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Abstract 

After the commercial success of the video game “Dota”, there has been 

increasing attention given to the Multiplayer online battle arena (MOBA) 

subgenre of Real Time Strategy (RTS) games. The creation of agents able 

to play autonomously within such games is sometimes limited by the 

absence of a public application programming interface (API). This applies 

to the popular game “League of Legends”, which was greatly inspired by 

Dota. The few computer-assisted players provided by the designers of this 

game range from beginner to intermediate, but have direct access to the 

private API inside the game. This thesis introduces a novel way to handle 

autonomous agent creation in such games, where access to the game 

state is limited to the information displayed on the user’s screen. The 

proposed methods come close to what a human player does, since there is 

a perception phase, which relies mainly on visual analysis, and a decision 

phase, whose outcome affects the game through emulation of the 

keyboard and mouse input devices. To achieve this we use screen capture 

on the game’s interface and computer vision algorithms to detect 

important information. Then, we use artificial intelligence algorithms to 

encode behaviors for the game character we control. Realizing this 

perception-decision-action cycle is very demanding in terms of 

computational resources, however our optimized implementation manages 

to meet the real-time requirements of the game. Our autonomous agent 

for the “League of Legends” game is able to achieve intermediate level of 

play and is quite competent against the designer-provided agents and also 

against beginner human players. 
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Chapter 1. Introduction 

 

1.1 Motivation 
 

League of Legends [1] is a video game, where players assume the 

roles of champions, which they fully control against other human or 

computer controlled champions. Figure 1 shows a typical screenshot of 

the game. The environment provides limited resources for which 

players contest to get a gold advantage. It is thus categorized as a 

multiplayer online battle arena (MOBA) video game, which is a 

subgenre of the real time strategy genre [2]. Our goal in this thesis is 

to create an autonomous agent for the League of Legends game.  

Creating an agent for MOBA games is difficult because of the degree of 

freedom in the player actions. It is widely accepted that a random 

agent, who selects actions randomly, in a MOBA game cannot even 

reach mediocre level of play. In games like chess, the available actions 

are discrete and limited in number, making any choice by the agent 

seem humanlike, but unsophisticated. In MOBA games, the decision for 

placement along with the combination of actions available to our 

champion in real time makes it impossible to make naïve choices seem 

intentional. Thus, the random agent is almost immediately classified as 

naïve and inefficient. 

Most of the agents made by artificial intelligence (AI) enthusiasts rely 

on acquiring information about the game state through interfaces that 

can observe game variables in the memory. However, the information 

stored in memory is not readily available to human players and some 

of it is not accessible even through the game’s interface. The 

implementation of AI algorithms is easier and not too costly, when the 

agent has to just act. But making an agent that has to perceive first 

and then act, means we get closer to the real goal of AI. This is the 

case with the League of Legends game, which does not provide an 

open interface. 

Creating an agent who detects the environment through a screenshot 

of the entire game interface is the other part of the implementation 

which faces an entire repertoire of problems on its own. League of 

Legends is a 3d game with 2d interface elements. This makes it easier 

to abstract the information, since most of it lies in two dimensions and 

the process of abstraction can be quite reliable. Information which is 
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natively 3d is hard to acquire and even mapping the 2d abstract map 

state that we have already acquired from the game minimap, into the 

3d space of the main view is challenging. Champions in proximity 

cannot be reliably detected in two dimensions and we have to rely on 

their 3d models to know who they are. Rotations and animations 

increase the complexity of the task. Finally, when we get contradictory 

information we have to find ways to resolve the dispute. 

 

Figure 1. A sceenshot for the “League of Legends” game 

For example, there are Bogart problems, which contain two sets of 

images and there is a distinction to be made between the two sets. 

The first set could contain small objects, while the second could 

contain large objects. Problem solving satisfaction aside, they also 

provided an unsolved problem for artificial intelligence. There had been 

many efforts to automate Bogart problem solving, but up to a point 

they relied on humans to abstract the information from the images, 

before giving them to a computer. The computer would decide what 

information was missing from one set, but was present in another. 

Many considered this intervention cheating, since the users that 

provided the information about the images were thought to put in 

more information in the system than they got out, making solving the 

problems trivial. Then, Harris Foundalis made Phaeaco for his PhD 

thesis, and provided a way to solve the problems by just using the sets 

of images instead [8]. This work was a great inspiration, because it is 

in the true heart of AI. Vision is much more complex than any other 

sense and the primary method for getting information about the world. 

Adding perception through vision to the agent before he makes 
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decisions was an important step towards realizing a complete entity 

that could be considered autonomous. 

We wish to implement an agent that can play the game of League of 

Legends. To do so, he is provided with visual stimuli from the game 

and tries to abstract visual cues from the acquired information. He 

then processes that information to derive actions which are deemed to 

bring the most utility, which are fed to the game using the keyboard 

and the mouse. By using such a bi-directional interface that is able to 

snapshot the entire game screen and simulate user input, we create a 

truly autonomous agent that behaves like a human. To this end, the 

agent has to process the information of the minimap, which provides 

the locations and existence of game entities, as well as the view, which 

is a close-up on the three-dimensional structure of the game. If our 

agent manages to utilize the tools given to produce more income than 

his opponents, he will be able to get the advantage in the game 

consistently. The main objective of the game, destroying the enemy 

nexus, requires a lot of mini objectives to be completed first. After our 

agent destroys the enemy nexus, the central building inside the enemy 

camp, he wins the game. 

 

1.2 Thesis Contribution 

 

The way we tackle our problem involves the following steps. First, we 

analyze the colors we see in the hsv color space. We use massive 

parallelization to detect important lines in the view, and after removing 

the unnecessary ones, we get to detect health bars, getting an 

indication over where entities are in our view. Then we go to the map, 

and use hue indications on the locations of buildings to see if they are 

still enabled. We use the Hough transform method for detecting circles 

with a specific radius to see where characters lie in our map. Then we 

use hue histogram vectors to identify the characters. We go back to 

the view and we use hue histogram vectors to compare the champion 

in our view to expected champion values to completely identify them, 

and after that we look at how much health and mana (used for 

actions) they have. We get these values by letting the character walk 

over terrain in different orientations and getting mean values. We use 

a multilayered neural network on the images of digits from our current 

gold image to update our available gold. We use an imported library 

for understanding what other players are trying to communicate to us 

in the chat box. Finally, we make a bag of words system that 

processes the language.  
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After we have our game state, we compare the state we got from the 

map to the one we got from the view. We make appropriate changes 

to reflect the fact that the view is a bit more reliable than the map, but 

the map can still give information about things just outside our view. 

In the action part of the agent, we form interest points that will guide 

the character to the most interesting places on the map. A behavioral 

system based on a vector of “feelings”, like “greedy” when minions are 

nearby or “scared” when enemy turrets are in close proximity to our 

character, guides which algorithms we should run in the current action 

phase. The A* algorithm is used when the agent is “scared”. For 

skillshots, which are skills that need to be directed in certain lines, we 

use a method that minimizes the distance of minions from some line, 

and then we use that line to shoot as many minions as possible. 

Finally, we make a complicated scripted system of responses for 

combinations of “feelings” that will guide the champion to move, 

attack, use skills, explore, etc. All these responses are based on a 

coordination-of-actions system that abstracts much functionality and 

maps them directly to mouse and keyboard actions. The Java robot 

library provides a way for these actions to be emulated immediately 

inside the game. 

The original goal was twofold:  

 

1. Create an agent better than the random agent in a 1 vs. 0 game. 

2. Create an agent that can compete against the in-game beginner bot 

agents that have access to the private game API. 

The solution to the first goal was essentially trivial. As soon as the 

agent had a basic repertoire of perceptions about the locations of 

objects, he could easily move around the map and use actions that 

offer utility. The solution to the second goal was much harder. Since 

the automated players we played against are at almost beginner 

human level of play, once we were able to beat them, it showed that 

our agent did not make naïve mistakes and could be confused for an 

inexperienced human. However, even small mistakes could lead to 

very bad performance, so rooting out a lot of sources of misplay was 

essential. In conclusion, our efforts focused more on making an agent 

that does not make bad decisions than an agent that makes really 

good ones. This is why we omitted pure learning approaches and opted 

for more standard AI approaches that could handle a small repertoire 

of common situations. Our working hypothesis was that since these 

situations are very frequent, exceptional knowledge of specific 

circumstances and invention of solutions to those was not required. 
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Finally, we were able to test our agent in a fully automated 

environment. We managed to win reliably against the beginner-level 

agents implemented already in the game. Interestingly, to a human 

observer the gameplay of our agent can be hardly distinguished from 

that of an average human player.    

