
TECHNICAL UNIVERSITY OF CRETE
ELECTRONIC AND COMPUTER ENGINEERING DEPARTMENT

Maximally Sparse Convex Channel

Estimation and Equalization

by

George Lourakis

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DIPLOMA DEGREE OF

ELECTRONIC AND COMPUTER ENGINEERING

September 2014

THESIS COMMITTEE

Professor Athanasios P. Liavas, Thesis Supervisor
Professor Vassilis Digalakis

Associate Professor Aggelos Bletsas

2

3

Abstract

Sparse multipath channels are wireless links commonly found in communication

systems such as High Frequency radio channels, horizontal and vertical underwater

acoustic channels and terrestrial broadcasting channels for High Definition Tele-

vision. Their impulse responses are characterized by a few significant terms that

are widely separated in time. With high speed transmission, the length of a sam-

pled sparse channel can reach hundreds of symbol interval. Thus, the amount of

Intersymbol Interference (ISI) at the receiver is very high. Consequently, the pres-

ence of an ISI mitigating structure at the receiver, such as the Decision Feedback

Equalizer (DFE), is essential. Due to the sparse impulse responses of these chan-

nels, traditional estimation techniques such as Least Squares (LS) result in over-

parameterization and thus poor performance of the estimator. Also, classical equal-

izers become too complex for tackling these channels. The problem of estimating

and equalizing sparse multipath channels is considered in this thesis. We formu-

late the sparse channel estimation and the computation of the sparse DFE filters as

sparse approximation problems. A usual approach in sparse approximation prob-

lems is regularization with an l1 norm penalty term and usage of convex optimization

techniques in order to acquire a solution [9, 10]. Other sparsity promoting penalty

functions are available, but the l1 norm has the advantage to be a convex function,

making the l1 norm regularized approximation problem a convex one. When a prob-

lem is formulated as a convex optimization problem, it can be solved by very fast,

efficient and reliable algorithms. In order to achieve sparser solutions and still gain

from the benefits of the convex optimization theory, the Maximally Sparse Convex

(MSC) algorithm [1] utilizes a non-convex regularization term, that promotes spar-

sity more strongly than the l1 norm, but chosen such that the total cost function

remains convex. Details of the MSC algorithm are presented in chapter 2. Also,

in chapter 2 some basic concepts of the optimization theory are recapitulated. In

chapters 3 and 4, we study the application of the MSC algorithm in the sparse

channel estimation and the sparse channel equalization, respectively. Finally, the

conclusions of this thesis are presented in chapter 5.

4 Abstract

5

Acknowledgements

I would like to thank my family for their support and encouragement. I would also

like to thank my supervisor, Professor Athanasios Liavas, for his guidance through-

out this work.

6 Acknowledgements

7

Table of Contents

Table of Contents . 7

List of Figures . 9

List of Abbreviations . 11

1 Introduction . 13

1.1 Channel Model . 13

1.1.1 Multipath propagation . 13

1.1.2 Multipath Fading . 14

1.1.3 Discrete-Time Channel Model 16

1.2 Channel Equalization . 18

1.2.1 Optimal receiver . 18

1.2.2 Sub-optimal Equalizers . 18

1.3 Sparsity . 20

1.3.1 Definition . 20

1.3.2 Sparse Multipath Channels 20

1.3.3 Sparse Channel Estimation 21

1.3.4 Sparse Equalizers . 21

2 Convex Optimization . 23

2.1 Basic Optimization Concepts . 23

2.1.1 Convex Set . 23

2.1.2 Convex Function . 24

2.1.3 Gradient and Subdifferential 25

2.1.4 Convex Optimization Problem 26

2.1.5 Lagrangian . 27

2.1.6 Lagrange Dual Function . 27

2.1.7 Dual Problem . 28

2.1.8 Optimality Conditions . 29

2.1.9 Majorization Minimization Method 29

2.2 Regularization and Sparse Problems 30

2.3 Maximally Sparse Convex Optimization 33

8 Table of Contents

2.3.1 Sparsity Promoting Penalty Functions 33

2.3.2 Convexity Condition . 38

2.3.3 Maximally Sparse Convex Algorithm 39

2.3.4 Iterative Maximally Sparse Convex Algorithm 40

3 Sparse Channel Estimation . 45

3.1 Training Sequence . 45

3.2 Least Squares Estimation . 46

3.3 Sparse Channel Estimation . 47

3.4 Results . 50

4 Decision Feedback Equalizer . 55

4.1 MMSE-DFE . 56

4.2 Sparse DFE . 58

4.3 MSC application on Sparse DFE . 59

4.4 Results . 61

5 Conclusion . 71

Appendix A . 73

Bibliography . 77

9

List of Figures

1.1 Multipath propagation. 13

1.2 Continuous-time channel model. 16

1.3 Discrete-time channel model. 18

1.4 Sparse Multipath Channel. 21

2.1 Convex and non-convex sets. 24

2.2 Convex function. 24

2.3 Important property of gradient. 25

2.4 Subdifferential of f(x). 26

2.5 Penalty functions. 31

2.6 Penalty functions. 34

2.7 Subdifferentials of the penalty functions. 35

2.8 y = x+ λφ′(x). 36

2.9 Threshold functions, θ(y). 37

2.10 g(x) majorizes φ(x). 42

3.1 Channel estimate with LS estimator. 47

3.2 Channel estimate with l1 norm regularized estimator. 49

3.3 Channel estimate with MSC algorithm estimator. 49

3.4 Unbiased channel estimate with l1 estimator. 50

3.5 Unbiased channel estimate with MSC algorithm estimator. 50

3.6 MSE performance versus SNR. 51

3.7 MSE performance versus the length of the training sequence. 52

3.8 MSE performance versus SNR using support. 53

3.9 MSE performance versus the length of the training sequence using

support. 53

4.1 Decision feedback equalizer. 55

4.2 Bit error rate for ε′ = 0.01. 62

4.3 Mean square error for ε′ = 0.01. 62

4.4 Tap support for ε′ = 0.01. 63

4.5 Bit error rate for ε′ = 0.1. 63

4.6 Mean square error for ε′ = 0.1. 64

10 List of Figures

4.7 Tap support for ε′ = 0.1. 64

4.8 Bit error rate for ε′ = 0.1 and adjusting λ. 65

4.9 Mean square error for ε′ = 0.1 and adjusting λ. 65

4.10 Tap support for ε′ = 0.1 and adjusting λ. 66

4.11 Bit error rate for ε′ = 0.4. 66

4.12 Mean square error for ε′ = 0.4. 67

4.13 Tap support for ε′ = 0.4. 67

4.14 Bit error rate for ε′ = 0.4 and adjusting λ. 68

4.15 Mean square error for ε′ = 0.4 and adjusting λ. 68

4.16 Tap support for ε′ = 0.4 and adjusting λ. 69

4.17 DFE filters. 69

11

List of Abbreviations

BER Bit Error Rate

DFE Decision Feedback Equalizer

FBF Feedback Filter

FFF Feedforward Filter

FIR Finite Impulse Response

i.i.d. independent and identically distributed

ISI Intesymbol Interference

KKT Karush Kuhn Tucker

LS Least Squares

MLSE Maximum Likelihood Sequence Estimation

MM Majorization Minimization

MMSE Minimum Mean Squared Error

MSC Maximally Sparse Convex

MSE Mean Squared Error

NP Non-deterministic Polynomial-time

SNR Signal to Noise Ratio

ZF Zero Forcing

12 List of Abbreviations

13

Chapter 1

Introduction

In this chapter, we introduce the channel model that will be used throughout this

work. We briefly explain the importance of the channel equalization and present

the most common categories of equalizers. We also introduce the notion of sparsity

and we discuss some of its impacts in communications.

1.1 Channel Model

1.1.1 Multipath propagation

In wireless communication systems, the receiver observes a superposition of attenu-

ated and delayed versions of the original transmitted radio signal, called multipath

signal components. Reflections and refractions from obstacles and buildings are the

cause of the multipath propagation phenomenon. Each path may be caused by a

single reflector or by multiple reflectors clustered together with similar delays. The

multipath effect is demonstrated in Figure 1.1.

Tx Rx

Figure 1.1: Multipath propagation.

The baseband equivalent of a multipath channel can be modelled as a linear

14 Chapter 1. Introduction

time-varying filter, with impulse response

c(t, τ) =

L(t)∑
n=0

cn(t)δ(τ − τn(t)), (1.1)

where L(t) is the number of channel paths, cn(t) is the complex gain of the n-th

path at time t, and τn(t) is the delay of the n-th path at time t.

1.1.2 Multipath Fading

The signal attenuation and distortion due to multipath propagation is called mul-

tipath fading. The type of fading experienced by a signal propagating through a

mobile radio channel depends on the nature of the transmitted signal with respect

to the characteristics of the channel.

The coherence time of a channel is a measure of how quickly the channel response

decorrelates. When the symbol period, T , is small compared to the coherence time,

the fading is termed as slow fading. When the symbol period is comparable to the

coherence time of the channel, the fading is termed fast. In the slow fading case, the

channel may be assumed to be time invariant over several symbol periods. Thus,

L(t), τn(t) and cn(t) from (1.1) do not depend on time t, and the multipath channel

becomes a linear time invariant filter with impulse response

c(τ) =
L∑
n=0

cnδ(τ − τn). (1.2)

For the rest of this work, we consider only the time invariant case.

Another classification of the fading process depends on the relationship between

the delay spread of the channel, Td, which is the difference in propagation time

between the longest and shortest path, counting only the paths with significant

energy, and the symbol period. When the delay spread is much smaller than the

symbol period, the fading is classified as flat, and when it is not, it is termed as

frequency selective fading.

The delay spread parameter is used to characterize the channel in the time

domain. In the frequency domain the channel is characterized by the coherence

bandwidth, Bc, which is the range of frequencies over which the signal strength

remains more or less unchanged.

Flat Fading Channels

If the mobile radio channel has a constant gain and linear phase response over

a bandwidth which is greater than the bandwidth of the transmitted signal, W ,

1.1. Channel Model 15

then the received signal will undergo frequency flat fading or simply, flat fading.

This type of fading is historically the most common type of fading described in

the technical literature. Flat fading channels are also known as amplitude varying

channels and are sometimes referred to as narrowband channels, since the bandwidth

of the applied signal is narrow as compared to the channel flat fading bandwidth or

the Coherence bandwidth, Bc. To summarize, a signal undergoes flat fading if

W � Bc,

and

T � Td.

The flat fading channel consists of one tap, thus, it can be viewed as a multiplicative

channel.

Frequency Selective Channels

If the bandwidth of the transmitted signal is greater than the coherence bandwidth

of the wireless channel, then it undergoes frequency selective fading. In such cases,

the multipath delay spread is greater than the symbol interval. Consequently, the

received signal contains multiple versions of the transmitted waveform which are

attenuated and delayed in time and hence the received signal is distorted.

This kind of distortion is called Intersymbol Interference (ISI) and, roughly

speaking, has similar effect as additive noise, thus, it makes the communication

less reliable.

In the frequency domain, it is observed that different components have different

gains than the others. Frequency selective fading channels are also called wideband

channels since the symbol bandwidth is greater than the coherence bandwidth of

the channel.

Thus, a channel undergoes frequency selective fading if

W ' Bc,

and

T / Td.

Contrary to the frequency flat case where the channel consists of one tap, the fre-

quency selective channel consists of multiple taps (resolvable multipaths). The mul-

tipath components are resolvable if they are separated in delay by T .

16 Chapter 1. Introduction

In this work, only frequency selective channels are studied.

