) six basis functions could be 

produced. The performance of the proposed method showed good improvement over the 

standard PCA approach.  

In general, some linear basis projection algorithms produce basis functions that may 

contain negative values. In order to obtain basis with non-negative values there are non-
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negative matrix factorization methods.  In the work of S. H. Amirshahi [46]  an adaptive 

version of this kind was presented. The non-negative factorization method was applied in 

order to determine positive bases of spectral reflectances. The number of basis functions can 

vary from 3 to 5 in this case. The adaptive part is like the aforementioned adaptive PCA and 

Wiener where the training set of the algorithm was calculated in order to match the sample in 

question and thus providing a training set closer to it. From the results provided, the proposed 

method showed better results in both colorimetric and spectrophotometric point of views in 

comparison to standard approaches.   

One more adaptive method was performed from Babei et al [47] where a weighted 

pseudo-inverse spectral reconstruction method was employed. According to this study the 

normality of the dataset used as training can affect the outcome of the estimation as well as 

the generality and similarity of it to the specimen in question. The results provided from this 

method were approximately the same with other methods like Wiener concerning 

colorimetrical and spectral performances.   

Another interesting study from Zhao and Berns [48]was the use of the matrix R which 

was based on the Wyszecki hypothesis that any color stimulus can be decomposed into two 

spectra, a “fundamental stimulus” and a “metameric black” (R-theory). In this study an RGB 

digital camera was used coupled with two filters. With the use of the camera signals produces 

from the two filters (6 bands-values), the tristimulus values were calculated and from them 

the Fundamental stimulus. Also the spectral reflectance factor is calculated using the 

Metameric Black of the specimen as well. With the combination of metameric black and 

fundamental stimulus the spectral reflectances of the specimen can be estimated with 

accuracy. The advantage of this method is that it can estimate color and spectrum with high 

accuracy.  

Linear and least-squares methods are studied in most of the aforementioned studies. 

However, there are also smoothness methods that try to maximize the smoothness of the 

resulting estimate by assuming that the results have a minimal squared first or second 

derivative. In the study of Connah et al [49] a comparison of these three methods was 

performed in order to calculate which method produced the best results. According to the 

outcome of this study, smoothness methods are found to provide the best performance. An 

important fact is that smoothness methods don’t need explicit a priori knowledge in contrast 

with least-squares and linear methods that depend on the training set provided.  

The combination of different techniques for spectral estimation was also studied [50]. 

In that study, Wiener, Pseudo-inverse and finite-dimensional modeling methods are 

combined. The final result is the combination of reflectance estimated from each of the 

aforementioned methods, weighted properly to minimize colorimetric and spectral errors.  
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Another approach to the spectral estimation procedure is the use of filters. In the work 

of Imai et al [51] a trichromatic digital camera combined with absorption filters was used. 

Moreover, a new empirical space was introduced in which PCA is performed to produce 

eigenvectors (two more spaces are studied in comparison). The eigenvectors produced 

combined with the trichromatic signals, with or without filtering, produced the final 

estimation. From the three aforementioned spaces the new empirical space provided the best 

colorimetric and spectral performance. On the concept of filters, Eva M. Valero et al [52] 

proposed the use of color filters is proposed (magenta, orange etc.), with the approach of 

direct-mapping instead of linear transformation etc. It is also noted that there was a difference 

between rural and urban environments and spectral estimation in each case demands a 

different training set.  

Instead of color filters, a trichromatic digital camera combined with either absorption 

filters or multi-illumination can be used [53]. In this study the trichromatic camera was 

preferred rather than the monochrome camera with interference filters due to cost and 

complexity. Moreover, spectral estimation was performed with PCA, using either simulated 

camera signals or measured digital counts, in order to check the performance in both cases, 

which resulted that the estimation depends on the samples used for PCA. Also, the various 

combinations of absorption filters did not affect the performance of the spectral 

reconstruction.  

A work, towards the goal of measuring the natural illuminant of skylight was 

performed from Lopez-Alvarez et al [54] where a liquid-crystal tunable filter (LCTF) was 

used attached to a monochrome CCD camera. Each band on the LCTF was narrow enough 

(FWHM 7-15nm) to assume that the radiance information provided when a filter mode is 

tuned corresponds to a central wavelength only. In association with a previous work [55], 

where a study was made in order to choose the best method, sensors and linear bases so the 

SPD of the skylight can be acquired accurately. An optimum number of 5 sensors were 

selected by using seven transmittance modes on the LCTF, and from the data produced, 

spectral estimation was performed.  

An important factor for the accuracy of spectral estimation, regardless of the method 

used, is the imaging parameters like noise, spectral sensitivity and the number of the channels, 

illumination etc.  Connah et al [56] studied how these parameters affect the results of image 

acquisition and in turn spectral estimation and created a mathematical model that proved that 

the increase of color channels was not by itself sufficient for better accuracy. Moreover, 

another parameter that can contribute to the accuracy of the system is the use of filters and 

especially their width. Imai et al [57] focused on whether narrow or wide band filters must be 

employed for spectral estimation. Tunable filters which were either narrow or broad band 

were used and a comparative result was produced. It was pointed out that the use of multi-

channel systems improves the accuracy of spectral estimation and thus the color reproduction 
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since the phenomenon of metamerism is averted. This study also resulted that narrow and 

wide–band filters perform similarly, despite the fact that theoretically narrow-band filters give 

better results and it was remarked that this could be an anomaly and will be further studied.  

As aforementioned, illumination is also an important factor in color and spectra 

reproduction as well as in multispectral imaging in general. For instance, in the work of 

Hardeberg et al [58] an optimum multispectral system was designed by properly selecting the 

color filters used (sensitivity and number), the spectral properties of the camera as well as the 

illuminant according to the statistical properties of the object in question. This multispectral 

imaging system was designed to obtain multispectral images and estimate the spectra of the 

object in order to reproduce color that was independent of illumination, thus overcoming the 

problem of metamerism that conventional cameras have. 

 In some cases though, the direction of the light source and the angle of the sample in 

association with the illuminant is of interest, especially if the sample is a non-lambertian 

surface. Plata et al [59] offered a solution to this problem. If the direction of the light changes 

the RGB values can change from pixel to pixel. That was why in that case albedo values were 

used instead of RGB. (Albedo or reflection coefficient, derived from Latin albedo 

“whiteness" (or reflected sunlight), in turn from albus "white", is the reflectivity or reflecting 

power of a surface. It is defined as the ratio of reflected radiation from the surface to incident 

radiation upon it). From the RGB values captured by the camera, the albedo values are 

calculated and then a linear pseudo-inverse method was employed to estimate the spectra of 

all the pixel of the image using the albedo values as input. With that way, any highlights or 

shadows that could be created from the direction of light, and provide false results, are 

avoided.  

Multispectral imaging systems can be also created by utilizing illumination. Chi et al 

[60] presented a simple method for multi-spectra imaging by using active illumination. A 

large set of theatrical filters are used and with the use of an algorithm, a combination of them 

was created in order to match the added illumination and the camera spectral characteristics. 

Moreover, the effect of ambient lighting can be reduced by introducing a combination of 

filters in front of the light source that work in conjunction with the camera’s RGB filter set. 

The above are effective in spectral imaging since unknown or additive illumination on the 

sample can create difficulties on acquiring accurate reflectance spectra. Park et al [61] 

proposed another work that utilized illumination to create a multispectral imaging system. 

Multiplexed illumination created by different LEDs and a RGB camera were used. By testing 

a combination of LEDs, several multiplexed illumination sets were created. So, rather than 

changing the spectral sensitivity of the camera (time consuming process) the source’s spectral 

sensitivity is changed rapidly and by having for example N spectrally distinct illuminations 

and M camera channels the number of effective channels are M*N. Thus, using the 

aforementioned system spectral information can be calculated by using the multiplexed 

http://en.wikipedia.org/wiki/Latin
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illumination in synchronization with the RGB camera and acquiring images for each 

illumination. Moreover, due to the fact that this process is not time-consuming a real time 

multispectral video imager has been created that acquires multispectral videos at 30fps using 

a high speed camera of 120fps.  

An also interesting study was that of Nieves et al [62] where the SPD of fluorescent 

lights was recovered with the use of various algorithms like PCA, Direct pseudo-inverse 

method, independent Component Analysis (ICA) etc. It was found that the SPD of fluorescent 

illuminant could be accurately, both spectral and colorimetric, recovered and that by 

increasing the number of sensors, the better computational results are provided whatever the 

algorithm used and without needing a priori knowledge of the systems camera sensitivities. 

Spectral Estimation can be used in many applications that need spectral reflectance 

estimated fast, with low cost and good accuracy. For example, Lee et al [63] used spectral 

estimation, by employing Fourier series and Least Square Estimation algorithm, to 

approximate two spectral radiance factors needed in order to estimate the color appearance of 

fluorescent materials that can vary under different illuminations.   

An area of high interest for spectral estimation is that of recovering reflectance spectra 

for digital archiving of art paintings. This is very important since by obtaining the spectra of 

an art painting, the color of it can be accurately reproduced under any illumination conditions 

since color can be estimated accurately through the spectrum of the object. In the work of 

Kaneishi et al [31] spectral estimation was performed with the use of Wiener Estimation. The 

imaging system used in this case consisted of two CCD cameras and an optimum choice of 

filters (three to six) for multichannel acquisition. On the concept of art, another application 

was the identification of pigments used on paintings [64]. From the images taken by a 

Multispectral system, the reflectance spectra of various parts of the paintings were calculated 

and then compared with a database containing Japanese pigments reflectance spectra.  

Spectral Estimation can be also applied in the field of medical imaging. For example, a 

Spectrum Endoscope System has been created from Chen et al [65]. This system works using 

a monochrome CCD, one triple band filter (centers: 415,540,610 nm and FWFM: 20nm) and 

RGB filters. The filters were placed in front the xenon lamp in a rotating disk so that the light 

source would generate six illumination lights according to each filter. After obtaining the 

RGB and triple band values spectral estimation was performed using Wiener Estimation 

Method. Moreover, in order to accelerate the system video processing time FPGA and DSP 

were used.  
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2 Material and Methods 

In order to quantify and validate the results of this work, many quantitative measures 

were used along with various test samples, all of which are reported in this chapter. 

2.1 Measures of Spectral Similarity 

2.1.1 Root Mean Square Error (RMSE) 

In statistics, the mean square error or MSE of an estimator is one of many ways to 

quantify the difference between an estimator and the true value of the quantity being 

estimated. MSE is a risk function, corresponding to the expected value of the squared error 

loss or quadratic loss. MSE measures the average of the square of the "error." The error is the 

amount by which the estimator differs from the quantity to be estimated. The difference 

occurs because of randomness or because the estimator doesn't account for information that 

could produce a more accurate estimate. 
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Where in our study n is the number of spectral channels and x the spectral reflectance 

vector of one pixel. 𝐷𝑥𝑖
2 is the squared difference of the i-th channel values of 2 spectra. 

2.1.2 Goodness of fit (GFC) 

GFC is defined as the cosine of the angle between the recovered signal S^ and original 

signal S, thus 
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2.1.3 Spectral Angle Mapper (SAM) 

SAM is a non-parametric supervised classifier. The SAM algorithm considers every 

pixel of the spectral image as a vector, whose length corresponds to the brightness that this 

pixel has, and the direction of the vector features the spectral characteristics of the pixel. It 

can be calculated from:  

〈𝑥, 𝑦〉 = ‖𝑥‖‖𝑦‖cos(𝑥, 𝑦) → 

𝜃(𝑥, 𝑦) = 𝑆𝐴𝑀(𝑥, 𝑦) = cos−1 (
〈𝑥, 𝑦〉

‖𝑥‖‖𝑦‖
) ,   0 ≤ 𝜃 ≤

𝜋

2
 

http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Estimator
http://en.wikipedia.org/wiki/Estimator
http://en.wikipedia.org/wiki/Risk_function
http://en.wikipedia.org/wiki/Expected_value
http://en.wikipedia.org/wiki/Randomness
http://en.wikipedia.org/wiki/Omitted-variable_bias


 

[36] 

 

SAM is used for the calculation of the angle between the pixel in question and the 

reference vectors, uses only the direction of the vector and not its length. That’s why SAM is 

independent of lighting. Also, it is independent to the multiplications of a vector with a 

natural number since it only increases its length and doesn’t change the angle. So, SAM is a 

non-prosthetic distance function.  