1.3 Thesis Overview 

 

The rest of the thesis is organized as follows. Firstly, in Chapter 2, we 

cover the background necessary for understanding the employed 

algorithms. Next, in Chapter 3, we introduce the problem, showing 

many parts of the game and providing evidence for the difficulty of the 

problem’s multidimensional action space, as well as the probable 

complications of the visual extraction methods. After that we introduce 

related work in the field. We notice that there is little work done in the 

screen capture / action types of agents in virtual environments. In 

Chapter 4, we describe in detail our approach to the problem, both in 

regards to visual processing as well as decision making. Then, in 

Chapter 5, we provide a comparison of the agent to both the beginner-

level automated agents implemented inside the game and the beginner 

human players. Finally, Chapter 6 concludes our work and lists ideas 

for future extensions.  
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Chapter 2. Background 

 

2.1 Hsv Color Space 

 

The hsv color space is one of the two most common representations of 

cylindrical coordinates in color coding. It is used in computer vision 

because of its closeness to human perception of color. Instead of 

describing the three components of color as amounts of red, green, 

and blue (rgb), as shown in Figure 2, we provide three different 

parameters: hue, which includes all the pure colors without any kind of 

tint or shade; saturation, which determines how vibrant the color 

looks; and, value, which corresponds to how far from black the final 

color is [9] (see Figure 3).    

 

 

Figure 2. RGB color space [14] 

 

Figure 3. Hsv color space [15] 
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2.2 Hough Transform 

 

The Hough transform algorithm is an image perception algorithm for 

the detection of specific features in an image, like lines or circles. 

Normally, the original algorithm creates an accumulator space, with 

the parameters of the shapes determining the dimensions of this 

space. Every point that is detected increases the value of all possible 

shapes that can produce it in the space [10][11].  

Points that are local maxima in our accumulator space represent 

shapes with parameters determined by the location of the points. We 

use a disk and circle detection algorithm without using size as a 

parameter, only location. Thus, we can determine the position of large 

circles or small disks of a certain color. 

2.3 Histograms 
 

A histogram is a representation of the distribution of some data. Color 

histograms are such representations where the data are the color 

values of an image [10]. We can make a histogram for every 

component in the hsv model and acquire information about the 

distributions of hue, saturation and value inside an image, as shown in 

Figure 4. To do this, we simply recognize the hsv components of each 

pixel and count all the pixels that have the same hsv component. We 

first decide the ranges where the component value of a pixel must fall 

in to get accounted for by the counting process. Then each range’s 

count is shown in the histogram. The hsv histogram that results from 

this process contains very important information about the image and 

can be used for classification. 

 

Figure 4. Hsv histogram (showing the Hue and Value components) [17] 
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2.4 A* Algorithm 
 

One of the most successful search algorithms for pathfinding is the A* 

algorithm [5][6]. It uses a best-first search strategy to find a path 

from the starting point to the end point. It is applied on a system of 

interconnected nodes, namely a graph. If we can traverse between all 

the connected nodes, with a movement cost provided by the weight on 

those nodes, we can apply the algorithm to find the shortest path 

between any two nodes in a very accurate and efficient way.  

The algorithm maintains a set of open nodes, the set of nodes we have 

not evaluated yet, which initially contains only the starting node. For 

every neighbor node of our currently evaluated node, we calculate the 

cost to reach it. It is equal to the sum of the past path-cost function 

g(x) and the expected future path-cost function h(x). Function h(x) 

heuristically estimates the remaining cost and has to be an admissible 

heuristic, meaning it should never overestimate the distance between 

the current node and the target node. After we find the node that has 

the lowest f(x) = g(x) + h(x) cost, we obtain our next node for 

evaluation. Every node that has not been evaluated yet remains in the 

open set. Every node that has been evaluated is put in the closed set. 

When the end (target) node is popped for evaluation, the algorithm 

terminates.   

The A* algorithm keeps track of each node’s predecessor. After the 

algorithm ends, the ending node will point to its predecessor, and so 

on, until we reach the starting node and this way we can get the full 

path. 

 

2.5 Linear Regression 

 

We are given a set of points (x,y) that lie on the plane and we are 

asked to find what the principal directions are, that is directions in 

which the set of points varies the most [4]. To do this we used Deming 

regression.  

We start by realizing that the “errors” between the points and our lines 

have the same scaling in both x and y directions. That is, the vertical 

and the horizontal axis have the same measure. This leads to a delta 

value of one. To find the best fit, we first calculate certain quantities, 

because the solution can be expressed in terms of the second-degree 

sample moments. 
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Solving for the three variables, we find the best fit for the line equation 

 where we are expected to minimize the weighted sum 

of squared residuals of the model (see Figure 5). 

 

 

 

Figure 5. Equations for solving the linear regression problem 

 

2.6 Neural Networks 

 

In machine learning, neural networks are computational models that 

are used for pattern recognition (see Figure 6). They are represented 

by a network of interconnected nodes called neurons which can 

perform computations based on input [7].  

 

 

 

 

 

 

 

 
Figure 6. Neural network with three layers of neurons [16] 
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What has attracted the most interest in neural networks is the ability 

to learn. In supervised learning, we provide a set of examples (x,y) 

where x is the input vector and y is the expected response to the 

input. The network adjusts the weights between the nodes so that it 

can approximate the function f(x) -> y. Even if the input does not 

conform to a specific example, the network will reach a solution based 

on generalizations from the samples based on trained weights. To 

actually train the network, we need an algorithm that will change the 

weights according to what the input-output pairs are. In this case, we 

used the resilient backpropagation algorithm [13]. 

2.7 Optical Character Recognition 

 

Optical character recognition (OCR) gives us the tools to extract 

character information from visual images. The algorithm employed is 

given an image containing a digit as input and has to decide which 

digit it is [7].  

 

In the training phase, the algorithm uses a set of randomly generated 

scanlines over the image that either cross or do not cross the digit. If a 

line crosses about half the digits in the set, the line has a high entropy 

value and can be used to differentiate between the digits. We keep a 

small number of lines, the ones with the highest entropy, as features. 

When the lines cross the digit we input 1 to the corresponding input 

node of the neural network that we will use to classify the digits. If the 

line does not cross the digit we input 0 to the corresponding input 

node.  

 

After training the network for a large number of samples, we get the 

classified digit in the output layer of the neural network.  
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Chapter 3. Problem Statement 

 

3.1 The “League of Legends” Game 
 

In League of Legends [1], the player starts the game at one side of the 

map. Every time he has enough gold, the main currency of the game, 

to buy items, he may do so whenever he arrives at the main platform 

of his base. In every game there are two competing teams. These 

teams are comprised of up to 5 players each, and their bases are 

located in opposite corners. Players have to defend their nexus, which 

resides in their base, and destroy the enemy nexus to win the game. 

At first it is impossible to actually reach the enemy nexus without 

dying, creating what is known as the lane phase. There are three lanes 

where champions fight for gold. Little entities called minions arrive at 

the lane from each side. The players have to kill the minions at the last 

moment to get the gold otherwise they get nothing. Turrets, buildings 

made to protect the nexus, attack anything in close proximity. Turrets 

provide gold when they are destroyed, and they focus on minions if the 

player is not aggressive towards enemy players beneath them. This 

provides the main way to win, beating your lane opponent and after 

that, destroying enough turrets to get to the enemy base. Buildings 

called inhibitors have to be destroyed before the enemy nexus can be 

attacked. Unlike turrets, they revive after some time, but when they 

are destroyed, the ally nexus produces stronger minions. Finally, there 

are resources for gold between the lanes, in what is called the jungle. 

The jungle is not used by the agents implemented by the game, so we 

will not be using it either. However the jungle sometimes provides 

faster paths to move from one point to the next. 

Our agent has to buy items, go to his lane, fight with enemy 

champions over minion gold, attack minions at the last moment to get 

that gold and follow his team in team fights. He has to know how much 

gold he has, where to be approximately so he can travel there when it 

is important, how to attack enemies by combining actions and where 

the enemy and ally turrets are (when they are enabled). Another 

feature which is not used very often is the chat box, where allies can 

communicate with our agent to instruct him to go to certain places. 

Finally, he has to know when to recall if he is in low health and when 
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to look at enemy turrets by allowing the view to not have him at its 

center. 

To do so, he has access to a minimap which contains strategic 

information about the location of buildings, minion and champions. He 

also has access to the view, which contains the landscape and the 

objects that are placed in it in close view. We use both, as well as 

some interface information to abstract the game state into our own 

model. 

 

Figure 7. Main view 

The main view of the game (see Figure 7) shows features, such as the 

minimap in the lower right, the skill section in the middle, and the 

player’s items to the left. This is the starting point for all champions 

after the game begins or after they die and their death counter reaches 

zero. After that, agents are free to roam around the map and acquire 

gold. Our character is also visible, and we can see the health bar that 

is associated with him. The green part shows our character’s health, 

while the blue part shows our character’s mana, used for actions. 

 

 

 

Figure 8 shows our agent’s health bar. We use the lines that separate 

the health into parts to count how much health our character has. 

Every vertical black line corresponds to a 100-value increment for our 

current health. 