1.1.3 Discrete-Time Channel Model

Most of the material in this subsection is from [12]. In digital communication sys-

tems, the transmitted signal consists of discrete symbols that are sampled at the

symbol rate T and pulse shaped with the transmit filter gT (t). Both the transmit

filter gT (t) and the receive filter gR(t), that will be mentioned later, are Square Root

Raised Cosine filters. This pulse shaping operation at the transmitter is usually

referred to as digital-to-analog conversion. Hence, the baseband transmitted signal

can be written as

v(t) =
∑
k

ukgT (t− kT),

where uk is the transmit symbol sequence.

The transmitted signal is then convolved with the physical channel c(t) and

corrupted by the additive noise n(t).

A basic and generally accepted model for thermal noise in communication chan-

nels is the set of the following assumptions. The noise is additive and statistically

independent of the input signal. The noise is white, i.e, the power spectral density is

flat, so the autocorrelation of the noise in time domain is zero for any non-zero time

offset. The noise samples have a Gaussian distribution. This noise model, which

is called Additive White Gaussian noise, is very efficient, even though the noise in

reality is more complex.

Finally the received signal is filtered with the receive filter gR(t) and then sampled

at the symbol rate T . The discretization operation at the receiver is normally

referred to as analog-to-digital conversion.

The continuous-time communication system described above, is illustrate in Fig-

ure 1.2.

uk
gT (t) c(t)

n(t) t = mT

gR(t)
r(t) rm

Figure 1.2: Continuous-time channel model.

1.1. Channel Model 17

We can write the input-output relation as

r(t) = (v(t) ∗ c(t) + n(t)) ∗ gR(t)

= v(t) ∗ c(t) ∗ gR(t) + gR(t) ∗ n(t)

= u(t) ∗ gT (t) ∗ c(t) ∗ gR(t) + n′(t),

where n′(t) = n(t) ∗ gR(t), which is also White Gaussian noise.

If we denote the overall channel impulse response h(t) = gT (t)∗ c(t)∗ gR(t), then

r(t) = u(t) ∗ h(t) + n′(t)

=
∑
k

ukh(t− nk) + n′(t).

By taking samples rm = r(mT) we get

rm = r(mT)

= r(t)
∣∣∣
t=mT

=
∑
k

ukh(t− kT)

∣∣∣∣∣
t=mT

+ n′(t)
∣∣∣
t=mt

=
∑
k

ukh(mT − kT) + n′(mT).

By setting hm = h(mT) and n′m = n′(mT), we have

rm =
∑
k

ukhm−k + n′m. (1.3)

Equation (1.3) describes the discrete-time baseband equivalent channel output as

a convolution of the input symbol sequence uk with the sampled overall impulse

response hk. This is a very useful expression, since it provides a general description

of the input-output relation of the communication system, regardless the implemen-

tation methods, such as the transmit and receive filters or the physical channel.

In practice, hk can be truncated to some finite length N . If we assume causality

of gT (t), gR(t), and c(t), then hk = 0 holds for k < 0, and if N is chosen large enough

hk ≈ 0 holds also for l ≥ N . Therefore, (1.3) can be rewritten as:

rm =
N−1∑
k=0

ukhm−k + n′m. (1.4)

Thus, the output of a communication system can be expressed as the output of

18 Chapter 1. Introduction

uk hk

n′
k

rk

Figure 1.3: Discrete-time channel model.

a linear time invariant discrete-time system with input the symbol sequence of the

communication system, as shown in Figure 1.3. This is the channel model we will

use throughout this work.

1.2 Channel Equalization

The ability to transmit vast quantities of data through a reliable, high speed con-

nection is very important. One way to achieve a high data rate is to simply increase

the transmission speed. However, doing so inevitably increases the sampled channel

length, thereby increasing the amount of ISI.

As mentioned before, ISI acts like additive noise, degrading severely the com-

munication system. Thus, the utilization of techniques which cancel the effect of

ISI are necessary. The techniques that aim in cancelling the ISI at the receiver of a

communication system are called channel equalization.

1.2.1 Optimal receiver

In the receiver, Maximum Likelihood Sequence Estimation (MLSE) using the Viterbi

algorithm on the received signal may be used to optimally reduce the effects of ISI

[14].

The MLSE for a channel with ISI has a computational complexity that grows

exponentially with the length of the channel time dispersion. If the size of the

symbols alphabet is M and the number of interfering symbols contributing to ISI is

L, the Viterbi algorithm computes ML+1 metrics for each received symbol. In many

channels of practical interest, such a large computational complexity is prohibitively

expensive to implement.

1.2.2 Sub-optimal Equalizers

The computational complexity of the MLSE leads to an interest in seeking sub-

optimal equalizers. These equalizers can be divided into categories [15].

1.2. Channel Equalization 19

Linear or Non-Linear Equalizers

Two broad categories of the equalization techniques are the linear and the non-linear.

The linear techniques are generally the simplest to implement and to understand

conceptually. A linear equalizer is a filter that equalizes an ISI channel by inverting

its frequency response. It is most effective when applied on mild ISI channels whose

frequency responses are relatively flat.

However, linear equalization techniques typically suffer from more noise enhance-

ment than non-linear equalizers, and are therefore not used in most wireless appli-

cations. Among non-linear equalization techniques, Decision Feedback Equalization

(DFE) is the most common, since it is fairly simple to implement and generally

performs well. The DFE consists of a Feedforward Filter (FFF) with the received

sequence as input, followed by a Feedback Filter (FBF) with the previously detected

sequence as input. Effectively, the DFE determines the ISI contribution from the

already detected symbols by passing them through the FBF. The resulting ISI is

then subtracted from the incoming symbols. The FBF of the DFE does not suffer

from noise enhancement because it estimates the channel frequency response rather

than its inverse. For channels with deep spectral nulls, DFEs generally perform

much better than linear equalizers. However, on channels with low Signal to Noise

Ratio (SNR), the DFE suffers from error propagation when symbols are decoded in

error, leading to poor performance.

Zero-Forcing or MMSE Equalizers

The two most common criteria for selecting the coefficient of a linear or a non-

linear equalizer are the total elimination of the ISI, and the minimization of the

Mean Squared Error (MSE). An equalizer implemented using the first strategy is

called Zero Forcing (ZF) equalizer. A serious problem with the ZF equalizer is the

noise enhancement, which can result in infinite noise power spectral densities after

the equalizer. The noise is enhanced at frequencies where the channel has a high

attenuation. An equalizer implemented using the second strategy is called Minimum

Mean Squared Error (MMSE) equalizer. The MMSE equalizer balances a reduction

in ISI with noise enhancement. The MMSE equalizer always performs as well as, or

better than, the ZF equalizer.

20 Chapter 1. Introduction

1.3 Sparsity

1.3.1 Definition

The term sparsity refers to a measurable property of a vector. It means that the

number of the non-zero elements of the vector is very small in comparison with its

dimension.

There are a lot of advantages working with sparse vectors. For example calcula-

tions involving multiplying a vector by a matrix take less time to compute in general

if the vector is sparse. Also sparse vectors require less space when being stored on

a computer as only the position and value of the entries need to be recorded.

A very simple and intuitive measure of sparsity of a vector x simply involves

the number of non-zero entries in x. The vector is sparse if there are few non-zeros

among the possible entries in x. It will be convenient to introduce the l0 quasi-norm

||x||0 = # {i : xi 6= 0} . (1.5)

Thus if ||x||0 is considerably less than the vector length, x is sparse.

1.3.2 Sparse Multipath Channels

Channel measurement results suggest that multipath components tend to be dis-

tributed in clusters rather than uniformly over the channel delay spread. These

clusters of paths physically correspond to large-scale objects in the scattering envi-

ronment, such as buildings and hills in an outdoor propagation environment, while

multipath components within a cluster arise as a result of scattering from small-scale

structures of the corresponding large-scale reflector, such as windows of a building

or trees on a hill. Based on the interarrival times between different multipath clus-

ters within the delay spread, wireless channels can be categorized as either rich or

sparse.

A sparse multipath channel is characterized by an impulse response that only

comprises a few significant multipath terms. However, the multipath terms are

widely separated in time, thereby creating a large delay spread. With high speed

transmission, the length of a sampled sparse channel can reach hundreds of symbol

intervals, although the majority of taps in the sampled channel are near zero-valued.

Some examples of sparse multipath channels are the High Frequency radio chan-

nels, where the large time differences between the multipath terms are caused by

reflections off the ionosphere, horizontal and vertical underwater acoustic channels,

where the long delays between the multipath terms are due to reflections off the sea

surface or sea floor, terrestrial broadcasting channels for High Definition Television

1.3. Sparsity 21

systems, cellular land mobile radio channels in hilly environments and aeronautical

channels [7].

An example of an impulse response of a sparse multipath channel of 100 taps

length and significantly less non-zero taps is illustrated in Figure 1.4.

0 10 20 30 40 50 60 70 80 90 100
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Channel taps

A
m
p
li
tu
d
e

Figure 1.4: Sparse Multipath Channel.

1.3.3 Sparse Channel Estimation

An exact estimate of the sparse multipath channel will greatly improve the perfor-

mance of the equalization. Typically, this is accomplished by probing the channel

with a known training sequence and processing the channel output, using for exam-

ple a conventional Least Squares (LS) based channel estimation scheme.

While appropriate for rich channels, LS estimation ignores the structure of a

sparse multipath channel, which leads to poor performance, since estimation effort

is directed towards estimating all the channel coefficients, many of which might be

zero.

Thus, other channel estimation techniques, which exploit the sparsity of the

sparse multipath channel, should be used. The performance of the LS estimation

and the sparse channel estimation techniques will be discussed in chapter 3 with

more details.

1.3.4 Sparse Equalizers

In applications where sparse multipath channels are considered, very long equalizers

have to be employed at the receiver to mitigate the resulting severe ISI. The com-

plexity of computing and implementing FIR equalizers increases with the number

22 Chapter 1. Introduction

of taps. Thus, the complexity of the equalization of a sparse multipath channel may

become prohibitive.

In systems where the complexity is dominated by arithmetic operations, the

number of non-zero coefficients in the impulse response may be a more appropriate

metric to consider instead, and computational savings are realized by omitting arith-

metic operations associated with zero-valued coefficients. This leads to a demand for

long equalizers with fewer non-zero coefficients (sparse equalizers), to reduce com-

plexity at the expense of some performance loss. Thus, the sparse equalizer is better

structured to handle sparse multipath channels with large delay spreads because the

computational complexity of the filtering operation is no longer proportional to the

equalizer span.

In addition to complexity reduction, under non-ideal channel estimation, the

sparse structure can improve the equalizer’s performance because it reduces the

noise accumulation caused by the non-ideal computation of the equalizer weights.

Techniques for computing sparse DFE filters will be studied in chapter 4.

23

Chapter 2

Convex Optimization

Convex optimization refers to the minimization of a convex objective function sub-

ject to convex constraints [13]. Convex optimization has found wide application

in areas such as automatic control systems, estimation and signal processing, com-

munications and networks, electronic circuit design, data analysis and modelling,

statistics, and finance. Many of the most commonly addressed optimization prob-

lems are convex. Or even if they are not convex, some times, there is a way to

reformulate them into convex form. There are great advantages to recognizing or

formulating a problem as a convex optimization problem. The most basic advantage

is that, due to the convex nature of the feasible set of the problem, any local opti-

mum is also the global optimum. Algorithms written to solve convex optimization

problems take advantage of such properties, and are faster, more efficient and very

reliable. As a result, very large problems, with even thousands of variables and

constraints, are solvable in reasonably small time. Thus, these algorithms can be

embedded in a computer-aided design or analysis tool, or even a real-time reactive

or automatic control system [8].

2.1 Basic Optimization Concepts

In order to recognize and solve convex optimization problems in engineering appli-

cations, one must first be familiar with the basic concepts of convex optimization

theory. This section provides a concise review of these optimization concepts. Most

of the material in this section is from [13].

2.1.1 Convex Set

A set C is convex if the line segment between any two points of C lies in C. That

is, if for any x1, x2 ∈ C and any θ with 0 ≤ θ ≤ 1, we have

θx1 + (1− θ)x2 ∈ C.

