
SPOKEN LANGUAGE CLASSIFICATION
FOR AUTOMATED CALL ROUTING

Diploma Thesis
of

georgiadou despoina

Electronic and Computer Engineering

Technical University of Crete
TUC

July 2014

Supervisor: Professor Digalakis Vasilis

[July 2014 – TUC]

Georgiadou Despoina: Spoken language classification for automated call
routing, c© July 2014

[July 2014 – TUC]

A B S T R A C T

Nowadays there is a raising interest in providing automated services
via natural spoken dialog systems. By natural, we mean that the ma-
chine understands and acts upon what people actually say, in contrast
to what one would like to say. There are many issues that arise when
such systems are targeted for large populations of non-expert users.

Here, we focus on the task of automatically routing telephone calls
(call routing) based on a user’s spoken response to an open-ended
prompt of ’How may I help you?’. We have a database generated
from spoken transactions between customers and human agents and
we describe methods for automatically understanding such data. Re-
sults evaluating call classification from speech are reported for that
database. These methods are considered part of Spoken Language
Understanding (SLU) in a Spoken Dialog System.

For a start, we provide a brief coverage of Spoken Dialog Systems
in order to comprehend the part of Spoken Language Understanding
(SLU). More specifically, focusing on the call-routing task, the main es-
tablished approaches are covered and for each approach, we describe
the algorithms used in order to provide the reader with a better view
of the state of the art in this area. After that, we introduce the term
’salience’ and explain the benefits of using phrases instead of words
during the classification procedure. Two classification algorithms are
featured which both extract salient phrases from the training dataset
and use them in different ways so as to categorize a test call request.

Next, we examine the classification of our test calls depending on
their topic using continuous mixture Gaussian distributions (Gaus-
sian Mixture Models). The implementation work starts from the pre-
processing of calls in order to appear into a more compact form,
followed by the creation stage of dictionary and term weighting of
bringing a text version of the classical representation through words
in vector format. The following step is the reduction of the dimen-
sions of the vectors using the Singular Value Decomposition (SVD),
for the division of numerical linear algebra in tables. Finally, the final
vectors are being used for the training of GMM.

In this work, we used an American-English dataset, which contains
a high number of pre-processing call requests and classes. The accu-
racy of our models is compared to the algorithms referred as state-
of-the-art and the extracted results as well as comparative tables and
figures are offered for a deeper comprehension.

Index Terms: Call Routing, Spoken Dialog System, Spoken Lan-
guage Understanding (SLU)

iii

[July 2014 – TUC]

[July 2014 – TUC]

A C K N O W L E D G E M E N T S

I would like to take some time here and thank the people who made
the completion of this work possible.

First of all, I would like to express my sincere thanks to my thesis
supervisor, Professor Digalakis Vasilis, for assigning this work to me.

Many thanks also go to Mr Diakoloukas Vasilis who provided his
experience and knowledge whenever needed. I deeply appreciate all
his guidance and support throughout this work.

Finally, I need to express my deepest gratitude to my best friend
for all the patience and mostly for offering me emotional support and
encouragement.

v

[July 2014 – TUC]

[July 2014 – TUC]

C O N T E N T S

i chapters 1

1 introduction 3

1.1 Spoken Language Understanding (SLU) 3

1.2 Call Routing Systems . 4

1.2.1 Touch-tone menus 4

1.2.2 Natural language call routing 4

1.2.3 Natural language call routing and Touch-tone menus
comparison . 5

1.3 Objective of this work . 5

1.4 Organization of this work 6

2 state-of-the-art 9

2.1 Spoken Dialogue Systems 9

2.1.1 Architecture . 9

2.1.2 Components . 10

2.2 Algorithms for Call Routing 13

2.2.1 n-gram Classifier . 13

2.2.2 Naive Bayes (NB) . 14

2.2.3 Maximum Entropy (MaxEnt) 15

2.2.4 Boosting . 16

2.2.5 Support Vector Machines (SVM) 16

2.2.6 Vector-based Classifier 16

2.3 Novelty of this work . 20

3 call-type classification 21

3.1 Data Processing - Phrases preferred instead of words . . 21

3.1.1 Phrase . 21

3.1.2 Fragment . 21

3.1.3 Salience . 22

3.1.4 Salient phrase fragments 23

3.1.5 Statistical and rule-based approaches for spoken
language understanding 24

3.2 Call-type classification . 25

3.2.1 Peak-of-fragments classifier 25

3.2.2 Tree classifier . 25

4 gmm classifier 31

4.1 Term-Document Matrix Construction 31

4.1.1 Term weighting . 31

4.1.2 Normalization techniques 32

4.2 Singular Value Decomposition (SVD) 34

4.2.1 SVD Basis . 35

4.2.2 SVD Analysis . 36

4.3 Gaussian Mixture Model (GMM) 37

vii

[July 2014 – TUC]

viii contents

4.3.1 GMM Model Formulation 38

4.3.2 Expectation Maximization (EM) 41

4.3.3 GMM-Covariance matrix 43

5 datasets 45

5.1 Corpus Analysis . 45

5.1.1 AT&T Dataset Classes 46

5.2 Problems concerning the classes 51

6 experiments 53

6.1 Evaluation Measures . 53

6.2 Baseline . 54

6.3 Data Processing . 57

6.4 Results of the experiments 59

6.4.1 tf-idf and entropy weighting 59

6.4.2 Covariance Type . 60

6.4.3 Number of GMM components 61

6.4.4 SVD dimension . 63

6.5 Comparison of the results 64

7 concluding remarks and future work 69

7.1 Concluding remarks . 69

7.2 Future work . 70

ii appendix 71

a appendix 73

a.1 AT&T . 73

a.2 Salient phrases tables . 73

a.3 The Stanford Classifier . 77

a.4 Evaluation of semantic distortion measure for two frag-
ments . 78

a.5 Numerical results of the experiments 78

a.6 Part of GMM implementation in python 79

a.7 Important tools in python 81

bibliography 83

[July 2014 – TUC]

L I S T O F F I G U R E S

Figure 1 Spoken dialog systems chain 10

Figure 2 Example tree representation of a phrase 27

Figure 3 Singular Value Decomposition (SVD) 37

Figure 4 Expectation Maximization Algorithm (EM) 43

Figure 5 Pie representation of the classes for the ATT train
data . 46

Figure 6 Number of test data in ATT dataset 50

Figure 7 NB baseline results for ATT dataset 55

Figure 8 MaxEnt baseline results for ATT dataset 56

Figure 9 Flowchart with the stages of our classifier 58

Figure 10 Comparison of the accuracy for tfidf and logEn-
tropy weighting . 59

Figure 11 Accuracy of our classifier for different covari-
ance types . 60

Figure 12 Accuracy of our classifier for different number
of Gaussians . 61

Figure 13 3-D depiction of 3 dimensions 62

Figure 14 Comparing the SVD dimensions 63

Figure 15 Comparing the baseline classifiers to GMM for
the ATT dataset . 64

Figure 16 Comparing the accuracy 65

Figure 17 Comparing the Precision 66

Figure 18 Comparing the Recall 66

Figure 19 Precision, Recall, F1 of the top 3 methods 68

ix

[July 2014 – TUC]

L I S T O F TA B L E S

Table 1 Steps of the Tree Classifier 29

Table 2 Basic steps in SVD process 35

Table 3 Datasets Information 45

Table 4 AT&T Train Dataset Classes 49

Table 5 AT&T Test Dataset Classes 50

Table 6 Baseline Results (%) 55

Table 7 Macro-Average Precision,Recall,F1 (%) 67

Table 8 Accuracy of Baselime methods 67

Table 9 Accuracy of our proposed methods 67

Table 10 AT&T Class Collect 74

Table 11 AT&T Class Calling Card 74

Table 12 AT&T Class Dial for me 74

Table 13 AT&T Class Directory 74

Table 14 AT&T Class Third Number 75

Table 15 AT&T Class Time 75

Table 16 AT&T Class Area Code 75

Table 17 AT&T Class Time and Charges 75

Table 18 AT&T Class Billing Credit 76

Table 19 AT&T Class Competitor 76

Table 20 AT&T Class Rate 76

Table 21 AT&T Class ATT Service 76

Table 22 AT&T Class How to dial 77

Table 23 AT&T Class Person to Person 77

Table 24 GMM accuracy for the AT&T dataset with tfidf
weighting . 78

Table 25 GMM accuracy for the AT&T dataset with lo-
gEntropy weighting 79

x

[July 2014 – TUC]

L I S T I N G S

Listing 1 Term weighting . 79

Listing 2 Gaussian mixture model 80

Listing 3 LSI model . 80

Listing 4 GMM-probability under the model 81

xi

[July 2014 – TUC]

A C R O N Y M S

SLU Spoken Language Understanding

HMIHY How May I Help You

ATT American Telephone and Telegraph

IVR Interactive Voice Response

NLU Natural Language Understanding

ASR Automatic Speech Recognition

DM Dialog Management (Dialog Policy)

NLG Natural Language Generation

TTS Text To Speech

NB Naive Bayes

MaxEnt Maximum Entropy

SVM Support Vector Machines

IDF Inverse Document Frequency

TF-IDF Term Frequency - Inverse Document Frequency

SVD Singular Value Decomposition

LSI Latent Semantic Indexing

GMM Gaussian Mixture Model

EM Expectation Maximization

xii

[July 2014 – TUC]

Part I

C H A P T E R S

[July 2014 – TUC]

[July 2014 – TUC]

1
I N T R O D U C T I O N

In this chapter we introduce Spoken Language Understanding and
we focus on one application of it which is the Call Routing Systems.
After that, we describe both the objective of this work and how it is
organized here.

1.1 spoken language understanding (slu)

Spoken Language Understanding (SLU) is an emerging field in be-
tween speech and language processing, investigating human/machine
and human/human communication by leveraging technologies from
signal processing, pattern recognition, machine learning and artifi-
cial intelligence. SLU aims to extract the meaning of the speech utter-
ances (spoken phrases) and automatically identify the intent of the
user as expressed. The term SLU has largely been coined for under-
standing of human speech directed at machines and it is widely be-
lieved that the number of SLU applications will increase in the future
since its applications are vast, from voice search in mobile devices
to meeting summarization, attracting interest from both commercial
and academic sectors. (several elements that are necessary in human-
computer dialog are described in [33])

There are three categories of understanding systems [12]. The first
one is about artificial intelligence systems that mimic understanding
[Eliza, MIT 1966]. The second category contains systems rooted in
artificial intelligence, which are successful for very limited domains,
using deeper semantics. The third category is systems where under-
standing is reduced to a mostly statistical language processing prob-
lem and it is our main focus in this work.

In the last case, targeted speech understanding tasks are tried to
be solved instead of the global machine understanding problem. In
targeted speech understanding tasks the problem of understanding
a user’s utterance (we use the word utterance rather than sentence
when referring to spoken language [21]) is reduced to the problem
of extracting specific arguments in a given frame-based semantic rep-
resentation. To do so, known classification methods are applied on
the provided training dataset and comparative experiments are per-
formed.

Today there are many targeted speech understanding systems and
one them is AT&T’s (Appendix A.1) "How May I Help You" system
(HMIHY, Gorin, 1997 [4]). HMIHY is a call routing system whose

3

[July 2014 – TUC]

4 introduction

motivation was to build an alternative to traditional menu-driven IVR
call center systems, moving the burden from the users to the system.
This uderstanding task is framed as a classification problem.

1.2 call routing systems

Call routing is the task of getting callers to the right place in the
call center, which could be the appropriate live agent or automated
service. Natural language call routing lets callers describe the reason
for their call in their own words, instead of presenting them with a
list of menu options to select from using the telephone touch-tone
keypad (details and comparisons can be found in [5]).

1.2.1 Touch-tone menus

Touch-tone menus implement call routing by having callers select
from a list of options using their touch-tone keypad. If there are
more than a few routing destinations, typically several touch-tone
menus are arranged in hierarchical layers. Some commercially de-
ployed speech-enabled IVRs replace touch-tone menus with speech-
enabled menus, which allow callers to select an option by either
speaking a number (� For . . ., press or say one�) or a keyword
(� Say weather, news, stocks,. . . �). Clearly, a speech-enabled IVR
that mimics human call routing would be a substantial improvement
over existing menu-based systems. Speech-enabled IVRs have made
substantial headway at replacing standard touch-tone IVRs in call
centers; for example, in airline flight information, banking services,
and voice portals.

1.2.2 Natural language call routing

Natural language call routing is a speech-enabled IVR that employs
an open-ended prompt for call routing. Several years ago speech
recognition research developed the technology that makes natural
language call routing feasible by combining speech recognition with
natural language understanding technology. �How may I help you
today?� is how most customers service representatives (they are
mostly called agents) greet callers. This question essentially fulfills
the task of directing callers to the right department or agent, which
is termed call routing in call center terminology.

[July 2014 – TUC]

1.3 objective of this work 5

1.2.3 Natural language call routing and Touch-tone menus comparison

Many people interact with call centers on a daily basis, however, us-
ability of most touch-tone IVRs (Interactive Voice Response systems)
is dismal. Callers, having dealt with many IVRs that are difficult to
use, dislike touch-tone IVRs and seek agent assistance at the first op-
portunity. Not surprisingly, more users describe the reason for calling
in their own words than make a valid selection from a list of menu
options. Clearly, one of the main problems of existing touch-tone sys-
tems is that callers either get confused with the menus or are too im-
patient to listen to all options, and then either do not respond at all
or press� 0� to reach an operator. While the demise of touch-tone
IVRs has been predicted, they are still widespread. Because of high
agent costs, call center managers continue to seek automation with
IVRs. A study was conducted in a call center of a large telecommuni-
cation service provider [5]. Results show that with natural language
call routing, more callers respond to the main routing prompt, more
callers are routed to a specific destination (instead of defaulting to a
general operator who may have to transfer them), and more callers
are routed to the correct agent. The survey data show that callers
overwhelmingly prefer natural language call routing over standard
touch-tone menus. Furthermore, natural language call routing can
also deliver significant cost savings to call centers.

