
Technical University of Crete
School of Electronic and Computer Engineering

Low-Density Parity-Check Codes

for the relay channel

by

Panagiotis Chatzinikolaou

Submitted on July 29, 2014 in partial fulfilment of the

requirements for the Electronic and Computer Engineering

diploma degree.

THESIS COMMITTEE

Professor Athanasios Liavas, Thesis Supervisor

Associate Professor George Karystinos

Associate Professor Aggelos Bletsas

http://www.tuc.gr/3324.html
http://www.ece.tuc.gr/4481.html
http://www.telecom.tuc.gr/~liavas/
http://www.telecom.tuc.gr/~karystinos/
http://www.telecom.tuc.gr/~aggelos/

Abstract

Since 1948, when Claude Shannon introduced the notion of channel capacity, the ultimate

goal of coding theory has been to find practical capacity-approaching codes. This thesis is

concerned with the analysis, design, construction, and, mainly, the decoding of an extremely

powerful and flexible family of error-control codes, called low-density parity-check (LDPC)

codes. LDPC codes can be designed to perform close to the capacity of many different

types of channels with a practical decoding complexity. The main design tool, Density

Evolution, which predicts the asymptotic performance of a belief-propagation decoder is

analysed. An effective construction method, called configuration model, for picking LDPC

codes at random from LDPC ensembles is presented in depth. In addition, a construction

tool for LDPC codes of moderate lengths, namely the Progressive Edge Growth algorithm,

which tries to maximize the girth of a code is presented. Furthermore, we present the

analysis,design, construction and decoding of bilayer LDPC codes for the half-duplex relay

channel. To analyse the performance of bilayer LDPC codes, bilayer Density Evolution

is presented as an extension of the standard Density Evolution. Finally, we analyse in

depth the construction procedure of bilayer LDPC codes as an extension of single user’s

configuration model.

Acknowledgements

First of all, I would like to thank my parents for their endless support, love and patience

without whom this thesis may not have been completed. Many thanks go to my thesis

supervisor, Professor Athanasios Liavas, for all his guidance, patience and for the necessary

contributions to this thesis. I was very lucky to have a supervisor who cared so much about

my thesis, and who always responded to my questions. Also, I would like to thank my

thesis committee for the knowledge they provided me during my studies, and for the time

devoted to read this thesis. Last but not least, I would like to thank all my friends and

colleagues for the memorable moments we had.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Brief history of LDPC codes . 2

2 Channels, codes and capacity 3

2.1 Binary input symmetric output memoryless channels 3

2.1.1 Binary Symmetric Channel (BSC) . 4

2.1.2 Binary Erasure Channel (BEC) . 5

2.1.3 Binary AWGN Channel (BI-AWGN) . 7

2.2 Linear Block Codes . 10

3 Low-Density Parity-Check (LDPC) codes 17

3.1 Matrix representation of LDPC codes . 17

3.2 Graphical representation of LDPC codes . 21

3.3 Degree Distributions & Code Ensemble . 24

4 Decoding of LDPC codes 31

4.1 Belief Propagation Decoding . 31

4.1.1 Factor Graphs . 31

4.1.2 Message Passing . 35

4.1.3 Marginalisation via Message Passing . 38

4.1.4 Decoding via Message Passing . 47

4.1.5 BP decoding for the BEC . 51

i

4.2 The principle of iterative decoding . 56

4.3 The decoding tree . 57

5 Analysis & Design of LDPC codes 59

5.1 Density Evolution for LDPC Codes . 59

5.1.1 BEC Channel . 60

5.1.2 BMS Channels . 65

5.1.3 Discrete Density Evolution . 71

5.1.4 LDPC Code Design . 72

5.2 Gaussian Approximation . 74

5.2.1 Gaussian Approximation for Regular LDPC codes 75

5.2.2 Gaussian Approximation for Irregular LDPC codes 84

6 Relay Channel 93

6.1 Introduction . 93

6.2 Bilayer Expurgated LDPC Codes . 95

6.3 Bilayer Lengthened LDPC Codes . 100

6.4 Gaussian Approximation for Bilayer Codes . 105

7 Construction of LDPC Codes 107

7.1 Gallager Construction . 107

7.2 Configuration Model . 109

7.3 Progressive Edge Growth (PEG) Algorithm . 111

7.4 Configuration Model for Bilayer Construction 117

8 Conclusion 119

List of Figures

1.1 A typical communications system. 1

2.1 Binary Symmetric Channel (BSC). 4

2.2 Binary Erasure Channel (BEC). 6

2.3 The BI-AGWN channel. 7

3.1 Bit Error Rate of a (3,6) − regular and a concentrated irregular1 LDPC

code with same block length over BI-AWGN channel. We used BPSK mod-

ulation. 20

3.2 The circle represents a variable node and the square represents a check node. 21

3.3 Bipartite graph representing the irregular LDPC code of the parity-check

matrix in 3.3. 21

3.4 Bipartite graph representing the (3,6)-regular LDPC code of 3.1. The dark-

ened edges represent a cycle of length 4. 22

4.1 Factor Graph of the factorisation of function f with respect to variable x1. . 33

4.2 Factor graph representation of the code membership function based on the

factorisation in 4.6. 35

4.3 Factor graph representation of expansion in 4.8. 36

4.4 Factor graph representation of the expansion of factors g1(x1,⋯) and g2(x1,⋯)

respectively. 37

4.5 Steps of Single Message Passing (SMP) Algorithm for computing marginal

f(x1). 40

iii

4.6 Equivalent Factor graph representation of 4.5(a) without hanging from a

root node. 41

4.7 Message-Passing Rules for BP algorithm. 42

4.8 Implementation of the Belief Propagation Algorithm. Different arrows cor-

respond to different rounds. Likewise, same arrows correspond to outgoing

messages at the same round. 46

4.9 Extended factor graph of Figure 4.2 containing the effect of the channel. . . 48

4.10 The binary erasure channel (BEC). 51

4.11 Message passing decoding in order to find the erased part of the codeword.

The dotted arrows correspond to messages “bit=1”, the solid line correspond

to message “bit= ?” and the broken arrows correspond to messages “bit=0”. 55

4.12 The principle of iterative decoding. 56

4.13 The depth-one decoding tree for a regular (3,6) LDPC code. 57

4.14 The depth-two decoding tree for an irregular LDPC code. 58

5.1 Graphical representation of Density Evolution rules. 70

5.2 Bit Error Rate of an optimized irregular LDPC code. 74

5.3 Density Evolution and Gaussian approximation for the BI-AWGN channel

for σ < σ∗. 79

5.4 Density Evolution and Gaussian approximation for the BI-AWGN channel

for σ > σ∗. 82

5.5 Density Evolution and Gaussian approximation for the BI-AWGN channel

for irregular codes with σ < σ∗. 89

6.1 Relay Channel from an information theoretic view. 93

6.2 Parity-forwarding scheme for the relay channel. 95

6.3 The bilayer expurgated code. The lower sub-graph represents an LDPC

code for source-relay channel. The overall graph represents an LDPC code

for the destination. 96

6.4 Bit Error Rate of a bilayer-expurgated LDPC code. Dashed lines represent

the theoretical limits. 100

6.5 The bilayer-lengthened code. The relay decodes the overall graph and pro-

vides the value of upper variable nodes to the destination. The destination

decodes the lower sub-graph. 101

6.6 Bit Error Rate of a bilayer-lengthened LDPC code. Dashed lines represent

the theoretical limits. 104

7.1 Labeled Tanner graph of a concentrated irregular LDPC code. 110

7.2 Connection procedure of a concentrated irregular LDPC code. 111

7.3 Edge-by-edge derivation of a Tanner graph using PEG algorithm. Broken

arrows represent edges emanating from variable nodes with degree 3. Edges

in red represent a cycle of length 4. Blue broken arrows needs more intuition

to choose the appropriate (most distant) check nodes. 115

7.4 Bit Error Rate of a (3,6) regular LDPC code using configuration model and

PEG algorithm. 116

Chapter 1
Introduction

1.1 Motivation

Source encoder Channel decoder sgn() Destination
u

{0,1}k {0,1}n

c m

{LLRs}

L

{LLRs}

ûChannel Channel

{0,1}n

Figure 1.1: A typical communications system.

Suppose we have a noisy communication channel through which we wish to send informa-

tion reliably. Shannon [2] showed that arbitrarily reliable transmission is possible through

this channel if the information rate, in bits per channel use, is less than the channel capacity

of the channel. He proved that it is possible to transmit digital data with arbitrarily high

reliability, over noise-corrupted channels, by encoding the digital message with an error

correction code prior to transmission and subsequently decoding it at the receiver. The

error correction encoder maps each vector u of k digits, representing the message, to longer

vectors c of n digits, known as codewords. The redundancy implicit in the transmission

of codewords, rather than the raw data alone, is the quid pro quo for achieving reliable

communication over intrinsically unreliable channels. The code rate r = k
n determines the

amount of redundancy added by the error correction code. The transmitted symbols may

be corrupted in some way by the channel, and it is the function of the error correction de-

1

2 CHAPTER 1. INTRODUCTION

coder to use the added redundancy to determine the corresponding k message bits despite

the imperfect reception. Fig. 1.1 shows a typical communications system.

1.2 Brief history of LDPC codes

LDPC codes were invented by Robert Gallager in 1960 [4] but forgotten for over 30 years,

because they were considered too complex at the time of their discovery. Parallel to the

research on turbo codes and influenced by the focus on turbo codes, in 1996 MacKay and

Neal in [21] and Sipser and Spielman in [22] rediscovered this long forgotten class of codes.

In 2001, LDPC codes drew a lot of attention as they had very good performance. As

shown in [6, 11], irregular LDPC codes can significantly outperform regular LDPC codes.

All LDPC codes which can approach the Shannon limit are irregular codes. Another

feature of LDPC codes is their simple graphical representation [5] which leads to accurate

asymptotic analysis [6].

LDPC codes are already used in some standards such as ETSI EN 302 307 for digital

video broadcasting and 802.16 (Broadband Wireless Access Working Group) for coding on

orthogonal frequency division multiple access (OFDMA) systems [25].

Chapter 2
Channels, codes and capacity

2.1 Binary input symmetric output memoryless

channels

A discrete channel has input a symbol X from a discrete alphabet X , known as the source

alphabet, and has output a symbol Y from a possibly different discrete alphabet, Y. A

binary input channel transmits two discrete symbols, usually 0,1 or modulated +1, −1.

Unfortunately, the channels do not always map a given transmitted symbol to the same

received symbol (which is why we need error correction).

A communications channel can be modelled as follows. For a given symbol xi transmitted

at time i, such that xi ∈ X , the channel transition probability p(y/x) = p(Y = yi/X = xi)

gives the probability that the returned symbol Y at time i is the symbol yi ∈ Y. A

channel is called memoryless if the channel output at any time instant depends only on

the input at that time instant. This means that for a sequence of transmitted symbols

x = [x1, x2,⋯, xN] and received symbols y = [y1, y2,⋯, yN]:

p(y/x) =
N

∏
i=1

p(yi/xi). 2.1

Hence, a memoryless channel is completely described by its input and output alphabets

and the conditional probability distribution pY /X(y/x) for each input-output symbol pair.

3

4 CHAPTER 2. CHANNELS, CODES AND CAPACITY

The three channels we consider in this thesis are the binary symmetric channel (BSC),

the binary erasure channel (BEC), and the binary input additive white Gaussian noise

(BI-AWGN) channel. They are all binary input memoryless channels.

A binary input channel is symmetric if both input bits are corrupted equally by the

channel. We define binary-input symmetric-output memoryless channels as:

Definition 2.1. A binary-input symmetric-output memoryless channel is a discrete−time

channel whose input X is ±1 or {0,1}, and output Y (discrete or continuous) depends

only on the current input symbol and satisfies the following:

p(Y = y/X = 1) = p(Y = −y/X = −1). 2.2

◇

Gallager [?] proved that the channel capacity of a symmetric channel can be achieved

using equi-probable inputs. Therefore, the capacity-achieving input distribution of a

binary-input output-symmetric channel is uniform.

2.1.1 Binary Symmetric Channel (BSC)

The binary symmetric channel, shown in Fig. 2.1, transmits one of two symbols, the

binary digits X ∈ {0,1} and returns one of two symbols, Y ∈ {0,1}. The channel flips a

transmitted bit with probability ε and with probability 1 − ε the symbol y is the symbol

that was sent. The parameter ε is called the crossover probability of the channel.

X Y

Figure 2.1: Binary Symmetric Channel (BSC).

2.1 BINARY INPUT SYMMETRIC OUTPUT MEMORYLESS CHANNELS 5

So, the transition probabilities for the BSC are:

p(Y = 0/X = 0) = 1 − ε

p(Y = 0/X = 1) = ε

p(Y = 1/X = 0) = ε

p(Y = 1/X = 1) = 1 − ε.

As stated previously, a binary input channel is symmetric if both input symbols are cor-

rupted equally by the channel. The BSC channel is symmetric since p(Y = 0/X = 1) =

p(Y = 1/X = 0) and p(Y = 0/X = 0) = p(Y = 1/X = 1). At the decoder, the output Y

received from the channel is used to decode the symbol X that was sent. In this case, we

are interested in the (a-posteriori) probability p(x/y). Assuming that the input symbols

are equally likely, the log-likelihood ratios (LLRs) for the i-th transmitted bit are:

LLRi = `(xi/yi) ≜ log
p(Xi = 0/yi)

p(Xi = 1/yi)

bayes
= log

p(yi/Xi = 0)

p(yi/Xi = 1)
=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

log ε
1−ε , if yi = 1;

log 1−ε
ε , if yi = 0.

2.3

It can be proved that the capacity of BSC is:

C(ε) = 1 −H2(ε), 2.4

where H2(ε) = −ε log2(ε) − (1 − ε) log2(1 − ε) is the binary entropy function.

2.1.2 Binary Erasure Channel (BEC)

The binary erasure channel shown in Fig. 2.2, transmits one of two symbols, usually the

binary digits X ∈ {0,1}. However, the receiver either receives the bit correctly or it receives

a message “?” that the bit was erased. In other words, BEC does not introduce errors. The

BEC erases a bit with erasure probability ε. Hence, the channel transition probabilities

6 CHAPTER 2. CHANNELS, CODES AND CAPACITY

are:

p(Y = 0/X = 0) = 1 − ε.

p(Y = 0/X = 1) = 0.

p(Y = 1/X = 1) = 1 − ε.

p(Y = 1/X = 0) = 0.

p(Y =?/X = 0) = ε.

p(Y =?/X = 1) = ε.

X Y

Figure 2.2: Binary Erasure Channel (BEC).

We observe that the BEC is symmetric. The BEC does not flip bits, therefore, if Y

is received as 1 or 0 then the receiver knows the value of X. On the other hand, if the

channel has erased the transmitted bit, the receiver has no information about X and can

only use the a priori probabilities of the source. If the source is equi-probable (i.e. the

input bits 1 and 0 are equally likely) the receiver can only make a fifty-fifty guess:

p(X = 0/Y =?) = 0.5

p(X = 1/Y =?) = 0.5.

Hence, for this channel, we have that the received LLRs for the i-th transmitted bit are

LLRi = `(xi/yi) ≜ log
p(Xi = 0/yi)

p(Xi = 1/yi)

bayes
= log

p(yi/Xi = 0)

p(yi/Xi = 1)
=

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

log 0
1 = −∞, if yi = 1,

log ε
ε = 0, if yi =?,

log 1
0 = ∞, if yi = 0.

2.5

It can be proved that the capacity of BEC is:

C(ε) = 1 − ε. 2.6

2.1 BINARY INPUT SYMMETRIC OUTPUT MEMORYLESS CHANNELS 7

2.1.3 Binary AWGN Channel (BI-AWGN)

The last channel we consider, is a binary input channel with additive noise modelled as

white Gaussian. The BI-AWGN channel shown in Fig. 2.3 is described by the equation:

Y =X +N, X ∈ {1,−1} and N ∼ N(0, σ2).

From the channel model, it can be inferred that output Y , conditioned on the input, follows

the Gaussian distribution with mean either +1 or −1 and variance σ2.

{0,1}

0 1

-11 {1,-1}

y L

{LLRs}

L

N

C X Y

Figure 2.3: The BI-AGWN channel.

Assuming equi-probable transmitted symbols Xi, the received LLRs are:

`i = `(xi/yi) ≜
p(Ci = 0/yi)

p(Ci = 1/yi)

=
p(Xi = 1/yi)

p(Xi = −1/yi)

bayes
=

p(yi/Xi = 1)

p(yi/Xi = −1)

=

1√
2πσ2

exp (−
(yi−1)2

2σ2)

1√
2πσ2

exp (−
(yi+1)2

2σ2)

=
2yi
σ2

∼ N(
2

σ2
,

4

σ2
) , assuming yi ∼ N(1, σ2). 2.7

The LLR value of a bit Ci is sometimes called a soft decision for Ci. A hard decision for

Ci or, equivalently, for Xi will be:

X̂i =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

+1, if `i > 0,

−1, if `i < 0.

We can characterise the channel by EN
σ2 the ratio of the energy per transmitted bit to the

noise energy σ2. For our setting EN = 1 since X ∈ ±1. The measure Eb
N0

is often quoted

8 CHAPTER 2. CHANNELS, CODES AND CAPACITY

where Eb is the energy per information bit, Eb =
EN
r , r is the rate, and N0 = 2σ2 is the

double-sided power spectral density. We therefore have Eb
N0

=
EN
2rσ2 .

Finally, we can observe that 2.2 holds, hence, BI-AWGN channel is symmetric. The

log-likelihood ratio (LLR) ` as a fraction of the channel output y is defined as

`(y) ≜ log
p(y/X = 1)

p(y/X = −1)
. 2.8

Lemma 2.1. From the channel symmetry condition it follows [6] that

`(y) = −`(−y). 2.9

Proof.

`(y) = log
p(y/X = 1)

p(y/X = −1)
=
p(−y/X = −1)

p(−y/X = 1)
= −`(−y)

. ∎

We call ` the initial message of the channel and the distribution p(`) of ` the initial

density of the channel, which will be used later for density evolution and Gaussian approx-

imation. Richardson et al. [6] showed that initial densities satisfy the following symmetry

condition:

p(`) = e`p(−`). 2.10

Densities of initial LLRs for BEC, BSC and BI-AWGN channels satisfy the aforementioned

condition. As we will see in Chapter 5, p(`) is the so called L-density. Two important facts

that we will use are: (i) L-distributions for binary memoryless symmetric-output channels

are always symmetric and (ii) the convolution of symmetric distributions is symmetric [6].

2.1 BINARY INPUT SYMMETRIC OUTPUT MEMORYLESS CHANNELS 9

For the BI-AWGN channel a calculation for the capacity (assuming equi-probable

source) is as follows:

CBIAWGN(σ) = I(X;Y)

=H(Y) −H(Y /X)

=H(Y) −H(Z), Z ∼ N(0, σ2)

It can be proved that H(Z) = 1
2 log2 2πeσ2. Using total probability theorem, p(y) =

1
2p(y/X = 1) + 1

2p(y/X = −1) where

p(y/X = ±1) =
1

√
2πσ2

exp
⎛

⎝
−

(y ± 1)2

2σ2

⎞

⎠
.

Thus,

p(y) =
1

√
8πσ2

⎛

⎝
exp

⎛

⎝
−

(y − 1)2

2σ2

⎞

⎠
+ exp

⎛

⎝
−

(y + 1)2

2σ2

⎞

⎠

⎞

⎠
.

Therefore,

CBIAWGN(σ) = −∫
∞

−∞
p(y) log2 p(y) dy −

1

2
log2 2πeσ2. 2.11

For a channel with noise level parameter x and an error correction code with rate r, the

noise level xsh, such that C(xsh) = r, is a threshold for error correction codes with that

rate. The noise level xsh is called the Shannon limit. Shannon’s noisy coding theorem says

that for any noise level x below xsh there exists a code with rate r that can achieve an

arbitrarily low probability of error, while for any noise level above xsh, no rate-r code can

achieve an arbitrarily low probability of error.

To find the Shannon limit of error correction coding with rate r, and channel parameter x,

requires that we find a value for xsh such that C(xsh) = r. In the case of BI-AWGN channel,

channel parameter x, is referred to standard deviation σ. Pseudo-code for computing the

Shannon limit on a BI-AWGN channel within a tolerance δ is given in algorithm below [13,

p.15]. The symbol r represents the rate of the code and σH , σL are the upper and lower

limits in order to search for σsh.

10 CHAPTER 2. CHANNELS, CODES AND CAPACITY

Algorithm 1 Shannon Limit of a BI-AWGN channel

1: procedure ShannonLimit(r,δ,σL,σH)

2: repeat

3: σ = 1
2(σL + σH)

4: CBIAWGN(σ) = ∫
∞
−∞ p(y) log2 p(y) dy

5: CBIAWGN(σ) = CBIAWGN(σ) − 1
2 log2 2πeσ2

6: if CBIAWGN(σ) > r then

7: σL = σ

8: else

9: σH = σ

10: end if

11: until σH − σL < δ

12:
Eb
N0

= 10 log10
1

2rσ2

13: return Eb
N0

14: end procedure

2.2 Linear Block Codes

Assume that the output of an information source is a continuous sequence of binary symbols

over GF(2)={0,1}, called an information sequence. The binary symbols in an information

sequence are called information bits. In block coding, an information sequence is segmented

into message blocks of fixed length; each message block consists of k information bits. There

are 2k distinct messages. At the channel encoder, each input message u of k information

bits is encoded into a longer binary sequence c of n binary digits with n > k, according to

certain encoding rules. This longer sequence is called the codeword of message u. Since

there are 2k distinct messages, there are 2k distinct codewords one for each distinct message.

This set of 2k codewords, denoted by C, is said to form an (n, k) block code. For a block

code to be useful, the 2k codewords must be distinct. The n − k bits added to each input

message by the channel encoder are called redundant bits. The redundant bits carry no

new information and their main function is to provide the code with the capability of

detecting and correcting transmission errors caused by the channel noise or interferences.

How to form these redundant bits such that an (n, k) block code has good error-correcting

capability is a major concern in designing the channel encoder.

2.2 LINEAR BLOCK CODES 11

For a block code of length n with 2k codewords, unless it has certain special structure

properties, the encoding and decoding scheme would be complex for large k since the

encoder has to store 2k codewords of length n and the decoder has to perform a table

(with 2n entries) look-up to determine the transmitted codeword [20, p.95]. Therefore, we

must restrict our attention to block codes that can be implemented in a practical manner.

A desirable structure for a block code is linearity.

Definition 2.2. A binary block code of length n and 2k codewords is said to be a C(n, k)

linear code if, and only if, its 2k codewords form a k-dimensional subspace of the vector

space of the binary n-tuples over GF(2).

◇

The case k = 0 corresponds to the trivial linear code which consists only of the all-zero

codeword 0. Since the code forms a subspace it contains the all-zero codeword.

In other words, a code C over a field F is linear if it is closed under n-tuple addition

and scalar multiplication:

α1 ⋅ c1 + α2 ⋅ c2 ∈ C, ∀c1,c2 ∈ C and∀α1, α2 ∈ F. 2.12

Definition 2.3. The rate of a code C(n, k) is defined as

r ≜
k

n
information bits/codeword.

◇

Definition 2.4. ([23, p.83]). The Hamming weight of a codeword c is the number of

non-zero components of the codeword. The minimum weight of a linear code C, is the

smallest Hamming weight of any non-zero codeword. ◇

Definition 2.5. ([23, p.83]). The minimum-distance of a linear code C, is equal to the

minimum weight of any non-zero codeword. ◇

Recall that, since a linear code C forms a subspace of dimension k, there exist k linear

independent binary vectors in {0,1}n, which form a basis of this subspace. We denote

these k vectors as g0,g2,⋯,gk−1. Consequently, any linear combination of them generates

a codeword in C.

12 CHAPTER 2. CHANNELS, CODES AND CAPACITY

Definition 2.6. A generator matrix G for a (n, k) linear code C (over field F2 = {0,1}) is

a k-by-n matrix whose row space is the given code. In other words, C = {xG ∣x ∈ Fk2}. ◇

Obviously, the rank of a generator matrix G of a linear code C over F2 equals the

dimension of C.