2.1.4 Euclidean Distance 

In mathematics, the Euclidean distance or Euclidean metric is the 

"ordinary" distance between two points that one would measure with a ruler, and is given by 

the Pythagorean formula. By using this formula as distance, Euclidean space (or even 

any inner product space) becomes a metric space. The associated norm is called the Euclidean 

norm. Older literature refers to the metric as Pythagorean metric. The Euclidean 

distance between point p and q is the length of the line segment connecting them ( ). 

In Cartesian coordinates, if p = (p1, p2... pn) and q = (q1, q2... qn) are two points 

in Euclidean n-space, then the distance from p to q, or from q to p is given by: 

 

 

2.1.5 Accuracy Validation Thresholds 

In order to quantify the spectral match between the measured and estimated spectra, the 

aforementioned quantitative measures were used in combination to produce three thresholds 

that indicate the level of accuracy.  

 1st Threshold: 

o GFC >0.9900 

o Spectral Angle < 0.2 rads 

 2nd Threshold: 

o GFC >0.9950 

o Spectral  Angle < 0.1 rads 

 3rd Threshold : 

o GFC >0.9990 

o Spectral  Angle < 0.1 rads 

The level of accuracy was defined by the following: 

Estimation Measures  < 1st threshold: Satisfactory or poor 

 ≥ 1st threshold: Good estimation 

 ≥ 2nd threshold: Very good estimation  

 ≥ 3rd threshold: Excellent estimation 

http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Distance
http://en.wikipedia.org/wiki/Pythagorean_theorem
http://en.wikipedia.org/wiki/Inner_product_space
http://en.wikipedia.org/wiki/Metric_space
http://en.wikipedia.org/wiki/Norm_(mathematics)
http://en.wikipedia.org/wiki/Norm_(mathematics)#Euclidean_norm
http://en.wikipedia.org/wiki/Norm_(mathematics)#Euclidean_norm
http://en.wikipedia.org/wiki/Line_segment
http://en.wikipedia.org/wiki/Cartesian_coordinates
http://en.wikipedia.org/wiki/Euclidean_space
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2.2 Test Samples 

2.2.1 Gretag Macbeth® Color Checker® CC 

The Macbeth ColorChecker® is a unique test 

pattern scientifically designed to help determine the 

true color balance or optical density of any color 

rendition system. It is an industry standard that 

provides a non-subjective comparison with a “test 

pattern” of 24 scientifically prepared colored 

squares. Each color square represents a natural 

object—human skin, foliage, blue sky, etc, 

providing a qualitative reference to quantifiable 

values. Each color will reflect light in the same way in all parts of the visible spectrum, thus 

maintaining color consistency over different illumination options. Some applications include 

spectroscopy, machine vision, photography, graphic arts, electronic publishing, and 

television. In our study we use Macbeth ColorChecker mostly as a priori samples. From now 

on when we present plots we know that Pad 1 is the upper left pad and we increase the 

number by row. So the last pad is the Black on bottom right which is Pad 24. 

2.2.2 Gretag Macbeth® Color Checker® SG 

The ColorChecker® SG consists of 140 squares of paint applied to paper then mounted 

to a cardboard backing with a black frame around all the patches. There are 14 columns and 

10 rows of patches. All the patches have a semi-gloss surface, which is represented by the SG 

in the name (Semi-Gloss). The outer patches are a pattern of white, gray and black patches. 

 

Figure 2-2 Gretag Macbeth Color Checker SG 

There is a 6 x 4 pattern of patches which correspond in color to the original 

ColorChecker®. The spectra and colorimetry of these patches are different from the original 

ColorChecker® so it cannot be used directly as a profiling substitute for a ColorChecker® 

without first making a new reference file by measuring this area with a spectrometer. 

Figure 2-1 Gretag Macbeth Color Checker 

CC 
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Just below this 6 x 4 patch area is another row of neutral patches. When combined with 

three additional gray patches in a nearby column the result is a 15 step neutral scale. 

 

2.2.3 Wooden Pad with pigments with varnish variations 

The wooden pad includes a variation of 12 color 

pigments. For each column these pigments are overlaid 

with a different type of varnish which alters the spectral 

and colorimetric values. The values of the pad were 

measured with Hyper Spectral and Color cameras as well 

as with a spectrometer. 

Finally, is worth noting that the surface of the 

pigments on the wooden pad are not considered to be a 

lambertian surface. 

2.2.4 Roscolux Films 

Roscolux is comprised of two types of plastic. More than 65% of the line is made from 

co-extruded polycarbonate plastic. The remainder of the line is deep dyed polyester. Sheets: 

50 x 61 cm Rolls: 1.2m x 7.62m 
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How Color Filters Work 

Filters create color by subtracting certain wavelengths of color. Thus, a red filter 

absorbs blue and green, allowing only the red wavelengths to pass. The process is subtractive, 

not additive, so the light source must emit a full spectrum. 

The Rosco swatchbook provides detailed information on the spectral energy curve of 

each filter. The curve describes the wavelengths of color transmitted through each filter. For 

example, Roscolux 342 transmits approximately 40% of the violet and blue energy of the 

spectrum and 75% of the orange and red energy. It absorbs all energy in the yellow and green 

range. 

2.2.5 Variable Frequency Targets 

 The variable Frequency Targets includes: 

 5 lp/mm to 120 lp/mm or 5 lp/mm to 200 

lp/mm 

 1mm Wide Step Size 

 5 lp/mm Step Increments 

 Used to Calibrate Video Systems 

 Inspect Unknown Resolutions   

2.3 Hyper Spectral and Color Cameras 

2.3.1 MUSIS Hyper Spectral Camera 

MUSIS is a HySI system capable of real time spectral imaging (both reflectance and 

fluorescence) with high spectral resolution and high throughput ratio, D.Anglos et al [66], 

C.Balas [67], developed an all-optical imaging monochromator functioning as an 

electronically tunable narrow band pass optical filter. Displacement of the optical elements of 

the latter, results in the tuning of the imaging wavelength, which is performed with the aid of 

electromechanical manipulators controlled from the PC via microcontroller. Mu.SIS HS’ 

Figure 2-3  technical features are: 

 Spectral imaging acquisition of 5nm full width half maximum (FWHM), performing 

in 34 spectral bands of about 20nm each, in the spectral range 360nm (Ultraviolet)–

1000nm (Near Infrared).  

 Real time capturing & displaying images with an analysis of 1600x1200 pixels. 

 Minimum transmittance is 40% across its operational spectral range, which 

determines the high throughput of the developed monochromator.  
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Figure 2-3 MUSIS HS Camera 

 Tuning spectral range of the filtering system is matched with the responsivity spectral 

range of the charge coupled device (CCD) image sensor, with the capability of 

extending to longer wavelengths, up to the mid-infrared range (photocathode). 

 A megapixel CCD camera, for feeding back the monochromator signal, based on the 

IEEE-1394 data transferring protocol, capable of acquiring images at a rate of 15 

frames/s at full resolution and of more than 30 frames/sat VGA resolution. 

 A special calibration procedure [68] is executed before any imaging procedures, 

compensating for the wavelength dependence of the response of the electro optical 

parts of the system, such as CCD, illuminators, etc, thus ensuring the full exploitation 

of the CCD’s dynamic range. 

 Operating in imaging mode, an image at each wavelength band is acquired while, in 

spectroscopy mode, a fully resolved diffuse reflectance and/or fluorescence spectrum 

per image pixel can be recorded (image spectral cube). The combination of spectral 

and color imaging with calibration enables the system to operate as either Imaging 

Spectrometer or Imaging Colorimeter. 

 

 

 

 

 

 

 

 

 

2.3.2 xiQ - USB3 Vision Cameras 

xiQ is a USB3 Color Vision Camera with low power consumption, high speed, 

1600x1200 resolution with 90fps. This CMOS camera will be used for color imaging as well 

as multispectral imaging by coupling it with Triple Band Pass Filters thus changing the 

spectral sensitivity of the camera.  
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In order to acquire correct color and multispectral data, calibration of the camera was 

performed. Using a white target, the camera was white balanced so all three channels (RGB) 

would have the same value. Shutter was also adjusted so the images produced would not be 

saturated.  
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3 Spectral Prediction from Filtered Color CCD Cameras 

In this chapter, the results of the homonymous diploma thesis are described, that 

constituted the foundation for the results of this work.  

Spectral Estimation was studied in depth, and a number of algorithms were chosen to 

be compared in order to find the more accurate and fast one. To quantify the accuracy of the 

algorithms, mathematical thresholds were used. Firstly, Gretag Macbeth® Color Checker CC 

was selected as a priori data and as test set. The goal was to validate the training set so to 

estimate the accuracy and the speed of the algorithms. Three mathematical measures were 

used to quantify the similarity of the original and the estimated spectra; the Spectral Angle 

Mapper (SAM), the Euclidian distance, and the Goodness of Fit (GFC). For an excellent 

estimation, SAM must be as close to zero as possible and GFC as close to unity.   

The RGB data of a color camera, and MUSIS HS, were used to validate the training 

set. In Table 3-1 the results of this process can be seen. The percentages indicate the number 

of color patches that surpassed the threshold value indicated. In addition, the time to calculate 

spectral data for one pixel was measured. The results indicated that Wiener Estimation 

outperformed the rest of the algorithms in both accuracy and time.  

Table 3-1 Spectral Estimation Algorithm Comparison 

Algorithm Threshold 
One Two Three 

Time 

Wiener 75,00% 50,00% 8,33% 0.004710 s 

FFT 70,83% 58,33% 8,33% 0.006631 s 

PCA 66,67% 50,00% 12,50% 0.016213 s 

Wavelets 41,67% 12,50% 0% 0.120807 s 

SVD 70,83% 54.17% 4,17% 0.162944 s 

Hilbert Trans. 45,83% 37,50% 8,33% 0.012850 s 

DCT 65,50% 45,83% 8,33% 0.012850 s 

 

By selecting the best algorithm, the next step was to select the optimum number of 

bands, within the visible spectrum, that would procure the highest possible accuracy. After 

testing multiple combinations of RGB and narrow spectral bands data it was concluded that 

six narrow spectral bands (460-480-540-560-640-680nm) increased the accuracy as it can be 

seen in Table 3-2. 

Table 3-2 Spectral Estimation using Narrow Spectral Bands 

   Threshold 
 One   Two   Three 

Wiener with RGB Input 75,00% 50,00% 8,33% 
Wiener with Six Narrow Band Input 91,67% 83,33% 50,00% 
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4 Spectral Estimation of Unknown Samples 

After validating the training sample as described above, the need to validate the 

performance of that work in unknown samples (no a priori knowledge) was at hand.  For this 

purpose four different type of samples will be used: 

 Gretag Macbeth® Color Checker SG 

 Pigments Wooden Pad with varnish variations 

 Microscopy Data - Roscolux Swatchbook 

For all of the above test sets, Gretag Macbeth® Color Checker CC was used as a priori 

knowledge and training set of the system. Since a six narrow band system was used, the a 

priori data contain the spectral information of Macbeth as well as the six narrow spectral band 

data. Under the same premise, the input data for each test set contain six spectral bands and 

are reproduced and validated within the visible region of the electromagnetic spectrum. 

Moreover, since every sample used contains a substantial number of color patches, the data 

are presented in multiple figures (i.e. Macbeth SG needed 7 figures). 