Roughly speaking, a set is convex if every point in the set can be seen by every

other point, along an unobstructed straight path between them, where unobstructed

means lying in the set, as shown in Figure 2.1.

24 Chapter 2. Convex Optimization

(a) Convex set, (b) Non-convex set.

Figure 2.1: Convex and non-convex sets.

2.1.2 Convex Function

A function f : Rn → R is convex if the domf is a convex set and for all x,y ∈ domf ,

and θ ∈ R, with 0 ≤ θ ≤ 1, we have

f(θx + (1− θ)y) ≤ θf(x) + (1− θ)f(y). (2.1)

Geometrically, this inequality means that the line segment between (x, f(x)) and

(y, f(y)) lies above the graph of f . The visualization of this geometrical interpreta-

tion, for the simple case where f : R→ R and x, y ∈ R, is illustrated in Figure 2.2.

A function f is strictly convex if strict inequality holds in (2.1) whenever x 6= y and

0 < θ < 1. We say f is concave if −f is convex, and strictly concave if −f is strictly

convex.

Figure 2.2: Convex function.

2.1. Basic Optimization Concepts 25

2.1.3 Gradient and Subdifferential

If f : Rn → R is differentiable, then the function ∇f : Rn → Rn defined as

∇f(x) =


∂f
∂x1

(x)
...

∂f
∂xn

(x)

 ,
is called gradient of f at x.

An important property of a convex and differentiable function f : Rn → R is

that, for every x,y ∈ Rn, we have

f(y) ≥ f(x) +∇f(x)T (y − x).

A geometrical interpretation of this property for the simple case where f : R → R
and x, y ∈ R, is illustrated in Figure 2.3.

Figure 2.3: Important property of gradient.

When the function of interest is not differentiable everywhere, its gradient can not

be computed at the non-smooth points. At these points, we use the subdifferential

of the function.

We define g as a subgradient of a function f , at x, if

f(y) ≥ f(x) + gT (y − x), ∀y ∈ domf.

The set of all subgradients of f at x is called the subdifferential of f at x and is

26 Chapter 2. Convex Optimization

denoted as

∂f(x) = {g|gT (y − x) ≤ f(y)− f(x), ∀y ∈ domf}.

A geometrical representation of the subdifferential for the simple case where f :

R→ R and x, y ∈ R, is illustrated in Figure 2.4.

Figure 2.4: Subdifferential of f(x).

2.1.4 Convex Optimization Problem

A convex optimization problem is one of the form

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p, (2.2)

where f0, . . . , fm are convex functions and h1, . . . , hp are affine functions, that is,

hi(x) = aTi x − bi. We call x ∈ Rn the optimization variable and the function

f0 : Rn → R the objective or cost function. The inequalities fi(x) ≤ 0 are called

the inequality constraints, and the corresponding functions fi : Rn → R are called

the inequality constraint functions. The equations hi(x) = 0 are called the equality

constraints, and the functions hi : Rn → R are the equality constraint functions. If

there are no constraints, we say the problem (2.2) is unconstrained.

2.1. Basic Optimization Concepts 27

The set of points for which the objective and all constraint functions are defined

is called the domain D of the convex optimization problem (2.2). A point x ∈ D
is feasible if it satisfies the constraints fi(x) ≤ 0, i = 1, . . . ,m, and aTi x = bi, i =

1, . . . , p. The problem (2.2) is said to be feasible if there exists at least one feasible

point, and infeasible otherwise. The set of all feasible points is called the feasible set

or the constraint set. The feasible set of a convex optimization problem is convex,

since it is the intersection of the domain ∩mi=0domfi, which is a convex set, with

m sublevel sets and p hyperplanes. Thus, in a convex optimization problem, we

minimize a convex objective function over a convex set.

2.1.5 Lagrangian

In order to define the Langrangian function of a convex optimization problem, we

take the constraints in (2.2) into account by augmenting the objective function

with a weighted sum of the constraint functions. We define the Lagrangian L :

D × Rm × Rp → R associated with the problem (2.2) as

L(x,λ,v) = f0(x) +
m∑
i=1

λifi(x) +

p∑
i=1

vihi(x),

with domL = D × Rm × Rp . We refer to λi as the Lagrange multiplier associated

with the i-th inequality constraint fi(x) ≤ 0. Similarly, we refer to vi as the Lagrange

multiplier associated with the i-th equality constraint hi(x) = 0. The vectors λ and

v are called the dual variables or Lagrange multiplier vectors associated with the

problem (2.2).

2.1.6 Lagrange Dual Function

The Lagrange Dual Function (or just dual function) g : Rm × Rp → R is defined as

the minimum value of the Lagrangian over x : for λ ∈ Rm, v ∈ Rp

g(λ,v) = inf
x∈domD

L(x,λ,v)

= inf
x∈domD

(
f0(x) +

m∑
i=1

λifi(x) +

p∑
i=1

vihi(x)

)
.

When the Lagrangian is unbounded below in x, the dual function takes on the value

−∞. Since the dual function is the pointwise infimum of a family of affine functions

of (λ,v), it is concave, even when the problem (2.2) is not convex.

An important property of the dual function is that it yields lower bounds on the

28 Chapter 2. Convex Optimization

optimal value p∗ of the problem (2.2): For any λ ≥ 0 and any v, we have

g(λ,v) ≤ p∗.

2.1.7 Dual Problem

The dual function provides a lower bound that depends on parameters λ,v. The

best lower bound that can be obtained from the dual function is computed by the

optimization problem

maximize g(λ,v)

subject to λ ≥ 0. (2.3)

This problem is called the Lagrange dual problem associated with the problem

(2.2). In this context, the original problem (2.2) is sometimes called the primal

problem. The term dual feasible is used to describe a pair (λ,v) with λ ≥ 0 and

g(λ,v) ≥ −∞. We refer to (λ∗,v∗) as dual optimal or optimal Lagrange multipliers

if they are optimal for the problem (2.3).

The Lagrange dual problem (2.3) is a convex optimization problem, since the

objective to be maximized is concave and the constraint is convex. This is the case

whether or not the problem (2.2) is convex.

The optimal value of the Lagrange dual problem, which we denote d∗, is, by

definition, the best lower bound on p∗ that can be obtained from the Lagrange dual

function. In particular, we have the simple but important inequality d∗ ≤ p∗ , which

holds even if the original problem is not convex. This property is called weak duality.

We refer to the difference p∗ − d∗ as the optimal duality gap of the original

problem, since it gives the gap between the optimal value of the primal problem and

the best lower bound on it that can be obtained from the Lagrange dual function.

The optimal duality gap is always nonnegative.

If the equality d∗ = p∗ holds, i.e., the optimal duality gap is zero, then we say

that strong duality holds. This means that the best bound that can be obtained

from the Lagrange dual function is tight. Strong duality does not, in general, hold.

But if the primal problem (2.2) is convex , we usually (but not always) have strong

duality.

2.1. Basic Optimization Concepts 29

2.1.8 Optimality Conditions

When a convex optimization problem is unconstrained and the objective function

f0 is differentiable for all x ∈ domf0, then, x0 is optimal if and only if

∇f0(x0) = 0.

When a convex optimization problem is unconstrained, but the objective function

f0 is not differentiable for all x ∈ domf0, then, x0 is optimal if and only if

0 ∈ ∂f0(x0).

For any optimization problem with differentiable objective and constraint functions

for which strong duality obtains, any pair of primal and dual optimal points, x∗ and

(λ∗, v∗) must satisfy the Karush Kuhn Tucker (KKT) conditions

∇f0(x∗) +
m∑
i=1

λ∗,i∇fi(x∗) + ATv∗ = 0,

Ax∗ = b,

fi(x∗) ≤ 0, i = 1, . . . ,m,

λ∗ ≥ 0,

λ∗,ifi(x∗) = 0, i = 1, . . . ,m.

When the primal problem is convex, as in (2.2), the KKT conditions are also suffi-

cient for the points to be primal and dual optimal. In other words, if fi are convex

and hi are affine, and x̃, λ̃, ṽ are any points that satisfy the KKT conditions, then

x̃ and (λ̃, ṽ) are primal and dual optimal, with zero duality gap.

2.1.9 Majorization Minimization Method

The Majorization Minimization (MM) framework substitutes a difficult optimization

problem with a simpler one. It works by finding a surrogate function that minorizes

or majorizes the objective function. Optimizing the surrogate functions will drive the

objective function upward or downward until a local optimum is reached. Instead of

minimizing the objective function F (x) directly, the MM method solves a sequence

of simpler minimization problems

xk+1 = argmin
x

Gk(x),

30 Chapter 2. Convex Optimization

where k is the iteration counter. Each function Gk(x) is a majorizer (upper bound)

for F (x) and coincides with F (x) at x = xk. That is

Gk(x) ≥ F (x), ∀ x,

Gk(xk) = F (xk).

The MM procedure monotonically reduces the cost function value at each iteration.

Under mild conditions, the sequence xk converges to the minimizer of F (x).

2.2 Regularization and Sparse Problems

We consider the system

y = Hx + w, (2.4)

where x ∈ Rn is a sparse signal, y ∈ Rm is the observed signal, H ∈ Rm×n is a linear

operator, and w ∈ Rm is additive white Gaussian noise vector.

When the structure of x is unknown, an approximation of x is computed by the

least squares optimization problem

min
x

||y −Hx||22.

On the other hand, if the structure of x is known, for example, if it has many small

values or a sparse form, then the regularized approximation is very useful.

In the basic form of regularized approximation the goal is to find a vector x that

is small, and also makes the residual (y −Hx) small. This is naturally described as

a convex optimization problem with two objectives, ||y−Hx||22 and ||x||. A common

scalarization method used to solve an optimization problem with two objectives is

to minimize the weighted sum of the objectives. The two norms can be different.

The first, used to measure the size of the residual, is on Rm and the second, used to

measure the size of x, is on Rn, and is referred to as the penalty function.

The norm used as a penalty function will depend on our knowledge about the

structure of x. For example, when we want to obtain an approximation with small

values, the well known l2 norm is suitable to be used as a penalty function. In

our case, where x is sparse, the natural approach towards the sparse regularized

approximation problem is to use the l0 quasi-norm, defined in (1.5), as the penalty

function. Thus, the sparse regularized approximation problem is of the form

min
x

1

2
||y −Hx||22 + λ||x||0, (2.5)

2.2. Regularization and Sparse Problems 31

where λ > 0. The sparsity of the approximation depends on λ, with x getting more

sparse, as λ increases.

Figure 2.5: Penalty functions.

We can express the l0 quasi-norm as

||x||0 =
∑
i

φ0(xi),

where φ0(x) is illustrated in Figure 2.5, and is given by

φ0(x) =

{
0, if x = 0,

1, if x 6= 0.

Thus, the optimization problem (2.5) can be rewritten as

min
x

1

2
||y −Hx||22 + λ

∑
i

φ0(xi). (2.6)

Unfortunately, the solution of (2.6) is very difficult to obtain. In order to obtain the

solution, we have to solve exhaustively, for all the possible values of ||x||0, the least

squares problem ||y−Hx||22, making the problem Non-deterministic Polynomial-time

(NP)-hard. The difficulty of this problem is rooted in the discrete and discontinuous

nature of φ0(x).

Searching for a candidate substitute for the l0 quasi-norm in the sparse approx-

32 Chapter 2. Convex Optimization

imation problem, we examine the lp quasi-norm with 0 < p < 1, defined as

||x||p =

(∑
i

|xi|p
)1/p

.

Then, the sparse regularized approximation problem (2.5) becomes

min
x

1

2
||y −Hx||22 + λ||x||pp, (2.7)

If we define

φp(x) = |x|p,

then, the optimization problem (2.7) can be rewritten as

min
x

1

2
||y −Hx||22 + λ

∑
i

φp(xi). (2.8)

As shown in Figure 2.5, φp(x) is a continuous function which is geometrically very

close to φ0(x). Unfortunately, φp(x) is a non-convex function, making the solution

of (2.8) difficult. Thus, φp(x) is not a good candidate substitute of the φ0(x) in the

sparse approximation problem.