G ≜

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

g0

⋮

gk−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

g0,0 g0,1 ⋯ g0,n−1

g1,0 g1,1 ⋯ g1,n−1

⋮ ⋮ ⋱ ⋮

gk−1,0 gk−1,1 ⋯ gk−1,n−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. 2.13

Let u be an information vector. The encoding process is as follows:

c = uG, where c ∈ C.

Therefore, the codeword c for a message u is simply a linear combination of the rows of

matrix G with the information bits in the message u being the coefficients.

The utilization of generator matrix G is preferable, since it costs less storage.

Note that the representation of the code provided by G is not unique. From a given

generator matrix G, another generator G
′

can be obtained by performing row operations.

Then an encoding operation defined by c = uG
′

maps the message u to a codeword in C,

but it is not necessarily the same codeword that would be obtained using the generator G.

Example 2.1. A generator matrix for the (7,4) Hamming code is

G =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 1 0 0 0

0 1 1 0 1 0 0

0 0 1 1 0 1 0

0 0 0 1 1 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Encoding the message u = [1 0 0 1], we have

c = uG = [1 1 0 1 0 1] .

Another generator G
′

is obtained by replacing the first row of G with the sum of the first

two rows of G, hence,

G
′
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 1 1 1 0 0

0 1 1 0 1 0 0

0 0 1 1 0 1 0

0 0 0 1 1 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

2.2 LINEAR BLOCK CODES 13

For u the corresponding codeword using G
′

is

c
′
= uG

′
= [1 0 1 0 0 0 1] ≠ c,

where c
′
∈ C. ◻

Definition 2.7. A linear block code C(n,k) is called systematic if its k-by-n generator

matrix G has the form

(Ik ∣ P) 2.14

where Ik denotes the k-by-k identity matrix and matrix P is a k-by-(n − k) matrix. ◇

The generator matrix G of a linear block (n, k, dmin) code C can be brought to a

systematic form by elementary row operations and/or column permutations. Performing

elementary row operations (replacing a row with linear combinations of some rows) does

not change the row span, so that the same code is produced. If two columns of a generator

matrix are interchanged, then the corresponding positions of the code are changed, but the

distance structure of the code is preserved.

When using a systematic generator matrix G = (Ik ∣ P) for encoding, the mapping

uz→ uG 2.15

takes the form

uz→ (u ∣ uP) 2.16

where information word u ∈ Fk2. That is, the first k entries in the encoded codeword form

the information word; which is very useful for decoding. The second part uP, consists of

parity check symbols.

Definition 2.8. Let C be an (n, k) linear code over F2. A matrix H with the property

that HxT = 0 if, and only if, x ∈ C is called a parity-check matrix for C. ◇

In other words, the parity check matrix is a (n − k)-by-n matrix, whose rows are

orthogonal to the row space of matrix G, i.e., all rows of H belong to the nullspace of G.

That is, GHT = 0k×(n−k).

In the special case where G is a systematic matrix, according to 2.14, we can take the

(n − k) × k matrix H = (PT ∣ In−k) as a parity-check matrix. Notice that, if we did not

restrict ourselves to binary linear block codes, the parity-check matrix H would have the

form (−PT ∣ In−k).

14 CHAPTER 2. CHANNELS, CODES AND CAPACITY

Corollary 2.1. Any codeword c belongs to C if, and only if, it is perpendicular in any row

of parity check matrix, namely

c ∈ C ⇐⇒ cHT = 0. 2.17

That is, the codewords in C lie in the (left) nullspace of H. The condition cHT = 0 imposes

linear constraints among the bits of c called the parity-check equations.

Theorem 2.1. ([23], p.30). A linear block code with minimum distance d can correct

at most ⌊d−1
2 ⌋ errors using minimum-distance decoding. This bound is called the error

correcting capability of the code.

Definition 2.9. Let C(n, k) be a linear code. The dual code of C, denoted by C⊥(n,n−k),

consists of all vectors x ∈ Fn such that xcT = 0 for all c ∈ C. That is, the codewords of C⊥

are “orthogonal” to C. ◇

An equivalent definition of a dual code is given by

C⊥ = {x ∈ Fn ∶ xGT = 0}. 2.18

Definition 2.10. Let C(n, k) be a linear code over F2 = GF (2). Consider a received

codeword y. The vector s = HyT is called the syndrome of the received word. The vector

y is a codeword if, and only if, its syndrome is equal to 0. ◇

Example 2.2. Consider a (7,4) Hamming code generated by

G =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 1 1

0 1 0 0 1 0 1

0 0 1 0 1 1 0

0 0 0 1 1 1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. 2.19

Note that matrix G is a systematic generator matrix, since G = (I4 ∣ P4×3). The rate r

of the code is 4
7 . The minimum distance of the code (i.e. the minimum weight of any

codeword) is 3.

There are 24 codewords:

C = {(0000000), (0001111), (0010110), (0011001), (0100101),

(0101010), (0110011), (0111100), (1000011), (1001100),

(1010101), (1011010), (1100110), (1101001), (1110000), (1111111)}

2.2 LINEAR BLOCK CODES 15

The systematic parity check matrix is of the form

H = (PT
4×3 ∣ I3),

and is given by

H =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 1 1 1 0 0

1 0 1 1 0 1 0

1 1 0 1 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Now let us consider an information word, e.g., u = [0 1 0 0]. According to 2.15, we take

the codeword

c = uG = [0 1 0 0 1 0 1] . 2.20

That is, the first 4 bits describe the information part of the codeword and the last 3 bits

describe the redundant part. In addition, if we observe the codewords of C, we will notice

that the codeword c belongs to C. Let us verify the aforementioned claim, i.e.,

HcT =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 1 1 1 0 0

1 0 1 1 0 1 0

1 1 0 1 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

1

0

0

1

0

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

0

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. 2.21

◻

16 CHAPTER 2. CHANNELS, CODES AND CAPACITY

Chapter 3
Low-Density Parity-Check (LDPC) codes

LDPC codes constitute a powerful class of linear block codes which provide near Shannon-

limit performance on a large variety of channels while simultaneously admitting imple-

mentable decoders. The difference between an LDPC code and conventional linear codes

is the fact that the parity-check matrix of an LDPC code is sparse, i.e., the number of

non-zero entries is much smaller than the total number of entries. Since an LDPC code

belongs to the class of linear block codes, it can be represented by a bipartite graph called

Tanner graph [14].

3.1 Matrix representation of LDPC codes

We consider only binary LDPC codes and we denote with F2 the GF(2). Since LDPC

codes form a class of linear block codes, they can be described as a certain k-dimensional

subspace C of the vector space Fn2 of binary n-tuples over F2. Given this, we can find a basis

B = {g0,g1, . . . , gk−1} which spans C so that each c ∈ C may be written as c = u0g0 +u1g1 +

⋯ + uk−1gk−1 for some {ui}k−1
i=0 ∈ F2. Equivalently, the aforementioned linear combination

can be rewritten as c = uG, where u = [u0 u1 . . . uk−1] and G is the generator matrix

whose rows are the (row) vectors {gi}. Since G is a basis, {gi} are linearly independent,

hence, matrix G has full row rank. From 2.18, it follows that the (n − k) dimensional

null (or dual) space C⊥ of G is spanned by the basis B⊥ = {h0, h1, . . . ,hn−k−1}. Thus, for

each c ∈ C, chTi = 0, for i = 0, . . . , n − k − 1, or, more compactly, cHT = 0, where H(n−k)×n

is the so called parity-check matrix whose rows are the vectors {hi}, and is the generator

for the dual space C⊥. The parity-check matrix H is so named, because it performs (n−k)

17

18 CHAPTER 3. LOW-DENSITY PARITY-CHECK (LDPC) CODES

separate parity checks on a received word.

LDPC codes can be classified into two types: regular and irregular. Regular LDPC

codes have a constant number of symbols participating in each parity-check equation, and

each symbol participates in a constant number of parity-check equations. That is, the

column and row weights (i.e. number of 1s) of the parity-check matrix are constant as

shown in 3.1. They were originally proposed by Gallager [4] in 1962 who proved that

they are asymptotically good in the sense that their minimum distance grows linearly

with block length. This guarantees that with ML decoding, the codes do not suffer from

the error floor phenomenon, a flattening of the bit error rate (BER) curve that results

in poor performance at high signal-to-noise ratios (SNRs). Similar behaviour is observed

with iterative BP decoding as well. However, the iterative decoding behaviour of regular

codes in the so-called waterfall, or moderate BER, region of the performance curve falls

short of capacity, making them unsuitable for severely power-constrained applications,

such as uplink cellular data transmission or digital satellite broadcasting systems, that

must achieve the best possible performance at moderate BERs [24].

On the other hand, irregular LDPC codes, pioneered by Luby et al. [8] in 2001, have not

constant column and row weights. In fact, column and row weights are chosen according

to some distribution. Thus, an irregular LDPC code might have a matrix representation

in which half rows of the parity-check matrix have weight 3 and half have degree 5, while

half columns have weight 6 and half have weight 8. In the case where all columns have the

same weight, then we name this code concentrated irregular LDPC code. In addition,

irregular codes exhibit capacity approaching performance in the waterfall but are normally

subject to an error floor, making them undesirable in applications, such as data storage

and optical communication, that require very low decoded BERs [24]. Typical performance

characteristics of regular and irregular LDPC codes on an additive white Gaussian noise

(AWGN) channel are illustrated in Fig. 3.1 where the SNR is expressed in terms of Eb
N0

,

the information bit signal-to-noise ratio.

Example 3.1. ((dv, dc)-Regular LDPC code). Consider the following parity-check

matrix H5×10 where dv denotes the number of ones in each column of H and dc denotes the

number of ones in each row. Hence, for our corresponding matrix we have dv=3 and dc=6.

The rows of H represent the parity-check equations and columns represent the codeword

bits. Also, we define as m the number of parity-check equations, i.e., m ≜ n−k. As we will

see in the next subsection all variable nodes will have degree 3 and all check nodes will

3.1 MATRIX REPRESENTATION OF LDPC CODES 19

have degree 6.

H =

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

c1 1 0 1 1 1 0 1 1 0 0

c2 0 1 1 0 0 1 1 0 1 1

c3 1 1 0 1 1 1 0 1 0 0

c4 0 1 1 0 1 0 1 0 1 1

c5 1 0 0 1 0 1 0 1 1 1

. 3.1

The code rate r is

r =
k

n
≥
n −m

n
= 1 −

dv

dc
. 3.2

If the rows of H are linearly independent, i.e., rank(H)=n−k, then r = 1− dv
dc

. The quantity
n−m
n is referred to as the design rate [6].

Moreover, each parity-check equation ci, for i = 1, . . . ,5, is an even parity constraint on its

codeword bits, i.e.,

c1 ∶ x1 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x7 ⊕ x8 = 0

c2 ∶ x2 ⊕ x3 ⊕ x6 ⊕ x7 ⊕ x9 ⊕ x10 = 0

c3 ∶ x1 ⊕ x2 ⊕ x4 ⊕ x5 ⊕ x6 ⊕ x8 = 0

c4 ∶ x2 ⊕ x3 ⊕ x5 ⊕ x7 ⊕ x9 ⊕ x10 = 0

c5 ∶ x1 ⊕ x4 ⊕ x6 ⊕ x8 ⊕ x9 ⊕ x10 = 0.

◻

Example 3.2. (Irregular LDPC code). Consider the parity-check matrix

H
′
=

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

c1 1 1 1 1 0 1 0 1 0 1

c2 1 0 1 1 0 0 1 1 1 1

c3 0 1 0 1 0 1 0 1 0 0

c4 1 0 0 0 1 0 1 1 1 1

c5 0 0 1 1 1 0 1 0 1 0

, 3.3

20 CHAPTER 3. LOW-DENSITY PARITY-CHECK (LDPC) CODES

which corresponds to an irregular LDPC code. Observe that in contrast to matrix H, rows

and columns do not have constant number of ones. The design rate is calculated in a more

complex manner in contrast to the regular case, hence, we omit it for now. Parity-check

equations can be derived as in the regular case.

◻

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/N0 (dB)

B
it

 E
rr

o
r

R
a

te

Regular vs Irregular

Regular, n=20000

Irregular, n=20000

waterfall

Error

Floor

Figure 3.1: Bit Error Rate of a (3,6)−regular and a concentrated irregular1 LDPC code

with same block length over BI-AWGN channel. We used BPSK modulation.

1The degree distributions are:

λ(x) = 0.169010x + 0.161244x2 + 0.005938x4 + 0.016799x5 + 0.186455x6

+ 0.06864x13 + 0.025890x16 + 0.096393x18 + 0.010531x26

+ 0.004678x27 + 0.079616x28 + 0.011885x38 + 0.224691x99

and ρ(x) = x10.

We’ll explain the meaning of these polynomials after next subsection.

3.2 GRAPHICAL REPRESENTATION OF LDPC CODES 21

3.2 Graphical representation of LDPC codes

LDPC codes are linear codes that can be described by sparse bipartite graphs. The graph-

ical representation of LDPC codes is so popular that most people refer to an LDPC code

in terms of the structure of its factor graph. A factor graph is always a bipartite graph

whose nodes are partitioned into the set of variable nodes and the set of check nodes.

Symbols used for representing variable and check nodes are depicted in Fig. 3.2.

Figure 3.2: The circle represents a variable node and the square represents a check node.

The graph gives rise to a linear code of block length n and dimension at least n−m in the

following way: The n coordinates of the codewords are associated with the n variable nodes.

The codewords are those vectors (x1, . . . , xn) such that all the parity-check equations are

satisfied. Fig. 3.3 gives an example.

Figure 3.3: Bipartite graph representing the irregular LDPC code of the parity-check

matrix in 3.3.

22 CHAPTER 3. LOW-DENSITY PARITY-CHECK (LDPC) CODES

The graph representation is analogous to a matrix representation by looking at the

adjacency matrix of the graph: let H be a binary m × n-matrix in which the entry (i, j)

is 1 if, and only if, the i-th check node is connected to the j-th variable node in the

graph. Hence, each row indicates which bits participate in the corresponding parity-check

equation, and each column indicates which parity-check equations the corresponding bit

participates in.

Definition 3.1. The degree of a node is defined as the number of edges connected to that

node. ◇

Definition 3.2. The minimum cycle length of a graph is called the girth of the graph. ◇

It is known that a cycle is a path on the graph such that the start vertex and the

end vertex are the same. Since double edges are not allowed in Tanner graphs, i.e. there

are not cycles of length 2, the minimum girth of a Tanner graph will be 4. That is, in

bipartite graphs there are not odd-lengthed cycles.

Figure 3.4: Bipartite graph representing the (3,6)-regular LDPC code of example 3.1.

The darkened edges represent a cycle of length 4.

3.2 GRAPHICAL REPRESENTATION OF LDPC CODES 23

Let E denote the number of edges in a bipartite graph. Also observe from the figures of

this subsection that all edges are connected between the two sets. That is, the number of

edges connected to variable nodes must be the same with the number of edges connected

to check nodes. Recall that dv denotes the variable node degree of a regular code and dc

denotes the corresponding check node degree. Hence, it follows that

E =m ⋅ dc = n ⋅ dv. 3.4

An important property is that the number of edges in the Tanner graph of a (dv,dc)-

regular LDPC code is dv ⋅n, where n is the length of the code. As n increases, the number

of edges in the Tanner graph grows linearly in n.

Using the aforementioned equation in 3.2 we prove the second equality of 3.2. Namely,

using the fact that m
n = dv

dc
we take r = k

n ≥
n−m
n = 1 − m

n = 1 − dv
dc

.

We conclude this subsection stating that any linear code has a representation as a code

associated to a bipartite graph. However, not every binary linear code has a representation

by a sparse bipartite graph.2 If it does, then the code is called an LDPC code. The sparsity

of the graph structure is the key property that allows the algorithmic efficiency of LDPC

codes. In Chapter 4, we will see that the graph representation of LDPC codes plays a vital

role in decoding, since the most widely used decoding algorithm is in fact an algorithm for

marginalising functions, which can be implemented using a certain graph representation.

Additionally, it is essential for the graph to have as large a girth as possible so that the

decoding algorithm works well.

2To be more precise, sparsity only applies to matrices. A matrix is called sparse if the number of

non-zero elements about the 10% of the total entries.

24 CHAPTER 3. LOW-DENSITY PARITY-CHECK (LDPC) CODES

3.3 Degree Distributions & Code Ensemble

Constructing provably good codes is difficult. A standard approach to show the existence

of good codes is the probabilistic method: an ensemble of codes is “constructed” using

some random procedure and one proves that good codes occur with positive probability

within this ensemble. Often the probability is close to 1, that is almost all codes are good.

This approach, used already by Shannon in his 1948 landmark paper, simplifies the code

“construction” task enormously. An ensemble consists of all possible codes of length n and

cardinality 2k. We endow this set with a uniform probability distribution. How to sample

from the ensemble will be discussed later.

Now consider the ensemble of regular LDPC codes with variable degree dv, check degree

dc, and length n. If n is large enough, the average behaviour of almost all instances of this

ensemble concetrates around the expected behaviour [6]. Hence, regular codes referred to

by their variable and check degree and their length. When the performance and properties

of sufficiently long regular LDPC codes are of interest, they are presented only by their

variable and check node degree. For instance a (3,6)-LDPC code refers to a code with

variable nodes of degree 3 and check nodes of degree 6. The design rate of this code is 1
2 .

Before defining the irregular ensemble we will introduce the so called degree distributions.

Node Perspective

Assume that an LDPC code has length n and that the number of variable nodes of degree

i is Λi, so that ∑i Λi = n. Likewise, denote the number of check nodes of degree i by Pi so

that ∑iPi =m = n ⋅ (1 − r) where r is the design rate, as stated previously.

Recall that the edge counts must match up, hence

∑
i

iΛi

´¹¹¹¸¹¹¹¶
Λ′(1)

= ∑
i

iPi

´¹¹¹¸¹¹¹¶
P ′(1)

. 3.5

It is convenient to introduce the following compact notation:

Λ(x) =
`max

∑
i≥2

Λix
i, P (x) =

rmax

∑
i≥2

Pix
i 3.6

i.e., Λ(x) and P (x) are polynomials with non-negative expansions around zero whose

integral coefficients are equal to the number of nodes of various degrees. From these

3.3 DEGREE DISTRIBUTIONS & CODE ENSEMBLE 25

definitions, we see immediately the following relationships:

Λ(1) = n, P (1) =m, r(Λ, P) = 1 −
P (1)

Λ(1)
. 3.7

We call Λ and P variable and check degree distributions from a node perspective.

Often it is useful to use the normalised degree distributions:

L(x) =
Λ(x)

Λ(1)
=
`max

∑
i≥2

Lix
i, R(x) =

P (x)

P (1)
=
rmax

∑
i≥2

Rix
i. 3.8

Since each of {Li}
`max
i≥2 and {Ri}

rmax
i≥2 is a probability mass function we must have that

∑
`max
i≥2 Li = 1 and ∑

rmax
i≥2 Ri = 1. Thus, a variable node will be of degree i, that is, it will be

connected with i check nodes, with probability Li. Likewise, a check node will be of degree

j, that is, it will be connected with j variable nodes, with probability Rj.

Edge perspective

For the asymptotic analysis it is more useful to take on an edge perspective. Define

λ(x) =
`max

∑
i≥2

λix
i−1 =

Λ
′
(x)

Λ′
(1)

=
L
′
(x)

L′
(1)

, ρ(x) =
rmax

∑
i≥2

ρix
i−1 =

P
′
(x)

P ′
(1)

=
R

′
(x)

R′
(1)

. 3.9

Note that λ(x) and ρ(x) are polynomials with non-negative expansions around zero. Some

thought shows that λi/ρi is equal to the fraction of edges that connect to variable/check

nodes of degree i. To clarify the aforementioned claim we present a relationship for λi:

λ(x) =
Λ
′
(x)

Λ′
(1)

=
∑i (

d
dxΛixi)

Λ′
(1)

=
∑i iΛixi−1

Λ′
(1)

⇒ λi =
iΛi

Λ′
(1)

. 3.10

Likewise for ρi we obtain

ρi =
iPi
P ′

(1)
. 3.11

In other words, λi/ρi is the probability that an edge chosen uniformly at random from

the graph is connected to a variable/check node of degree i. We call λ(x) and ρ(x) the

variable and check degree distributions from an edge perspective.

26 CHAPTER 3. LOW-DENSITY PARITY-CHECK (LDPC) CODES

Furthermore, we also define the average variable and check degrees, call them `avg and

ravg, as:

`avg = L
′
(1) =

1

∫
1

0 λ(x)dx
, ravg = R

′
(1) =

1

∫
1

0 ρ(x)dx
3.12

respectively, and the design rate is given by

r(λ, ρ) = 1 −
`avg
ravg

= 1 −
L
′
(1)

R′
(1)

= 1 −
∫

1

0 ρ(x)dx

∫
1

0 λ(x)dx
. 3.13

The design rate is the rate of the code assuming that all constraints are linearly indepen-

dent. Notice that the graph is characterised in terms of the fraction of edges of each degree

and not the nodes of each degree.

In the beginning of this section we discussed about the regular ensemble. Similar to

regular codes, it is shown [6] that the average behaviour of almost all instances of an en-

semble of irregular codes is concentrated around its expected behaviour, when the code is

large enough. Additionally, the expected behaviour converges to the cycle-free case [6].

Given the degree distribution of an LDPC code and its number of edges E = Λ
′
(1) = P

′
(1),

the number of variable nodes n is

n = E∑
i

λi
i
= E ∫

1

0
λ(x)dx, 3.14

and the number of check nodes m is

m = E∑
i

ρi
i
= E ∫

1

0
ρ(x)dx. 3.15

The previous two equations can be proved easily using 3.10 and 3.11, respectively. Using

the last relations for n and m, we can easily calculate the design rate as

r = 1 −
∑i

ρi
i

∑i
λi
i

. 3.16

Example 3.3. (Conversion from node to edge perspective). Consider the pair

(Λ,P):

Λ(x) = 613x2 + 202x3 + 57x4 + 84x7 + 44x8, P (x) = 500x6

3.3 DEGREE DISTRIBUTIONS & CODE ENSEMBLE 27

with Λ(1) = 1000, P (1) = 500 and Λ
′
(1) = P

′
(1) = 3000. That is, there are 1000 variable

nodes, 500 check nodes, and 3000 edges in the graph. We know that the variable node

degree distribution from an edge perspective is given by λ(x) = ∑i λix
i−1. Hence, using

from 3.10 the fact that λi =
i⋅Λi
3000 , we have:

λ(x) =
2 ⋅ 613

3000
x +

3 ⋅ 202

3000
x2 +

4 ⋅ 57

3000
x3 +

7 ⋅ 84

3000
x6 +

8 ⋅ 44

3000
x7.

Using the corresponding relation for ρi in 3.11 we obtain

ρ(x) =
6 ⋅ 500

3000
x5 = x5.

◻

Example 3.4. (Conversion from edge to node perspective). Assume now that the

λ(x) and ρ(x) distributions of the aforementioned example are known and we wish to find

the corresponding Λ(x) and P (x). Solving 3.10 and 3.11, w.r.t. Λi and Pi, respectively,

we have Λi =
λiΛ

′
(1)
i and Pi =

ρiP
′
(1)
i . Therefore,

Λ(x) =
1226
3000 ⋅ 3000

2
x2 +

3⋅202
3000 ⋅ 3000

3
x3 +

4⋅57
3000 ⋅ 3000

4
x4 +

7⋅84
3000 ⋅ 3000

7
x7 +

8⋅44
3000 ⋅ 3000

8
x8

= 613x2 + 202x3 + 57x4 + 84x7 + 44x8

and

P (x) =
6⋅500
3000 ⋅ 3000

6
x6 = 500x6.

◻

Finally, polynomials λ(x) and ρ(x) are very important since they determine:

• the code’s design rate, r = 1 −
∑i

ρi
i

∑i
λi
i

.

• the code’s average performance.

