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Absrtact

In this thesis, various non smooth nonlinearities presented in any physical system

and fault diagnosis methods are examined. Towards this concept, a large number

of mathematical models and their identification and estimation techniques are pre-

sented. In parallel, an introduction in the fault diagnosis area and its up-to-date

methodology are also presented.

The problem of actuator fault detection in mechanical systems with friction that

perform linear motion, is discussed and it is the main contribution of this disser-

tation. The dynamic LuGre model is used to model the effects of friction. The

proposed architecture is built upon an on-line neural network approximator which

requires only system’s position and velocity. The friction internal state is not as-

sumed to be available for measurement. The developed fault detector is analyzed

with respect to its robustness and sensitivity. Rigorous fault detectability conditions

and upper bounds for the detection time are also derived. The proposed methodol-

ogy is applied to the DAMADICS benchmark problem which is developed in order

to approximate the industrial process in a sugar factory located in Lublin (Poland).

The neural network approximation scheme makes it possible to detect either incip-

ient or abrupt faults regarding the friction and the spring models of the considered

actuator.
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Chapter 1

Introduction

The need to design systems able to guarantee increased reliability, availability and

safety, triggered on-going research in the area of fault diagnosis, mainly through

the model-based analytical redundancy path. Analytical redundancy schemes have

received considerable attention in the last two decades mostly owing to the advances

in computer technology, as well as to the appearance of powerful signal processing

and learning methodologies. In general, the actual behavior of the plant is compared

to that expected, on the basis of a plant model. Deviations between the actual and

the estimated behavior are expressed in terms of residuals, which are indications

of faults. Detailed overviews of such schemes may be found in [26]-[29]. The ma-

jority of these methods are constraint to linear systems. Owing to the inherent

complexity, derivation of analytical results regarding robustness and sensitivity of

fault diagnosis schemes for nonlinear systems is difficult. Despite the difficulties,

works on nonlinear systems have recently appeared [51]-[53] and [54].

In a wide range of physical systems such as mechanical systems, electro-magnetic

systems, actuators, sensors etc., non-smooth nonlinear mechanisms such as friction,

backlash and hysteresis, severely limit their performance and reliability. Up to now,
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previous works on nonlinear fault diagnosis were focused on developing general-

purpose architectures. Thus, unavoidably, they were restricted to special classes

of nonlinear systems, assuming full state measurement and smooth nonlinearities.

Nonlinear observers have also been employed to relax the full state measurement

assumption. Unfortunately, the use of observers further restricts the class of nonlin-

ear systems and the type of permissible faults. Moreover, nonlinear observer design

is not de-coupled from controller design. Hence, important theoretical questions

regarding even fault detection are raised, since practically all systems operate in a

closed loop.

The main contribution of this thesis is that of detecting faults in mechanical systems

with friction. Friction is present in any system that involves mechanical motion. It

may cause large steady state errors and oscillations generated by a combination

of friction, which counteracts motion, and an instability mechanism, thus making

friction a very complicated phenomenon. The aforementioned reasons impose extra

complexity to any scheme that is targeted at diagnosing faults in such systems.

Studies [3], [6] have shown that a friction model involving dynamics is necessary

to describe accurately the friction phenomena. Various dynamic models have been

proposed [9], [3], [15] and [18]. However, the unknown structure of the incoming

faults significantly magnifies the level of system uncertainty. Neural networks with

their massive parallelism, very fast adaptability and inherent approximation capabil-

ities, have already been utilized mainly towards the friction compensation problem

[10].

In this work we present a novel approach to detect faults in mechanical systems

with friction that perform linear motion. The basic module in the proposed ar-
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chitecture is an on-line approximator which is based on liner-in-the-weights neural

network structures. To model the effects of friction, the dynamic LuGre model [9] is

used. However, we don’t assume knowledge of system nonlinearities. Furthermore,

the friction internal state is not assumed to be available for measurement. The on-

line approximator requires system’s position and velocity as well as its input force.

The performance of the developed fault detector is analyzed with respect to its

robustness and sensitivity. Rigorous fault detectability conditions are also derived

basing on the important results presented in [51]. We go beyond the theoretical

analysis and present simulation studies to clarify and verify the approach with em-

phasis on the application to the DAMADICS actuator benchmark problem. Under

the framework of the DAMADICS research network funded by the European Union,

a benchmark model was developed to approximate the behavior of the evaporation

stage of a sugar factory in Lublin (Poland). Actuators under consideration consist

of a control valve, a pneumatic linear servomotor and a positioner. In such kind of

electromechanical systems, the presence of friction phenomena is unavoidable and

significantly increases the complexity of the fault diagnosis problem.

The thesis is organized as follows. In Chapter 2, wide-used models in the litera-

ture for friction, backlash and hysteresis are presented. It is also reported their

limitations and applicability. Additionaly the existed identification and estimation

techniques are also investigated. The main purpose of this chapter is to explain

in-depth the non-smooth non-linearities that are often appear to the physical sys-

tems. Furthermore, as it is explained above, the model constitutes the basis for

the development of model-based analytical redundancy methods. In Chapter 3 an

introduction to the fault diagnosis area and some basic definitions are being made.

This chapter presents some basic methods, such as observers, parity relations, etc.

It also presents the up-to-date research where it is oriented to the nonlinear sys-
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tems and the application of qualitative and computational intelligence techniques.

In Chapter 4, which is a combination of the two preceded chapters, our method

is presented. We formulate the problem and we state the necessary assumptions.

Some definitions and preliminaries are also provided. This chapter also deals with

the design and the robustness analysis of the on-line approximation scheme. More-

over, the sensitivity analysis of the fault detection scheme is carried out, in which

fault detectability conditions are also derived. In addition, upper bounds on the

detection time and a relationship between detection time and the values of certain

design parameters are established. Simulation studies are also presented. Finally, in

Chapter 5, a brief description of the DAMADICS benchmark problem including its

simulation results and the performance of the proposed, in Chapter 4, methodology

are given. The results are clarify and verify the reliability of the proposed method.
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Chapter 2

Non-smooth non-linearities

Non-smooth non-linearities are common in practical systems. Such non-linearities

are usually poorly known and may vary with time and they often severly limit system

performance. Especially in actuators which are installed in harsh environment,

non-linearities increase with wear and tear and in mass production change from

component to component. The objective is to design a desirable system in order

to be able to accomodate such uncertainties. Typical non-smooth non-linearities

addressed in this chapter are friction, backlash and hysteresis. In the following,

various models used in the literature and some approximation techniques regarding

friction, backlash and hysteresis phenomena are presented.

2.1 Friction

Whenever there is a motion or tendency of motion between two elements, friction

forces exist. The frictional forces encountered in physical systems are usually of a

non-linear nature. The characteristics of the frictional forces between the surfaces

often depend on such factors as the composition of the surfaces the pressure be-

tween the surfaces, their relative velocity and others, so that an exact mathematical
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description of the frictional force is difficult to be established.

The types of friction which are commonly used in practical systems are : Viscous,

Static, Coulomb, and Stribeck friction. The friction model being used is a con-

glomerate of these friction components from which a force balance may be obtained

for friction acting against a surface [5]. It is often assumed when studying friction

that there is no motion while in static friction, which is to say no motion without

sliding. But Dahl [15], [16], [17] studying experimental observation of friction in

small rotation of ball bearing concluded that for small motions, a junction in static

friction behaves like a spring and considered the implications for control. There is

a displacement (pre-sliding displacement) which is an approximately linear function

of the applied force, up to a critical force, at which breakaway occurs. When forces

are applied, the asperities will deform, but recover when the force is removed. At

this point, the tangential force is governed by:

Ft(x) = −ktx (2.1)

where Ft is the tangential force, kt is the tangential stiffness of the contact and x

is the displacement away from the equilibrium position. Ft and x refer to the force

and displacement in the contact before sliding begins. The tangential stiffness kt,

is a function of asperity geometry, material elasticity and applied normal force. To

first approximation it is actually the breakaway displacement that is constant and

the stiffness is then given by

kt =
Fb

xb
(2.2)

where Fb is the breakaway force and xb the maximum deformation. The transition

from elastic contact to sliding is not simple. Sliding is observed to originate first

at the boundary of a contact and to propagate toward the center. Thus there

is no abrupt transition to sliding. Pre-sliding displacement is of interest to the

control community in extremely high precision pointing applications in dynamics

and in simulation and may also be important in establishing that there are no
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discontinuities in friction as a function of time.

Coulomb friction from the other hand, is a retarding force that has a constant

amplitude with respect to the change in velocity, but the sign of the frictional force

changes with the reversal of the direction of velocity. The other friction component,

Viscous friction, represents a retarding force that is a linear relationship between

the applied force and velocity. Both of these phenomena is obviously that opposing

the motion when the velocity is different from zero.

However imperfection in the motor mechanics and unbalances on the motor shaft

yield asymmetries behavior of the motor dynamics. The model proposed by [7]

includes Coulomb and viscous friction and accounts for friction asymmetries. Some

experiments conducted with this model showed that the asymmetries in the Coulomb

friction components were dominant. This observation was also corroloborated by

the results presented in [2].

An another effect takes place after the stiction force has been surmounted where the

friction force decreases exponentially reaching approximately 60% of the breakaway

force ([8]), and then increases proportionally to the velocity. These bends occur at

velocities close to zero. This type of friction structure, sometimes known as a stick-

slip friction. This arises because static friction is greater than the level of Coulomb

friction at zero velocity. Stribeck friction can be explained as an inertial effect

occuring when trying to separate two objects which have been at rest for long periods

of time. The Stribeck friction force decreases as movement occurs. The phenomena

of friction decreasing during a sliding period after movement is called stick-slip. To

capture this behavior an empirical Stribeck velocity parameter, the so-called vs, is

used as we shall show later in the following mathematical models of friction. The

Cincinnati Milacron test procedure [14] indicates that when Fs/Fc < 0.85 stick-

slip will be eliminated. It is also widely observed that stick-slip can be eliminated

by stiffening a mechanism. The following expression summarize the main friction
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components:

Ff (v) = asgn(v) (2.3)

Ff (v) = aisgn(v) + biv (2.4)

Ff (v) = (a0 + a1e
−b|v|)sgn(v) (2.5)

where a in (2.3) represents the Coulomb friction, ai, bi in (2.4) the asymmetric

model of Coulomb and viscous friction. In (2.5) the sum represents the breakaway

force and b the slip constant.

We note, before presenting the dominant models, that when the velocity is not

constant, the dynamics of the model will be very important and give rise to different

types of phenomena such as friction lag (frictional memory); a change in friction

will lag changes in velocity or load. Also the friction force is lower for decreasing

velocities than for increasing velocities responding to the existence of the hysteresis

in the relation between friction and velocity. The hysteresis loop becomes wider

at higher rates of the velocity changes. Hess & Soom explained their experimental

results by a pure time delay in the relation between velocity and friction force.

Finally an another time-dependent property of friction is the rising static friction

with increasing dwell time. Dwell time is the time spent in static friction. [25]

proposed an empirical model that incorporates the relation between static friction

and dwell time as:

Fs(t) = Fs,∞ − (Fs,∞ − Fc)e−γtm (2.6)

where Fs,∞ is the ultimate static friction; Fc the Coulomb friction at the moment

of arrival in the stuck condition; γ, m are empirical parameters. [3], [4] presents a

model of rising static friction which is useful for analysis and solves some problems

associated with using Fc as the starting point of the static friction rise. The model

is:

Fs,bn(t2) = Fs,an−1 + (Fs,∞ − Fs,an−1)
t2

t2 + γ
(2.7)
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where Fs,bn is the level of Stribeck friction at the beginning (breakaway) of the nth

interval of slip; and Fs,an−1 is the Stribeck friction at the end (arrival) of the pre-

vious interval slip. Note γ is still an empirical factor, will be different in physical

dimension from the equation (2.6).

2.1.1 Mathematical Models of Friction

In [3], proposed a seven parameter model, where the friction is given by:

• Not sliding (presliding displacement)

Ff (x) = −ktx (2.8)

• Sliding (Coulomb + viscous + Stribeck curve function with frictional memory)

Ff (ẋ, t) = −(Fc + Fv|ẋ|+ Fs(γ, t2)
1

1 + ( ẋ(t−τL)
ẋs

)2
)sgn(ẋ) (2.9)

• Rising static friction (friction level at breakaway)

Fs(γ, t2) = Fs,a + (Fs,∞ − Fs,a)
t2

t2 + γ
(2.10)

where :

- Ff () is the instantaneous friction force

- Fc (*) is the Coulomb friction force

- Fv (*) is the viscous friction force

- Fs is the magnitude of the Stribeck friction (frictional force at breakaway is

Fc + Fs)
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- Fs,a is the magnitude of the Stribeck friction at the end of of the previous

sliding period

- Fs,∞ (*) is the magnitude of the Stribeck friction after a long time at rest

(with a slow application of force)

- kt (*) is the tangential stifness of the static contact

- ẋs (*)is the characteristic velocity of the Stribeck friction

- τL (*) is the time constant of frictional memory

- γ (*) is the temporal parameter of the rising static friction

- t2 is the dwell time, time at zero velocity.

(*) marks friction model parameters, other variables are state variables.

The magnitude of the seven friction parameters will naturally depend upon the

mechanism and lubrication, but typical parameters may be offered. These are sum-

marized in Table 2.1 and in Table 2.2 is presented for each of seven parameters of

the model where represent a different friction phenomenon, the effect of these phe-

nomena on sliding behavior. This model, however, does not combine the different

friction phenomena but it is in fact one model for stiction and another for sliding

friction. Another dynamic model suggested by Rice and Ruina has been used in

connection with control by Dupont. This model is not defined at zero velocity.

In [8] a friction model covering most of friction components can be expressed as

follows:

Ff (ẋ) = [a0 + a1e
−b1|ẋ| + a2(1− e−b2|ẋ|)]sgn(ẋ) (2.11)

where ai’s and bi’s are positive constants. Asymmetries can be included in (2.11) by

letting ai’s be different for different velocity direction. The bi’s can be maintained
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Parameter Range Parameters depends principally upon

Fc 0.001− 0.1 ∗ Fn Lubricant viscosity, contact geometry and loading

Fv 0-very large Lubricant viscosity, contact geometry and loading

Fs,∞ 0− 0.1 ∗ Fn Boundary lubrication,Fc

kt
1

∆x
∗ (Fs + Fc);∆x ' 1− 50[µm] Material properties and surface finish

ẋs 0.00001− 0.1[ meter
second

] Bound. lubric., lubricant viscosity, contact geometry and loading

τL 1− 50[ms] Lubricant viscosity, contact geometry and loading

γ 0− 206[s] Boundary lubrication

Table 2.1: Approximate ranges for the parameters of seven parameter friction model

Friction model Predicted/Observed behavior

Viscous Stability at all velocities an at velocities reversal

Coulomb No stick-slip for Pd control;No hunting for PID control

Static+Coulomb+Viscous Predicts stick-slip for certain initial conditions under PD control;predicts hunting under PID control

Stribeck Needed to correctly predict initial conditions leading to stick-slip

Rising static friction Needed to correctly predict interaction of velocity and stick-slip amplitude

Frictional memory Needed to correctly predict interaction of stiffness and stick-slip amplitude

Presliding Needed to correctly predict small displacements while sticking (including velocity reversals)

Table 2.2: Friction model capabilities
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constant. The non-linearity of parameters ai and bi restricts its utility for on-

line identification (linear predictors require a model expression that it is linear in

parameters). A simplified model is also presented in the same paper that captures

the asymmetries and stick-slip while remains linear in the unknown parameters.

Such model is :

Ff (ẋ) = [a0 + a1|ẋ|
1
2 + a2|ẋ|]sgn(ẋ) (2.12)

To evaluate the precision that can be achieved with this reduction the parameters

ai of the model (2.12) are estimated by minimizing a least-square estimation algo-

rithm. In this paper also referred that the uniqueness of the ai’s does not exist.

Indeed, several sets of parameters ai may exist leading to equivalent approximation.

The LuGre model, its variants and approximation techniques

In [9] the friction interface between two surfaces is presented in some extent, as a

contact between bristles. The average deflection of the bristles is denoted by z and

is modelled by:
dz

dt
= v − |v|

g(v)
z (2.13)

where v is the relative velocity between the two surfaces. The first term gives a

deflection which is proportional to the integral of the relative velocity. The second

term asserts that the deflection z approaches the value:

zss =
v

|v|g(v) = g(v)sgn(v) (2.14)

in steady-state, i.e, when v is constant. The function g is positive and depends on

many factors such as material properties, lubrication, temperature. It needs not be

symmetrical. Direction dependent behavior can therefore be captured. For typical

bearing friction, g(v) will decrease monotonically from g(0) when v increases. This

corresponds to Stribeck effect. The friction force generated from the bending of the
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bristles is described as:

F = σ0z + σ1
dz

dt
+ σ2v (2.15)

where σ0 is the stiffness, σ1 a damping coefficient and σ2v a term which accounts for

viscous friction. The function σ0g(v) and σ2v can be determined by measuring the

steady-state friction force when the velocity is held constant. A parameterization

of g that has been proposed to describe the relation between velocity and friction

force for steady-state motion is given by:

Fss(v) = σ0g(v)sgn(v) + σ2v (2.16)

= Fcsgn(v) + (Fs − Fc)e
−( v

vs
)2sgn(v) + σ2v (2.17)

In that paper is assumed that if the parameters σ0, σ1, σ2 and function g(v) are

known and using a non-linear friction observer to estimate the unmeasurable state

z where the observer given by:

dẑ

dt
= v − |v|

g(v)
ẑ −Ke (2.18)

F̂ = σ0ẑ + σ1
dẑ

dt
+ σ2v (2.19)

where K > 0 and e is the position error, we can have position control. If xd is the

desired reference and is assumed to be twice differentiable then the position error

defined as e = x−xd and the term Ke in (2.18) ‘is a correction term for the position

error.