Figure 8. Character health bar 



23  
 

 

 

Figure 9. Non-lane terrain / "Jungle" 

 

Our map processing system provides clues as to which jungle monsters 

are alive (see Figure 9). Our character does not want to attack these 

monsters and they are left for the player whose specialty is getting 

those monsters in the jungle. However, we detect them both in our 

minimap, to see if they are available for the taking, as well as in our 

view, in the same way we view normal enemy minions. Since they are 

not close to dying, our agent will not attack them. 

 

Figure 10. Lane view 
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This is a view of the lane (see Figure 10). Inside it, we see ally and 

enemy minions fighting each other. A “wave” of minions grants 

protection against certain champion skills as well as turrets, which 

target minions first unless our agent provokes enemy champions 

beneath them. 

The health bars are surrounded by black lines which contain either blue 

or red filling based on whether the minion is an ally or an enemy of the 

team (see Figure 11). 

 

 

 

 

 

 

 

 

 

 

In this view (see Figure 12), we see that ally turrets have health. The 

buildings they protect have no health bars until the turrets are 

destroyed. The nexus is protected until both turrets fall (see Figure 

13).

 

Figure 13. Enemy buildings in "fog of war" 

 

Figure 11. Minion health bars 

Figure 12. Turret health bar 



25  
 

We can also see that enemy buildings are hidden from the fog of war 

(see Figure 13). We can see whether they are there, but we cannot see 

how much health they have. This is a problem when we want to see 

things outside our character’s range, since we do not know if the 

building is covered in fog of war or is simply missing. Since detection is 

mostly done through health bars, this becomes a hard problem that 

persists through many feature detection algorithms.  

3.2 Thesis Goals 
 

What we are trying to implement runs across two dimensions. First we 

want to detect the features accurately. This will provide the missing 

API we need to connect our agent to the game. To complete this 

connection, we need to make sure the substrate is there to support our 

actions inside the game. Thus we need to abstract the 

keyboard/mouse input system, and create an accurate representation 

of the game state based on the screenshot. 

After we do this, we have a small amount of resources, measured in 

processing time, to actually implement our behavior. Our agent has to 

obtain more gold than the opponent. To do so, he has to decide where 

to be and what to do. Positioning is mainly done through the minimap, 

with clues as to the whereabouts of enemies or potential for gold. 

Defending turrets against enemy champions and minion waves is also 

important, because denying the enemy gold is a valid tactic.  

We obtain gold mainly through last hitting enemy minions. This means 

that our perception of the view must be very accurate and detect all 

the important entities on the screen, as well as record statistics about 

them. After we know how much health the enemy minions have, we 

must organize our attacks so that we can last hit them to gain gold. 

We need to coordinate a lot of actions, from attacking minions, to 

going back to avoid sources of danger and engaging enemy 

champions.  

Finally, we would need to be able to understand communication from 

teammates (if not outright respond to them) and recognize the amount 

of gold we currently have in order to buy items. 

If we do all these, our agent will be able to get gold early in the game, 

buy items and be a force to be reckoned with later in the game, where 

killing enemy champions and destroying enemy buildings becomes a 

priority. If the management of our position and gold is sufficient, we 

will be able to win by destroying most of the enemy buildings (enemy 

nexus included) and winning the game.  
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3.3 Related Work 
 

A similar problem was presented at the IEEE Computer Intelligence 

and Games conference, where a competition was held with the purpose 

of creating a controller for the game “Ms. Pac Man” [3]. 

 

The objective was again twofold, first use the screen capture method 

to obtain the game state, and afterwards act in the best interest of the 

agent. The same kind problems were present in this version of screen 

capturing agents since firstly, non-determinism and secondly, screen 

capture not accurately reflecting the current game state, since some 

time has already passed from the moment of the screen capture.  

 

It is arguable that in “League of Legends” the game is deterministic, 

however unlike “Ms. Pac Man“ where the game state is extracted 

easily, in League of Legends we have non-determinism because of the 

amount of visual information that cannot be extracted accurately. 

Overlapping causes serious issues in determining the exact game 

state, and that along with the delays in action, which can reach 

important fractions of a second, become a similar source of 

inefficiency. 

 

The methods employed for screen capture in the game of “Ms. Pac 

Man” were adequate to capture the entire game state in less than ten 

milliseconds. We are not granted the same privileges since extraction 

of an incomplete game state in “League of Legends” requires an 

amount of milliseconds in the hundreds. Since required response times 

are similar between the two games, we had to use the time allotted 

more efficiently and without using too many resources.  

 

Thus, in a way, this problem proves to be much more complex than 

the “Ms. Pac Man” controller implementation and our agent has to 

make tradeoffs between efficiency and resource management. 
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Chapter 4. Our Approach 

 

4.1 Visual Cues, the Map System 
 

Our starting point is the snapshot of the map view (see Figure 14). 

Initially, we just want to get the rgb value of pixels inside the image 

and transform it to a more useful form.  

 

Figure 14. Initial Map Screenshot 

The transformation from the rgb color space to the hsv color space is 

essentially a mapping between red, green and blue components to 

hue, saturation and value (brightness) components.  

The rgb color space is convenient because currently available computer 

monitors produce light of different wavelengths to produce any color 

on the screen. However, humans classify colors not based on these 

components but based on the hue which is the pure color category, 

like yellow, the saturation which shows how faded the color is and 

value which is how bright it is. 

We can clearly see that there are many colors to be used in the 

recognition of map entities. We need to reduce the amount of 

information in the map so that the possibility for background noise and 

variation to alter our results will be insignificant. 
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Figure 15. Quantization of the map screenshot 

After this initial phase, we quantize the results so that the visual 

information is clearer (see Figure 15). For every component of the hsv 

color space, we quantize the range uniformly using a small set of 

discrete values.  

We have already lost some of the available information, for example 

wall placement, but the tradeoff is that we also gained clarity. It is also 

clear where our agent has visibility on the map and where there is 

visual obstruction, also known as “fog of war”.  

We already see that noise has entered the picture and that there is no 

exact match for any kind of target image we want to detect. The goal 

is not simply to match a small target image pixel for pixel, but use a 

method that is resilient to background noise and variation.  

First, we remove the orange parts inside the map, as they correspond 

to visible areas. We can already see some degradation in the quality of 

our champion’s image, but we can also see that what remains is the 

information that is important, and processing can begin (see Figure 

16). 

 

 

Figure 16. The map after the removal of visible areas 
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Since we do not want to lower the quality of our image, after detecting 

the location of features we use the original, not the quantized, map to 

detect the exact colors in each one. In features that location is already 

established, we use scan boxes on the original image to form 

histograms. The term box is a bit misleading since these mini images 

take either square or circle shapes to accommodate different kinds of 

features. They are taken from the original image of the map. The 

histograms that are formed by these snap boxes are essentially 

vectors of hue, saturation and value that we are able to use to 

determine whether the location contains the feature or not.  

As already established, histogram vectors are objects that contain the 

hsv values of scan boxes on the minimap. We first examine 

predetermined locations of a feature and then create a disk on the 

image that analyzes the pixels present on it. This process forms a 

histogram vector, which is a count over all of these accumulated 

pixels, which can be used as a prototype or blueprint of the original 

feature. Sometimes the thresholding will be done on part of the vector. 

If the image contains other features or the original feature we are 

looking for is missing, the distance from these histograms or parts of 

histograms becomes large and doesn’t meet our thresholding criteria. 

When these criteria are met, we update the state to reflect the fact 

that we found the feature we were looking for.  

The scan area type is a disk because most features have complex 

shapes that generally fit inside the circle, meaning that if other pixels 

outside the disk were taken they would just help to introduce noise 

and variation in our sampled features, making meaningful comparisons 

with the prototype vector difficult.  These prototypes are sampled in-

game and serve as representatives of the features they are taken 

from. The histogram vectors shown are concatenated, meaning that 

each component (hue, saturation and value) is represented by one 

third of the image. The coloring scheme helps understand what each 

component represents inside the vector. An example of a histogram 

vector is shown in Figure 17. 

 

Detection of buildings and the jungle 

We begin our detection of buildings and jungle monsters by using the 

histograms generated by the disk shaped snap boxes on preset 

locations. We select certain ranges inside the histogram, and use them 

for thresholding. If the count of pixels inside that range surpasses a 

certain value, we consider it a valid detection of the feature. Buildings 

come in two varieties. Enemy buildings are mainly purple and allied 
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buildings are mainly blue. We use a high value in the hue section of 

the histogram that represents these colors to identify the buildings 

correctly. For the jungle, we use the color orange to identify the jungle 

minions. A threshold was again used for this range of the hue 

histogram to obtain a detection criterion. A specific exception is two 

jungle monsters in the main diagonal, which were detected by using 

the same technique that was used for character identification. This is 

explained in detail in the “Identifying characters” section below. The 

histogram vectors of jungle monsters and ally buildings are shown in 

Figure 17 and Figure 18 respectively. 