Additionally, from 3.14 it can be seen that, fixing the variable degree distribution of

a code, the number of edges in the factor graph of such a code is proportional to n. This

is the essential property of LDPC codes, which makes their decoding complexity linear

with the code length given a fixed number of iterations. This is because the decoding is

performed by passing messages along the edges of the graph, hence the complexity of one

iteration is of the order of E. There are many different message-passing algorithms for

LDPC codes. The purpose of next Chapter is to introduce and analyse the sum-product

algorithm (or belief propagation).

28 CHAPTER 3. LOW-DENSITY PARITY-CHECK (LDPC) CODES

Definition 3.3. (The standard ensemble LDPC(Λ,P) [1, p.78]). Given a degree

distribution pair (Λ,P), define an ensemble of bipartite graphs LDPC(Λ,P) in the following

manner. Each graph in LDPC(Λ,P) has Λ(1) variable nodes and P (1) check nodes. As

state earlier, Λi variable nodes and Pi check nodes have degree i. A node of degree i

has i sockets from which the i edges emanate, so that in total there are Λ
′
(1) = P

′
(1)

sockets on each side. Label the sockets on each side with the set [Λ
′
(1)] = {1,⋯,Λ

′
(1)}

in some arbitrary but fixed way. Let σ be a a permutation on [Λ
′
(1)]. Associate to σ

a bipartite graph by connecting the i-th socket on the variable side to the σ(i)-th socket

on the check side. Letting σ run over the set of permutations on [Λ
′
(1)] generates a set

of bipartite graphs. Finally, we define a probability distribution over the set of graphs

by placing the uniform probability distribution on the set of permutations. This is the

ensemble of bipartite graphs LDPC(Λ, P). In the random graph literature this is what is

called configuration model.

It remains to associate a code with every element of LDPC(Λ, P). We will do so by

associating a parity-check matrix to each graph. Because of possible multiple edges and

since the encoding is done over the field F2, we define the parity-check matrix H as the

binary matrix that has a non-zero entry at row i and column j if the i-th check node is

connected to the j-th variable node an odd number of times.

Since to every graph we can associate a code, we use these two terms interchangeably

and we refer, e.g., to codes as elements of LDPC(Λ,P).

This is a subtle point: graphs are labeled (they have labeled sockets) and have a uniform

probability distribution; the induced codes are unlabelled and the probability distributions

is not necessarily the uniform one. Therefore, if in the sequel we say that we pick a code

uniformly at random we really mean that we pick a graph at random from the ensemble

of graphs and consider the induced code. ◇

It can be shown that ensembles with a positive fraction of degree 1 variable nodes

have non-zero bit error probability for all non-zero channel parameters even in the limit of

infinite blocklengths: by our aforementioned definition of the ensemble there is a positive

probability that two degree 1 variable nodes connect to the same check node and such a

code contains codewords of weight 2. Therefore, we only consider ensembles without degree

1 nodes.

3.3 DEGREE DISTRIBUTIONS & CODE ENSEMBLE 29

How to sample from an LDPC ensemble

Let us assume that we have computed the optimal (λ(x), ρ(x)) and we wish to sample

from this ensemble.

At first, we observe that (λ(x), ρ(x)) are the degree distributions from an edge perspective.

A way to sample is to generate the columns of the parity-check matrix H column-by-

column, generating a certain number of 1s in each column. In order to do this, we must

compute the degree distributions from a node perspective.

Lemma 3.1. If λ(x) = ∑
`max
i=2 λixi−1, then L(x) = ∑

`max
i=2 Lixi with

Li =
1

∑j
λj
j

λi
i
, for i = 2, . . . , `max.

Proof. Recall that λ(x) = L
′
(x)

L′(1) . Thus,

L(x) = L
′
(1)∫

x

0
λ(z)dz

= L
′
(1)∫

x

0

`max

∑
i=2

λiz
i−1dz

= L
′
(1)

`max

∑
i=2

λi∫
x

0
zi−1dz

= L
′
(1)

`max

∑
i=2

λi ⋅
xi

i

=
`max

∑
i=2

(L
′
(1) ⋅

λi
i
)xi

=
`max

∑
i=2

Lix
i.

Since {Li}
`max
i=2 is a probability mass function, we must have that ∑

`max
i=2 Li = 1 yielding that

L
′
(1) = 1

∑j
λj
j

. Hence, a variable node will be of degree i, that is, it will be connected with

i check nodes, with probability Li. ∎

Analogous expression can be derived and proved for check node distribution. That is,

Pi =
1

∑j
ρj
j

ρi
i for i = 2, . . . , rmax.

30 CHAPTER 3. LOW-DENSITY PARITY-CHECK (LDPC) CODES

In order to generate a random parity-check matrix, given (λ(x), ρ(x)), and the length

of the codeword, n, we first compute L(x) and then proceed as in definition 3.3. Thus,

1. we compute the total number of edges, Etotal,

2. we randomly permute the set [Λ
′
(1)],

3. for edge = 1 ∶ Etotal, we “connect” the edge socket of the variable node side with the

permuted(edge) socket of the check node side. The most important point here is to

associate the variable node and check node sockets with the corresponding variable

and check nodes. After the association, it is easy to put “1” at the corresponding

position. That is, if i-th check node is connected to the j-th variable node an odd

number of times we put “1” in (i, j) position of the parity check matrix. Otherwise,

we put 0.

Chapter 4
Decoding of LDPC codes

4.1 Belief Propagation Decoding

Maximum-likelihood (ML) decoding of LDPC codes has usually exponential complexity.

We apply the belief propagation (BP) algorithm, which can be viewed as applying Bayes’

rule locally and iteratively to calculate approximate marginal a posteriori probabilities.

BP is practical since it has linear decoding complexity per iteration. In the cases where

the Tanner graph is cycle free, it can be proved that BP algorithm computes exactly the

marginal a posteriori probabilities. Otherwise, BP provides very good approximations.

4.1.1 Factor Graphs

In this section, we follow the derivation of Chapter 2 from Richardson & Urbanke’s book [1].

Factor graphs can be used for the representation of the factorization of a multi-variable

function into a product of sub-functions. A factor graph is bipartite, i.e, the set of vertices

is partitioned into two groups, the set of nodes corresponding to variables (depicted with

circles) and the set of nodes corresponding to factors (depicted with squares). In other

words, there exists no edge that connects two factor nodes or two variable nodes. In the

following derivation, the factor graph is a (bipartite) tree, i.e., there are no cycles in the

graph. Marginals can be computed efficiently by message-passing algorithms, if the factor

graphs are trees. To simplify the calculation of a factorised function’s marginal, we will

take advantage of the distributive law. Consider that we want to compute the expression

∑i,j xiyj = (∑i xi)(∑j yj) and the cardinality of i and j is n, it is easy to observe that, using

31

32 CHAPTER 4. DECODING OF LDPC CODES

the distributive law, we have a computational reduction from n2 to 2n.

Let I ≜ (x1, x2, x3, x4, x5, x6, x7) and a function f that can be factorised as follows:

f(I) = f1(x1, x2, x3)f2(x1, x4)f3(x1, x6, x7)f4(x4, x5)f5(x4)f6(x2) 4.1

and suppose that we wish to compute the marginal of f with respect to variable x1, then

fX1(x1) = ∑
x2

∑
x3

∑
x4

∑
x5

∑
x6

∑
x7

f(x1, x2, x3, x4, x5, x6, x7)

= ∑
∼x1

f(x1, x2, x3, x4, x5, x6, x7)

= ∑
∼x1

f1(x1, x2, x3)f2(x1, x4)f3(x1, x6, x7)f4(x4, x5)f5(x4)f6(x2) 4.2

where ∼ x1 denotes the sum over all variables except x1. Assuming that all variables take

values in a finite discrete alphabet X , brute force method requires Θ(∣X ∣7) operations for

the computation fX1(x1).

Applying the distributive law in 4.2, we have:

fX1(x1) = ∑
∼x1

f1(x1, x2, x3)f2(x1, x4)f3(x1, x6, x7)f4(x4, x5)f5(x4)f6(x2)

= [∑
x2

(f6(x2)∑
x3

f1(x1, x2, x3))][∑
x4

(f5(x4)f2(x1, x4)∑
x5

f4(x4, x5))]

[∑
x6,x7

f3(x1, x6, x7)]. 4.3

In 4.3 the first factor can be efficiently evaluated in the following manner. For each value of

variable x2 and x1 fixed, determine the sum over variable x3 (requires Θ(∣X ∣) operations),

multiply by f6(x2) and sum over x2. Hence, the first term will be computed in Θ(∣X ∣2)

operations. In the same fashion, the computation of the second factor requires Θ(∣X ∣2)

operations. The last factor is a sum over variables x6 and x7, consequently, this factor

requires Θ(∣X ∣2) operations. Finally, the overall task to compute the marginal fX1(x1)

requires Θ(∣X ∣3) operations, since variable x1 has ∣X ∣ possible values. We can observe that

applying the distributive law leads to more efficient computations.

4.1 BELIEF PROPAGATION DECODING 33

Figure 4.1: Factor Graph of the factorisation of function f with respect to variable x1.

Likewise, for marginal of f w.r.t. variables x2, x3, x4 etc. For instance,

fX2(x2) = ∑
∼x2

f1(x1, x2, x3)f2(x1, x4)f3(x1, x6, x7)f4(x4, x5)f5(x4)f6(x2)

= f6(x2)[∑
x1

(∑
x4

f2(x1, x4)f5(x4)∑
x5

f4(x4, x5)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∣X ∣

´¹¹¹¸¹¹¹¶
∣X2∣

)(∑
x6,x7

f3(x1, x6, x7)

´¹¹¹¸¹¹¹¶
∣X 2∣

)(∑
x3

f1(x1, x2, x3)

´¹¹¹¸¹¹¹¶
∣X ∣

)

´¹¹¹¸¹¹¹¶
∣X 3∣

].

fX4(x4) = ∑
∼x4

f1(x1, x2, x3)f2(x1, x4)f3(x1, x6, x7)f4(x4, x5)f5(x4)f6(x2)

= f5(x4)∑
x1

⎛

⎝
f2(x1, x4)(∑

x2

(f6(x2)∑
x3

f1(x1, x2, x3)

´¹¹¹¸¹¹¹¶
∣X ∣

)

´¹¹¸¹¹¶
∣X ∣2

)(∑
x5

f4(x4, x5)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∣X ∣

)(∑
x6,x7

f3(x1, x6, x7)

´¹¹¹¸¹¹¹¶
∣X ∣2

)
⎞

⎠

´¹¹¸¹¹¹¶
∣X ∣3

.

34 CHAPTER 4. DECODING OF LDPC CODES

Hence, the overall task to compute the marginals fX2(x2) and fX4(x4) requires Θ(∣X ∣4)

operations, since variables x2 and x4 have ∣X ∣ possible values.

Example 4.1. Let C be a binary linear block code defined by the generator matrix

G =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 0 0

0 1 1 1 0

0 0 1 1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and parity check matrix

H =

x1 x2 x3 x4 x5

[]
0 0 1 1 0

1 1 1 0 1
. 4.4

Recall that matrix G generates a linear code since it has full row rank. We define F2 = {0,1}

and x = (x1, . . . , x5). Consider the function f(x1, . . . , x5) from F5
2 to {0,1} ⊂ R that is

defined by

f(x1, . . . , x5) = 1{x∈C} =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1, if HxT = 0,

0, otherwise.
4.5

Function f is called code membership function, since it tests whether a particular word x

is a member of the code or not. Hence, due to 4.5, function f can be factorised as

f(x1, . . . , x5) = 1{x3+x4=0} ⋅ 1{x1+x2+x3+x5=0}. 4.6

The Factor Graph of f is also called the Tanner graph of H and is depicted in Fig. 4.2.

Also, notice that the following Tanner graph is cycle free. That is, for each xi, there is not

a path that starts from xi that leads to itself. ◻

4.1 BELIEF PROPAGATION DECODING 35

Figure 4.2: Factor graph representation of the code membership function based on the

factorisation in 4.6.

4.1.2 Message Passing

Consider a factorization of a generic function g. Since the factor graph of g is a bipartite

tree, g can be factorised as

g(z, . . .) =
K

∏
k=1

[gk(z, . . .)], K ∈ Z∗, 4.7

with the following crucial property: z appears in each of the factors gk, but all other

variables appear in only one factor (consequence of the event that factor graph of g is a

tree). Hence, due to 4.7, the factorisation in 4.1 can be written as

f(x1, . . . , x7) = [f1(x1, x2, x3)f6(x2)]

´¹¹¹¸¹¹¹¶
g1(x1,...)

[f2(x1, x4)f4(x4, x5)f5(x4)]

´¹¹¸¹¹¶
g2(x1,...)

[f3(x1, x6, x7)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
g3(x1,...)

. 4.8

We observe that the aforementioned property holds. That is, x1 appears in each of the

three factors, but all other variables, appear in only one factor.

Applying the distributive law in 4.7, we obtain

∑
∼z
g(z, . . .) = ∑

∼z

K

∏
k=1

[gk(z, . . .)]

´¹¹¹¸¹¹¶
marginal of product

=
K

∏
k=1

∑
∼z

[gk(z, . . .)]

´¹¹¹¸¹¹¶
product of marginals

. 4.9

36 CHAPTER 4. DECODING OF LDPC CODES

g1

g2

g3

Figure 4.3: Factor graph representation of expansion in 4.8.

That is, 4.3 can be equivalently written as

fX1(x1) = ∑
∼x1

f1(x1, x2, x3)f2(x1, x4)f3(x1, x6, x7)f4(x4, x5)f5(x4)f6(x2)

= ∑
∼x1

([f1(x1, x2, x3)f6(x2)]

´¹¹¹¸¹¹¹¶
g1(x1,...)

[f2(x1, x4)f4(x4, x5)f5(x4)]

´¹¹¸¹¹¶
g2(x1,...)

[f3(x1, x6, x7)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
g3(x1,...)

)

= [∑
∼x1

f6(x2)f1(x1, x2, x3)][∑
∼x1

f5(x4)f2(x1, x4)f4(x4, x5)]

[∑
∼x1

f3(x1, x6, x7)]. 4.10

We can go further applying the same recursively to each of the terms gk(z, . . .), until no

further expansion can be applied. Each gk is itself a product of factors and since the factor

graph is a bipartite tree, gk must in turn have a generic factorization of the form

gk(z, . . .) = h(z, z1, . . . , zK)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
kernel

K

∏
k=1

[hk(zk, . . .)]. 4.11

From 4.8, we observe that the first and the second factor (i.e. g1(x1, . . .) and g2(x1, . . .))

4.1 BELIEF PROPAGATION DECODING 37

can be further expanded but not the third one. According to 4.11, we have

g1(x1, . . .) = [f1(x1, x2, x3)f6(x2)] = f1(x1, x2, x3)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
kernel

⋅ [f6(x2)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
x2

⋅ [1]

´¸¶
x3

, 4.12

g2(x1, . . .) = [f2(x1, x4)f4(x4, x5)f5(x4)] = f2(x1, x4)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
kernel

⋅ [f4(x4, x5)f5(x4)]

´¹¹¸¹¹¶
x4

, 4.13

and

g3(x1, . . .) = f3(x1, x6, x7) = f3(x1, x6, x7)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
kernel

⋅ [1]
´¸¶
x6

⋅ [1]
´¸¶
x7

. 4.14

[1]

[]

Kernel

g1

(a)

][
g2

Kernel

(b)

Figure 4.4: Factor graph representation of the expansion of factors g1(x1,⋯) and g2(x1,⋯)

respectively.

Consequently,

gk(z) = ∑
∼z
gk(z, . . .) = ∑

∼z
h(z, z1, . . . , zK)

K

∏
k=1

[hk(zk, . . .)]

= ∑
∼z
h(z, z1, . . . , zK)

K

∏
k=1

[∑
∼zk
hk(zk, . . .)]

´¹¹¸¹¹¶
product of marginals

. 4.15

38 CHAPTER 4. DECODING OF LDPC CODES

The desired marginal ∑∼z gk(z, . . .) can be computed efficiently by multiplying the kernel

function h(z, z1, . . . , zK) with the individual marginals and summing over all variables

except z. In general, nodes in the graph compute marginals (messages), which are functions

over X . This recursive splitting continues until we have reached the leaves of the tree.

Whereas, the marginal calculation follows the recursive splitting in reverse.

4.1.3 Marginalisation via Message Passing

In the previous subsection, we discussed how the marginalisation problem can be recursively

broken into smaller tasks due to the tree structure of the factor graph. Therefore, a function

(or check) leaf node has the generic form gk(z), so that gk(z) = ∑∼z gk(z). This means

that the initial message sent by a function leaf node is the function itself. That is, in 4.13

we can further decompose the factor [f4(x4, x5)f5(x4)] according to 4.11 and we’ll have

f5(x4) = ∑∼x4 f5(x4). The initial message for a variable leaf node is 1 as we can easily

observe from 4.12. In the sequel, we will state the message passing algorithm which will

help us compute efficiently marginals.

Message Passing Algorithm

Messages signify marginals of parts of the function and are combined in order to calculate

the marginal of the global function. Message passing originates at leaf nodes. The message

passing algorithm works in a straightforward way. Messages are passed up the tree, as

soon as a parent node has received all the incoming (child) messages. The message-passing

algorithm ends when the last parent node is the root node of the tree where the final

message multiplications happens.

Let us consider the factorisation of function f as shown in 4.1 and implement the marginal-

isation according to rule in 4.15 for function (check) nodes and point-wise multiplication

for variable nodes. The initialisation step for both the factor and the variable nodes is

depicted in Fig. 4.5(b). The initial messages sent along the edges are: µx6→f3(x6) = 1,

µx7→f3(x7) = 1, µx5→f4(x5) = 1, µf6→x2(x2) = ∑∼x2 f6(x2) = f6(x2) and µx3→f1(x3) = 1. In

the next time step, factor node f3 and f4 as well as variable node x2, have received all the

incoming (child) messages, hence, the corresponding outgoing messages from these nodes

can be passed up the tree. Therefore, as depicted in Fig. 4.5(c), µx2→f1(x2) = f6(x2),

µf4→x4(x4) = ∑∼x4 f4(x4, x5) and µf3→x1(x1) = ∑∼x1 f3(x1, x6, x7).

4.1 BELIEF PROPAGATION DECODING 39

(a) (b)

(c) (d)

In the sequel (see Fig. 4.5(d)), variable node x4 and factor node f1 have received all in-

coming child messages, therefore, the corresponding outgoing messages will be: µx4→f2(x4) =

f5(x4)∑∼x4 f4(x4, x5) = ∑∼x4 f4(x4, x5)f5(x4) and µf1→x1(x1) = ∑∼x1 f1(x1, x2, x3)f6(x2).

Afterwards, factor node f2 has received all of its incoming messages, hence, as shown in

Fig. 4.5(e), µf2→x1(x1) = ∑∼x1 f2(x1, x4)∑∼x4 f4(x4, x5)f5(x4) = ∑∼x1 f2(x1, x4)f4(x4, x5)f5(x4).

40 CHAPTER 4. DECODING OF LDPC CODES

Finally, root node x1, has received all incoming child messages, therefore1

fX1(x1) = ∑∼x1 f1f2f3f4f5f6.

(e) (f)

Figure 4.5: Steps of Single Message Passing (SMP) Algorithm for computing marginal

f(x1).

Bidirectional Message Passing

In bit-wise MAP decoding, we need to compute marginals over all variables. If we apply the

previous single message passing algorithm we need to make the aforementioned derivation

for each variable xi, i.e., to draw for each variable, the corresponding tree rooted in this

variable and execute the single message passing algorithm with the same way as in Fig. 4.5.

It is easy to see, however, that this is computationally demanding.

1Notice that in Fig. 4.5, when we write ∑∼x1
f1f6 we mean ∑∼x1

f1(x1, x2, x3)f6(x2). We omit xis so

that the shapes be more clear.

4.1 BELIEF PROPAGATION DECODING 41

Figure 4.6: Equivalent Factor graph representation of Fig. 4.5(a) without hanging from

a root node.

Moreover, SMP algorithm does not depend on which xi is the root of the tree, i.e., the

factor graph remains a tree. Hence, we can spread the factor graph as shown in Fig. 4.6

and calculate all marginals simultaneously on a single tree. The marginalisation task starts

from all leaf nodes. In our case, the leaves are: f6, x3, x6, x7, x5 and f5. Then, for every

edge we compute the outgoing message along this edge as soon as we have received all the

incoming messages along all other edges that connect to the given node. We continue in

the same fashion, until a message has been sent in both directions along every edge. Hence,

we have computed all marginals. Since the messages represent probabilities or beliefs, the

algorithm is also known as the belief propagation (BP) algorithm. The complexity of BP

algorithm is roughly the same as that of the SMP algorithm, but SMP computes a marginal

w.r.t. xi, whereas, BP computes all marginals.

Initialisation at

 leaf nodes

(a)

42 CHAPTER 4. DECODING OF LDPC CODES

.

.

.

.

.

variable/check node

 rules

�nal marginalisation

 step

(b)

Figure 4.7: Message-Passing Rules for BP algorithm.

Example 4.2. Consider the factorisation in 4.1 and the corresponding factor graph as

depicted in Fig. 4.6. In order to give the intuition of how BP algorithm works, we will

present a step-by-step derivation. Recall that, the leaves are f6, x3, x6, x7, x5 and f5.

• Round 1

According to rule in Fig. 4.7(a), leaf nodes will sent the messages:

1. µf6→x2(x2) = f6(x2) = ∑∼x2 f6(x2).

2. µf5→x4(x4) = f5(x4) = ∑∼x4 f5(x4).

3. µx3→f1(x3) = 1.

4.1 BELIEF PROPAGATION DECODING 43

4. µx6→f3(x6) = 1.

5. µx7→f3(x7) = 1.

6. µx5→f4(x5) = 1.

(a)

• Round 2

According to the two rules on the top of Fig. 4.7(b) we have:

1. µx2→f1(x2) = µf6→x2(x2) = f6(x2).

2. µf4→x4(x4) = ∑∼x4 f4(x4, x5) ⋅ 1.

3. Since f3 has received all of its incoming messages, we have

µf3→x1(x1) = ∑∼x1 f3(x1, x6, x7) ⋅ 1 ⋅ 1.

(b)

44 CHAPTER 4. DECODING OF LDPC CODES

• Round 3

Notice that only check node f1 and variable node x4 have received all of their incoming

messages. Therefore,

1. µf1→x1(x1) = ∑∼x1 f1(x1, x2, x3) ⋅ f6(x2) ⋅ 1.

2. µx4→f2(x4) = ∑∼x4 f4(x4, x5) ⋅ f5(x4).

(c)

• Round 4

1. µf2→x1(x1) = ∑∼x1 f2(x1, x4) ⋅ µx4→f2(x4) = ∑∼x1 f2(x1, x4)f4(x4, x5)f5(x4).

2. Since x1 has received the incoming messages from f1 and f3, it forwards its

outgoing message to check node f2. Hence,

µx1→f2(x1) = µf3→x1(x1) ⋅ µf1→x1(x1) = ∑∼x1 f1(x1, x2, x3)f3(x1, x6, x7)f6(x2).

(d)

4.1 BELIEF PROPAGATION DECODING 45

• Round 5

Note that at this point, it can be proved [10, p.59] that we are able to compute the

marginal fX1(x1) by simple point-wise multiplication of the messages over the edge

(x1,f2). That is, fX1(x1) = µf2→x1(x1) ⋅ µx1→f2(x1). Equivalently, we can omit the

aforementioned procedure and apply at each variable node, the rule on the bottom

of Fig. 4.7(b) as soon as we finish with the remaining rounds. At this round, the

outgoing messages will be:

1. µx1→f1(x1) = µf2→x1(x1)⋅µf3→x1(x1) = ∑∼x1 f2(x1, x4)f3(x1, x6, x7)f4(x4, x5)f5(x4).

2. µx1→f3(x1) = µf1→x1(x1)⋅µf2→x1(x1) = ∑∼x1 f1(x1, x2, x3)f2(x1, x4)f4(x4, x5)f5(x4)f6(x2).

3. µf2→x4(x4) = ∑∼x4 f2(x1, x4)µx1→f2(x1).