Similarly is proposed the velocity control where e = v − vd with vd the desired

velocity which is assumed to be differentiable.

By the way, to assume that the friction model and its parameters are known exactly

is of course a strong assumption. In addition to this the accuracy required in the

velocity measurement is a similar problem. The model of friction given by (2.17)

is used by [1] where the sgn() function approximated by tanh(σx) function where

σ defines the slope of the function. The larger the value the steepest the slope
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is. They suggest that a value of σ = 30 provides a close fit while capturing most

of friction effects. They also suggest that the parameters may be estimated, as a

structured disturbance, using an observer. A new system then is created so that the

parameters become additional states augmented to the original state-space system.

Using the non-linear Luenberger observer for parameter estimation, can also be

served as an on-line method for detecting faults. However, an extra attention needs

to be paid for the parameter selection for estimation where the observability needs

to be maintained. In some applications the friction variation may also depend on

the actual value of the position or a more complex combination of the position and

velocity. As a consequence, in some applications it will be required that friction is

explicitly parameterized not only as a function of velocity but also as a function of

position (see [10]). Another form of the model described previously in [10] is :

ż = −α(ẋ)|ẋ|z + ẋ (2.20)

F = σ0z + σ1ż + σ2ẋ (2.21)

where z denotes the average deflection of the bristles, which is not measurable, a(ẋ)

a finite positive function. One parameterization of α(ẋ) which describes the Stribeck

effect is :

α(ẋ) =
σ0

fc + (fs − fc)e
−( ẋ

ẋs
)2

(2.22)

where fc the Coulomb friction level, fs is the level of stiction force and ẋs the

Stribeck velocity. The parameters σ0, σ1 are assumed to be known. In this case,

σ0/fc ≤ α(ẋ) ≤ σ0/fs, if it is assumed that fs ≥ fc. As it mentioned above the

friction may be position dependent. In [10] assumes in this case that α(x, ẋ) is an

upper and lower bounded positive smooth function of x and ẋ. There is no need to

know the exact form of the function as generalized basis functions shall be used to

emulate it. In this way it can capture properties related not only to velocity but
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also to position. So the model can be:

ż = −α(x, ẋ)|ẋ|z + ẋ (2.23)

F = σ0z + σ1ż + σ2ẋ (2.24)

If α(x, ẋ) is assumed completely unknown neural networks is a possible tool to

approximate the non-linear mapping. The approximation αα(W,x, ẋ) is written as:

αα(x, ẋ) = W T S(x, ẋ) (2.25)

where W = [w1, w2, . . . , wl]T ∈ <l the parameter vector and S(x, ẋ) = [s1(x, ẋ),

s2(x, ẋ), . . . , sl(x, ẋ)]T ∈ <l is the vector bounded basis functions, and therefore we

have :

α(x, ẋ) = W T S(x, ẋ) + ε (2.26)

with ε being the modelling error which is assumed to be bounded. If the non-linear

function α(x, ẋ) is in the functional range of the approximation, then ε = 0. For the

case where α(ẋ) is only a function of ẋ, the rough form/shape of α(ẋ) in terms of

velocity is infinitely smooth. This piece of information, as they suggested, helps to

find more appropriated basis function for approximation rather than constructing

NN blindly as in most cases. The function is :

α(ẋ) =
c0

1 + c1e−(ẋ/ẋs)2
(2.27)

where c0 = σ0/fc, c1 = (fs−fc)/fc and c2 = ẋs
2. The parameters c1 > 0 and c2 < 1

appear non-linearly. The polynomial approximation which is suggested is to expand

(2.27) using Taylor expansion around ẋ2 = 0. Then :

α(ẋ) =
m∑

k=0

1
k!

ϑkα

ϑ(ẋ2)k
|ẋ2=0(ẋ

2)k + εt = W T S(ẋ) + εt (2.28)

where :

W = [α|ẋ2=0,
ϑα

ϑẋ2
|ẋ2=0, . . . ,

1
m!

ϑmα

ϑ(ẋ2)m
|ẋ2=0]

T
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and

S(ẋ) = [1, ẋ2, . . . , (ẋ2)m]T

The remainder εt is given by :

εt =
1

(m + 1)!
ϑ(m+1)α

ϑ(ẋ2)(m+1)
|ẋ2=0(ẋ

2)m+1

In theory, the remainder decreases as m increases. By numerical calculation, it is

found that m needs to be very large in order to obtain an acceptable approximation

accuracy, and that because c2 is in the order of 10−4 in the denominators of the

terms.

An another approximation method is the non-linear functional approximation. In

this method under the assumption that c2 = ẋ2
s is known exactly, (2.27) can be

expanded around the nominal value c1n using Taylor serias as:

α(ẋ) =
m∑

k=0

ϑmα

ϑcm
1

|c1=c1n(c1 − c1n)m + εt = W T S(ẋ) + εt (2.29)

where :

W = [c0, . . . , (−1)mc0(c1 − c1n)m]T

S(ẋ) =
[ 1
1 + c1ne−ẋ2/c2

, . . . ,
e−mẋ2/c2

(1 + c1ne−ẋ2/c2)m+1

]
(2.30)

c1n is the nominal value of c1 and the remainder εt is given by, ∀(0 ≤ ξ ≤ 1)

εt =
(−1)(m+1)c0e

−(m+1)ẋ2/c2

(1 + ξe−ẋ2/c2)m+1
(c1 − c1n)(m+1) (2.31)

It can be seen that |εt| ≤ c0|c1 − c1n|(m+1),∀c1 ∈ (0, 1). Because |c1 − c1n < 1, the

upper bound c0|c1−c1n|(m+1) decreases as m increases. The result is global because

the upper bound of the approximation error is independent of the operating range

of ẋ, which can be very large. From (2.30) the primitives used to construct the basis

function S are e−ẋ2/c2 and 1

1+c1ne−ẋ2/c2
.

Each element si of S can be written as:

[
e−ẋ2/c2

]i[ 1
1 + c1ne−ẋ2/c2

]j
=

e−iẋ2/c2

(1 + c1ne−ẋ2/c2)j
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with i + j ≥ 0, i, j ≥ 0. In general, the smaller the i + j, the more important this

term is for the reconstruction. The higher the i + j is, the better the approxima-

tion accuracy. If both c1 and c2 are unknown, then the non-linear function can be

expanded with respect to both of them around their nominal values (c1n, c2n), subse-

quently the basis functions vector S(ẋ) and the corresponding unknown parameters

W can be found.The remainder can be quantified similarly. By some calculations

the primitives can be found for this case consist of: ẋ2, e−ẋ2/c2n and 1

1+c1ne−ẋ2/c2n
.

Each subelement si of S should be ẋ2ie−jẋ2/c2n

(1+c1ne−ẋ2/c2n)k
with i + j + k ≥ 0, i, j, k ≥ 0. As

before, the smaller i + j is the more important this term is for the reconstruction.

The higher the i + j is the better the approximation accuracy.

If no knowledge is available a Neural Network as mentioned earlier can be used to

generate I/O maps using the property that a multi-layer NN can approximate any

function, under mild assumptions with any desired accuracy. It has been proven

that any continuous functions not necessarily infinitely smooth, can be uniformly

approximated by linear combinations of Gaussians. The Gaussian RBF neural net-

work is a particular network architecture which uses l-numbers of Gaussian functions

of the form:

si(x, ẋ) = exp [−(x− µ1i)2 + (x− µ2i)2

σ2
]

where [x, ẋ]T ∈ <2 is the input variable, σ2 ∈ < is the variance and [µ1i, µ2i]T ∈ <
is the center vector. The si’s are the elements of the basic function vector S(x, ẋ)

of the approximation:

αα(w, x, ẋ) = W T S(x, ẋ)

The shortcoming of [9], [10] model, called as LuGre model, lies in the inadequacy

of the hysteresis part since it does not account for non-local memory and it cannot

accomodate arbitrary displacement-force transition curves.
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In [22] noted that LuGre model whereas allows good description of the constant

velocity behavior and offers a smooth transition at velocity reversal, the modeling

capabilities in presliding regime are restricted as follows:

⇒ The model is too dissipative in presliding

⇒ The shape of the transition curve is fixed by the model and therefore cannot

be adapted to actually measured values.

For the latter, beside the parameter σ0 which models the initial stiffness at velocity

reversal, no parameters are left for the shaping of the transition curves which will

always have the same form and therefore is inadequate for fitting transition curves

of arbitrary forms. In [22] is also presented an improved friction model which the

friction force F is modelled by a set of two equations where as in the case of the

LuGre model, depend on a state variable z representing the average deformation

of the asperities of the contacting surfaces. The first equation, the friction force

equation, is:

F = Fh(z) + σ1
dz

dt
+ σ2v (2.32)

where σ1 is a micro-viscous damping coefficient, σ2 is the viscous damping coefficient

and v is the velocity of the moving object. Fh(z) is the hysteresis friction force that

is the part of friction force exhibiting hysteretic behavior. It is a static hysteresis

nonlinearity with non-local memory. This hysteresis function is consisting of transi-

tion curves (curves between two reversal points or extrema). Each velocity reversal

initiates a new transition curve, adds a new extremum to the hysteresis memory and

resets the state variable z to zero. The transition curve which is active at a certain

time is represented by Fd(z) and the value of Fh(z) at the beginning of a transition

curve is represented by Fb. Then we have:

Fh(z) = Fb + Fd(z) (2.33)
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Fd as they mention, is a point-symmetrical strictly increasing function of z.

The second equation, the nonlinear equation, is based on the current hysteresis

transition curve Fd(z) and the current velocity, that is:

dz

dt
= v

(
1− sign(

Fd(z)
S(v)− Fb

) ∗ | Fd(z)
S(v)− Fb

|n
)

(2.34)

where S(v) is the constant velocity behavior in sliding which is the same as in (2.17)

without accounting for viscous friction term, that is σ2v. The parameter n, allows

to modify the influence of Fd(z)/(S(v) − Fb) on the difference between dz/dt and

v such that the model behavior correspond better to friction measurements in the

transition from presliding to sliding. The constant velocity behavior (sliding) where

is described by this model is exactly the same as in the LuGre model. Namely, the

friction force is given by:

F = Fb + Fd(z) + σ2v = S(v) + σ2v (2.35)

where is in the same form as in (2.17). The difference over the LuGre model consists

in the zero velocity behavior (presliding) where a hysteresis model with non-local

memory is included. Consequently from (2.32) and (2.34), for zero velocity we have

:

F = Fb + Fd(z) = Fh(z)
dz

dt
= 0

The hysteresis model relates the state variable z and the hysteresis force Fh. The

implementation of the hysteresis model requires two memory stacks the one for the

minima of Fh in ascending order (stack m) and one for the maxima of Fh (stack M).

The stacks grow at velocity reversal and shrink when an internal hysteresis loop is

closed. The stacks are reset when the system goes from presliding to sliding. The
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value of Fb equals to the most recent element of stack M if the transition curve is

descending and of stack m if the transition curve is ascending. The value of the state

variable z is reset to zero at each velocity reversal and recalculated at the closing of

an internal loop. In [22] is given an analytical description of the mechanisms which

govern the hysteresis model, mechanisms that also exist in [23] and on the following

hysteresis section of this report.

The above model can account accurately for experimentally obtained friction char-

acteristics which are: Stribeck friction in sliding, hysteretic behavior in presliding,

frictional lag, varying break-away and stick-slip behavior.

2.2 Backlash

Actuator and sensor nonlinearities are among the key factors limiting both static

and dynamic performance of feedback control systems. Harmful effects of backlash

in gears are well known. Backlash prevents accurate positioning and may lead to

chattering and limit-cycle-type instabilities. This increases wear and tear of the

gears, which, in turn, increases backlash. This phenomenon has haunted the con-

structors of control systems for more than 50 years: from the servomechanisms in

the 1940s to the modern high precision robotic manipulators. Typically the concept

of backlash is associated with gear trains and similar mechanical couplings. Some-

times backlash can be used to approximate description of the delays in drives with

elastic cables or in long pipes.

2.2.1 Mathematical Models of Backlash

The most familiar and simple model perhaps is the one for backlash hysteresis

(piecewise linear model) that the backlash characteristic u(t) = B(v(t)) described

by two parallel lines connected via horizontal lines (see fig. 2.2). The methods that
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Figure 2.1: Inverting a backlash

are presented in [19] and [21], need to construct an inverse model to mitigate the

effects of the backlash (see fig. 2.1).

Mathematically, this phenomenon is modelled as:

u̇(t) =





mv̇(t) if v̇(t) > 0 and u(t) = m(v(t)− cr)

or

if v̇(t) < 0 and u(t) = m(v(t)− cl)

0 otherwise

(2.36)

with input v(t) and output u(t) and cl, cr the left and right crossings respectively

with cr > cl. The v(t) and v̇(t) uniquely determine u(t), u̇(t) and the knowledge of

v̇(t) is necessary to specify the signal motion of B(·) (B(·) the backlash character-

istic) on whether a straight line or an inner segment (horizontal). A further insight

into the nature of backlash can be gained from the waveforms of the output u(t)

when the input is v(t) is a sine signal in fig. 2.2. For this illustration the backlash

parameters are m = 1, cr = 0.5, cl = −0.5 and for three different initial conditions

at a time, i.e. u(0) = −0.5, u(0) = 0 and u(0) = 0.3. It is noticeable that for

the last two initials conditions we obtain initial “transients” and then u(t) settle in

its periodic steady state. For the initial condition u(0) = −0.5 the periodic steady

state is reached without transients. The periodic steady state of u(t) reveals the

two fundamental features of backlash. First, it introduces a phase delay. Second, it

causes a loss of information by chopping the peaks of v(t).
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Figure 2.2: Backlash response to a sine input.

The inverse model of (2.36) as proposed is:

v̇(t) =





1
m u̇d(t) if u̇d(t) > 0 and v(t) = 1

mud(t) + cr

or

if u̇d(t) < 0 and v(t) = 1
mud(t) + cl

0 if u̇d(t) = 0

g(t, t) if u̇d(t) > 0 and v(t) = 1
mud(t) + cl

−g(t, t) if u̇d(t) < 0 and v(t) = 1
mud(t) + cr

(2.37)

where g(τ, t) = δ(τ − t)(cr − cl) with δ(t) the Dirac δ-function. ud(t) is a given

desired signal for u(t) and a backlash inverse BI(·) defined by (2.37) is such that

ud(t) = B(BI(ud(t))).

In the above definition the inverse of a horizontal segment of the backlash charac-

teristic is a vertical jump of a distance (cr − cl). The following lemma that it is

being proved in [21] is the following one:

Lemma 1

The characteristic BI(·) defined by (2.37) is the right inverse of the characteristic
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(2.36) in the sense:

B(BI(ud(t0))) = ud(t0) ⇒ B(BI(ud(t))) = ud(t), ∀t ≥ t0 for any piecewise continu-

ous ud(t) and any t ≥ t0.

It is also reported that an initialization of the backlash inverse BI(·) for u(t) = ud(t)

is possible at any given time t0. When the parameters m, cr, cl are unknown instead

of these, are used their estimates m̂(t), ĉr(t), ĉl(t) to design an adaptive feedback

backlash inverse. As before, ud(t), u̇d(t) uniquely determine v(t), v̇(t) and the knowl-

edge of u̇d(t) is necessary to specify the signal motion of the backlash inverse.

In [13] is defined a dynamic hysteresis model to approximate the backlash hystere-

sis, an approximation which is called backlash-like hysteresis. As in [21] a backlash

hysteresis non-linearity can be described by:

w(t) = P (v(t)) =





c(v(t)−B) if v̇(t) > 0 and w(t) = c(v(t)−B)

c(v(t) + B) if v̇(t) < 0 and w(t) = c(v(t) + B)

w(t−) otherwise

(2.38)

where c > 0 is the slope of the lines and B > 0 is the backlash distance. The

continuous-time dynamic model which describes a class of backlash-like hysteresis

is given by the following equation:

dw

dt
= α

∣∣∣∣
dv

dt

∣∣∣∣ (cv − w) + B1
dv

dt
(2.39)

where α and B1 are constants satisfying c > B1. The equation (2.39) can be solved

explicitly for v piecewise monotone:

w(t) = cv(t) + d(v) (2.40)

with :

d(v) = [w0 − cv0]e−α(v−v0)sgnv̇ + e−αvsgnv̇
∫ v

v0

[B1 − c]eαζ(sgnv̇)dζ (2.41)
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for v̇ constant, w(v0) = w0. For d(v), it can be shown that if w(v; w0, v0) is the

solution of (2.39) with initial values (v0, w0) then if v̇ > 0(v̇ < 0) and v →∞(−∞),

one has:

lim
v→∞ d(v) = lim

v→∞[w(v; v0, w0)− f(v)] = −c−B1

α
(2.42)

lim
v→−∞ d(v) = lim

v→−∞[w(v; v0, w0)− f(v)] =
c−B1

α
(2.43)

The above convergence is exponential at the rate of α. Solution (2.40) and proper-

ties (2.42),(2.43) show that w(t) eventually satisfies the first and second conditions

of (2.38). Moreover, setting v̇ = 0 results in ẇ = 0 which satisfies the last condition

of (2.38). This implies that the dynamic equation (2.39) can be utilized to model

a class of backlash-like hysteresis and is an approximation of backlash hysteresis

(2.38). Equations (2.42) and (2.43) indeed show that w switches exponentially from

the line cv(t)− c−B1
α to cv(t)+ c−B1

α to generate backlash-like hysteresis curve. The

solutions of (2.39) can be obtained by numerical integration with v as the inde-

pendent variable. The parameter α determines the rate for w(t) to switch between

− c−B1
α and c−B1

α . The larger the parameter α is, the faster the transition in w(t) is

going to be. However the backlash distance is determined by c−B1
α and the parame-

ter must satisfy c > B1. Consequently a compromise should be made for choosing a

suitable parameter set {α, c, B1} to model the required shape of backlash-like hys-

teresis. If the values of backlash slope and distance are not exactly known, then

adaptations will be used to estimate them.