 

 

Figure 17. Jungle monster histogram 

 

  

Figure 18. Ally building histogram 

 

Hough Transform for minion disks 

We apply the idea of a Hough transform for disks (see Figure 19). The 

accumulator space for the transformation is for disks of specific radius 

but of unknown location. This means that we are looking for (x,y) pairs 

that signify the center of our disk. For every point that is potentially a 

center of a disk that can produce the pixel we acquired from the 

minion image, we add a unit to our accumulator space on the disk’s 

central location.  

Since the centers of all disks that can produce our point form a disk, 

we simply add a unit disk centered on our current point to the 

accumulator. In the end, we are left with points of high value that 

represent disks and background noise is filtered out. As we can see the 

filtered image contains pixels with the correct hsv value. This value 

varies depending on whether the minions are enemies or allies. In this 

case we detected all the pixels with a certain saturation and value that 

were cyan (see Figure 19, left). After we acquired this filtered image 

we performed the disk Hough transform and produced the resulting 

Hough transform space (see Figure 19, right). We can see that the 

character’s circle is visible but doesn’t have a high enough value. We 

can clearly see that the minion gatherings have high values and can be 
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detected easily. Since we know the radius of the disk, after a valid 

detection we remove the peaks that occur inside the area of the 

detected disk. This means that inside every minion wave we find 

around 4-5 disk centers and can update our map state accordingly. 

 

Figure 19. Filtered Image (left) and Hough transform for minions (right) 

 

Hough Transform for character circles 

To perform the Hough transform for character circles, we need to 

process the character/minion filtered image. We use a negative edge 

mask to detect where the image pixels go from cyan values to other 

values. After we apply the mask we get Figure 20, on the left, and we 

extract only the pixels in red color. Now we can use these pixels to 

apply the Hough transform method for circle detection. We simply 

have to calculate, for each pixel, the circles that are able to produce it. 

The Hough transform again has two parameters, (x,y), since the 

location is unknown but the radius is known.  

 

 

 

Figure 20. Processed Image (left) and Hough transform for characters (right) 
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Since the center of the circle produces all the points, we get the 

correct location of the circle in the accumulation plane (see Figure 20, 

right part). All the false peaks are created by circle parts formed by 

minions that simply do not add up. After we detect the circle we 

remove the center so that we do not detect the same circle twice. 

Identifying characters 

 

Figure 21. Character hsv vector 

Identifying the characters is done through a simple hsv histogram (see 

Figure 21). We compare the Manhattan distance in the vector space 

between the currently perceived histogram in every component with 

the prototype. This vector was taken from a disk-shaped scan box 

which was applied on the resulting circle centers of the Hough 

Transform method.  

Another way to detect the characters inside the map is using 

correlation hue vectors (see Figure 22). Every point in the image below 

exists in a two dimensional plane where every dimension is a hue 

vector. When the character’s pixels jump from a hue value to another, 

we represent it by a point inside this plane. The horizontal axis refers 

to the hue of the original pixel while the vertical axis refers to the hue 

of the destination pixel. 

 

 

 

  

 

 

This way we can differentiate surfaces of many consistent fillings from 

surfaces with alternating regions of colors, providing means for more 

accurate character identification. These methods are used in 

Figure 22. Accumulating correlation matrix 
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coordination to make sure our character identification is valid. Since 

they are not completely interdependent, their combination gives 

greater detection accuracy. In this case, the whole is greater than the 

sum of its parts. 

 

Figure 23. Complete detection of map features 

Detection of non-colliding features is 100% accurate (see Figure 23). 

4.2 Visual Cues, the View System 

 

 

 

 

 

 

 

The actual in game view provides enough information about the 

environment through a user interface filled with health bars and other 

statistics (see Figure 24). 

After we focus our efforts on detecting lines consisting of black pixels, 

we acquire the location of important features. We need to preprocess 

the main view image to infer the locations of entities on the map. 

These include the character health bar and building or minion/jungle 

health bars, and unfortunately background noise as well (see Figures 

25, 26 and 27). We process the main view and keep only the black 

Figure 24. Main game view with entities visible 

Enemy minions 

Ally minions 

Enemy inhibitor building 

Enemy turret building 

Ally inhibitor building 

Ally character 

View 

Jungle monster 

Jungle dragon monster 

Ally turret building 
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pixels. For the character health bar, which doesn’t contain any black 

pixels, we filter out all but the grey pixels of certain hsv values. What 

we get from this filtering of the main view image is enough to locate all 

the necessary entities for robust recognition from the view. 

 

Figure 25. Character health bar 

 

Figure 26. Building health bar 

 

Figure 27. Background noise example 

It is clear that there is a lot of noise surrounding the locations of 

important features and we have to remove it. We detect character 

health bars (see Figure 25) and building health bars (see Figure 26). 

Background noise is also detected but ignored (see Figure 27). 

To actually detect the lines, we need to make a mask and a threshold 

that will filter out background details. First we obtain an image where 

every pixel is 1 if it is black and 0 otherwise.  



35  
 

We use the mask “D” to form an image that is thresholded for values 

larger than zero to produce the final image. Then we will be able to 

obtain line segments that we can classify as entity health bars. 

 

 

If we apply the mask (see Figure 28), which is essentially an edge 

detection mask, and keep all the values larger than zero, we obtain the 

image which contains line segments from health bars only. Even the 

black filling inside a depleted health bar will not show up, which is 

precisely what we wanted. Afterwards, we detect lines of a certain 

length that are continuous. 

For minion health bars, we remove duplicate lines that are spaced 

within a certain distance of each other and add to the collection of 

double lines that make up minion entities. 

For characters, we first detect the health bar, and count the 

discontinuations that reflect a one hundred value increment on current 

health. We also assume the maximum amount of mana, which enables 

actions, based on character level and get a percentage of the blue line 

length of the mana bar, enabling us to estimate current mana. 

The character below a health bar is detected based on their hsv 

histograms. We combine the hue, saturation and value vectors into 

one big description vector and compare with our character’s prototype 

vector (see Figure 29). The scan box used to form the histogram 

vector is of a square shape, so that the character can fit most of his 

pixels inside it. Round scan boxes would take parts from the health bar 

and evaluate them as if they were character pixels so we don’t use 

them. The vectors are normalized based on the number of pixels we 

detected. This is necessary because while in our map the amount of 

pixels visible is always the same, in the view, by removing excess 

pixels from the background, and based on character rotation, we 

obtain a variable number of pixels from the character’s image (see 

Figure 30). 

Figure 28. Mask for line detection 
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To actually compare the hsv vector to our prototype vector, we weight 

the components, so that differences between the different components 

won’t affect the “distance” between the sample image and the 

prototype in the same way. Value was the most important component, 

so it was weighted by a factor of 3, saturation was weighted by a 

factor of 2 and hue was weighted by a factor of 1. Since this weighting 

was implemented before creating the prototypes, we can be sure that 

the same weights apply to the original prototype vectors. 

 

 

Figure 29. Character hsv histogram vector 

 

 

 

 

 

 

What we do to get a good ratio for character to background pixels is 

removal of the background that is low in saturation and brightness so 

we can get the true colors as shown in Figure 30. 

We now turn our attention to the problem of finding where walls are. 

Figure 31 is a mosaic representation of map and view features. The 

walls are mapped from a two dimensional map data image to our 3d 

view. Features detected inside the view are placed without relocating 

them to a new place, since their original places are correct.  

 

Figure 31. Wall transformation from map to view 

 

Figure 30. Image for hsv vector extraction 
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Figure 32. View of the walls 

 

Notice that the walls in Figure 31 (the grey dots) correspond to the 

actual walls in Figure 32, so that now our character may use manual 

pathfinding.  

 

2d transformation 

A transformation from a 2d image to a 3d perspective view is required. 

For this transformation, we first observe that the location horizontally 

affects how much stretching and shearing occurs while moving 

vertically. At the center there is no horizontal transformation, but as 

we move towards the sides, and closing in on the top of the screen, 

our location gets dragged towards the center.  

By using observed and expected values for certain fixed points we 

determine the values of constants necessary for the transformation to 

be a good approximation. To do this we use points that have the same 

value in one variable, but a different value in another (for example, 

same x but different y). The variables do not interact with each other 

since we have a sum of products of at most one unknown variable 

each. Thus we obtain the correct values for the constants. 

 

The walls were already in the minimap but not clearly defined. We 

used black pixels to represent walls from an image of the map, and 

white pixels to erase black pixels that were not part of walls (see 

Figure 33). Our software detects where the black pixels lie and places 

walls in those locations.  
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Finally we update the view state to reflect the walls inside our 3d view 

from the 2d to 3d mapping of the image’s wall data.  

Money OCR recognition 

In order to observe the amount of money in the possession of our 

agent, we have to use optical character recognition on the image that 

represents the amount of gold we have.  