1.3 objective of this work

The objective of the call routing task is to direct a customer ′s call to an
appropriate destination within a call center or providing some simple
information, such as current rates or the area code of a city, on the ba-
sis of some kind of interaction with the customer. Our goal is to create
an algorithm for call-routing systems with this natural functionality.
A caller receives a greeting and makes a request as if talking to a
person. The algorithm ′s job is to recognize and understand what the
user wants not in an ontological sense, but just sufficiently to prop-
erly direct the call. The necessity of a system like this is obvious. In
current systems, such interaction is typically carried out via a touch-
tone system with a rigid pre-determined navigational menu. Menu
systems can be implemented using a touch-tone system (�Press 1 if
you want x, press 2 if you want y, ...�), voice labels (�Please say
collect, calling card, ...�), or a hybrid of the two (�Press or say 1 if
you want x, ...�). Each can be useful when the list of options is short
and well understood by customers, but for certain tasks designers
must resort to unwieldy hierarchical menus that can bore and frus-
trate users. The primary disadvantages of such navigating menus for

[July 2014 – TUC]

6 introduction

users are the time it takes to listen to all the options, the lack of natu-
ralness and the difficulty of matching their goals to the given options.
Since not all the users of call centers are familiar with such navigat-
ing menus, it turns out that more often than not, they are unable to
cooperate with such systems. These problems are compounded by
the necessity of descending a nested hierarchy of choices to zero in
on a particular activity. Even requests with simple English phrasings
may require users to navigate as many as four or five nested menus
with four or five options each. We have developed an alternative to
touch-tone menus that allows users to interact with a call router in
natural spoken English dialogues just as they would with a human
operator. In this call routing system, the prompt to the customer is
deliberately general e.g. �How may I help you?�. In contrast to
the typical �Please say yes or no� prompts encountered in current
voice dialogue systems, this prompt elicits a wide range of responses.
These responses can be very different in length, ranging from single
words to long responses that may be syntactically and semantically
complex or ambiguous, and that may incorporate a large vocabulary.
Here we describe a domain independent, automatically trained nat-
ural language call router for directing incoming calls in a call center.
Our call router directs customer calls based on their response to an
open-ended�How may I direct your call?� prompt. Routing behav-
ior is trained from a corpus of transcribed and hand-routed calls and
then carried out using several techniques. To examine human-human
dialogue behavior, we analyzed a set of transcribed telephone calls
involving customers interacting with human operators. In a typical
dialogue interaction between a caller and a human operator, the op-
erator responds to a caller request by either routing the call to an
appropriate destination, or by querying the caller for further informa-
tion to determine where the call should be routed. In our automatic
call router, we develop the first option as well as a new option of
sending the call to a human operator in situations where the router
recognizes that it is beyond its capabilities to automatically handle
the call. An almost similar task is the airline travel information sys-
tem, ATIS [13]. It is also an intent determination task (as it is usually
call in literature), but in this case, slot filling is needed as well.

1.4 organization of this work

This work is organized in six chapters:

• Chapter 2:

– State of the art: This chapter provides a brief, compre-
hensive though coverage of Spoken Language Understand-
ing (SLU). More specifically, focusing on the call-routing

[July 2014 – TUC]

1.4 organization of this work 7

task, the main established approaches are covered. For each
approach, we describe the algorithms used in order to pro-
vide the reader with a comprehensive view of the state of
the art in this area.

• Chapter 3:

– Call-type classification: In this chapter we introduce
the term Salience and explain the benefits of using phrases
instead of words during the classification procedure. Two
classification algorithms are featured. They both extract
salient phrases from the training dataset and use them in
different ways so as to categorize a test call request.

• Chapter 4:

– GMM Classifier: This chapter shows a different approach
to the call-routing task. The classifier we build is GMM/ML
and, since it results in good performance, we aim to pro-
vide details of each stage of the procedure. Consequently,
we firstly describe the turning of the train dataset into
vectors, analyzing the specific techniques used. Then, we
cover extensively the methods that are applied (SVD, GMM)
in order to accomplish our classification task. Much, impor-
tant information and theory are from [19].

• Chapter 5:

– Datasets: This chapter offers all the necessary statistical
information about the dataset we used to implement this
work and test the performance of all the algorithms. In
particular, we used an American-english database. A class
description of the dataset is also included.

• Chapter 6:

– Experiments: This chapter focuses on the experiments we
carried out in order to test the performance of all the al-
gorithms we implemented. The extracted results as well
as comparative tables and figures are offered for a deeper
comprehension.

• Chapter 7:

– Conclusion: This chapter summarizes and features the re-
sults and the conclusions from our work. In addition to
this, possible future work is proposed.

[July 2014 – TUC]

[July 2014 – TUC]

2
S TAT E - O F - T H E - A RT

This chapter provides a brief, comprehensive though coverage of Spo-
ken Language Understanding (SLU). More specifically, focusing on
the call-routing task, the main established approaches are covered.
For each approach, we describe the algorithms used in order to pro-
vide the reader with a comprehensive view of the state of the art in
this area.

2.1 spoken dialogue systems

A Spoken Dialog System is a dialog system delivered through voice.
It denotes a wide range of systems, from weather information sys-
tems (for instance MIT Jupiter weather information) to complex prob-
lem solving, reasoning, applications. Some applications of spoken
language systems are automatic call routing, answering questions
about weather or sport, travel planning, tutoring systems, applica-
tions within games and many others.

2.1.1 Architecture

The objective of a spoken dialogue system is to let a human interact
with a computer-based information system using speech as means
of interaction. Because a spoken dialogue system can make errors
and user requests can be incomplete or ambiguous, a spoken dia-
logue system must actively request for missing data and confirm
information, resulting in a sequence of interactions between a user
and a machine. This turn-based sequence of interactions between a
user and a machine is called a dialogue. The figure bellow illustrates
the architecture of a spoken language system. One example of a di-
alogue between a human (user) and a machine (system) could be a
telephone directory assistance task. In this example, the user can ask
for telephone numbers, fax numbers, and email addresses of persons,
departments, and companies. After each user input, the system must
select an appropriate dialogue action and response to the user in a
cooperative way such that finally the user ′s request can be answered.

Spoken dialog systems divide the complex task of conversing with
the user into more specific subtasks handled by specialized compo-
nents: voice activity detection, speech recognition, natural language
understanding, dialog management, natural language generation, and

9

[July 2014 – TUC]

10 state-of-the-art

speech synthesis. These components are usually organized in a pipeline
as shown in Figure 1, where each component processes the result of
the preceding one and sends its result to the next one. The follow-
ing sections give a brief overview of each component and the typical
issues they face.

Figure 1: Spoken dialog systems chain

In Figure 1, a user ′s spoken utterance is taken and transformed
into a textual hypothesis of the utterance. This hypothesis is parsed
and a semantic representation of the utterance is generated, normally
without looking at the dialogue context. This representation is then
handled by the dialogue policy and generates a response. The lan-
guage generation component then generates a surface representation
of the utterance, often in some textual form, and passes it to a text-to-
speech synthesis which generates the audio output to the user.

2.1.2 Components

Spoken dialog systems divide the complex task of conversing with
the user into more specific subtasks handled by specialized com-
ponents. These components are usually organized in a pipeline as

[July 2014 – TUC]

2.1 spoken dialogue systems 11

shown in the above figure, where each component processes the re-
sult of the preceding one and sends its result to the next one. These
may be the most important components of most dialogue systems
[32]:

1. Feature Extraction and Voice Activity Detection

2. Speech Recognition

3. Natural Language Understanding

4. Dialog Policy

5. Natural Language Generation

6. Speech Synthesis

The following sections give a brief overview of each component
and the typical issues they face.

2.1.2.1 Feature Extraction and Voice Activity Detection

Voice activity detection (VAD) is the problem of detecting in the in-
coming audio signal when the user speaks and when he/she does not.
Features from the audio signal are extracted and classified as speech
or non-speech. This apparently easy problem can in fact be extremely
hard to solve accurately in noisy conditions and has been the focus
of much research, particularly in the signal processing community.

2.1.2.2 Speech Recognition

The automatic speech recognition module (ASR) takes the speech au-
dio data segmented by the VAD and generates its word-level tran-
scription. In addition, the generated hypothesis is sometimes anno-
tated at the word- or utterance-level with confidence scores. ASR en-
gines rely on three models an acoustic model, which describes the
mapping between audio data and phonemes, a lexicon, which de-
scribes the mapping between phoneme sequences and words, and a
language model, which describes the possible (or likely) sequences
of words in a language. The acoustic model needs to be trained on a
corpus of transcribed utterances. The lexicon can be either trained as
a set of letter-to-sound rules from a corpus of words and their pro-
nunciation, or, more often, it can be written by hand. The language
model can be either a hand-written grammar, or a statistical language
model trained on a corpus of in-domain data. Most ASR engines are
designed to process full utterances, where the definition of an utter-
ance depends on the provided grammar or the corpus on which the
statistical LM was built, but usually corresponds to a phrase or sen-
tence. However, they usually perform recognition incrementally, as
the user is speaking, and therefore can provide partial recognition
results at any time.

[July 2014 – TUC]

12 state-of-the-art

2.1.2.3 Natural Language Understanding

The natural language understanding module (NLU) takes the sequence
of words output by the ASR and generates a semantic representation
of it. NLU can be performed by providing a hand-written grammar
that captures semantic relationships (either directly from the words,
or via a syntactic analysis). Another approach to NLU is to train a sta-
tistical parser on a corpus of sentences annotated with their semantic
representation. Most NLU modules assume that they are given a full
utterance. Again the definition of an utterance varies and depends on
the grammar or corpus on which the module was built.

2.1.2.4 Dialog Policy

The dialog policy or dialog manager (DM) takes the semantic repre-
sentation of the user input generated by the NLU and outputs the se-
mantic representation of the system ′s response. While there are many
approaches to dialog management, the DM generally performs (at
least) the following three tasks; interpreting user input in the current
dialog context, updating the dialog context based on user input, gen-
erating relevant system responses. The DM also exploits knowledge
about the domain and task at hand, which are usually provided by
some back end module such as a database or an expert system.

2.1.2.5 Natural Language Generation

The natural language generation module (NLG) takes the semantic
representation of the system response and outputs a natural language
expression of it. Simple and common approaches to NLG include
canned text when there is little variation in system prompts and tem-
plates. More advanced approaches have been proposed, either based
on linguistic concepts such as discourse structure [Wilcock and Joki-
nen, 2003] or using statistical mapping between the semantic repre-
sentation and the surface form [Oh and Rudnicky, 2000]. The NLG
can optionally annotate the surface form with mark up tags destined
to help speech synthesis using a speech synthesis mark up language
such as SSML or JSAPI ′s. Such tags can indicate prosodic patterns
such as rising or falling pitch, pauses, or emphasis.

2.1.2.6 Speech Synthesis

The speech synthesis, or text-to-speech module (TTS) takes the nat-
ural language output of the NLG (potentially augmented with mark
up tags) and generates an audio waveform corresponding to its spo-
ken version. The simplest way to perform TTS, and also the one that
leads to the highest naturalness, is to use pre-recorded prompts. As
for canned-text NLG, this can be used when there is little variation
in the system prompts so that they can all be covered by a voice tal-
ent. General speech synthesis allows the system to say any text, even

[July 2014 – TUC]

2.2 algorithms for call routing 13

potentially unplanned ones (which is necessary when the system re-
trieves variable information from, say, a web site). The synthesized
utterance is played back to the user through the output audio device.

2.2 algorithms for call routing

In this chapter we describe the state-of-the-art techniques which are
applied in text classification and specifically in call-routing tasks. These
techniques are useful benchmarks for the evaluation of the algorithms
which are about to be proposed in this work. We focus on five widely
used classification algorithms; n-gram Classifier, Naive Bayes (NB),
Maximum Entropy (MaxEnt), Latent Semantic Intexing (LSI), Boost-
ing and Support Vector machines (SVM). To fix notation, we denote
a speech utterance with A, the word string that gave rise to it with
W = w1...wn and the class of the utterance with C(A). The word
vocabulary is denoted with V and the class vocabulary with C. The
corpus, split in training and test data, T and E, respectively, consists
of samples s containing: utterance A, transcription W and utterance
class C(A).

2.2.1 n-gram Classifier

Assume one builds an n-gram model P〈wi | wi−1, ...,wi−n+1,C〉 for
each class C by pooling all the training transcriptions that have been
labeled with class C.

In a one-pass scenario the decoder search for the most likely path
will find:

(C(A),W) = argmaxC,WlogP〈A |W〉+ logP〈W | C〉+ logP(C) (1)

In a two-pass scenario one builds a pooled n-gram language model
P〈wi | wi−1,wi−n+1〉 from all the training transcriptions in addition
to the class specific language models P〈. | C〉. Each test utterance is
then assigned a class by doing text classification on the 1-best recog-
nition output using the pooled language model:

(C(A)) = argmaxClogP〈W | C〉+ logP(C) (2)

W = argmaxWlogP〈A |W〉+ logP(W) (3)

Smoothing is a very important issue for this classifier. For estimat-
ing the n-gram models the recursive deleted interpolation scheme
[18] between relative frequency estimates at different orders is used.
For more details about N-gram models see [21][11].

[July 2014 – TUC]

14 state-of-the-art

2.2.2 Naive Bayes (NB)

One extremely popular supervised learning method we introduce is
the multinomial Naive Bayes or multinomial NB model, a probabilis-
tic learning method [9]. For any given event (W,C) in the training
or test data, one constructs a binary valued feature vector listing the
values each feature takes at this particular point:

f(W) = (f1(W), ..., fF(W)) (4)

Let F = {fk,k = 1...F} be the set of features chosen for building a
particular model P(W,C). They are binary valued indicator functions
f(W) : V∗ → {0, 1}. For convenience we denote fi(W) = 1− fi(W). We
have explored using features of the form fw(W) = 1 ⇔ w ∈ W (1-
gram features) or fwi,wi−1,...,wi−N+1

(W) = 1⇔ (wi,wi−1, ...,wi−N+1) ∈
W (n-gram features).

Assuming a NB model for the feature vector (see [25]) and the
predicted variable (the utterance class), their joint probability is cal-
culated as

P(f(W),C) = θC
F∏
k=1

θkCfk(W)θkCfk(W) (5)

where θC and θkC are properly normalized. The class for a given
utterance is assigned in two passes.