We can get a convex relaxation of (2.5) by replacing the l0 quasi-norm with the

l1 norm, which is defined as

||x||1 =
∑
i

|xi|.

Then, the sparse regularized approximation problem (2.5) becomes

min
x

1

2
||y −Ax||22 + λ||x||1. (2.9)

If we define

φ1(x) = |x|, (2.10)

then, the optimization problem (2.9) can be rewritten as

min
x

1

2
||y −Ax||22 + λ

∑
i

φ1(xi), (2.11)

With a geometrical observation of Figure 2.5, we can say that, among convex func-

tions, φ1(x) is, in some sense, the closest to the φ0(x). Thus, given the relative ease

2.3. Maximally Sparse Convex Optimization 33

with which convex problems can be reliably solved, the l1 norm is a basic tool in

sparse signal processing.

2.3 Maximally Sparse Convex Optimization

Convex optimization with sparsity-promoting convex (l1 norm) regularization is a

standard approach for estimating sparse signals in noise. In order to promote spar-

sity more strongly than convex regularization, it is also standard practice to employ

non-convex optimization. The Maximally Sparse Convex (MSC) approach [1] uti-

lizes a non-convex regularization term chosen such that the total cost function,

consisting of the sum of the residual and the regularization terms, is convex. There-

fore, sparsity is more strongly promoted than in the standard convex formulation,

but without sacrificing the attractive aspects of convex optimization, such as the

unique minimum or the robust algorithms provided by convex optimization theory.

Most of the material in this section is from [1].

In essence, MSC optimization attempts to solve sparse regularized least squares

approximation problems of the form

min
x∈Rn

F (x) =
1

2
||y −Hx||22 +

n−1∑
i=0

λiφ(xi; ai), (2.12)

where λi > 0, for i = 1, . . . , n, and φ(x; a) is a non-convex sparsity promoting

penalty function, with the parameters ai selected so as to ensure convexity of the

total cost function F (x).

2.3.1 Sparsity Promoting Penalty Functions

One penalty function suitable for the MSC approach is the logarithmic function

defined as

φlog(x) =
1

a
log(1 + a|x|), a > 0. (2.13)

As a approaches zero, the logarithmic function approaches the l1 norm, providing no

significant advantage. As a increases, the logarithmic function becomes more and

more non-convex, promoting sparser solutions.

In order to study non-convex sparsity promoting penalty functions, we will com-

pare the non-convex logarithmic penalty function with the convex l1 norm. Both

penalty functions are illustrated in Figure 2.6

First, we will introduce the term threshold function. Each penalty function is

related with one threshold function, which can give us some information about the

34 Chapter 2. Convex Optimization

(a) φ1(x)

(b) φlog(x)

Figure 2.6: Penalty functions.

performance of the penalty function [1].

If H in (2.12) is the identity matrix, F (x) is separable in scalars. Thus, if x, y ∈ R
we have

F (x) =
1

2
(y − x)2 + λφ(x),

and the minimization problem (2.12) becomes

θ(y) = argmin
x∈R

{
1

2
(y − x)2 + λφ(x)

}
.

The function θ(y) is the threshold function and depends on the penalty function

φ(x).

The threshold function of a penalty function is computed by minimizing F (x),

with respect to x. The derivative of F (x) is given by

F ′(x) = x− y + λφ′(x).

2.3. Maximally Sparse Convex Optimization 35

Setting the derivative of F (x) equal to zero gives

y = x+ λφ′(x). (2.14)

The value x that minimizes F (x) can be found by solving (2.14). First, the deriva-

tives of the penalty functions must be found. It is obvious that both penalty func-

tions are differentiable for all x ∈ R, except x = 0. Thus, the subdifferential ∂φ(x)

must be computed

(a) ∂φ1(x)

(b) ∂φlog(x)

Figure 2.7: Subdifferentials of the penalty functions.

∂φ(x) =

{
φ′(x), for x 6= 0,

[φ′(0−), φ′(0+)], for x = 0.

For each penalty function, we have

∂φ1(x) =


1, for x > 0,

[−1, 1], for x = 0,

−1, for x < 0,

36 Chapter 2. Convex Optimization

∂φlog(x) =


1

1 + a|x|
, for x > 0,

[−1, 1], for x = 0,

− 1

1 + a|x|
, for x < 0.

The subdifferential of the penalty functions are illustrated in Figure 2.7.

Now, that we have obtained the φ′(x), it is easy to form the y = x + λφ′(x).

The case where we use the l1 norm is illustrated in Figure 2.8a. For the logarithmic

function case we take two values for a, one small and one big. These cases are

illustrated in Figure 2.8b and Figure 2.8b respectively. We observe that for a big

value for a, y = x+ λφ′(x) is not a strictly increasing function of x.

(a) y = x+ λφ′1(x), (b) y = x+ λφ′log(x), for small a,

(c) y = x+ λφ′log(x), for big a,

Figure 2.8: y = x+ λφ′(x).

The threshold function, θ(y), is computed by exchanging the y and x axes, or

by just solving (2.14) with respect to x. θ(y) for the cases we use the l1 norm, or

the logarithmic penalty function with small a, are illustrated in Figure 2.9a and

Figure 2.9b respectively. If a is large, then θlog(y) does not define a function of y,

as there is not a unique x for each y, as illustrated in Figure 2.9c. When x is not

unique, one from its values is the global minimizer of F (x) and the other values are

local maxima and minima. So, in that case, F (x) is not strictly convex.

In order F (x) to be strictly convex, y = x+λφ′log(x) should be strictly increasing.

2.3. Maximally Sparse Convex Optimization 37

(a) θ1(y), (b) θlog(y), for small a,

(c) θlog(y), for big a,

Figure 2.9: Threshold functions, θ(y).

That is, the derivative of x+ λφ′log(x) should be positive for every x > 0.(
x+ λφ′log(x)

)′
> 0, ∀x > 0,

φ′′log(x) > −1

λ
, ∀x > 0,

− a

(1 + ax)2
> −1

λ
, ∀x > 0,

a <
1

λ
,

and since a > 0, the range of a, in which F (x) is strictly convex is

0 < a <
1

λ
. (2.15)

A good penalty function should result in a threshold function with three prop-

erties [5] :

• Unbiasedness. The threshold function should not substantially bias (attenu-

ate) large y. When the logarithmic penalty function is used, the value y−θ(y)

decays to zero as y increases. Instead, when the l1 norm is used, y − θ(y) is

constant and equal to λ. Thus, the logarithmic function is a better penalty

38 Chapter 2. Convex Optimization

function than l1 norm in the sense of unbiasedness.

• Sparsity. The resulting estimator is a threshold rule which automatically sets

small estimated coefficients to zero. Both threshold functions set values |y| < λ

to zero. So λ in both functions is the threshold value.

• Continuity. When the threshold function is not continuous, it is very sensitive

to small changes in its input. Both penalty functions correspond to continuous

threshold functions.

2.3.2 Convexity Condition

We will expand the results of the previous section, about the range of a, in which

F (x) is strictly convex, in the vector case. That is, the computation of the range of

ai, in which F (x) is strictly convex [1].

We consider the function v : R→ R defined as

v(x) =
1

2
x2 + λφ(x; a). (2.16)

Let S be the set of pairs (λ, a) for which v(x) is strictly convex. For the logarithmic

penalty function, as shown in (2.15), the set S is given by

S =

{
(λ, a) : λ > 0, 0 ≤ a ≤ 1

λ

}
. (2.17)

Let R be a positive definite diagonal matrix such that HHH−R is positive semidef-

inite and ri denote the i-th diagonal entry of R (i.e. [R]i,i = ri > 0). If we add and

subtract the term 1
2
xHRx in F (x) we have

F (x) =
1

2
||y −Hx||22 +

n−1∑
i=0

λiφ(xi; ai) +
1

2
xTRx− 1

2
xTRx

=
1

2

(
yHy − yHHx− xHHHy + xHHHHx

)
+

n−1∑
i=0

λiφ(xi; ai) +
1

2
xTRx− 1

2
xTRx

=
1

2
xH
(
HHH−R

)
x− yHHx +

1

2
yHy +

1

2
xHRx +

n−1∑
i=0

λiφ(xi; ai).

We define the function q(x) : Rn → R as

q(x) =
1

2
xH
(
HHH−R

)
x− yHHx +

1

2
yHy.

Since HHH −R is positive semidefinite, 1
2
xT
(
HTH −R

)
x is convex. Also, since

yTHx is affine, and 1
2
yTy is constant, q(x) is convex.

2.3. Maximally Sparse Convex Optimization 39

We also define the function g(x) : Rn → R as

g(x) =
1

2
xHRx +

n−1∑
i=0

λiφ(xi; ai)

=
n−1∑
i=0

(ri
2
x2
i + λiφ(xi; ai)

)
=

n−1∑
i=0

ri

(
1

2
x2
i +

λi
ri
φ(xi; ai)

)

=
n−1∑
i=0

riv(xi),

where v(x) was defined in(2.16). If
(
λi
ri
, ai

)
∈ S, then g(x) is strictly convex.

Thus, F (x) becomes

F (x) = q(x) + g(x),

and is strictly convex if

0 ≤ ai ≤
ri
λi
.

A problem that arises here is the computation of the positive definite diagonal

matrix R. In order to introduce sparsity more strongly, we seek for big ri that

keep HHH−R positive semidefinite. This problem is formulated as a semidefinite

optimization problem

max
r∈Rn

n−1∑
i=0

ri

subject to ri ≥ cmin

HHH−R � 0, (2.18)

where cmin is the minimal eigenvalue of HHH and the inequality HHH − R � 0

means that HHH−R is positive semidefinite. Since HHH is positive semidefinite,

cmin is greater or equal to zero. The optimization problem (2.18) is always feasible,

since, in the worst case, where every ri is equal to cmin, the eigenvalues of HHH−
cminI are obtained by subtracting cmin from the eigenvalues of HHH. Thus, HHH−
cminI is positive semidefinite.

2.3.3 Maximally Sparse Convex Algorithm

Based on the previous discussion the forgoing approach of the MSC approach is

summarized as follows.

1. Input: y ∈ Rm, H ∈ Rm×n, {λi > 0, ∀i = 1, . . . , n}, φ : R→ R.

40 Chapter 2. Convex Optimization

2. Find a positive semidifinite diagonal matrix R such that HHH−R is positive

semidifinite. (i.e. solve (2.18)).

3. For i = 1, . . . , n, set an such that (ri
λi
, ai) ∈ S. For the logarithmic penalty

function we have:

ai = β
ri
λi
, where 0 ≤ β ≤ 1.

When β = 0, the penalty function is simply the l1 norm. When β = 1, the

penalty function is maximally non-convex (maximally sparsity-inducing). So,

β is always set to 1.

4. Minimize (2.12) to obtain x using a majorization minimization algorithm as

shown in the next section.

5. Output: x ∈ Rn .

Other penalty functions can be used instead of the logarithmic function, but they

must have the property that v in (2.16) is convex for (λ, a) ∈ S for some set S. For

example, φ(x, p) = |x|p, with 0 < p < 1, does not qualify.

2.3.4 Iterative Maximally Sparse Convex Algorithm

When H is nearly singular, R will be close to zero. This means for the logarithmic

penalty function, that ri is almost zero, which leads ai to be almost zero. As a

consequence, the penalty function is practically the l1 norm, so the method offers no

advantage. In order to broaden the applicability of MSC algorithm, an iterative MSC

algorithm is described. In each iteration, MSC algorithm is applied only to the non-

zero elements of the sparse solution x, obtained as a result of the previous iteration,

and the corresponding columns of H. As the iterations progress, the active columns

of H decreases, R is less constrained, and eventually ri becomes greater than zero,

which leads ai to be also greater than zero. Hence, as the iteration progresses the

penalty function becomes increasingly non-convex. Therefore, the IMSC algorithm

produces a sequence of successively sparser solutions. The procedure can be repeated

until there is no change in the index set of non-zero elements. The algorithm can

be initialized with the l1 norm solution, assuming it is reasonably sparse.