The useful outcome of [13] is that backlash-like hysteresis is modelled by a dynamic

equation without the need to construct a backlash hysteresis inverse.

It is also reported that in the presence of actuator dynamics prior to the backlash,

the adaptive backlash inverse control problem is more difficult because it requires

that backlash be inverted through a dynamic block and this problem is currently

under investigation.
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2.3 Hysteresis

As it is characterized by the literature, backlash is the simplest form of hystere-

sis. Hysteresis phenomena are even more numerous and diverse than those modeled

by backlash characteristics. Generally include nondifferentiable nonlinearities and

usually unknown. While ferromagnetic hysteresis is the best known type of hystere-

sis, similar characteristics are common in plastic, piezoelectric and other materials.

However it is in general unrealistic to expect that a single hysteresis model can serve

a vast variety of applications. In the sequel of this section various models of hys-

teresis are presented. In fig. 2.3 is given a typical graph of hysteresis phenomenon.
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Figure 2.3: A typical Hysteresis diagram with a major and minor loop

2.3.1 Mathematical Models of Hysteresis

In [20] a simplified hysteresis model is used that captures most of the hysteresis

characteristics and is useful for parameter adaptive control. It has been showed that

the proposed model has a parameterizable right inverse which cancels the effect of
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the hysteresis when cascaded with the hysteresis. Its main hysteresis and two minor

loops are shown in fig. 2.4. It can be tuned by as many as eight parameters:
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Figure 2.4: Hysteresis model

four slopes ml, mr, mb, mt and four crosssing parameters cl, cr, cb, ct, where the

subscripts indicate “left”, “right”, “bottom” and “top” respectively. The difference

between the slopes mb and mt allows for the appearance of local loops.

Defining as:

v1
4
= ct+mlcl

ml−mt
v2

4
= cb+mrcr

mr−mb

v3
4
= ct+mrcr

mr−mt
v4

4
= cb+mlcl

ml−mb

where v1, v2, v3, v4 are the values of v(t) at the upper-left, lower-right, upper-right

and lower-left corners of the quadrilateral. Then the hysteresis u(t) = H(v(t))

representing the motion of u(t) and v(t) is fully described by:
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u̇(t) =





mtv̇(t) if v(t) ≥ v3 AND u(t) = mtv(t) + ct, OR
if v4 < v(t) < v3,v̇(t) < 0,

u(t) = mtv(t) + cd, u(t) 6= ml(v(t)− cl) AND u(t) 6= mbv(t) + cb, OR
if mt < mb, v4 < v(t) < v3,

u(t) = mbv(t) + cb AND v̇(t) < 0, OR
if mt < mb, v4 < v(t) < v3,

u(t) = mtv(t) + ct AND v̇(t) > 0

mbv̇(t) if v(t) ≤ v4 AND u(t) = mbv(t) + cb, OR
if v4 < v(t) < v3,v̇(t) > 0,

u(t) = mbv(t) + cu, u(t) 6= mr(v(t)− cr) AND u(t) 6= mtv(t) + ct, OR
if mt > mb, v4 < v(t) < v3,

u(t) = mtv(t) + ct AND v̇(t) > 0, OR
if mt > mb, v4 < v(t) < v3,

u(t) = mbv(t) + cb AND v̇(t) < 0

mr v̇(t) if v4 < v(t) < v3, v̇(t) > 0 AND
u(t) = mr(v(t)− cr)

mlv̇(t) if v4 < v(t) < v3, v̇(t) < 0 AND
u(t) = ml(v(t)− cl)

0 if v̇(t) = 0

(2.44)

These expressions indicate that is hysteresis is a complex nonlinear dynamic system

defined by piecewise linear relationships between the input v(t), output u(t), and

their time derivatives.

With ud(t) be a control signal to be designed, the inverse of the hysteresis, name it

HI(·), it is given by the motion of ud(t) and v(t) and mathematically is described
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as:

v̇(t) =





1
mt

u̇d(t) if ud(t) ≥ u3, OR
if u4 < ud(t) < u3, u̇d(t) < 0,

v(t) 6= 1
ml

ud(t) + cl AND v(t) 6= 1
mb

(ud(t)− cb), OR
if mt < mb, u4 < ud(t) < u3,

v(t) = 1
mb

(ud(t)− cb) AND u̇d(t) < 0, OR
if mt < mb, u4 < ud(t) < u3,

v(t) = 1
mt

(ud(t)− ct) AND u̇d(t) > 0

1
mb

u̇d(t) if ud(t) ≤ u4, OR
if u4 < ud(t) < u3,u̇d(t) > 0,

v(t) 6= 1
mr

ud(t) + cr AND v(t) 6= 1
mt

(ud(t)− ct), OR
if mt > mb, u4 < ud(t) < u3,

u(t) = 1
mt

(ud(t)− ct) AND u̇d(t) > 0, OR
if mt > mb, u4 < ud(t) < u3,

u(t) = 1
mb

(ud(t)− cb) AND u̇d(t) < 0

1
mr

u̇d(t) if u4 < ud(t) < u3, u̇d(t) > 0 AND
v(t) = 1

mr
ud(t) + cr

1
ml

u̇d(t) if u4 < ud(t) < u3, u̇d(t) < 0 AND
v(t) = 1

ml
ud(t) + cl)

0 if u̇d(t) = 0

(2.45)

with:

u1
4
= ml(mtcl+ct)

ml−mt
u2

4
= mr(mbcr+cb)

mr−mb

u3
4
= mr(mtcr+ct)

mr−mt
u4

4
= ml(mbcl+cb)

ml−mb

The proposed hysteresis inverse has the following property:

Proposition 1

The characteristic HI(·) given by (2.45) is the right inverse of the characteristic

(2.44) in the sense:
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H(HI(ud(t0))) = ud(t0) ⇒ H(HI(ud(t))) = ud(t), ∀t ≥ t0 for any piecewise contin-

uous ud(t) and any t ≥ t0.

However, as ud(t) is the design signal of our choice, an initialization of the hys-

teresis inverse by an appropriate choice of ud(t0) should always make v(t) and u(t)

leave the inside loop at t0 so that u(t0) = ud(t0) and then from Proposition 1,

u(t) = ud(t) for any t ≥ t0. When the parameters mt, ct, mb, cb, mr, cr, ml, cl

are unknown instead of these, are used their estimates m̂t, ĉt, m̂b, ĉb, m̂r, ĉr, m̂l, ĉl

to design an adaptive feedback hysteresis inverse.

In [11] is defined a mathematical model for hysteresis loop. This model

is a first order nonlinear differential equation and is capable, as they allegate, of

simulating exactly a given hysteresis loop and furthermore the model exhibits many

of the properties that are, in fact, observed in practice. The mathematical model is

the following one :
dy

dt
= h(y)g ◦ [x(t)− f(y)] (2.46)

where f, g, h are real-valued functions defined on the real line < and ‘◦’ denotes the

composition operation. The set of functions having K continuous derivatives on <
are denoted by Ck(<). The three functions are assumed to satisfy the conditions:

(i) g, f, h ∈ C1(<)

(ii) g′ > 0, f ′ > 0 on <

(iii) f, g : < → <

(iv) 0 < a ≤ h < b < ∞ on <

where a, b are finite positive constants. The function g is referred to as the dissipation

function, the function f as the restoring function and h is called the weighting func-

tion. This model, given by a non-linear differential equation, represents a dynamic
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process. The model exhibits many of the observed properties, such as widening

effects with increasing frequency and minor hysteresis loops when a periodic signal

is superimposed upon a constant signal.

They are also reported some important properties that govern the model (2.46)

where the proofs here have been deleted for brevity. Primarily let denote I the

interval on the real line [0,∞). A solution to (2.46) with initial condition y(t0) = y0

where t0 ∈ I is a differentiable function φ defined on the interval I such that:

φ(t) = h(φ(t))g ◦ [x(t)− f(φ(t))]for t ≥ 0 and φ(t0) = y0 (2.47)

The six properties are the following:

• Property 1 If x(t) is bounded and continuous on I, the for all y0 ∈ < and all

t0 ≥ 0

(a) there exists a solution φ(t) satisfying (2.46) for all t ≥ 0

(b) φ(t) is uniformly bounded

(c) φ(t) is unique

• Property 2 If x(t) is bounded, continuous on I and periodic of fundamental

period T , then there exists a unique periodic solution p(t) to equation (2.46)

of the same fundamental period T .

• Property 3 With x(t) satisfying the same conditions as in property 2 any

solution φ(t) to equation (2.46) with arbitrary initial conditions will approach

asymptotically the unique periodic solution p(t)

• Property 4 If x(t) is bounded, continuous on I and periodic of fundamental

period T and if in addition x(t) has only one maximum and one minimum per

cycle, with no points of inflection, then the unique periodic solution p(t) of

equation (2.46) also has only one maximum and one minimum per cycle.
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• Property 5 If x(t) satisfies the condition of property 4 and let p(t) be the

unique periodic solution to equation (2.46), then a parameterized curve defined

by :

Γ = {(x, y) : x = x(t), y = p(t), 0 ≤ t ≤ T}

is a simple closed curve.

• Property 6 if y2(t) = y1(αt) with 0 ≤ α ≤ 0 and y1(t) = y1(t + T1) and the

two associated simple closed curves defined by :

Γ1 = {(x, y) : x = x(t), y = y1(t), 0 ≤ t < T1}

Γ2 = {(x, y) : x = x(t), y = y2(t), 0 ≤ t < T1/α}

Then the area enclosed by the curve Γ1 is greater than the area enclosed by

Γ2.

The one that remains is to present a procedure for constructing the dissipation

function g, the restoring function f and the weighting function h. In order to

identify these functions a pair of waveforms {x(t), y(t)} must be measured. Because

the system characterized as nonlinear there is no apparent advantage in using one

set of measurements over another, unlike the linear case. The authors report that

one procedure is to select a pair of waveforms {x(t), y(t)} where y(t) is a cosine

function. Namely to apply a cosine waveform y(t) and measuring the corresponding

waveform x(t). With y(t) constrained to be cosine waveform it follows that ẏ(t) is

known and (2.46) is reduced to an algebraic relationship.

For a given closed hysteresis loop where y(t) is a cosine function, g can be chosen

as an arbitrary odd function providing it satisfies the necessary conditions (i)− (iv)

where are mentioned above, and construct f, h so that equation (2.46) can be used
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to represent exactly a given hysteresis loop. Since both y(t) and ẏ(t) are known and

since g−1 exists we can rewrite equation (2.46) as :

x(t) = g−1
(

ẏ(t)
h(y(t))

)
+ f(y(t)) (2.48)

With y(t) a cosine function of period of T for each y in the range of y(t) (except

for the extremal points) there exists two values of t ∈ [0, T ] say t1, t2 where y(t1) =

y(t2) = y. It is obvious that ẏ(t1) = −ẏ(t2). Thus with g odd

g−1
(

ẏ(t1)
h(y(t1))

)
= −g−1

(
ẏ(t2)

h(y(t2))

)
= d (2.49)

and since both (x(t1), y(t1)) and (x(t2), y(t2)) represent points on the hysteresis loop

with same ordinate x(t1)−x(t2) = 2d. Moreover, in view of equations (2.48), (2.49)

the midpoint of the two points on the hysteresis loop corresponding to t1 and t2

satisfies the equation:

y(t1) = y(t2) = f−1
(

x(t1) + x(t2)
2

)
(2.50)

where
(

x(t1)+x(t2)
2

)
is on the midpoint of the hysteresis loop taken along the abscissa

direction. Thus the locus of midpoints of the hysteresis loop determines the f−1

function. Since g (and hence g−1) is known and since the value of d can be measured

directly from the hysteresis loop, h(y(t1)) can be obtained from equation (2.49).

Continuing for all values of t ∈ [0, T ) the function h can be determined. The points

from the above description are given in fig. 2.5.

The functions f, h constructed by this procedure are unique. The arbitrary choice of

g is an advantage which permits us to represent more closely a family of hysteresis

loops. Hence if we are attempting to model a family of hysteresis loops rather than

a single loop, appropriate optimization techniques may be used to determined the

functions f, g, h.

The main shortcoming from the above discussed model that is not predicted is its
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Figure 2.5: Construction procedure for obtaining f ,g and h

behavior when x is constant (called as dc behavior) where y assume more than

one distinct state. To overcome this drawback an improved model is presented in

[12] where the dc hysteresis is included while it preserves the good characteristics of

the model (2.46) namely unusual versatility, loop widening with increasing frequency

and the lack of any required special handling once the model is placed in the system.

It also exhibits loop narrowing with increasing frequency, a phenomenon in the

i − v curves of fluorescent lamps, such as reduction reduction in loop widening to

insignificant amounts of beyond an upper threshold frequency while including strong

widening at intermediate frequencies and a dc loop (phenomenon which is presented

in iron-core materials). This hysteresis model is the following :
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dy

dt
= w ◦

(
dx

dt

)
h ◦ (y(t))g ◦ (x(t)− f(y(t))) (2.51)

where as before ‘◦’ denotes functional composition. The new characteristic to this

model is the function w where it is also assumed that belongs to class C1(<) and

w ◦ (dx/dt) ≥ 0. Also is assumed that w ◦ (dx/dt) = 0 ⇔ dx/dt = 0. Moreover, the

model which is given by (2.51) has the similar properties of that of the model which

is given by (2.46). In fig. 2.6 several possible w functions are shown along with brief

descriptions of their effects upon the friction behavior of (2.51).

dx/dt 

K 

w(dx/dt) 

W function 

w(dx/dt) 

w(dx/dt) 

w(dx/dt) 

w(dx/dt) 

dx/dt 

dx/dt 

dx/dt 

dx/dt 

For low frequencies, obtain frequency−insensitive loops.    
At moderate frequencies, get loop widening with             
increased frequency. At still higher frequencies, loop width
becomes progressively frequency insensitive.                

K −K 

K 

−K 

K’ −K’ −K 

At low frequencies, loop is insensitive to frequency variations.
As frequency increases such that |dx/dt|>K, loop narrowing      
with frequency increases occurs.                                

At low frequencies, a frequency insensitive loop appears.
Loop is unchanged as frequency goes to zero. However     
as frequency increases to the point where |dx/dt| begins 
to exceed K, loop widening with increased frequency      
appears. If x(t) sinusoidal, say Acos(wt), then threshold
frequency of loop widening is K/A                        

K 

Completely eliminates effect of frequency variation      
on hysteresis loop. Loop as frequency goes to infinity is
identical as goes to zero. Can be used where loop        
widening is not needed.                                  

K 

K 

Loop widening with frequency increases.              
Loop collapses as the frequency goes to zero.        
Result is a purely nonlinear "Lag" or "Delay" model. 

Frequency Behavior of the model 

Figure 2.6: Possible w functions and their effects on frequency behavior

We should note that these piecewise linear w functions may be replaced with smooth

versions if necessary. The basic drawback of (2.51) is, of course the need for intro-

duction of parasitics under arbitrary excitation. At very low frequencies, this can
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drastically increase computer solution time.

An another approach which is prevalent in hysteresis modelling is the Preisach-

type models of hysteresis. All the models have a common generic feature; they are

constructed as superpositions of simplest hysteresis nonlinearities-rectangular loops.

In the following discussion, according to [23] here are reported various generaliza-

tions and extensions of the classical Preisach model, giving the necessary and suffi-

cient conditions for the representation of actual hysteresis nonlinearities by various

Preisach-type models, the solution of identification problems for these models and

numerical implementation.

Starting with the definition of scalar hysteresis we consider a transducer (see fig. 2.7)

which is called a hysteresis transducer (HT) if its I/O relationship is a multibranch

u(t) f(t) 

HT 

Figure 2.7: Hysteresis Transducer

nonlinearity for which branch-to-branch transitions occur after input extrema. The

term static hysteresis nonlinearity means that the branches are determined only

by the past extremum values of input while the speed of input variations between

extremum points has no influence on branching. It is worthwhile to keep in mind

that, for very fast input variations, time effects become important and the given

definition of static hysteresis fails. It is also important to mention that the given

definition of hysteresis emphasizes the fact that branching constitutes the essence

of hysteresis, while the formation of hysteresis loops (looping) is a particular case

of branching. Indeed, looping occurs when the input varies back and forth between

two consecutive extremum values while branching takes place for arbitrary input

variations. All static hysteresis fall into two general classifications :
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(a) Hysteresis nonlinearities with local memories. The value of output

f(t0) at some instant of time t0 and the values of input u(t) at all subsequent

instants of time t ≥ t0 uniquely predetermine the value of output f(t) for all

t > t0. In other words, the past exerts its influence upon the future through

the current value of output.

(b) Hysteresis nonlinearities with non-local memories. In antithesis, for

the non-local hysteresis nonlinearities the future values of output f(t) (t ≥ t0)

depend not only on the current value of output f(t0) but on past extremum

values of input as well.