2.2.2.1 Maximum Likelihood Parameter Estimation

The parameters θC are estimated using maximum likelihood from the
training data (relative frequencies). The parameters θkC are estimated
using MAP smoothing:

θkC =
C(C, fk) + ε · 1//2

C(C) + ε
(6)

2.2.2.2 Conditional Maximum Likelihood Parameter Estimation

Another option for training the parameters of the model that is ex-
pected to be better correlated with the CER is to maximize the condi-
tional likelihood of the training data

∑
P̃(W,C)logP〈C |W; θ〉 (7)

where P denotes the empirical distribution over the training set.
We have used the rational function growth transform (RFGT) algo-

rithm described in [14] for estimating the parameters of the model

[July 2014 – TUC]

2.2 algorithms for call routing 15

under the conditional maximum likelihood (CML) criterion. Due to
the limited amount of space we do not go into the details of the esti-
mation procedure.

It can be easily shown that eq. (5) can be rewritten as a log-linear
model of the type that arises in ME probability modeling. Moreover,
under the CML estimation criterion the same objective function is
maximized for both NB and ME models.

2.2.3 Maximum Entropy (MaxEnt)

The MaxEnt method is a flexible statistical modeling framework that
has been used in widely in many areas of natural language process-
ing [6][10], one of which is call routing [26]. The MaxEnt allows the
combination of multiple overlapping information sources [27],[6]. As
described in [2][3], a ME classifier selects a conditional distribution
P(C|W) with maximum conditional entropy H(C|W) from a family
of distributions which satisfy the set of constraints:

∑
W,C

P̃(W,C) · fk(W,C) =
∑
W,C

P̃(W) ·P〈C |W〉 · fk(W,C), ∀ k = 1, F

(8)

where P denotes the empirical distribution over the training set.

Smoothing is extremely important for improving the classification
accuracy. As shown in [7] ME models can be smoothed using a Gaus-
sian prior on the feature weights and λ∗ can be selected using the
maximum a posteriori (MAP) criterion. A modified version of im-
proved iterative scaling (IIS) (as presented in [2]) can be used to find
λ∗ under MAP:

λ = argmaxλ
∑
W,C

P̃(W,C) · logP〈C |W; λ〉− 1

2(T)
·
F∑
k=0

λ2k
σ2k

(9)

P〈C |W; λ〉 = Z(W; λ)−1 · exp

(
F∑
k=0

λkCfk(W,C)

)
(10)

where σ2k represent the variance parameters of the Gaussian prior
and |T| is the size of training set.

[July 2014 – TUC]

16 state-of-the-art

2.2.4 Boosting

Boosting is an iterative method for improving the accuracy of any
given learning algorithm. The premise of Boosting is to produce a
very accurate prediction rule by combining moderately inaccurate
(weak) rules. The algorithm operates by learning a weak rule at each
iteration so as to minimize the training error rate. A specific imple-
mentation of the Boosting is AdaBoost is described in [30]. Boosting
has been applied to a number of natural language processing tasks in
the past and call routing is one of them [26].

2.2.5 Support Vector Machines (SVM)

The final classification technique used for the call routing problem is
Support Vector Machines [26]. SVMs are derived from the theory of
structural risk minimization [34][9]. SVMs learn the boundaries be-
tween samples of the classes by mapping these sample points into
a higher dimensional space. In the high dimensional space a hyper-
plane separating these regions is found by maximizing the margin be-
tween closest sample points belonging to competing classes. Much of
the flexibility and classification power of SVM’s resides in the choice
of kernel. Some of the commonly used kernels are linear, polynomial
and radial basis functions.

2.2.6 Vector-based Classifier

In vector-based information retrieval, the database contains a large
collection of documents, each of which is represented as a vector in
n-dimensional space. Given a query, a query vector is computed and
compared to the existing document vectors, and those documents
whose vectors are similar to the query vector are returned.

We apply this technique to call routing by treating each destina-
tion as a document, and representing the destination as a vector
in n-dimensional space. Given a caller request, an n-dimensional re-
quest vector is computed. The similarity between the request vector
and each destination vector is then computed and those destinations
which are close to the request vector are then selected as the candi-
date destinations. In order to carry out call routing with the aforemen-
tioned vector representation, three issues must be addressed. First, we
must determine the vector representation for each destination within
the call center. Once computed, these destination vectors should re-
main constant as long as the organization of the call center remains
unchanged. Second, we must determine how a caller request will be
mapped to the same vector space for comparison with the destina-

[July 2014 – TUC]

2.2 algorithms for call routing 17

tion vectors. Finally, we must decide how the similarity between the
request vector and each destination vector will be measured.

This vector approach to call-routing is based on forming a matrix
w using the transcriptions of the queries available to train the system.
We assume that each of these has been labeled by an expert with
the correct route. The rows of w correspond to different words (or
sequences of words) in the vocabulary, and the columns to either
different routes or different queries. To route a new query, it is first
represented as an additional column vector of w and then matched to
the other column vectors in w. Note that this approach ignores word
order in queries.

2.2.6.1 Cosine Similarity

General information about Cosine Similarity

Cosine similarity is a measure of similarity between two vectors of
an inner product space that measures the cosine of the angle between
them. The cosine of 0o is 1, and it is less than 1 for any other angle.
It is thus a judgment of orientation and not magnitude: two vectors
with the same orientation have a Cosine similarity of 1, two vectors at
90o have a similarity of 0, and two vectors diametrically opposed have
a similarity of -1, independent of their magnitude. Cosine similarity
is particularly used in positive space, where the outcome is neatly
bounded in [0,1].

Note that these bounds apply for any number of dimensions, and
Cosine similarity is most commonly used in high-dimensional posi-
tive spaces. For example, in Information Retrieval and text mining,
each term is notionally assigned a different dimension and a docu-
ment is characterized by a vector where the value of each dimension
corresponds to the number of times that term appears in the doc-
ument. Cosine similarity then gives a useful measure of how simi-
lar two documents are likely to be in terms of their subject matter.
The technique is also used to measure cohesion within clusters in the
field of data mining. It is important to note, however, that this is not
a proper distance metric as it does not have the triangle inequality
property and it violates the coincidence axiom.

For text matching, the attribute vectors A and B in cos(A,B) are usu-
ally the term frequency vectors of the documents. The cosine similar-
ity can be seen as a method of normalizing document length during
comparison. In the case of Information Retrieval, the cosine similarity

[July 2014 – TUC]

18 state-of-the-art

of two documents will range from 0 to 1, since the term frequencies
(tf-idf weights) cannot be negative. The angle between two term fre-
quency vectors cannot be greater than 90o.

Cosine Similarity for Call Classification

Once the pseudo-document vector representing the caller request is
computed, we measure the similarity between the pseudo-document
vector and each document vector in V,S. There are a number of ways
one may measure the similarity between two vectors, such as using
the cosine score between the vectors, the Euclidean distance between
the vectors, the Manhattan distance between the vectors, etc.

We follow the standard technique adopted in the information re-
trieval community and select the cosine score as the basis for our sim-
ilarity measure. The cosine score between two n-dimensional vectors
x and y is given as follows [19]:

cos(x,y) =
xyT√√√√(∑

16i6n
x2

)(∑
16i6n

y2i

) (11)

Using cosine reduces the contribution of each vector to its angle by
normalizing for length. Thus the key in maximizing cosine between
two vectors is to have them point in the same direction. However,
although the raw vector cosine scores give some indication of the
closeness of a request to a destination, we noted that the absolute
value of such closeness does not translate directly into the likelihood
for correct routing. Instead, some destinations may require a higher
cosine value, i.e., a closer degree of similarity, than others in order for
a request to be correctly associated with those destinations. Thus, in
order to select a unique threshold for candidate destination selection
that can be appropriately applied across destinations, we transform
the cosine score for each destination using a sigmoid function specif-
ically fitted for that destination to obtain a confidence score that rep-
resents the router’s confidence that the call should be routed to that
destination.

From each call in the training data, we generate, for each destina-
tion, a cosine value/routing value pair, where the cosine value is that
between the destination vector and the request vector, and the routing
value is 1 if the call was routed to that destination in the training data
and 0 otherwise. Thus, for each destination, we have a set of cosine
value/routing value pairs equal to the number of calls in the training
data. The subset of these value pairs whose routing value is 1 will be

[July 2014 – TUC]

2.2 algorithms for call routing 19

equal to the number of calls routed to that destination in the train-
ing set. Then, for each destination, we used the least squared error
method in fitting a sigmoid function, 1/

(
1+ e−(ax+b)

)
to the set of

cosine/routing value pairs. Assuming da and db are the coefficients
of the fitted sigmoid function for destination , we have the following
confidence function for a destination d and cosine value x:

Conf(da,db, x) = 1/
(
1+ e−(dax+db)

)
(12)

Thus the score given a request and a destination, where d is the
vector corresponding to destination, and r is the vector corresponding
to the request is.

2.2.6.2 Latent Semantic Indexing (LSI)

A known technique for Text Classification [28] is Latent semantic in-
dexing (LSI) [10][9][31][28]. LSI is an indexing and retrieval method
that uses a mathematical technique called singular value decomposi-
tion (see Chapter 4) to identify patterns in the relationships between
the terms and concepts contained in an unstructured collection of text.
LSI is based on the principle that words that are used in the same con-
texts tend to have similar meanings. A key feature of LSI is its ability
to extract the conceptual content of a body of text by establishing
associations between those terms that occur in similar contexts.

After the approximation of a term-document matrix W by one of
lower rank using the SVD, the low-rank approximation to W yields
a new representation for each document in the collection. We will
cast queries into this low-rank representation as well, enabling us to
compute query-document similarity scores in this low-rank represen-
tation. This process is known as latent semantic indexing (generally
abbreviated LSI).

The representation of documents by LSI is economical; each docu-
ment and term need be represented only by something on the order
of 50 to 150 values. The storage requirements for a large document
collection can be reduced because much of the redundancy in the
characterization of documents by terms is removed in the represen-
tation. Offsetting the storage advantage is the fact that the only way
documents can be retrieved is by an exhaustive comparison of a query
vector against all stored document vectors. Since search algorithms in
high dimensional space are not very efficient on serial computers, this
may detract from the desirability of the method for very large collec-
tions.

[July 2014 – TUC]

20 state-of-the-art

The latent semantic indexing method that we have discussed, and
in particular the singular-value decomposition technique, are capable
of improving the way in which we deal with the problem of multi-
ple terms referring to the same object. They replace individual terms
as the descriptors of documents by independent "artificial concepts"
that can be specified by any one of several terms (or documents) or
combinations thereof. In this way relevant documents that do not con-
tain the terms of the query, or whose contained terms are qualified by
other terms in the query or document but not both, can be properly
characterized and identified. The method yields a retrieval scheme in
which documents are ordered continuously by similarity to the query,
so that a threshold can be set depending on the desires and resources
of the user and service.

2.3 novelty of this work

In this work we tried to find a way to classify our data using a simple
algorithm (simpler than MaxEnt or SVM) with good results as well.
Firstly, we will experiment with the feature extraction. We will try to
extract the features using a combination of ’mutual information’ and
’salience’, which are described in Chapter 3. All relevant works which
deal with the call routing task use salience for feature extraction, but
then they use grammars for automated parsing. In order to avoid
a rule-based classifier, we will describe a less complex classification
technique, creating a simple decision tree. Furthermore, we will try to
build a GMM classifier and test how well this method can be applied
to our task.

[July 2014 – TUC]

3
C A L L - T Y P E C L A S S I F I C AT I O N

This chapter introduces the term ’salience’ and explains the benefits
of using phrases instead of words during the classification procedure.
Two classification algorithms are featured. They both extract salient
phrases from the training dataset and use them in different ways so
as to categorize a test call request.

3.1 data processing - phrases preferred instead of words

Traditionally, standard n-gram language models for speech recogni-
tion implicitly assume words as the basic lexical unit. However, the
motivation for choosing optimal longer units for language modeling
is threefold. First, not all languages have a predefined unity, such
as the word (e.g. the Chinese language). Second, many word tuples
(phrases) are recurrent in the language and can be thought as a single
lexical entry (e.g. by and large, I would like to, United States of Amer-
ica, etc..). Third, the conditional probability P〈wi | wi−n+1, ...,wi−1〉
can benefit greatly by using variable length units to capture long span-
ning dependencies, for any given order n of the model. The informa-
tion in the following subsections can be found in [4].

3.1.1 Phrase

An arbitrary continuous word sequence in the training transcriptions
is called a phrase. All phrases can be obtained by decomposing the
transcriptions into n-tuple word sequences. Namely, each phrase is
a substring of a sentence. The number of words in a phrase is con-
strained to three or less in this experiment.

3.1.2 Fragment

The phrases having higher frequency than some threshold are se-
lected as candidates. The candidate phrases are regarded as units for
generating the Fragments. Each Fragment is acquired via the cluster-
ing of candidate phrases based on their similarity and is represented
as a conventional finite-state machine.

21

[July 2014 – TUC]

22 call-type classification

3.1.3 Salience

Given the representation meaning via network association vectors,
then a semantic distortion measure can be introduced between such
vectors. A null word for a device is one whose network associations
are all zero. The salience of a word for that device can then be defined
via its distortion from the null word, thus providing a "norm" on the
network association vectors. We now focus our attention on a single-
layer information-theoretic network and quantify these intuitions. In
this case,the network associations a word comprise a of vector of mu-
tual informations between that word and the various machine actions.
There are many possible distance measures that one could explore,
but it is advantageous to exploit the information-theoretic nature of
the vectors. Given a word, u, denote its network association vector
as 〈I(u, ck)〉 where 〈...〉 denotes a vector whose kth component is
I(u, ck).

We define a semantic distortion measure dm(u1,u2) between two
words u1 and u2 via first computing the difference between these
vectors, then converting that difference into a scalar via projection
onto some vector u. Denote w̄1 = 〈I(u1, ck)〉 and w̄2 = 〈I(u2, ck)〉
then define

dm(u1,u2) = (w̄1 − w̄2) · ū (13)

In particular, if we select ū to be the vector of a posteriori probabil-
ities 〈P〈ck | u1〉〉, then

dm(u1,u2) = 〈I(u1, ck) − I(u2, ck)〉 · 〈P〈ck | u1〉〉 (14)

In addition to its geometric interpretation the scalar projection of
a vector-difference, this distortion also has an information-theoretic
interpretation. It can be easily seen that eq. (14) is equivalent to the
Kullback-Leibler distance (a.k.a. relative entropy) between the a poste-
riori distributions 〈P〈ck | u1〉〉 and 〈P〈ck | u2〉〉 (Cover Thomas,1991).
That is, the semantic distortion between the two words is equivalent
to the distance between the distributions that they induce the net-
work’s on periphery.