(e)

• Round 6

There are six outgoing messages, since there are six “available” nodes. Hence,

1. µf3→x6(x6) = ∑∼x6 f3(x1, x6, x7) ⋅ µx1→f3(x1) ⋅ 1 = ∑∼x6 f1f2f3f4f5f6.

2. µf3→x7(x7) = ∑∼x7 f3(x1, x6, x7) ⋅ µx1→f3(x1) ⋅ 1 = ∑∼x7 f1f2f3f4f5f6.

3. µf1→x3(x3) = ∑∼x3 f1(x1, x2, x3) ⋅ µx2→f1(x2) ⋅ µx1→f1(x1) = ∑∼x3 f1f2f3f4f5f6.

4. µf1→x2(x2) = µx3→f1(x3) ⋅ µx1→f1(x1) = ∑∼x2 f1f2f3f4f5.

5. µx4→f5(x4) = µf4→x4(x4) ⋅ µf2→x4(x4).

6. µx4→f4(x4) = µf2→x4(x4) ⋅ µf5→x4(x4) = ∑∼x1 f1f3f6 ⋅ ∑∼x4 f2 ⋅ f5(x4).

46 CHAPTER 4. DECODING OF LDPC CODES

(f)

• Round 7

The two remaining outgoing messages are:

1. µx2→f6(x2) = µf1→x2(x2) = ∑∼x2 f1f2f3f4f5

2. µf4→x5(x5) = ∑∼x5 f4(x4, x5) ⋅ µx4→f4(x4) = ∑∼x5 f1f2f3f4f5f6.

(g)

Figure 4.8: Implementation of the Belief Propagation Algorithm. Different arrows corre-

spond to different rounds. Likewise, same arrows correspond to outgoing messages at the

same round.

4.1 BELIEF PROPAGATION DECODING 47

• Final Marginalisation Step

In Fig. 4.8(g), we observe that messages have been sent in both directions along

every edge. Consequently, we will apply the bottom rule of Fig. 4.7(b) and we will

have:

1. fX1(x1) = µf1→x1(x1)µf3→x1(x1)µf2→x1(x1) = ∑∼x1 f1f2f3f4f5f6.

2. fX2(x2) = µf1→x2(x2)µf6→x2(x2) = ∑∼x2 f1f2f3f4f5f6.

3. fX3(x3) = µf1→x3(x3) = ∑∼x3 f1f2f3f4f5f6.

4. fX4(x4) = µf5→x4(x4)µf4→x4(x4)µf2→x4(x4) = ∑∼x4 f1f2f3f4f5f6.

5. fX5(x5) = µf4→x5(x5) = ∑∼x5 f1f2f3f4f5f6.

6. fX6(x6) = µf3→x6(x6) = ∑∼x6 f1f2f3f4f5f6.

7. fX7(x7) = µf3→x7(x7) = ∑∼x7 f1f2f3f4f5f6.

Therefore, applying the message-passing rules for BP algorithm, we compute all marginals

efficiently on a single bidirectional tree. ◻

4.1.4 Decoding via Message Passing

Bit-Wise MAP Decoding

Assume a binary inputXi ∈ {±1} is transmitted over a memoryless channel, i.e., pY /X(y/x) =

∏
n
i=1 pYi/Xi(yi/xi), using a linear code C whose parity-check matrix H is defined in 4.4.

Also, assume that codewords are chosen uniformly at random i.e. p(x) = 1
∣C∣ . Then, the

rule for the bit −wise MAP decoder reads:

x̂i
MAP

(y) = argmax
xi∈{±1}

pXi/Y(xi/y)

(law of total probability) = argmax
xi∈{±1}

∑
∼xi
pX/Y(x/y)1x∈C(H)

(bayes’s rule) = argmax
xi∈{±1}

∑
∼xi
pY/X(y/x)pX(x)1x∈C(H)

(memoryless channel, uniform priors) = argmax
xi∈{±1}

∑
∼xi

(∏
j

pYj/Xj(yj/xj))1x∈C(H) 4.16

48 CHAPTER 4. DECODING OF LDPC CODES

Furthermore, using the factorisation in 4.6 and applying the rule of 4.16, bit-wise map

decoder can be written as:

x̂i
MAP

(y) = ∑
∼xi

(
5

∏
j=1

pYj/Xj(yj/xj))1{x3+x4=0} ⋅ 1{x1+x2+x3+x5=0}. 4.17

Hence, from 4.17 it is clear that the bit-wise decoding problem is equivalent to calculating

the marginal of a factorized function and choosing the value that maximizes this marginal.

The corresponding factor graph of 4.17 is shown in Fig. 4.9. We have seen that factor

nodes represent the code membership function. We set a function node connected with

each variable node in order to represent the effect of the channel2.

Figure 4.9: Extended factor graph of Fig. 4.2 containing the effect of the channel.

Notice that the above graph is a tree. We can therefore apply the message-passing algorithm

to perform bit-wise MAP decoding.

Simplification of the Message-Passing rules

In the binary case (i.e., Xi ∈ {±1}), a message µ(x) can be thought as a real-valued vector

with length 2, (µ(1), µ(−1)). The initial such message sent from the factor leaf node to

variable node i is (pYi/Xi(yi/1), pYi/Xi(yi/ − 1)). Recall that at a variable node of degree

K + 1 the message-passing rule is given by point-wise multiplication therefore,

µ(1) =
K

∏
k=1

µk(1), µ(−1) =
K

∏
k=1

µk(−1). 4.18

2p(yi/xi) denotes the i-th channel realization to variable node i.

4.1 BELIEF PROPAGATION DECODING 49

We introduce the ratio rk ≜
µk(1)
µk(−1) . These ratios are the likelihood ratios associated with

channel observations. Consequently

r =
µ(1)

µ(−1)
=
∏
K
k=1 µk(1)

∏
K
k=1 µk(−1)

=
K

∏
k=1

rk. 4.19

That is, the ratio of the outgoing messages at a variable node is the product of the incom-

ing ratios. Taking the log-likelihood ratios lk = ln(rk) we derive l = ∑
K
k=1 lk.

At check nodes (or factor nodes) the proof of the outgoing message ratio is more com-

plex than the previous derivation. For a check node with degree J +1 the associated kernel

function is

f(x,x1, x2,⋯, xJ) = 1{∏Jj=1 xj=x}. 4.20

Note that in example 4.1 we had modulo-2 sum for the code membership function since we

had bit values {0,1}. Now we consider bit values {±1}, hence, the modulo-2 sum becomes

product. Therefore

r =
µ(1)

µ(−1)
=
∑∼x f(1, x1,⋯, xJ)∏

J
j=1 µj(xj)

∑∼x f(−1, x1,⋯, xJ)∏
J
j=1 µj(xj)

(2.16)
=
∑∼x 1{∏Jj=1 xj=1}∏

J
j=1 µj(xj)

∑∼x 1{∏Jj=1 xj=−1}∏
J
j=1 µj(xj)

=
∑x1,⋯,xJ ∶∏Jj=1 xj=1∏

J
j=1 µj(xj)

∑x1,⋯,xJ ∶∏Jj=−1 xj=−1∏
J
j=1 µj(xj)

=
∑x1,⋯,xJ ∶∏Jj=1 xj=1∏

J
j=1

µj(xj)
µj(−1)

∑x1,⋯,xJ ∶∏Jj=−1 xj=−1∏
J
j=1

µj(xj)
µj(−1)

(a)
=
∑x1,⋯,xJ ∶∏Jj=1 xj=1∏

J
j=1 r

(1+xj)
2

j

∑x1,⋯,xJ ∶∏Jj=−1 xj=−1∏
J
j=1 r

(1+xj)
2

j

(b)
=
∏
J
j=1(rj + 1) +∏

J
j=1(rj − 1)

∏
J
j=1(rj + 1) −∏

J
j=1(rj − 1)

(c)
=

1 +∏j
rj−1

rj+1

1 −∏j
rj−1

rj+1

. 4.21

In (a) we simply define rj ≜
µj(xj)
µj(−1) , which gives that r

(1+xj)
2

j =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1, xj = −1,

rj, xj = 1.

In (b), we expand the products ∏
J
j=1(rj + 1), ∏

J
j=1(rj − 1) and we observe that

J

∏
j=1

(rj + 1) +
J

∏
j=1

(rj − 1) = 2 ⋅ ∑
x1,⋯,xJ ∶∏Jj=1 xj=1

J

∏
j=1

r
(1+xj)

2
j .

50 CHAPTER 4. DECODING OF LDPC CODES

Similarly,

J

∏
j=1

(rj + 1) −
J

∏
j=1

(rj − 1) = 2 ⋅ ∑
x1,⋯,xJ ∶∏Jj=1 xj=−1

J

∏
j=1

r
(1+xj)

2
j .

In (c) we divided numerator and denominator by ∏
J
j=1(rj + 1).

Moreover

r − 1

r + 1
=

1+∏j
rj−1
rj+1

1−∏j
rj−1
rj+1

− 1

1+∏j
rj−1
rj+1

1−∏j
rj−1
rj+1

+ 1

=

2∏j
rj−1
rj+1

1−∏j
rj−1
rj+1

2

1−∏j
rj−1
rj+1

=∏
j

rj − 1

rj + 1
. 4.22

From r = e`, it follows that

r − 1

r + 1
= tanh(

`

2
). 4.23

To verify 4.23, we use the algebraic expression tanh(x) = ex−e−x
ex+e−x and we take:

tanh(`/2) =
e
`
2 − e−

`
2

e
`
2 + e−

`
2

=
e−

`
2 (e` − 1)

e−
`
2 (e` + 1)

=
r − 1

r + 1
.

Combining with the expression in 4.22 we have:

r − 1

r + 1
= tanh(`/2) =∏

j

rj − 1

rj + 1
=

J

∏
j=1

tanh(`j/2). 4.24

Hence,

` = 2 ⋅ tanh−1
(

J

∏
j=1

tanh(`j/2)). 4.25

To summarize, in the case of transmission over a binary channel, the messages can be

compressed to a single real quantity. More precisely, if we choose this quantity to be the

log of the ratio of the two likelihoods, then the processing rules are simplified at variable

nodes with the addition of individual messages and at check nodes the processing rule is

stated in 4.25.

4.1 BELIEF PROPAGATION DECODING 51

4.1.5 BP decoding for the BEC

The binary erasure channel (BEC) shown in Figure 4.10 transmits one of two symbols,

usually the binary digits {0,1}. However, the receiver either receives the bit correctly or

it receives a message “?” that the bit was erased. In other words, BEC does not introduce

errors. The BEC erases a bit with probability ε. Hence, the channel transition probabilities

are:

p(Y = 0/X = 0) = 1 − ε.

p(Y = 0/X = 1) = 0.

p(Y = 1/X = 1) = 1 − ε.

p(Y = 1/X = 0) = 0.

p(Y =?/X = 0) = ε.

p(Y =?/X = 1) = ε.

X Y

Figure 4.10: The binary erasure channel (BEC).

The BEC does not flip bits, therefore, if Y is received as 1 or 0 then the receiver can be

completely certain of the value of X. Namely, p(X = 0/Y = 0) = 1 and p(X = 1/Y = 1) = 1.

In the previous subsections, we introduced a message-passing algorithm to accomplish

the decoding task. We will now specialize this algorithm to the BEC. The Tanner graph

of an LDPC code (and so the factor graph corresponding to the bit-wise MAP decoding)

is not usually a tree. If the factor graph is a tree, then the decoding scheme is the classic

message-passing procedure, i.e., start at the leaf nodes and send a message once all incoming

messages required for the computation have arrived. Otherwise, (i.e. code with cycles)

we proceed in iterations. We start by processing incoming messages at check nodes and

then sending the resulting outgoing messages to variable nodes along all edges. These

52 CHAPTER 4. DECODING OF LDPC CODES

messages are subsequently processed at the variable nodes and the outgoing messages are

sent back along all edges to the check nodes. This constitutes one round of message passing.

Note that, initially, variable nodes send the messages received from the channel to their

neighbouring check nodes.

Hence the initial messages are:

(µj(0), µj(1)) = (p(yj/0), p(yj/1)) 4.26

For the BEC, the possible initial messages are (1 − ε,0), (ε, ε), (0,1 − ε) corresponding to

the received values “0”, “?” and “1” respectively. Recall that the normalization of the

messages plays no role. We discussed in § 4.1.4, that we only need to know the ratio and

this inference stays valid if the graph contains cycles. Therefore, equivalently we can work

with the set of messages (1,0), (1,1) and (0,1).

We now state the processing rules. We claim that the general message-passing rules can

be simplified to the following:

At a variable node, the outgoing message is an erasure if all incoming messages are era-

sures. Otherwise, namely if there is at least a non-erasure incoming message, the outgoing

message is equal to this common value (“0” or “1”). This simplified rule can be proved

easily due to message-passing rule in Fig. 4.7(b). The outgoing message is computed by

component-wise multiplication of all incoming messages. Consider a variable node with

degree 3. If the two incoming messages are erasures, i.e., messages (1,1) and (1,1), then

the outgoing message µ(x) = (1,1) ⋅ (1,1) = (1,1) will be an erasure. Otherwise, if one of

the two incoming messages is an erasure and the other is for instance the message “1” i.e.

(0,1-ε) normalized (0,1) then, the outgoing message will be µ(x) = (1,1) ⋅ (0,1) = (0,1)-the

common value of the incoming message. Hence, we confirmed the simplification rule.

At a check node, the outgoing message is an erasure if any of the incoming messages is an

erasure. Otherwise, the outgoing message is the modulo-2 sum of the incoming messages.

Consider again a check node with degree 3 with two incoming messages. Since check nodes

of higher degree can be modelled as the cascade of several check nodes, each of which has

two inputs and one output.

Assume that the incoming messages are (µ1(0), µ1(1)) = (1,0) and (µ2(0), µ2(1)) = (0,1).

The message-passing rule at check node is stated in Fig. 4.7(b). Moreover, due to 4.20

4.1 BELIEF PROPAGATION DECODING 53

the outgoing message is3

(µ(0), µ(1)) =
⎛

⎝
∑
x1,x2

1{x1+x2=0}µ1(x1)µ2(x2), ∑
x1,x2

1{x1+x2=1}µ1(x1)µ2(x2)
⎞

⎠

=
⎛

⎝
∑

x1,x2∶x1⊕x2=0

µ1(x1)µ2(x2), ∑
x1,x2∶x1⊕x2=1

µ1(x1)µ2(x2)
⎞

⎠

= (µ1(1)µ2(1) + µ1(0)µ2(0), µ1(0)µ2(1) + µ1(1)µ2(0))

= (0 ⋅ 1 + 1 ⋅ 0,1 ⋅ 1 + 0 ⋅ 0) = (0,1) 4.27

Indeed, the result in 4.27 is equal to the modulo-2 sum of the incoming messages, since,

1 ⊕ 0 = 1 and (0,1) refer to “1” message. In addition, if the two incoming messages are

(µ1(0), µ1(1)) = (1,0) and (µ2(0), µ2(1)) = (1,1), i.e., the second message is an erasure

then, from 4.27, the outgoing message will be equal to (0 ⋅ 1+ 1 ⋅ 1,1 ⋅ 1+ 0 ⋅ 1) = (1,1), i.e.,

an erasure as we expected.

Example 4.3. Consider the LDPC code C which consists of all length-6 vectors c =

(c1 c2 ⋅ ⋅ ⋅ c6) with a regular parity-check matrix

H =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 1 0 0

0 1 1 0 1 0

1 0 0 0 1 1

0 0 1 1 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Assume an encoded codeword c = [0 0 1 0 1 1]. The vector c is sent through the BEC and

the vector y = [0 0 1 ? ? ?] is received. Message-passing decoding is used to recover the

erased bits. Figure 4.11 shows graphically the messages passed in the message-passing

decoder.

In iteration 0 (initialization step) the variable-to-check messages correspond to the re-

ceived values. Consequently, x̂ which denotes the current estimate of the transmitted word

is equal to y.

3notice that in 4.20 there’s a product. In our case, this will be replaced by a summation since we have

bit values {0,1} and not symbols ±1.

54 CHAPTER 4. DECODING OF LDPC CODES

(a) Initialization step.

At iteration 1, the messages sent to variable nodes are shown on the left of Figure

4.11(b). For instance, the messages sent from check node 1 are

µ
1 → 4

(y4) = 0⊕ 0 = 0, µ
1 → 2

(y2) =?, µ
1 → 1

(y1) =? .

We follow the same procedure for check nodes 2, 3 and 4. On the right of this figure there

are the messages sent from variable to check nodes. Hence, the iteration 1 is completed.

Observe that, in this round, the 4th variable node has the value 0 due to µ
1 → 4

(y4) and

the 5th has the value 1 due to message µ
2 → 5

(y5) = 1 ⊕ 0 = 1. Therefore, we recovered

the 4th and 5th bit.

4.1 BELIEF PROPAGATION DECODING 55

(b) Iteration one.

At round 2, we attend the same as previously and we recover the 6th bit due to message

µ
4 → 6

(y6) = 0⊕ 1 = 1.

(c) Iteration two.

Figure 4.11: Message passing decoding in order to find the erased part of the codeword.

The dotted arrows correspond to messages “bit=1”, the solid line correspond to message

“bit= ?” and the broken arrows correspond to messages “bit=0”.

Therefore, we recovered the codeword c. ◻

56 CHAPTER 4. DECODING OF LDPC CODES

4.2 The principle of iterative decoding

Before studying methods of LDPC code analysis, we discuss the principle of iterative

decoding [9] to make the goal of the analysis clear.

Extrinsic information to

 the next information

Extrinsic information from

 the previous iteration

Information from the channel

 (intrinsic information)

One iteration of

 Algorithm

Figure 4.12: The principle of iterative decoding.

An iterative decoder, as shown in Fig. 4.12, at each iteration uses two sources of

knowledge about the transmitted codeword: the intrinsic information from the channel

and the information from the previous iteration. From these sources, the decoding algo-

rithm attempts to obtain a better knowledge about the transmitted codeword, using this

knowledge as the extrinsic information for the next iteration. In a successful decoding, the

extrinsic information is getting better and better as the decoder iterates. Therefore, in all

methods of analysis of iterative decoders, the statistics of the extrinsic messages at each

iteration are studied.

Studying the evolution of the pdf of extrinsic messages iteration by iteration is known as

density evolution. However, as an approximate analysis, one may study the evolution of a

representative of this density (e.g. mean of a Gaussian pdf).

4.3 THE DECODING TREE 57

4.3 The decoding tree

Consider an updated message from a variable node v of degree dv to a check node in

the decoder. This message is computed from dv − 1 incoming messages and the channel

message. These dv − 1 incoming messages are in fact the outgoing messages of some check

nodes, which are updated previously. Consider one of those messages with its check node

c of degree dc. The outgoing message of this check node is computed from dc − 1 incoming

messages to c. One can repeat this for all the check nodes connected to v to form a decoding

tree of depth one. An example of such a decoding tree is depicted in Fig. 4.13.

Channel

Input to the next iteration

Output from the previous iteration

Figure 4.13: The depth-one decoding tree for a regular (3,6) LDPC code.

Continuing in the same fashion, one can get the decoding tree of any depth. Fig. 4.14

shows an example of a depth-two decoding tree. Notice that, when the factor graph is a

tree, the messages in the decoding tree of any depth are indepedent. If the factor graph

has cycles and its girth is 2 ⋅ `, then up to depth ` the messages in the decoding tree are

indepedent. Therefore, the independence assumption is correct up to ` iterations and is

an approximation for subsequent iterations.

58 CHAPTER 4. DECODING OF LDPC CODES

Channel

Output from the previous iteration

Channel

Iteration i-2

Iteration i-1

Iteration i

Channel...

Channel

Figure 4.14: The depth-two decoding tree for an irregular LDPC code.

Chapter 5
Analysis & Design of LDPC codes

5.1 Density Evolution for LDPC Codes

In 2001, Richardson and Urbanke [5] proposed a technique called density evolution, which

tracks the evolution of the pdf of the messages, iteration by iteration. Density Evolution is

the most common method for asymptotic behaviour analysis. It can predict the decoding

performance of a code ensemble in the limit of infinite blocklength using only the degree

distributions of the code. To be able to define a density for the messages, they needed

a property for channel and decoding, called the symmetry conditions. The symmetry

conditions require the channel to be symmetric (see Definition in 2.2) and the decoding

update rules to satisfy some symmetry properties as follows.

Check node symmetry: The check node update rule [9, p.25] is symmetric if

CHK(b1m1, b2m2, . . . , bdc−1mdc−1) = CHK(m1, m2, . . . , mdc−1)(
dc−1

∏
i=1

bi) 5.1

for any ±1 sequence (b1, b2, . . . , bdc−1). Namely, signs factor out of check node messages

maps. Here, CHK() is the check update rule, which takes dc − 1 input messages and

generates one output message.

Variable node symmetry: The variable node update rule [9, p.25] is symmetric if

VAR(−m0, ,−m1, . . . , −mdv−1) = −VAR(m0, ,m1, . . . , mdv−1) 5.2

i.e. sign inversion invariance of variable node message maps holds. Here, VAR() is the

variable node update rule, which has inputs dv − 1 messages together with the channel

message m0 and generates one output message.

59

60 CHAPTER 5. ANALYSIS & DESIGN OF LDPC CODES

Under the symmetry conditions and assuming a linear code, the convergence behaviour

of the decoder is independent of the transmitted codeword. Consequently, one may assume

that the all-zero codeword is transmitted. In practice, discrete density evolution [11] is

used. The idea is to quantize the message alphabet and use pmfs instead of pdfs to make

a computer implementation possible.

Density evolution is not specific to LDPC codes. It is a technique which can be adopted

for other codes defined on graphs associated with iterative decoding. However, it becomes

intractable when the codes are complex as in turbo codes [9, p.25].

5.1.1 BEC Channel

Rather than analysing individual codes it suffices to assess the ensemble average perfor-

mance. This is true, since, as the next theorem asserts, the individual elements of an

ensemble behave with high probability close to the ensemble average.

Theorem 5.1. ([1, p.85], Concentration around Ensemble Average). Let a Tanner

graph G, chosen uniformly at random from LDPC(n, λ, p), be used for transmission over

the BEC(ε). Assume that the decoder performs ` rounds of message-passing decoding and

let PBP
b (G, ε, `) denote the resulting bit erasure probability. Then for ` fixed and for any

given δ > 0, there exist an α > 0, α = α(λ, p, ε, δ, `) such that

P{ ∣PBP
b (G, ε, `) −EG′∈ LDPC(n,λ,p)[P

BP
b (G

′
, ε, `)] ∣ > δ } ≤ e−α⋅n. 5.3

This probability tends to 0 as the blocklength tends to infinity, since δ is strictly positive.

In words, the theorem asserts that all except an exponentially (in the blocklength) small

fraction of codes behave within an arbitrarily small δ from the ensemble average. Assuming

sufficiently large blocklengths, the ensemble average behaviour is a good indicator for the

individual behaviour. We therefore focus our effort on the design and construction of

ensembles whose average performance approaches the Shannon theoretic limit.

The concentration results proved in [5] guarantee that, for sufficiently large block

lengths, almost every code in the given ensemble will have vanishing probability of bit

error for channels with parameters below the calculated threshold.

A first big simplification stems from the realization that the performance is independent

of the transmitted codeword and is only a function of the erasure pattern: at any iteration,

5.1 DENSITY EVOLUTION FOR LDPC CODES 61

the set of known variable nodes is only a function of the set of known messages but

independent of their values. The equivalent statement is true for the set of known check

nodes.

Theorem 5.2. ([1, p.85], Conditional Independence of Erasure Probability).

Let G be a Tanner graph representing a binary linear code C. Assume that C is used to

transmit over BEC(ε) and assume that the decoder performs message-passing decoding on

G. Let PBP
b (G, ε, `,x) denote the conditional bit erasure probability after the `-th decoding

iteration assuming x was sent, x ∈ C. Then,

PBP
b (G, ε, `,x) =

1

∣C∣
∑
x′∈ C

PBP
b (G, ε, `,x

′
) = PBP

b (G, ε, `) 5.4

i.e. PBP
b (G, ε, `,x) is independent of the transmitted codeword.

As a consequence, we are free to choose a particular codeword and to analyse the

performance of the system assuming that this codeword was sent. It is natural to assume

that the “all-zero word”, which is contained in every linear code, was sent. We refer to

this assumption as the “all-zero codeword” assumption.