It is clear from the above that all hysteresis nonlinearities with local memories have

the following common feature:

Every reachable point in the f −u diagram corresponds to a uniquely defined state.

This state predetermines the behavior of HT in exactly one way for increasing u(t)

and in exactly one way for decreasing u(t). Namely, at any point in the f − u

diagram there are only one or two curves that may represent the future behavior of

HT with local memory.

From the other hand in the case of non-local memories, at any reachable point in the

f−u diagram there is an infinity of curves that may represent the future behavior of

the transducer. Each of these curves depends on a particular past history, namely,

on a particular sequence of past extremum values of input.

To describe the mathematical Preisach model we consider an infinite set of simplest

hysteresis operators γ̂αβ . Each of these operators can be represented by a rectangular

loop on the I/O diagram (see fig. 2.8). Numbers α and β correspond to “up”

and “down” switching values of input respectively. It is assumed that α ≥ β. It

is apparent that these operators γ̂αβ represent hysteresis nonlinearities with local

memories. Along with the set of operators γ̂αβ consider an arbitrary weight function

µ(α, β) referred to as the Preisach function. Then the Preisach model can be written
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Figure 2.8: A simple hysteresis operator γ̂αβ

as:

f(t) = Γ̂u(t) =
∫ ∫

α≥β
µ(α, β)γ̂αβu(t)dαdβ (2.52)

Although the Preisach hysteresis nonlinearity (2.52) is constructed as a superpo-

sition of elementary hysteresis nonlinearities γ̂αβ with local memories it usually

has non-local memory. Introducing now, the model’s geometric interpretation we

can see that there is one to one correspondence between operators γ̂αβ and points

(α, β) of the half-plane (see fig. 2.9) α ≥ β. Consequently each point of the half-

plane α ≥ β can be identified with only one particular γ̂-operator whose “up” and

“down” switching values are respectively equal to α and β coordinates of the point.

It is also assumed that the Preisach function equals to zero outside of the triangle

T (see fig. 2.9). It is worthwhile to give an example explaining the usefulness of the

Preisach phase plane. Assuming that input u(t) at some instant of time t0 has the

value which is less than β0. Then the outputs of all γ̂-operators which correspond to
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Figure 2.9: The Preisach phase plane

the points of the triangle T are equal to −1 (negative saturation). Then we assume

that the input increases monotonically until it reaches at time t1 some maximum

value u1. Then decreases monotonically until it reaches some minimum value u2 at

time instant t2. Geometrically the triangle T it winnows into the two sets: S+(t)

consisting of points (α, β) for which γ̂-operators are in the “up”-position and S−(t)

consisting of points (α, β) for which γ̂-operators are in the “down”-position (see

fig. 2.10). Lets name L(t), as the interface between S+(t) and S−(t). The above

discussion reveals the mechanism of memory formation in the Preisach model. The

memory is formed as result of two different rules for the modification of the interface

L(t). For a monotonically increasing input we have a horizontal final link of L(t)

moving upward, while for a monotonically decreasing input we have a vertical final

link of L(t) moving from right to the left. These two different rules result in the

formation of the staircase interface L(t) whose vertices have coordinates equal to

past input extrema.
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Figure 2.10: The formation of S+ and S−

From (2.52) according to the above we have that:

f(t) =
∫ ∫

S+(t)
µ(α, β)γ̂αβu(t)dαdβ +

∫ ∫

S−(t)
µ(α, β)γ̂αβu(t)dαdβ

=
∫ ∫

S+(t)
µ(α, β)dαdβ −

∫ ∫

S−(t)
µ(α, β)dαdβ (2.53)

The following properties hold for the Preisach model.

(a) Wiping-out Property Each local input maximum wipes out the vertices

of L(t) whose α-coordinates are below this maximum and each local mini-

mum wipes out the vertices whose β-coordinates are above this minimum.

Namely, only the alternating series of dominant input extrema are stored by

the Preisach model. All other input extrema are wiped out

(b) Congruency Property All minors hysteresis loops corresponding to back

and forth variations of input between the same consecutive extremum values

are congruent
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What it follows next, is the determination of µ(α, β). To determine µ(α, β), the set

of first-order transition (reversal) curves are needed. These curves can be exper-

imentally found as follows. First the input u(t) should be decreased to the value

which is less than β0 (a situation which is called negative saturation). Next the

input is monotonically increased until it reaches some value α′. As the input in-

creased, an ascending branch of a major loop is followed. This branch is also called

as the limiting ascending branch, because usually there is no branch below it. The

notation fα′ will be used for the output value on this branch which corresponds to

the input value u = α′. The first-order transition (reversal) curves are attached to

the limiting ascending branch. Each of these curves is formed as the above mono-

tonic increase of the input is followed by a sub-sequent monotonic decrease. The

term first-order emphasize the fact that each of these curves is formed after the first

reversal of input (see fig. 2.11).
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Figure 2.11: The First- and Second-order transition reversal curves
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Defining the function:

F (α′, β′) 4=
1
2
(fα′ − fα′β′) (2.54)

after some calculations that contain differentiations, we have:

µ(α′, β′) = −ϑ2F (α′, β′)
ϑα′ϑβ′

(2.55)

From (2.54), the above expression can be written in another equivalent form, which

is:

µ(α′, β′) =
1
2

ϑ2fα′β′

ϑα′ϑβ′
(2.56)

These first-order curves can also be named as first-order decreasing transition curves.

By almost repeating literally the previous reasoning a similar expression can be

found by using the first-order increasing transition curves. It is important to note

here that when the first-order transition curves are congruent the mirror symmetry

of functions F (α, β) and µ(α, β) with respect to the line α = −β is valid, i.e. :

F (−β,−α) = F (α, β)

µ(−β,−α) = µ(α, β)

respectively.

We next proceed to the formulation of the fundamental theorem that gives the

necessary and sufficient conditions for the representation of actual hysteresis non-

linearities by the Preisach model.

Representation Theorem

The wiping-out property and the congruency property constitute the necessary and

sufficient conditions for a hysteresis nonlinearity to be represented by the Preisach

model on the set of piecewise monotonic inputs.

We also mention that if the wiping-out and congruency properties are valid, then
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it really does not matter which transition curves are used for the determination of

µ(α, β). If the properties are not valid the values of µ(α, β) and the accuracy of the

Preisach model will depend on a particular choice of transition curves employed for

the determination of µ(α, β).

The numerical implementation of the Preisach model which circumvents the evalu-

ation of double integrals of (2.53) and the formula (2.56), where due to the differ-

entiations may strongly amplify errors (noise) and are inherently presented in any

experimental data, is:

f(t) = − F (α0, β0) + 2
n(t)−1∑

k=1

[
F (Mk,mk−1)− F (Mk,mk)

]

+ 2
[
F (Mn,mn−1)− F (Mn, u(t))

]
(2.57)

where the above expression has been derived for monotonically decreasing input

that is, the final link of interface L(t) is a vertical one. For the case where we have

monotonically increasing input :

f(t) = − F (α0, β0) + 2
n(t)−1∑

k=1

[
F (Mk,mk−1)− F (Mk,mk)

]

+ 2
[
F (u(t),mn−1)

]
(2.58)

The function F (α, β) is related to experimentally measured first-order transition

curves by the formula (2.58), Mk and mk correspond to the maximum and mini-

mum values of the input respectively on the k-vertex of the Preisach phase plane and

n(t) represents the number of the dominant extremum values and it is a function

of time due to the wiping-out property of the Preisach model and this number may

change with the time.

The above discussed model is called classical Preisach model and constitutes the

base to understand in depth the following modified models and that because, the

classical model has some intrinsic limitations which are:
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1. The C.P. (classical Preisach) model describes hysteresis nonlinearities which

exhibit congruency of minor loops formed for the same reversal values of input.

In fact the actual hysteresis nonlinearities deviate from this property.

2. The C.P. model is static in nature and does not account for dynamic properties

of hysteresis nonlinearities. For fast input variations these properties may be

essential.

3. The C.P. model describes hysteresis nonlinearities with the wiping-out prop-

erty, which means to the immediate formation of hysteresis loop after one

cycle of back-and-forth variation of input between any two reversal values.

However, experiments show that hysteresis loop formation is often preceded

by some stabilization process which may require large number of cycles to

achieve a stable minor loop.

4. The C.P. model deals only with scalar hysteresis nonlinearities. In many ap-

plications however, vector hysteresis1 is encountered.

The model that we will describe now is referred to as the Moving Preisach model.

We subdivide the triangle T (see fig. 2.12) into three sets S+
u(t),Ru(t), S

−
u(t) which are

defined as:
(α, β) ∈ S+

u(t) if β0 ≤ α ≤ u(t)

(α, β) ∈ Ru(t) if β0 ≤ β ≤ u(t), u(t) ≤ α ≤ α0

(α, β) ∈ S−u(t) if u(t) ≤ β ≤ α ≤ α0

The Moving Preisach model is the following:

f(t) =
∫ ∫

Ru(t)

µ(α, β)γ̂αβu(t)dαdβ +
1
2
(f+

u(t) + f−u(t)) (2.59)

1Vector hysteresis is a vector nonlinearity with the property that past extremum values of input
projections along all possible directions may affect future values of output.
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Figure 2.12: The Preisach phase plane for the Moving model

where f+
u(t), f

−
u(t) is the output along the limiting ascending and the limiting de-

scending branch respectively. In expression (2.59) the integration is performed not

over the fixed limiting triangle T but over the rectangle Ru(t)which changes along

with the input variations. The identification problem as before is in determining

the µ-function by fitting the model (2.59) to some experimental data. To overcome

this let introduce the function:

T (α, β)
4
= f−β − fαβ (2.60)

where here assume that we started from the state of positive saturation and the

input u(t) is monotonically decreased. Consequently (2.60) is equal to the output

increments between the limiting descending branch and first-order transition curves.

After some calculations we conclude that:

µ(α, β) = −1
2

ϑ2T (α, β)
ϑαϑβ

(2.61)
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and using (2.60) into (2.61) we have:

µ(α, β) =
1
2

ϑ2fαβ

ϑαϑβ
(2.62)

It must be cleared that the moving model (2.59) is equivalent to the classical Preisach

model (2.52) as far as description of purely hysteretic behavior is concerned. More

precisely, it is apparent that this equivalence holds only for input and output varia-

tions confined to the region enclosed by a major hysteresis loop. Outside this region,

the C.P. model prescribes flat saturation values for output, while the moving model

(2.59) prescribes the actual experimentally observed values f+
u(t) and f−u(t) for the

states of negative and positive saturation, respectively. For this reason, the wiping-

out and congruency property of minor loop are valid for the moving model. Again,

the numerical implementation is given by:

f(t) = 2
n(t)∑

k=1

[
T (Mk+1,mk)− T (Mk,mk)

]
+ f+

u(t) (2.63)

where (2.63) expresses explicitly the output f(t) in terms of experimentally mea-

sured function T .

An another model which is a modified version of the classical Preisach model will

be discussed now and is called as the nonlinear or input dependent Preisach model.

The advantages of this model over the classical one are:

1. The congruency property of minor loops is relaxed and

2. The nonlinear model allows one to fit experimentally measured first and second-

order reversal curves.

Since higher-order reversal curves are sandwiched between first- and second-order

ones, it is reasonable to expect that the nonlinear model will be more accurate than

the classical one. The nonlinear Preisach model can be mathematically defined as:

f(t) =
∫ ∫

Ru(t)

µ(α, β, u(t))γ̂αβu(t)dαdβ +
f+

u(t) + f−u(t)

2
(2.64)
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or using the geometric interpretation the equation (2.64) becomes:

f(t) =
∫ ∫

S(t)+
µ(α, β, u(t))dαdβ −

∫ ∫

S(t)−
µ(α, β, u(t))dαdβ (2.65)

It is clear that a new feature of this model in comparison with the moving one is

the dependence of the function µ on the current value of input u(t). This model has

the following two properties:

(a) Wiping-out Property Only the alternating series of past dominant extrema

Mk and mk are stored by the nonlinear Preisach model.

(b) Property of equal Vertical Chords All minor loops resulting from back-

and-forth variations between the same two consecutive extrema have equal

vertical chords (output increments) for the same input values.

We should note that for two consecutive extrema of the input, let assume u ∈
(u+, u−), the corresponding vertical chord does not depend on a particular past

history preceding the formation of a minor loop.

Now, for the solution of the identification problem the sets of first and second-

order reversal curves are required. Let assume that first the input is decreased to

reach the negative saturation state and then monotonically increases until it reaches

some value α. The first-order reversal curves are attached to the limiting ascending

branch and they are formed when the above monotonic increase of u(t) is followed

by a subsequent decrease. The notation fαu will be used for the output values on

the first-order reversal curve. The second-order reversal curves are attached to the

first-order reversal curves and they formed when the above monotonic decrease is

followed by a monotonic increase (see fig. 2.11). Using fαβu as the notation for the

output values on the second-order reversal curve, we consider the function:

P (α, β, u)
4
= fαu − fαβu (2.66)
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which (2.66) has the physical meaning of output increments between the first- and

second-order reversal curves. It is clear that:

P (α, u, u) = P (u, β, u) = P (u, u, u) = 0

After some calculations we obtain:

µ(α, β, u) = −1
2

ϑ2P (α, β, u)
ϑαϑβ

(2.67)

and using (2.66) in (2.67) we finally obtain:

µ(α, β, u) =
1
2

ϑ2fαβu

ϑαϑβ
(2.68)

Due to the mirror symmetry we also have that:

µ(−β,−α,−u) = µ(α, β, u)

The representation theorem for this model is the following one:

Representation Theorem

The wiping-out property and the property of equal vertical chords for minor loops

constitute the necessary and sufficient conditions for the representation of a hystere-

sis nonlinearity by the nonlinear Preisach model on the set of piecewise monotonic

inputs.

We must clear that the property of equal vertical chords is more general than

the congruency property. Indeed, if comparable minor loops are congruent, then

they have equal vertical chords. If now they have equal vertical chords, they are

not necessarily congruent. Likewise, under the congruency condition the nonlinear

Preisach model (2.64) or (2.65) coincides with the moving Preisach model (2.59).

The numerical implementation of the nonlinear model is the following one:

f(t) = f−u(t) +
n(t)∑

k=1

[
P (Mk+1, mk, u(t))

]
− P (Mk,mk, u(t)) (2.69)
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where f−u(t) is the output value of a monotonic decrease input from some above α0

(positive saturation) to α value of u(t). The formula (2.69) computes output values

by using input values, a set of second-order reversal curves and an input history

which are all specified by the user. Other models, very similar to the above ones,

can be found in [23].

Hysteresis modeling with the Preisach-model approach appears to be efficient as

it better approaches the requirements of accuracy and adaptability; as a matter

of fact, the possibility of including dynamic and mean field effects and the ability

to be coupled with the numerical solutions of Maxwell equations justifies its large

diffusion in many applications. From the other hand, the Preisach models incude

integrodifferential operators, thus making them very complicated and it is still not

clear how to fuse them into the controller design. However, we should mention that

modeling a general type of hysteresis itself is still a research topic and the reader

may refer to [24] for a recent view.

2.4 Summary

In this chapter mathematical models of non-smooth nonlinearities, such as friction,

backlash and hysteresis, and their limitations have been presented. Identification

and estimation techniques of the above models have also been presented when feasi-

ble. As it is cleared from this chapter, the better mathematical description we have

the higher accuracy and better description of the nonlinearities achieved. From the

other hand, the demand of high accuracy leads to complicated models that cannot

be implemented sometimes into the controller design. The in depth knowledge of

the above nonlinearities, the improvement of the nonlinear control theory that has

been achieved in the last decade together with the advanced technology, orient the

research to search for a unified method to face better the above nonlinearities.
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As it will be cleared from the following chapter, which describes the basic principles

of fault diagnosis, a succesful fault diagnosis is dependent from the model choice.

The better model we have the more accurate fault diagnosis can be achieved.
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Chapter 3

Fault Diagnosis

The detection and isolation of faults (diagnosis) is of a great importance in any engi-

neering system. Such kind of systems can be a broad spectrum of human-made ma-

chinery, including industrial production facilities (oil refineries, steel mills, chemical

plants, etc.) transportation vehicles (ships, airplanes, trains, etc.) and household

devices (air conditioning equipment, refrigerators, washing machines, etc.). The

early detection of the fault occurrence is critical in avoiding product deterioration,

performance degradation, major damage to the machinery itself and damage to

human health or even loss of lives. The quick and correct diagnosis of the faulty

component then facilitates proper and optimal decisions on emergency and correc-

tive actions and on repairs.

The traditional approaches to fault detection and diagnosis involve the limit check-

ing of some variables or the application of redundant sensors (physical redundancy).

More advanced methods rely on the spectral analysis of signals emanating from the

machinery or on the comparison of the actual plant behavior to that expected on

the basis of a mathematical model (analytical redundancy). The latter approach in-

cludes methods which are more deterministically framed (parity relations, observers)

and those formulated more on a statistical basis (Kalman filtering and parameter
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estimation). The boundaries between the various approaches are rather blurred and,

lately, sever methods have been shown to be closely related to one another and even

to produce identical results under broad conditions.

3.1 What is Fault Detection and Diagnosis

The detection and diagnosis of the faults in engineering systems are concerned

whether they occur in the plant or in its measurement and control instruments.

In the sequel what is meant by faults will be described and the tasks of detection

and diagnosis will be specified.

In general, faults are deviations from the normal behavior in the plant or its in-

strumentation. The faults of interest belong to one of the following categories:

• Additive process faults.