[July 2014 – TUC]

3.1 data processing - phrases preferred instead of words 23

Recall that a null word, unull, is one whose association vector is
all zeros. The salience of a word for a given device is defined as its
semantic distortion from:

sal(u) = dm(u,unull) =
k∑
k=1

P〈ck | u〉I(u, ck) (15)

It was shown by Blachman that this is the unique non-negative mea-
sure of how much information a value of one random variable pro-
vides about a second one (Blachman,1968). That is, denoting random
the variable of machine actions by C, then sal(u) is a measure of how
much information the word u provides about C. Thus, salience pro-
vides an information-theoretic measure of how meaningful a word is
for a particular device.

3.1.4 Salient phrase fragments

We need to find the most important and meaningful phrase fragments
in the training data. We search the space of phrase fragments, guided
by two criteria as referred in [15]. First, within the language channel, a
word pair v1v2 is considered as a candidate unit if it has high mutual
information:

I(v1, v2) = log2[P〈v2 | v1〉/P(v2)] (16)

This measure can be composed to recursively construct longer units,
by computing I(f,v) where f is a word-pair or larger fragment. We
then introduce an additional between-channel criterion, which is that
a fragment should have high information content for the call-action
channel. Where f is a fragment and ck is the set of call-actions, denote
its salience by

I(v1, v2) = log2[P〈v2 | v1〉/P(v2)] (17)

We perform a breadth-first search on the set of phrases, up to
length four (an arbitrary cut-off point), pruning it by these two cri-
teria: one defined wholly within the language channel, the other de-
fined via the fragment’s extra-linguistic associations. The peak of the
a posteriori distribution P(ck|f) is denoted Pmax. When Pmax is be-
tween 0.5 and 0.9, then the fragment is only moderately indicative
of that call-type. When Pmax is low (<0.5), then it is a background

[July 2014 – TUC]

24 call-type classification

fragment not associated with any particular call-type (for theoretical
properties and more details see [16]).

Consequently, we sum up the procedure of the selection of the
salient phrase fragments for a specific class ck in the following steps:

1. Find all possible phrase fragments f from the sentences belong
to ck

2. For each f, compute the information I(f, c)

3. If I(f, c) is high, it is considered as a candidate

4. For each candidate we compute the a posteriori distribution
P(ck | f):

• If P(ck | f) < 0.5, then f is not associated with ck

• If 0.5 6 P(ck | f) 6 0.9, then f is moderately indicative of
ck

• If P(ck | f) > 0.9, then f is indicative of ck

3.1.5 Statistical and rule-based approaches for spoken language understand-
ing

Now, after defining the term ’salient phrase fragment’ we need to
decide on how to use these fragments. Our choices are to apply either
statistical pattern recognition or grammar-based parsing [36].

Statistical classifiers are very robust, can be easily trained and re-
quire little supervision during learning but they often suffer from
poor generalization when data is insufficient. Grammar-based robust
parsers are expressive and portable, can model the language in gran-
ularity, and are easy to modify by hand to adapt to new language
usages. Although grammars are learnable, they often require more
supervision. While they can yield an accurate and detailed analysis
when a spoken utterance is covered by the grammar, they are less ro-
bust for those sentences not covered, even with robust understanding
techniques. Because of this, the statistical classifiers are often used for
broad and shallow understanding, and robust parsers are frequently
used for narrow and deep understanding in a specific domain, where
grammars can be crafted carefully to cover as many usages in the
domain as possible.

In this work, we are interested in creating a robust classifier, that
can be easily trained. Moreover, the goal is to manage to build an

[July 2014 – TUC]

3.2 call-type classification 25

algorithm which requires no, or at least little supervision. As a conse-
quence, we did not prefer to make a rule-based classifier for sake of
simplicity and robustness (more information about rule-based classi-
fiers using grammar fragment acquisition in [22]).

3.2 call-type classification

By understanding spoken language, we mean, here, that we need
to classify and automatically route users’ calls, based on the mean-
ing of the user’s response. To achieve this we implement automatic
algorithms for selecting phrases from a training corpus in order to
enhance the prediction power of the standard word n-gram. From
the speech recognizer output we recognize and exploit automatically-
acquired salient phrase fragments to make a call-type classification.
The typical approaches to the problem of topic classification are word
and concept spotting.

Although these techniques work quite well for small applications,
they do not scale up to large tasks and are limited in scope. On the
other hand, we view this problem as understanding speech by taking
into account the information conveyed by the whole utterance, with
the ultimate goal of building automatically trained language models
integrating both recognition and understanding.

The extraction and application of salient phrase fragments allows
us to classify incoming calls using units that are larger (and usually
less ambiguous) than individual words but without the need to parse
an entire sentence. Here are two different ways to use the detected
salient phrase fragments in order to classify an utterance.

3.2.1 Peak-of-fragments classifier

As referred in [20], we need to infer a call-type from the fragments
detected within the speech. More generally, we would like to assign
a ranking to the call-types. A simple method for doing this involves
finding, for each call type, the highest posterior probability attributed
to it by any detected fragment: s(k) = maxP(ck ∈ C | fi ∈ Ft), k =
1,..., K where { fi } are the detected fragments for the utterance. The
rank-1 decision for this utterance is then the call type.

3.2.2 Tree classifier

This classification proposal is a different version of the Neural net-
work classifier in [20]. Typically an utterance contains several detected
fragments and it is advantageous to combine the evidence from these
when arriving at a classification. One method for doing this is as

[July 2014 – TUC]

26 call-type classification

follows. The detected fragments form a lattice which is parsed, for
each call type separately, to find the path generating the highest cu-
mulative score, summing the posterior probability for that call-type
along the path. For a start, we need to read all training data. Using
the labeled data we extract the salient phase fragments. We choose
these fragments to consist of two, three or four words each. Of course
not all fragments of this word-length can possibly be considered as
salient. We only keep these ones which result in a probability of a spe-
cific class given the fragment, which is higher that a specific thresh-
old. Unavoidably, some salient phase fragments are subfragments of
other salient phase fragments of greater number of words. For each
class, different groups of salient phase fragments are evaluated, de-
spite the fact that this does not mean that a specific salient phase
fragment cannot be included in the group of salient phase fragments
of more than one class. The only different thing about these salient
phase fragments, which exist in several class groups, is that they will
obviously result in different probability of a specific class given this
fragment. The next step is to check each test call request thoroughly,
for the existence of at least one salient phase fragment. We need to
find a way to estimate the probability of each class given this sen-
tence, which in our case is the probability of each class given the
found salient phase fragments in the test sentence. We suppose that
the probability of a class of which no salient phase fragments appear
in our test request, is zero. So we focus our attention on estimating
the probability of those classes whose salient phase fragment exist in
the sentence we examine. The problem we confront is that we need to
prevent our algorithm from taking two or more inappropriate salient
phase fragments into account. Two or more salient phase fragments
are considered to be inappropriate when the one ’veils’ an other. By
’veil’, we mean that two or more phrases share the same words in
the sentence. For instance, let the test request be "I wanna make a
collect call" and the salient phrase fragments <wanna make>, <make
a collect>, <make a collect call> and <a collect call>. We cannot just
choose to use the ’bigger’ one, meaning the fragment which consists
of the greater number of words, since a ’smaller’ fragment could be
more salient for some class. Moreover, a ’smaller’ one may finally be
a more salient when combined with an other one. A more detailed ex-
ample follows to give a clearer explanation. Supposing the sentence
"I wanna make a collect call" and the salient phrase fragments de-
tected for a specific class <wanna make>, <make a collect>, <make
a collect call>, <a collect call> we can finally consider that the initial
sentence can be represented by either the fragment <make a collect
call> or the combination of the fragments <wanna make> and <a col-
lect call>. From these two alternatives the more preferable option is
the one which leads in higher cumulative score, summing the poste-
rior probability for that class given the specific fragment multiplied

[July 2014 – TUC]

3.2 call-type classification 27

by the salience of this fragment. Let this score be called the weight
of the option. Unfortunately, things tend to be more complicated con-
sidering that this procedure needs to be done for ’bigger’ sentences,
where more salient phrase fragments may be detected and ,of course,
due to the fact that we have many classes, the complexity is that we
have to compute a score for each possible combination of the frag-
ments, for each class separately. To confront this complex problem,
we create a tree. The tree is a structure which is really helpful in or-
der to organize the important information we extract from a sentence.
Owing to the fact that the important information defer from one class
to another, we create a single tree for each class. The idea is simple.
For each class the test request is scanned and the salient phrase frag-
ments are extracted. From these fragments, all possible combinations
are taken into account in order to create a path. Each path is a branch
of the tree. Let’s see an example. Let the sentence be ’a b c d e f g’
and we suppose that there are two classes, class 1 and class 2. For
class 1 we have found that the salient phrase fragments existing in
our sentence are <a b>, <a b c>, <b c>, <e f>, <e f g> and for class 2

<a b c>, <b c>, <e f g>. The trees that these fragments give for each
class are depicted in the following figure.

Figure 2: Example tree representation of a phrase

As it can easily be observed, the diverse salient fragments detected
for each class result in a totally different tree. The main concept is
that for each tree, we calculate the weight of each path which leads
from the root to a leaf. Consequently, the tree constructed for class 1

includes six paths, whereas the tree constructed for class 2 has two
paths. This means that the tree for class 1 has six weights, one for
each path, and the tree for class 2 has two weights. For each class
we only choose the path which has the highest weight and let’s call
it’s weight, ’top score of the tree’ (tst). Now, we have tst1 for the top
score of the tree about class 1 and respectively tst2 for class 2. So, the
final classification is achieved by comparing tst 1 and tst2. Supposing
tst2 is higher that tst1, we end up to conclude that the most possi-
ble classification decision that can be made is class 2. The deduction
of this example is that the class with the most salient phrase frag-
ments detected in the test sentence is not necessarily the prevalent

[July 2014 – TUC]

28 call-type classification

one. However, in this example we assumed the existence of salient
phrases.

One crux which can be faced is the possible absence of any salient
phrase fragment in the sentence. In view to extract some phrase frag-
ments which can be used to structure a tree for each class, the fol-
lowing idea is implemented. For each possible substring of the sen-
tence, a similar fragment is searched in the list of the salient phrase
fragments of each class. In order to exploit the similarity between
fragments, we could use a Levenshtein string distance measure, in
which the insertion, deletion and substitution penalties are weighted
by the salience of the respective words. This has the effect of penal-
izing salient errors (such as substitution of ’collect’ for ’credit’) more
than non-salient errors (such as substitution of ’this’ for ’the’). How-
ever, fragments that are similar as strings can have different seman-
tics, e.g. the fragments ’need a credit’ and ’a credit card’ indicate a
billing credit request and credit card payment respectively. It would
be undesirable for these to enter the same cluster. In assessing this
we must allow for the variability attributable to small samples. We
therefore use a measure of semantic distortion which is described in
[20] (see also Appendix A.4 for the evaluation of semantic distortion).
This is a weighted mean-square error between the estimated poste-
rior distributions. We chose not to use the Kullback-Leiber measure
because it is important to take the small sample sizes into account,
and using the mean-square measure enables this. Note however that
this measure does not obey the triangle inequality and so is not a
true measure of distance. The evaluation of the semantic distortion
in terms of actual occurrence counts is given in the Appendix. Fi-
nally, after computing the semantic distortion between a substring
of the sentence and each salient phrase fragment of each class, the
substring is substituted by the salient phrase which is semantically
closer to the substring. So this salient phrase and the substring give
the lowest semantic distortion. After all the possible substitutions of
the substrings, a tree for each class is doable and the classification
procedure is the same described above. In case of absence of similar
phrases to substitute at least one substring of the sentence, the test
request is classified in class ’other’.

[July 2014 – TUC]

3.2 call-type classification 29

Table 1: Steps of the Tree Classifier

Steps Tree Classifier

Step 1 extract salient fragments from training data

Step 2 check each test call request for at least one salient phase fragment

Step 3 estimate the probability of each class given these salient phase fragments

(by creating a tree for each class)

Step 4 for each tree, we calculate the weight of each path which leads from the root to a leaf

Step 5 we only choose the path which has the highest weight

Step 6 the class we choose is the one with the highest weighted path in her tree

(if we can’t build any trees, our decision is class ’other’)

[July 2014 – TUC]

[July 2014 – TUC]

4
G M M C L A S S I F I E R

This chapter shows a different approach to the call-routing task. The
classifier we build is GMM/ML and, since it results in good perfor-
mance, we aim to provide details of each stage of the procedure. Con-
sequently, we firstly describe the turning of the train dataset into ma-
trices, analyzing the specific techniques used. Then, we cover exten-
sively the methods that are applied (SVD, GMM) in order to accom-
plish our classification task. Many important information and theory
are from [19].

4.1 term-document matrix construction

First we need to construct an mxn term - document frequency matrix
W, where m is the number of terms, n is the number of destinations,
and W[t,d] an element represents the number of times the term t
occurred in calls to destination d. This number indicates the degree
of association between term and destination, and our underlying as-
sumption is that if a term occurred frequently in calls to a destination
in our training corpus, then occurrence of that term in a caller’s re-
quest indicates that the call should be routed to that destination.

4.1.1 Term weighting

The count W[t,d] we mention above is not suitable for direct use in
routing an input query. By using the raw frequency counts as the
elements of the matrix, more weight is given to terms that occurred
more often in the training corpus than to those that occurred less fre-
quently. For instance, a term such as ’call’, which occurs frequently
in calls to multiple destinations will have greater frequency counts
than say, the term ’credit’. As a result, when the two vectors are com-
bined, as will be done in the routing process, the term vector for ’call’
contributes more to the combined vector than that for ’credit’. Conse-
quently there is a great need to normalize the matrix W.

31

[July 2014 – TUC]

32 gmm classifier

4.1.2 Normalization techniques

Various techniques for weighting the elements of w have been de-
scribed [10]. Most of these techniques replace W[t,d] by the product
of two weightings: one that takes account of the large variation in the
number of occurrences of each term by applying some form of com-
pression or normalization and another that accounts for the fact that
terms that occur in only a few documents are more likely to be useful
for routing purposes than terms that occur in many documents.

Some weighting schemes are Binary, Normal, GfIdf, Idf, Entropy.
In this work the weighting schemes we used are Inverse document
frequency and Entropy.