Another important statement is that for long codes (i.e. large block lengths) the average

behaviour converges (in the block length n) to that of the cycle-free case.

Description of Density Evolution

The basic assumption is that the computation graph [1, p.87] spanned by belief-propagation

at round ` (denoted T`) is a tree, meaning that the messages exchanged by the BP algo-

rithm are independent, hence all APPs are marginalised correctly. In BEC case, Density

Evolution tracks the mean message erasure probability of the variable-to-check messages

for each round of the belief propagation algorithm. By definition, the initial messages to

check nodes are the observed values of the variable nodes, which have an erasure probability

ε ∈ [0,1].

Theorem 5.3. ([1, p.95]). Consider a degree distribution pair (λ,ρ). Then there is an

explicit recursion which connects the distributions of messages passed from variable nodes

to check nodes at two consecutive rounds of belief-propagation. The expected fraction of

erasure messages which are passed in the `-th iteration, call it x`, evolves as

x` = ε ⋅ λ(1 − ρ(1 − x`−1)). 5.5

62 CHAPTER 5. ANALYSIS & DESIGN OF LDPC CODES

Proof. At round 0 the mean variable-to-check erasure probability under BP is PBP
T0 = ε,

where PBP
T` denotes the mean variable-to-check erasure probability under BP at round `.

Let PBP
T` = x`.We will now use induction to find an expression for x` as a function of

the erasure probability at the previous iteration, namely x`−1. We start with check-to-

variable messages in the (` + 1)-th round. Recall that by definition of the algorithm a

check-to-variable message emitted by a check node of degree i along a particular edge is

the erasure message, if any of the i − 1 incoming messages is an erasure. By assumption,

each such message is an erasure with probability x` and all messages are independent,

so that the probability that the outgoing message is an erasure is equal 1 − (1 − x`)i−1.

Since the edge has probability ρi to be connected to a check node of degree i it follows

that the expected erasure probability of a check-to-variable message at (` + 1)-th round is

equal to ∑i ρi ⋅ (1 − (1 − x`)i−1) = 1 − ρ(1 − x`). Now consider the erasure probability of the

variable-to-check messages in the (` + 1)-th round. Consider an edge e that is connected

to a variable node of degree i. The outgoing variable-to-check message along this edge in

the (` + 1)-th round is an erasure if the received value of the associated variable node is

an erasure and all i − 1 incoming messages are erasures. This happens with probability

ε ⋅ (1 − ρ(1 − x`))i−1. Averaging again over the edge degree distribution λ we get that

PBP
T`+1 = x`+1 = ∑i λi ⋅ ε ⋅ (1 − ρ(1 − x`))

i−1 = ε ⋅ λ(1 − ρ(1 − x`)) as claimed. ∎

We now proceed to the introduction of some useful properties of density evolution,

namely the monotonicity (with respect to the channel and the iteration number `), the

concept of the threshold and, finally, the stability condition [1].

Monotonicity

Monotonicity either with respect to the channel parameter or with respect to the number of

iterations ` plays a fundamental role in the analysis of density evolution. The first lemma

is a direct consequence of the non-negativity of the coefficients of the polynomials λ(x)

and ρ(x) and the fact that ρ(1) = 1. We skip the proof.

Lemma 5.1. ([1, p.96], Monotonicity of f(⋅, ⋅)). For a given distribution pair (λ, ρ)

define f(ε, x) = ε ⋅ λ(1 − ρ(1 − x)). Then f(ε, x) is increasing in both its argument for

x, ε ∈ [0,1].

Lemma 5.2. ([1, p.96], Monotonicity with respect to channel). Let (λ, ρ) be a

degree distribution pair and ε ∈ [0,1]. If PBP
T` (ε)

`→∞
Ð→ 0 then PBP

T` (ε
′
)
`→∞
Ð→ 0 for all 0 ≤ ε

′
≤ ε.

5.1 DENSITY EVOLUTION FOR LDPC CODES 63

Proof. Recall from Theorem 5.3 that PBP
T` (ε) = x`(ε), where x0(ε) = ε, x`(ε) = f(ε, x`−1(ε))

and f(ε, x) = ε ⋅ λ(1 − ρ(1 − x)). Assume that for some ` ≥ 0, x`(ε
′
) ≤ x`(ε). Then

x`+1(ε
′
) = f(ε

′
, x`(ε

′
))

Lem.5.1
≤ f(ε, x`(ε)) = x`+1(ε).

But if ε
′
≤ ε, then x0(ε

′
) ≤ x0(ε) and we conclude by induction that x`(ε

′
) ≤ x`(ε). So if

x`(ε)
`→∞
Ð→ 0 then x`(ε

′
)
`→∞
Ð→ 0. ∎

Lemma 5.3. ([1, p.97], Monotonicity with respect to iteration). Let ε, x0 ∈ [0,1].

For ` = 1,2,⋯ define x`(x0) = f(ε, x`−1(x0)). Then x`(x0) is a monotone sequence converg-

ing to the nearest (in the direction of monotonicity) solution of the equation f(ε, x) = x.

Proof. If x0 = 0 or ε = 0 then x` = 0 for ` ≥ 1 and the fixed point is 0. If for some ` ≥ 1,

x` ≥ x`−1 then x`+1 = f(ε, x`)
Lem.5.1

≥ f(ε, x`−1) = x` and the corresponding conclusion holds

if x` ≤ x`−1. This proves the monotonicity of sequence {x`}`≥0. Since for ε ≥ 0 we have

0 ≤ f(ε, x) ≤ ε for all x ∈ [0,1], it follows that x` converges to an element of [0, ε]-call it

x∞. It remains to show that x∞ is the nearest fixed point. Consider a fixed point z such

that x`(x0) ≤ z for some ` ≥ 0. Then x`+1(x0) = f(ε, x`(x0))
Lem.5.1

≤ f(ε, z) = z which shows

that x∞ ≤ z. Similarly, if x`(x0) ≥ z then x∞ ≥ z. This shows that x` cannot “jump” over

any fixed point and must therefore converge to the nearest one. ∎

Threshold

From the density evolution equations, we observe that, for every non-negative integer `,

PBP
T` (ε = 0) = 0 and PBP

T` (ε = 1) = 1 and these equalities hold for `→∞. Hence, a supremum

of ε for which PBP
T`

`→∞
Ð→ 0 must exist. This value is called the threshold.

Definition 5.1. ([1, p.97]). The threshold associated with the degree distribution pair

(λ, ρ) call it εBP (λ, ρ), is defined as

εBP (λ, ρ) = sup{ε ∈ [0,1] ∶ PBP
T`(λ,ρ)(ε)

`→∞
Ð→ 0}. 5.6

◇

The preceding definition of the threshold is not very convenient for the purpose of

analysis. We therefore state a second equivalent definition based on the fixed points of

density evolution.

64 CHAPTER 5. ANALYSIS & DESIGN OF LDPC CODES

Theorem 5.4. ([1, p.98],). For a given degree distribution pair (λ, ρ) and ε ∈ [0,1] let

f(ε, x) = ε ⋅ λ(1 − ρ(1 − x)).

(i). εBP (λ, ρ) = sup{ε ∈ [0,1] ∶ x = f(ε, x) has no solutionx in (0,1]}.

(ii). εBP (λ, ρ) = inf{ε ∈ [0,1] ∶ x = f(ε, x) has a solutionx in (0,1]}.

Proof. Let x(ε) be the largest solution in [0,1] to x = f(ε, x). Note that for any x ∈ [0,1] we

have 0 ≤ f(ε, x) ≤ ε. We conclude that x(ε) ∈ [0, ε]. By Lemma 5.3, we have x`(ε)
`→∞
Ð→ x(ε).

We conclude that if x(ε) > 0 then ε is above the threshold, whereas if x(ε) = 0 then ε is

below the threshold. ∎

The fixed point characterisation gives rise to the following convenient graphical method

for determining the threshold. Draw f(ε, x)−x as a function of x, x ∈ (0,1]. The threshold

εBP is the largest ε such that the graph of f(ε, x) − x is negative.

Stability condition

Expanding the right-hand size of 5.5 into a Taylor series around zero we get

x` = ελ
′
(0)ρ

′
(1)x`−1 +O(x2

`−1). 5.7

For sufficiently small x` the convergence behaviour is determined by the term linear in x`.

More precisely, the convergence depends on whether ελ
′
(0)ρ

′
(1) is smaller or larger than

1 [1, p.100].

Theorem 5.5. ([1, p.100]). Assume that we are given a degree distribution pair (λ, ρ)

and ε, x0 ∈ [0,1]. Let x`(x0) = f(ε, x`−1(x0)). Then

(i). (Necessity) If ελ
′
(0)ρ

′
(1) > 1 then there exists a strictly positive constant ξ = ξ(λ, ρ, ε)

such that lim`→∞ x`(x0) ≥ ξ for all x0 ∈ (0,1).

(ii). (Sufficiency) If ελ
′
(0)ρ

′
(1) < 1 then there exists a strictly positive constant ξ =

ξ(λ, ρ, ε) such that lim`→∞ x`(x0) = 0 for all x0 ∈ (0, ξ).

Notice that f(ε,0) = 0 for any initial ε, hence zero is a fixed point of the recursion in

5.5. Therefore, the preceding condition is the stability condition of the fixed point at zero.

5.1 DENSITY EVOLUTION FOR LDPC CODES 65

The most important consequence of the stability condition is the implied upper bound on

the threshold:

εBP (λ, ρ) ≤
1

λ′(0)ρ′(1)
.

This concludes our quick analysis of density evolution for the BEC. We will now proceed

to the more general family of Binary Memoryless Symmetric-Output Channels (BMSC),

of which the BEC is a member as well.

5.1.2 BMS Channels

For general binary-input memoryless output-symmetric channels, the situation is much

more involved since one has to keep track of the evolution of general distributions, which

usually cannot be parameterized by a single parameter. Let us begin by recalling the

belief-propagation algorithm. We will use the standard binary PAM map 0 → +1, 1 → −1

throughout. At each iteration, messages are passed along the edges of the graph from

variable nodes to their incident check nodes and back. The messages are typically real-

valued but they can also take on the values ±∞, reflecting the situation where some bits

are known with absolute certainty.

Generically, messages which are sent in the `-th iteration will be denoted by m(`). By

m
(`)
vc we denote the message sent from variable node v to its incident check node c, while

by m
(`)
cv we denote the message passed from check node c to its incident variable node v.

Each message is in log-likelihood ratio form where X is the random variable describing the

codeword bit value associated to variable node v, and y is the random variable describing

all the information incorporated into this message. By Bayes rule, we have

m = ln
p(X = 1/y)

p(X = −1/y)
= ln

p(y/X = 1)

p(y/X = −1)
5.8

since X is equally likely ±1. The message m is the log-likelihood ratio of the random

variable X under the independence assumption.

Let m
(`)
vc be a message from a variable node to a check node. Under BP decoding, m

(`)
vc

is equal to the sum of all incoming LLRs, i.e.,

m
(`)
vc =

dv−1

∑
i=0

m
(`)
civ , 5.9

66 CHAPTER 5. ANALYSIS & DESIGN OF LDPC CODES

where mciv, i = 1,⋯, dv−1, are the incoming LLRs from the neighbours of the variable node

except for the check node that gets the message m
(`)
vc , and m

(`)
c0v is the channel observation.

Since m
(`)
civ are independent, the density f

m
(`)
vc

of m
(`)
vc is the convolution of the densities of

the m
(`)
civ which can be efficiently computed in Fourier domain. Let f

m
(`)
civ

denote the density

of a random variable m
(`)
civ, then

f
m
(`)
vc

=
dv−1

⊗
i=0

f
m
(`)
civ
, 5.10

where ⊗ denotes convolution.

Before continuing, we need to write the check node message update rule in a more con-

venient form. Recall that we can restrict ourselves to the all-zero codeword for analysis,

which in this case becomes the all-one codeword, according to the BPSK mapping. Then,

the distribution of the log-likelihood ratio `(Y) associated with a channel observation Y

assuming that X = 1, is denoted with L and is called an L-density. Some L-densities of

commonly used channel models [1] are:

LBEC(ε)(y) = ε∆0(y) + (1 − ε)∆+∞(y),

LBSC(ε)(y) = ε∆−ln 1−ε
ε
(y) + (1 − ε)∆ln 1−ε

ε
(y),

LBI-AWGN(σ)(y) =

√
σ2

8π
exp

⎧⎪⎪
⎨
⎪⎪⎩

−
(y − 2

σ2)
2σ2

8

⎫⎪⎪
⎬
⎪⎪⎭

.

where ∆z(x) = ∆0(x − z) and ∆0(x) is the Dirac delta centered at zero.

A function which is closely related to `(y) is:

d(y) = tanh (
`(y)

2
) =

1 − e−`(y)

1 + e−`(y)
= p(X = 1/y) − p(X = −1/y),

where in the last step we have used Bayes rule and assumed that pX(1) = pX(−1) = 1
2 . It

is easy to see that d(y) takes values in the interval [−1,1]. Also, we observe that from

`(y) we can compute d(y), and vice versa. When we conceive d(y) as a random variable

we write D = d(y). Conditioned on X = 1, we have d(y) ∈ (−1,1]. The distribution of D

conditioned on X = 1 is termed a D-distribution and is denoted by D. If α is a D-density

the symmetry takes the form

α(y)

α(−y)
=

1 + y

1 − y
.

5.1 DENSITY EVOLUTION FOR LDPC CODES 67

We remind that the symmetry for an L-density is given in 2.10.

Another important quantity is

g(y) ≜ (sign(y), ln coth(∣`(y)∣/2)) = (sign(d(y)),−ln∣d(y)∣). 5.11

Again when we conceive g(y) as a a random variable, we write G = g(y). The density of G,

conditioned on X = 1, is called a G-density and is denoted by G. Also, note that we define

the sign(y) as 1 if y ≥ 0 and −1 otherwise. In addition, g(y) takes values in {±1}× [0,+∞].

A G-density α(s, x) therefore has the form

α(s, x) = 1s=1α(1, x) + 1s=−1α(−1, x).

A symmetric G-density exhibits the form

α(1, x) = α(−1, x) coth(x/2).

We will see that the convolution of L-densities represents the message distribution change

at variable nodes, and the convolution of G-densities represents the message distribution

change at check nodes. L-densities, are real-valued functions, hence, their convolution

denoted by ⊗ is well defined. However, G-densities take values in {±1} × [0,+∞], hence,

calculating their convolution is not trivial. The space R+ has the well-defined convolution.

Instead of {±1} we think the set {0,1} with modulo-two addition. The associated convo-

lution is the cyclic convolution of sequences of length two. Therefore, the convolution of

G-densities is just the two-dimensional convolution which consists of the familiar convolu-

tion over R+ in one dimension and the convolution over {0,1} in the other dimension. In

other words, the new convolution is a convolution over the group {±1} × [0,+∞].

For notation purposes, the convolution in G-domain will be denoted by ⋆. Therefore, if

a and b are L-densities, then by writing a ⋆ b we refer to the transformation of a and b

into G-densities, their convolution in the G-domain and their transformation back to the

L-domain.

Description of Density Evolution

We remind that the processing rule at check nodes is given by

m
(`)
cv = 2 tanh−1 ⎛

⎝

dc−1

∏
i=1

tanh (
m
(`)
vic

2
)
⎞

⎠
, 5.12

68 CHAPTER 5. ANALYSIS & DESIGN OF LDPC CODES

where m
(`)
vic, i = 1,⋯, dc − 1 are the incoming LLRs from dc − 1 neighbours of a check node,

and m
(`)
cv is the message sent to the remaining neighbour.

For determining the density of m
(`)
cv , we need to write the check node message update rule in

a more convenient form. According to [6], we define a map γ ∶ [−∞,+∞] → {0,1}×[0,+∞]

as follows. Given x ∈ [−∞,+∞], x ≠ 0, let

γ(x) = (γ1(x), γ2(x)) ≜ (sgn(x),−ln tanh ∣
x

2
∣). 5.13

We define −ln(0) = +∞. Notice that this map is the G-density defined previously. Hence,

sgn(x) is 1 if x ≥ 0 and −1 otherwise.

Using γ(x), the check node message update rule can be rewritten as

m
(`)
cv = γ−1

⎛

⎝

dc−1

∑
i=1

γ(m
(`)
vic)

⎞

⎠
, 5.14

where addition is performed component-wise. This form is more convenient because, given

the indepedence assumption and the densities of all m
(`)
vic, it is relatively easy to calculate

the density of m
(`)
cv . Let Γ denote the density transformation corresponding to γ(x), i.e.,

given random variable Z ∈R with density fZ(z), the density of γ(Z) is

fγ(Z)(γ1(z), γ2(z)) = Γ(fZ(z)).

The aforementioned transformation has a well defined inverse, denoted by Γ−1, and both

Γ and Γ−1 are additive operators on their respective domain spaces [6]. The range space

of Γ is endowed with a convolution operator ⋆. Since incoming LLRs at a check node are

independent, the density f
m
(`)
cv

of m
(`)
cv can be computed as

f
m
(`)
cv

= Γ−1(Γ(f
(`)
mv1c

) ⋆ ⋯ ⋆ Γ(f
(`)
mvdc−1c

)). 5.15

More precisely, let P` and Q` denote the shorthand notations for the densities of random

variables m
(`)
vc and m

(`)
cv respectively. By 5.14, we see that the random variable describing

the message passed from check node c to variable node v is the image under γ−1 of a sum

of random variables from {0,1} × [0,+∞]. As mentioned earlier, these random variables

are independent by the independence assumption. So, the density of their sum is the

convolution of their densities.

We wish to calculate the density of the messages emanating from a check node of degree

i, denoted Q`,i. At a check node of degree i, (i − 1) incoming messages are summed after

5.1 DENSITY EVOLUTION FOR LDPC CODES 69

passing through the transformation γ(x). The result is then transformed into L-domain

using Γ−1. All incoming messages are independent and distributed according to P` and

their images under γ(x) are also independent and distributed according to Γ(P`). Hence,

the density of the messages emanating from a check node of degree i is given by

Q`,i = Γ−1(Γ(P`)
⋆(i−1)). 5.16

Summing up over all the possibilities for the degrees of the check node c we lead to

Q` = ∑
≥2

ρiQ`,i = ∑
i≥2

ρi ⋅ Γ
−1(Γ(P`)

⋆(i−1)). 5.17

Since, Γ−1 is additive then

Q` = Γ−1
⎛

⎝
∑
i≥2

ρiΓ(P`)
⋆(i−1)⎞

⎠
5.18

and with a slightly abuse of notation Q` we have

Q` = Γ−1(ρ(Γ(P`))). 5.19

At variable nodes, the corresponding density is easier to compute. At a variable node of

degree j, the incoming messages from check nodes are summed along with the message

coming from the channel. Let P 0
` denote the density of the message coming from the

channel. By the independence assumption, the messages from check nodes are i.i.d. ac-

cording to Q` and the channel message is independent from all other incoming messages.

Then, the density of the messages emanating from a variable node of degree j towards the

check nodes, denoted by P(`+1),j is simply the standard convolution over R of all incoming

messages, i.e.,

P(`+1),j = P
0
` ⊗Q

⊗(j−1)
` . 5.20

Summing over all the possible degrees of the variable node we have

P(`+1) = ∑
j≥2

λjP(`+1),j

= ∑
j≥2

λjP
0
` ⊗Q

⊗(j−1)
`

= P 0
` ⊗∑

j≥2

λjQ
⊗(j−1)
` , 5.21

70 CHAPTER 5. ANALYSIS & DESIGN OF LDPC CODES

substituting the expression we have derived for Q` we take

P(`+1) = P
0
` ⊗∑

j≥2

λj
⎛

⎝
Γ−1

⎛

⎝
∑
i≥2

ρiΓ(P`)
⋆(i−1)⎞

⎠

⎞

⎠

⊗(j−1)

. 5.22

By slightly abusing notation again, the final expression for P(`+1) is

P(`+1) = P
0
` ⊗ λ(Γ−1(ρ(Γ(P`)))). 5.23

Note that P 0
` depends only on the channel observation and is actually not a function of `.

Moreover, P 0
` describes the initial L-density for BMS channels assuming that the all-one

codeword was transmitted. It can be proved [6] that P(`+1) is symmetric. The average

probability of error at round (` + 1) is:

Pe(P(`+1)) = ∫

0

−∞
P(`+1)(x) dx. 5.24

From corollary 1 in [6], it follows that Pe(P(`+1)) converges to zero if and only if P(`+1)

converges to ∆∞ (= unit mass at infinity). Important sufficient conditions such as mono-

tonicity and stability can be found in [6].

In order to understand better the aforementioned rules for the densities of variable-to-check

and check-to-variable messages, we present an example in Fig. 5.1.

P0 denotes the density of log p(yi/xi=1)
p(yi/xi=−1) given Xi = 1.

Figure 5.1: Graphical representation of Density Evolution rules.

5.1 DENSITY EVOLUTION FOR LDPC CODES 71

5.1.3 Discrete Density Evolution

Density Evolution is too complicated for direct use. A computer implementation becomes

possible through discrete density evolution, i.e., quantizing the message alphabet and

studying the evolution of pmfs instead of pdfs. Here we provide a qualitative descrip-

tion [11] of density evolution and the formulation of discrete density evolution for the

Belief-propagation algorithm.

In the first iteration, the decoder is initialized with messages from the channel. This is

the initial density of messages from variable nodes to check nodes. Given this density and

knowing the update rule at the check nodes, we can compute the density of the output mes-

sages from the check nodes. Considering the update rule for a check node with two inputs

whose input densities are given as pmf1 and pmf2 and assuming a uniform quantization of

the messages with a quantization interval ∆, the pmf of the output can be computed as

pmf[k] = ∑
(i,j)∶k⋅∆=R(i∆,j∆)

pmf1[i]pmf2[j], 5.25

where

R(x, y) = Q
⎛

⎝
2 tanh−1

(tanh(
x

2
) tanh(

y

2
))

⎞

⎠
.

We denote the probability mass function (pmf) of a quantized message w by pw[k] =

Pr(w = k∆) for k ∈ Z. Here Q(⋅) is the quantization function defined as:

Q(w) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⌊w∆ + 1
2⌋ ⋅∆, ifw ≥ ∆

2 ,

⌈w∆ − 1
2⌉ ⋅∆, ifw ≤ −∆

2 ,

0, otherwise.

For check nodes of higher degree, the output density can be computed by noticing that the

sum-product check node update rule satisfies

CHK(m1,m2,⋯, mdc−1) = CHK(m1,CHK(m2,⋯, mdc−1)). 5.26

Knowing the output density (pmf) of check nodes and the update rule at the variable

nodes we can find the message density at the output of the variable nodes. Considering a

variable node with two inputs whose pmfs are given by pmf1 and pmf2 the output pmf for

the update rule can be computed as

pmf[n] = pmf1[n] ⊛ pmf2[n], 5.27

72 CHAPTER 5. ANALYSIS & DESIGN OF LDPC CODES

where ⊛ represents discrete convolution. For variable node of higher degrees we use the

fact that

VAR(m1,m2,⋯, mdv−1) = VAR(m1,VAR(m2,⋯, mdv−1)). 5.28

This finishes density evolution for one iteration of decoding. We can repeat this task for as

many iterations as required and find the density of messages at each iteration. Assuming

that a “0” information bit is mapped to a +1 signal on the channel and a “1” information

bit is mapped to a −1 signal, the message error rate is the negative tail of the density,

since a negative message is carrying a belief for a “1” information bit. The negative tail

of density should vanish if the decoding is successful. The proofs for the validity and an

analysis of accuracy of discrete density evolution can be found in [11].

5.1.4 LDPC Code Design

In this thesis, we present the optimization technique presented by S. Y. Chung in [3, p.197].

We remind that the rate for a given degree distribution pair is

r(λ, ρ) ≜ 1 −
∑i≥2 ρi/i

∑i≥2 λi/i
.

The purpose is to maximize the rate of the code while maintaining some constraints:

1. λ(1) = 1 and λi ≥ 0, 2 ≤ i ≤ dv;

2. the new λ(x) is not significantly different from the old one (required to guarantee

that the linear programming formulation is valid);

3. the new λ(x) is better than the old one (produces smaller probability of error).