These are unknown inputs acting on the plant, which are normally zero and

which, when present, cause a change in the plant outputs independent of the

known inputs. Such faults best describe plant leaks, loads, etc.

• Multiplicative process faults.

These are changes (abrupt or gradual) in some plant parameters. They cause

changes in the plant ouputs which depend also on the magnitude of the known

inputs. Such faults best describe the deterioration of plant equipment, such

as surface contamination, clogging, or the partial or total loss of power.

• Sensor faults

These are discrepancies between the measured and actual values of individual

plant variables. These fautls are usually considered additive (independent of

the measured magnitude), though some sensor faults (sticking or complete

failure) may be better characterized as multiplicative.
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• Actuator faults

These are discrepancies between the input command of an actuator and its

actual output. Actuator faults are usually handled as additive though, again,

some kinds of them may be better characterized as multiplicative.

The sytems now that perform fault detection and diagnosis implement the following

tasks:

- Faul detection, which means, the indication that something is going wrong in

the monitored system.

- Fault isolation, which means, the determination of the exact location of the

fault or in other words which component is faulty.

- Fault identification, which means, the determination of the magnitude of the

fault.

The last two tasks together, that is, isolation and identification are referred to as

fault diagnosis. While detection is absolutely necessary in any practical system and

isolation is almost equally important, fault identification may not justify the extra

effort it requires. For this reason, most practical systems contain only the fault

detection and isolation tasks and are referred to as FDI systems. Most of the time,

the fault detection and diagnosis activity takes place on-line, in real time. The two

tasks can be performed either in parallel way or sequentially. In some systems, the

detection tasks is running permanently while the diagnostic task is triggered only

upon the detection of the presence of a fault.

Particularly, according to [26] in model-based fault detection and diagnosis (will be

described later) the following conventions are usually adopted:

(i) It is assumed that the faults are not present initially in the system but arrive

at some later time, The faults are generally described by a deterministic time-

functions which are unknown.
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(ii) Another deterministic and unknown inputs to the system are the additive

disturbances. The distinction between additive faults and disturbances is sub-

jective; the faults are those unknown inputs we wish to detect and isolate while

disturbances are nuisances we wish to ignore.

(iii) The noise which emanates from the plant or from the sensors and actuators,

is considered random with zero mean. Any nonzero mean is handled as a fault

or a disturbance.

(iv) Modeling errors are discrepancies between the model (model parameters) and

the true system. They are present ever since the origins of the system or due to

the changes of the operating-point. They may be considered as multiplicative

disturbances, in contrast to multiplicative faults which are also discrepancies

between the model and the true system, but which we wish to detect.

The detection performance of the diagnostic technique is characterized by a number

of important and quantifiable benchmarks which are:

- Fault sensitivity, that is, the ability of the technique to detect faults of rea-

sonably small size.

- Reaction speed, that is, the ability of the technique to detect faults with

reasonably small delay after their arrival.

- Robustness, that is, the ability of the technique to operate in the presence of

noise, disturbances and modeling errors, with few false alarm1

It is remarkable to note here, that in the most cases, there are design trade-offs

between the various properties described above. The isolation performance, that

is, the ability of the diagnostic system to distinguish faults depend on the physical

properties of the plant, on the size of the faults, noise, disturbances and modeling
1Erroneous fault detection
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error, and on the design of the algorithm. Multiple simultaneous faults are, in

general, more difficult to isolate them than single faults. Moreover, the interplay

between faults and disturbances, noise, modeling error may lead to uncertain or

incorrect isolation decisions. In addition, some faults may be non-isolable from one

another because they act on the physical plant in an undistinguishable way.

3.2 Methods in Fault Detection and Diagnosis

The methods in fault detection and diagnosis (FDD), may be classified into two

main categories: those that do not utilize a mathematical model of the plant and

those that do.

3.2.1 Model-Free methods

These are the FDD methods that do not utilize a mathematical model of the plant

and are:

Physical redundancy. In this method, multiple sensors are installed to measure

the same physical quantity. Any serious discrepancy between the measurements

indicates a sensor fault. With only two parallel sensors, fault isolation is not possible.

With three sensors, a voting scheme can be formed in order to isolate the fault sensor.

Physical redundancy involves extra hardware cost and extra weight, where in the

latter consists a serious factor in aerospace applications.

Special sensors. These sensors are installed explicitly for detection and diagnosis

purposes. They may be limit sensors (measuring e.g. temperature, pressure), which

perform limit checking. Other special sensors may measure some faulty-indicating

physical quantity, such as sound, vibration, etc.

Limit checking This approach is widely used in practice. Plant measurements are

compared by computer to preset limits. Exceeding the threshold indicates a fault

situation. While simple and straightforward, the limit checking approach has two
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serious drawbacks:

- Since the plant variables may vary widely due to normal input variations, the

thresholds need to be quite conservatively.

- The effect of a single component fault may propagate to many plant variables,

setting off a confusing multitude of alarms and making isolation extremely

difficult.

Spectrum analysis. Most plant variables exhibit a typical frequency spectrum

under normal operating conditions; any deviation from this is an indication of ab-

normality. Certain types of faults may have a specific signature in the spectrum

making thus isolation simpler.

Logic reasoning. Are techniques which are complementary to the discused above

methods, in that they are aimed at evaluating the symptoms obtained by the de-

tection (hardware and/or software). They are consist of trees of logical rules of the

“IF symptom AND symptom THEN conclusion” type. Each conclusion in turn, can

serve as a symptom in the next rule until to lead to a final conclusion.

3.2.2 Model-Based methods

Model-based FDD methods utilize an explicit mathematical model of the monitored

plant. Their natural mathematical description is in the form of differential equations

or equivalent transformed representations for the continuous-time model, while for

the discrete-time in the form of difference equations or their transformed equivalents.

Also, though most physical systems are nonlinear, their mathematical descriptions

usually relies on linear approximations.

Most of the model-based FDD methods rely on the concept of analytical redundancy.

In contrast with the physical redundancy, when measurements from parallel sensors

are compared to each other, now sensory measurements are compared to analyti-

cally computed values of the respective variable. The resulting differences, called
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residuals, are indicative of the presence of faults in the system. The generation of

residuals needs to be followed by residual evaluation, in order to arrive at detection

and isolation decisions. Schematically is depicted in fig. 3.1. Because of the presence

Residual
Generation 

Residual
Evaluation 

observations residuals decision 

Figure 3.1: Stages of model-based fault detection and diagnosis.

of noise and modeling errors, the residuals are never zero, even if there is no fault.

Hence, the detection decision requires testing the reiduals against thresholds, ob-

tained empirically or by theoretical considerations. To facilitate fault isolation, the

residual generators are usually designed for isolation enhanced residuals, exhibiting

structural or directional properties. The isolation decisions then can be obtained in

a structural (boolean) or directional (geometrical) framework, with or without the

inclusion of statistical elements.

Robustness issues

The residuals which are generated to indicate faults may also react to the presence of

noise, disturbances and modeling errors. Desensitizing the residuals to these sources

is the most important aspect in the design of the detection and diagnosis algorithm.

More precisely:

- To deal with the effects of noise, the residuals may be filtered and statisti-

cal techniques may be applied to their evaluation. In the case of not suf-

ficient information concerning the statistical properties of the noise and the

noise-transfer dynamics of the plant may complicate and hamper the overall

procedure.

- Disturbance decoupling may be built into the design of the residuals genera-
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tor, but it competes with the isolation enhancement for the available design

freedom.

- Robustness in the face of modeling errors is the most fundamental problem in

model-based FDD scheme. Several methods are available which usually rely

on some sort of optimization. Unfortunately, this problem does not lend itself

to easy solution and the known techniques are effective only under limited

circumstances.

Residual Generation Techniques

The generation of residual signals is a central issue in model-based fault diagnosis.

A rich variety of methods are available for residual generation and here will be

discussed briefly some of the most common approaches. It must be pointed out that

most residual generation approaches are applicable for both continuous and discrete

models, however some approaches can only work for discrete models. For example,

the parity relation approach is developed specially for discrete models although there

have been some studies into the use of the parity relation approach for continuous

models.

Considering the general cases, a system with all possible faults, i.e. sensor, actuator

and process faults, according the methodology and the denomination of [27] can be

described by the following state space model as:

ẋ(t) = Ax(t) + Bu(t) + R1f(t)

y(t) = Cx(t) + Du(t) + R2f(t) (3.1)

where f(t) ∈ <g is a fault vector, each element fi(t) (i = 1, 2, · · · , g) corresponds

to a specific fault and is considered as unknown time function. The matrices R1 and

R2 are known as fault entry matrices which represent the effects of faults on the

system. The vector u(t) ∈ <r is the input to the actuator or measured actuation,
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and the vector y(t) ∈ <m is the measured output, and both vectors are known

for FDI purposes. The vector x(t) ∈ <n is the state vector and A, B, C, D are

known system matrices with appropriate dimensions. What is following are some

approaches that have been developed for the residual generation.

• Observer-based approaches

The basic idea behind the observer or filter-based approaches is to estimate the

outputs of the system from the measurements (or a subset of measurements)

by using either Luenberger observer(s) in the deterministic setting or Kalman

filter(s) in a stochastic setting. Then, the output estimation error (or innova-

tions in the stochastic case), is used as a residual. It should be pointed out that

we are interesting to estimate the outputs using an observer, while it is not

necessary the estimation of the state vector. Therefore, a functional observer

is suitable for this task. In practice, the order of the functional observer is less

than the order of a state observer. It is desired to estimate a linear function of

the state, i.e. Lx(t), using a functional (or generalized) Luenberger observer

with the following structure:

ż(t) = Fz(t) + Ky(t) + Ju(t)

w(t) = Gz(t) + Ry(t) + Su(t) (3.2)

where z(t) ∈ <q is the state vector of this functional observer with F, K, J,

R, G, S matrices with appropriate dimensions. The output w(t) of this ob-

server is said to be an estimate of Lx(t), for the system described in (3.1), in

an asymptotic sense if in the absence of faults:

lim
t→∞[w(t)− Lx(t)] = 0 (3.3)

To introduce a transformation matrix T , the observer in (3.2) will generate the

estimate Lx(t) in the asymptotic sense if and only if the following conditions
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hold: 



F has stable eigenvalues

TA− FT = KC

J = TB −KD

RC + GT = L

S + RD = 0

(3.4)

The necessary and sufficient condition for the existence of the observer given

by (3.2) for the system (3.1) is that the pair (C, A) is observable. In order to

generate residuals, we need to estimate the system output. If we assign:

L = C (3.5)

we have the output estimation as:

ŷ(t) = w(t) + Du(t) (3.6)

The residual vector r(t) is defined as:

r(t) = Q[y(t)− ŷ(t)] = L1z(t) + L2y(t) + L3u(t) (3.7)

where:

L1 = −QG

L2 = Q−QR

L3 = −Q(S + D)

Now, the residual generator based on generalized Luenberger is given by:

ż(t) = Fz(t) + Ky(t) + Ju(t)

r(t) = L1z(t) + L2y(t) + L3u(t) (3.8)
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and the matrices in this equation should satisfy the following conditions:




F has stable eigenvalues

TA− FT = KC

J = TB −KD

L1T + L2C = 0

L3 + L2D = 0

(3.9)

When we apply the residual generator described in (3.8) to the system de-

scribed by (3.1), the residual will be:

ė(t) = Fe(t)− TR1f(t) + KR2f(t)

r(t) = L1e(t) + L2R2f(t) (3.10)

where e(t) = z(t) − Tx(t). It is obvious that the residual depends solely and

totally on faults.

The simplest method is of the full order observer and in this case (q = n) we

have:

T = I L1 = QC

F = A−KC L2 = −Q

J = B −KD L3 = QD

For any dynamic system, the observer-based residual generator always exists.

This is because any input-output transfer function matrix has the observable

realization. In other words, the output estimator always exists although a

suitable state observer cannot always be designed. The minimal order q0 of a

functional observer satisfies the inequality:

q0 ≤ µ− 1 (3.11)

where µ is the observability index of the system which is defined as the mini-
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mum number for which:

rank[CT , (CA)T , · · · , (CAµ)T ] = n

For observable systems the observability index lies within the limits:

n

m
≤ µ ≤ n−m + 1

Inequality (3.11) gives only the minimum possible order of a functional ob-

server. Providing additional freedom in order to achieve the required diag-

nostic performance, the observer order is normally larger thna the minimum

possible order.

To isolate the faults, the observer-based approaches can be used to design

structured residual sets or fixed residual vectors. For sensor faults, such kind

of design is straightforward. If it is required that a residual is sensitive to

faults in all but one of the sensors, the observer used to generate this resid-

ual should be driven by outputs excluding that single sensor measurement.

However, the design of a structured residual set for actuator fault isolation is

more difficult. This problem can be solved via unknown input observers and

eigenstructure assignement [27]. However, the isolation of actuators faults is

not always possible.

• Parity vector (relation) methods

The basic idea of the parity relation approach is to provide a proper check of

the parity (consistency) of the measurements of the monitored system. The

parity relations are rearranged direct input-output model equations, subjected

to a linear dynamic transformation. The transformed residuals serve for detec-

tion and isolation. To begin with this problem, let consider the measurement

of an n-dimensional vector using m sensors, as in [27]. The measurement

equation is:

y(k) = Cx(k) + f(k) + ξ(k)
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where y(k) ∈ <m the measurement vector, x(k) ∈ <n the state vector, f(k)

the vector of sensor faults , ξ(k) the noise vector and C an m×n measurement

matrix. Furthermore, the dimension of y(k) is larger than the dimension of

x(k), that is:

m > n and rank(C) = n

Inconsistency in the measurement data is then a metric that can be used

initially for detecting faults and, subsequently for fault isolation. For FDI

purposes, the vector y(k) can be combined into a set of linearly independent

parity equations to generate the parity vector (residual):

r(k) = V y(k)

To satisfy the usual requirement for a residual, that is zero-valued in the fault-

free case, the matrix V should satisfy the condition:

V C = 0

Under this condition, the parity vector contains only information on the faults

and noise:

r(k) = v1[f1(k) + ξ1(k)] + · · ·+ vm[fm(k) + ξm(k)] (3.12)

where vi the ith column of V , fi(k) is the ith element of f(k) which denotes

the fault in the ith sensor. From (3.12) one can see that the parity vector

is independent of the unmeasured state x(k) and that contains information

about the faults and the noise (uncertainty). Moreover, the parity space is

spanned by the columns of V , i.e. the columns of V form a basis for this

space. In addition, a fault in the ith sensor, implies a growth of the residual

r(k) in the direction vi. The space span{V } is called a “parity space”. Then

a fault detection decision function is defined as:

DFD(k)
4
= r(k)T r(k)
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If a fault occurs in the sensors, DFD(k) will be greater than a predetermined

threshold. For the fault isolation decision another function is defined which is:

DFIi(k)
4
= vT

i r(k) ; i ∈ {1, 2, · · · ,m}

For a given r(k), a malfunctioning sensor is identified by computing the m

values of DFIi(k). If DFIj(k) is the largest one of these values then the

sensor that corresponds to DFIj(k) is the one which is most likely to have

become faulty. In the parity space point of view, the columns of V define

m distinct fault signature directions. After a fault has been declared, it can

be isolated by comparing the orientation of the parity vector to each these

signature directions. So, DFIi(k) is a measure of the correlation of the residual

vector with fault signature directions. For a reliable isolation, the generalized

angles between fault signature directions should be as large as possible, i.e.,

to make vT
i vj (i 6= j) as small as possible. Thus, optimal fault isolation

performance will be achieved when vi determined by:




min{vT
i vj} i 6= j i, j ∈ {1, 2, · · · , m}

max{vT
i vi} i ∈ {1, 2, · · · , m}

For the case rank(C) = m < n, redundancy relations are needed to be con-

struct and can be done by collecting sensor outputs over a time interval. say

{y(k − s), y(k − s + 1), · · · , y(k)}. This is known as “temporal” or “serial”

redundancy. As in [27], we consider a system with the following discrete state

space equations:

x(k + 1) = Ax(k) + Bu(k) + R1f(k)

y(k) = Cx(k) + Du(k) + R2f(k) (3.13)

where y ∈ <m the output vector, x ∈ <n the state vector, u ∈ <r the input

vector, f ∈ <g the fault vector and A, B, C, D, R1, R2 real matrices with
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compatible dimensions. Combining (3.13) from time instant k − s to k yields

the following redundant relations:




y(k − s)

y(k − s + 1)
...

y(k)




︸ ︷︷ ︸
Y (k)

−H




u(k − s)

u(k − s + 1)
...

u(k)




︸ ︷︷ ︸
U(k)

= Wx(k − s) + M




f(k − s)

f(k − s + 1)
...

f(k)




︸ ︷︷ ︸
F (k)

(3.14)

or in a condensed form:

Y (k)−HU(k) = Wx(k − s) + MF (k) (3.15)

with:

H =




D 0 · · · 0

CB D · · · 0
...

...
. . .

...

CAs−1B CAs−2B . . . D



∈ <(s+1)m×(s+1)r

W =




C

CA
...