4.1.2.1 Inverse-document frequency (IDF) weighting scheme

As mentioned above, when two vectors are combined a term vector
for a frequent term contributes more to the combined vector than that
of a less frequent term. In order to balance the contribution of each
term, the term-document frequency matrix is normalized so that each
term vector is of unit length. Let B be the result of the normalizing
the term-document frequency matrix, whose elements are given as
follows:

Bt,d =
W[t,d](∑

16e6n
W[t, e]2

)1/2 (18)

It is a logical assumption that a term which only occurs in a few
documents is more important in routing than a term which occurs in
many documents. For instance, the term ’directory’, which occurred
mostly in calls requesting for directory services, should be more im-
portant in discriminating among destinations than ’call’, which oc-
curred in many destinations. Thus, we adopted the inverse-document
frequency (IDF) weighting scheme (Sparck Jones, 1972) whereby a
term is weighted inversely to the number of documents in which it
occurs. This score is given by:

IDF(t) = log2
n

d(t)
(19)

[July 2014 – TUC]

4.1 term-document matrix construction 33

where t is a term, n is the number of documents in the corpus, and
d(t) is the number of documents containing the term t.

If t only occurred in one document, IDF(t) = log2 n

if t occurred in every document, IDF(t) = log2 1 = 0

Thus, using this weighting scheme, terms that occur in every docu-
ment will be eliminated. We weight the matrix B by multiplying each
row t by IDF(t) to arrive at the matrix C:

Ct,d = IDF(t) ·Bt,d (20)

4.1.2.2 Entropy weighting scheme

One of our assumptions is that documents with low term entropy
(high repetition of few words) are less useful to the searcher than doc-
uments with high term entropy (all words equally likely). This rests
on the idea that the information conveyed in a document increases
as the uncertainty of the content increases. When normalizing a col-
umn by entropy we therefore replace each raw frequency count in the
column vector by:

ej = 1+

n∑
i=1

pij log(pij)

logn
(21)

where

pij =
fij
n∑
i=1

fij

(22)

[July 2014 – TUC]

34 gmm classifier

and fij is the frequency count of term i in document j.

Empirical studies with LSI report that the Log Entropy weighting
functions lij work well, in practice, with many data sets, which is
given by:

lij = ej log(1+ fij) (23)

Once the term-document matrix is normalized, we are ready to
provide a uniform representation of term and document vectors and
to reduce the dimensionality of the document vectors by applying the
singular-value decomposition method.

4.2 singular value decomposition (svd)

A fundamental deficiency of current information retrieval methods is
that the words searchers use often are not the same as those by which
the information they seek has been indexed. There are actually two
sides to the issue; we will call them broadly synonymy and polysemy.

We use synonymy in a very general sense to describe the fact that
there are many ways to refer to the same object. Users in different
contexts, or with different needs, knowledge, or linguistic habits will
describe the same information using different terms. Indeed, we have
found that the degree of variability in descriptive term usage is much
greater than is commonly suspected. For example, two people choose
the same main key word for a single well-known object less than 20%
of the time. Comparably poor agreement has been reported in studies
of interindexer consistency and in the generation of search terms. The
prevalence of synonyms tends to decrease the "recall" performance of
retrieval systems.

By polysemy we refer to the general fact that most words have
more than one distinct meaning (homography). In different contexts
or when used by different people the same term (e.g. "chip") takes
on varying referential significance. Thus the use of a term in a search
query does not necessarily mean that a document containing or la-
beled by the same term is of interest. Polysemy is one factor underly-
ing poor "precision".

[July 2014 – TUC]

4.2 singular value decomposition (svd) 35

4.2.1 SVD Basis

We used the technique of singular value decomposition (SVD) [10][9]
to find the lowest error representation of the matrix W in a compact
sub-space. This can be seen as "smoothing" the term or document
vectors [8]. The essential steps in the process are as follows:

• step 1: For SVD application we construct a term/document ma-
trix w.

• step 2: SVD is applied to w so that w = USVT where U and
V are orthonormal matrices (dimensions MxN and NxN respec-
tively) and S is diagonal matrix of eigenvalues.

• step 3: S is inspected and the dimensions corresponding to only
the top R eigenvalues are retained: the other dimensions are
discarded. If R�N, this means that w is represented in a much
reduced dimensionality.

• step 4: A query is pre-processed into a vector q.

• step 5: Then q is projected into the reduced subspace to become
the vector q ′ = qTUS−1

• step 6: The vector q’ can then be matched (using an appropriate
criterion) in the subspace to the training-set vectors.

Table 2: Basic steps in SVD process

Steps SVD application

Step 1 Construct a term/document matrix w

Step 2 SVD is applied to w so that w = USVT

Step 3 The top R eigenvalues are retained,the other are discarded

Step 4 A query is pre-processed into a vector q.

Step 5 q is projected into the reduced subspace and q ′ = qTUS−1

Step 6 The vector q’ can be matched in the subspace to the training-set vectors.

[July 2014 – TUC]

36 gmm classifier

4.2.2 SVD Analysis

Using the method SVD we can find an approximation [8]W such that

W 'W = USVT

where S = diag(s1, ..., ss)
which contains s singular values sorted in descending order. U and

V are orthonormal matrices, which are called left and right singular
matrices, respectively.

We have two important properties following the definition of W:

1. rank(W) = s

2. minr(A)=s ‖ W −A ‖2F=‖ W −W ‖2F= s2s+1 + ... + s2m, where
m = rank(W)

In the decomposition, rows of matrix V could be viewed as a set of
basis vectors of the vocabulary, and each of the words in our vocabu-
lary could be obtained by some linear combination of them. Since US
serves as the coefficients of the linear combinations, we could use the
rows of US as the word vectors in the s-dimensional space.

In detail, for W ' W = USVT the matrices U, V, and S must all
be of full rank. The beauty of an SVD, however, is that it allows a
simple strategy for optimal approximate fit using smaller matrices. If
the singular values in S, are ordered by size, the first k largest may be
kept and the remaining smaller ones set to zero. The product of the
resulting matrices is a matrix W which is only approximately equal
to W, and is of rank k. It can be shown that the new matrix X is the
matrix of rank k, which is closest in the least squares sense to W. Since
zeros were introduced into S’, the representation can be simplified by
deleting the zero rows and columns of S, to obtain a new diagonal
matrix S’, and then deleting the corresponding columns of U, and V,
to obtain U’ and V’ respectively.

The result is a reduced model:

[July 2014 – TUC]

4.3 gaussian mixture model (gmm) 37

Wreduced = U ′S ′V ′T

which is the rank-k model with the best possible least-squares-fit
to W. It is this reduced model, presented in Figure below, that we use
to approximate our data.

Figure 3: Singular Value Decomposition (SVD)

4.3 gaussian mixture model (gmm)

A Gaussian mixture model [23][24] is a probabilistic model that as-
sumes all the data points are generated from a mixture of a finite
number of Gaussian distributions with unknown parameters. One
can think of mixture models as generalizing k-means clustering to
incorporate information about the covariance structure of the data as
well as the centers of the latent Gaussians.

We used the scikit-learn tool in python which implements different
classes to estimate Gaussian mixture models, that correspond to dif-
ferent estimation strategies. The class sklearn.mixture.GMM allows
for easy evaluation of, sampling from, and maximum-likelihood esti-
mation of the parameters of a GMM distribution. With this class we
create an object GMM which implements the expectation maximiza-
tion (EM) algorithm for fitting mixture-of-Gaussian models. It can
also draw confidence ellipsoids for multivariate models, and compute
the Bayesian Information Criterion to assess the number of clusters
in the data. A GMM.fit method is provided that learns a Gaussian
Mixture Model from train data. Given test data, it can assign to each
sample the class of the Gaussian it mostly probably belong to using
the GMM.predict method.

We have already mentioned the use expectation maximization (EM)
algorithm. Expectation-maximization is a well-fundamented statisti-

[July 2014 – TUC]

38 gmm classifier

cal algorithm to get around this problem by an iterative process. First
one assumes random components (randomly centered on data points,
learned from k-means, or even just normally distributed around the
origin) and computes for each point a probability of being generated
by each component of the model. Then, one tweaks the parameters to
maximize the likelihood of the data given those assignments. Repeat-
ing this process is guaranteed to always converge to a local optimum.

4.3.1 GMM Model Formulation

A Gaussian distribution is unimodal. Sometimes, the data is multi-
modal. In such cases, one might want to use a more flexible dis-
tribution for modeling. One possibility is to use the Gaussian Mix-
ture Model (GMM). A multivariate normal distribution or multivari-
ate Gaussian distribution is a generalization of the one-dimensional
Gaussian distribution into multiple dimensions [35].

N〈x | µ,Σ〉 = 1

(2π)D/2
1

| Σ |1/2
exp{−

1

2
(x− µ)TΣ−1(x− µ)} (24)

A mixture model can be regarded as a type of unsupervised learn-
ing or clustering. Mixture models provide a method of describing
more complex propability distributions, by combining several proba-
bility distributions. Mixture models can also be used to cluster data.
The Gaussian mixture distribution is given by the following equation

p(x) =
K∑
k=1

πkN(x | µk,Σk)

where

π = {πj} are the mixing coefficients that satisfy πj 6 0 and
∑
πj = 1

µ = {µj} are mean parameters of the respective Gaussian distribu-
tions

Σ = {Σj} are variance parameters of the respective Gaussian distri-
butions

[July 2014 – TUC]

4.3 gaussian mixture model (gmm) 39

We will often use the shorthand θ to denote the set of parameters {π,
µ, Σ}. Given iid data X = {x1, ..., xm} the log-likelihood of this model
can be written as:

logp〈X | θ〉 =
m∑
i=1

log
k∑
j=1

πjN〈xi | µj,Σj〉 (25)

Here the log acts on the sum and hence does not cancel the exp.
Consequently, the log likelihood is a nasty function to optimize, and
we cannot hope to get a nice closed form solution. Nevertheless, one
can take derivatives of the log likelihood with respect to µ, Σ and π
and set them to zero to obtain first order stationary conditions. For
ease of notation define:

γij =
πiN〈xi | µj,Σj〉∑
j ′ πj ′N〈xi | µj ′ ,Σj ′〉

(26)

Furthermore, assume that all the Σj are non-singular. Now we can
take derivatives of log{p〈X | θ〉} with respect to µj and set them to
zero. This yields:

0 = −

m∑
i=1

γi,jΣ
−1
j (xi − µj) (27)

Multiplying by Σj and rearranging yields:

µj =
1

mj

m∑
i=1

γijxi (28)

where we define mj =
m∑
i=1

γij

Similarly by setting the derivative with respect to Σj to zero we
obtain:

Σj =
1

mj

m∑
i=1

γij
(
xi − µj

) (
xi − µj

)T (29)

[July 2014 – TUC]

40 gmm classifier

Finally, by using Lagrange multipliers to enforce the sum to one
constraint we can maximize the log likelihood with respect to π by
maximizing:

logp〈X | θ〉λ

∑
j

πj − 1

 (30)

which gives

0 =

m∑
i=1

N〈xi | µj,Σj〉∑
j ′ πj ′N〈xi | µj ′ ,Σj ′〉

+ λ (31)

If we multiply both sides by πj and sum over j then we obtain
λ = −m. Using this to eliminate λ, one obtains:

πj =
mj

m
(32)

Although (eq.28), (eq.29), and (eq.32) do not give a closed-form
solution to the problem of maximizing the log-likelihood (eq.25), they
are at least intuitively appealing. Let us view γij as the fraction of
data point xi "belonging" by the j-th Gaussian distribution. Under this

interpretation, (eq.28) and (eq.29) are exactly the same as µ = 1
m

m∑
i=1

xi

and Σ = 1
m

m∑
i=1

(xi − µ)(xi − µ)
T for data X = {x1, ..., xm}, except

for the fact that the each data point xi only contributes a factor γij
towards computing µj and Σj.

Of course, the problem is that γij depends on µ, Σ, and π, while µ,
Σ, and π in turn depend on γij. One way to break this chicken and
egg situation is via the following simple iterative scheme:

• In Step 1 (which we will later call the E-Step) we use the current
value of µ, Σ, and π to estimate γij via (eq.26).

• In Step 2 (which we will later call the M-Step) we use the current
value of γij to estimate µ, Σ, and π via (eq.28), (eq.29), and
(eq.32) respectively. Iterate until convergence.

[July 2014 – TUC]

4.3 gaussian mixture model (gmm) 41

Later we will show that this simple iterative scheme has close con-
nections to a more general algorithm called the Expectation Maxi-
mization (EM) algorithm. Now we show that K-Means can be viewed
as a limiting case of the above iterative scheme.

4.3.2 Expectation Maximization (EM)

We want to find a set of K multivariate Gaussian distributions, given
a set of samples, that represent observed samples in a good way. The
number of clusters, K, is given, so the parameters that are to be found
are the means and covariances of the distributions.

An acknowledged and efficient method for finding the parameters
of a GMM is to use Expectation Maximization (EM). The EM algo-
rithm is an iterative refinement algorithm used for finding maximum
likelihood estimates of parameters in probabilistic models. The likeli-
hood is a measure for how good the data fits a given model, and is a
function of the parameters of the statistical model.

If we assume that all the samples in the dataset are independent,
then we can write the likelihood as,

` =
∏
n

p (xn) (33)

and as we are using a mixture of gaussians as model, we can write

p (xn) =
∑
k

N〈xn | µk,Σk〉p (k) (34)

In contrast to the K-means algorithm, the EM algorithm for Gaus-
sian Mixture does not assign each sample to only one cluster. Instead,
it assigns each sample a set of weights representing the sample’s prob-
ability of membership to each cluster. This can be expressed with a
conditional probability p〈k | n〉 given a sample n gives the probability
of the sample being drawn a certain cluster k.

A responsibility matrix R with elements pnk is used to hold the
probabilities

pnk = p〈k | n〉 = p〈xn | k〉p (k)
p (xn)

=
N〈xn | µk,Σk〉p (k)

p (xn)
(35)

[July 2014 – TUC]

42 gmm classifier

Given the data and the model parameters µk and Σk we now can
calculate the likeliness ` and the probabilities pnk. This is the expec-
tation (E) step in EM-algorithm.

In the maximization (M) step we estimate the mean, co-variances,
and mixing coefficients p(k). As each point has a probability of be-
longing to a cluster pnk we have to weight each sample’s contribution
to the parameter with that factor.