An example of such an image is shown in Figure 34. 

 

Figure 34. Sample money image 

In order to extract the characters, we use a library that separates 

characters efficiently. Unfortunately, built in functions to actually 

identify the characters were available but suffering from accuracy 

issues. Thus, we trained a neural network that would identify singular 

digits from their images with a high degree of accuracy. The digits 

themselves show enough variation to confuse naïve methods for 

character extraction (see Figure 35). 

 

Figure 35. Separate digit images and variations 

 

We train a neural network based on the Encog java library to make the 

detection of digits accurate. Instead of using pixel values inside the 

Figure 33. Wall data in map image 



39  
 

images (which would require 400 input neurons for a 20x20 grid) we 

use a line-intersection method [7].  

Initially, we produce a lot of lines on the images randomly. Then we 

evaluate how many of those lines were important based on a measure 

of entropy. If a line is touching a digit and is crossing around half of 

the digits, its entropy will be at approximately its maximum value and 

the line can be used for digit detection. 

If a line is crossing most digits or none, it has low entropy and we 

cannot use its value to differentiate between the digits. Keeping a 

small number of lines was then used to train an artificial neural 

network on the samples of digits (see Figure 36, unique color for every 

line). 

 

Figure 36. Example of scanlines used to identify the digits. 

After enough variation samples were accounted for, the final 

classification was reliable and accurate. The neural network used three 

layers, one for input, one for output and a hidden middle layer using 

double the number of neurons of the input layer. After training the 

network, we used it on the cropped digit images to properly classify 

the digits. We obtained the final amount of gold by multiplying each 

digit with a proper power of ten. Since sometimes the OCR library 

omits detection of certain digits, we do not have a completely accurate 

detector, however this event is rare enough that every time our agent 

is trying to calculate his sum (around 5-6 times in every game) he will 

be able to calculate the amount of money reliably.  

 Skill Upgrade 

We use the same methods that we used to detect jungle and building 

entities to detect whether the skill upgrade button exists. These 

buttons have a fixed location and appear only when our character has 

to upgrade his skills. This way we can keep track of our character’s 

current level, which affects a number of game statistics, thus enabling 

us to accurately estimate character information like maximum amount 

of health or mana.  
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4.3 Decision Making 

 

Items 

Item selection is linear based on the amount of money we have. Every 

time our agent visits the nexus, he can buy more items based on his 

current gold. He spends the maximum amount of gold he can to buy 

the items in the list. Every item bought is subtracted in gold value from 

our total amount of gold. We stop buying items when we reach a total 

of 6 core items and there’s no more space for purchases. Sometimes 

the agent sells starting items (currently, without further modification, 

just the “Doran’s ring” item) to make space for more important late-

game items. 

 

Cooldowns 

We have a specific order for upgrading skills. After our game state is 

informing us that there’s a skill upgrade to be made, we press the right 

combination of keys to upgrade our skill. If this was the first upgrade 

of the skill, it enables us to use it for the first time. Another system, 

the cooldown calculator, is able to tell us which skills are available due 

to being upgraded. Using those skills locks them for a certain duration. 

We use the system’s clock to measure the exact time it takes for a 

cooldown to end. After that time has elapsed, the skills are available 

for use again. An understanding of our opportunities for aggression is 

based on the exact amount of skills that are free of cooldowns. This 

proves really important when we try to remove the enemy champion 

from the lane. Thus, cooldowns are a measure of aggression and used 

in the “aggressive” mood state.  

Strategist 

The strategist is responsible for the formation and evaluation of 

interesting points in the minimap. It is tasked with choices pertaining 

to strategy. 

The game itself forces the champions to have a starting laning phase, 

where they stay between enemy and ally turrets and fight for gold. Our 

champion ignores other lanes when the game starts, and after the first 

lane turret has been destroyed, becomes free to roam around the map. 

The creation of interest points depends on our observations of the map 

state. Collisions of minions, team fights, enemy characters, minion 
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waves pushing turrets and even chat commands allow for the 

development of points in a list. 

For every such point, the distance from our character is deducted from 

the initial interest value (which differs based on the event), as is the 

distance from the center of operations (which is the lane to which we 

have been assigned to). After the laning phase is over, it is only the 

distance from our champion that is accounted for. This permits free 

late-game movement to interest points. 

When inner turrets near the nexus are attacked they get huge priority 

bonuses. But the most common event that our character is motivated 

towards following is minion wave collisions, where ally and enemy 

minions are in close proximity. 

After the list of interest points has been created, we evaluate the 

interest points to find the one that is the most important by comparing 

its priority value against the other ones. This is sent as a signal of 

where to be in the mood system.  

 

Figure 37. Strategic interest formation (left) and final interest point (right) 

In Figure 37 we see the strategist in action. In the left part of the 

figure, we see the many auxiliary points that help with the formation of 

interest points. Green and orange dots are buildings while cyan and 

pink dots are minions. Depending on the kind of event that happens on 

a location we assign a priority to the interest points formed. The final 

points can be seen in the right part of the figure, with the yellow dot 

representing our character. 

Mood 

The mood system is a complicated system of behaviors centered on a 

theme. This will occur once for every perception-action cycle. This 

system decides to use only a small set of decision algorithms for every 
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kind of targeted mood. We get around three cycles every second 

meaning we couldn’t manage a system that globally estimated every 

kind of decision simultaneously. Since we can make around three 

actions every second, we get ample of time to switch our behavior 

phase and behave differently. This proves effective and versatile in 

dealing with changing environmental conditions. The mood is 

developed based on our current estimates of the game state. Minions, 

turrets and enemy characters make our agent “Scared”. If the view 

cannot detect our controlled champion, the mood becomes “Confused”. 

If there is an enemy turret that we cannot really see but is close 

enough to our champion, the agent becomes “Curious”. Enemy 

characters make the agent “Aggressive” while enemy minions make 

him “Greedy”. If the agent has to go back he becomes “Homesick”. 

Finally, if an interest point exists, the agent is “Interested”. This 

system decides which kind of algorithms will run to determine our 

actions, based on the exact amounts of all these mood types that are 

competing for control. 

After the mood has been developed, a comparison between different 

moods with different priorities ensures that the proper action type will 

be taken. However, even when we know the approximate action 

strategy the agent should be utilizing we still have to define a complex 

behavior based on the game state. 

Mood state: Confused 

The agent has use this action cycle to relocate himself. He centers the 

view on himself by using the spacebar key and continues to the next 

cycle. We don’t want to detect anything else or take away precious 

processing time from our next cycle, so the visual perception process 

ends immediately. 

Mood state: Curious 

The agent is close to a turret that is not hidden by the fog of war 

(turrets outside ally minion/champion ranges are not available for 

detection from our view systems). We move the view towards the 

turret and change the state so the information is updated based on 

what we saw. This means that the game state will be able to affect 

what the visual phase of the next cycle will be able to perceive. This is 

not unlike eye movement where we notice something interesting in a 

place we do not currently see and move our view to perceive the point 

of interest. 

Mood state: Homesick 
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The agent is low in health and has no other interest. He goes back to 

the nearest turret to recall back to the base. This is possible because 

we can estimate which allied turret is the closest to our agent and start 

recalling there. To accurately determine which places are deemed safe 

we use the map state. 

Mood state: Interested 

The agent has located a place of high interest. He wants to take an 

action to move to that place. The game already provides a robust 

algorithm for path formation from any point to any other. Our agent 

simply right clicks on the minimap to the place where he wants to be 

at. This is the mood of least priority and is only activated if other 

moods are inactive. To actually determine which place is of highest 

interest, we first form every kind of interest point on the minimap. 

These include but are not limited by minion collisions, character 

collisions, turrets being attacked by minion waves, turrets being 

attacked by characters, interest points created by chat commands and 

lane points (which are created after we choose the lane we want to 

play at).  

Mood state: Greedy 

When there are enemy minions on the map, the agent becomes 

“greedy”. Since minions are the most important way of acquiring gold 

our agent is focused on last hitting as many as possible. Enemy 

minions have to die by our agent and not some other cause, to give 

their gold to him. 

Our agent performs corrections on his position based on his ally minion 

wave (since being outside it means he can be attacked by enemy 

minions). If a low health target is available, the agent moves towards 

it. When an enemy minion is about to die, our agent attacks it to get 

its gold.  

Sometimes the agent has to use skills (rarely because the skills require 

an expendable resource, mana, and then have a cooldown period 

where they cannot be used again) to destroy the enemy minion wave 

before it reaches our turret. Minion waves that reach a turret are 

quickly eradicated by powerful turret attacks, denying our agent gold. 

Our agent’s most promising way of dealing with an enemy minion 

wave is using a skillshot. A skill is called a skillshot if it is a projectile 

shot that takes skill to aim properly. When there is great variance in 

enemy minion location, determining the best line for a shot can be 
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difficult. Also, our champion has to target a point, so to make sure the 

skill follows a specific line the starting point has to be on the line too. 