Let λ(x) = ∑
dv
i=2 λix

i−1 denote the current left degree distribution and and let λ
′
(x) =

∑
dv
i=2 λ

′
ix
i−1 denote the updated (hopefully improved) left degree distribution.

Initially, we choose λ(x) = xdv−1, to make the initial rate low.

Let e` denote the probability of error (i.e. probability of being negative) of the input

message to check nodes at the `-th iteration when λ(x) is used, i.e.,

e` =
dv

∑
i=2

λie`,i, 5.29

5.1 DENSITY EVOLUTION FOR LDPC CODES 73

where e`,i is the probability of error of the output message of the degree-i variable node at

the `-th iteration. Similarly, we define e
′
` as the probability of error of the input message

to check nodes at the `-th iteration when λ(x) is used up to (`− 1)-th iteration and λ
′
(x)

is used at the `-th iteration. Note that e
′
` is linear in λi’s, i = 2,⋯, dv.

We use the following for the constraint 2 above:

∣e
′
` − e`∣ ≤ max[0, δ(e(`−1) − e`)], 1 ≤ ` ≤m 5.30

where δ ≪ 1 is a small positive number and m is the maximum number of iterations. Note

that this constraint is linear in λ
′
i’s. The “max” operation is not needed if the density

evolution for the belief-propagation algorithm is perfect. However, since the probability of

error can increase for the discrete density evolution, we need to make sure that the right

hand side of the aforementioned inequality is non-negative.

The following is the constraint 3 above:

e
′
` ≤ e(`−1), 1 ≤ ` ≤m. 5.31

Notice that all constraints here and the objective function (rate) are linear in λ
′
i’s, 2 ≤ i ≤ dv.

We first fix ρ(x), then choose the initial λ(x). We run the above linear program several

times until it converges. If the resulting rate is not equal to the desired rate, then we

change ρ(x) and we repeat the steps. Sometimes, we need to try several different initial

λ(x)’s for better results. We use concentrated ρ(x)’s only, ρ(x) = (1−ρ)xj−1+ρxj for some

integer j ≥ 2. This restriction not only makes it easier to optimize ρ(x), especially for large

maximum variable degrees, but also is not too restrictive since codes optimized in this way

are almost as good as codes with both degree distributions optimized. The average check

degree ρav is used to parametrize ρ(x) where ρav = (1 − ρ)(j − 1) = j − 1 + ρ.

Some very good half-rate codes are illustrated in Table 8.4 in [3]. For instance, a very good

degree distribution pair with ρav = 17,which is 0.00495dB of the Shannon limit for n = 1e7,

is:

λ(x) = 0.105332x + 0.103764x2 + 0.035237x5 + 0.100941x6 + 0.029112x14

+0.099561x19 + 0.084268x49 + 0.034889x69 + 0.088540x149 + 0.027687x249

+0.059494x399 + 0.097641x899 + 0.0709282999 + 0.062606x3999

since j − 1 + ρ = 17→ ρ(x) = x17.

74 CHAPTER 5. ANALYSIS & DESIGN OF LDPC CODES

For the following simulation we used 1200 decoding iterations and block-length 106.

0.2 0.25 0.3 0.35 0.4 0.45 0.5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/N0 (dB)

B
it

E
rr

or
 R

at
e

Optimized Irregular, n=1e6
DE threshold
Shannon limit

Figure 5.2: Bit Error Rate of an optimized irregular LDPC code.

5.2 Gaussian Approximation

In [5], it has been shown that starting with a symmetric pdf, i.e., a pdf f(x) that satisfies

f(x) = exf(−x), and using belief-propagation decoding, the pdf of LLR messages in the

decoder remains symmetric.

A Gaussian pdf with mean µ and variance σ2 is symmetric if, and only if, σ2 = 2µ [12].

As a result, a symmetric Gaussian density can be expressed by a single parameter. Inter-

estingly, the density of LLR intrinsic messages for a Gaussian channel is symmetric, and

hence, under belief-propagation decoding, remains symmetric.

As stated earlier, Density Evolution is an algorithm for computing the capacity of LDPC

codes under message-passing decoding. For memoryless binary-input continuous-output

additive white Gaussian noise channels and sum-product decoders, the authors in [12] use

a Gaussian approximation for message densities under Density Evolution to simplify the

analysis of the decoding algorithm. Therefore, the infinite-dimensional problem of itera-

tively tracking message densities, which is needed to find the exact threshold, is reduced to

a 1-D problem of updating means of symmetric Gaussian densities. This simplification

not only allows to calculate the threshold quickly and to understand the behaviour of the

5.2 GAUSSIAN APPROXIMATION 75

decoder better, but also makes it easier to design good irregular LDPC codes for AWGN

channels. Finally, Gaussian approximation is based on approximating message densities

as Gaussians for regular LDPC codes and as Gaussian mixtures for irregular LDPC codes.

We remind that the prerequisites for this analysis are:

1. The Tanner graph of the LDPC codes is cycle-free;

2. The all-one codeword is transmitted;

3. During each iteration, due to 1, the messages are independent and identically dis-

tributed and, more specifically, they follow the symmetric Gaussian distribution.

5.2.1 Gaussian Approximation for Regular LDPC codes

At first, we assume regular (dv, dc) LDPC codes and remind the BP rules.

At variable nodes:

v =
dv−1

∑
i=0

ui, 5.32

where v is a message in LLR form from a variable node to a check node and {ui}
dv−1
i=0 are

the incoming LLRs from the neighbours of the variable node except the check node that

gets the message v. u0 is the observed (channel) LLR of the output bit associated with

the variable node. The LLR message u0 from the channel is Gaussian with mean 2
σ2
n

and

variance 4
σ2
n
, where σ2

n is the variance of the channel noise. Thus, if all {ui, i ≥ 1} [which

are i.i.d] are Gaussian in 5.32, then the resulting sum is also Gaussian because it is the

sum of independent Gaussian random variables.

At check nodes:

tanh (
u

2
) =

dc−1

∏
j=1

tanh (
vj
2
), 5.33

where {vj}
dc−1
j=1 are the incoming LLRs from dc −1 neighbours of a check node, and u is the

message sent to the remaining neighbour.

Assuming symmetric Gaussian distributions, that is, v ∼ N(µv,2µv) and u ∼ N(mu,2µu),

and independent messages, during the `-th BP round (variable-to-check and, back, check-

to-variable) so for a degree-dv variable node we obtain

µ
(`)
v = µu0 + (dv − 1)µ

(`−1)
u , 5.34

76 CHAPTER 5. ANALYSIS & DESIGN OF LDPC CODES

where µu0 is the mean of u0 and ` denotes the `-th round. We omit the index i because,

as explained earlier, the ui’s are i.i.d. for 1 ≤ i ≤ dv and have the same mean µu. Note that

µ(0) = 0 since the initial message from any check node is 0.

The update mean µ
(`)
u at the `-th round can be calculated by taking expectations on each

side of 5.33, i.e.,

E[tanh (
u(`)

2
)] =

⎧⎪⎪
⎨
⎪⎪⎩

E[tanh (
v(`)

2
)]

⎫⎪⎪
⎬
⎪⎪⎭

dc−1

, 5.35

where we have omitted the index j and simplified the product because the vj’s are i.i.d.

One complete round begins at variable nodes and then ends at the check nodes. Note that

the expectation E[tanh u
2] depends only on the mean µu of u, since u is Gaussian with

mean µu and variance 2µu; i.e.,

E[tanh
u

2
] =

1
√

4πµu
∫
R

tanh (
u

2
) ⋅ e−

(u−µu)2
4µu du. 5.36

We define the following function φ(x) for x ∈ [0,+∞), which will be useful and convenient

for further analysis.

Definition 5.2. ([12], Definition 1).

φ(x) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 − 1√
4πx ∫R

tanh (u2) ⋅ e
− (u−x)

2

4x du, if x > 0;

1, if x = 0.
5.37

It is easy to check that φ(x) is continuous and monotonically decreasing on [0,+∞), with

φ(0) = 1 and φ(∞) = 0. ◇

For practical purposes the following approximation for φ(x) is commonly used

φ̂(x) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

e−0.4527x0.86+0.0218, if x < 10;
√

π
x(1 − 20

7x), if x ≥ 10.

The first part of φ̂(x) (x < 10) is easily invertible. The second one, is a fairly well-behaved

function and can be inverted using a lookup table.

Is is easy to see that, if u ∼ N(µu,2µu), then

E[tanh
u

2
] = 1 − φ(µu). 5.38

5.2 GAUSSIAN APPROXIMATION 77

Substituting the aforementioned equation in 5.35 we have

1 − φ(µ
(`)
u) = [1 − φ(µ

(`)
v)]

dc−1

5.34
= [1 − φ(µu0 + (dv − 1)µ

(`−1)
u)]

dc−1

. 5.39

Thus, the update rule for µ`u becomes

µ`u = φ
−1
⎛

⎝
1 − [1 − φ(µu0 + (dv − 1)µ

(`−1)
u)]

dc−1⎞

⎠
5.40

with µ
(0)
u = 0.

We will now illustrate Density Evolution together with Gaussian approximation for the

(3,6) LDPC ensemble over the BI-AWGN channel. The threshold for this ensemble has

been found to be σ∗ = 0.8747. We will present the message densities after a certain number

of iterations and we will set firstly the noise variance equal to σ = 0.8511 < σ∗ and secondly

σ = 0.9411 > σ∗.

Variable-to-check message densities:

−10 0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

Initial pdf, regular, n=2000

Density Evolution

assuming N~(m,2m)

(a) Initial LLR distribution

−20 −10 0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

 n=2000, variable2check iter No1

LLR magnitude

Density Evolution
assuming N~(m,2m)

(b) Iteration 1

78 CHAPTER 5. ANALYSIS & DESIGN OF LDPC CODES

−20 −10 0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

 n=2000, variable2check iter No3

LLR magnitude

Density Evolution
assuming N~(m,2m)

(c) Iteration 3

−20 −10 0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

 n=2000, variable2check iter No5

LLR magnitude

Density Evolution
assuming N~(m,2m)

(d) Iteration 5

−20 −10 0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

 n=2000, variable2check iter No8

LLR magnitude

Density Evolution
assuming N~(m,2m)

(e) Iteration 8

−20 −10 0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

 n=2000, variable2check iter No15

LLR magnitude

Density Evolution
assuming N~(m,2m)

(f) Iteration 15

5.2 GAUSSIAN APPROXIMATION 79

−20 −10 0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

 n=2000, variable2check iter No28

LLR magnitude

Density Evolution
assuming N~(m,2m)

(g) Iteration 28

Figure 5.3: Density Evolution and Gaussian approximation for the BI-AWGN channel for

σ < σ∗.

Check-to-variable messages densities:

−4 −3 −2 −1 0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

 n=2000, check2variable iter No1

LLR magnitude

Density Evolution
assuming N~(m,2m)

(a) Iteration 1

−4 −3 −2 −1 0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

 n=2000, check2variable iter No3

LLR magnitude

Density Evolution
assuming N~(m,2m)

(b) Iteration 3

80 CHAPTER 5. ANALYSIS & DESIGN OF LDPC CODES

−4 −3 −2 −1 0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

 n=2000, check2variable iter No5

LLR magnitude

Density Evolution
assuming N~(m,2m)

(c) Iteration 5

−4 −3 −2 −1 0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

 n=2000, check2variable iter No8

LLR magnitude

Density Evolution
assuming N~(m,2m)

(d) Iteration 8

−4 −3 −2 −1 0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

 n=2000, check2variable iter No15

LLR magnitude

Density Evolution
assuming N~(m,2m)

(e) Iteration 15

−4 −3 −2 −1 0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

 n=2000, check2variable iter No8

LLR magnitude

Density Evolution
assuming N~(m,2m)

(f) Iteration 28

Now will present the message densities for σ > σ∗. We will observe that the densities

start moving to the right, but return to a fixed point after a certain number of iterations,

leading to a non-zero probability of error. In this case, even after infinite number of

iterations, the message density will not tend to a point mass at +∞.

5.2 GAUSSIAN APPROXIMATION 81

Variable-to-check message densities:

−10 0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

Initial pdf, regular, n=2000

Density Evolution

assuming N~(m,2m)

(g) Initial LLR distribution

−20 −10 0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

 n=2000, variable2check iter No1

LLR magnitude

Density Evolution
assuming N~(m,2m)

(h) Iteration 1

−20 −10 0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

 n=2000, variable2check iter No3

LLR magnitude

Density Evolution
assuming N~(m,2m)

(i) Iteration 3

−20 −10 0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

 n=2000, variable2check iter No5

LLR magnitude

Density Evolution
assuming N~(m,2m)

(j) Iteration 5

82 CHAPTER 5. ANALYSIS & DESIGN OF LDPC CODES

−20 −10 0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

 n=2000, variable2check iter No10

LLR magnitude

Density Evolution
assuming N~(m,2m)

(k) Iteration 10

−20 −10 0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

 n=2000, variable2check iter No50

LLR magnitude

Density Evolution
assuming N~(m,2m)

(l) Iteration 50

−20 −10 0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

 n=2000, variable2check iter No80

LLR magnitude

Density Evolution
assuming N~(m,2m)

(m) Iteration 80

Figure 5.4: Density Evolution and Gaussian approximation for the BI-AWGN channel for

σ > σ∗.

Check-to-variable messages densities:

5.2 GAUSSIAN APPROXIMATION 83

−4 −3 −2 −1 0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

 n=2000, check2variable iter No1

LLR magnitude

Density Evolution
assuming N~(m,2m)

(a) Iteration 1

−4 −3 −2 −1 0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

 n=2000, check2variable iter No3

LLR magnitude

Density Evolution
assuming N~(m,2m)

(b) Iteration 3

−4 −3 −2 −1 0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

 n=2000, check2variable iter No5

LLR magnitude

Density Evolution
assuming N~(m,2m)

(c) Iteration 5

−4 −3 −2 −1 0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

 n=2000, check2variable iter No10

LLR magnitude

Density Evolution
assuming N~(m,2m)

(d) Iteration 10

−4 −3 −2 −1 0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

 n=2000, check2variable iter No50

LLR magnitude

Density Evolution
assuming N~(m,2m)

(e) Iteration 50

−4 −3 −2 −1 0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

 n=2000, check2variable iter No80

LLR magnitude

Density Evolution
assuming N~(m,2m)

(f) Iteration 80

84 CHAPTER 5. ANALYSIS & DESIGN OF LDPC CODES

5.2.2 Gaussian Approximation for Irregular LDPC codes

We again consider an ensemble of random codes with degree distributions λ(x) = ∑
dv
i=2 λix

i−1

and ρ(x) = xdc−1. We assume that u
(`)
i ’s are i.i.d. symmetric Gaussian. Then, the message

leaving a variable node of degree i is symmetric Gaussian with mean

µ
(`)
v,i = µu0 + (i − 1)µ

(`−1)
u , 5.41

where µu0 is the mean u0 and µ
(`−1)
u is the mean of u at the (`−1)-th iteration, where u is a

Gaussian mixture in general (when ρ(x) is not concentrated in one degree [3, p.168]). The

variance of the output density is given by 2µ
(`)
v,i . Therefore, at the `-th iteration, using the

total probability theorem an incoming message v to a check node will have the following

Gaussian mixture density:

fv(`)(x) =
dv

∑
i=2

λiN(x,µ
(`)
v,i ,2µ

(`)
v,i), 5.42

where µ
(`)
v,i is the mean of the Gaussian output from a degree-i variable node. Using the

previous equation we get:

E{ tanh
v(`)

2
} = ∫

R

tanh (
x

2
)fv(`)(x) dx

= ∫
R

tanh (
x

2
)(

dv

∑
i=2

λiN(x,µ
(`)
v,i ,2µ

(`)
v,i)) dx

=
dv

∑
i=2

λi∫
R

tanh (
x

2
)N(x,µ

(`)
v,i ,2µ

(`)
v,i) dx

=
dv

∑
i=2

λi(1 − φ(µ
(`)
v,i))

= 1 −
dv

∑
i=2

λiφ(µ
(`)
v,i). 5.43

Thus, for the message u(`) that leaves a check node of degree j, we have

E[tanh (
u
(`)
j

2
)] =

⎧⎪⎪
⎨
⎪⎪⎩

E[tanh (
v(`)

2
)]

⎫⎪⎪
⎬
⎪⎪⎭

j−1

⇒ (1 − φ(µ
(`)
uj)) = (1 −

dv

∑
i=2

λiφ(µ
(`)
v,i))

j−1

⇒ µ
(`)
uj = φ−1

⎛

⎝
1 − (1 −

dv

∑
i=2

λiφ(µ
(`)
v,i))

j−1
⎞

⎠
, 5.44

5.2 GAUSSIAN APPROXIMATION 85

and the mean of u(`) is given by

µ
(`)
u =

dc

∑
j=2

ρjµ
(`)
uj

=
dc

∑
j=2

ρjφ
−1
⎛

⎝
1 − (1 −

dv

∑
i=2

λiφ(µ
(`)
v,i))

j−1
⎞

⎠

=
dc

∑
j=2

ρjφ
−1
⎛

⎝
1 − (1 −

dv

∑
i=2

λiφ(µu0 + (i − 1)µ
(`−1)
u))

j−1
⎞

⎠
. 5.45

Unfortunately, the aforementioned relation is not useful for code design because it is not

linear in the λi. However, we can derive an analogous expression [12] linear in the λi.

We define for 0 < s < ∞, 0 < r ≤ 1 and concentrated ρ(x),

hi(s, r) = φ(s + (i − 1)φ−1(1 − (1 − r)dc−1));

h(s, r) =
dv

∑
i=2

λihi(s, r). 5.46

Let us prove it. Let us assume concentrated ρ(x) = xdc−1 and v(`−1) ∼ N(µ
(`−1)
v ,2µ

(`−1)
v).

Then, at check nodes, we have messages with mean µ
(`)
u that can be computed as follows:

1 − φ(µ
(`)
u) = (1 − φ(µ

(`−1)
v))

dc−1

µ
(`)
u = φ−1(1 − (1 − φ(µ

(`−1)
v))

dc−1

). 5.47

Then, for a degree-i variable node, we obtain that v
(`)
i is symmetric Gaussian with mean

µ
(`)
v,i = µ

(0)
u + (i − 1)µ

(`−1)
u . 5.48

Thus, v(`) is Gaussian mixture of the form

∑
i≥2

λiN(µ
(`)
v,i ,2µ

(`)
v,i).

From 5.43, we have

E{ tanh
v(`)

2
} = 1 −

dv

∑
i=2

λiφ(µ
(`)
v,i)

= 1 −
dv

∑
i=2

λiφ(µ
(0)
u + (i − 1)µ

(`)
u)

5.47
= 1 −

dv

∑
i=2

λiφ
⎛

⎝
µ
(0)
u + (i − 1)φ−1(1 − (1 − φ(µ

(`−1)
v))

dc−1

)
⎞

⎠
. 5.49

86 CHAPTER 5. ANALYSIS & DESIGN OF LDPC CODES

In addition, the aforementioned relation can be written as

1 − φ(µ
(`)
v) = 1 −

dv

∑
i=2

λiφ
⎛

⎝
µ
(0)
u + (i − 1)φ−1(1 − (1 − φ(µ

(`−1)
v))

dc−1

)
⎞

⎠

↔ φ(µ
(`)
v) =

dv

∑
i=2

λiφ
⎛

⎝
µ
(0)
u + (i − 1)φ−1(1 − (1 − φ(µ

(`−1)
v))

dc−1

)
⎞

⎠
. 5.50

Hence, if we define r` ≜ φ(µ
(`)
v), we obtain

r` =
dv

∑
i=2

λiφ
⎛

⎝
µ
(0)
u + (i − 1)φ−1(1 − (1 − r`−1)

dc−1

)
⎞

⎠
. 5.51

Then,

r` = h(s, r`−1), 5.52

with s = µ
(0)
u . The initial value of r0 is φ(s). ∎

The convergence condition is satisfied if r > h(s, r), ∀r ∈ (0, φ(s)) [12]. We can design an

LDPC code by solving the following continuous optimization problem.

max
vmax

∑
i=2

λi
i

subject to r > h(s, r), ∀ ∈ (0, φ(s))
vmax

∑
i=2

λi = 1, λi ≥ 0, for i = 2,⋯,vmax.

5.53

Approximate solutions can be obtained by discretization of parameter r ∈ [0, φ(s)).

Definition 5.3. ([3, p.169]). The threshold s∗ is the infimum of all s in R+ such that

r`(s) converges to ∞ as `→∞. ◇

Therefore, the threshold in terms of noise variance is equal to 2
s∗ . Since φ(x) is mono-

tonically decreasing on 0 ≤ x < ∞, we conclude that h(s, r) is monotonically increasing on

both 0 < s < ∞ and 0 ≤ r < 1. By induction, we conclude that for all s > s∗, r`(s) > r`(s∗)

and r`(s) will converge to ∞.

5.2 GAUSSIAN APPROXIMATION 87

In the case where ρ(x) = ∑
dc
j=2 ρjx

j−1 it can be proved [12] that

r` =
dv

∑
i=2

λiφ
⎛

⎝
µ
(0)
u + (i − 1)

dc

∑
j=2

ρjφ
−1(1 − (1 − r`−1)

dc−1

)
⎞

⎠
. 5.54

As for the regular case, we illustrate Density Evolution together with Gaussian Approxi-

mation for an irregular LDPC ensemble with degree distributions

λ(x) = 0.153425x + 0.147526x2 + 0.041539x5 + 0.147551x6 + 0.047938x17 + 0.119555x18

+ 0.036379x54 + 0.126714x55 + 0.179373x199.

ρ(x) = 0.5x11 + 0.5x13.

For this ensemble, the threshold in terms of noise variance, is σ∗ = 0.97704. In our simula-

tion, we used σ = 0.9441 < σ∗. We omit the case for σ > σ∗ since as in the regular case, we

will observe that the densities start moving to the right, but return to a fixed point after

a certain number of iterations, leading to a non-zero probability of error.

Variable-to-check message densities:

−20 −10 0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

Initial pdf−irregular−n=20000

experimentally
assuming N~(m,2m)

(g) Initial LLR distribution

−20 −10 0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

 variable2check iter No1

experimentally
assuming N~(m,2m)
GMM prediction

(h) Iteration 1

88 CHAPTER 5. ANALYSIS & DESIGN OF LDPC CODES

−20 −10 0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

 variable2check iter No3

experimentally
assuming N~(m,2m)
GMM prediction

(i) Iteration 3

−20 −10 0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

 variable2check iter No5

experimentally
assuming N~(m,2m)
GMM prediction

(j) Iteration 5

−20 −10 0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

 variable2check iter No8

experimentally
assuming N~(m,2m)
GMM prediction

(k) Iteration 8

−20 −10 0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

 variable2check iter No15

experimentally
assuming N~(m,2m)
GMM prediction

(l) Iteration 15

−20 −10 0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

 variable2check iter No25

experimentally
assuming N~(m,2m)
GMM prediction

(m) Iteration 25

−20 −10 0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

 variable2check iter No35

experimentally
assuming N~(m,2m)
GMM prediction

(n) Iteration 35

5.2 GAUSSIAN APPROXIMATION 89

−20 −10 0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

 variable2check iter No50

experimentally
assuming N~(m,2m)
GMM prediction

(o) Iteration 50

Figure 5.5: Density Evolution and Gaussian approximation for the BI-AWGN channel for

irregular codes with σ < σ∗.