The following equations are used to estimate the new set of model
parameters:

µk =

∑
n pnkxn∑
n pkn

(36)

Σk =

∑
n (xn − µk)⊗ (xn − µk)∑

n pnk
(37)

p (k) =
1

N

∑
n

pnk (38)

[July 2014 – TUC]

4.3 gaussian mixture model (gmm) 43

Figure 4: Expectation Maximization Algorithm (EM)

4.3.3 GMM-Covariance matrix

The covariance matrix, Equation 37, is normally a full matrix and
when it’s dimension is nxn the EM algorithm has to estimate nxn
parameters, something that seems to be quite time-consuming and
has high complexity.

Instead of this, there are three alternative forms of the covariance
matrix which are also more appropriate than the full covariance ma-
trix when we dial with sparse data. These extra three covariance types
(except full) are:

[July 2014 – TUC]

44 gmm classifier

• diagonal: all the elements of the covariance matrix apart from
the diagonal are zero. Consequently, in a nxn matrix, only n
parameters have to be estimated. In this way, we do not take the
correlation among the variables into account.

• spherical: all the elements of the covariance matrix rather than
the diagonal are zero. Moreover, all the diagonal elements are
the same. Consequently, in a nxn matrix, only one parameter
has to be estimated.

• tied: when there is a high number of components in a Gaussian
mixture distribution we need more training data to estimate the
parameters. One way to tackle this is to use the same Gaus-
sian distributions to represent all the states of all the models,
with only the mixture weights being state-specific. This type
of model is called tied mixture (Bellegarda Nahamoo, 1990) be-
cause the parameters are tied across the different states.

[July 2014 – TUC]

5
D ATA S E T S

This chapter offers all the necessary statistical information about the
dataset we used to implement this work and test the performance
of all the algorithms. In particular, we used an American-english
database. A class description of the dataset is also included.

5.1 corpus analysis

To examine human-human dialogue behavior, we analyzed the set
of transcribed telephone calls involving customers interacting with
human operators.

Our data is a set of 6.522 training and 849 test transcribed telephone
calls from an american company known as AT & T (American Tele-
phone & Telegraph). We analyzed these calls along two dimensions:
the semantics of caller requests and the dialogue actions for operator
responses. In our corpus, all callers respond in English to an initial
open-ended prompt of "How may I help you?". We classified user
responses to this prompt into 14 specific classes based on the action
requested by the caller and a 15th class called other, in which a call
request should be classified in case none of the 14 classes is a match.

Table 3: Datasets Information

Dataset Number of Number of Number of

Name Training data Test data Classes

ATT 6.522 849 15

45

[July 2014 – TUC]

46 datasets

Figure 5: Pie representation of the classes for the ATT train data

5.1.1 AT&T Dataset Classes

Here, a brief description of each class is provided.

• Collect: this class includes all the calls of users whose request
is to be connected to a phone number by the phone center and
not pay for this call. In detail, a collect call is the procedure that
a person calls another person and this connection is actually
established only when the receiver accepts both the call and the
charge of it. This mostly happens from payphones and it serves
people who, having no money, want to make a call.

Example 5.1.1.1 I’d like to make a collect call.

• Calling Card: in this class we classify calls which are related
to the use of a calling or credit card. Specifically, users may
wish to use a payphone without using any of their real money.
So they have the ability to use a calling or credit card such as
visa or american express in order to place their call. To do so,
the callers have to request from the calling center to do that by
telling their personal card number.

Example 5.1.1.2 I wanna place a call and charge it to my calling card
number

• Dial For Me: this is an operation offered by the phone center
in order to assist users who cannot dial the phone number they

[July 2014 – TUC]

5.1 corpus analysis 47

are calling to. It is really helpful for people with problems such
as reduced vision or blindness, for instance, or for people who
dial with a technical malfunction of their phone and thus are
unable to dial themselves.

Example 5.1.1.3 can you dial a call for me?

• Directory: this operation serves people who call due to their
need to get some directory assistance. In telecommunications,
directory assistance or directory inquiries is a phone service
used to find out a specific telephone number and/or address of
a residence, business, or government entity.

Example 5.1.1.4 yes please I need information for a telephone num-
ber in Columbia south California

• Third number:a third number call or third party call is an oper-
ator assisted telephone call that can be billed to the party other
than the calling and called party. The operator calls the third
number for the party to accept the charges before the call can
proceed.

Example 5.1.1.5 yeah I like to bill this to a third number please

• Time: this class includes all calls from users who simply re-
quests the time. The user has the ability to ask and learn the
time not only in the area where the call is placed from, but also
the time in other places.

Example 5.1.1.6 yes could you tell me what’s the time

• Area Code:this class corresponds to the operation of providing
code information by the phone center. This operation serves
callers who need to know either an area code (the prefix routing
code for a region) or a country code (country codes are neces-
sary only when dialing telephone number in other countries
and they are dialed before the national telephone number; by
convention, international telephone numbers are indicated by
prefixing the country code with a plus sign (+), which is meant
to indicate that the subscriber must dial the international dial-
ing prefix in the country from which the call is placed).

Example 5.1.1.7 could you give me the country code for the ukraine
please

• Billing Credit: the call requests which belong to this class are
made by users who for some reason (they misdialed or they
were connected to a wrong number) they want a refund. So, a
customer can call and ask for a billing credit expecting that the
money he/she was charged will be returned to him/her.

[July 2014 – TUC]

48 datasets

Example 5.1.1.8 yes hi I called this number which was wrong I wanna
get credit

• Time Charge: the call charges are variable and are used to pay
for the cost of the equipment to route a call from the caller’s
exchange to the recipient’s exchange. These call charges can be
calculated on a fixed per call basis, a variable basis depending
on the time or distance of the call, or a combination of the two.
Call charges can even vary at different times of the day. So, calls
found in this class ask for information like this described above.

Example 5.1.1.9 time and charges please

• Competitor:in call requests of this class, users ask to be con-
nected to another operator such as nynex (NYNEX Corpora-
tion was a telephone company that served five New England
states as well as most of New York state, except the Rochester
area, from 1984 through 1997) or MCI (MCI, is an American
telecommunication corporation, currently a subsidiary of Veri-
zon Communications, with its main office in Ashburn, Virginia)
as shown in the following example.

Example 5.1.1.10 yes can you connect me with a nynex operator
please

• Rate: in this class we find calls in which a user wants to find out
what is the rate for a specific call they want to place.

Example 5.1.1.11 yes I will be placing an international phone call I
need to know the rate

• ATT Service: in this class two types of call requests are classi-
fied. The first one includes calls by people who use the at&t
telephone network or use other services such as at&t cable tele-
vision and have a problem. The second one includes some other
services provided by at&t. One such example is the service of In-
ternational operator. International operator services (IOS) allow
travelers to place an international call using a live telephone
operator who speaks their language and accepts all forms of
payment for connecting the call from anywhere in the world, to
anywhere in the world. This specialty form of operator services
uses collect call billing as well as credit card billing to allow
callers to place calls without a calling card or without the cor-
rect change for the pay telephone.

Example 5.1.1.12 yes may I be connected with customer service please

[July 2014 – TUC]

5.1 corpus analysis 49

• How To Dial: this class consists of users’ calls who request to be
guided on how to dial and make a specific type of call.

Example 5.1.1.13 I need to figure out how to make an international
call

• Person To Person: a person-to-person call is an operator-assisted
call in which the calling party wants to speak to a specific
party and not simply to anyone who answers. The caller is not
charged for the call unless the requested party can be reached.
This method was popular when telephone calls were relatively
expensive.

Example 5.1.1.14 yes I’d like to make a person to person to edna
zallis

• Other: this class includes all these requests that are general, un-
obvious or meaningless, like

Example 5.1.1.15 hello

Example 5.1.1.16 no I was just hanging up

Table 4: AT&T Train Dataset Classes

Class Name Number of Training data

collect 1141

calling card 1243

dial for me 1211

directory 260

third number 601

time 38

area code 185

billing credit 477

time charge 46

competitor 25

rate 112

att service 113

how to dial 148

person to person 112

other 807

[July 2014 – TUC]

50 datasets

Table 5: AT&T Test Dataset Classes

Class Name Number of Test data

collect 115

calling card 173

dial for me 142

directory 44

third number 76

time 4

area code 21

billing credit 56

time charge 7

competitor 2

rate 13

att service 28

how to dial 18

person to person 21

other 129

Figure 6: Number of test data in ATT dataset

[July 2014 – TUC]

5.2 problems concerning the classes 51

5.2 problems concerning the classes

In our ATT dataset we can find some call requests which are from
fluent speakers and even users who are familiar with these services.
As a result, in these call requests, the intention of the user is really
obvious. One such example is "collect call please". The problem is
that in most cases, the users do not speak american-english fluently
or they are not sure on how to ask what they want and thus there are
many data samples which do not make sense or at least it is difficult
even for a human to comprehend the purpose of that call. Finally,
there are some situations which seem to be difficult to classify, due
to the fact that the speaker demands the time, for instance, and then
they change their minds and ask for something else.

One of the classes which seems to have the most difficult in un-
derstanding calls is dial for me. We can hopefully meet some simple
requests like "can you dial a call for me?" in which the user clearly
declares what is wanted to be done. However there are some more
demanding and tough for classification cases such as "I’m having
trouble dialing a number here from ayer brothers". Here user’s inten-
tion is not really obvious, although as humans we can understand
that since the caller cannot dial the number, he or she needs to get
the phone center to dial the number.

One additional problem we dealt with (especially for the ATT database),
is that as it can obviously be seen from Figure 5 (on page 46) and the
Table 4 (on page 49), for some of the classes there are not sufficient
training data. This is a factor which will definitely play an important
role on the efficiency of our classification algorithm.

[July 2014 – TUC]

[July 2014 – TUC]

6
E X P E R I M E N T S

This chapter focuses on the experiments we carried out in order to test
the performance of all the algorithms we implemented. The extracted
results as well as comparative tables and figures are offered for a
deeper comprehension.

6.1 evaluation measures

The target of a classifier is to classify each test data in the correct
class. So, to examine how successful our algorithm is, we calculate
the accuracy of the classifier. As accuracy, we consider the number of
the test data which are classified correctly over the total number of
the test data. The formula which describes the accuracy of a classifier
is:

Accuracy =
#Correctly classified test data

#Total test data
· 100 (%) (39)

When we want to evaluate our classifier per class, there are some
further measures we can use (Dan Jurasky-NLP course). These mea-
sures are precision and recall. First, we define the terms tp, fp, tn,
fn:

• tp (true positive): the number of the data which are classified
correctly

• fp (false positive): the number of the data which are not classi-
fied correctly

• tn (true negative): the number of the data which should not be
classified in a class and they weren’t

• fn (false negative): the number of the data which should not be
classified in a class but they were

Now we can define precision (Prec) and recall (Rec) as:

53

[July 2014 – TUC]

54 experiments

Prec = tp
tp+fp

Rec = tp
tp+fn

Precision can be seen as a measure of exactness or quality, whereas
recall is a measure of completeness or quantity. In simple terms, high
precision means that an algorithm returned substantially more rele-
vant results than irrelevant, while high recall means that an algorithm
returned most of the relevant results [1].

Since we have more than two classes we need to find a way to com-
bine the precision and recall we get from each class into one measure,
since it is often useful to have a single measure. There are two ways
to combine multiple performance measures into one quantity:

- Macroaveraging: compute performance for each class, then aver-
age.

- Microaveraging: collect decisions for all classes, compute contin-
gency table, evaluate.

When having evaluated the macroaveraged or microaveraged pre-
cision and recall, the combination of these two measures is the tra-
ditional F-measure or balanced F-score (F1 score), which is the har-
monic mean of precision and recall:

F1 = 2·Prec·Rec
Prec+Rec

6.2 baseline

In order to evaluate the results of our classifier, we need to use the
results of the relevant algorithms as described in Chapter 2 and com-
pare them with the results of this work in a following section. The
baseline algorithms we focus on are Naive Bayes (NB) and Maxi-
mum Entropy (MaxEnt) owing to their wide use. For classifying our
data with these algorithms we use the Standford Classifier (see Ap-
pendix A).

All the compared algorithms are applied on the same train and test
dataset. Here is the accuracy of the mentioned baseline techniques
applied to our two databases (more detailed results per class and per
database can be found in Figure 7 and Figure 8):

[July 2014 – TUC]

6.2 baseline 55

Table 6: Baseline Results (%)

Datase Name NB MaxEnt

ATT 18.14 74.2

Figure 7: NB baseline results for ATT dataset

[July 2014 – TUC]

56 experiments

Figure 8: MaxEnt baseline results for ATT dataset

[July 2014 – TUC]

6.3 data processing 57

6.3 data processing

We are looking for a way to make our GMM algorithm give the best
possible results, it is essential that we try different parameters. When
classifying our data using vector-based techniques such as SVD and
GMM, there are many stages where the choice of the most appropri-
ate parameters seem to be necessary.

The first parameter we examined on our datasets is the normal-
ization techniques for weighting the elements of the term-document
matrix w, which is constructed in the beginning of the procedure. As
mentioned, in this work we used Inverse document frequency tf-idf
and logEntropy.

The second parameter for which is important to find an optimum
value is the dimension of the representation of the matrix w, which
is built using the technique of singular value decomposition (SVD).
When using SVD there is no specific number of dimensions to reduce
the initial term-document matrix. In order to find the best dimension
we ran several tests for a wide range of dimensions. In this work
we applied the SVD using the gensim tool and specifically the mod-
els.LsiModel class due to it’s ability to deal effectively with sparse
matrices (more information and Python code can be found in Ap-
pendix A).

Finally, when we apply the GMM technique there some parameters
we need to examined in order to get the best possible results. These
parameters are the number of gaussian mixture components in each
GMM, as well as the type of covariance (tied, full, diagonal, spherical).
We need to compare GMMs with spherical, diagonal, full, and tied
covariance matrices since, although one would expect full covariance
to perform best in general, it is prone to overfitting on small datasets
and does not generalize well to held out test data.

In the following flowchart (Figure 9) we can see all the stages of our
classifier which implements SVD and GMM as analyzed in Chapter 4.
After that, we will discussed in detail which parameters we examine
in each stage and what are the results of this.