4.1.1 Gretag Macbeth® Color Checker SG Spectral Estimation Results 

 

 

Figure 4-1 Spectral Estimation Macbeth SG (1) 
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Figure 4-2 Spectral Estimation Macbeth SG (2) 

 
Figure 4-3 Spectral Estimation Macbeth SG (3) 
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Figure 4-4 Spectral Estimation Macbeth SG (4) 

 
Figure 4-5 Spectral Estimation Macbeth SG (5) 
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Figure 4-6 Spectral Estimation Macbeth SG (6) 

 
Figure 4-7 Spectral Estimation Macbeth SG (7) 
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From Figure 4-1 to Figure 4-7 all 140 color patches of Macbeth SG can be seen. The 

blue line represents the measured spectra, acquired from MUSIS HS camera. The value of 

each patch is the mean of approximately 2000 pixels and is represented with the mean and 

standard deviation values using errorbars. From the above, it can be seen that with 24 patches 

as a priori knowledge, Macbeth SG was estimated with high accuracy, predicting all of the 

spectral characteristics of each patch, which can also be validated from the quantitative result 

in Table 4-1. 

Table 4-1 Macbeth SG Spectral Estimation Quantitative Results 

 Threshold 
 One   Two   Three 

Macbeth Color Checker SG 87,50% 74% 24% 
 

Next up, the spectral image for the complete Macbeth SG was estimated. Macbeth was 

captured and estimated in four quadrants, each one containing 35 color patches. The 

difference between the estimated and the predicted spectral images was calculated with the 

RMSE and their subtraction and can be seen in Figure 4-8 - Figure 4-11. In each figure the 

measured spectral image can be seen in the left column, the estimated on the middle one and 

their difference on the right column. As expected, the RMSE of the Bands used as input 

equals zero. On the other two cases a small RMSE can be noticed and their difference mainly 

depends on the spectral signature of the color patch as it can be easily seen in Figure 4-11 for 

the first case.  

 

Figure 4-8 Macbeth SG 1st Quadrant Spectral Image Estimation 
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Figure 4-9 Macbeth SG 2nd Quadrant Spectral Image Estimation 

 

Figure 4-10 Macbeth SG 3rd Quadrant Spectral Image Estimation 



 

[49] 

 

 

Figure 4-11 Macbeth SG 4th Quadrant Spectral Image Estimation 

4.1.2 Pigments Wooden Pad with varnish variations 

 

 
Figure 4-12 Spectral Estimation (Visible) Wooden Pad with Varnish (1) 
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Figure 4-13 Spectral Estimation (Visible) Wooden Pad with Varnish (2) 

 
Figure 4-14 Spectral Estimation (Visible) Wooden Pad with Varnish (3) 
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Figure 4-15 Spectral Estimation (Visible) Wooden Pad with Varnish (4) 

 

From Figure 4-12 to Figure 4-15 it can be seen that the spectral estimation procedure 

managed to predict most of the spectral characteristics of the sample. It is crucial to explain 

that the color patches of this test set are pigments that are not considered to be lambertian 

surface and have completely different texture than Gretag Macbeth® Color Checker CC that 

was used as the training set, which highly increased the error during the estimation process. 

This can be also seen in Table 4-2 where no color patch qualified to surpass the third 

threshold while more than half of the color patches qualified for the first two, meaning that 

most of the spectra were estimated with good accuracy.  

Table 4-2 Wooden Pad Spectral Estimation Quantitative Results 

 Threshold 
 One   Two   Three 

Pigments Wooden Pad 77% 50% 0% 
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4.1.3 Roscolux Films 

In Figure 4-16 spectral estimation was performed in Roscolux color filters. The first 

thing to address here is that for the first time Spectral Transmittance was evaluated instead of 

Spectral Reflectance. It can be seen that the spectral estimation procedure managed to predict 

most of the spectral characteristics of the samples. Again, Gretag Macbeth® Color Checker® 

CC was used as the training set, although the data were reflectance spectra.  

 

Figure 4-16 Spectral Estimation (Visible) Roscolux films 

In Table 4-3 the quantitative results of the estimation process can be seen. The first 

threshold was met by 75% of the samples and the second was met for more than half of them. 

The third threshold, indicating the “excellent” estimation, is zero which was expected since 

the a priori data were from reflectance spectrum whereas the estimated spectra were 

transmittance. 

Table 4-3 Roscolux Films Spectral Estimation Quantitative Results 

 Threshold 
 One   Two   Three 

Roscolux Films 75% 55% 0% 
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5 Spectral Estimation Visible and Near Infrared 

Until now, spectral estimation was performed within the visible region of the 

electromagnetic spectrum. For various applications like astronomy, industry, chemistry and so 

forth, information within the near infrared part of the spectrum are necessary. As before, it 

was crucial to determine the number of spectral bands needed that can provide accurate 

results. In addition, the ability to estimate spectral information in the NIR will be added to the 

spectral estimation process for the visible region, thus creating a multispectral system that can 

acquire a fixed number of bands and estimate spectra in both visible and NIR regions.  

Again, for testing and validation procedures, Gretag Macbeth® CC was used as 

training, only this time the information extended to the NIR part of the spectrum. Gretag 

Macbeth® SG and the Pigments Wooden Pad were used to validate the accuracy of spectral 

estimation. For each case, four different cases are presented that correspond to the thresholds 

set for the Quantitative characterization of the results. First graph represents an estimation 

that doesn’t satisfy any threshold, the second one satisfies the first one and so forth.    

5.1 Spectral Estimation using 12 Narrow Spectral Bands 

For the visible region, from 420nm to 700nm, six narrow spectral bands were used that 

were complementary to each other covering approximately 300nm. In the same premise, from 

700nm to 1000nm, six narrow spectral bands are selected equally distributed within NIR. So, 

in addition to 460, 480, 540, 580, 640, 680 nm for the visible region, 740, 780, 840, 880, 940, 

980 nm were added for the NIR. 

  
Figure 5-1 Twelve Spectral Bands for Spectral Estimation within the Visible and NIR 
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5.1.1 Gretag Macbeth® Color Checker SG Spectral Estimation Results  

 

Figure 5-2 Spectral Estimation (12 Bands) Visible and NIR Macbeth SG 

 

In Figure 5-2 it can be seen that the spectrum in both regions of the spectrum can be 

estimated with very high accuracy. Even in sub-figure one that the result doesn’t satisfy any 

threshold, it can be seen that the estimated spectrum is a good approximation of the measured 

one. The accuracy of the results can be also verified from the quantitative measures presented 

in Table 5-1, where the first threshold for the first time reaches 100% and the other two reach 

their maximum value so far as well.  

Table 5-1 Macbeth SG Spectral Estimation (12 Bands) Visible and IR Quantitative Results 

 Threshold 
 One   Two   Three 

Macbeth Color Checker SG 12 Bands 100% 95.83% 61.5% 
 

It is crucial to point out that again only 24 patches were used as training set and 140 

patches were predicted with excellent accuracy. A next to step is to minimize the number of 

bands used and check how that affected the results of the spectral estimation.  
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5.1.2 Pigments Wooden Pad with varnish variations 

 
Figure 5-3 Spectral Estimation (Visible and NIR 12 Bands) Wooden Pad with Varnish 

 

In Figure 5-3 it can be seen that the spectrum in both regions of the spectrum can be 

estimated with very high accuracy. All spectral characteristics of the color patches were 

predicted with high precision despite the fact, as aforementioned, that the surface of the color 

patches is not considered lambertian. This can be also seen in Table 5-2 where the percentage 

of patches satisfying each threshold increased significantly about 20%. 

Table 5-2 Wooden Pad Spectral Estimation (12 Bands) Visible and NIR Quantitative Results 

 Threshold 
 One   Two   Three 

Pigments Wooden Pad 12 Bands 95.8% 79% 18.7% 
 

All of the above suggest that spectral estimation can be performed accurately in both 

visible and NIR. One important characteristic to note is that both Gretag Macbeth® SG and 

the wooden pad contain color patches that have very smoothed spectral reflectance within the 

NIR. This means that with less spectral bands, high accuracy results can be also achieved. So, 

in order to validate that assumption, a minimization of the spectral bands used in the NIR will 

be performed and the result will be compared at the end.  
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5.2 Spectral Estimation using 11 Narrow Spectral Bands 

In this case 11 narrow spectral bands were used. Six for the visible region as before and 

5 for the NIR; 740-800-860-920 and 980nm and are presented in Figure 5-4. 

 

Figure 5-4 Eleven Spectral Bands for Spectral Estimation within the Visible and NIR 

5.2.1 Gretag Macbeth® Color Checker SG Spectral Estimation Results  

 

Figure 5-5 Spectral Estimation (11 Bands) Visible and NIR Macbeth SG  
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In Figure 5-5 Figure 5-2it can be seen that the spectrum in both regions of the spectrum 

can be estimated with very high accuracy. Even in sub-figure one that the result doesn’t 

satisfy any threshold, it can be seen that the estimated spectrum is a good approximation of 

the measured one. The accuracy of the results can be also verified from the quantitative 

measures presented in Table 5-3, where the percentages for the thresholds were 

approximately of the same, with a small decline of 1-2%. 

Table 5-3 Macbeth SG Spectral Estimation (11 Bands) Visible and IR Quantitative Results 

 Threshold 
 One   Two   Three 

Macbeth Color Checker SG 11 Bands 97.9% 93.7% 60.4% 
 

5.2.2 Pigments Wooden Pad with varnish variations 

 
Figure 5-6 Spectral Estimation (Visible and NIR 11 Bands) Wooden Pad with Varnish (1) 

 

In Figure 5-6 it can be noticed that the spectral estimation was performed accurately for 

both regions of the spectrum as before. All spectral characteristics of the color patches were 

predicted with high precision. This can be also seen in Table 5-4 where the percentage 

remained approximately the same as before with a small decline of 2% for the second 

threshold and about 10% for the first, maintaining however their high value. 
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Table 5-4 Wooden Pad Spectral Estimation (11 Bands) Visible and NIR Quantitative Results 

 Threshold 
 One   Two   Three 

Pigments Wooden Pad 11 Bands 85,41% 75% 18.7% 
 

In this case, where 11 narrow spectral bands were used, the accuracy of the estimation 

algorithm remained very high, which allowed further investigation by removing one more 

band to see the affect it would have on the overall performance.  

5.3 Spectral Estimation using 10 Narrow Spectral Bands 

In this case 10 narrow spectral bands were used; six for the visible region as before and 

4 for the NIR; 740-820-900 and 980nm and are presented in Figure 5-7. As the number of 

bands with the NIR is narrowed down, the bands were selected empirically so they could 

cover the highest possible range within the NIR region. 

 

Figure 5-7 Ten Spectral Bands for Spectral Estimation within the Visible and NIR 
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5.3.1 Gretag Macbeth® Color Checker SG Spectral Estimation Results  

 
Figure 5-8 Spectral Estimation (10 Bands) Visible and NIR Macbeth SG  

 

In Figure 5-8 it can be seen that the spectrum in both regions of the spectrum is 

estimated with very high accuracy. Even in sub-figure one that the result doesn’t satisfy any 

threshold, it can be seen that the estimated spectrum is a good approximation of the measured 

one.  For the third time all the spectral characteristics are predicted properly, either smoothed 

or with sparks, even though only 4 bands are now used in NIR region. That can be also 

verified from the quantitative measures presented in Table 5-5, where the percentages for the 

thresholds were approximately of the same with ±1% deviation. 

Table 5-5 Macbeth SG Spectral Estimation (10 Bands) Visible and IR Quantitative Results 

 Threshold 
 One   Two   Three 

Macbeth Color Checker SG 10 Bands 97.9% 92.7% 61.4% 
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5.3.2 Pigments Wooden Pad with varnish variations 

 
Figure 5-9 Spectral Estimation (Visible and NIR 10 Bands) Wooden Pad with Varnish (1) 

 

In Figure 5-9 can be noticed that the spectral estimation was performed accurately for 

both regions of the spectrum as before. All spectral characteristics of the color patches were 

predicted with high precision. This can be also seen in Table 5-6 where the percentage 

remained high for the first threshold, increased for the second and declined about 10% of the 

third. The decline of the third threshold can be noticed in the figures from the fact that in 

some case the estimated spectra might have deviated more than the errorbars’ margin.  