Our agent calculates the best line that fits the enemy minions’ 

locations and then follows the shortest path to it. After he arrives at his 

starting point, he uses his skillshot towards a point on the line that is 

further away, towards the minion wave. To do this, we perform a 

regression fit of a straight line to the set of coordinates of the minions 

by using the Deming regression model. If enough minions are visible 

inside the view, and we have enough mana, we decide to use the orb 

attack to kill or lower the health of as many minions as possible. 

Mood state: Scared 

The agent is trying to find escape routes from sources of danger. We 

have used a mapping from two-dimensional wall data to three-

dimensional obstacles. Thus, we have access to obstacle information as 

well as the sources of danger.  

We use the A* pathfinding algorithm to follow the path of least danger. 

We make a grid of nodes where every node that is a viable path is 

connected. The weight of the path is changed to reflect the fact that 

moving close to danger sources is harder than moving away from 

them. Thus danger sources like turrets radiate their weights first based 

on distance, and when the A* algorithm creates the starting nodes it 

applies the “danger proximity” value to the distance between nodes. 

We find the fastest way to move from our current location to a safe 

side of the screen which lies near an ally turret by using the results of 

the algorithm. Doing so produces safe paths that do not follow the 

normal pathfinding provided by the game (which only takes distance in 

consideration) but also a utility cost modification that weights the 

danger of a path against the shortness of its length. 

After we find the proper path, we follow part of it towards the edge of 

our view. We use the Manhattan distance to calculate the admissible 

heuristic of the A* algorithm, since we only make horizontal and 

vertical movements. This means that our heuristic will never 

overestimate the distance, since it represents the minimum distance 

possible.  

Mood state: Aggressive 

The agent has calculated whether he is in a winning or losing situation 

against a close opponent. He has decided that he wants to engage the 

opponent. Either he is a little aggressive and just wants to “poke” the 

enemy or he wants to go for a “kill”. Poking uses a minimal set of 



45  
 

actions that do not expend a lot of the agent’s resources. Trying to kill 

the enemy player results in loss of resources and is to be made after 

we can predict that there is a great chance it will lead to a kill. 

The cooldown calculator gives a rough estimate of what our agent can 

do, and by comparing health and cooldowns we can approximate our 

chances for winning in a one vs one situation. A team fighting potential 

module also calculates whether we should engage in a larger fight that 

includes more than two champions fighting. 

After all these imply the opportunity for attack, our agent employs a 

coordinated attack against the enemy. This attack puts certain skills on 

cooldowns by using them to attack an enemy character. After the 

coordinated attack is over our agent goes back to his ally minion wave 

because of the lack of cooldowns to use in attacks. 

Chat Commands 

We use a simple bag-of-words model to classify sentences based on 

their meaning [12]. Most of the work focuses on how to be able to 

respond in game, although there is no functionality to support 

transforming our answer strings into a series of keystrokes. However, 

certain mentions of objectives do interact with the Strategist to create 

new interest points for our agent, like the dragon, the blue buff or the 

baron jungle monsters. 

For the model itself, we create mappings between certain words and a 

standard list of words. This standard list also creates mappings 

between the few words in the dictionary with concepts. 

Then we get an activation system that determines the way concepts 

interact with each other, activating more if they are related positively 

and less if they are related negatively. Finally, we check the activation 

status of our output concepts which determine what behavior our 

agents should have. 

In case there is a chat command that says we should go to an 

objective, our agent is able to form an interest point in the minimap 

that will guide him there strategically. If he has no interest in pursuing 

something inside the view, he is inclined to follow the objective as 

commanded from an ally through chat. 

Only one response is an actual interaction between the agent’s actions 

and the chat, while others are simply ways for the agent to 

communicate in future implementations. The agent understands and 

forms a response without actually typing it, since we do not want to 

spend cycles typing instead of interacting with our game environment. 
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4.4 Action Mappings 

 

To output actions to the game, our agent has to make simple output 

actions that the game understands like moving the mouse or pressing 

keys. To do this, we rely on an abstraction of the output system, which 

assigns general commands, like moving the view or clicking on a point 

of the map, to actual movements and clicks on the lowest level of 

abstraction.  

To create input our agent maintains a queue of commands that are to 

be executed in priority. After we determine the abstract action we want 

to perform, like an exploration movement to Point a, the system first 

determines what mouse and keyboard actions are necessary. After 

determining this middle level representation of keyboard and mouse 

inputs, we convert the input to the lowest level of input. For example 

the action of moving the mouse and then pressing “Q” becomes a 

mouse movement to a specific point, a “Q” key press and a “Q” key 

release for a certain duration. After this is done, we consider the action 

completed and we can follow with another action. 

 

 

4.5 Implementation 
 

The following is a list of specific implementation details and imported 

libraries necessary for implementing the agent. The libraries are open 

source and free to use. 

- The neural network we created used 50 input neurons and 100 

hidden neurons to calculate the result in the 10 output neurons. 

 

- We used the encog neural network library for creating and 

training the neural network for optical character recognition. 

 

- We used the JavaOcr library for extracting characters and 

separating them in different image files. 

 

- We used the Tesseract java library for determining the content 

of chat images, where players communicate with each other 

inside the game.  
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Chapter 5. Results 

 

Firstly, we want to determine the accuracy of our visual systems. They 

prove robust enough to be used in isolation as an auxiliary api that the 

agent can use to acquire utility from the environment.  

Secondly, we want to see if the agent can survive in the environment 

and have a decent performance. Verifying the exact effectiveness of 

our whole implementation will depend on comparisons to new human 

players, beginner bot agents as well as dummy “random” agents.  

If we explore the idea of a random agent inside the game we soon 

come to find that it is going against our intuition of what we should 

compare against. If we take chess as an example, a random agent 

would produce meaningful choices every once in a while, making 

seemingly ignorant moves when something is obvious to a human 

player but completely ignored by the agent. This is not the case with 

League of Legends. Coordinating even a simple action proves much too 

difficult for a random agent. The degree of freedom is so vast that any 

kind of randomness in our agent proves detrimental to his success in 

the game.  

 

5.1 Screen Capture 
 

It was essential for the agent to be able to capture the screen’s 

elements with great accuracy. The second most important source for 

information is the mini-map. When the different elements of the 

minimap do not collide, we get 100% accuracy in detecting them. This 

holds true even when the box surrounding the view (which is a white 

parallelogram) alters the values of the elements enough to distort their 

histograms. Consequently, wherever we look non-colliding map 

elements will be detected with complete accuracy. 

Since features can possibly collide, we made sure to use techniques 

that are not susceptible to variation and distortion of the original 

features. When minions pass through the terrain and meet turrets, the 

turrets are for the most part recognized without problems. However, 
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when the character almost completely obscures the turret, it is hard to 

recognize it and it becomes deactivated. This is important because it 

shows that we do not get false positives if the element significantly 

changes.  

 

Figure 38. Scanbox feature detection in the minimap 

As we see in Figure 38, we get black and white boxes for turrets, which 

have all been recognized except the one that collides with our 

character, grey boxes for inhibitor buildings, orange ones for the jungle 

(as well as green for the dragon and baron jungle monsters), and 

finally cyan and pink for the minion waves. The minion waves are 

composed of many little disks that represent minions. Our view is 

shown in yellow, where the left, middle and right part have been 

recognized completely. The character is shown in blue, and enemy 

characters, if any, would be shown in red. To see how we handle false 

positives, we take another screenshot when some features are 

missing.  

 

Figure 39. Scanbox feature detection in the minimap(cont.) 
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As we can see (Figure 39), false detection is not a problem. Every 

element that is missing (notably, most turrets in the main diagonal 

that runs across the river) is not detected by the screen capture 

system. Notice how even when the characters at the bottom of the 

image are really close, they are still recognized as separate characters 

that have been identified correctly.  

In conclusion, false detection is not an issue. Even colliding elements 

of the image have a high chance of being detected properly. This is 

important because most of the time some kind of overlap will happen 

and no matter how good we can detect elements in isolation, not being 

able to detect them when they are close to each other would be a big 

drawback. Fortunately, the robust algorithms employed make sure to 

detect the elements when they are there and detect their absence 

when they are not. 

The Hough transform idea on two parameters can also be shown to be 

accurate for characters (see Figure 40).  

 

Figure 40. Hough Transform (for both teams) 

The detection of characters is easy, because the peaks of the circles 

are way above the threshold of character detection, and minion circles, 

clearly visible in the center of the left part and the top of the right part 

of the image, cannot pass the threshold and prove they are characters. 

Before actually using the Hough transform, we had to make sure to 

remove the filling of the minion disks so they would not create a lot of 

possible circles and make detection harder (see Figure 41). 
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Figure 41. Edge detection on minions and characters 

 

We are thus able to detect the circles by using the Hough transform for 

circles in this preprocessed image (Figure 41).  