The IMSC procedure is described as follows, where k ≥ 1 denotes the iteration

index.

1. Initialization. Find the l1 norm solution

x(1) = argmin
x∈Rn

||y −Hx||22 +
n−1∑
i=0

λi|xi|,

2.3. Maximally Sparse Convex Optimization 41

set k = 1 and K(0) = n. H is of size m× n.

2. Identify the non-zero elements of x(k), and record their indices in the set K(k)

K(k) =

{
i ∈ Zn

∣∣∣∣x(k)
i 6= 0

}
.

Let K(k) = |K(k)|.

3. Check termination condition: If K(k) is not less than K(k−1), then terminate.

The output is x(k).

4. Define H(k) as the submatrix of H containing only columns l ∈ K(k). H(k) is

of size m × K(k). Find a positive semidefinite diagonal matrix R(k), of size

K(k) ×K(k), using (2.18).

5. Set ai such that

(
λi

r
(k)
i

, ai

)
∈ S, i ∈ K(k). For the logarithmic penalty function

we have

a
(k)
i =

r
(k)
i

λi
, i ∈ K(k).

6. Solve the K(k) dimensional convex problem

u(k) = argmin
u∈RK(k)

F (u) = ||y −H(k)u||22 +
∑
i∈K(k)

λiφ
(
ui; a

(k)
i

)
. (2.19)

7. Set x(k+1) as

x
(k+1)
i =

{
0, for i /∈ K(k),

u
(k)
i , for i ∈ K(k).

8. Set k = k + 1 and go to step 2.

It is obvious that three optimization problems appear in the algorithm. The first

one, at step 1, is a least squares problem, regularised with the l1 norm. The second

one, at step 4, is a semidefinite optimization problem, and the last one, at step 6, is

a least squares problem, regularised with the a non-convex penalty function.

The first two optimization problems can be easily solved by CVX. CVX is a

software package that runs in Matlab, and is used to formulate and solve convex

optimization problems by transforming Matlab code into an appropriate modelling

language. The description of the optimization problem is typed in a form that

looks very similar to how one would write it mathematically on paper, making it

42 Chapter 2. Convex Optimization

easy to use. CVX converts the problem description into an equivalent Linear Pro-

gram, Quadratic Program, or Semidefinite Program and solves the problem. Model

specifications are constructed using common Matlab operations and functions, and

standard Matlab code can be freely mixed with these specifications. This com-

bination makes it simple to perform the calculations needed to form optimization

problems, or to process the results obtained from their solution.

Unfortunately, CVX is unable to solve the problem (2.19) due to the non-convex

nature of the penalty function, φ(x). Thus, in order to minimize F (x), an iterative

algorithm, based on the MM method explained in Section 2.1.9, is used [1].

To apply the MM method to minimize F (x), one may either majorize the term

||y −Hx||22, or the penalty term
∑

i φ (x (i)), or both. We choose to majorize just

the penalty term and it will be useful to consider first the scalar case.

We will find a majorizer for φ(x) with x ∈ R. The majorizer g(x) should be an

upper bound for φ(x) that coincides with φ(x) at a specified point v ∈ R. That is

g(x) ≥ φ(x), ∀ x ∈ R,

g(v) = φ(v). (2.20)

We will use a quadratic function to majorize the penalty function φ(x), as shown in

Figure 2.10. Thus, g(x) will be of the form

g(x) = mx2 + c. (2.21)

Figure 2.10: g(x) majorizes φ(x).

2.3. Maximally Sparse Convex Optimization 43

Since the quadratic function g(x) is a convex function, for a specified point v, g(x) is

greater or equal than the line that passes from v and has slope equal to∇vg(v). Also,

since the penalty function φ(x) is concave for x > 0, for a specified point v, φ(x) is

less or equal than the line that passes from v and has slope equal to ∇vφ(v). Since

the quadratic function g(x) and the penalty function φ(x) are symmetric functions,

the conditions of a majorizer function in (2.20) can be written for quadratic function

case as

g(v) = φ(v),

g′(v) = φ′(v), (2.22)

Combining (2.21) and (2.22), we compute m and c

m =
1

2v
φ′(v),

c = φ(v)− v

2
φ′(v).

The majorizer g(x) is therefore given by

g(x) =
1

2v
φ′(v)x2 + φ(v)− v

2
φ′(v).

With this function g, we have g(x) ≥ φ(x) with equality at x = v. To emphasize

the dependence of g(x) on the point v, we write

g(x, v) =
1

2v
φ′(v)x2 + φ(v)− v

2
φ′(v). (2.23)

The scalar majorizer can be used to obtain a majorizer for F (x) in (2.19). For the

vector case, a majorizer for
∑

n φ (x(n)) is the
∑

n g(x(n), v(n)). That is∑
n

g(x(n), v(n)) ≥
∑
n

φ(x(n)), (2.24)

with equality if x = v. The left-hand-side of (2.24) can be written compactly as

∑
n

g(x(n), v(n)) =
1

2
xTWx + c, (2.25)

where

W =


φ′(v(1))
v(1)

. . .
φ′(v(N))
v(N)

 ,

44 Chapter 2. Convex Optimization

and

c =
∑
n

φ(v(n))− v

2
φ′ (v(n)) . (2.26)

According to (2.24) and (2.25), a majorizer for F (x) is given by

G(x,v) =
1

2
||y −Ax||22 +

1

2
xTWx + c. (2.27)

Minimizing G(x,v), with respect to x, we have

∇xG(x,v) = ∇x

(1

2
(y −Ax)T (y −Ax) +

1

2
xTWx + c

)
= ∇x

(1

2
(yTy − yTAx− xTATy + xTATAx) +

1

2
xTWx + c

)
= −ATy + ATAx−Wx,

and by solving ∇xG(x,v) = 0 we obtain

x = (ATA + W)−1ATy, (2.28)

where W depends on v.

Therefore, the MM update with Gk(x) = G(x,xk) produces the sequence

xk+1 = (ATA + Wk)
−1ATy. (2.29)

In that case, we have

Wk =


φ′(xk(1))
xk(1)

. . .
φ′(xk(N))
xk(N)

 .
The solution xk of each iteration is expected to be sparse. Thus, some components

of xk will go to zero and consequently some entries of Wk will go to infinity, making

(2.29) numerically inaccurate. This problem is avoided by using the Matrix Inversion

Lemma [16] to write

(ATA + Wk)
−1 = W−1

k −W−1
k AT (I + AW−1

k AT)−1AW−1
k .

As components of xk go to zero, the entries of W−1
k go to zero instead of to infinity.

By setting Λk := W−1
k the quadratic MM update becomes

xk+1 = ΛkA
Ty −ΛkA

T (I + AΛkA
T)−1AΛkA

Ty.

45

Chapter 3

Sparse Channel Estimation

The transmission through a sparse multipath channel, as explained earlier, intro-

duces ISI, making the implementation of an equalizer at the receiver necessary. An

exact estimate of the sparse multipath channel will greatly improve the performance

of the equalization. Thus, the channel estimation problem is of significant impor-

tance in communication systems.

Typically, this is accomplished by probing the channel with a known training

sequence and processing the channel output.

3.1 Training Sequence

In order to estimate the channel, a sequence of N pseudo-random pilot symbols

is sent through the channel, and observed at the receiver. By pseudo-random, we

mean that the values the pilot symbols are chosen to be random independent and

identically distributed (i.i.d.), but they are known in advance at the receiver.

We assume x is the training sequence of length N , h is the channel impulse

response of length L, r is the resulting vector of observations of length N + L− 1,

which is corrupted by independent Additive White Gaussian Noise vector w. The

resulting input-output relation

rn =
L∑
l=0

hlxn−l + wn,

can also be expressed as a matrix-vector product. By symmetry, either the training

signal or the channel impulse response could be rewritten as a convolution matrix

r = Xh + w. (3.1)

The goal is to obtain an estimate of the channel impulse response ĥ from knowledge

of the observations r and training signal x.

Assuming that, before and after the transmission of the training sequence, no

46 Chapter 3. Sparse Channel Estimation

symbol is transmitted, the matrix X is of the form

X =



x1 0

x2
. . .

...
. . . x1

xN x2

. . .
...

0 xN


. (3.2)

The pause of the transmission before and after the transmission of the training

sequence is called guard interval and has length at least L−1. When guard interval

is not available, the zeros in the convolution matrix in (3.2) would be replaced by

the data sequence, thus, the first and last L− 1 observations contain contributions

from the unknown data, rendering them useless for estimation purposes [6].

Therefore, in the absence of guard interval, the training sequence matrix is of

the form

X =


xL xL−1 · · · x2 x1

xL+1 xL · · · x3 x2

...
...

...
...

...

xL+M−1 xL+M−2 · · · xM+1 xM

 ,

where M = N − L+ 1.

3.2 Least Squares Estimation

Conventional LS based channel estimation schemes, solves the minimization problem

ĥLS = argmin
h

||Xh− r||2,

which has a closed form solution

ĥLS = (XHX)†XHr,

where A† is the pseudoinverse of A.

While appropriate for rich channels, LS estimation ignores the structure of a

sparse multipath channel, which leads to poor performance, since estimation effort

is directed towards estimating all the channel coefficients, many of which might be

zero.

As shown in Figure 3.1, the LS estimator fails to estimate the sparse channel

3.3. Sparse Channel Estimation 47

impulse response. The length of channel impulse response is L = 100 and the length

of the the training sequence is N = 150. The SNR is set to 15dB.

0 10 20 30 40 50 60 70 80 90 100
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Channel taps

A
m
p
li
tu
d
e

real channel
LS channel estimate

Figure 3.1: Channel estimate with LS estimator.

3.3 Sparse Channel Estimation

Due to the sparse impulse response of the channel, a better estimate will be provided

by regularizing with the l1 norm, as discussed in the previous chapter. The channel

estimation problem becomes

ĥl1 = argmin
h

1

2
||Xh− r||22 + λ||h||1. (3.3)

A problem that arises here is the computation of a λ that provides good estimates.

If we assume that for each element of h we have a different weight λi, we can rewrite

(3.3) as

ĥl1 = argmin
h

F (h) =
1

2
||Xh− r||22 +

∑
λiφ1(hi), (3.4)

where φ1(hi) = |hi|.
When the cost function F (h) in (3.4) is strictly convex and since the penalty

function φ1 is differentiable except at zero, then h∗ minimizes F (h) if [11]{
[XH(r−Xh∗)]i = λiφ

′
1(hi), for h∗i 6= 0,

λiφ
′
1(0−) ≤ [XH(r−Xh∗)]i ≤ λiφ

′
1(0+), for h∗i = 0, (3.5)

where [v]i denotes the i-th component of the vector v.

48 Chapter 3. Sparse Channel Estimation

The condition (3.5) can be used to set the values of λi [1]. If h = 0 in (3.1), then

r consists of noise only (i.e. r = w). Then (3.5) gives

λiφ
′
1(0−) ≤ [XHw]i ≤ λiφ

′
1(0+). (3.6)

Since φ1(0−) = −1 and φ1(0+) = 1, (3.6) becomes

|[XHw]i| ≤ λi. (3.7)

The larger the λi is, the more hi will be attenuated. Hence, it is reasonable to set

λi to the smallest value satisfying (3.7):

λi ≈ max |[XHw]i|. (3.8)

Since, w is unknown in practice, (3.8) can be estimated based on knowledge of

statistics of the noise. For example, assuming that w is white Gaussian noise with

variance σ2
w, we can empirically set λi as the product of the standard deviation of

[XHw]i with a small positive number

λi ≈ 3σw||X(:, i)||2, (3.9)

where X(:, i) is the i-th column of X.