 

Table 5-6 Wooden Pad Spectral Estimation (10 Bands) Visible and NIR Quantitative Results 

 Threshold 
 One   Two   Three 

Pigments Wooden Pad 10 Bands 85,41% 79,6% 4.16% 
 

In this case, where 10 narrow spectral bands were used, the accuracy of the estimation 

algorithm remained high, which allowed further investigation by removing one more band to 

see the affect it would have on the overall performance. Moreover, in this case some of the 

bands used (i.e. 820nm) were not used before. That could explain the increase of the 

percentage of the second threshold on Macbeth SG since some information may exist within 

the width of the specific band and the other set of bands couldn’t get adequate information for 

the estimation.  
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5.4 Spectral Estimation using 9 Narrow Spectral Bands 

In this case 9 narrow spectral bands were used. Six for the visible region as before and 

3 for the NIR; 760, 860 and 960nm and are presented in Figure 5-10. 

 

Figure 5-10 Eight Spectral Bands for Spectral Estimation within the Visible and NIR 

5.4.1 Gretag Macbeth® Color Checker SG Spectral Estimation Results  

 
Figure 5-11 Spectral Estimation (9 Bands) Visible and NIR Macbeth SG (1) 



 

[62] 

 

In Figure 5-11 it can be seen that the spectrum in both regions of the spectrum is 

estimated with high accuracy.  Although at this point only three bands are used, the results are 

very satisfactory since even in the case of the first sub-figure, the estimation process 

approximates all the sparks that are included on the SPD of the sample. That can be also 

verified from the quantitative measures presented in Table 5-7, where the percentages for the 

thresholds decline from 2% for the first to 15% for the third. 

Table 5-7 Macbeth SG Spectral Estimation (9 Bands) Visible and IR Quantitative Results 

 Threshold 
 One   Two   Three 

Macbeth Color Checker SG 9 Bands 97.91% 94.79% 54.16% 
 

5.4.2 Pigments Wooden Pad with varnish variations 

 
Figure 5-12 Spectral Estimation (Visible and NIR 9 Bands) Wooden Pad with Varnish (1) 

 

In Figure 5-12 can be noticed that the spectral estimation was performed accurately for 

both regions of the spectrum as before. All spectral characteristics of the color patches were 

predicted with good precision. This can be also seen in Table 5-8 where the percentage 

remained adequately high for the first threshold, declined a bit for the second and fell to zero 

for the third. The decline of the thresholds can be noticed in the figures from the fact that in 

some case the estimated spectra are deviated more than the error-bars margin.  



 

[63] 

 

Table 5-8 Wooden Pad Spectral Estimation (9 Bands) Visible and NIR Quantitative Results 

 Threshold 
 One   Two   Three 

Pigments Wooden Pad 9 Bands 91.66% 79.6% 4.16% 

 

In this case, where 9 narrow spectral bands were used, the accuracy of the estimation 

algorithm remained high, proving that spectral estimation could be performed in both visible 

and NIR regions of the spectrum even with 9 narrow spectral bands.  

In Table 5-9 and Table 5-10 a sum up of the results can be seen for comparison. 

Overall, the accuracy of the spectral estimation remains high for both cases for most of the 

thresholds. It is noticeable for the wooden pad (which has “richer” spectral information with 

the NIR than Macbeth® SG) that a smaller number of bands lead to lower accuracy especially 

for the third threshold which describes the “excellent” estimation. Moreover, the fluctuation 

of the percentage for the second threshold states one important fact; spectral bands may need 

to be selected according to the test sample in question. Many objects or samples have very 

smooth spectral characteristics in the NIR, which as seen, means that three bands can provide 

very high accuracy estimates. If the object-sample has an abundance of information within the 

NIR, 6 bands could be used as well and provide an accurate result. 

Table 5-9 Macbeth SG Spectral Estimation Visible and IR Quantitative Results 

Macbeth Color Checker SG Threshold 

 One   Two   Three 

12 Bands 100% 95.83% 61.5% 

11 Bands 97.9% 93.7% 60.4% 

10 Bands 97.9% 92.7% 61.4% 

9 Bands 97.9% 94.79% 54.16% 
 

Table 5-10 Wooden Pad Spectral Estimation Visible and NIR Quantitative Results 

Pigments Wooden Pad Threshold 

 One   Two   Three 

12 Bands 95.8% 79% 18.7% 

11 Bands 85.41% 75% 18.7% 

10 Bands 85.41% 79.6% 4.16% 

9 Bands 91.66% 79.6% 4.16% 
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5.5 Improving Visible Spectral Estimation through NIR Spectral 

Estimation 

Another important factor to notice was that the spectral estimation process that contains 

the IR region of the spectrum, could improve the accuracy of the spectra estimated within the 

visible region. For this reason, for each case of the selected number of bands within the IR, 

the quantitative results for the visible region are displayed in Table 5-11 and Table 5-12. 

Table 5-11 Macbeth SG Spectral Estimation Visible vs. Visible with NIR 

Macbeth Color Checker SG Threshold 

 One   Two   Three 

Visible 87.5% 74% 24% 

12 Bands 84.37% 70.83% 34.37% 

11 Bands 84.35% 73.95% 34.37% 

10 Bands 83.33% 72.91% 31.25% 

9 Bands 87.5% 77.1% 31.25% 

 

Table 5-12 Wooden Pad Spectral Visible vs. Visible with NIR 

Pigments Wooden Pad Threshold 

 One   Two   Three 

Visible 77% 50% 0% 

12 Bands 70.83% 50% 0% 

11 Bands 72.91% 58.33% 0% 

10 Bands 68.75% 29.16% 0% 

9 Bands 83.33% 54.16% 0% 

 

It is noticeable that the accuracy could improve or not depending on the number of 

bands used. In both case of Gretag Macbeth SG and the Pigment wooden pad, the case of 9 

Bands (6 Visible and 3 NIR), which was the case with the fewer bands, improved the 

accuracy of the spectral estimation within the visible region of the spectrum.  This could be a 

result due to the nature of the sample since its spectral characteristics may be located on the 

selected bands.  

Although for Macbeth SG the results are approximately the same, for the Pigment 

wooden pad may differ, as with the case of ten bands, significantly. The main outcome to be 

kept was that three bands in the IR can provide accurate spectral estimation for the visible and 

IR region of the spectrum while in the same time improving the estimation accuracy within 

the visible part.  
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6 Calculation of Color using Spectral Data 

For an accurate color reproduction the following data are required: 

 Spectral Data of the sample in question - S(λ) 

 The Spectral Power Distribution of the Illuminant - I(λ) 

 The Color Matching Function of the observer (by default CIE 1931 Standard 

Colorimetric Observer) -  x̅(𝜆), �̅�(𝜆), 𝑧̅(𝜆) 

Given S(λ), I(λ) and x̅(𝜆), �̅�(𝜆), 𝑧̅(𝜆) the tristimulus XYZ values of the sample can be 

calculated:  

𝑋 = 
1

𝑁
∫ �̅�(𝜆)
𝜆

𝑆(𝜆)𝛪(𝜆)𝑑𝜆 

𝛶 = 
1

𝑁
∫ �̅�(𝜆)
𝜆

𝑆(𝜆)𝛪(𝜆)𝑑𝜆 

𝑍 =  
1

𝑁
∫ 𝑧̅(𝜆)
𝜆

𝑆(𝜆)𝛪(𝜆)𝑑𝜆 

Where, 

𝑁 = ∫ �̅�(𝜆)
𝜆

𝛪(𝜆)𝑑𝜆 

𝜆 = 380𝑛𝑚 𝑡𝑜 780𝑛𝑚 𝑤𝑖𝑡ℎ 5𝑛𝑚 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 

Then XYZ tristimulus values can be transformed to any other color space. RGB data 

coordinates can be evaluated by multiplying the XYZ values with a transformation matrix M.  

[
𝑅
𝐺
𝐵
] = [𝑀]−1 [

𝑋
𝑌
𝑍
] 

Where M is calculated to match the reference white (CIE Illuminants D65, D50 etc.) 

and RGB working space (sRGB, CIE RGB, etc.) 
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6.1 Color Reproduction from Spectral Data using MUSIS HS Camera 

Reproducing color from spectrum using a Hyperspectral camera can result in color with 

very high fidelity to the original. So firstly, the MUSIS HS camera was used to acquire the 

spectral cube of Gretag Macbeth Color Checker SG® within the visible spectrum with 20nm 

integral. Macbeth contains 140 patches, which makes it too big to fit in one shot. Thus, it is 

split into 4 Quadrants (referred to as Quads from this on). The spectral cube contained 15 

bands for each Quadrant from 420 to 700nm with 20nm integral with 1600x1200 resolution.  

6.2 Six Band Color Reproduction using Spectral Estimation 

As aforementioned, a smaller number of bands can be selected instead of a complete 

spectral cube. Then Spectral Estimation can be performed to estimate the missing data. From 

our former study “Spectral Prediction from Filtered Color CCD Cameras”, we established that 

six bands, equally distributed in the visible spectrum as well as complementary to one 

another, can be used for high accuracy spectral estimation. These bands are the 460-480-540-

580-640-680nm as presented in Figure 6-1. 

 

Figure 6-1: Six Spectral Bands and RGB 
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Figure 6-2 : CR Full and Estimated Spectral Cube (Quad 1,2,3,4 respectively) 
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In Figure 6-2 the results of the Color Reproduction are presented. In the left column the 

full cube from MUSIS HS was used for color reproduction while in the right column, Color 

Reproduction was performed using six bands (Figure 6-1), after using Spectral Estimation. 

The color reproduced from Hyperspectral Imaging Systems is considered “golden” standard. 

So, by comparing the color difference between those two results, it can be established if six 

spectral bands along with spectral estimation can be used for accurate color reproduction. In 

both cases the illuminant used was the CIE D50 Standard Illuminant.  

 

Figure 6-3 : Spectral Power Distributions of the CIE Standard illuminants D50, D55 and D65 

To quantify the color difference between the input samples, the following procedure 

was followed: 

1. The SPD of the CIE D50 Illuminant was chosen. (Figure 6-3) 

2. The Color Matching Function (CMF) of the CIE Standard Observer was 

chosen according to the Spectral Cube’s wavelength range and integral. 

3. The XYZ tristimulus values were calculated from the Spectral Data, SPD and 

CMF  

4. The XYZ values were transformed to RGB for the output images 

5. The XYZ values were transformed to Cielab Colorspace in order to evaluate 

ΔΕab*. (Table 6-1) and ΔE94* Figure 6-4 - Figure 6-7 for all four Images of 

MacBeth SG  

Table 6-1: Color Difference Results 

 Max Min Average 

ΔΕab* 10.01 0.33 3.67 
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Figure 6-4 CIELAB Metrics Quad 1 

 
Figure 6-5 CIELAB Metrics Quad 2 
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Figure 6-6 CIELAB Metrics Quad 3 

 
Figure 6-7 CIELAB Metrics Quad 4 
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The mean value of the color difference ΔΕab* was 3.67 units, which indicated that high 

fidelity color reproduction can be performed. This can be also seen in Figure 6-2 where no 

perceptual difference can be perceived. From Figure 6-4 to Figure 6-7 the graphical color 

difference can be seen. The length of the vectors is very small indicating very low error and 

the statistical analysis of the color patches indicates that the vast majority of them was 

reproduced with ΔΕab* lower than 3. 

The above results indicate that six bands along with spectral estimation can result in 

high accuracy color reproduction. This procedure thought is a computational and time 

expensive one. Using a PC with an i7 core processor, around 0.6 seconds are needed to 

calculate all the data needed (Illuminant, Color Matching Function etc.), perform the 

computations and display the results. Moreover, the time to calculate a complete spectral 

cube, especially in high resolution, adds an additional overhead of 0.5 sec to the 

aforementioned time.  