After all the map elements have been accounted for, it is time to move 

on to the view elements. This is the most integral part of the process. 

We need to be able to detect characters, minions, buildings and walls. 

The health bars must provide a means to get the current health of 

every such element, and provide clues as to what we can do to 

improve our utility income. 

 

 

Figure 42. Walls (in grey) mapped from 2d data to 3d perspective 

First we must detect where the walls lie in our view (see Figure 42). 

This figure shows a pretty accurate description of walls that is needed 

when we want to employ manual pathfinding. These have been 

mapped from the 2d map image to the 3d view plane. The yellow dot 

is our character, based on his position inside the main view, and the 

red/blue dots are the minions (see Figure 43). 
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Figure 43. Minions (blue and red) , characters (yellow) and wall mappings (grey) 

 

 

Figure 44. View element detection features 

  

As we can see in Figure 44, we accurately detect the health bars of 

every element on the screen. This not only applies to the location of 

the entities but also on the amount of health they have. The red line 

that runs on the health bars is part of the algorithm and shows what 

percentage of the bar is filled. Unfortunately, the exact amount of 

minion health is not known because the bar represents a percentage. 

For the character, this is not a problem since the health bar is divided 

in 100-value increments, so we can get the precise amount of health. 

The character’s maximum amount of mana (the champion’s blue part 

of the health bar) is based on what his character level is, and given 

this maximum amount of mana, we get the approximate amount of 

current mana that can fuel skill actions.   

Minion health cannot be estimated as an absolute quantity. 

Fortunately, since their health scales with our character’s attack 

damage, we can safely assume that the percentage of health is as 

important as acquiring the absolute health of the minion. 
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This means that the percentage of health remaining qualifies as the 

only important parameter in estimating how many hits a minion should 

take before dying.  

The bottom-right image in Figure 44 shows the character after all the 

background pixels have been edited out by our algorithms. This leaves 

the proper pixels that belong to the champion to be recognized. 

Character recognition in the view is not as accurate as it could be. This 

does not prove to be a problem because insofar no such information is 

used by the agent in decision making. We do not want to know which 

character the enemy is yet, but if we did want to know, since the 

accuracy is variable with time, we would want to have a system that 

would make reliable measurements by remembering which character 

was nearby from previous game states and correlate this information. 

The same issue does not apply to the map view because characters are 

not 3d models that can be rotated or obscured by background. In 

essence, the map shows a clear view of the champions involved and 

we also get the accuracy rates described in the map detection accuracy 

above (close to 100% accuracy). 

Finally we make a statement about the accuracy of the money 

measuring system. The system has an accuracy rate of around 98% 

for detecting all the characters in the image. This is in part because the 

library we used does not always detect all the digits in the number and 

sometimes completely ignores some. This is rare, but it means our 

OCR will not be able to measure the number since every digit has to be 

multiplied by the correct power of ten based on position. Missing a 

digit will ruin this whole positioning scheme and change the whole 

number. Since we only perceive the amount of money we have on rare 

occasions (when we are at the nexus, around 4-5 times per game of 

30 minutes), this does not prove to be a big problem.  

 

5.2 Action Reels 
 

To showcase our agent’s behavior, we show some of the action types 

he performs when under certain perceptual schemes. For every type of 

behavior we analyze the cause for action (which is the whole behavior 

vector) and the result (which is a specific type of behavioral patterns 

directed towards a goal). When necessary we provide visual 

information that shows the agent in action. 
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First we have the action upgrades. If the agent notices that the 

buttons for upgrade are visible, he skips the entire cycle and simply 

upgrades the correct skill. 

We then proceed to item shopping. The agent notices the amount of 

gold he has, and if he is in the base he proceeds to buy the correct 

items from the in-game shop. 

 

 

Figure 45. In-game shopping tab 

Here in Figure 45 we see a clear screenshot of the in-game shop 

function. Our agent uses the standard page that is recommended for 

our champion. If the game changes this order, we would have to use 

custom item sets, a functionality provided from inside the game, to be 

able to buy items in the correct order. A complete overhaul of this 

system could make it type the name of the item. We assumed this 

process would be prone to errors, such as delays in the keypresses 

that occur under heavy network load, and decided against it. It would 

also be time consuming to type every name letter by letter and we 

instead opt for fast sequential right clicking of the items. 

When the agent is in the “interested” mood, he clicks on the map to 

travel to a distant point on it (see Figure 46). He has already figured 

out where to be and uses the game’s built-in pathfinding (that works 

on the minimap) to travel to a certain location. 
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Figure 46. Mood "interesting" 

Begin by noticing that the top-left part of the image shows the agent’s 

moods that compete for actions. The current mood is “interested”. The 

agent already clicked the point on the map that he wants to go to and 

travels towards it (bottom-right part of Figure 46 shows the line of 

traversal). 

When the agent is in the “greedy” mood, he tries to kill minions by 

hitting them at the last moment to get their gold. 

 

Figure 47. Mood "greedy" 
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This mood is represented by the color green. The agent either “orbs” 

(the main damaging action) the wave if big enough, or simply tries to 

hit the lowest health minions by moving close to them and performing 

the attack animation (Figure 47). 

 

 

Figure 48. Agent using the "Orb of Deception" skill 

Our agent is using his skill “Orb of Deception” to lower the health of 

enemy minions (see Figure 48). 

 

Figure 49. Agent prepares to "autoattack" the enemy minion 

Our agent is using his “autoattack” animation to last hit the enemy 

minion (see Figure 49). 
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When the agent is in the “confused” mood, he simply repositions the 

view on himself by using spacebar. This happens when the agent 

cannot see himself. 

When the agent is in the “scared” mood, he moves away from sources 

of danger based on manual pathfinding using the A* algorithm. The 

mood color used is blue, as shown again on the top-left part of the 

image (see Figure 50).  

 

Figure 50. Mood "scared" 

When the agent is low in health he simply prefers going back to the 

base to heal. The mood color is cyan (see Figure 51). 

 

Figure 51. Mood "homesick" 
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The last mood is “curious” and it is used when we are near an enemy 

turret and want to know whether it is there or not. We move the view 

on the turret and try to detect it. The new information we acquire is 

updated in the game state and we continue with our next cycle (see 

Figure Set 52). 

 

 

 

 

Figure 52. View relocation based on perceived turret threat 

We can clearly see that the game state affects the next cycle by 

changing what the visual processing system wants to perceive. This 

also happens when the character is missing from the main view and we 

reposition it have him at the center. This cycle is very important in 
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versatile autonomous agents that can control their visual field’s 

location or orientation (as in real world applications).  

5.3 Random Agent 

 

We start implementing a random agent to see how well he fares 

against the environment. Even after correcting the probabilities of the 

actions, we see the following results: 

First, by using random move actions inside the minimap, we take 

advantage of the built-in pathfinding algorithms of the game, but since 

movement is completely random, with all locations being of equal 

probability, we finally reach coordinates (110,110), which means that 

the expected position of our agent as time approaches infinity is the 

center of the map (of size 220x220). After the agent reaches that 

place, and minion waves start to spawn, the agent is attacked and 

dies, unless already protected by his own minion wave. Randomly 

using his actions inside the game also proves troublesome since his 

main resource for using actions, his mana, is depleted quickly, 

preventing further action from being taken. Randomly clicking on the 

view of the map does not work when the agent is blind as to where the 

enemies lie. After running the software for 5 minutes, we see the 

agent approaching the middle of the map, hitting only one minion by 

accident and then dying. Before he reaches the middle of the map 

again, the time is up. 

We conclude that the random agent is completely unable to perform 

any kind of meaningful action, so hard coding certain behaviors was 

correctly identified as the best way to implement our agent’s core 

behavior patterns.  

 

5.4 Dummy Agent 

 

We now focus our attention to playing without an opponent but 

utilizing both our visual fields and playing properly. Our agent is 

running at his full potential, however since no opponent is present, we 

have no use for aggression patterns based on the presence of 

enemies. The main problem here is that our minion waves start 

building up and the damage on enemy minions is too much for our 

agent to timely last hit the enemy minions. That lowers our highest 

possible creep score (the amount of minions our agent has last hit for 

the game’s duration). However, without pressure from an opponent 

our agent is able to stay in the lane longer.  
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Our scores for this game mode are seen in Figure 53. 

0

10

20

30

40

50

60

1st Game 2nd Game 3rd Game

Agent

Lowest Bot

Highest Bot

 

Figure 53. Agent comparisons for 1 vs. 0 situations 

 

Our agent was able to beat the in-game beginner bots in 1 vs. 0 

situations (where no opponent was present in lane). This means our 

perception-action cycle is fast enough to be able to compete with the 

scripted bots that use the API directly. For comparison, the ideal 

amount of minions a human player is expected to get before he 

becomes a game expert is around 70 without opponents. 70 minions is 

also the amount of minions expected of very competent players in a 1 

vs. 1 situation. 50 minions per 10 minutes of playing the game is 

above expected for our agent and means the system handling our 

agent’s last hitting is working efficiently when not disturbed by the 

presence of opponents. 