CAs



∈ <(s+1)m×n

and the matrix M is constructed by replacing {D, B} with {R2, R1} in the

matrix H. Then a residual signal can be defined as:

r(k)
4
= V [Y (k)−HU(k)] (3.16)

where V ∈ <p×(s+1)m and p the residual vector dimension. Eq.(3.16) is the

computational form of a residual generator which shows the residual signal as

a function of measured inputs and outputs of the monitored system. Using
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(3.15) in (3.16) we obtain:

r(k) = V Wx(k − s) + V MF (k) (3.17)

This is the evaluation format of the residual. Again to make the parity vector

insensitive to system’s inputs and states the following equation should hold:

V W = 0 (3.18)

and to satisfy the fault detectability condition, the matrix V should also satisfy

the condition:

V M 6= 0 (3.19)

Once we have matrix V , the residual signal can be generated using (3.16). The

residual generator design depends on solutions of (3.18). For an appropriately

large s, it follows from the Cayley-Hamilton theorem that the solution of (3.18)

exists and so the parity relation-based residual generator for fault detection

does. It must be pointed out that the parity relation can also be constructed

using a z-transformed input-output model.

The parity relation approach can be used to design structured residual set for

fault isolation. As in observer-based approach, for isolating sensor faults is very

straightforward. If we use cT
i (the ith row of C) and yi (the ith component of y)

instead of C and y, the parity relation will contain only the ith sensor’s output

together with all the inputs. The residual generated by this relation is only

sensitive to the fault in the ith sensor. For the actuator isolation problem, the

structured residual set is more difficult to design and the isolation of actuator

faults is not always possible.

• FDI via Parameter Estimation

Parameter estimation is a natural approach to the detection and isolation of

parametric (multiplicative) faults. This approach is based on the assumption
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that the faults are reflected in the physical system parameters such friction,

mass, resistance, etc. The basic idea of the detection method is that the

parameters of the actual process are repeatedly estimated on-line using well-

known estimation methods and the results are compared with the parameters

the reference model obtained initially under the fault-free condition. Any

substantial discrepancy indicated as a fault. This approach normally uses the

I/O mathematical model of a system in the following form:

y(t) = f(P, u(t))

where P is the model coefficient vector which is directly related to physical

parameters of the system. The function f can take both linear or non-linear

foramts. The basic procedure that is followed for FDI purposes using param-

eter estimation approach has the following steps:

(1) Establish the process model using physical relations.

(2) Determine the relationship between model coefficients and process phys-

ical parameters.

(3) Estimate the normal model coefficients.

(4) Calculate the normal process physical parameters.

(5) Determine the parameter changes which occur for the various fault cases.

By carrying out the last step for known faults, a database of faults and their

symptoms can be built up.

To generate residuals using this approach, an on-line parameter identification

algorithm should be used. It is not easy however to achieve fault isolation

using the parameter estimation method. This is because the parameters being

identified are model parameters which cannot always be converted back to the

system physical parameters. Moreover, this method is also more demanding
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in terms of on-line computation and input excitaion requirements than the

other methods described previously.

• Kalman filter

The innovation (prediction error) of the Kalman filter can be used as a fault

detection residual; its mean is zero if there is no fault (and disturbance) and be-

comes non-zero in the presence of faults. However, fault isolation is somewhat

awkward with Kalman filter; one needs to run a bank of “matched filters”, one

for each suspected fault and for each possible arrival time, and check which

filter output can be matched with the actual observation.

With their steady establisment in the past, reasearch attention has been devoted to

the interconnection among these approaches, in particular, between parity relation

and the other three approaches. Equivalence between them has been demonstrated

form different viewpoints [30], [31]. Recently, [32], derived a one-to-one relation-

ships among the design parameters and reveal that the real difference between these

approaches lies in the fact the the on-line implementation form of parity relation

approach is nonrecursive, while in the observer-based ones are implemented recur-

sively. Making use of these results the design of residual generators can be carried

out independent of the implementation form possibly used.We can use, for instance,

the parity space approach for the residual generator design, then transform the pa-

rameters achieved to the parameters needed for the construction of a diagnostic

observer and finally realize the diagnostic observer.

In the literature, all the above approaches described for the residual generation pur-

poses, are referred to as analytical approaches that make use of quantitative models.

Other approaches that make use of qualitative models as well as approaches using

computational intelligence techniques are referred to as knowledge-based approaches

and will be described in the sequel.
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• Qualitative fault diagnosis

Since in most cases available, a priori knowledge about a process is hardly

complete, or, even if this is the case, might be too complex to directly deal

with, an approximation has to be made, so that models become inaccurate.

Or measurements are subjected to noise. Consequently, deviations between

the reality and its representation, i.e. modeling errors, are unavoidable. This

method has been extensively applied in science and engineering, e.g. when

nonlinear differential equation is linearized or a complex system is represented

by a trained artificial neural network. These quantitative models are able to

predict the system behavior precisely but more often inaccurately. Efforts have

to be made through bringing more information (e.g. training data) to raise the

accuracy of the prediction in the modeling stage, or through modeling error

decoupling to reduce the influence of such errors when applying the models to

fault diagnosis.

Alternatively, incomplete knowledge can be treated via abstraction. Instead of

the precise description by a quantitative model, a qualitative description of a

process can be applied. By allowing the existence of a tolerance, the resolution

of the representations is reduced, to emphasize primary distinctions and ignore

unimportant or unknown details. Although this description is imprecise it is

able to represent the system accurately. The qualitative approach, in contrast

with quantitative one, requires only declarative information, e.g. the sign

of variables, the tendencies of variables (increasing, decreasing or constant),

order and/or relative magnitude, and hence can be robust with respect to

uncertainty in a well defined sense. The qualitative approach is motivated by

the following circumstances (see also [27]):

- Faults cannot be reasonably described by analytical methods, e.g. a valve

is blocked or a pipe is broken
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- The on-line information available is not given by quantitative assesments

of the current operating conditions, e.g. the water level is high cannot

be unambiguously transformed into quantitative measurement data.

- If the system structure or parameters are not precisely known and diag-

nosis has to be based primarily on heuristic information (e.g. connection

of symptoms and faults, process history, fault statistics etc.), no quanti-

tative model can be set up.

According to the available information about a plant, there are several different

possibilities to qualitatively represent the information of the dynamic process,

each of which is associated with an appropriate simulation method. Basically, a

qualitative simulation method should be responsible for retaining the accuracy

of the represented system behavior, thus the fault detection approaches based

on them could avoid false alarm. The representations that are relevant to the

FDI approaches are:

- qualitative differential equations ([34])

- envelope behaviors ([35], [36])

- stochastic qualitative behaviors ([37], [33])

Main disadvantages of the qualitative approach emerge when there is a possi-

bility of ambiguity, for example when are manipulated two or more declarative

variables (the sum of a positive variable and a negative one can either be posi-

tive or negative), or because the qualitative models are relatively crude, usually

cannot be used to detect soft faults as the diagnosis is symptom-based.

Quantitative and qualitative approaches have a lot of complementary features

and can be suitably combined together in order to increase the robustness of
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the quantitative methods. This combination can also minimize the disadvan-

tages of the two approaches. Hence, one of the aims in the future research on

model-based FDI is to find the way to combine these two methods togeher to

provide highly reliable diagnostic information.

• FDI using Computational Intelligence Techniques

In the case of fault diagnosis in complex systems, one is faced with the problem

that no, or insufficiently accurate, mathematical models are available. The use

of knowledge-model-based or data-model-based techniques, either in the frame-

work of diagnosis expert systems or in combination with a human expert, is

then the only feasible way to proceed.

Fuzzy logic in fault diagnosis

The second stage of model-based FDI, decision making, is a logic decision pro-

cess that transforms quantitative knowledge (residual signals) into qualitative

statements (faulty, normal, etc.). To outline the basic idea, let consider the

case that the residual due to faults is also contaminated by noise and the ef-

fect of uncertainty due to incomplete de-coupling, so that the residual will be

non-zero even in the absence of faults, i.e. the residual will fluctuate depend-

ing on the unknown time functions of the disturbances, noise and inputs of

the process. Based upon this limitation, the problem is to make the correct

decisions on the basis of uncertain information.

Contrary to the classical logic which allows a definite calssification of fixed

values, the fuzzy logic offers a form for the description of tolerances. Fuzzy

processing can be divided into essentially the following stages. In the first, the

residuals are compared with membership functions which are often assumed

to be of triangular shape. In the second stage, the lower of the two antecedent

outputs is selected. Then the output of all rules is combined. Finally, the cen-
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ter of gravity (or another averaging methods) is used to defuzzify the output

and lead to the possibility of definite decision-making. The introduction of

fuzzy logic can improve the decision-making, and in turn will provide reliable

and sufficient FDI which are applicable for real industrial systems. One of the

latest development in this area is the fuzzy oberver based approach. In [38], the

fuzzy observer concept actually represents a set of analytical linear observers

on whose ouputs a fuzzy fusion is performed based on Takaki-Sugeno fuzzy

models. Using this approach a nonlinear dynamic system is described by a

number of locally linearised models. For the fuzzy observer scheme the linear

models are implemented in a bank of linear observers. The final state esti-

mation is given by a fuzzy fusion of all local observer outputs. The difference

between the measured output and the estimated output provides the residual

for further diagnostic evaluation.

Neural Networks in fault diagnosis

In the past two decades, the techniques of artificial neural networks (ANN)

are growing mature, as a data-driven method, which provides a totally new

perspective to fault diagnosis. The ANN is hopeful approach to FDI, owing to

its robustness and strong learning ability. The ability to learn means that, if a

causal relationship exists between the output and input, the network will learn

it. If sufficient internal nodes and internal layers are available, the network

will also map any set of inputs to the corresponding output. The ultimate

result is a network which will faithfully reproduce the desired output for the

entire training set, including any noise. A very frequent application of ANNs

for FDI purposes, is their use as classifiers with training data for each fault.

However, the majority of the ANN-based FDI systems suffer form the lack

of universality, the dilemma of stability and the long training time, due to
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the localization of the algorithm itself. One of the latest development in this

area is the neural observer based approach. In [39], [40] neural networks are

used as nonlinear multi-input single-output models of ARMA type to set up

different kinds of observer schemes. Thereby the neural networks replace the

analytical models which are usually necessary for observer-based FDI. Two

types of observer schemes are proposed by [39] for actuator, component and

instrument fault detection: the neural single observer scheme and the neu-

ral dedicated observer scheme. Whilst the first one is driven by all process

inputs and outputs the second one is only driven by the process inputs and

the output of the component to be supervised. Therefore, the first scheme

consists only of a single observer which is composed of a bank of multi-input

single-output neural nets each estimating one output in contrast to the second

scheme, which consists of a number of observers associated to each component

of the plant. These neural observers in turn consist of a number of multi-input

single-output neural nets each estimating one process output. In both cases

the training is based on fault free process data reflecting the normal behavior.

The residual evaluation part can then be performed by a well-known static

multi-layer perceptron neural network.

It has to be mentioned also that a combination of the above intelligence techniques

with the help of genetic algorithms can also be used in order to cope with the prob-

lem of nonlinear processes, lacking analytical knowledge and robustness issues. For

example, fuzzy neural networks (FNNs) (see [41]) combine the advantage of fuzzy

reasoning, which is the capability of handling uncertain and imprecise information,

with the advantage of neural networks, which is the capability of learning from ex-

amples. Genetic algorithms from the other hand can be used in order to find for

example, optimal neural structures.
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Thanks to the rapid progress of nonlinear observer theory during the last decade,

significant results in designing nonlinear residual generators have been achieved in

recent five years. Nevertheless, a general theory for the solution of nonlinear FDI

problems is still missing. Thus the development of nonlinear FDI approaches is one

of the current FDI topics that are receiving much attention. Despite the difficulties,

works on nonlinear systems have recently appeared [51]-[54].

3.3 Summary

This chapter has presented the basic priciples of FDI and especially of the model-

based one. The FDI problem has been formalized in a uniform framework by pre-

senting mathematical descriptions and definitions. The residual generator, which is

identified as a central issue in model-based FDI, has been summarized in a general-

ized structure which can cover all residual generation methods. Other FDI methods

such as computational intelligence techniques and qualitative modeling have been

discussed briefly. In the following chapter, a novel approach for fault detection

in mechanical systems is presented where friction nonlinearities are present. The

precedening chapters including this one, have been constituted the base for the

development of this novel approach.
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Chapter 4

Fault detection in mechanical

systems with friction

phenomena: an on-line

approximation approach.

In this chapter we present a novel approach to detect faults in mechanical systems

with friction that perform linear motion. The basic module in the proposed ar-

chitecture is an on-line approximator which is based on liner-in-the-weights neural

network structures. To model the effects of friction, the dynamic LuGre model [9] is

used. However, we don’t assume knowledge of system nonlinearities. Furthermore,

the friction internal state is not assumed to be available for measurement. The on-

line approximator requires system’s position and velocity as well as its input force.

The performance of the developed fault detector is analyzed with respect to its

robustness and sensitivity. Rigorous fault detectability conditions are also derived

basing on the important results presented in [51].
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4.1 Problem Formulation

Consider the linear motion of a mass m driven by an input force u:

mẍ + Kx + F = u (4.1)

where F represents the friction force, K > 0 denotes the spring constant, x the

mass position, and ẋ its velocity. To model the effects of friction, the dynamic

LuGre model [9] is used:

F = σ0z + σ1ż + ẋ + ω(x, ẋ, z) (4.2)

ż = −α(ẋ)|ẋ|z + ẋ (4.3)

where the friction internal state z describes the averaging deflection of the contact

surfaces during the sticking phases and ω(x, ẋ, z) denotes a friction modelling error.

We assume that |ω(x, ẋ, z)| ≤ ω̄ , where ω̄ ≥ 0 is an unknown but suitably small (see

Section 4.2) constant. Furthermore, the parameters σ0, σ1, σ2 that appear in (4.2)

are positive and are considered unknown, too. In [9], the function α(ẋ) is given by

α(ẋ) =
σ0

fc + (fs − fc)e−(ẋ/vs)2

where fc is the Coulomb friction, fs is the stiction force and vs is the Stribeck

velocity. It is apparent that 0 < σ0/fs ≤ α(ẋ) ≤ σ0/fc. In practice, α(ẋ) depends

on several factors such as material properties, temperature etc.

Defining x1
4
= x, x2

4
= ẋ, it follows that

ẋ1 = x2 (4.4)

ẋ2 = −α1x2 + [α3α(x2)|x2| − α2] z + α4 u− α4 ω(x1, x2, z)− α5 x1 (4.5)

ż = −α(x2) |x2| z + x2 (4.6)

where |x2|α(x2) ≥ 0, α1
4
= (σ1 + σ2)/m, α2

4
= σ0/m, α3

4
= σ1/m, α4

4
= 1/m, and

α5
4
= K/m.

For system (4.4)-(4.6), the following assumptions are introduced:
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Assumption 1 The state variables x1 and x2 are available for measurement.

Assumption 2 Let U be the class of piecewise continuous and bounded signals.

Then, for any u ∈ U and any initial condition, the state trajectories x1, x2 are

uniformly bounded.

It is worth noting that the internal friction state z is not assumed to be avail-

able for measurement, and the function α(x2) as well as the positive parameters

αi, i = 1, . . . , 5 are considered unknown.

As α(x2)|x2| > 0 and α(x2)|x2| = 0 only when x2 = 0, it follows immediately

that the internal friction state z is input–to–state stable when x2 is considered as

input. Hence, there exists a pair of functions β ∈ KL and γ ∈ K (these functions

are not assumed to be known) such that, for every essentially bounded input x2, we

have

|z(t, z0, x2)| ≤ β(|z0|, t) + γ(|x2|) , ∀ t ≥ 0 (4.7)

where z(t, z0, x2) denotes the trajectory of (4.6) starting from z0 at time t = 0 with

input x2.

The faults considered in this paper are modelled as additive perturbations (oc-

curring at some unknown time instant T ) ∆F1(x1, x2, t) and ∆F2(x1, x2, t) to the

nominal F and K in (4.1), respectively. Then, after occurrence of a fault (i.e., for

t ≥ T ), the dynamics of the systems becomes

ẋ1 = x2 (4.8)

ẋ2 = −α1 x2 − α5 x1 + α4 u + [α3α(x2)|x2| − α2] z − α4 ω(x1, x2, z)

+[(α3α(x2)|x2| − α2) z − α1 x2 − α4 ω(x1, x2, z)]∆F1 − α5 x1 ∆F2(4.9)

ż = −α(x2)|x2| z + x2 (4.10)
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The following further assumption is introduced (no multiple faults are considered in

this paper).

Assumption 3 Only one single fault may occur at a given time T .

To end this section on the problem formulation, we would like to emphasize that the

additive perturbations ∆F1(x1, x2, t) and ∆F2(x1, x2, t) to the nominal values of F

and K, respectively, reflect variations in the normal forces in contact, temperature

changes and material wear, as well as spring’s stiffening and relaxation phenomena.

These malfunctions are typically encountered for instance in actuators installed in

harsh plant environments (see also the DAMADICS benchmark problem presented

in Chapter 5, where the problem of detecting faults in a sugar plant actuator is

addressed).

4.2 Nominal System On-line Approximation

In this section, we present an on–line approximation scheme for the nominal system

presented in Section 4.1. The approximator’s output will serve as the residual signal

for fault detection. In this respect, as will be seen later on, a key role is played

by the functional approximation scheme that in this work is implemented by one–

hidden–layer neural structures with a linear output layer. In the following, the basic

properties of such a class of neural approximators will be briefly reported for the

sake of completeness.

More specifically, the considered class of neural approximators can be characterized

as

y> = W>S(v) (4.11)
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where v ∈ <n2 and y ∈ <n1 denote the approximator input and output, respectively,

W is an L-dimensional vector of synaptic weights, and S(v) is a L × n1 matrix of

regressor terms.

The regressor terms may contain high order connections of sigmoidal functions [47],

radial basis functions (RBFs) with fixed centers and widths [44], [48], [46], shifted

sigmoids [42], [43], thus forming High Order Neural Networks (HONNs), RBFs and

Shifted Sigmoidal Neural Networks, respectively.