 Although this method is validated in the literature and is broadly used, the time needed 

to complete the process doesn’t allow real time applications. So in order to achieve real time 

reproduction a new method must be implemented which will allow color to be reproduced 

real time without sacrificing any accuracy. 

6.3 Six Band Color Reproduction 

Spectral Estimation takes up at least half of the time needed to process the input data, 

thus in order to minimize the time needed for processing it is removed. By removing spectral 

estimation only six spectral bands remain as data for the color reproduction. For starters, the 

color is evaluated as before using the state of the art algorithm containing the illuminant, the 

Color Matching Function. The main difference in this point is that the size of the spectral 

cube is smaller (1600x1200x6) instead of the full spectral cube (1600x1200x15) which results 

in less time for computations. That also will result in less accuracy and probably noticeable 

perceptual differences between the original image and the reproduced. 

Below the images of Gretag Macbeth Color Checker ® are presented for the cases of 

color reproduction from a complete spectral cube (“golden” standard) and from the six bands 

without spectral estimation.  
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Figure 6-8 : CR Full and Six Band Spectral Cube (Quad 1,2,3,4 respectively) 
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Figure 6-9 CIELAB Metrics Quad1 

 
Figure 6-10 CIELAB Metrics Quad2 
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Figure 6-11 CIELAB Metrics Quad3 

  
Figure 6-12 CIELAB Metrics Quad4 
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From the above results the assumption made can be validated. In Figure 6-8 the 

perceptual differences between the two images are quite high. That is also apparent in Figure 

6-9 - Figure 6-12 where the length of the arrows in both vector plots is quite high which 

effectively means high error thus high color difference. Finally, from the statistic 

representation of the DEab* the results of Table 6-2 are evaluated.  

Table 6-2: Color Difference Results 

 Max Min Average 

ΔΕab* 30 0.91 13.04 

 

It can be seen that the maximum as well the average color difference are quite high. 

This infers that using six spectral bands and performing color reproduction with the state of 

the art process doesn’t result in accurate results. For that reason, another method is proposed 

in order to increase the accuracy of the reproduced color and on the same time try to achieve 

that in real time.  

6.4 Weighted Six Band Color Reproduction 

Instead of using Spectral Estimation, a simulation is performed using an a priori sample 

to create a weight matrix that can allow six spectral bands to be transformed into RGB with 

high accuracy. The sample used for a priori knowledge is Gretag Macbeth Color Checker® 

CC which includes 24 color patches. The RGB matrix contains the RGB values that originate 

from the color reproduced image using a complete spectral cube, and the T matrix contains 

the values from each spectral band. Thus the following system: 

[
𝑅
𝐺
𝐵
] = [

𝑊1,1 𝑊1,2 𝑊1,3

𝑊2,1 𝑊2,2 𝑊2,3

𝑊3,1 𝑊3,2 𝑊3,3

    

𝑊1,4 𝑊1,5 𝑊1,6

𝑊2,4 𝑊2,5 𝑊2,6

𝑊3,4 𝑊3,5 𝑊3,6

]

[
 
 
 
 
 
 
𝑇1,𝑅

𝑇2,𝑅

𝑇1,𝐺

𝑇2,𝐺

𝑇1.𝐵

𝑇2,𝐵]
 
 
 
 
 
 

 

After evaluating the above weight matrix, a validation process is in order, to accurately 

estimate the performance of this process. As before, a perceptual and quantitative comparison 

is made between the reproduced image and the “golden” standard using Gretag Macbeth 

Color Checker® SG to evaluate the performance of this process. It is important to note that 

the weight matrix was evaluated using only 24 patches out of 140 of Macbeth SG. 
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Figure 6-13 : CR Full Spectral Cube and Weighted Six Band (Quad 1,2,3,4 respectively) 
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Figure 6-14 CIELAB Metrics Quad1 

 
Figure 6-15 CIELAB Metrics Quad2 
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Figure 6-16 CIELAB Metrics Quad3 

 
Figure 6-17 CIELAB Metrics Quad4 
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From the above results it can be clearly seen that the proposed method performs with 

very high accuracy. By noticing Figure 6-13, no perceptual differences can be found, which 

can be also validated from the quantitative measures. The arrows in the vector plots appear to 

have approximately zero length which means very low color difference, and the statistical 

analysis of the color difference (Table 6-3) indicates that for the majority of the patches, the 

color difference DEab* is below 3 which is even lower than the case where color was 

reproduced using spectral estimation first. It is also important to note the minimum value 

achiever is approximately reaches zeros meaning perfect color reproduction in every possible 

aspect.  

Table 6-3: Color Difference Results 

 Max Min Average 

ΔΕab* 13.69 0.06 2.93 

 

The last issue to address for this case is the process time needed for the color 

reproduction. Given that the weight matrix is calculated beforehand and can be used as a 

priori knowledge the time needed is 0.05 seconds which is significantly less than any other 

case leading to the solution of the real time problem.  

 

6.5 Color Reproduction from Estimated Spectral Cube vs. Six 

Weighted Narrows Spectral Bands 

It was validated that six weighted spectral bands, as well as color reproduction from the 

estimated spectral cube, can reproduce high fidelity color. Since both cases managed to do so 

with low DE, it was a logical step to compare those two results in order to observe the 

difference between the two color reproduction methods. As before, Gretag Macbeth Color 

Checker SG was used as test target and both methods were reproduced color under Equal 

Energy (EE) Illuminant so that it can be compared. In Figure 6-18 the results from the 

estimated spectral cube can be seen on the left column and the results from the six weighted 

bands can be seen on the right. Next up, for each of the four quadrants the graphical color 

difference was presented and finally the average, max and min of DE for all the color patches 

of Macbeth were calculated.  
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Figure 6-18 : CR Full and Six Band Spectral Cube (Quad 1,2,3,4 respectively) 
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Figure 6-19 CIELAB Metrics Quad1 

 
Figure 6-20 CIELAB Metrics Quad2 
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Figure 6-21 CIELAB Metrics Quad3 

  
Figure 6-22 CIELAB Metrics Quad4 
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In Figure 6-18 the perceptual differences between the two images is very low. That is 

also apparent in Figure 6-19 to Figure 6-22 where the length of the arrows in both vector plots 

is almost zero which effectively means minimum error thus minimum color difference. 

Finally, from the statistic representation of the DEab* the results of Table 6-4 were evaluated.  

Table 6-4: Color Difference Results 

 Max Min Average 

ΔΕab* 9.23 0.27 2.94 

 

6.6 Color Reproduction Methods Summary  

A final comparison of all the methods and inputs used for color reproduction was made 

in order to evaluate the best method and their difference between them. In Table 6-5 all these 

results can be seen. There are three methods that have been used so far; the first was to 

reproduce color with state of the art techniques  using an estimated spectral cube while the 

second was the same technique but with only six narrow spectral bands as input and the third 

with the use of six weighted narrow spectral bands. In each case the results were compared 

with the reproduced color from the measured spectral cube aka golden standard. Six spectral 

bands performed poorly while the other two methods provided high fidelity color 

reproduction with the Six Weighted bands having the lowest average and min value of DE. Of 

course, the main difference between the two methods was that the Color reproduction using a 

complete spectral cube can be done under any illuminant wanted. 

Finally, the two methods were compared in order to evaluate the difference of their 

result. It can be seen that the average DE* between the Estimated Spectral Cube CR and the 

Six weighted bands CR was low with the maximum DE being lower than any other case. This 

means that both methods can be used for high fidelity color reproduction and each one can be 

selected according to the properties wanted such as real-time CR or color reproduction under 

various illuminant.  

Table 6-5 Color Difference Results Summary 

ΔΕab* Max Min Average 

Six Band Spectral Estimation CR vs. Measured Cube CR 
10.01 0.33 3.67 

Six Band Color Reproduction vs. Measured Cube CR 30 0.91 13.04 

Six Weighted Bands CR vs. Measured Cube CR 13.69 0.06 2.93 

Six Band Spectral Estimation CR vs. Six Weighted Bands CR 9.23 0.27 2.94 
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7 Six Band Color Reproduction System 

After validating that six narrow spectral bands can provide an accurate result, a six 

band system with two color cameras and two color filters (Figure 7-1) was designed. The 

filters are optimized to provide high transmission, steep edges and deep blocking for balance 

in contrast, brightness, and color representation. 

 

 

Figure 7-1: Transmission spectra for products FF01 422/503/572 (a) and FF01 464/542/639 (b), Semrock, 

Rochester, NY, www.semrock.com. 
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7.1 Channel unmixing 

When a triple bandpass filter, with central wavelengths λ1, λ2, λ3, is coupled to a 

Bayer tiled CCD, the sensitivity of each pixel, apart from the spectral characteristics of the 

Bayer pattern microfilters, is modified again by the transmittance characteristics of the filter. 

Since RGB microfilters are approximately broad, with each one covering a wide area of the 

active CCD sensitivity spectrum, when coupling a triple Multiple Band Pass Filter (MBPF), 

each pixel will unevenly be sensitive to any of the three narrow spectral bands. 

This fact implies that a pixel value for the e.g. Red channel will be a summation of 

captured photons in all three narrow spectral bands of the MBPF. Assuming that the spectral 

bands of the MBPF are located in the red, green and blue channel sensitivity areas of an 

optical sensor and that RBroad, is the value of the R channel, then RNarrow, RGreem and RBlue, will 

be the R channel values recorded at the red, green and blue band of the MBPF. Making the 

same assumptions for the G and B channels, equation (1) derives: 

 𝑅𝐵𝑟𝑜𝑎𝑑 = 𝑅𝑁𝑎𝑟𝑟𝑜𝑤 + 𝑅𝐺𝑟𝑒𝑒𝑛 + 𝑅𝐵𝑙𝑢𝑒 

  𝐺𝐵𝑟𝑜𝑎𝑑 = 𝐺𝑅𝑒𝑑 + 𝐺𝑁𝑎𝑟𝑟𝑜𝑤 + 𝐺𝐵𝑙𝑢𝑒             (1) 

𝐵𝐵𝑟𝑜𝑎𝑑 = 𝐵𝑅𝑒𝑑 + 𝐵𝐺𝑟𝑒𝑒𝑛 + 𝐵𝑁𝑎𝑟𝑟𝑜𝑤 

It is therefore essential to disentangle the recorded spectral information for recovering 

the six spectral images, whose spectral content corresponds to the six transmission/reflection 

bands of the PM. Due to this fact, an unmixing algorithm that would eliminate the 

“crosstalking” of the channels in all MBPF’s bands. By advancing mathematically the 

equation (1), the above hypothesis is possible. Specifically, by noticing that for the e.g. red 

channel, the RGreen value, apart from being a fraction of RBroad, is also a fraction of GNarrow. 

This may be expressed as a ratio of the areas covered within the region of MBPF’s green 

spectral band between GNarrow and RBroad. This ratio is furthermore a weighted coefficient 

between RGreen and GNarrow. So, by formulating mathematically the curves of the active 

spectrum of the RGB channels and by calculating their integrals at the MBPF’s bands, 

equation (1) leads to eq. (2). 