[July 2014 – TUC]

58 experiments

Figure 9: Flowchart with the stages of our classifier

[July 2014 – TUC]

6.4 results of the experiments 59

6.4 results of the experiments

In this section all the results of all the experiments are shown. All
the experiments were conducted in order to maximize the GMM al-
gorithm’s accuracy and to do so, we use the high-level programming
language Python. More details on the numerical results of the experi-
ments as well as part of the Python code can be found in Appendix A.

6.4.1 tf-idf and entropy weighting

As is can be seen in Figure 9 after creating the term-document matrix
we have to normalize it, since not all of the features are equally impor-
tant and meaningful. Thus, the first parameter we examined on our
datasets is the normalization techniques for weighting the elements
of the term-document matrix w and here we compare are tf-idf and
logEntropy. The results can be seen in the following figure.

Figure 10: Comparison of the accuracy for tfidf and logEntropy weighting

[July 2014 – TUC]

60 experiments

In Figure 10 we can see that both curves peak in dimension 200.
Furthermore, it is undeniable the fact that logEntropy weighting re-
sults in higher accuracy for the most part of the dimension range. The
difference is not that big. The highest divergence is 3.5% for dimen-
sion=100.

6.4.2 Covariance Type

This experiment was carried out so that we can compare the results of
our GMM algorithm for different covariance type. The four distinct
types are spherical, tied, diag and full. We depict the accuracy of the
algorithm for each type separately as well as the average accuracy of
all the types for each dimension of the svd-reduced matrix we test for
a better comparison. We ca see the results in the following figure.

Figure 11: Accuracy of our classifier for different covariance types

It can obviously be seen in Figure 11 that the greatest result is
given under spherical covariance for dimension 200. However, for di-
mensions smaller than 100 it seems that spherical covariance results
in the worst accuracy of all. The second greatest result is given un-
der full covariance for dimension 100 which also seems to be higher
that the average accuracy for all dimensions lower than 350. On the
other hand, tied covariance gives the best average accuracy for all the

[July 2014 – TUC]

6.4 results of the experiments 61

dimensions we tested here. The diagonal covariance gives the worst
results, being under the average for all the dimensions.

6.4.3 Number of GMM components

The next experiment was conducted in order compare the results
of our algorithm for different number of Gaussians in each GMM.
The selection of the number of components is an important issue as
with too many components, the mixture may over-fit the data, while
a mixture with too few components may not be flexible enough to
approximate the true underlying model. Out of the four covariance
types (spherical, tied, diag and full) we used the one which results in
the best accuracy. So did we for the dimension. The following figure
shows the accuracy of the algorithm for each gaussian number.

Figure 12: Accuracy of our classifier for different number of Gaussians

[July 2014 – TUC]

62 experiments

It can easily be noticed from Figure 12 that our results seem to
create an almost straight line. The highest accuracy is given for 7

gaussians and the second highest accuracy is given for 3 gaussians.
However, all the results are nearly equal. As a consequence, the num-
ber of the gaussians in the GMMs seems not to play an essential role.

Trying to explain this conclusion, we created 3-D depictions, Fig-
ure 13, of 3 only dimensions of the svd-reduced term-document ma-
trix with tf-idf weighting for two random classes. Observing these
3-D depictions we can understand that since the classes are not to-
tally distinct, only one gaussian is not enough. However we can see
that the data are distributed in such a way that not a high number of
gaussians is necessary,in order to discribe them.

Figure 13: 3-D depiction of 3 dimensions

[July 2014 – TUC]

6.4 results of the experiments 63

6.4.4 SVD dimension

One of the most important parameters in our algorithm is the dimen-
sion in which we reduce our term-document matrix through the SVD
procedure. The choice of the most appropriate dimension depends on
the data. For this reason we carried out an experiment and we calcu-
lated the accuracy of the algorithm for each dimension as the average
accuracy of the algorithm for each covariance type. The figure which
follows shows the results.

Figure 14: Comparing the SVD dimensions

As far as it can be seen in Figure 14, for too low dimensions we do
not get high accuracy. From this fact we conclude that more informa-
tion is needed (lack of information). For higher but not the highest
dimensions such as 50 or ever better 100, we get the best possible ac-
curacy. On the other hand, as we increase the dimension the accuracy
gets worse and worse. The obvious reason is that the more informa-
tion we use, the more unimportant information is taken into account.
To put it differently, more noise is taken into consideration.

[July 2014 – TUC]

64 experiments

6.5 comparison of the results

Here is a comparison of the results of the common algorithms we
applied.

Figure 15: Comparing the baseline classifiers to GMM for the ATT dataset

As we see in Figure 15, for the ATT database we get different re-
sults for different techniques. The Naive Bayes classification gives the
lowest accuracy and even maxEnt is not as effective as someone could
expect. The highest accuracy is achieved using Gmm. This result was
expected due to the fact that ATT dataset consists of a high number
of classes and as we mentioned in Section 5.2 there is lack of data for
many classes of the former dataset.

[July 2014 – TUC]

6.5 comparison of the results 65

Next, we will use two additional classification methods, hoping
for an improvement. This time we will apply the tree classifier from
Section 3.2.2. Furthermore, we will classify each call request based on
the cosine similarity which was referred in Section 2.2.6.1. Here are
the results.

Figure 16: Comparing the accuracy

In Figure 16 we notice that the tree classifier gives almost the same
results as MaxEnt. In addition to this, the accuracy with cosine sim-
ilarity is nearly 10% lower that the tree classifier. As a consequence,
the best classifier for the ATT dataset is GMM, which is nearly 14%
higher in accuracy that the second better classifier which is MaxEnt.

To sum up, after having taken all the results of both datasets into
account, we conclude that GMM is the most appropriate classification
technique for our Call Routing task.

[July 2014 – TUC]

66 experiments

Here we compare the precision and the recall between the two best
classification methods for our task, MaxEnt and GMM.

Figure 17: Comparing the Precision

Figure 18: Comparing the Recall

As we can see both precision and recall are higher with GMM for
most of the classes.

[July 2014 – TUC]

6.5 comparison of the results 67

Table 7: Macro-Average Precision,Recall,F1 (%)

classifier Precision Recall F1

Tree 71.9 63.1 67.2

GMM 87.7 93.3 90.4

MaxEnt 69.7 63.8 66.6

Table 8: Accuracy of Baselime methods

Baseline Method acc %

Naive Bayes 18.1

LSI 60.8

Maximum Entropy 74.2

Table 9: Accuracy of our proposed methods

Our Proposed Method acc %

Tree Classifier 72.8

GMM Classifier 88.2

[July 2014 – TUC]

68 experiments

Figure 19: Precision, Recall, F1 of the top 3 methods

[July 2014 – TUC]

7
C O N C L U D I N G R E M A R K S A N D F U T U R E W O R K

This chapter summarizes and features the results and the conclusions
from our work. In addition to this, possible future work is proposed.

7.1 concluding remarks

In this work we talked about spoken dialogue systems and spoken
language understanding and we focused on Call Routing systems. In
our Call Routing task callers have to be automatically routed to the
right place in the call center (live agent or automated service), letting
the users describe the reason for their call in their own words.

Call Routing is a classification task and in order to accomplish it
we implemented two different algorithms, which we applied on real
American-English call requests (from ATT). Our algorithms are a tree
classifier and a GMM classifier, and we compare their results to those
of the baseline classifiers, Naive Bayes and Maximum Entropy.

The tree classifier uses mutual information and salience so as to
extract features-phrases from the training data. The results we get
from it (72.8%) are comparable to those of the Maximum Entropy
(74.2%). They are the second best classifier we tested on our data.
The worst results are given by Naive Bayes (18%).

The highest accuracy (88.2%) in all the experiments is from the
GMM classifier. This approach starts from the pre-processing of the
train calls, followed by the creation stage of dictionary and term
weighting of bringing a text version of the classical representation
through words in matrix format. The following step is the reduction
of the dimensions of the matrix using the Singular Value Decomposi-
tion. Finally, this matrix is used for the training of the GMM.

Taking all the results into account, we come to the conclusion that
the vector-based methods we used and combined work effectively on
our data. On the other hand, the results are not ideal since in a real
call center 12 out of 100 users would be routed to a wrong service.
This means that there is space for improvement, trying more different
methods. Some possible future work is proposed in the following
section.

69

[July 2014 – TUC]

70 concluding remarks and future work

7.2 future work

As we mentioned above, the results of this work are quite high, but
in the real world and in a real call center we need all the users to
be served correctly. Consequently, there is space as well as need for
improvement. Here, we propose some ideas which would be of great
interest to implement and test on our data in order to achieve better
results.

A first proposal would be to try to find better methods for the ex-
traction of the salient phrases for each class of the training data. In our
work we used mutual information and salience. However, we noticed
that some of the extracted phrases were not as salient as they should
be. In addition to this, after the salient phrases extraction, we could
use a rule-based instead of a statistical approach. So, we could apply
grammar-based parsing on each utterance, but this method would
require more supervision.

One further proposal would be to use discriminative training (DT)
for call classification and routing. Discriminative training considers
both positive and negative examples during training to minimize the
classification error and increase the score separation of the correct
hypothesis from competitors. DT improves portability by making the
classifier robust to different feature selection and by decreasing the
amount of training data needed [17]. Early work with discriminative
classification algorithms was completed on the AT&T HMIHY system
[4] using the Boostexter tool, an implementation of the AdaBoost.MH
multiclass multilabel classification algorithm [29].

Moreover, in our GMM classifier we could not use the SVD tech-
nique and we can instead try the NMF method. The nono-negative
matrix factorization is a method with which we can reduce the di-
mension of a term-document matrix.

Other alternatives would include a markov random field (MRF) ap-
proach and of course many combinations of different techniques. Of-
course, one final idea which is important would be to check our pro-
posed methods on a different database such as the ATIS [13] database.

[July 2014 – TUC]

Part II

A P P E N D I X

[July 2014 – TUC]

[July 2014 – TUC]

A
A P P E N D I X

a.1 at&t

AT&T Inc. (stylized as at&t) is an American multinational telecom-
munications corporation, headquartered at Whitacre Tower in down-
town Dallas, Texas. AT&T is the second largest provider of mobile
telephony and the largest provider of fixed telephony in the United
States, and also provides broadband subscription television services.
AT&T is the third-largest company in Texas (the largest non-oil com-
pany, behind only ExxonMobil and ConocoPhillips, and also the largest
Dallas company). AT&T is the 21st largest company in the world by
market value, and the 13th largest non-oil company. It is also the 20th
largest mobile telecom operator in the world, with over 250 million
mobile customers.

The current iteration of AT&T Inc. began its existence as South-
western Bell Corporation, one of seven Regional Bell Operating Com-
panies (RBOC’s) created in 1983 in the divestiture of parent com-
pany American Telephone and Telegraph Company (founded 1885,
later AT&T Corp.) due to the United States v. AT&T antitrust lawsuit.
Southwestern Bell changed its name to SBC Communications Inc. in
1995. In 2005, SBC purchased former parent AT&T Corp. and took
on its branding, with the merged entity naming itself AT&T Inc. and
using the iconic AT&T Corp. logo and stock-trading symbol.

The current AT&T reconstitutes much of the former Bell System
and includes ten of the original 22 Bell Operating Companies, along
with one it partially owned (Southern New England Telephone), and
the original long distance division.

a.2 salient phrases tables

The following tables presents some salient phrases as extracted for
each class of the HMIHY training data from the AT&T call center.

73

[July 2014 – TUC]

74 appendix

Table 10: AT&T Class Collect

Collect MI P(c|f)

a collect call please 3.1226267036 1.0

make a collect 3.72527304241 0.995

a collect call 3.91654884615 0.988

to place a collect 3.7658134087 0.99

Table 11: AT&T Class Calling Card

Calling Card MI P(c|f)

my calling card 4.09454057103 0.95

card call please 4.2857844263 1.0

a calling card 4.08388635475 0.95

calling card call please 4.07831373082 1.0

Table 12: AT&T Class Dial for me

Dial for me MI P(c|f)

you dial a 4.04172107877 0.96

number for me 6.41728161359 0.88

could you dial 4.77296497704 0.91

for me please 4.98134392947 0.82

Table 13: AT&T Class Directory

Directory MI P(c|f)

I need directory assistance 7.81260867438 1.0

I need information 3.7186528151 1.0

need a number 4.13773714744 0.9

[July 2014 – TUC]

A.2 salient phrases tables 75

Table 14: AT&T Class Third Number

Third Number MI P(c|f)

third party billing 7.71883414229 0.94

a third party 7.61473598701 0.92

to a different number 5.39202849732 1.0

bill it to another 6.10082286924 1.0

Table 15: AT&T Class Time

Time MI P(c|f)

what time it 6.55996843769 1.0

time it is 7.04212013283 1.0

what time it is 7.03133189257 1.0

time it is in 7.07969491413 1.0

Table 16: AT&T Class Area Code

Area Code MI P(c|f)

the area code 5.08609989874 0.63

area code for 4.57977879848 1.0

need the area 5.34891439831 1.0

the country code for 4.68961327711 1.0

Table 17: AT&T Class Time and Charges

Time and Charges MI P(c|f)

time and charges 6.50823389171 0.99

time and charges please 6.01992908071 1.0

and charges please 6.00770017215 1.0

charges for this 7.51584707582 1.0

[July 2014 – TUC]

76 appendix

Table 18: AT&T Class Billing Credit

Billing Credit MI P(c|f)

a wrong number 5.19294528629 0.99

dialed the wrong number 5.09750650405 0.92

I need credit 5.58823769793 1.0

get credit for 6.4044237219 1.0

Table 19: AT&T Class Competitor

Competitor MI P(c|f)

MCI and I 7.5695151864 0.72

I’m on sprint 8.30648078057 1.0

an MCI operator 8.72151827985 1.0

Table 20: AT&T Class Rate

Rate MI P(c|f)

rates are for 6.92729392945 1.0

how much it would 6.63987755969 0.9

know how much it 6.56163998536 1.0

how much this call 5.85287128303 1.0

Table 21: AT&T Class ATT Service

ATT Service MI P(c|f)

customer service please 5.75425159696 1.0

questions on my bill 8.7576472061 1.0

my phone isn’t working 11.079575301 1.0

[July 2014 – TUC]

A.3 the stanford classifier 77

Table 22: AT&T Class How to dial

How to dial MI P(c|f)

how to dial it 6.02081939918 1

how do I do 5.4510681487 0.6

I have to dial 5.51982376941 0.66

tell me how to 4.19017382714 0.52

Table 23: AT&T Class Person to Person

Person to Person MI P(c|f)

person to person 4.43636288221 0.99

to person call 5.08610638864 0.99

wanna make a person 4.75323752133 1.0

person to person call 5.11053013395 0.99

a.3 the stanford classifier

The Stanford Classifier is a general purpose classifier - something that
takes a set of input data and assigns each of them to one of a set of
categories. It does this by generating features from each datum which
are associated with positive or negative numeric "votes" (weights) for
each class. In principle, the weights could be set by hand, but the
expected use is for the weights to be learned automatically based on
hand-classified training data items. (This is referred to as "supervised
learning".) The classifier can work with (scaled) real-valued and cat-
egorical inputs, and supports several machine learning algorithms.
It also supports several forms of regularization, which is generally
needed when building models with very large numbers of predictive
features.