An important and well known property shared by the aforementioned neural ap-

proximating structures is the following (see also the references above):

Density Property. For every continuous function f(v) : <n2 → <n1 , there exist

an integer L and optimal weight values W ? such that for every ε > 0

sup
v∈Ω

|f(v)> −W ?>S(v)| ≤ ε

where Ω ⊂ <n2 is a given compact set.

In other terms, if the number of regressor terms L is sufficiently large, then there

exist a weight vector W ? such that W ?>S(v) can approximate f(v)> to any degree

of accuracy, in a given compact set. This property allows us to focus on linear–in–

the–weights neural networks (LNN for short) without loss of generality in terms of

approximation error. This, in turn, will make it easier to prove basic system prop-

erties like stability and robustness. However, it is also important to mention that,

under suitable assumptions, neural networks are characterized by other interesting

properties related to their appproximating capabilities (see the basic work [49] and

also the recent paper [50], where an extensive discussion on such properties in the

nonlinear optimal control context is reported).
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Now, let us consider the following estimator

˙̂x1 = x2 + k1ξ̃1 − α̂5ξ̃2 (4.12)

˙̂x2 = −α̂1x̂2 − α̂5x̂1 + α̂4u + k2ξ̃2 − φ , (4.13)

where k1, k2 > 0 denote design constants, φ denotes a function that will be defined

later on, ξ̃1, ξ̃2 represent the state estimation errors defined as

ξ̃i
4
= xi − x̂i, i = 1, 2 , (4.14)

and α̂i , for i = 1, 4, 5 are parameters to be updated on line. Then, from (4.4),(4.5),

and (4.12)-(4.14), it follows that

˙̃
ξ1 = −k1ξ̃1 + α̂5ξ̃2 (4.15)

˙̃
ξ2 = −α5ξ̃1 − (k2 + α1)ξ̃2 + α̃1x̂2 + α̃5x̂1 − α̃4u + [α3α(x2)|x2| − α2]z −

−α4ω(x1, x2, z) + φ (4.16)

where α̃i
4
= α̂i − αi, for i = 1, 4, 5.

The objective is to design an adaptive structure for φ such as to guarantee the

boundedness of the estimation errors and of all internal variables in front of the

unknown friction terms entering the dynamics of the system via the unmeasurable

state variable z and of the modelling uncertainty.

In this connection, we introduce the following form for function φ in (4.13):

φ
4
= −[|x2|ŵ>1 S1(x2, |x2|) + ŵ>2 S2(|x2|) + |x2|ε̂1 + b̂1]sigm(ξ̃2) (4.17)

where sigm(·) denotes a sigmoidal smooth approximation of the signum function

sgn(x), the terms ŵ>1 S1(x2, |x2|) and ŵ>2 S2(|x2|) denote neural approximators of

the form (4.11) and ε̂1, b̂1 are further parameters to be updated on line. The reasons
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motivating structure (4.17) for term φ will be clear after the proof of Theorem 1

stated later on.

It is worth noting that

sigm(x) = sgn(x) + εs(x) (4.18)

where the error εs(x) satisfies |εs(x)| ≤ 1 (as is well know, sigm(·) can be shaped

to make εs(x) as small as desired). Hence, using (4.17) and (4.18), we obtain that

(4.17) can be rewritten as

φ = −[|x2|ŵ>1 S1(x2, |x2|) + ŵ>2 S2(|x2|) + |x2|ε̂1 + b̂1](sgn(ξ̃2) + εs(ξ̃2))(4.19)

The parameters appearing in (4.12),(4.13), and (4.19) are provided by the following

adaptive laws:
˙̂w1 = Pa{|ξ̃2||x2|S1(x2, |x2|)}
˙̂w2 = Pb{|ξ̃2|S2(|x2|)}
˙̂ε1 = Pc{|ξ̃2||x2|}
˙̂
b1 = Pd{|ξ̃2|}
˙̂α1 = Pe{−x̂2ξ̃2}
˙̂α4 = Pf{uξ̃2}
˙̂α5 = Pg{−ξ̃2(ξ̃1 + x̂1)}

(4.20)

where Pa, Pb, Pc, Pd, Pe, Pf and Pg denote the projection operators with respect

to the convex sets Wa
4
= {ŵ1 ∈ <L1 : |ŵ1| ≤ Ma}, Wb

4
= {ŵ2 ∈ <L2 : |ŵ2| ≤ Mb},

Wc
4
= {ε̂1 ∈ < : |ε̂1| ≤ Mc}, Wd

4
= {b̂1 ∈ < : |b̂1| ≤ Md}, We

4
= {α̂1 ∈ < : 0 < α̂1 ≤

Me}, Wf
4
= {α̂4 ∈ < : 0 < α̂4 ≤ Mf}, Wg

4
= {α̂5 ∈ < : 0 < α̂5 ≤ Mg}, where Ma,

Mb, Mc, Md, Me, Mf , Mg are suitably large positive scalars (the definition of the

projection operation with respect to a convex set can be found, for instance, in [45]).

Now, we are able to state and prove the following basic theorem:
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Theorem 1 Consider the system (4.4)-(4.6). There exists a choice of the scalars

Ma, Mb, Mc, Md, Me, Mf , Mg defining the projection sets Wa, Wb, Wc, Wd, We,

Wf , Wg and of the initial conditions of the estimated parameters in the adaptive

laws (4.20) such that the on-line approximator (4.12),(4.13), (4.19) together with

the update laws (4.20) guarantee the uniform ultimate boundedness of ξ̃i, i = 1, 2

with respect to the sets

Ξ1 =
{

ξ̃1 ∈ <
∣∣∣∣|ξ̃1| ≤ Φ̄Mg

(k2 + α1)k1

}

Ξ2 =
{

ξ̃2 ∈ <
∣∣∣∣|ξ̃2| ≤ |Φ|

k2 + α1
≤ Φ̄

k2 + α1

}

where Φ̄ > |Φ| = [|x2|ŵ>1 S1(x2, |x2|)+ ŵ>2 S2(|x2|)+ |x2|ε̂1 + b̂1] is a suitable positive

scalar, as well as the boundedness of all parameter estimates ŵi, i = 1, 2, ε̂1, b̂1, α̂1,

α̂4 and α̂5.

Proof: Consider the Lyapunov function candidate:

V
4
=

1
2
ξ̃2
1 +

1
2
ξ̃2
2 +

1
2
w̃>1 w̃1 +

1
2
w̃>2 w̃2 +

1
2
ε̃21 +

1
2
b̃2
1 +

1
2
α̃2

1 +
1
2
α̃2

4 +
1
2
α̃2

5 (4.21)

Differentiating V with respect to time we obtain

V̇ = −k1ξ̃
2
1 + α̂5ξ̃1ξ̃2 − (k2 + α1)ξ̃2

2 − α5ξ̃1ξ̃2 + ξ̃2(α3α(x2)|x2| − α2)z + φξ̃2 + w̃>1 ˙̃w1 + w̃>2 ˙̃w2

−ξ̃2α4ω(x1, x2, z) + ξ̃2α̃1x̂2 + ξ̃2α̃5x̂1 − ξ̃2α̃4u + α̃1
˙̂α1 + α̃4

˙̂α4 + α̃5
˙̂α5 + ε̃1 ˙̃ε1 + b̃1

˙̃
b1

≤ −k1ξ̃
2
1 − (k2 + α1)ξ̃2

2 + ξ̃1ξ̃2α̃5 + |ξ̃2||x2|α3α(x2)|z|+ α2|ξ̃2||z|+ ξ̃2φ + w̃>1 ˙̃w1 + w̃>2 ˙̃w2

+|ξ̃2|α4|ω(x1, x2, z)|+ ξ̃2α̃1x̂2 + ξ̃2α̃5x̂1 − ξ̃2α̃4u + α̃1
˙̂α1 + α̃4

˙̂α4 + α̃5
˙̂α5 + ε̃1 ˙̃ε1 + b̃1

˙̃
b1

(4.22)

From bounds (4.7) and |ω(x, ẋ, z)| ≤ ω̄, and introducing a positive scalar d0 such

that 0 ≤ β(|z0|, t) ≤ d0 , it follows that

V̇ ≤ −k1ξ̃
2
1 − (k2 + α1)ξ̃2

2 + |ξ̃2||x2|α3α(x2)
[
β(|z0|, t) + γ(|x2|)

]
+ α2|ξ̃2|

[
β(|z0|, t) + γ(|x2|)

]
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+ξ̃2φ + w̃>1 ˙̃w1 + w̃>2 ˙̃w2 + |ξ̃2|α4ω̄ + ξ̃2α̃1x̂2 + ξ̃2α̃5(ξ̃1 + x̂1)− ξ̃2α̃4u + α̃1
˙̂α1 + α̃4

˙̂α4

+α̃5
˙̂α5 + ε̃1 ˙̃ε1 + b̃1

˙̃
b1

= −k1ξ̃
2
1 − (k2 + α1)ξ̃2

2 + |ξ̃2||x2|β(|z0|, t)α3α(x2) + |ξ̃2||x2|α3α(x2)γ(|x2|) + α2|ξ̃2|β(|z0|, t)

+α2|ξ̃2|γ(|x2|) + ξ̃2φ + w̃>1 ˙̃w1 + w̃>2 ˙̃w2 + |ξ̃2|α4ω̄ + ξ̃2α̃1x̂2 + ξ̃2α̃5(ξ̃1 + x̂1)− ξ̃2α̃4u

+α̃1
˙̂α1 + α̃4

˙̂α4 + α̃5
˙̂α5 + ε̃1 ˙̃ε1 + b̃1

˙̃
b1

≤ −k1ξ̃
2
1 − (k2 + α1)ξ̃2

2 + |ξ̃2||x2|
[
α3α(x2)

(
d0 + γ(|x2|)

)]
+ |ξ̃2|(α2d0 + α4ω̄) + |ξ̃2|α2γ(|x2|)

+ξ̃2φ + w̃>1 ˙̃w1 + w̃>2 ˙̃w2 + ξ̃2α̃1x̂2 + ξ̃2α̃5(ξ̃1 + x̂1)− ξ̃2α̃4u + α̃1
˙̂α1 + α̃4

˙̂α4 + α̃5
˙̂α5

+ε̃1 ˙̃ε1 + b̃1
˙̃
b1

The idea now is to approximate on line the unknown nonlinear terms α3α(x2)(d0 +

γ(|x2|)) and α2γ(|x2|) by suitable neural approximators. More specifically, it turns

out that there exist continuous functions ε1(x2), ε2(x2) (denoting the approximation

errors) and constant but unknown weight vectors w?
1, w?

2, such that

α3α(x2) (d0 + γ(|x2|)) = w?>
1 S1(x2, |x2|) + ε1(x2)

α2γ(|x2|) = w?>
2 S2(|x2|) + ε2(x2)

(4.23)

From the density property, it also follows that, on a generic compact set Ω ⊂ <, the

approximation errors can be suitably bounded as |ε1(x2)| ≤ ε1 and |ε2(x2)| ≤ ε2,

where ε1 > 0, ε2 > 0.

Now, letting k?
3
4
= α2d0 + α4ω̄ and using (4.23), we have

V̇ ≤ −k1ξ̃
2
1 − (k2 + α1)ξ̃2

2 + |ξ̃2||x2|
[
w?>

1 S1(x2, |x2|) + ε1(x2)
]

+ k?
3|ξ̃2|

+|ξ̃2|
[
w?>

2 S2(|x2|) + ε2(x2)
]

+ ξ̃2φ + w̃>1 ˙̃w1 + w̃>2 ˙̃w2 + ξ̃2α̃1x̂2 + ξ̃2α̃5(ξ̃1 + x̂1)

−ξ̃2α̃4u + α̃1
˙̂α1 + α̃4

˙̂α4 + α̃5
˙̂α5 + ε̃1 ˙̃ε1 + b̃1

˙̃
b1

= −k1ξ̃
2
1 − (k2 + α1)ξ̃2

2 + |ξ̃2||x2|w?>
1 S1(x2, |x2|) + k?

3|ξ̃2|+ |ξ̃2|w?>
2 S2(|x2|)

+|ξ̃2|
[
|x2|ε1(x2) + ε2(x2)

]
+ ξ̃2φ + w̃>1 ˙̃w1 + w̃>2 ˙̃w2 + ξ̃2α̃1x̂2 + ξ̃2α̃5(ξ̃1 + x̂1)
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−ξ̃2α̃4u + α̃1
˙̂α1 + α̃4

˙̂α4 + α̃5
˙̂α5 + ε̃1 ˙̃ε1 + b̃1

˙̃
b1

≤ −k1ξ̃
2
1 − (k2 + α1)ξ̃2

2 + |ξ̃2||x2|w?>
1 S1(x2, |x2|) + |ξ̃2|w?>

2 S2(|x2|) + |ξ̃2|
[
|x2|ε1 + k?

3 + ε2

]

+ξ̃2φ + w̃>1 ˙̃w1 + w̃>2 ˙̃w2 + ξ̃2α̃1x̂2 + ξ̃2α̃5(ξ̃1 + x̂1)− ξ̃2α̃4u + α̃1
˙̂α1 + α̃4

˙̂α4 + α̃5
˙̂α5

+ε̃1 ˙̃ε1 + b̃1
˙̃
b1

After adding and subtracting the terms |ξ̃2||x2|ŵ>1 S1(x2, |x2|) and |ξ̃2|ŵ>2 S2(|x2|),
we obtain

V̇ = −k1ξ̃
2
1 − (k2 + α1)ξ̃2

2 + |ξ̃2||x2|w?>
1 S1(x2, |x2|) + |ξ̃2||x2|ŵ>1 S1(x2, |x2|)

−|ξ̃2||x2|ŵ>1 S1(x2, |x2|) + |ξ̃2|w?>
2 S2(|x2|) + |ξ̃2|ŵ>2 S2(|x2|)− |ξ̃2|ŵ>2 S2(|x2|)

+|ξ̃2|
[
|x2|ε1 + b1

]
+ ξ̃2φ + w̃>1 ˙̃w1 + w̃>2 ˙̃w2 + ξ̃2α̃1x̂2 + ξ̃2α̃5(ξ̃1 + x̂1)

−ξ̃2α̃4u + α̃1
˙̂α1 + α̃4

˙̂α4 + α̃5
˙̂α5 + ε̃1 ˙̃ε1 + b̃1

˙̃
b1

= −k1ξ̃
2
1 − (k2 + α1)ξ̃2

2 − |ξ̃2||x2|w̃>1 S1(x2, |x2|) + |ξ̃2||x2|ŵ>1 S1(x2, |x2|)− |ξ̃2|w̃>2 S2(|x2|)

+|ξ̃2|ŵ>2 S2(|x2|) + |ξ̃2|
[
|x2|ε1 + b1

]
+ ξ̃2φ + w̃>1 ˙̃w1 + w̃>2 ˙̃w2

+ξ̃2α̃1x̂2 + ξ̃2α̃5(ξ̃1 + x̂1)− ξ̃2α̃4u + α̃1
˙̂α1 + α̃4

˙̂α4 + α̃5
˙̂α5 + ε̃1 ˙̃ε1 + b̃1

˙̃
b1

Using (4.19), (4.20) and defining

Φ
4
= [|x2|ŵ>1 S1(x2, |x2|) + ŵ>2 S2(|x2|) + |x2|ε̂1 + b̂1]

we obtain

V̇ ≤ −k1ξ̃
2
1 − (k2 + α1)ξ̃2

2 − Φεs(ξ̃2)ξ̃2

≤ −(k2 + α1)ξ̃2
2 + |Φεs(ξ̃2)ξ̃2|

≤ −(k2 + α1)ξ̃2
2 + |Φ||ξ̃2| = −|ξ̃2|

[
(k2 + α1)|ξ̃2| − |Φ|

]

≤ 0

provided that

|ξ̃2| > |Φ|
k2 + α1
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Hence ξ̃2 is uniformly ultimately bounded with respect to the set

Ξ2 =
{

ξ̃2 ∈ <
∣∣∣∣|ξ̃2| ≤ |Φ|

k2 + α1

}

Notice that

|Φ| ≤ |x2||ŵ1||S1(x2, |x2|)|+ |ŵ2||S2(|x2|)|+ |x2||ε̂1|+ |b̂1|

Moreover, |S1(x2, |x2|)|, |S2(|x2|)| are bounded too (let s1, s2 denote their known

upper bounds). Then, according to (4.20) and denoting by x̄2 the known upper

bound on the velocity (see Assumption 2), we have

|Φ| ≤ Φ̄
4
= x̄2Mas1 + Mbs2 + x̄2Mc + Md

Furthermore, since
˙̃
ξ1 = −k1ξ̃1 + α̂5ξ̃2

we obtain

ξ̃1(t) = |ξ̃1(0)|e−k1t +
∫ t

0
e−k1(t−τ)α̂5ξ̃2(τ)dτ

Thus,

|ξ̃1(t)| ≤ |ξ̃1(0)|e−k1t + Mg

∫ t

0
e−k1(t−τ)|ξ̃2(τ)|dτ

which finally becomes

|ξ̃1(t)| ≤ |ξ̃1(0)|e−k1t +
Φ̄Mg

(k2 + α1)k1
(1− e−k1t)

Hence, ξ̃1(t) and ξ̃2(t) are uniformly ultimately bounded with respect to the sets

Ξ1 =
{

ξ̃1 ∈ <
∣∣∣∣|ξ̃1| ≤ Φ̄Mg

(k2 + α1)k1

}

Ξ2 =
{

ξ̃2 ∈ <
∣∣∣∣|ξ̃2| ≤ |Φ|

k2 + α1
≤ Φ̄

k2 + α1

}

Now, if the sets Wa, Wb, Wc, Wd, We, Wf , Wg are chosen in such a way that w?
1,

ŵ1(0) ∈ Wα, w?
2, ŵ2(0) ∈ Wb, ε1, ε̂1(0) ∈ Wc, b1, b̂1(0) ∈ Wd, α1, α̂1(0) ∈ We,
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α4, α̂4(0) ∈ Wf and α5, α̂5(0) ∈ Wg, where ŵ1(0), ŵ2(0), ε̂1(0), b̂1(0), α̂1(0), α̂4(0)

and α̂5(0) denote the initial values of ŵ1, ŵ2, ε̂1, b̂1, α̂1, α̂4 and α̂5, respectively,

then the use of the projection modification to the update laws (4.20) guarantees the

boundedness of ŵ1, ŵ2, ε̂1, b̂1, α̂1, α̂4 and α̂5, thus ending the proof of the theorem.