𝑅𝐵𝑟𝑜𝑎𝑑 = 𝑤𝑅𝑅 ∙ 𝑅𝑁𝑎𝑟𝑟𝑜𝑤 + 𝑤𝑅𝐺 ∙ 𝐺𝑁𝑎𝑟𝑟𝑜𝑤 + 𝑤𝑅𝐵 ∙ 𝐵𝑁𝑎𝑟𝑟𝑜𝑤 

                    𝐺𝐵𝑟𝑜𝑎𝑑 = 𝑤𝐺𝑅 ∙ 𝑅𝑁𝑎𝑟𝑟𝑜𝑤 + 𝑤𝐺𝐺 ∙ 𝐺𝑁𝑎𝑟𝑟𝑜𝑤 + 𝑤𝐺𝐵 ∙ 𝐵𝑁𝑎𝑟𝑟𝑜𝑤              (2) 

𝐵𝐵𝑟𝑜𝑎𝑑 = 𝑤𝐵𝑅 ∙ 𝑅𝑁𝑎𝑟𝑟𝑜𝑤 + 𝑤𝐵𝐺 ∙ 𝐺𝑁𝑎𝑟𝑟𝑜𝑤 + 𝑤𝐵𝐵 ∙ 𝐵𝑁𝑎𝑟𝑟𝑜𝑤 

This process enables the concurrent acquisition of any three spectral bands, by using a 

triple MBPF (TBPF) and an ordinary color camera. This setup may be expanded to the 

concurrent capturing of four spectral bands, by using CMYG color cameras and quadruple 
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MBPFs. Also, with the use of optical dispersing elements, more than one camera can be used, 

to increase the number of the acquired spectral bands.  

7.2 Channel unmixing algorithm 

To disentangle the spectral information for a TBPF an algorithm was designed that 

removed any cross-talking between color channels for each corresponding band of the filter. 

For example, a band with center wavelength at 680nm should contain information from the 

“red” channel without any interference from the other two (blue and green). That allows each 

the TBPF to contain “pure” spectral information.  

To remove the cross-talking between the TBPF’s bands, a weight matrix was created. 

This matrix was created by matching the information of the TBPF with spectral information, 

acquired either with a Hyper-spectral camera or a spectrometer. A test sample was used, in 

this case Gretag Macbeth® Color Checker CC, to acquire its information with the TBPF and a 

Spectral Imaging device and then tried to match the values of the TBPF to the specific 

spectral ones.  

The definition of the number of color patches used for this process to minimize the 

error for the spectral match was of crucial importance. Various combinations of the color 

patches were tested using 10 to 24 patches. For each number of patches used, all possible 

combinations were estimated for 100 pixels per patch, and the maximum and minimum errors 

were calculated. In Figure 7-2 the minimum error results can be seen that ultimately defined 

the number of patches used for this process to ten.  By increasing the number of patches the 

error increased as well, along with the deviation from the mean value. Nevertheless the error 

value remained low, below unity, for each number of patches used.  By selecting the number 

of patches with the lowest error it can be ensured that the corresponding TBPF and spectra 

data have the best match possible during the unmixing procedure. In Figure 7-3, the highest 

error for each combination can be seen. In this case, while the number of patches increased 

the error decreased reaching a value of 2.8 from 1014. It is important to note that the scale is 

logarithmic since the error values are quite high for small number of patches. This process 

was performed for both TBPF presented in Figure 7-1. 
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Figure 7-2 Spectral Unmixing - Color Patches Choice with minimum error 

 

Figure 7-3 Spectral Unmixing - Color Patches Choice with maximum error 
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7.3 Channel Unmxing based on experimental measurements 

Instead of using an algorithm to remove the cross-talking between the six narrow 

spectral bands, the camera spectral sensitivity can be used. To measure the cameras spectral 

sensitivity a monochromator, an optical power energy meter, and a light source are employed. 

Moreover, a beam splitter element was used to split the incoming light between the CCD 

sensor and the energy meter in order to quantify its energy.  

This process was studied and used in the MSc Thesis of Vassilis Kavvadias, 

Simultaneous Multi-Spectral Imaging System: Application in Real-Time, Unsupervised 

Spectral Classification in Endometrial Endoscopy.  

The monochromator helped stimulate the CCD with a very narrow band illumination, 

which with the help of an optical power energy meter had the same intensity at every 

wavelength. A sample of this illumination can be seen in Figure 7-4. With this method the 

cameras’ spectral sensitivity is measured. Moreover, if the camera is coupled with a band pass 

filter the sensitivity of the two coupled elements can be measured as well the cross-talking 

between the spectral bands. With this way, the participation of each band can be measured 

and then be removed physically to decouple the spectral bands.   

 

 

Figure 7-4 Sample output optical signals from a tunable diffraction grating monochromator 

 

The results for the unmixing process can be seen in Figure 7-5 for TBPF 1 and Figure 

7-6 for TBPF 2. The color circles represent the RGB values for each triple and the white 

circle their value after the unmixing process. The spectra data were acquired using a 

spectrometer under the same illumination conditions as the TBPF. In both cases the unmixed 

data provided a good spectral match with the measured spectra resulting to successful spectral 

unmixing process.  
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Figure 7-5 Spectral Unmixing Results Macbeth CC TBPF1 

 

 

Figure 7-6 Spectral Unmixing Results Macbeth CC TBPF2 
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8 A novel Real-Time Spectral and Color Imaging System 

8.1 System Description 

Using the results of all the aforementioned experiments, a novel multispectral imaging 

system was designed that allows real time spectral and color imaging [69]. Two CCD cameras 

were used in conjunction with two TBPF, which affected the spectral sensitivities of the 

CCDs. Channel unmixing was performed on each TBPF to remove any cross-talking between 

the different bands-channels of the CCD.  

The algorithms used on this system for both Spectral and Color Imaging require a priori 

spectral and colorimetric knowledge. Our system uses by default Gretag Macbeth® Color 

Checker CC. For the color imaging algorithm, a weight matrix is calculated in advance using 

the process described in chapter 6.4. 

By performing spectral estimation using Wiener estimation, a complete spectral cube 

could be evaluated using the six narrow bands as input. Moreover, by acquiring data from the 

cameras in video rate, spectral estimation can be performed real-time and provide a spectral 

video for the desired spectral band. For the first time, this allows the observation of dynamic 

phenomena under different spectral bands with the press of a single button in real-time.  

Besides spectral imaging, this system was designed to also reproduce color with high 

fidelity. The six spectral narrow unmixed bands are used and multiplied with the weight 

matrix. This setup allows real time color imaging with a camera resolution up to 1024x768. 

8.2 Optomechanical Engineering 

Optomechanical engineering, as a subset of mechanical engineering, specializes in 

optical systems, which usually have much higher design and manufacturing specifications 

than most machinery. They often require submicron precision during design and 

manufacturing. In addition, materials that are used in optical systems, such as glass filters, 

tend to have unusual physical properties, regarding great sensitivity to heat tolerance and 

mechanical stress.   For the described imaging device, a conceptualization and design of a 

precision two-CCD camera system should be developed, involving beam splitting elements, 

relay lens, triple band pass filters and detachable x, y, z stages with micron mobility. The 

design was modeled using Solidworks 3D CAD design software and manufactured at a 

specialized in micromachining machinery. A complete model of the snapshot multispectral 

imaging device is shown in Figure 8-1. 
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Figure 8-1 Diagonal Experimental Setup 

 

8.3 Real Time Spectral Imaging 

As aforementioned, Wiener estimation was used for the spectral estimation process. 

This method creates an estimation matrix, the so-called Wiener matrix, and multiplies the 

input data (in our case six spectral bands) to create the Estimated Spectral Cube. For example, 

given six narrow band images with resolution 1600x1200, the input data would be 

1600x1200x6. Given that the a priori knowledge for the visible spectrum would be images 

from 420nm to 700nm with 10nm integral (29 images), the data required for the calculation of 

the Wiener matrix would be 1600x1200x29 (Spectral Data - SD) and 1600x1200x6 (Narrow 

Band Data - SB). To calculate the Wiener matrix the following mathematical procedure is 

used: 

𝑅𝑣𝑣 =  𝑆𝐵 ∗  𝑆𝐵𝑇  

𝑅𝑟𝑣 =  𝑆𝐷 ∗ 𝑆𝐵𝑇  

𝐺 = 𝑅𝑟𝑣 ∗ 𝑅𝑣𝑣
−1 

Where 𝑅𝑣𝑣 and 𝑅𝑟𝑣 the autocorrelation matrices between the Six Band input (SB) and 

its transpose and the Spectral Data (SD) and the SB. G is the Wiener estimation matrix.  

Now, given the dimensionality described above for the a priori knowledge, G would be 

29x6. Since 29 was the number of wavelengths used a priori, each of the rows of the matrix 

represents the six band value in correlation to a specific wavelength of the spectral cube. 

Given an input of one pixel (with size 6x1), if the input is multiplied with only one row of the 
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Wiener estimation matrix, only the value for the specific wavelength would be reproduced as 

shown in equation (2).  

𝑟𝑒𝑠𝑡 = [

𝐺1,1 ⋯ 𝐺1,6

⋮ ⋱ ⋮
𝐺29,1 ⋯ 𝐺29,1

] ∗ [𝑆𝐵1 ⋯ 𝑆𝐵6] (1) 

𝑟𝑒𝑠𝑡_𝑤𝑙1 = [𝐺1,1 ⋯ 𝐺1,6] ∗ [𝑆𝐵1 ⋯ 𝑆𝐵6] (2) 

Given that the input was to be 1600x1200, thus 1600x1200x6, the estimation process to 

calculate a complete spectral cube (1600x1200x29) would be approximately 0.21s whereas to 

calculate only one band (1600x1200 at a specific wavelength) would be approximately 0.04s. 

Therefore, if the input data originated from a real-time video feed, each given moment a 

specific band of the spectrum could be reproduced and shown in full resolution (1600x1200 

in that case) in real-time.  

It is important to note that the Wiener estimation matrix is calculated beforehand for 

the given a priori knowledge. To eliminate any errors introduced by different lighting or 

geometric conditions, look-up-tables were created that corresponded to various conditions to 

match any desired acquisition setting.  

8.3.1 Microscopy Tile 

In Figure 8-2 spectral estimation was performed in the Microscopy Tile seen in Figure 

8-3. In this case, Spectral Transmittance was evaluated instead of Spectral Reflectance. The 

two spectral curves represent Hematoxylin and DAB which are also pointed out in the RGB 

image. It can be seen that the spectral estimation procedure managed to predict most of the 

spectral characteristics of the samples. Again, Gretag Macbeth® Color Checker® CC was 

used as the training set, although the data were reflectance spectra.  
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Figure 8-2  Spectral Estimation (Visible) 

Microscopy Tile - Hematoxylin, DAB 

 

 

DAB Hematoxylin 

 

 

 

Figure 8-3 Microscopy Tile RGB 

 

In Table 8-1 the quantitative results of the estimation process can be seen. In this 

scenario no thresholds are employed since there were only two samples to be estimated. 

Spectral Angle Mapper (SAM) was used to quantify the difference. The mean value of SAM 

is quite low which the desirable outcome was. That validates that spectral estimation can be 

performed for transmittance spectra and applied to fields such as microscopy. 

Table 8-1 Microscopy Tile Films Spectral Estimation Quantitative Results 

 SAM (MeanValue, Standard Deviation) 
Microscopy Tile 0,0576 ± 0,0180 
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8.4 Real Time Color Imaging 

Color can be reproduced with two different methods. The first was by using a complete 

spectral cube of the object in question and multiplying it with the illuminant desired as well as 

the Color Matching Function. The second was the newly proposed way of weighted unmixed 

spectral bands. 

 The first process is time consuming since for each frame a whole cube as well as all 

data needed must be calculated as described in the beginning of Chapter 0. To calculate the 

XYZ values that were derived from the multiplication of the spectral cube, the SPD of the 

illuminant and the CMF function, 1.34 seconds were needed. Moreover, the output needed to 

be transformed into RGB, so an extra overhead of 0.04 second was added to calculate the 

XYZ data with the transformation matrix M. Thus 1.34 for XYZ evaluation, plus 0.04 for 

RGB Transformation, plus 0.21 for Spectral Cube estimation, summed up to 1.59 seconds 

which effectively eliminates our ability for real time color imaging.   

The second process was less time consuming since the only data needed for the color 

reproduction was the weight matrices for the unmixing and the weight matrix for the RGB 

transformation, which were evaluated beforehand. As with spectral estimation, to avoid any 

introduction of errors, the weight matrices were calculated under different illumination and 

geometric condition and a look-up-table was created that corresponded to various conditions 

to match any desired acquisition setting.  