Check-to-variable message densities:

−4 −3 −2 −1 0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

 check2variable iter No1

experimentally
assuming N~(m,2m)

(a) Iteration 1

−4 −3 −2 −1 0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

 check2variable iter No3

experimentally
assuming N~(m,2m)

(b) Iteration 3

90 CHAPTER 5. ANALYSIS & DESIGN OF LDPC CODES

−4 −3 −2 −1 0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

 check2variable iter No5

experimentally
assuming N~(m,2m)

(c) Iteration 5

−4 −3 −2 −1 0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

 check2variable iter No8

experimentally
assuming N~(m,2m)

(d) Iteration 8

−4 −3 −2 −1 0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

 check2variable iter No15

experimentally
assuming N~(m,2m)

(e) Iteration 15

−4 −3 −2 −1 0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

 check2variable iter No25

experimentally
assuming N~(m,2m)

(f) Iteration 25

−4 −3 −2 −1 0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

 check2variable iter No35

experimentally
assuming N~(m,2m)

(g) Iteration 35

−4 −3 −2 −1 0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

 check2variable iter No50

experimentally
assuming N~(m,2m)

(h) Iteration 50

5.2 GAUSSIAN APPROXIMATION 91

From the previous figures for irregular codes we can observe that Gaussian approxima-

tion is not accurate. This seems to suggest that, as the maximum variable degree of the

code increases, the Gaussian approximation becomes less accurate because the irregularity

of the code increases, even though the fraction of high-degree variable nodes increases.

Hence, we restrict the maximum variable degree to 10 in order to restrict the Gaussian

mixture density. Then, it can be inferred that restricting the variable node degree not

greater than 10, we limit the range of design rate of the codes between [0.5,0.9] [12]. For

small variable degrees the Gaussian approximation works reasonably well and provides

thresholds very close to the corresponding thresholds provided from Density Evolution.

92 CHAPTER 5. ANALYSIS & DESIGN OF LDPC CODES

Chapter 6
Relay Channel

6.1 Introduction

The relay channel was first introduced in 1971 by van der Meulen [18] and further studied

in 1979 by Cover and El Gamal [19]. The classic work of Cover and El Gamal describes

two basic strategies for the relay channel: a Decode-and-Dorward (DF) strategy in which

the relay completely decodes the transmitted message and partially forwards the decoded

message using a binning technique to allow the complete resolution of the message at the

destination, and a more complex compress-and-forward strategy in which the relay does

not need to decode the source message. The capacity of the general relay channel is still

not known, however, Decode-and-Forward outperforms any other scheme proposed so far

when the source-relay channel is strong.

Figure 6.1: Relay Channel from an information theoretic view.

93

94 CHAPTER 6. RELAY CHANNEL

In the sequel, we focus on practical implementation of the DF strategy for half-duplex

relay channel. We restrict our attention to Gaussian relay channels at low signal-to-noise

ratios (SNRs) for which binary linear block codes are suitable. We show that, within

a linear coding framework, the binning strategy in which a bin index of the codeword

is transmitted by the relay to the destination can be interpreted as a parity-forwarding

scheme [7]. Conventional LDPC codes are not suitable since we need to design an LDPC

code working at two different channel SNRs: a higher SNR at the relay and a lower SNR

at the destination. This represents a novel embedded LDPC code construction named

Bilayer LDPC codes. In addition, two new ensembles of LDPC codes, bilayer-expurgated

codes and bilayer-lengthened LDPC codes, are proposed to simultaneously approach the

capacities of two Gaussian channels at two different SNRs.

The code design problem for optimal DF strategy involves the construction of two codes:

X1 of rate R1 and X̃ of rate R. While the relay’s codebook X1 can be constructed as a

conventional error-correcting code that guarantees successful decoding at the destination,

the source’s codebook X̃ must be constructed so that it can be decoded at both the relay

and the destination.

The SNR at which the source-relay code must work is denoted by SNR+ and the SNR

at which the source-destination code must work is denoted by SNR−. All channels are

assumed to be Gaussian, hence, for Gaussian inputs, the capacities of the source-relay link

and the source-destination link are

R+ =
1

2
log(1 + SNR+) 6.1

R− =
1

2
log(1 + SNR−) 6.2

respectively. The overall DF rate in terms of R+ and R− becomes

R = min{R+,R1 +R−}. 6.3

Throughout this chapter we assume that the source-relay link is reliable, and, the extra

parity bits generated by the relay are given to the destination “in hand” (i.e. without using

a different codebook).

6.2 BILAYER EXPURGATED LDPC CODES 95

6.2 Bilayer Expurgated LDPC Codes

Let C be a linear (n,n − k1) LDPC code of rate (n−k1)
n . The codebook X̃ should be a

capacity-approaching code for the source-relay channel at SNR+ with a rate R+. Let k2

be the number of extra parity bits on the source codeword x, generated by the relay and

forwarded to the destination. Then, a sub-code of C which satisfies two sets of parities:

k1 zero parities enforced by the source’s codebook and k2 presumably non-zero parity bits

provided by the relay, should form an (n,n − (k1 + k2)) capacity approaching code for

decoding at the destination, i.e., at SNR− with a rate R−. Note that the performance of

a practical bilayer code is characterized by two gaps to the capacities at SNR+ and at

SNR−.

The decoding of the sub-code of C with the extra k2 presumably non-zero parity bits can

be performed in the same way as the decoding of a conventional LDPC code. A graphical

representation follows.

Figure 6.2: Parity-forwarding scheme for the relay channel.

To be more clear:

1. For the source-relay link, x ∈ C, with parity-check matrix H such that Hx = 0.

2. rate(C)≤ rate(source → relay). Hence, relay decodes x.

3. rate(C)> rate(source → destination). Hence, destination cannot decode x.

4. The parity-check matrix of Cbilayer denoted by Hbilayer is given by

Hbilayer =

⎡
⎢
⎢
⎢
⎢
⎣

H

H1

⎤
⎥
⎥
⎥
⎥
⎦

,

96 CHAPTER 6. RELAY CHANNEL

where H1 is the upper layer of the bilayer graph. In the general case

Hbilayer ⋅ x =

⎡
⎢
⎢
⎢
⎢
⎣

0

p

⎤
⎥
⎥
⎥
⎥
⎦

,

and p can be computed as H1x̂R.

5. Finally, rate(Cbilayer)≤ rate(source → destination) and, therefore, destination decodes

x using Hbilayer and parity vector p sent by the relay.

The proposed LDPC code structure is shown in Fig. 6.3. We call the proposed code

structure bilayer-expurgated LDPC code [7], as the overall graph represents an expurgated

sub-code of the lower layer code. The first (lower) layer corresponds to an (n,n− k1) code

and the second (upper) layer consists of the k2 extra parity bits which modify the first

layer in a way that the resulting (n,n−(k1+k2)) sub-code represented by the overall graph

is suitable for the source-destination channel.

. . .

. . .

. . .

k1

k2

d
c

d’
c

j

i

C1 C2 C
k1

C’1 C’
k2

V1 V2 V
n

Figure 6.3: The bilayer expurgated code. The lower sub-graph represents an LDPC code

for source-relay channel. The overall graph represents an LDPC code for the destination.

Bilayer-Expurgated LDPC Code Ensemble

An ensemble of bilayer-expurgated LDPC codes is defined as follows. The bilayer graph

of the code, consists of three sets of nodes and two sets of edges. The three sets of nodes

6.2 BILAYER EXPURGATED LDPC CODES 97

correspond to one set of variable nodes and two sets of check nodes: the lower check nodes,

corresponding to the check nodes in the lower sub-graph of Fig. 6.3, and the upper check

nodes, corresponding to the check nodes in the upper sub-graph in Fig. 6.3. Edges are

grouped in two sets: those connecting the variable nodes to the lower check nodes, and

those connecting the variable nodes to the upper check nodes. We call an edge a lower

edge if it connects a variable to a lower check node. Similarly, an upper edge denotes an

edge belonging to the upper sub-graph in Fig. 6.3.

The lower degree of a variable node is defined as the number of lower edges connected

to it. Likewise, the upper degree of a variable node is defined as the number of upper

edges connected to it. Notice that the minimum lower variable degree is 2, since, the lower

sub-graph should be a valid LDPC code for the source-relay channel. The minimum upper

variable degree is 0, since the bilayer graph is simply the vertical concatenation between

the valid LDPC code for the source-relay and the upper layer. Hence, some variable nodes

may not participate in any of the k2 extra parity checks generated by the relay. A variable

node is said to have degree (i, j) if it has a lower degree i and an upper degree j. Similarly,

an edge is of degree (i, j) if it is connected to a degree (i, j) variable node.

We assume regular check degrees for both lower and upper check nodes. The lower check

degree is denoted by dc and the upper check degree is denoted by d
′
c. The ensemble of

bilayer LDPC codes can be characterised by a variable degree distribution

λi,j, i ≥ 2, j ≥ 0 with ∑
i≥2,j≥0

λi,j = 1,

which defines the percentage of edges with lower degree i and upper degree j and a pa-

rameter 0 < η = dc⋅k1
dck1+d′ck2

< 1 which defines the percentage of lower edges in the bilayer

graph.

Bilayer Density Evolution

Because the ensemble of bilayer-expurgated LDPC codes is different from a conventional

LDPC code ensemble, conventional density evolution cannot be applied. This gives rise to

bilayer density evolution [7]. The evolution of two densities should be tracked: the lower

density corresponding to the density of messages in the lower sub-graph, and the upper

density corresponding to the density of the messages in the upper sub-graph.

Let p` and q` denote the message probability density functions (pdf) at the input of the

lower and upper check nodes at `-th decoding iteration. Let p
′` and q

′` denote the evolved

98 CHAPTER 6. RELAY CHANNEL

versions of p` and q` after the check updates1. Then, the density-evolution update at a

degree (i, j) variable node can be computed as follows:

p
(`+1)
i,j = (⊗i−1p

′`) ⊗ (⊗jq
′`) ⊗ pc, i ≥ 2, j ≥ 0 6.4

q
(`+1)
i,j = (⊗ip

′`) ⊗ (⊗j−1q
′`) ⊗ pc, i ≥ 2, j ≥ 0 6.5

where pc denotes the density of the log-likelihood ratio received from the channel, and ⊗i

denotes convolution of order i.

Averaging over λi,j, the input message densities to the lower and upper check nodes at the

(` + 1)-th iteration are computed as follows:

p(`+1) = ∑
i≥2,j≥0

i

i + j
λi,jp

(`+1)
i,j , 6.6

q(`+1) = ∑
i≥2,j≥0

j

i + j
λi,jq

(`+1)
i,j , 6.7

where i
i+j is the probability that a degree (i, j) edge is a lower edge and j

i+j is the probability

that a degree (i, j) edge is an upper edge.

The lower-graph degree (i, j) error profile function e1
i,j(p

`, q`) is defined as the message

error probability corresponding to the density p
(`+1)
i,j after one density evolution iteration

with input message densities p` and q`. The aforementioned error probability can be

computed using [1, equation (4.54), p.201]. Likewise, e2
i,j(p

`, q`) is defined as the message

error probability corresponding to the density q
(`+1)
i,j after one density evolution iteration

with input message densities p` and q`. Hence, the overall message error probability at

(` + 1)-th decoding iteration e(p(`+1), q(`+1)) can be computed as:

e(p(`+1), q(`+1)) = ∑
i≥2,j≥0

λi,j(
i

i + j
e1
i,j(p

`, q`) +
j

i + j
e2
i,j(p

`, q`)) 6.8

Bilayer-Expurgated LDPC Code Optimization

The design of a bilayer-expurgated LDPC code involves finding a variable degree distri-

bution λi,j, i ≥ 2, j ≥ 0, a parameter η, and a pair of check degree dc and d
′
c such that

the lower sub-graph represents a capacity-approaching LDPC code over the source-relay

channel at SNR+, and the overall bilayer code is capacity approaching at SNR− < SNR+.

The design approach is to fix the lower graph code to be an optimal capacity-approaching

1p
′` and q

′` can be computed using the conventional density evolution check node rule described in [6].

6.2 BILAYER EXPURGATED LDPC CODES 99

LDPC code at SNR+ and search for a variable degree distribution λi,j that is consistent

with the lower graph code and is capacity-approaching at SNR−.

By fixing the lower graph, i.e., fixing n, k1 and the lower variable degree distribution λi,

the rate of the bilayer code, defined by 1 − (k1+k2)n can be maximized by minimizing k2 or

equivalently maximizing η. The lower degree distribution λi is related to λi,j as follows:

λi = ∑
j≥0

i

i + j
λi,j. 6.9

For fixed λi, the aforementioned equation can be written as

∑
j≥0

i

i + j
λi,j − ηλi = 0. 6.10

Hence, the linear program can be written as:

max
λi,η,j

η

subject to ∑
j≥0

i

i + j
λi,j − ηλi = 0, i ≥ 2,

∑
i≥2,j≥0

λi,j(
i

i + j
e1
i,j(p

`, q`) +
j

i + j
e2
i,j(p

`, q`)) < µhe(p`, q`), ` = 1,⋯, L

∑
i≥2,j≥0

λi,j = 1

where h is the optimization iteration number and ` is the decoding iteration number.

To initialize the above iterative optimization, i.e., to find a good initialisation degree dis-

tribution, we solve the following linear programming problem:

min
λi,η,j

η

subject to ∑
i≥2,j≥0

λi,j = 1

∑
j≥0

i

i + j
λi,j − ηλi = 0, i ≥ 2

which will result in an initial code with maximum number of parity checks k2, which

ensures quick decoding convergence. We mention that when the gap between SNR+ and

SNR− is small, the difference between the optimal dc and d
′
c is likely to be small, and the

aforementioned scheme works well. For the case where the gap is large, we introduce in

the following subsection the bilayer-lengthened LDPC codes.

Finally, we present a simulation under all-zero codeword assumption, using λi,j degree

100 CHAPTER 6. RELAY CHANNEL

distribution of code A illustrated in Table I in [7]. Note that since we assumed that the

relay decodes reliably and that we send the all-zero codeword, it follows that all parity

bits and therefore the extra k2 parity bits must be 0.

1.6 1.8 2 2.2 2.4 2.6 2.8 3
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
it

E
rr

or
 R

at
e

n=100000

SL (Relay)
BL (destination)

(a) Bit Error Rate

1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

50

100

150

200

250

300

350

400

SNR (dB)

A
ve

ra
ge

 It
er

at
io

ns

SL (Relay)
BL (destination)

(b) Average number of iterations

Figure 6.4: Bit Error Rate of a bilayer-expurgated LDPC code. Dashed lines represent the

theoretical limits.

6.3 Bilayer Lengthened LDPC Codes

We now propose a second coding structure for DF based on code lengthening, which is

designed to address the problem of the expurgated structure for large SNR differences.

Lengthening of a linear code refers to the process of increasing the codeword length while

keeping the number of parity-check equations fixed. Fig. 6.5 depicts a bilayer-lengthened

LDPC code [7] in which the overall graph corresponds to a lengthened version of the lower

code. Designing a bilayer-lengthened code corresponds to finding an overall graph so that

the lower graph corresponds to a good LDPC code at rate R− optimized for SNR−, while

the overall bilayer graph, which can be constructed by adding extra variable nodes to

the lower graph, represents a good LDPC code at rate R+ optimized for SNR+. Being

capacity-approaching at two different rates is a core feature of this code.

The source encodes its data using the bilayer LDPC code corresponding to the overall

6.3 BILAYER LENGTHENED LDPC CODES 101

graph. Thus, each codeword satisfies all parity-check nodes present in the bilayer graph in

contrast to the expurgated scheme where the source encodes its data over the lower sub-

graph. The relay first decodes the source codeword over the bilayer graph. It then helps

the destination by sending the values of upper n2 variable nodes in the next block using

the following scheme. The relay generates a set of k2 = (1−R−)n2 extra parity bits for the

upper variable nodes, using the parity-check matrix of a separate conventional LDPC code

C2 of rate R− optimized for SNR−. The relay forwards these presumably non-zero extra

parity bits to the destination using another code of rate R1. The destination first decodes

the set of k2 extra parity bits for upper n2 variable bits provided by the relay. These k2

parity bits are used to decode the upper n2 variable nodes of the source codeword, which

are then removed from the graph, reducing the resulting code’s rate and thus allowing the

destination to decode the remaining n1 variable nodes.

. . .

. . .

. . .

n1

n2

d
c

d’c

V1 V2 V
n1V3

V
n1+1

V
n

Figure 6.5: The bilayer-lengthened code. The relay decodes the overall graph and provides

the value of upper variable nodes to the destination. The destination decodes the lower

sub-graph.

Observe that, when the destination removes the upper n2 variable nodes, the value of

the parity-check nodes in the graph must be updated. That is, consider the leftmost check

node of Fig. 6.5. Since the relay works reliably, i.e., all parity-check equations of the bilayer

graph have even-parity, it follows that V1 ⊕ V2 ⊕ V3 ⊕ Vn1+1 ⊕ Vn1+2 = 0. After removing the

upper n2 variable nodes, the aforementioned equation becomes V1⊕V2⊕V3 = Vn1+1⊕Vn1+2.

Under the aforementioned assumptions, the bilayer-lengthened construction can be done

102 CHAPTER 6. RELAY CHANNEL

using two conventional LDPC constructions which correspond to the lower graph and upper

graph and then we have to concatenate (row-wise) the two parity-check matrices in order

to construct the bilayer graph (code).

Let us define the bilayer-lengthened LDPC code ensemble. The nodes are grouped into one

set of check nodes and two sets of variable nodes: the lower variable nodes corresponding

to the lower graph and the upper variable nodes corresponding to the upper graph. The

edges are grouped into two sets: those connecting the check nodes to the lower variable

nodes, and those connecting check nodes to the upper variable nodes. As in the expurgated

case we assume regular check degrees.

The ensemble of bilayer-lengthened LDPC codes is defined by the lower variable degree

distribution λ1
i , i ≥ 2, which corresponds to the probability that a lower edge in connected to

a degree i variable node, the upper variable degree distribution λ2
i , i ≥ 2, which corresponds

to the probability that an upper edge is connected to a degree i variable node. The lower

and upper distributions λ1
i and λ2

i satisfy ∑i≥2 λ
1
i = 1, and ∑i≥2 λ

2
i = 1.

The ensemble of bilayer-lengthened LDPC codes is not equivalent to conventional LDPC

codes, because in a conventional LDPC code there is only one variable degree distribution.

This gives rise to bilayer density evolution since conventional density evolution is not valid.

Bilayer Density Evolution

It is clear that in order to predict the performance of an infinite-length bilayer-lengthened

LDPC code, we need to track the evolutions of two densities in the upper and lower sub-

graphs of the lengthened graph. Let p` and q` denote the message densities in the lower

and upper parts of the graph at the beginning of the `-th decoding iteration. Let p
′
` and

q
′
` denote the evolved versions of p` and q` after check node updates. p

′
` and q

′
` can be

computed as follows:

p
′
` = (⋆dc−1p`) ⋆ (⋆d

′
cq`) 6.11

q
′
` = (⋆dcp`) ⋆ (⋆d

′
c−1q`) 6.12

where ⋆ is the convolution operator as described in 5.15.

Let p
(`+1)
i (q

(`+1)
i) denote the output message density after a variable update at a variable

node of degree i in the lower(upper) sub-graph, with an input message density p
′`(q

′`).

6.3 BILAYER LENGTHENED LDPC CODES 103

Then we have:

p
(`+1)
i = ⊗i−1p

′` ⊗ pc, i ≥ 2 6.13

q
(`+1)
i = ⊗i−1q

′` ⊗ pc, i ≥ 2, 6.14

where pc is the channel message density.

The message densities in the lower and upper sub-graphs after the variable update rule at

the beginning of (` + 1)-th iteration, p(`+1) and q(`+1), can be computed as follows:

p(`+1) = ∑
i≥2

λ1
i p
(`+1)
i 6.15

q(`+1) = ∑
i≥2

λ2
i q
(`+1)
i . 6.16

Let e(p(`+1), q(`+1)) denote the message error probability of the message densities p(`+1)

and q(`+1) at the beginning of the (` + 1)-th decoding iteration. Let e1
i (p

`, q`) denote the

message error probability corresponding to p
(`+1)
i , which is the message density of degree-i

lower nodes after one density evolution iteration with input message densities p` and q`.

Similarly, let e2
i (p

`, q`) denote the message error probability corresponding to q
(`+1)
i , which

is the message density of degree-i upper nodes after one density evolution iteration with

input message densities p` and q`. The overall message error probability at the beginning

of the (` + 1)-th iteration, e(p(`+1), q(`+1)), can be computed [7] as

e(p(`+1), q(`+1)) = ∑
i≥2

ηλ1
i e

1
i (p

`, q`) + (1 − η)λ2
i e

2
i (p

`, q`), 6.17

where η = dc
dc+d′c

denotes the percentage of lower edges in the bilayer-lengthened graph.

Bilayer-Lengthened LDPC code optimization

The design of a bilayer-lengthened LDPC code involves finding a pair of variable degree

distributions λ1
i and λ2

i (i ≥ 2) and a pair of check degrees dc and d
′
c for the lower and

upper sub-graphs in the bilayer structure of Fig. 6.5, such that the overall graph is a

capacity-approaching LDPC code for a Gaussian channel at SNR+ while the lower graph

is a capacity-approaching LDPC code at SNR−.

Similar to the previous design we fix the check degrees dc and d
′
c, we also fix the lower

variable degree distribution λ1
i to be a capacity-approaching distribution for a conventional

LDPC code optimized at SNR− (which is found independently). The design problem is

104 CHAPTER 6. RELAY CHANNEL

now reduced to finding an upper variable-degree distribution λ2
i such that the overall

lengthened graph is a capacity-approaching code at SNR+. Observe that, in contrast to

the expurgated case, the lower rate is fixed here and the higher rate code is optimized.

The rate of the bilayer graph is 1− k
n1+n2

, where k is the number of check nodes. According

to 3.14, the number of upper variable nodes n2 is given by d
′
c ⋅ k ⋅ ∑i≥2

λ2i
i . Thus, fixing

the lower graph code and d
′
c, the rate of the overall code can be maximized by maximizing

∑i≥2
λ2i
i . Fixing η, dc and d

′
c, the linear programming update for λ2

i can be formulated as

follows:

max
λ2i

∑
i≥2

λ2
i

i

subject to ∑
i≥2

ηλ1
i e

1
i (p

`, q`) + (1 − η)λ2
i e

2
i (p

`, q`)

< µhe(p`, q`), ` = 1,⋯, L

∑
i≥2

λ2
i = 1

where h denotes the optimization iteration round, and ` is the decoding iteration number.

As an initialisation, λ2
max(dv) = 1 is used. This code class covers the cases where the gap

between SNR+ and SNR− is large. Thus, expurgated and lengthened bilayer LDPC codes

are complementary code structures which cover the entire range of SNRs.

Finally, we present a simulation, under all-zero codeword assumption, using λ1
i and λ2

i

degree distributions of code F illustrated in Table II in [7].

0 0.5 1 1.5 2 2.5 3 3.5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
it

E
rr

or
 R

at
e

n=100003,n1=6.039430e+04,n2=3.960326e+04

BL(source−relay)
SL(source−destination)

(a) Bit Error Rate

0 0.5 1 1.5 2 2.5 3 3.5
50

100

150

200

250

300

350

400

SNR (dB)

A
ve

ra
ge

 It
er

at
io

ns

BL(source−relay)
SL(source−destination)

(b) Average number of iterations

Figure 6.6: Bit Error Rate of a bilayer-lengthened LDPC code. Dashed lines represent the

theoretical limits.

6.4 GAUSSIAN APPROXIMATION FOR BILAYER CODES 105

6.4 Gaussian Approximation for Bilayer Codes

Since bilayer density evolution has high computational complexity, the authors in [17]

propose a Gaussian approximation for bilayer-expurgated codes. We denote the mean of

message updates at the `-th iteration at the input of lower (upper) check nodes by µ1,`
v (µ2,`

v).

In the same fashion, we denote the mean of message updates at the output of lower (upper)

check nodes by µ1,`
u (µ2,`

u). Using the message update rule at a degree (i, j) variable node

we have

µ1,`
v,i,j = µu0 + (i − 1)µ

1,(`−1)
u,i,j + j ⋅ µ

2,(`−1)
u,i,j

µ2,`
v,i,j = µu0 + i ⋅ µ

1,(`−1)
u,i,j + (j − 1) ⋅ µ

2,(`−1)
u,i,j

where µu0 denotes the channel LLR mean. Working with the mean message updates at

the variable nodes, we can obtain as in [12, equation (14)],

µ1,`
v = φ(µu0 + (i − 1)φ−1(1 − [1 − µ

1,(`−1)
v](dc−1))

+ jφ−1(1 − [1 − µ
2,(`−1)
v]d

′
c−1))

= g(µ
1,(`−1)
v , µ

2,(`−1)
v),

µ2,`
v = φ(µu0 + (j − 1)φ−1(1 − [1 − µ

2,(`−1)
v](d

′
c−1))

+ iφ−1(1 − [1 − µ
1,(`−1)
v]dc−1))

= h(µ
1,(`−1)
v , µ

2,(`−1)
v).