If X is a linear convolution matrix, as in our case, then all the columns of X

have equal norm. So (3.9) becomes

λi = λ = 3σw||x||2.

As shown in Figure 3.2, the estimates of the channel impulse response are very

accurate. The length of channel impulse response is 100 taps and the length of the

the training sequence is 150. The SNR is set to 15dB.

3.3. Sparse Channel Estimation 49

0 10 20 30 40 50 60 70 80 90 100
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Channel taps

A
m
p
li
tu
d
e

real channel
l1 norm channel estimate

Figure 3.2: Channel estimate with l1 norm regularized estimator.

In order to achieve even more accurate estimates we could use the MSC algo-

rithm, explained in the previous chapter. The application of the MSC algorithm

in the sparse channel estimation problem is straightforward. The estimates of the

channel impulse response, acquired by the MSC algorithm, are illustrated in Fig-

ure 3.3. The length of channel impulse response is 100 taps and the length of the

the training sequence is 150. The SNR is set to 15dB.

0 10 20 30 40 50 60 70 80 90 100
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Channel taps

A
m
p
li
tu
d
e

real channel
MSC algorithm channel estimate

Figure 3.3: Channel estimate with MSC algorithm estimator.

We observe that the estimates of the taps with high amplitude are decreased,

because of the bias introduced by the penalty functions. In order to improve the

biased estimates, we obtain the support from these estimations and then proceed

in solving a LS estimation problem for these positions. One way to obtain the

support of the estimations, since usually the knowledge of the exact number of the

50 Chapter 3. Sparse Channel Estimation

strong taps of the channel impulse response at the receiver is not possible, is to use a

threshold. We set the threshold approximately in the order of the standard deviation

of the noise, σw, and the taps that exceed that threshold gives us the support of the

estimate. Finally we solve a LS estimation problem for the positions of the support.

The biased and unbiased estimates of the l1 norm and MSC estimator are illustrated

in Figures 3.4 and 3.5 respectively.

0 10 20 30 40 50 60 70 80 90 100
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Channel taps

A
m
p
li
tu
d
e

real channel
l1 norm channel estimate
l1 norm channel estimate unbiased

Figure 3.4: Unbiased channel estimate with l1 estimator.

0 10 20 30 40 50 60 70 80 90 100
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Channel taps

A
m
p
li
tu
d
e

real channel
MSC algorithm channel estimate

MSC algorithm channel estimate unbiased

Figure 3.5: Unbiased channel estimate with MSC algorithm estimator.

3.4 Results

To illustrate the performance of the estimators, we compute the MSE by employing

the MSC algorithm and the l1 norm regularized estimator. The estimation error

3.4. Results 51

using MSE evaluation criterion can be defined as

MSE = E
{
||h− ĥ||22

}
.

To evaluate the MSE performance of channel estimators, it is very meaning-

ful to compare their achievements with theoretical performance bounds in practical

communication systems [4]. When they reach these bounds, they are approximate

optimal and further improvements in these systems are impossible. This motivates

the development of lower bounds on the MSE of estimators on sparse channel esti-

mation. Thus, assuming that we know the location set T = {i | |hi| > 0} of the

dominant channel taps, we define the oracle estimator as

ĥoracle =
(
XH
T XT

)−1
XH
T rT , (3.10)

where XT is the partial training signal constructed from columns of training signal

X corresponding to the dominant taps of the sparse multipath channel vector h.

We compare the performance of the MSC algorithm in the channel estimation and

the l1 norm regularized estimator versus different SNR, which were chosen between 0

and 30. For each SNR we generate 1000 realizations. In each realization we estimate

a different channel impulse response of length 100, using a BPSK training sequence

of length 150. As a reference, the oracle estimator is also plotted as MSE lower

bound. It is seen that, as expected, the performance of all estimators improves with

increasing SNR. For low SNR, the two estimators have simillar performance. For

high SNR the MSC algorithm exceeds the l1 norm regularized estimator, and as the

SNR increases their performance gap is getting bigger. The results are illustrated

in Figure 3.6.

0 5 10 15 20 25 30
10

−4

10
−3

10
−2

10
−1

10
0

SNRdB

M
S
E

l1 norm estimator
MSC algorithm estimator
oracle estimator

Figure 3.6: MSE performance versus SNR.

52 Chapter 3. Sparse Channel Estimation

We also compare the performance of the estimators versus different length of

BPSK training sequence which were chosen between 120 and 180. For each length

of training sequence we generate 1000 realization. In each realization we estimate

a different channel impulse response of length 100, with the SNR set to 15dB. As

a reference, the oracle estimator is also plotted as MSE lower bound. It is seen

that, as expected, the performance of all estimators improves with growing number

of training sequence. The MSC algorithm provides estimates with better MSE

performance for all the available lengths of the training sequence. The results are

illustrated in Figure 3.7.

120 130 140 150 160 170 180
10

−3

10
−2

10
−1

10
0

length of training sequence

M
S
E

l1 norm estimator
MSC algorithm estimator
oracle estimator

Figure 3.7: MSE performance versus the length of the training sequence.

As explained earlier, we obtain the support from the estimations and then pro-

ceed in solving a LS estimation problem for these positions. We repeat the same

experiments as above for the unbiased estimations. The accuracy of both estimations

is improved, while the MSC algorithm remains superior, showing that it provides

a better support than the l1 norm estimator. The MSE performance versus the

SNR and the length of the training sequence are illustrated in Figures 3.8 and 3.9

respectively.

3.4. Results 53

0 5 10 15 20 25 30
10

−4

10
−3

10
−2

10
−1

10
0

10
1

SNRdB

M
S
E

l1 norm estimator
MSC algorithm estimator
oracle estimator

Figure 3.8: MSE performance versus SNR using support.

120 130 140 150 160 170 180
10

−3

10
−2

10
−1

10
0

length of training sequence

M
S
E

l1 norm estimator
MSC algorithm estimator
oracle estimator

Figure 3.9: MSE performance versus the length of the training sequence using sup-
port.

54 Chapter 3. Sparse Channel Estimation

55

Chapter 4

Decision Feedback Equalizer

In the previous chapter, we estimated the sparse channel impulse response. The

accurate estimation is necessary, in order to design an equalizer at the receiver that

will cancel the effects of ISI. This kind of equalizer is called channel estimation based,

since the coefficients of the filter are computed after the estimation of the channel

impulse response. The finite-length MMSE-DFE is a well established ISI mitigating

structure on linear, noisy and dispresive channels [3]. A typical block diagram of a

DFE is that of Figure 4.1. The DFE consists of the FFF and the FBF. The input of

the first filter is the sequence received at the receiver, while the input of the second

is the sequence of decisions provided by the detector of the system. Assuming that

every equalizer introduces a delay ∆, the FFF is responsible for the cancellation

of the ISI produced by the ∆ symbols that follow the symbol of interest. On the

other hand, the FBF is responsible for the cancellation of the ISI produced by the

symbols that reached the receiver before the symbol of interest. In this section, we

recapitulate known results concerning the MMSE-DFE. We assume that the channel

impulse response is perfectly known.

un
h

wn

rn a
zn ûn

b

ũn

Figure 4.1: Decision feedback equalizer.

56 Chapter 4. Decision Feedback Equalizer

4.1 MMSE-DFE

Since the optimization criterion that we will use for the computation of the DFE

filters is the minimization of the mean square error, it would be useful to express

the error of the equalizer at time n as

en = un−∆ − ûn
= un−∆ − (aHrn:n−Nf+1 − bHũn−∆−1:n−∆−Nb

),

where r is the received sequence, a is the FFF of length Nf , b is the FBF of length

Nb, un is the i.i.d. input symbols with symbol variance σ2
u, ûn is the pre-detected

decision, ũn is the detected decision variables, and ∆ is the decision delay introduced

by the equalizer.

Assuming all the decisions are correct, u = ũ, we get

en = un−∆ − (aHrn:n−Nf+1 − bHun−∆−1:n−∆−Nb
)

= un−∆ −
[
aH −bH

] [rn:n−Nf+1

un−∆−1:n−∆−Nb

]
,

and denoting f̃H =
[
aH −bH

]
the (Nf + Nb)-length vector stacking the FFF and

FBF tap weights, and r̃ =

[
rn:n−Nf+1

un−∆−1:n−∆−Nb

]
we have [2]

en = un−∆ − f̃H r̃.

The MSE of the equalizer can be expressed as

MSE = [|en|2]

= E[|un−∆ − f̃H r̃|2]

= E[|un−∆|2] + f̃HE[r̃r̃H]f̃ − f̃HE[r̃ u∗n−∆]− E[un−∆ r̃H]f̃ . (4.1)

In order to acquire the correlation matrices needed for the computation of the

MSE, we rewrite the input-output relation of the discrete-time baseband equivalent

channel, considering a block of Nf output symbols, as


rn
...

rn−Nf+1

 =


h0 · · · hL 0

h0 · · · hL
.

0 h0 · · · hL




un
...

un−Nf−L+1

+


wn
...

wn−Nf+1

 , (4.2)

4.1. MMSE-DFE 57

where h = [h0 . . . hL]T , is the channel impulse response of length L + 1, and w is

the (independent of the data sequence) additive white Gaussian noise with variance

σ2
w. The input-output relation (4.2) can be expressed more compactly as

rn:n−Nf+1 = Hun:n−Nf−L+1 + wn:n−Nf+1. (4.3)

The first term of (4.1) is computed as

E[|un−∆|2] = E[|un|2] = σ2
u.

The (Nf + Nb) × (Nf + Nb) auto-correlation matrix appearing in the second term

of (4.1) is given by

Rr̃r̃ =

[
Rrr σ2

uHJ∆

σ2
uJ

H
∆HH σ2

uINb

]
,

where

Rrr = σ2
wHHH + Rww,

and

J∆ =



0(∆+1)×Nb

INb

0s−∆×Nb

 , for ∆ ≤ s,

[
0(∆+1)×Nb

Is+Nb−∆ 0(s−Nb−∆)×(∆−s)

]
, for ∆ > s,

with s = Nf + L−Nb − 1.

The cross-correlation appearing in the third term of (4.1) is given by

E[r̃ u∗n−∆] =

[
σ2
uH

σ2
uJ∆

]
e∆.

We denote p̃∆ =

[
σ2
uH

σ2
uJ∆

]
e∆.

All the correlation matrices presented in this section are computed analytically

in Appendix A.

Now that we obtained all the correlation matrices needed, we can proceed to the

58 Chapter 4. Decision Feedback Equalizer

computation of the MSE as

MSE = σ2
u + f̃HRr̃r̃f̃ − f̃Hp̃∆ − p̃H∆ f̃ . (4.4)

We observe that the MSE in (4.4) is a convex function of f̃ . Assuming that Rr̃r̃ is

non-singular, the optimal f̃ is obtained by

∇f̃MSE = 0

2Rr̃r̃f̃opt − 2p̃∆ = 0

f̃opt = R−1
r̃r̃ p̃∆. (4.5)

The optimal FFF and FBF are obteained from f̃ as follows

aopt = f̃1:Nf
,

bopt = f̃Nf+1:Nf+Nb
.

Substituting the f̃ of (4.5) in (4.1) we obtain the MMSE:

MMSE = σ2
u + f̃HoptRr̃r̃f̃opt − f̃Hoptp̃∆ − p̃H∆ f̃opt

= σ2
u − p̃H∆R−1

r̃r̃ p̃∆.