Two main processes were at hand; Spectral Unmixing for each of the cameras and the 

transformation of the six narrow unmixed bands to RGB. The unmixing process took 

approximately 0.014s for the TBPF1, 0.012s for the TBPF2, and the RGB calculation 

approximately 0.014s. Those three processes added up to a total of 0.04s which was 

significantly less than the 1.59s needed for the first case. Thus, given a real-time video feed of 

six narrow spectral bands, spectral unmixing and color reproduction could be performed in 

real-time.  

For both cases, the accuracy of the result was very high as described in Chapters 0 and 

0. The speed of the weighted color reproduction outperformed the speed of the traditional one 

but it came with a tradeoff. The color reproduced could be only under the given illuminant at 

that given moment (i.e. D50, D65 etc.).  
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8.5 Color Imaging Using Six Unmixed Spectral Bands  

Color reproduction using a Multispectral system like the MUSIS HS camera, can be 

performed with two ways as described before. One was with Spectral Estimation in order to 

acquire the whole spectral cube of the specimen within the visible spectrum and the other 

with a weighted matrix.  

A new multispectral system is designed using two RGB cameras coupled with two 

interference filters, shown in Figure 7-1, along with a beam splitter in order for both cameras 

to acquire the image properly. This system underwent the unmixing process and can acquire 

simultaneously six spectral bands that can be used for both Spectral and Color Imaging. 

The Color reproduction results will be called RGB_Unmixed to indicate the use of 

unmixed spectral bands.  In order to evaluate the quality of the reproduced color, a 

comparison was made between the RGB_Unmixed, as well as each triple band both mixed 

and unmixed, with the actual RGB image under the same illumination and geometric 

conditions. The weights used for both triple band unmixing and RGB transformation were 

created using the Gretag Macbeth Color Checker® CC.  

The specimen used for testing was the Gretag Macbeth Color Checker® SG, which 

contains 140 color patches. The external surrounding patches are black, grey and white with 

the same Spectral and Color characteristics so they are not used in this comparison. Since the 

Color Checker is quite sizable, it is split into four quadrants (Quads) each containing 24 color 

patches.  For each Quad from first to fourth, the black-white-gray patches excluded from the 

quantitative comparison are located in the corners of each color image. Top left for the first 

quad, top right for the second, bottom left for the third and bottom right for the fourth. In 

order to equally distribute the number of patches within the four images a white spot was 

placed that marked the center of the Macbeth® SG. That exclusion process left 96 color 

patches for the quantitative testing.  

Thus for each of the four quadrants, 4 figures will be presented for each comparison 

case. Firstly the RGB values were compared with the RGB_Unmixed ones. Afterwards the 

RGB values were compared with both TBPFs for mixed and unmixed data.  

The results provided can help evaluate the quality of the color reproduction both 

numerically and perceptually. The reproduced image, side by side with the measured RGB 

one for each case, is the first result available in order to identify the perceptual difference. 

Afterwards the quantitative measures of CIELAB color difference were evaluated. For each 

case, the statistical analysis for both ΔE94* and ΔΕab* can be seen, as well as the two vector 

plots that provide the magnitude of the error for chromasity and lightness. 
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When all five cases were presented (RGB_Unmixed, TBPF1, TBPF1_Unmixed, 

TBPF2 and TBPF2_Unmixed) an overall assessment was made and the best case scenario 

was chosen. In advance, it was expected that the RGB_Unmixed would have the best 

performance, followed by TBPF2 and TBPF1 and lastly by the Unmixed TBPFs.  

Images captured with the Cameras coupled TBPFs provided a result that resembled the 

RGB images but still had high perceptual differences. Depending on the peak transmission of 

each TBPF according to the RGB spectral sensitivity, the color may appear more, or less, 

saturated. For example, if the peak transmission of a TBPF matched the peak transmission of 

the RGB channels, the colors of the image would be more saturated, “warm”, whereas in an 

opposite case the color would seem “cold”. The overlapping of the Spectral Sensitivity curves 

of the RGB with each TBPF can be seen in Figure 8-4 and Figure 8-5 for TBPF1 and TBPF2 

correspondingly.  

Since the Unmixed TBPFs contained “pure” spectral information, the color reproduced 

by using each of the three bands as the corresponding color (i.e. 464nm as Blue, 542 as Green 

and 639 as Red) wouldn’t be close to a normal RGB image. That was because by coupling the 

CCD with the TBPFs the spectral sensitivity of the Camera sensor was changed and along 

with the spectral unmixing, the information of the bands became “pure” spectral.  The RGB 

image produced by using those three bands creates a “pseudo color” RGB image that 

illustrates the color produced by three spectral bands.  
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Figure 8-4 RGB Spectral Sensitivity Coupled with TBPF1 

 

Figure 8-5 RGB Spectral Sensitivity Coupled with TBPF2 
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Figure 8-6 RGB (Left Column) and RGB_Unmixed (Right Column) Images Macbeth SG Quad1-4 

Respectively                 
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Figure 8-7 CIELAB Metrics Quad 1 RGB vs. Unmixed RGB 

 

Figure 8-8 CIELAB Metrics Quad 2 RGB vs. Unmixed RGB 
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Figure 8-9 CIELAB Metrics Quad 3 RGB vs. Unmixed RGB 

 

 

Figure 8-10 CIELAB Metrics Quad 4 RGB vs. Unmixed RGB 
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Figure 8-11 RGB (Left Column) and TBP1 (Right Column) Images Macbeth SG Quad1-4 Respectively 
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Figure 8-12 CIELAB Metrics Quad 1 RGB vs. TBP1 

 
Figure 8-13 CIELAB Metrics Quad 2 RGB vs. TBP1 
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Figure 8-14 CIELAB Metrics Quad 3 RGB vs. TBP1 

 

Figure 8-15 CIELAB Metrics Quad 4 RGB vs. TBP1 
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Figure 8-16 RGB (Left Column) and TBP1_Unmixed (Right Column) Images Macbeth SG Quad1-4 

Respectively 
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Figure 8-17 CIELAB Metrics Quad 1 RGB vs. TBP1_Unmixed 

 
Figure 8-18 CIELAB Metrics Quad 2 RGB vs. TBP1_Unmixed 



 

[106] 

 

 
Figure 8-19 CIELAB Metrics Quad 3 RGB vs. TBP1_Unmixed 

 
Figure 8-20 CIELAB Metrics Quad 4 RGB vs. TBP1_Unmixed 
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Figure 8-21 RGB (Left Column) and TBP2 (Right Column) Images Macbeth SG Quad1-4 Respectively 
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Figure 8-22 CIELAB Metrics Quad 1 RGB vs. TBP2 

 
Figure 8-23 CIELAB Metrics Quad 2 RGB vs. TBP2 
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Figure 8-24 CIELAB Metrics Quad 3 RGB vs. TBP2 

 
Figure 8-25 CIELAB Metrics Quad 4 RGB vs. TBP2 
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Figure 8-26  RGB (Left Column) and TBP2_Unmixed (Right Column) Images Macbeth SG Quad1-4 

Respectively 
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Figure 8-27 CIELAB Metrics Quad 1 RGB vs. TBP2_Unmixed 

 

Figure 8-28 CIELAB Metrics Quad 2 RGB vs. TBP2_Unmixed 
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Figure 8-29 CIELAB Metrics Quad 3 RGB vs. TBP2_Unmixed 

 
Figure 8-30 CIELAB Metrics Quad 4 RGB vs. TBP2_Unmixed 
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By carefully observing the above images and graphs of the patches of Macbeth Color 

Checker, it is easy to infer that the best results that match the RGB values of the object are the 

RGB_Unmixed results (Figure 8-7 - Figure 8-10) . This can be also noticed perceptually in 

Figure 8-6.  

As aforementioned, the data from the Triple Band Pass Filters are compared as well. 

Beginning from TBPF1 (Figure 8-12 - Figure 8-15) it can be noticed that the average of the 

CIELAB DEab* is approximately 15, which means high color difference. Perceptually, the 

differences can be noticed in Figure 8-11. The same applies for TBPF2 (Figure 8-22 - Figure 

8-25) whose DEab* is approximately 8. Although the error is high, comparing with the 

corresponding data from TBPF1 both numerically and perceptually (Figure 8-21), it can be 

seen that the color patches from TBPF2 match better in hue and chromasity to RGB than the 

TBPF1 color patches. 

 Finally, the Unmixing algorithm is performed and both TBPFs were unmixed. This 

meant that any cross-talking between the bands was removed and all six channels represented 

“pure” spectral information. That said the color difference between the unmixed and the RGB 

values should be noticeable. From Figure 8-17 - Figure 8-20 for TBPF1 and Figure 8-27 - 

Figure 8-30 for TBPF2 it can be seen that the difference was quite high. The lengths of the 

arrows in both Unmixed Bands were quite big which meant that there was high color 

difference between the RGB and Unmixed Band values. Moreover, statistically the color 

difference value DEab* averaging to 23 for TBPF2 and 27 for TBPF1, which also validated 

the high perceptual difference. Again, the TBPF2 perform better in comparison to TBPF1. 

That happens because the bands of the TBPF2 were evenly distributed among the EM-

Spectrum and its peak transmittances were close to the RGB ones in comparison with the 

TBPF1. Finally, the perceptual difference between the Unmixed and the RGB Images is quite 

high as it can be noticed in Figure 8-16 and Figure 8-26. These results were expected since as 

aforementioned the values of the bands were unmixed thus represent “clean” spectral data. 

All these results can be seen in detail for all the cases in and can be seen in detail in Table 

8-2. 

Table 8-2 Color Reproduction Quantitative Results Comparison 

DEab Max Min Average 

RGB_Unmixed 14,85 1,05 4,46 

TBPF1 24,25 1,79 15,09 

TBPF1_Unmixed 41,75 12,69 27,04 

TBPF2 17,23 2,01 7,96 

TBPF2_Unmixed 30,79 11,41 22,96 
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8.6 Spectral and Color Imaging Post Processing 

Spectral and Color Imaging data may be needed for storage or post processing. For 

example, one of the main advantages in Color Reproduction is that given a spectral cube, the 

color of the sample can be reproduced under any illuminant or conditions.  

For this reason, the system designed provides the user with the ability to store and use a 

complete spectral cube for any requirement. So, for both Spectral and Color Imaging the 

following options were enabled. 

During Spectral imaging, it was mentioned that only one spectral band was reproduced 

at any given moment for real-time purposes. On demand, the spectrum of a single pixel could 

be evaluated and the SPD of the specific point recovered. Moreover, the complete spectral 

cube could be saved for the visible region of the spectrum. 

During Color Imaging, the output of each camera could be saved independently. The 

images could be both the unmixed and mixed ones. The RGB_Unmixed value could be saved 

as well. Finally, the complete spectral cube could be evaluated in order to use it for color 

reproduction under various illumination conditions and not only the one at hand during the 

experiment.  

 

8.7 Modulation Transfer Function 

The Modulation Transfer Function (MTF) is an important parameter to evaluate the 

optical capabilities (resolution and contrast) of an optical system.  

Resolution is an imaging system's ability to distinguish object detail. It is often 

expressed in terms of line-pairs per millimeter (where a line-pair is a sequence of one black 

line and one white line). This measure of line- pairs per millimeter (lp/mm) is also known as 

frequency. The inverse of the frequency yields the spacing in millimeters between two 

resolved lines. Bar targets with a series of equally spaced, alternating white and black bars are 

ideal for testing system performance. 
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Figure 8-31 Perfect Line Edges before and after passing through a low-frequency pattern (left), high-

frequency pattern (right), their corresponding MTF value (bottom). 