This software is a Java implementation of a naive bayes and a max-
imum entropy classifier. Maximum entropy models are otherwise
known as conditional loglinear models, and are essentially equiva-
lent to multiclass logistic regression models (though parameterized
slightly differently, in a way that is advantageous with sparse explana-
tory feature vectors).

For using Stanford Classifier in this work, we downloaded the lat-
est version of the classifier from the official site of the Stanford NLP
Group: ’http://nlp.stanford.edu/software/classifier.shtml’.

[July 2014 – TUC]

78 appendix

a.4 evaluation of semantic distortion measure for two

fragments

Let N1,N2 be the number of training utterances for which the frag-
ments f1, f2 occur, respectively, X1k, X2k be the number of training
utterances of call type ck for which the fragments f1, f2 occur, respec-
tively, Y12k be the number of training utterances of call type ck for
which both the fragments f1, f2 occur.Then a simple version of the se-
mantic distortion measure which works well in practice, is dM(f1, f2)
where K is the number of classes.

dM =
1

k

K∏
k=1

(N2X1k −N1X2k)
2

N1N2(X1k +X2k − Y12k)
(40)

a.5 numerical results of the experiments

The following table shows the accuracy of the GMM algorithm for
ATT dataset with tf-idf weighting.

Table 24: GMM accuracy for the AT&T dataset with tfidf weighting

dimension spherical tied diag full average

3 45.936 54.888 44.994 51.001 49.20475

5 51.826 61.131 53.004 55.595 55.389

7 59.246 69.729 61.955 67.138 64.517

10 61.955 71.967 63.369 69.965 66.814

30 72.909 75.147 72.32 77.503 74.46975

50 76.325 81.037 78.092 83.039 79.62325

100 82.214 80.448 78.916 83.981 81.38975

150 85.041 76.796 76.914 79.388 79.53475

200 85.395 74.087 73.38 79.27 78.033

250 84.688 69.611 70.2 77.503 75.5005

300 84.688 65.842 65.253 75.501 72.821

350 83.274 60.424 49.823 68.905 65.6065

400 76.09 56.066 17.314 41.578 47.762

450 1.531 51.237 1.531 11.779 16.5195

500 1.531 48.881 1.531 2.238 13.54525

[July 2014 – TUC]

A.6 part of gmm implementation in python 79

Table 25: GMM accuracy for the AT&T dataset with logEntropy weighting

dimension spherical tied diag full

3 46.525 55.241 45.465 50.530

5 51.826 61.366 52.650 54.888

7 59.717 69.611 63.133 67.962

10 63.251 73.027 63.251 70.554

30 74.441 78.681 75.383 82.214

50 78.799 82.332 79.034 85.159

100 83.274 80.565 79.388 85.395

150 85.277 76.796 77.150 82.450

200 86.808 74.205 72.085 79.388

250 88.221 70.082 70.318 78.681

300 86.219 65.724 65.724 77.856

350 86.572 60.660 47.232 67.138

400 75.383 55.124 17.432 39.576

450 1.531 50.648 1.531 12.839

500 1.531 48.528 1.531 2.002

a.6 part of gmm implementation in python

Listing 1: Term weighting

1

from gensim import models

here is some code for tfidf weighting using the tool gensim

6 tfidf = models.TfidfModel(corpus)

corpus_normalized = tfidf[corpus]

here is some code for logEntropy weighting using the tool

gensim

11

log_ent = models.logentropy_model.LogEntropyModel(corpus)

corpus_normalized = log_ent[corpus]

[July 2014 – TUC]

80 appendix

Listing 2: Gaussian mixture model

from sklearn.mixture import GMM

Here is some code to create a Gaussian mixture model using

sklearn.mixture.GMM

5

g1 = mixture.GMM(n_components=3,covariance_type= ’ spherical ’,
init_params= ’wmc’ , params= ’wmc’, n_iter=100)

10 g1.fit(train[indexes[’1 ’]])

fit: estimates model parameters with the expectation-

maximization algorithm

15

g2 = mixture.GMM(n_components=3,covariance_type= ’ spherical ’,
init_params= ’wmc’ , params= ’wmc’, n_iter=100)

g2.fit(train[indexes[’2 ’]])
20

we do the same for all the classes

Listing 3: LSI model

1

from gensim import models, matutils

using the models.LsiModel and matutils.corpus2dense we manage

to reduce the dimension of the initial matrix and convert it

from sparse to dense

6

lsi = models.LsiModel(corpus, id2word=dictionary, num_topics=

dimensions)

11 corpus_lsi = lsi[corpus]

train = matutils.corpus2dense(corpus_lsi,dimensions).T

[July 2014 – TUC]

A.7 important tools in python 81

Listing 4: GMM-probability under the model

from sklearn import mixture

3

Compute the log probability under the model using the method

score of sklearn.mixture

probability_class1 = g1.score(test_data)

8

probability_class2 = g2.score(test_data)

13 # we do the same for all the classes and the class which

maximizes the probability is the final choice

a.7 important tools in python

Here is a list of the most important tools we needed in our python
code in order to implement our algorithms:

• gensim: gensim is a free Python library designed to automati-
cally extract semantic topics from documents, as efficiently (computer-
wise) and painlessly (human-wise) as possible.

• sklearn: it is a simple and efficient tool for data mining and
data analysis

• NumPy: NumPy is the fundamental package for scientific com-
puting in Python

Note: all the experiments were carried out in Python 2.7.1+, using
Linux-Ubuntu.

[July 2014 – TUC]

[July 2014 – TUC]

B I B L I O G R A P H Y

[1] Precision and recall. URL http://en.wikipedia.org/wiki/

Precision_and_recall.

[2] S. A. Della Pietra A. L. Berger and V. J. Della Pietra. A maximum
entropy approach to natural language processing. 1996.

[3] Stephen A. Della Pietra Adam L. Berger, Vincent J. Della Pietra.
A Maximum Entropy Approach to Natural Language Processing.

[4] Jeremy H. Wright Allen L. Gorin, Giuseppe Riccardi. How May I
Help You?

[5] Dan McCarthy Barbara Freeman David Getty Katherine Godfrey
Bernhard Suhm, Josh Bers and Pat Peterson. A Comparative Study
of Speech in the Call Center: Natural Language Call Routing vs. Touch-
Tone Menus.

[6] S. Chen and R. Rosenfeld. A survey smoothing techniques for ME
models. 2001.

[7] Stanley F. Chen and Ronald Rosenfeld. A survey of smoothing
techniques for maximum entropy models. 2000.

[8] Wei Chen. Building Language Model on Continuous Space using
Gaussian Mixture Models.

[9] Hinrich SchÃŒtze Christopher D. Manning, Prabhakar Ragha-
van. An Introduction to Information Retrieval.

[10] Christopher D.Manning and Hinrich Schutze. Foundations of Sta-
tistical Natural Language Processing.

[11] Enrico Bocchieri Giuseppe Riccardi, Roberto Pieraccini. Stochas-
tic automata for language modeling.

[12] Renato De Mori Gohkan Tur. Spoken Language Understanding -
Systems for extracting semantic information from speech.

[13] Larry Heck Gokhan Tur, Dilek Hakkani-Tur. What is left to be
understood in ATIS?

[14] P. S. Gopalakrishnan. An inequality for rational functions with ap-
plications to some statistical estimation problems. 1991.

[15] Allen L. Gorin. Processing Of Semantic Information In Fluently Spo-
ken Language.

[16] Allen L. Gorin. On Automated Language Acquisition. 1994.

83

[July 2014 – TUC]

http://en.wikipedia.org/wiki/Precision_and_recall
http://en.wikipedia.org/wiki/Precision_and_recall

84 bibliography

[17] Imed Zitouni Eric Fosler-Lussier Egbert Ammicht Hong-Kwang
Jeff Kuo, Chin-Hui Lee. Discriminative training for call classification
and routing.

[18] Frederick Jelinek and Robert Mercer. Interpolated estimation of
Markov source parameters from sparse data in Pattern Recognition in
Practice. 1980.

[19] Bob Carpenter Jennifer Chu-Carroll. Vector-Based Natural Lan-
guage Call Routing.

[20] A.L.Gorin J.H.Wright and G.Riccardi. Automatic Acquisition Of
Salient Grammar Fragments for Call-Type Classification.

[21] Daniel Jurafsky and James H. Martin. Speech and Language Pro-
cessing.

[22] Giuseppe Riccardi Allen L. Gorin Kazuhiro Arai, Jeremy
H. Wright. Grammar Fragment acquisition using syntactic and se-
mantic clustering.

[23] Brian Kingsbury Mohamed Afify, Ruhi Sarikaya. Tied-Mixture
Language Modeling in Continuous Space. .

[24] Ruhi Sarikaya Mohamed Afify, Olivier Siohan. Gaussian Mixture
Language Models for Speech Recognition. .

[25] Peter E. Hart Richard O. Duda and David G. Stork. Pattern Clas-
sification. 2001.

[26] Bhuvana Ramabhadran Ruhi Sarikaya, Geoffrey E. Hinton. Deep
Belief Nets for Natural Language Cal-Routing.

[27] V. D. Pietra S. D. Pietra and J. Lafferty. Inducing features of random
fields. 1997.

[28] Haym Hirsh Sarah Zelikovitz. Using LSI for Text Classification in
the Presence of Background Text.

[29] R. E. Schapire and Y. Singer. Boostexter: A boosting-based system
for text categorization,.

[30] R. E. Schapire and Y. Singer. Boostexter:A boosting based system for
text categorization, Machine Learning. 2000.

[31] George W. Furnas Scott Deerwester, Susan T. Dumais and
Richard Harshman Thomas K.Landauer. Indexing by Latent Se-
mantic Analysis.

[32] Gabriel Skantze. Error Handling in Spoken Dialogue Systems.

[33] Allen L. Gorin Susan J. Boyce. User Interface Issues for Natural
Spoken Dialog Systems.

[July 2014 – TUC]

bibliography 85

[34] V. Vapnik. The Nature of Statistical Learning Theory. 1995.

[35] S. V. N. Vishwanathan. K-means and gaussian mixture models,
2011. URL http://learning.stat.purdue.edu/wiki/_media/

courses/fall2011/598z/kmeans.pdf.

[36] Ciprian Chelba Brendan Frey Ye-Yi Wang, Alex Acero and Leon
Wong. Combination of statistical and rule-based approaches for Spoken
Language Understanding.

[July 2014 – TUC]

http://learning.stat.purdue.edu/wiki/_media/courses/fall2011/598z/kmeans.pdf
http://learning.stat.purdue.edu/wiki/_media/courses/fall2011/598z/kmeans.pdf

[July 2014 – TUC]

bibliography 87

[July 2014 – TUC]

[July 2014 – TUC]

D E C L A R AT I O N

Chania, Greece, July 2014

I hereby declare that this thesis is my own work and effort and
that it has not been submitted anywhere for any reason. Where other
sources of information have been used, they have been referred.

Georgiadou Despoina, July 10

2014

[July 2014 – TUC]

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	Chapters
	1 Introduction
	1.1 Spoken Language Understanding (SLU)
	1.2 Call Routing Systems
	1.2.1 Touch-tone menus
	1.2.2 Natural language call routing
	1.2.3 Natural language call routing and Touch-tone menus comparison

	1.3 Objective of this work
	1.4 Organization of this work

	2 State-of-the-art
	2.1 Spoken Dialogue Systems
	2.1.1 Architecture
	2.1.2 Components

	2.2 Algorithms for Call Routing
	2.2.1 n-gram Classifier
	2.2.2 Naive Bayes (NB)
	2.2.3 Maximum Entropy (MaxEnt)
	2.2.4 Boosting
	2.2.5 Support Vector Machines (SVM)
	2.2.6 Vector-based Classifier

	2.3 Novelty of this work

	3 Call-type classification
	3.1 Data Processing - Phrases preferred instead of words
	3.1.1 Phrase
	3.1.2 Fragment
	3.1.3 Salience
	3.1.4 Salient phrase fragments
	3.1.5 Statistical and rule-based approaches for spoken language understanding

	3.2 Call-type classification
	3.2.1 Peak-of-fragments classifier
	3.2.2 Tree classifier

	4 GMM Classifier
	4.1 Term-Document Matrix Construction
	4.1.1 Term weighting
	4.1.2 Normalization techniques

	4.2 Singular Value Decomposition (SVD)
	4.2.1 SVD Basis
	4.2.2 SVD Analysis

	4.3 Gaussian Mixture Model (GMM)
	4.3.1 GMM Model Formulation
	4.3.2 Expectation Maximization (EM)
	4.3.3 GMM-Covariance matrix

	5 Datasets
	5.1 Corpus Analysis
	5.1.1 AT&T Dataset Classes

	5.2 Problems concerning the classes

	6 Experiments
	6.1 Evaluation Measures
	6.2 Baseline
	6.3 Data Processing
	6.4 Results of the experiments
	6.4.1 tf-idf and entropy weighting
	6.4.2 Covariance Type
	6.4.3 Number of GMM components
	6.4.4 SVD dimension

	6.5 Comparison of the results

	7 Concluding Remarks and Future Work
	7.1 Concluding remarks
	7.2 Future work

	Appendix
	A Appendix
	A.1 AT&T
	A.2 Salient phrases tables
	A.3 The Stanford Classifier
	A.4 Evaluation of semantic distortion measure for two fragments
	A.5 Numerical results of the experiments
	A.6 Part of GMM implementation in python
	A.7 Important tools in python

	Bibliography
	Declaration