4.2 Sparse DFE

As explained in chapter 2, a sparse equalizer has many benefits in the equalization of

sparse multipath channels. The computation of the coefficients of a sparse equalizer

can be approached as a sparsity-performance trade off. As an equalizer is getting

more and more sparse, its performance is decreasing, and vice versa. In this section,

a convex optimization based approach to design a sparse DFE is presented [2]. A

convex optimization based solution for sparse DFE is formulated given a maximum

allowable loss in the MSE.

Since Rr̃r̃ from the previous section is symmetric, and we have already assumed

that is non-singular, we can define the Cholesky factorization [16] of Rr̃r̃ as Rr̃r̃ =

L̃L̃H , where L̃ is a an (Nf ×Nf) lower triangular matrix, and rewrite equation (4.1)

as

MSE = σ2
u + f̃HL̃L̃H f̃ − f̃HL̃L̃−1p̃∆ − p̃H∆L̃−HL̃H f̃ , (4.6)

where (.)−H = ((.)H)−1.

4.3. MSC application on Sparse DFE 59

If we add and subtract p̃H∆L̃−HL̃Hp̃∆ in (4.6), we have

MSE = σ2
u + f̃HL̃L̃H f̃ − f̃HL̃L̃−1p̃∆ − p̃H∆L̃−HL̃H f̃ + p̃H∆L̃−HL̃Hp̃∆ − p̃H∆L̃−HL̃Hp̃∆

=
(
σ2
u − p̃H∆L̃−HL̃Hp̃∆

)
+
(
f̃HL̃L̃H f̃ − f̃HL̃L̃−1p̃∆ − p̃H∆L̃−HL̃H f̃ + p̃H∆L̃−HL̃Hp̃∆

)
= σ2

u − p̃H∆L̃−HL̃Hp̃∆ + ||L̃H f̃ − L̃−1p̃∆||22
= MMSE + ||L̃H f̃ − L̃−1p̃∆||22. (4.7)

We define the term ||L̃H f̃ − L̃−1p̃∆||22 as MSEexcess.

It is obvious from (4.7) that f̃ controls the MSE only via the MSEexcess, since

MMSE does not depend on f̃ . If the minimum value of MSEexcess is achieved,

since MSEexcess ≥ 0, then MSE = MMSE. The combined FFF and FBF that

achieves that is the f̃opt. For any other selection of f̃ we have MSEexcess > 0 and

consequently MSE > MMSE, which translates into performance degradation.

In general, f̃opt is not sparse, hence, its implementation complexity is high. A

practical performance-complexity trade-off can be achieved if we design a sparse f̃

such that MSEexcess ≤ ε, where ε is a small positive number which controls the

tolerable performance loss in terms of MSE increase. This can be achieved by

solving the optimization problem

min
f̃
||f̃ ||1

subject to ||L̃H f̃ − L̃−1p̃∆||22 ≤ ε. (4.8)

The objective function in this minimization is convex, and the constraints define a

convex set. Thus, this is a convex optimization problem. From this, we know that

any local minimizer of the objective subject to the constraints will also be global

minimizer.

4.3 MSC application on Sparse DFE

The promising results of the MSC algorithm in the sparse approximation problem,

presented in Section 2, has motivated us to search the potentials of the use of this

algorithm for the computation of a sparse DFE. Our goal is to observe how much

sparsity will be gained by the use of this algorithm, and how this algorithm will

affect the performance of the equalization.

The MSC algorithm, as explained earlier, solves a least squares regularized op-

timization problem. The form of the optimization problem (4.8) is quite different.

In order to use the MSC algorithm for the computation of a sparse DFE, we need

to reformulate (4.8) as an unconstrained least squares problem, regularized by the

60 Chapter 4. Decision Feedback Equalizer

l1 norm

min
f̃

1

2
||L̃H f̃ − L̃−1p̃∆||22 + λ||f̃ ||1, (4.9)

for some λ > 0.

To do so, we have to prove that the optimization problems (4.8) and (4.9) are

equivalent, and that there is relation between ε and λ. This is proven by showing

that there exists a f̃∗ that satisfies the KKT conditions of problems (4.8) and (4.9). If

we define b = L̃−1p̃∆ and A = L̃H , and take the KKT condition for the optimization

problem (4.9) we have

∇f̃

(
1

2
||Af̃∗ − b||22 + λ||f̃∗||1

)
= 0. (4.10)

Taking the KKT condition for the optimization problem (4.8) we have

∂f̃ ||f̃∗||1 +
∑
i

λ∗∇f̃

(
||Af̃∗ − b||22 − ε

)
3 0, (4.11)

||Af̃∗ − b||22 − ε ≤ 0, (4.12)

λ∗ ≥ 0,

λ∗

(
||Af̃∗ − b||22 − ε

)
= 0.

The optimality conditions of (4.10) can be rewritten as

1

2
∇f̃ ||Af̃∗ − b||22 + λ∂f̃ ||f̃∗||1 3 0(

AHAf̃∗ −AHb

)
+ λ∂f̃ ||f̃∗||1 3 0. (4.13)

Also, the optimality conditions of (4.11) can be rewritten as

2λ∗

(
AHAf̃∗ −AHb

)
+ ∂f̃ ||f̃∗||1 3 0. (4.14)

Assuming that the inequality constraint in (4.12) is active, then λ∗ > 0, so (4.14)

becomes (
AHAf̃∗ −AHb

)
+

1

2λ∗
∂f̃ ||f̃∗||1 3 0 (4.15)

4.4. Results 61

It is obvious that if

λ =
1

2λ∗
, (4.16)

then (4.13) and (4.15) are the same. Thus, there is an f̃∗ that solves both problems

(4.8) and (4.9).

Since we have proven that we can rewrite the optimization problem (4.8) as a l1

norm regularized least squares problem, as in (4.9), we can replace the l1 norm with

the logarithmic penalty function. Our optimization problem then becomes

min
f̃

1

2
||L̃H f̃ − L̃−1p̃∆||22 + λ

n−1∑
i=0

φ(f̃i; ai), (4.17)

and we can apply the MSC algorithm.

4.4 Results

In this section, we consider the optimization problems (4.8) and (4.17) in order to

obtain DFE filters. Our goal is to examine if the MSC algorithm could provide more

sparse filters with better performance, in terms of Bit Error Rate (BER) and MSE.

Thus, we compare the BER, the MSE and the number of non-zero taps of the

DFE filters acquired by the MSC algorithm and the l1 norm, versus different SNR,

which were chosen between 0 and 30. For each SNR we generate 10000 realizations,

and in each one we send 700 BPSK symbols. The length of the channel impulse

response used is 100.

We have shown that the MSE can be expressed as a sum of the MMSE and the

MSEexcess. The MMSE depends on the SNR, and the MSEexcess is controlled by a

small positive number, ε. If we use the same ε to control the MSEexcess for all the

available SNRs, it might not always result in a sparse solution. In order to control

better the level of sparsity of the solutions for all the SNRs, we use a percentage of

the MMSE as ε. That is

ε = ε′ MMSE,

where 0 < ε′ < 1.

A small ε′ results in a solution that is very close to the MMSE-DFE, and will not

be very sparse. As we increase ε′ the sparsity increases as well. In order to examine

in which cases the MSC algorithm has an advantage, we will use three values for ε′

throughout our experiments.

Once we choose the ε′, we proceed in solving the optimization problem (4.8).

62 Chapter 4. Decision Feedback Equalizer

The performance and the sparsity of the resulting DFE filters are studied and used

as a reference for the MSC-DFE filters. The solution is obtained using CVX, which

also returns the dual optimal λ∗. As shown in (4.16), λ∗ helps us determine the λ

that we will use in the optimization problem (4.17).

For ε′ = 0.01, as shown in Figure 4.4, the MSC algorithm provides more sparse

DFE filters. Also, as shown in Figure 4.3 and Figure 4.2, the performance of the

two resulting DFEs are very similar, giving an advantage to the MSC algorithm.

0 2 4 6 8 10 12 14 16 18
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNRdB

B
E
R

l1 norm-DFE
MSC-DFE
MMSE-DFE

Figure 4.2: Bit error rate for ε′ = 0.01.

0 5 10 15 20 25 30
10

−3

10
−2

10
−1

10
0

SNRdB

M
S
E

l1 norm-DFE
MSC-DFE
MMSE-DFE

Figure 4.3: Mean square error for ε′ = 0.01.

4.4. Results 63

0 5 10 15 20 25 30
30

40

50

60

70

80

90

100

110

120

130

SNRdB

n
u
m
b
e
r
o
f
n
o
n
z
e
ro

ta
p
s

l1 norm-DFE
MSC-DFE
MMSE-DFE

Figure 4.4: Tap support for ε′ = 0.01.

For ε′ = 0.1 the MSC algorithm obtains much more sparse filters, as shown in

Figure 4.7, but the performance is slightly degraded, as shown in Figure 4.5 and

Figure 4.6.

0 2 4 6 8 10 12 14 16 18 20
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNRdB

B
E
R

l1 norm-DFE
MSC-DFE
MMSE-DFE

Figure 4.5: Bit error rate for ε′ = 0.1.

64 Chapter 4. Decision Feedback Equalizer

0 5 10 15 20 25 30
10

−3

10
−2

10
−1

10
0

SNRdB

M
S
E

l1 norm-DFE
MSC-DFE
MMSE-DFE

Figure 4.6: Mean square error for ε′ = 0.1.

0 5 10 15 20 25 30
0

20

40

60

80

100

120

140

SNRdB

n
u
m
b
e
r
o
f
n
o
n
z
e
ro

ta
p
s

l1 norm-DFE
MSC-DFE
MMSE-DFE

Figure 4.7: Tap support for ε′ = 0.1.

In order to make a more fair comparison, we adjust the λ, used in the MSC al-

gorithm, in order to provide us a less sparse solution, but with similar performance

with the l1 norm. In that case, as shown in Figures 4.8, 4.9 and 4.10, we achieved

similar performance and a more sparse filter.

4.4. Results 65

0 2 4 6 8 10 12 14 16 18 20
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNRdB

B
E
R

l1 norm-DFE
MSC-DFE
MMSE-DFE

Figure 4.8: Bit error rate for ε′ = 0.1 and adjusting λ.

0 5 10 15 20 25 30
10

−3

10
−2

10
−1

10
0

SNRdB

M
S
E

l1 norm-DFE
MSC-DFE
MMSE-DFE

Figure 4.9: Mean square error for ε′ = 0.1 and adjusting λ.

66 Chapter 4. Decision Feedback Equalizer

0 5 10 15 20 25 30
0

20

40

60

80

100

120

140

SNRdB

n
u
m
b
e
r
o
f
n
o
n
z
e
ro

ta
p
s

l1 norm-DFE
MSC-DFE
MMSE-DFE

Figure 4.10: Tap support for ε′ = 0.1 and adjusting λ.

For ε′ = 0.4, as shown in Figure 4.11, Figure 4.12 and Figure 4.13, the MSC

algorithm obtains more sparse filters with similar performance with the l1 norm.

0 2 4 6 8 10 12 14 16 18 20
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNRdB

B
E
R

l1 norm-DFE
MSC-DFE
MMSE-DFE

Figure 4.11: Bit error rate for ε′ = 0.4.

4.4. Results 67

0 5 10 15 20 25 30
10

−3

10
−2

10
−1

10
0

SNRdB

M
S
E

l1 norm-DFE
MSC-DFE
MMSE-DFE

Figure 4.12: Mean square error for ε′ = 0.4.

0 5 10 15 20 25 30
0

20

40

60

80

100

120

140

SNRdB

n
u
m
b
e
r
o
f
n
o
n
z
e
ro

ta
p
s

l1 norm-DFE
MSC-DFE
MMSE-DFE

Figure 4.13: Tap support for ε′ = 0.4.

By adjusting the λ used in the MSC algorithm, we observe that we can still

obtain a sparser filer, and also achieve better performance, as shown in Figure 4.14,

Figure 4.15 and Figure 4.16.