 

Consider normalizing the intensity of a bar target by assigning a maximum value to the 

white bars and zero value to the black bars. Plotting these values results in a square wave, 

from which the notion of contrast can be more easily seen in Figure 8-32 . Mathematically, 

contrast is calculated with equation which is known as Michelson contrast equation: 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡\𝑀𝑜𝑑𝑢𝑙𝑎𝑡𝑖𝑜𝑛  =
𝐼𝑚𝑎𝑥 − 𝐼𝑚𝑖𝑛

𝐼𝑚𝑎𝑥 + 𝐼𝑚𝑖𝑛
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Figure 8-32 Contrast expressed as a square wave at different levels of resolution 

 

In order to measure our systems’ MTF the Variable Frequency Target (2.2.5 - VFT) 

was used. The CMOS sensor used for our system has a pixel size of 19.36μm which implies 

0.01936 mm per pixel. Inverting this number (1/0.01936) gives the Nyquist frequency of 

51.65 line pairs per millimeter.  That means that the approximate MTF value of our system 

using the VFT would be 51 lp/mm. 

From the MTF curve (Figure 8-33) we can estimate the resolution to be about 47 

lines/mm (MTF value = 0.5) but the curve gives a more precise description of the optical 

system than this number. That resulted in a convergence between the theoretical and the 

experimental value as the measured MTF value is approximately the expected MTF resulting 

from the systems pixel size.  

The small difference introduced was mainly due to focusing since for each block of line 

pairs/mm of the target different focus was needed for optimum results.  
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Figure 8-33 System's Modulation Transfer Function 

Since our multispectral system is used to estimate spectra, the need to validate that the 

MTF of the system remained unaffected was at hand. The VFT target was captured and 

estimated and the MTF of the predicted bands was calculated as well.  

 In Figure 8-34 the MTF of the estimated band 560nm is presented versus the measured 

MTF of the system. Again for this process TBPF1 and TBPF2 were used and 15 spectral 

bands were estimated. The predicted MTF value was 45 lp/mm, which is approximately the 

same as the measured one. Moreover, the RMSE was 0.0219 which indicates low error factor.  

The above result provides a validation of the fact that the performance of the camera 

was not affected by the spectral estimation process and that the images produced would have 

the same resolution and contrast as the corresponding measured ones.  
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Figure 8-34 MTF of Estimated Band 560nm vs. Measured MTF 

 

8.8 Color Gamut 

A very important parameter of a Color Imaging system is the color gamut. Depending 

on the device itself as well as the type of the device (input, output) the Color Gamut and the 

method to evaluate can vary significantly. Amongst many methods that have been proposed 

to calculate the Color Gamut of Digital Cameras or Scanners [70][71][72], for our study we 

chose the “input device plus transform gamut”. Under this concept, the camera was 

characterized by the way it responded to a set of reference set of colors such as Macbeth 

Color Checker CC. The three primary RGB colors were used in order to determine the highest 

colorfulness the stimulus can attain without saturation the camera response. 

 Our system comprises of two RGB cameras coupled with two Triple Band Pass 

Filters. In order to perform a thorough analysis of our system the Color Gamut was estimated 

for every possible case of tristimulus produced. In other words, Color Gamut was estimated 

for each TBPF, Mixed and Unmixed, as well for the Six Unmixed Spectral Bands system. All 

of these results are then compared to the RGB Color Gamut of the same camera coupled only 

with an IR-cut filter.   
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Figure 8-35 Color Gamut TBPF1 Mixed 

 
Figure 8-36 Color Gamut TBPF1 Unmixed 
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Figure 8-37 Color Gamut TBPF2 Mixed 

 
Figure 8-38 Color Gamut TBPF2 Unmixed 
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Figure 8-39 Color Gamut Garida Imaging System (Six Unmixed Spectral Narrow Bands) 

From Figure 8-35 to Figure 8-39 the color gamut of all possible color inputs can be 

seen. It is noticeable that TBPF1, either mixed or unmixed, has significant difference with the 

regular RGB. On the other hand TBPF2 Mixed seemed to expand the Color Gamut which 

effectively meant that the colors obtained would be more saturated and perceptually different 

than those of the conventional RGB. TBPF2 expanded the gamut towards the Green area but 

seemed to lose chromasity over blue and red.  

Lastly, the Color Gamut of the Six Unmixed Bands was evaluated. As it seems in 

Figure 8-39 the Color Gamut of our Six Unmixed Band Camera System and the 

conventionally RGB camera were approximately the same which indicated low chromasity 

difference and high fidelity color reproduction. 

8.9 Metamerism 

Color imaging systems suffer from the phenomenon of metamerism. Spectral Imaging 

systems provide a solution to this problem since the sample, scene or object, becomes 

independent of any illuminant (or other) conditions.  Since all Hyper or Multispectral systems 

are independent of metamerism our system is also tested in order to be proven as such.  
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In order for a system to be proven metamerism independent, a test target is needed that 

contains a number of metamer sets [73]. Two surfaces that look the same under a certain 

illumination conditions but have different spectral distribution are called metamers. A new 

kind of test target was created at Munsell Color Science Laboratory [74], called METACOW, 

which contains the 24 color patches of Gretag Macbeth ColorChecker® with the metameric 

match of each one. It is represented by 24 cows where half the cow, from the middle and 

back, corresponds to the ColorChecker’s color and spectral values and the rest of the cow 

represents the metameric match of this patch. The spectral values of each patch can be seen in 

Figure 8-40. This test target allowed investigating the effect of metamerism of our system. 

The RGB values of the METACOW target as measured in the Munsell lab, can be seen in 

Figure 8-41. As aforementioned, our system can reproduce color with two different methods. 

The first method estimates the spectrum of the target for the visible part of the spectrum and 

uses it to reproduce color under any illuminant conditions. The second method uses six 

weighted bands in order to reproduce color in real time. In Figure 8-42 the result of real time 

six weighted band color reproduction can be seen. It is important to note that the RGB image 

provided from Munsell and the one reproduced are acquired with different devices under 

different illumination conditions. From the results provided it is noticeable that the two parts 

of the cow are quite different. The half part that corresponds to Macbeth ColorChecker is 

reproduced and the color resembles the ones from Macbeth while the front half of the cow 

differs significantly.  The color of the metameric match part is reproduced having a very 

different color perception than the rest of the cow since the Spectral Power Distribution of 

that part of the cow differs from the default values of Macbeth.  

This result indicates that the color reproduction process of our Real Time multispectral 

system is independent from the phenomenon of metamerism. The result was quite expected 

since the system acquires six narrow spectral bands that have undergone an unmixing process 

which makes them contain pure spectral information without any cross-talking. 

 

Figure 8-40 Spectral Reflectance of Macbeth Normal and Metameric Patches 
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Figure 8-41 METACOW test target 

 

 

Figure 8-42 METACOW Six Weighted Bands Color Reproduction 
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8.10  Real-Time Spectral Mapping 

Finally, real-time spectral mapping processes where incorporated to our system creating 

the first Real-Time Spectral Mapper (RTSM)[69],[75]. The RTSM was used for performing 

real-time feature extraction from immunostained invasive histology breast cancer samples. 

The purpose of the analysis was to validate its accuracy when a natural target is analyzed. The 

invasive ductal breast carcinoma biopsy samples were  immunostained for estrogen receptors 

(ERs) [utilizing the Quanto UltraVision  HRP Immunodetection Kit (Thermo Scie., USA)  

and  a primary antihuman Rabbit Monoclonal antibody (SP1 RM-9101, Neomarkers, USA, 

with DAB as chromogen)], and  counterstained with Hematoxylin. Spectral mapping was 

performed with both the scanning HSI system and the RTSM, both adapted to a microscope 

(Olympus BX51). Figure 8-43 illustrates the spectral maps obtained with the RTSM (c), (d). 

In these color- coded images, pseudocolors represent different spectral classes and depict 

different immunostain uptake levels from the cell nuclei, which is of great diagnostic 

importance. Figure 8-43 (b) illustrates an image depicting quantitatively the differences 

between the experimental spectral cube collected with the HSI system and the spectral cube 

generated by the RTSM. Both cubes were obtained from the histology sample of Figure 8-43 

(a). The comparison (in radians) was performed on a pixel-by-pixel level, using (again) the 

SAM algorithm for comparing spectra corresponding to the same spatial coordinates. The 

maximum spectral difference that was measured accross the image was 0.5 radians, indicating 

an exceptional similarity between the measured and the estimated spectral cube. 

 

Figure 8-43 (a) Biopsy Image of Immunostained Biopsy (b) Measured and Estimated Spectrum (c) 

Spectral Map for Hematoxilin immunostain (d) Spectral Map for DAB Immunostain 
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9 Conclusions 

Throughout this Master thesis, spectral color reproduction was studied using six narrow 

spectral bands for the visible regions of the EM-Spectrum. Spectral estimation was extended 

to the Near Infrared region of the EM-Spectrum and the use of six additional spectral bands 

within the NIR provided high accuracy results.  

Spectral and Color Imaging Systems were used to validate the outcome of the 

aforementioned process. Results showed that six spectral bands can provide high accuracy 

spectral estimation within the visible region and that the spectral cube which resulted from 

this process could be used for color reproduction under any illumination condition and 

provide high fidelity color.  

The use of two high-resolution RGB cameras was proposed, coupled with two Triple 

Band Pass Filters along with light dispersing elements, creating a novel multispectral system. 

Spectral estimation was performed with this system and the results validated our previous 

work, that six narrow spectral bands can be used for high accuracy spectral estimation. The 

fact that high fidelity color can be reproduced as before from the resulting spectral cube was 

validated alongside it. 

A Spectral Unmixing algorithm as well as a Camera Sensitivity measurement were 

proposed in association with the aforementioned system to eliminate any cross-talking 

between the three spectral bands of each Triple Band Pass Filter for each of two RGB 

cameras. The resulting Unmixed Bands were used to perform weighted color reproduction. 

The results indicated that for the scene’s given illumination, color reproduction can be 

performed without using a complete spectral cube and result in high fidelity color.   

We report the first real time spectral mapper (RTSM) combining snapshot spectral 

imaging with the Wiener spectral estimation algorithm. The described RTSM system offers 

accurate spectral mapping as compared to scanning spectral imager, being, however, three 

orders of magnitude faster than conventional technologies. The technology is intended to 

enable spectral imaging and mapping in a series of biomedical in vivo and in vitro 

applications involving dynamic bio-optical phenomena and not stationary imaging conditions. 
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10 Discussion 

A novel spectral and color imaging system was developed that could reproduce spectral 

reflectance for a specific wavelength and perform color imaging in real time as well as 

reproduce real-time color for the scene’s given illuminant. The real-time spectral imaging 

system is described and validated for both spectral and color estimation. The color gamut, the 

MTF and the Metameric sensitivity of the system were also calculated resulting that the 

proposed system can estimate spectral correctly without modifying the MTF function of the 

system, reproduce High Fidelity color without modifying the Color Gamut of a corresponding 

RGB system or be prone to metameric effects.   

This study was also the foundation of the first Real Time Spectral Mapper (RTSM) 

which allowed the simultaneous acquisition of spectrum and spectral mapping. RTSM will 

have a tremendous impact on Biomedical Sciences and it can be used in many fields of 

medicine such as endoscopy, microscopy, pathologoanatomy and so forth.  

The aim of this study was to create novel spectral imaging systems that offer 

tremendous capabilities in both spatial and spectral resolution with instantaneous acquisition 

of spectral images. This will allow the observation of dynamically evolving phenomena and 

could revolutionize many clinical test by shortening the examination time and providing a 

non-invasive non-destructive analysis.  

11 Future Work 

This device could be extended to perform real-time spectral imaging to both the IR and 

UV regions of the spectrum in real-time. The study of spectral estimation for the NIR 

concluded that three narrow spectral bands could be used for accurate spectral estimation. For 

that purpose a three broad band camera with sensitivity to the NIR coupled with interference 

filter could be used in conjunction with the system, so to enhance its spectral resolution. 

Moreover, an extended analysis for spectral estimation within the UV region of the spectrum 

can be also performed. Again, the optimum number of bands that allow high accuracy 

spectral estimation must be set. After validating the number of bands, a new optical-

mechanical design of the system will be in order, so to incorporate optical-dispersing 

elements that will allow the simultaneous capturing of any scene from three or more cameras. 
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