The overall mean of message updates at variable nodes [12] can then be written as

µ`v = ∑
i≥2,j≥0

λi,j(
i

i + j
µ1,`

v +
j

i + j
µ2,`

v)

= ∑
i≥2,j≥0

λi,j(
i

i + j
g(µ

1,(`−1)
v , µ

2,(`−1)
v) +

j

i + j
h(µ

1,(`−1)
v , µ

2,(`−1)
v)).

We can also calculate µ`v using η as

µ`v = η ⋅ µ
1,`
v + (1 − η) ⋅ µ2,`

v .

106 CHAPTER 6. RELAY CHANNEL

According to [12], a necessary condition to obtain successful decoding is given by

∑
i≥2,j≥0

λi,j(
i

i + j
g(µ

1,(`−1)
v , µ

2,(`−1)
v) +

j

i + j
h(µ

1,(`−1)
v , µ

2,(`−1)
v))

< η ⋅ µ1,`
v + (1 − η) ⋅ µ2,`

v .

The aforementioned expression is approximately linear in λi,j and this allows for linear

optimization programming. The goal is to maximize the rate of the lower graph, that is,

max
i

∑
i≥2

λi
i

subject to ∑
i≥2

λiφ(µu0 + (i − 1)φ−1(1 − [1 − µv]
dc−1)) < µkµ

`
v,

∑
i≥2,j≥0

λi,j(
i

i + j
g(µ

1,(`−1)
v , µ

2,(`−1)
v) +

j

i + j
h(µ

1,(`−1)
v , µ

2,(`−1)
v))

< η ⋅ µ1,`
v + (1 − η) ⋅ µ2,`

v ,

λi =
1

η
∑
j≥0

i

i + j
λi,j.

Naturally, the codes designed using the Gaussian approximation perform slightly worse

than those designed using density evolution but there is a complexity trade-off.

Chapter 7
Construction of LDPC Codes

After designing a code, which in fact means finding a good degree distribution pair (λ, ρ)

for the specific channel, we have to construct a code from the optimised ensemble. It is

vital to choose a good graph or equivalently a good parity-check matrix representation

of the ensemble in order to achieve the best possible performance. Various constructions

exist, each having its pros and cons. We will present Gallager codes, the historically first

construction, the configuration model [1] which we use to construct all the codes of this

thesis, and concluding with the construction through progressive edge growth algorithm

which avoids cycles and optimize the girth of the graph to be as large as possible. In

addition, we will extend the use of configuration model to Bilayer LDPC codes which we

use to construct parity-check matrices for the relay channel.

7.1 Gallager Construction

This is the original method for constructing regular LDPC codes introduced by Gallager

in [4].

The goal is to construct a (n, j, k) parity-check matrix, where n is the number of columns,

j is the number of 1’s in each column and k is the number of ones in each row. Since, in

a Tanner graph the number of edges in each side must be the same, it follows that the

number of rows of the parity-check matrix is n⋅j
k . Hence, the rate r of the code is given by

r ≥ 1 − j
k with equality if and only if the parity-check matrix is full-rank.

107

108 CHAPTER 7. CONSTRUCTION OF LDPC CODES

In order to construct an ensemble of (n, j, k) matrices we proceed as follows:

• The matrix H is divided into j sub-matrices each of which has n
k rows. Namely,

H ≜

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

H1

⋮

Hj

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

• Let H1 denotes the first of the sub-matrices. It contains all its 1’s in descending

order. That is, the i-th row of H1 contains 1’s in columns (i − 1)k + 1 to ik.

• The other sub-matrices can be constructed by merely column permutations of H1.

To clarify the aforementioned construction procedure we illustrate the following example:

Example 7.1. Assume that n = 20, j = 3 and k = 4. Therefore, the parity-check matrix H

will be divided into 3 sub-matrices, namely

H ≜

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

H1

H2

H3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Each of the sub-matrices will have 20
4 rows. The i-th row of H1 will have 1’s in columns

(i − 1) ⋅ 4 + 1 to 4i. Consequently,

H1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

To construct H we need two random permutations of H1 say

H2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0

1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1

0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

7.2 CONFIGURATION MODEL 109

and

H3 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0

1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1

0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0

0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

By concatenating the 3 matrices we constructed H. Note that as the block length increases,

the probability that any two columns are equal or linearly dependent decreases. Thus, the

probability that the actual rate is close to the design rate increases. This construction is

rather simple, but it gives no guarantee for the rank of the resulting parity-check matrix, it

does not avoid small cycles and it can only create regular codes. Another drawback of this

method is that we can not create codes that are encodable with linear time complexity. ◇

7.2 Configuration Model

Recall that in § 3.3 we showed how to sample from an ensemble. In this section, we will

give an extra graphical representation of the construction procedure. It is crucial to trans-

form a given degree distribution pair (λ, ρ) from an edge perspective to the corresponding

degree distribution pair (L,R) from a normalized node perspective. We remind that the

coefficients Li of the latter distribution pair can be calculated as

Li =
1

∑j
λj
j

λi
i
, for i = 2, . . . , `max. 7.1

Using Li we can calculate the number of variable nodes per degree and the corresponding

number of edges, since, Li represents the probability of a variable node be of degree i.

Namely,

#variable nodes per degree i = Li ⋅ n

of edges connected to variable nodes of degree i = Li ⋅ n ⋅ degree i

where n denotes the block-length of the code and degree i the corresponding variable node

degree. After computing the aforementioned quantities we can proceed to the construction

procedure as follows:

110 CHAPTER 7. CONSTRUCTION OF LDPC CODES

• “Generate” n variable nodes and m check nodes with their sockets.

• Label the variable and check node sockets separately with the set [Λ′(1)] = {1, . . . ,∑i iΛi}.

.

.

.

.

.

.

v1

v2

v
n

C2

C1

C m

v3

C3

1

2

3

4

5
6
7

1
2
.
.
.

total_edges

total_edges

.

.

.

.

.

.

Figure 7.1: Labeled Tanner graph of a concentrated irregular LDPC code.

total edges is the last socket (edge) which is equal to the total number of edges (=

∑i iΛi).

• Pick a permutation π on [Λ′(1)] at random with uniform probability from the set of

all (∑i iΛi)! such permutations.

• Let π be a permutation on [Λ′(1)]. Connect i-th variable node edge socket with

π(i)-th check node edge socket.

• Put “1” in the appropriate position of H. That is, if i-th check node is connected to

the j-th variable node an odd number of times put 1 in (i, j) position of the parity

check matrix. Otherwise, put 0.

7.3 PROGRESSIVE EDGE GROWTH (PEG) ALGORITHM 111

.

.

.

.

.

.

v1

v2

v
n

C2

C1

C m

v3

C3

1

2

3

4

5
6
7

total_edges

.

.

.

π(1)

π(2)

π(3)

Figure 7.2: Connection procedure of a concentrated irregular LDPC code.

• The last step is to try to remove short-length cycles to boost code’s performance.

7.3 Progressive Edge Growth (PEG) Algorithm

As we have seen, the constructions containing cycles in randomly generated graphs, have a

probability which tends to 0 as the block length tends to infinity. However, for a code to be

practical, its length can not be arbitrarily large. For short or moderately lengthed LDPC

codes (up to, say, some thousand bits), the unfavourable constructs have relatively high

probability, thus having non-negligible impact on the code’s decoding performance. Our

goal is to construct a graph having as large girth as possible, given the code length and

degree distribution, which is a rather hard combinatorial problem. However, a suboptimal

yet simple and well performing algorithm was proposed in [16].

The basic idea is pretty straightforward: the graph is constructed in an edge-by-edge

manner with each edge placed so that it has the minimum possible impact on the overall

graph girth. This means that, fundamentally, an edge is placed between the variable node

in question and the most distant check node in the graph. In the optimal case where the

distance is infinite, i.e. no path exists between the variable node and the check node, the

new edge creates no additional cycles.

112 CHAPTER 7. CONSTRUCTION OF LDPC CODES

Given the number of variable nodes, the number of check nodes and the variable node

degree distribution, this algorithm assigns degrees to each variable node according to the

degree distribution and calculates the degree distribution of the check nodes, making it as

uniform as possible.

Before describing the algorithm, we will explain the notation used. ci and si denote the i-th

check and variable node respectively. Esj denotes the set containing all edges incident to

variable node sj and Ek
sj

denotes the k-th edge incident to sj. N `
sj

is the neighbourhood of

variable node sj at depth ` and is defined as the set containing all check nodes reached by a

sub-graph spreading from variable node sj within depth `. N
`

sj
denotes the complement of

N `
sj

,i.e., the st containing all check nodes which are not reached by a sub-graph spreading

from variable node sj within depth `.

Algorithm 2 PEG Algorithm

1: procedure PEG(λ,n,m) ▷ λ ∶= λ(x), n ∶= block-length, m ∶= # check nodes

2: for j = 0 to n − 1 do

3: for k = 0 to dsj − 1 do

4: if k = 0 then

5: E0
sj
← edge(ci, sj), where E0

sj
is the first edge incident to sj and ci

6: is a check node such that it has the lowest check-node degree

7: under the current graph setting Es0 ∪Es1 ∪⋯ ∪Esj−1 .

8: else

9: expand a sub-graph from variable node sj up to depth ` under the

10: current graph setting such that the cardinality of N `
sj

stops increasing

11: but is less than m, or N
`

sj
≠ ∅ but N

(`+1)
sj

= ∅, then Ek
sj
← edge(ci, sj),

12: where Ek
sj

is the k-th edge incident to sj and ci is a check node picked

13: from the set N
`

sj
having the lowest check-node degree.

14: end if

15: end for

16: end for

17: end procedure

To clarify the PEG algorithm, we illustrate an example in an edge-by-edge manner.

7.3 PROGRESSIVE EDGE GROWTH (PEG) ALGORITHM 113

Example 7.2. Consider a Tanner graph with L(x) = 0.5x2 + 0.5x3. Numbers in variable

nodes refer to number of edges in each node. As mentioned earlier, the goal is to make the

graph have as large girth as possible.

2

3

4

5

6

7

1

8

2

2

2

2

3

3

3

3

2

3

4

1

(a) Initial unconnected graph

2

3

4

5

6

7

1

8

2

2

2

2

3

3

3

3

2

3

4

1

(b) Step 1

2

3

4

5

6

7

1

8

2

2

2

2

3

3

3

3

2

3

4

1

(c) Step 2

2

3

4

5

6

7

1

8

2

2

2

2

3

3

3

3

2

3

4

1

(d) Step 3

2

3

4

5

6

7

1

8

2

2

2

2

3

3

3

3

2

3

4

1

(e) Step 4

2

3

4

5

6

7

1

8

2

2

2

2

3

3

3

3

2

3

4

1

(f) Step 5

114 CHAPTER 7. CONSTRUCTION OF LDPC CODES

2

3

4

5

6

7

1

8

2

2

2

2

3

3

3

3

2

3

4

1

(g) Step 6

2

3

4

5

6

7

1

8

2

2

2

2

3

3

3

3

2

3

4

1

(h) Step 7

2

3

4

5

6

7

1

8

2

2

2

2

3

3

3

3

2

3

4

1

(i) Step 8

2

3

4

5

6

7

1

8

2

2

2

2

3

3

3

3

2

3

4

1

(j) Step 9

2

3

4

5

6

7

1

8

2

2

2

2

3

3

3

3

2

3

4

1

(k) Step 10

2

3

4

5

6

7

1

8

2

2

2

2

3

3

3

3

2

3

4

1

(l) Step 11

7.3 PROGRESSIVE EDGE GROWTH (PEG) ALGORITHM 115

2

3

4

5

6

7

1

8

2

2

2

2

3

3

3

3

2

3

4

1

(m) Step 12

2

3

4

5

6

7

1

8

2

2

2

2

3

3

3

3

2

3

4

1

(n) Step 13

2

3

4

5

6

7

1

8

2

2

2

2

3

3

3

3

2

3

4

1

(o) Step 14

2

3

4

5

6

7

1

8

2

2

2

2

3

3

3

3

2

3

4

1

(p) Step 15

2

3

4

5

6

7

1

8

2

2

2

2

3

3

3

3

2

3

4

1

(q) Step 16

2

3

4

5

6

7

1

8

2

2

2

2

3

3

3

3

2

3

4

1

(r) Step 17

Figure 7.3: Edge-by-edge derivation of a Tanner graph using PEG algorithm. Broken

arrows represent edges emanating from variable nodes with degree 3. Edges in red represent

a cycle of length 4. Blue broken arrows needs more intuition to choose the appropriate

(most distant) check nodes.

We omit the last steps for the reader. Notice that in our example we couldn’t avoid

length four cycle. PEG algorithm for a (3,6) regular LDPC ensemble is optimal, i.e., for

116 CHAPTER 7. CONSTRUCTION OF LDPC CODES

moderate block-lengths the parity-check matrix of a (3,6) LDPC code has usually girth

10 or 12. Obviously PEG is used and for irregular ensembles. ◇

Without going into details, using a slight modification [16], PEG algorithm can produce

codes which are in upper triangular form, possessing the very pleasant property of having

linear time encoding. This modification only affects the (m − 1) first variable nodes, since

they correspond to them×m sub-matrix ofHm×n which we want to be upper triangular. For

the remaining variable nodes, the unmodified PEG algorithm is used. The modification is

quite simple, we only allow connections which result in 1’s over the diagonal line of the first

m×m sub-matrix while making sure that the diagonal line has strictly non-zero elements,

so that the H1∶m,1∶m is guaranteed to have full rank.

Below we present an example in order to compare the two last mentioned constructions.

0 0.5 1 1.5 2 2.5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/N0 (dB)

B
it

E
rr

or
 R

at
e

(3,6) regular, n=2048

Configuration Model
PEG
Shannon Limit

Figure 7.4: Bit Error Rate of a (3,6) regular LDPC code using configuration model and

PEG algorithm.

7.4 CONFIGURATION MODEL FOR BILAYER CONSTRUCTION 117

7.4 Configuration Model for Bilayer Construction

In this section, we present an extension of § 7.2 which will be used for the construction

of bilayer-graphs. At first, let us consider the construction of a bilayer-expurgated graph

depicted in Fig. 6.3. After the optimization procedure λi,j table is known. As for the

single-user graph it is crucial to transform λi,j to Li,j which represents the probability of

a variable node be of lower degree i and upper degree j. An extension of the equation we

derived from Li is as follows:

Li,j =
1

∑k∑`
λk,`
k+`

⋅
λi,j

i + j
, i ≥ 2, j ≥ 0. 7.2

Bilayer-Expurgated Construction

Recall that the distribution λi is related to λi,j as follows:

λi =
1

η
∑
j≥0

i

i + j
λi,j.

Hence, given λi and dc, the source-relay parity-check matrix, which corresponds to the lower

graph of the bilayer graph, can be constructed as a conventional LDPC code explained in

§ 7.2.

The non-trivial part of the bilayer construction is to construct the upper layer in such a

way so that to be compatible when we concatenate the two parity-check matrices of the

two layers. The upper layer construction can be done as follows:

1. After computing Li,j table, we can calculate the number of upper edges with respect

to lower degrees i and upper degrees j. Namely, using a Matlab like notation, up-

per edges(i, j)=⌈ n ⋅Li,j ⋅ j ⌉ for i = 2, . . . , `max and j = 0, . . . , rmax where `max and rmax

are the maximum lower and upper degrees.

2. The number of variable nodes with respect to lower degree i and upper degree j for

each i ≥ 2, j ≥ 0, can be computed as ⌈Li,j ⋅ n⌉, where n is the block-length of the

code.

3. For each (fixed) i we find the number of upper edges. That is, using a Matlab like

notation again, we have i num of upper edges(i)= sum(upper edges(i,:)). In other

words, we find the number of upper edges corresponding to each lower degree i.

118 CHAPTER 7. CONSTRUCTION OF LDPC CODES

4. We repeat the previous step for variable all nodes and therefore we have

i num of variable nodes(i)=sum(num of variable nodes(i,:)).

5. Taking the summation of i num of variable nodes and i num of upper edges we can

find the total number of variable nodes and upper edges respectively.

6. The extra k2 check nodes can be computed as sum(i num of upper edges)/d
′
c where

d
′
c is the upper degree of check nodes.

7. Using the aforementioned steps, we are able to associate properly the upper edges to

the corresponding variable nodes using exactly the same way as in § 7.2.

Therefore, by concatenating the matrices of the two layers, we create the bilayer parity-

check matrix.

Bilayer-Lengthened Construction

The bilayer-lengthened construction is quite straightforward since we have to construct one

parity-check matrix for the lower graph, which has n1 variable nodes and k check-nodes

with a rate R−, and a second parity-check matrix for the upper layer with n2 variable nodes

and k check nodes. Then the bilayer graph can be constructed by row-wise concatenation

between the two matrices. The variable degree distributions for lower and upper graphs

are λ1
i and λ2

i respectively. Because lower graph and bilayer graph have the same number

of check nodes it follows that

n1 = n
1 −R−

1 −R+
. 7.3

Hence, given k, dc and λ1
i we can construct the lower graph as in § 7.2. Also, given k, d

′
c

and λ2
i we compute the upper variable nodes n2 as d

′
c ⋅ k∑i≥2

λ2i
i and then we are able to

construct the upper graph with the same way as the lower one. Finally, we construct the

bilayer graph as mentioned earlier.

Chapter 8
Conclusion

We saw that LDPC codes can be designed to perform close to the capacity of different

types of channels. They possess several distinct advantages. First, belief-propagation

decoding for LDPC codes have linear, with the code length, complexity for fixed number

of iterations. Second, they have an easily understood graphical representation which is

helpful for their analysis. Furthermore, we presented an effective construction method for

picking LDPC codes at random from LDPC ensembles and we extended it for Bilayer LDPC

codes. Finally, the main design tool, Density Evolution, which predicts the asymptotic

performance of a belief-propagation decoder is also presented for both LDPC and Bilayer

LDPC codes.

119

120 CHAPTER 8. CONCLUSION

Bibliography

[1] Richardson, T., & Urbanke, R. L. (2008). Modern coding theory. Cambridge University

Press.

[2] C. E. Shannon. A mathematical theory of communication. Bell Sys. Tech. J., 27:379-423

and 623-656, July/ Oct. 1948.

[3] S.-Y.Chung,”On the construction of some capacity-approaching coding schemes”, Ph.D.

dissertation, MIT, Cambridge, MA, 2000.

[4] R. G. Gallager, ”Low-density parity-check codes”, IRE Transactions on Information

Theory, vol. 8, no. 1, pp. 21-28, Jan. 1962.

[5] Richardson, T. J., & Urbanke, R. L. (2001). The capacity of low-density parity-check

codes under message-passing decoding. Information Theory, IEEE Transactions on,

47(2), 599-618.

[6] Richardson, T. J., Shokrollahi, M. A., & Urbanke, R. L. (2001). Design of capacity-

approaching irregular low-density parity-check codes. Information Theory, IEEE Trans-

actions on, 47(2), 619-637.

[7] Razaghi, P., & Yu, W. (2007). Bilayer low-density parity-check codes for decode-and-

forward in relay channels. Information Theory, IEEE Transactions on, 53(10), 3723-

3739.

[8] Luby, M. G., Mitzenmacher, M., Shokrollahi, M. A., & Spielman, D. A. (2001). Im-

proved low-density parity-check codes using irregular graphs. Information Theory, IEEE

Transactions on, 47(2), 585-598.

121

122 Bibliography

[9] M.Ardakani,”Efficient Analysis, Design and Decoding of Low-Density Parity-Check

Codes”, Ph.D. dissertation, University of Toronto, 2004.

[10] Wymeersch, Henk. Iterative receiver design. Vol. 234. Cambridge: Cambridge Univer-

sity Press, 2007.

[11] Chung, S. Y., Forney Jr, G. D., Richardson, T. J., & Urbanke, R. (2001). On the

design of low-density parity-check codes within 0.0045 dB of the Shannon limit. Com-

munications Letters, IEEE, 5(2), 58-60.

[12] Chung, S. Y., Richardson, T. J., & Urbanke, R. L. (2001). Analysis of sum-product de-

coding of low-density parity-check codes using a Gaussian approximation. Information

Theory, IEEE Transactions on, 47(2), 657-670.

[13] Johnson, S. J. (2009). Iterative error correction: turbo, low-density parity-check and

repeat-accumulate codes. Cambridge University Press.

[14] Tanner, R. M. (1981). A recursive approach to low complexity codes. Information

Theory, IEEE Transactions on, 27(5), 533-547.

[15] Chakrabarti, Arnab, et al. ”Low density parity check codes for the relay channel.”

Selected Areas in Communications, IEEE Journal on 25.2 (2007): 280-291.

[16] Hu, X. Y., Eleftheriou, E., & Arnold, D. M. (2005). Regular and irregular progressive

edge-growth tanner graphs. Information Theory, IEEE Transactions on, 51(1), 386-398.

[17] Cances, J. P., & Meghdadi, V. (2009). Optimized low density parity check codes

designs for half duplex relay channels. Wireless Communications, IEEE Transactions

on, 8(7), 3390-3395.

[18] E. C. van der Meulen, ”Three-terminal communication channels,” Advanced Applied

Probability, vol. 3, pp. 120-154, 1971.

[19] T. M. Cover and A. A. E. Gamal, ”Capacity theorems for the relay channel”, IEEE

Trans. Inf. Theory, vol.25, no.5, pp. 572-584, Sept. 1979.

[20] Ryan, W., & Lin, S. (2009). Channel codes: classical and modern. Cambridge Uni-

versity Press.

Bibliography 123

[21] MacKay, D. J., & Neal, R. M. (1996). Near Shannon limit performance of low density

parity check codes. Electronics letters, 32(18), 1645-1646.

[22] Sipser, M., & Spielman, D. A. (1994, November). Expander codes. In 2013 IEEE 54th

Annual Symposium on Foundations of Computer Science (pp. 566-576). IEEE Comput.

Soc. Press.

[23] Moon, T. K. (2005). Error correction coding. Mathematical Methods and Algorithms.

Jhon Wiley and Son.

[24] Costello Jr, D. J., Dolecek, L., Fuja, T. E., Kliewer, J., Mitchell, D. G., & Smaran-

dache, R. (2013). Spatially Coupled Sparse Codes on Graphs-Theory and Practice.

arXiv preprint arXiv:1310.3724.

[25] Optional B-LDPC coding for OFDMA PHY, IEEE Std. IEEE 802.16e-04/78, 2004.

	Introduction
	Motivation
	Brief history of LDPC codes

	Channels, codes and capacity
	Binary input symmetric output memoryless channels
	Binary Symmetric Channel (BSC)
	Binary Erasure Channel (BEC)
	Binary AWGN Channel (BI-AWGN)

	Linear Block Codes

	Low-Density Parity-Check (LDPC) codes
	Matrix representation of LDPC codes
	Graphical representation of LDPC codes
	Degree Distributions & Code Ensemble

	Decoding of LDPC codes
	Belief Propagation Decoding
	Factor Graphs
	Message Passing
	Marginalisation via Message Passing
	Decoding via Message Passing
	BP decoding for the BEC

	The principle of iterative decoding
	The decoding tree

	Analysis & Design of LDPC codes
	Density Evolution for LDPC Codes
	BEC Channel
	BMS Channels
	Discrete Density Evolution
	LDPC Code Design

	Gaussian Approximation
	Gaussian Approximation for Regular LDPC codes
	Gaussian Approximation for Irregular LDPC codes

	Relay Channel
	Introduction
	Bilayer Expurgated LDPC Codes
	Bilayer Lengthened LDPC Codes
	Gaussian Approximation for Bilayer Codes

	Construction of LDPC Codes
	Gallager Construction
	Configuration Model
	Progressive Edge Growth (PEG) Algorithm
	Configuration Model for Bilayer Construction

	Conclusion