68 Chapter 4. Decision Feedback Equalizer

0 2 4 6 8 10 12 14 16 18 20
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNRdB

B
E
R

l1 norm-DFE
MSC-DFE
MMSE-DFE

Figure 4.14: Bit error rate for ε′ = 0.4 and adjusting λ.

0 5 10 15 20 25 30
10

−3

10
−2

10
−1

10
0

SNRdB

M
S
E

l1 norm-DFE
MSC-DFE
MMSE-DFE

Figure 4.15: Mean square error for ε′ = 0.4 and adjusting λ.

4.4. Results 69

0 5 10 15 20 25 30
0

20

40

60

80

100

120

140

SNRdB

n
u
m
b
e
r
o
f
n
o
n
z
e
ro

ta
p
s

l1 norm-DFE
MSC-DFE
MMSE-DFE

Figure 4.16: Tap support for ε′ = 0.4 and adjusting λ.

Finally, in order to understand the structure of the sparse filters, we plot in

Figure (4.17) the vector stacking the FFF and FBF tap weights of the MMSE-DFE,

the l1 norm DFE and the MSC-DFE, for SNR 15dB. We observe that the sparse

filters increase the amplitude of some taps, since they do not have the assistance of

small taps in the equalization. This increment is more apparent in the MSC-DFE

filters, since they have less non-zero taps.

0 20 40 60 80 100 120 140
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Filter taps

A
m
p
li
tu
d
e

MMSE-DFE
l1 DFE
MSC-DFE

Figure 4.17: DFE filters.

70 Chapter 4. Decision Feedback Equalizer

71

Chapter 5

Conclusion

In this thesis, we considered the estimation and equalization of sparse multipath

channels using convex optimization techniques. We examined the MSC algorithm,

which solves convex optimization problems using non-convex and more sparsity pro-

moting penalty functions than the l1 norm. The MSC algorithm was used for the

channel estimation problem and provided us with more accurate estimates than the

l1 norm regularized approximation problem. The MSC algorithm was also used

for the computation of sparse DFE filters. It was shown that we can obtain more

sparse filters and also achieve the same or better performance than when the l1 norm

regularization is used.

72 Chapter 5. Conclusion

73

Appendix A

The (Nf +Nb)× (Nf +Nb) auto-correlation matrix appeared in the second term of

(4.1) can be analysed as

Rr̃r̃ = E[r̃r̃H]

= E

[[
rn:n−Nf+1

un−∆−1:n−∆−Nb

]
[rHn:n−Nf+1u

H
n−∆−1:n−∆−Nb

]

]

= E

[
rn:n−Nf+1r

H
n:n−Nf+1 rn:n−Nf+1u

H
n−∆−1:n−∆−Nb

un−∆−1:n−∆−Nb
rHn:n−Nf+1 un−∆−1:n−∆−Nb

uHn−∆−1:n−∆−Nb

]

=

[
E[rn:n−Nf+1r

H
n:n−Nf+1] E[rn:n−Nf+1u

H
n−∆−1:n−∆−Nb

]

E[un−∆−1:n−∆−Nb
rHn:n−Nf+1] E[un−∆−1:n−∆−Nb

uHn−∆−1:n−∆−Nb
]

]
, (5.1)

where

E[un−∆−1:n−∆−Nb
uHn−∆−1:n−∆−Nb

] = σ2
u INb

,

and the (Nf ×Nf) output auto-correlation matrix Rrr can be analysed as

Rrr = E[rn:n−Nf+1r
H
n:n−Nf+1]

=E
[(

Hun:n−Nf−L+1 + wn:n−Nf+1

) (
Hun:n−Nf−L+1 + wn:n−Nf+1

)H]
=HE

[
un:n−Nf−L+1u

H
n:n−Nf−L+1

]
HH + HE

[
un:n−Nf−L+1w

H
n:n−Nf+1

]
+

E
[
wn:n−Nf+1u

H
n:n−Nf−L+1

]
HH + E

[
wn:n−Nf+1w

H
n:n−Nf+1

]
.

Since the the data sequence is independent from the noise, the cross-correlation

matrices E
[
un:n−Nf−L+1w

H
n:n−Nf+1

]
and E

[
wn:n−Nf+1u

H
n:n−Nf−L+1

]
are equal to 0.

Also, the (Nf + L)× (Nf + L) input auto-correlation matrix is given by

Ruu = E[un:n−Nf−L+1u
H
n:n−Nf−L+1] = σ2

u INf+L,

and the (Nf ×Nf) noise auto-correlation matrix is given by

Rww = E[wn:n−Nf+1w
H
n:n−Nf+1] = σ2

w INf
.

74 Appendix A

Thus, Rrr is given by

Rrr = HRuuHH + Rww,

and (5.1) is rewritten as

Rr̃r̃ =

[
Rrr E[rn:n−Nf+1u

H
n−∆−1:n−∆−Nb

]

E[un−∆−1:n−∆−Nb
rHn:n−Nf+1] σ2

uINb

]
. (5.2)

Let s = Nf + L−Nb − 1. If ∆ ≤ s, we have

E[rn:n−Nf+1u
H
n−∆−1:n−∆−Nb

] = H E[un:n−Nf−L+1u
H
n−∆−1:n−∆−Nb

]

= H E

[ un:n−∆

un−∆−1:n−∆−Nb

un−∆−Nb−1:n−Nf−L+1

uHn−∆−1:n−∆−Nb

]

= H E

 un:n−∆uHn−∆−1:n−∆−Nb

un−∆−1:n−∆−Nb
uHn−∆−1:n−∆−Nb

un−∆−Nb−1:n−Nf−L+1u
H
n−∆−1:n−∆−Nb



= H

 E [un:n−∆uHn−∆−1:n−∆−Nb
]

E [un−∆−1:n−∆−Nb
uHn−∆−1:n−∆−Nb

]

E [un−∆−Nb−1:n−Nf−L+1u
H
n−∆−1:n−∆−Nb

]



= H

0(∆+1)×Nb

σ2
uINb

0s−∆×Nb



= σ2
uH

0(∆+1)×Nb

INb

0s−∆×Nb

 .

75

If ∆ > s, we have

E[rn:n−Nf+1u
H
n−∆−1:n−∆−Nb

] = H E[un:n−Nf−L+1u
H
n−∆−1:n−∆−Nb

]

= H E

[[
un:n−∆

un−∆−1:n−Nf−L+1

] [
uHn−∆−1:n−Nf−L+1 uHn−Nf−L:n−∆−Nb

]]

= H E

[
un:n−∆uHn−∆−1:n−Nf−L+1 un:n−∆uHn−Nf−L:n−∆−Nb

un−∆−1:n−Nf−L+1u
H
n−∆−1:n−Nf−L+1 un−∆−1:n−Nf−L+1u

H
n−Nf−L:n−∆−Nb

]

= H

[
E[un:n−∆uHn−∆−1:n−Nf−L+1] E[un:n−∆uHn−Nf−L:n−∆−Nb

]

E[un−∆−1:n−Nf−L+1u
H
n−∆−1:n−Nf−L+1] E[un−∆−1:n−Nf−L+1u

H
n−Nf−L:n−∆−Nb

]

= H

[
0(∆+1)×(Nf+L−1−∆) 0(∆+1)×(∆+Nb−Nf−L+1)

σ2
uIs+Nb−∆ 0(s−Nb−∆)×(∆−s)

]

= σ2
uH

[
0(∆+1)×Nb

Is+Nb−∆ 0(s−Nb−∆)×(∆−s)

]
.

We denote J∆ a (Nf + L)×Nb matrix, whose structure depends on ∆ as follows

J∆ =



0(∆+1)×Nb

INb

0s−∆×Nb

 , for ∆ ≤ s,

[
0(∆+1)×Nb

Is+Nb−∆ 0(s−Nb−∆)×(∆−s)

]
, for ∆ > s.

Then (5.1) becomes

Rr̃r̃ =

[
Rrr σ2

uHJ∆

σ2
uJ

H
∆HH σ2

uINb

]
.

76 Appendix A

The cross-correlation appeared in the third term of (4.1), is computed as

E[r̃ u∗n−∆] = E[r̃uHn:n−Nf−L+1e∆]

= E[r̃uHn:n−Nf−L+1]e∆

= E

[[
rn:n−Nf+1

un−∆−1:n−∆−Nb

]
uHn:n−Nf−L+1

]
e∆

=

[
E[rn:n−Nf+1 uHn:n−Nf−L+1]

E[un−∆−1:n−∆−Nb
uHn:n−Nf−L+1]

]
e∆

=

[
H E[un:n−Nf−L+1 uHn:n−Nf−L+1]

E[un−∆−1:n−∆−Nb
uHn:n−Nf−L+1]

]
e∆

=

[
σ2
uH

E[un−∆−1:n−∆−Nb
uHn:n−Nf−L+1]

]
e∆

=

[
σ2
uH

σ2
uJ∆

]
e∆

We denote p̃∆ =

[
σ2
uH

σ2
uJ∆

]
e∆.

77

Bibliography

[1] I. W. Selesnick and I. Bayram, “Sparse signal estimation by maximally sparse

convex optimization,” IEEE Trans. Signal Process., vol. 62, no. 5, pp. 1078-1092,

Mar. 2014.

[2] A. Gomaa and N. Al-Dhahir, “A new design framework for sparse MIMO equal-

izers,” IEEE Trans. Commun., vol. 59, no. 8, pp. 2132-2140, Aug. 2011.

[3] N. Al-Dhahir and J. M. Cioffi, “MMSE decision-feedback equalizers: finite-length

results,” IEEE Trans. Inf. Theory, vol. 41, no. 4, pp. 961 - 975, July 1995.

[4] G. Gui, Q. Wan, W. Peng, and F. Adachi, “Sparse multipath channel estimation

using compressive sampling matching pursuit algorithm,” IEEE VTS APWCS

’10, Kaohsiung, Taiwan, pp. 10-14, May 2010.

[5] J. Fan and R. Li, “Variable selection via nonconcave penalized likelihood and its

oracle properties,” J. Am. Stat. Assoc., vol. 96, no. 456, pp. 1348-1359, 2001.

[6] J. Haupt, W. U. Bajwa, G. Raz, and R. Nowak, “Toeplitz compressed sens-

ing matrices with applications to sparse channel estimation,” IEEE Trans. Inf.

Theory, vol. 56, no. 11, pp. 5862-5875, Nov. 2010.

[7] F. K. H. Lee, “A study of two equalization techniques for sparse multipath chan-

nels,” Ph.D. dissertation, Dept. Elect. Eng., Queen’s Univ., Kingston, Ontario,

Canada, 2003.

[8] J. Mattingley and S. Boyd, “Real-time convex optimization in signal processing,”

IEEE Signal Process. Mag., vol. 27, no. 3, pp. 50-61, May 2010.

[9] R. Tibshirani, “Regression shrinkage and selection via the lasso,” J. Royal.

Statist. Soc B., vol. 58, no. 1, pp. 267-288, 1996.

[10] S. Chen, D. Donoho and M. Saunders, “Atomic decomposition by basis pursuit,”

SIAM J. on Sci. Comp., vol. 20, no. 1, pp. 33-61, 1998.

[11] F. Bach, R. Jenatton, J. Mairal and G. Obozinski. “Optimization with sparsity-

inducing penalties,” Foundations and Trends in Machine Learning, vol. 4, no. 1,

pp. 1-106, 2012.

78 Bibliography

[12] A. P. Liavas ,“Telecommunication Systems II Lecture Notes,” 2010.

[13] S. Boyd and L. Vandenberghe, “Convex optimization,” Cambridge University

Press, 2004.

[14] J. G. Proakis and M. Salehi, “Digital communications,” McGraw-Hill, 1995.

[15] A. Goldsmith, “Wireless communications,” Cambridge University Press, 2005.

[16] C. D. Meyer, “Matrix analysis and applied linear algebra,” SIAM, 2000.