 

5.5 Duelist Agent 
 

Our efforts are now directed towards dueling with one enemy 

opponent. This means that the opportunities for strategic decisions are 

minimized and what we have to do is be tactically correct to be able to 

stay in our lane and minimize the time we need to spend away from 

the enemy minions. Doing this requires constant pressure on the 

enemy, with the ultimate goal of either defeating him or pushing him 

out of the lane.  
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When we duel with a lane opponent, we get less minions than when we 

were alone in the lane. However, we manage to remove the enemy 

lane champion from our lane and lower his ability to get minion 

remarkably. We remain ahead by around 10-20 minions from our 

opponent and we manage to obtain 1 enemy champion kill in the first 

ten minutes. Since the laning phase is usually over after ten minutes 

we stop our comparisons here. We manage to get around 40 minions 

every 10 minutes in the game. 

Human players in the lowest league (meaning beginner level human 

players) score around 50 minions the first 10 minutes. However 

meaningful comparisons can be made only after realizing that most of 

the time, dueling with enemies in competitive play means a player will 

usually have the same amount of minion kills as his opponent. By 

managing to zone the enemy champion out of the lane, our agent 

creates a positive gold advantage by lowering the enemy champion’s 

minion kill potential.  

5.6 Complete Agent 
 

Finally, we try an X vs. Y situation, where our agent is battling with 

allies against a multitude of opponents. This is the normal mode of the 

game, with a 5 vs. 5 being the common way of playing it. Our agent 

has to be better than his opponent to be able to have a chance at 

winning. After running certain games against the beginner ai agents of 

the game, we see the following: 

First our laning phase worked in the same way as describe in the 

previous section. When the turrets started falling, our agent started 

visiting other allied champions and helping get other turrets. When 

team fights started happening, we had a higher chance of defeating 

enemy champions and proceeding with acquiring even more objectives 

like turrets. The gold advantage started piling up and we managed to 

win the game. This result isn’t completely consistent because there are 

a lot of problems that can be magnified from the early phase of the 

game. These kinds of problems originate from lack of a completely 

accurate game state. Certain actions cannot be validated by perception 

and we have to assume they were performed without mistake. For 

example if our agent tries to upgrade a skill but a lag spike prevents 

the action from being realized in the game’s world, we will have 

problems for the rest of the game. We discuss the implications of these 

problems in the future work section. 
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Chapter 6. Conclusions 

 

6.1 Outcome 

 

The first results we acquired from the perception module of the agent 

were relevantly inaccurate at best. Tinkering with specific algorithms 

and techniques to improve accuracy turned out to be harder than 

expected, highlighting the difficulty of integrating information about 

objects from many modes of perception. Implementing improved 

algorithms could prove fatal to the execution of the program under 

such limited spatial and temporal resources.  

The agent does not learn new things for the time being, since without 

a good model of the game before learning, the results would not be 

sufficient.  

Finally, the agent’s software is comprised of more than ten thousand 

lines of code, but seems to be a really weak player compared to 

advanced human level play. This means that without a better machine, 

emulation of perception and action without learning would not be able 

to impress a panel of judges very easily. However it is important to 

note that the level of sophistication in agents that can beat human 

level opponents in most games is actually overshadowed by the brute 

force algorithms employed on a very abstract game state. This kind of 

agent, one that has to perceive a game from a snapshot, cannot 

enforce such methods since there is not an accurate and simplistic 

abstract representation of the game, with clear-cut rules and a small 

amount of moves available.  

It is obvious that solving this problem efficiently would possibly prove 

to be an AI-complete problem that depends on cunning tactics, 

estimation of the opponent’s mental state, learning new tricks by 

exploration and balancing utility vs costs in a very undefined and 

unstable game environment. With the advent of new computers maybe 

this will prove to be a much easier problem, one that will still require 

intelligent effort to solve efficiently. 
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6.2 Discussion 

 

In this thesis, we provided a way of implementation that is different 

from the standard methods for dealing with game artificial intelligence. 

A more human-like approach was given that determined the amount of 

processing necessary to abstract an approximate game state, and 

program an agent that could play the game reasonably well. By using 

a standard home pc, we show that currently the processing power 

available to computers is enough to use a variety of algorithms to 

solve such a complex task.  

It seems obvious that with more processing power we could employ 

state of the art algorithms for detection and reach a much better 

understanding of the game state. Currently, the perception of enemy 

actions, with the exception of positioning, is virtually non-existent. 

Without a good model for enemy actions, and without enough time to 

react to or predict those actions, our agent will not be able to compete 

against higher skilled players. With faster processing times we would 

be able to also implement machine learning algorithms that would be 

able to learn complex maneuvers that are currently impossible to 

perform.  

Making an efficient agent for this game proves really difficult without 

accurate ad priori knowledge of the complete game state. If an 

application programming interface (API) is presented, this would make 

the creation of an agent much easier, but would defeat the purpose of 

making a human-like agent that uses techniques similar to ones in 

real-world applications. 

 

6.3 Future Work 

 

For the most part, the agent is not complete. The most basic 

component missing is learning based on exploration, and a second, 

also important part is learning how to estimate opponent level of play. 

If the agent is able to learn how to better utilize the environment 

without semi-scripted behavior, he will be able to really reach higher 

level of play without guidance. Estimating the opponent’s level of play 

is also vital to being able to employ basic strategic patterns that will 

either defend against better opponents or be aggressive towards 

weaker ones. 
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If the agent’s software is not able to execute on a faster machine, 

these would prove to be very unrealistic goals since any benefit the 

agent would gain from advancing his understanding of the game would 

be counterbalanced by the mere fact that the basic action cycle of 

roughly 300 milliseconds would be forbiddingly augmented.  

Certain problems can cripple our agent’s performance. Revalidating his 

actions through perception would be a necessary implementation for 

future development of the software. We would need to improve our 

skill upgrade and item purchase systems so that they work even under 

a heavy network load that causes some actions to not be registered in 

the game. Problems like these need to be eradicated in order to have a 

good foundation for a robust autonomous agent. 

  

6.4 Lessons 

 

The amount of work needed to complete this thesis made it possible to 

understand the kinds of problems involved in large project 

management. The coding project itself was more than ten thousand 

lines in length without counting revisions and corrections. To manage 

this kind of complexity we needed a plan, a good understanding of the 

object-oriented programming paradigm and a lot of patience. Error 

correction gave a deep understanding of debugging features and an 

overall insight into what kinds of problems can be caused by what 

types of coding errors. What is often said in programming is that there 

has to be a flow of ideas that can be translated easily into code. This 

demanding project helped train this exact kind of behavior where an 

understanding of the problem caused a flurry of ideas to come forth 

and be translated into code. The algorithms required in both visual 

perception and decision making made it possible for me to develop a 

strong knowledge foundation for future work. It also gave me an 

understanding of the complexity, spatial or temporal, of a variety of 

processes. 

All in all, it was a character molding experience that helped me gain 

confidence in dealing with any kind of problem, whether complex or 

simple, large-scale or quick to solve. For the most part, it is sufficient 

to say that I learned what I was able to do with concentrated effort, 

making me trust myself and giving me a foothold for future reference.  
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Appendix I. User Guide 
 

This is a list of information necessary to be able to use the agent 

with the game. 

- In the game options, we enable “smartcast” for all the actions our 

champion can take (called skills), and run the game in a windowed 

1600x900 resolution  

 

- We set the items page to “Recommended” (should be automatically 

there in case the account has not changed item set settings” 

 

- We use the champion named “Ahri”. We can extend the program so 

it can accommodate other characters, since this specific champion if 

one of the hardest to play with, but we are currently only using this 

champion, as he has a difficult skillset to master with “skillshots” 

and positional elements being the most important. 

 

- We use the normal skins for all the champions and we get the 

“Ignite” and “Flash” summoner spells in the champion selection 

screen.  

 

- The map and view detection of characters can be extended easily. 

Currently, the usual opponents are the champions named “Annie”, 

“Lux”, “Wukong”, “Ryze” and “Renekton”. The agent will not 

recognize enemies that are not part of the above selection. We can 

make the agent ignore enemy champion identification and just 

consider all opponents equally but that would rarely lead to 

misrepresentation of enemy minion waves as champions. 

 

- We use the load from scratch option provided, and choose a lane 

before pressing start. It is advised to press the “Activate” button 

when the view behind our agent’s software window is visible. If the 

agent does not capture the game view immediately, there might 

occur problems with the long lasting detection of map features. 

 

- We use the button “N” to start or stop the agent from being active. 

Since the agent uses buttons without awareness of whether the 

game window is actually focused, we run into problems if we try to 

stop the program from the ide (integrated development 

environment we run the software from). 

 