Remark 1. It is worth noting that the magnitude of sets Ξ1 and Ξ2 depends on

several factors and in general it is not easy to ascertain a clear way as to how reduce

this magnitude that cannot be made arbitrarily small. In this respect, a key role is

played by the modeling uncertainty and the number L of regressor terms on one side,

and by the design constants k1 and k2 on the other. In case of significant modeling

uncertainties, several issues come up. First of all, the projection algorithm may not

be able to guarantee the boundedness of the signals that appear in (4.20). More

specifically, the projection modification requires knowledge of the upper bounds on

the norms of the unknown weights, b1, ε1, etc. If, for instance, we have |b1| > Md

due to the modeling error, the parameter b̂1 may drift to infinity since there is no

guarantee that b̂1 will be bounded. Moreover, in the presence of large modeling

error, large values of the design constants k1, k2 are needed in order to maintain

the sets Ξ1, Ξ2 reasonably small. However, large values of k1, k2 may give rise to

high gain feedback which in turn leads to instability. These important issues deserve

further investigation.

As it has been shown by Theorem 1, the velocity error ξ̃2 is guaranteed to be

uniformly ultimately bounded with respect to the set Ξ2. Consequently (the as-

sumptions of the theorem being satisfied), if ξ̃2(0) 6∈ Ξ2 , then there exists a finite

time T0 > 0 such that ξ̃2(t) ∈ Ξ2, ∀ t ≥ T0 . This important, though not surprising,

result can be proved as follows. Recall that

V̇ ≤ −(k2 + α1)ξ̃2
2 + Φεs(ξ̃2)ξ̃2 ≤ −k2ξ̃

2
2 + Φεs(ξ̃2)ξ̃2 ≤ −k2|ξ̃2|2 + |Φ||ξ̃2| (4.24)
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Moreover, recall also that V̇ ≤ 0 , whenever |ξ̃2| > |Φ|
k2+α1

. Then integrating (4.24)

from 0 to T0, we obtain

V (T0)− V (0) ≤
∫ T0

0
(−k2|ξ̃2|2 + |Φ||ξ̃2|)dt

which becomes (according also to the Lyapunov function definition):

1
2
|ξ̃2|2 ≤ V (T0) ≤ V (0) +

∫ T0

0
(−k2|ξ̃2|2 + |Φ||ξ̃2|)dt

It is sufficient to show that there exist a finite T0 such that

V (0) +
∫ T0

0
(−k2|ξ̃2|2 + |Φ||ξ̃2|)dt ≤ 1

2

( |Φ|
k2 + α1

)2

or

V (0) ≤
[ ∫ T0

0
(k2|ξ̃2|2 − |Φ||ξ̃2|)dt

]
+

1
2

( |Φ|
k2 + α1

)2

(4.25)

Because we assumed before that ξ̃2(0) 6∈ Ξ2, using (4.24) we have that

−k2|ξ̃2|2 + |Φ||ξ̃2| < 0 ∀t ∈ [0, T0]

Hence, ∫ T0

0
(−k2|ξ̃2|2 + |Φ||ξ̃2|)dt < 0 (4.26)

Observe that by (4.26) the term in brackets in (4.25) is positive. Moreover, define

Γ(T0) =
∫ T0

0
(k2|ξ̃2|2 − |Φ||ξ̃2|)dt

Then
dΓ(T0)

dT0
= k2|ξ̃2(T0)|2 − |Φ(T0)||ξ̃2(T0)| > 0

Since Γ(T0) is monotonically increasing and positive, there exists a finite time T0

which satisfies (4.25). Hence,

|ξ̃2(T0)| ≤ |Φ(T0)|
k2 + α1
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which contradicts what we assumed before. If on the other hand we restrict ξ̃2(0) ∈
Ξ2 then T0 = 0.

Summing up, if Theorem 1 holds true, we have shown that the velocity error enters

the set Ξ2 in finite time. If such a set can be made sufficiently small, this result can

be exploited in the framework of fault detection as will be seen in the next section.

4.3 Fault Detectability Analysis

In the previous section, the robustness properties of the on-line approximation

scheme prior to the occurrence of a possible fault have been analyzed. Now, assume

that conditions under which Theorem 1 holds true are satisfied and, accordingly,

let T0 to have the same meaning as before, that is, let it denote the time instant

at which the nominal trajectory of the velocity error ξ̃2(t) enters the set Ξ2 and

never leaves it ∀ t ≥ T0 .

Now, consider the occurrence of a fault at time T in which case the dynamics

of the system is described by Eqs. (4.8)-(4.10). The following further assumption is

needed.

Assumption 4 The time instant T of fault occurrence satisfies T > T0.

Clearly, if Assumption 4 is satisfied, no false alarm is generated prior to the occur-

rence of a fault, provided that |ξ̃2(t)| serves as the residual signal and the threshold

is selected as

ρ
4
=
|Φ|.
k2

>
|Φ|.

k2 + α1
(4.27)

Remark 2. The threshold function that is used, is the conservative ρ = |Φ|
k2

instead

of the uniform bound that appears in the definition of Ξ2, because the parameter

α1 is considered unknown.
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The decision on the occurrence of a fault is being made when the residual signal

exceeds the threshold, i.e.

a fault occurred if ∃T > T0 such that |ξ̃2(T )| > ρ

This decision criterion reflects the very intuitive fact that the fault to be detectable

should be big enough to make the residual exceeding the threshold. In this respect,

it is thus very important to address the issue of fault detectability.

The analysis in this section is deeply inspired by the basic work by Polycarpou

and Trunov [51] with two differences: the state vector is not assumed to be com-

pletely available for measurement and the on-line approximator operates ∀ t ≥ 0

and not only after detection of a fault.

After occurrence of a fault (i.e., t ≥ T ), from Eqs. (4.9), (4.13), and (4.14) it

follows that

˙̃
ξ2 = −α5ξ̃1 − (k2 + α1)ξ̃2 + (α3α(x2)|x2| − α2)z − α4ω(x1, x2, z) + φ + α̃1x̂2

+α̃5x̂1 − α̃4u + ((α3α(x2)|x2| − α2)z − α1x2 − α4ω(x1, x2, z)) ·∆F1(x1, x2, t)

−α5x1∆F2(x1, x2, t)

(4.28)

(Recall that we assume a single fault scenario and thus ∆F1 and ∆F2 cannot be

simultaneously different from zero.) Moreover, let

A
4
= −α5ξ̃1 + [α3α(x2)|x2| − α2]z − α4ω(x1, x2, z) + φ + α̃1x̂2 + α̃5x̂1 − α̃4u

(4.29)

B1
4
= [(α3α(x2)|x2| − α2)z − α1x2 − α4ω(x1, x2, z)] ·∆F1(x1, x2, t) (4.30)

B2
4
= −α5x1∆F2(x1, x2, t) (4.31)
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According to [51], the detectability analysis can be performed in both the abrupt

and the incipient fault cases. Specifically, an incipient time–profile for the fault

can be characterized by a multiplicative term (1 − e−π(t−T )) , where π > 0 is an

unknown constant that represents the rate evolution of the fault. In case π = ∞
the fault becomes an abrupt one.

The following simple result (analogous to the one presented in [51] for generic nonlin-

ear systems) characterizes, in an implicit way, the set of faults that can be detected

using the previously defined threshold.

Theorem 2 Assume that fault ∆Fi(x1, x2, t), for i = 1 or i = 2 occurs at time T .

If there exists a time interval [T + t1, T + t2], with t2 > t1 ≥ 0, such that
∣∣∣∣
∫ T+t2

T+t1
e−(k2+α1)(T+t2−τ)(1− e−π(τ−T ))Bidτ

∣∣∣∣

≥ ρ + ρe−(k2+α1)(t2−t1) +
∣∣∣∣
∫ T+t2

T+t1
e−(k2+α1)(T+t2−τ)Adτ

∣∣∣∣ (4.32)

with ρ = |Φ|
k2

and Φ as defined in Theorem 1. Then the fault is detected at time

t = t2.

Proof. For any t2 > t1 the solution of (4.28) using (4.29) and (4.30) or (4.31), is

given by:

ξ̃2(T + t2) = e−(k2+α1)(T+t2−T−t1)ξ̃2(T + t1) +
∫ T+t2

T+t1
e−(k2+α1)(T+t2−τ)Adτ

+
∫ T+t2

T+t1
e−(k2+α1)(T+t2−τ)(1− e−π(τ−T ))Bidτ

Using the triangle inequality and |ξ̃2(T + t1)| ≤ ρ = |Φ|
k2

, we obtain:

|ξ̃2(T + t2)| ≥ −ρe−(k2+α1)(t2−t1) −
∣∣∣∣
∫ T+t2

T+t1
e−(k2+α1)(T+t2−τ)Adτ

∣∣∣∣

+
∣∣∣∣
∫ T+t2

T+t1
e−(k2+α1)(T+t2−τ)(1− e−π(τ−T ))Bidτ

∣∣∣∣
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where if the fault function is such that (4.32) is satisfied, then we obtain that

|ξ̃2(T + t2)| ≥ ρ, which implies that the fault will be detected.

Estimation of the detection time

One of the most important characteristics in any fault diagnosis scheme is the time

(detection time) required between the occurrence and the detection of a fault. Early

detection (i.e, small detection time), is crucial to prohibit the possibly catastrophic

consequences of a fault.

The following result (the proof is inspired again by [51]) gives an upper bound on

the detection time for abrupt and incipient faults.

Theorem 3 Assume that Theorem 2 holds. Moreover, suppose that there exist

lower bounds Bmi ≤ Bi, i = 1, 2 and an upper bound Ā > A such that, for i = 1, 2,

we have

Bmi > Ā + |Φ|, ∀t ∈ [T + t1 T + td]

Then:

(a) incipient faults: an upper bound t+d on the detection time td is given by the

solution of the algebraic equation

gi(t+d , k2 + α1)−
[
gi(t1, k2 + α1) + |Φ| − Ā

]
e−(k2+α1)(t+

d
−t1) = Ā + |Φ| (4.33)

where

gi(t, k2 + α1) =
Bmi

k2 + α1 − πi
(k2 + α1 − πi − (k2 + α1)e−πit)) (4.34)

(b) abrupt faults: an upper bound t+d on the detection time td is given by

t+d =
1

k2 + α1
ln

[
Bmi − Ā + |Φ|
Bmi − Ā− |Φ|

]
+ t1 (4.35)
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Furthermore in general, t+d decreases monotonically as k2 increases.

Proof. (a) As Ā is an upper bound on A, the following inequality holds:
∣∣∣∣
∫ T+t2

T+t1
e−(k2+α1)(T+t2−τ)Adτ

∣∣∣∣ ≤ Ā

∫ T+t2

T+t1
e−(k2+α1)(T+t2−τ)dτ =

Ā

k2 + α1
(1−e−(k2+α1)(t2−t1))

(4.36)

Similarly, as Bmi is a lower bound on Bi, we have:
∣∣∣∣
∫ T+t2

T+t1
e−(k2+α1)(T+t2−τ)(1− e−πi(τ−T ))Bidτ

∣∣∣∣ ≥ Bmi

∫ t2

t1
e−(k2+α1)(t2−τ)(1− e−πiτ )dτ

=
Bmi

k2 + α1
− Bmi

k2 + α1
e−(k2+α1)(t2−t1) − Bmi

k2 + α1 − πi
e−πit2

+
Bmi

k2 + α1 − πi
e−(k2+α1)t2+(k2+α1−πi)t1

=
Bmi

(k2 + α1)(k2 + α1 − πi)

[
(k2 + α1 − πi)− (k2 + α1 − πi)e−(k2+α1)(t2−t1) − (k2 + α1)e−πit2

+(k2 + α1)e−(k2+α1)(t2−t1)e−πit1

]

=
Bmi

(k2 + α1)(k2 + α1 − πi)

[
(k2 + α1 − πi)− (k2 + α1)e−πit2

]

− Bmi

(k2 + α1)(k2 + α1 − πi)

[
(k2 + α1 − πi)− (k2 + α1)e−πit1

]
e−(k2+α1)(t2−t1)

=
gi(t2, k2 + α1)

k2 + α1
− gi(t1, k2 + α1)

k2 + α1
e−(k2+α1)(t2−t1) (4.37)

Hence, using (4.36) and (4.37), it follows that the detectability condition (4.32)

becomes

gi(t2, k2 + α1)
k2 + α1

− gi(t1, k2 + α1)
k2 + α1

e−(k2+α1)(t2−t1)

≥ ρe−(k2+α1)(t2−t1) + ρ +
Ā

k2 + α1
− Ā

k2 + α1
e−(k2+α1)(t2−t1)(4.38)

An upper bound on the detection time can thus be obtained by solving with respect

to the unknown t+d the algebraic equation

gi(t+d , k2 + α1)
k2 + α1

− gi(t1, k2 + α1)
k2 + α1

e−(k2+α1)(t+
d
−t1) = ρe−(k2+α1)(t+

d
−t1) + ρ

+
Ā

k2 + α1
− Ā

k2 + α1
e−(k2+α1)(t+

d
−t1)
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or, equivalently,

gi(t+d , k2 + α1)−
[
gi(t1, k2 + α1) + |Φ| − Ā

]
e−(k2+α1)(t+

d
−t1) = Ā + |Φ|

thus proving (4.33).

(b) Letting πi →∞, it follows that (4.33) becomes

Bmi −
(

Bmi + |Φ| − Ā

)
e−(k2+α1)(td−t1) = Ā + |Φ|

and hence

e(k2+α1)(td−t1) =
Bmi − Ā + |Φ|
Bmi − Ā− |Φ|

thus obtaining

td =
1

k2 + α1
ln

[
Bmi − Ā + |Φ|
Bmi − Ā− |Φ|

]
+ t1

which proves (4.35).

Finally, let us show that t+d decreases monotonically as k2 increases. From (4.38)

and recalling that ρ = |Φ|
k2

, we have

gi(td, k2 + α1)− gi(t1, k2 + α1)e−(k2+α1)(td−t1) ≥ Ā +
|Φ|(k2 + α1

k2
+ (Ā− |Φ|)e−(k2+α1)(td−t1)

> Ā + |Φ|+ (Ā− |Φ|)e−(k2+α1)(td−t1) (4.39)

It is useful to introduce the quantities

f
4
= gi(td, k2 + α1)− gi(t1, k2 + α1)e−(k2+α1)(td−t1)

z
4
= Ā + |Φ|+ (Ā− |Φ|)e−(k2+α1)(td−t1)

The partial derivative of (4.34) with respect to k2 gives

∂gi

∂k2
=

Bmiπie
−πit

(k2 + α1 − πi)2
(4.40)
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Using (4.40), we obtain:

∂f

∂k2
=

Bmiπie
−πitd

(k2 + α1 − πi)2
− Bmiπie

−πit1

(k2 + α1 − πi)2
e−(k2+α1)(td−t1)

+
[

Bmi

(k2 + α1 − πi)
(k2 + α1 − πi − (k2 + α1)e−πit1)

]
(td − t1)e−(k2+α1)(td−t1)

=
Bmie

−(k2+α1)(td−t1)

(k2 + α1 − πi)2

[
πie

(k2+α1−πi)(td−t1)e−πit1 − πie
−πit1 + (k2 + α1 − πi)2(td − t1)

−(k2 + α1 − πi)(k2 + α1)(td − t1)e−πit1+πie
−πit1(k2 + α1 − πi)(td − t1)

−πie
−πit1(k2 + α1 − πi)(td − t1)

]

=
Bmie

−(k2+α1)(td−t1)

(k2 + α1 − πi)2

[
πie

−πit1

(
e(k2+α1−πi)(td−t1) − (k2 + α1 − πi)(td − t1)− 1

)
+

+(k2 + α1 − πi)2(td − t1)(1− e−πit1)
]

As em −m − 1 > 0, it follows that ∂f
∂k2

> 0 and that f increases monotonically as

k2 increases. Moreover :

∂z

∂k2
= −(Ā− |Φ|)(td − t1)e−(k2+α1)(td−t1)

As |A| ≤ Ā (as an upper bound) and |A| ≥ |Φ| (from A’s definition), we have

Ā ≥ |Φ|. All the above leads to the conclusion that ∂z
∂k2

< 0 and that z decreases

monotonically as k2 increases. Looking into (4.39) with the above results we note

that as k2 increases, t+d decreases.

4.4 Simulation results

In this section, extensive simulation results will be given to show potentialities and

possible limitations of the proposed methodology. Specifically, a simple example is

given just to emphasize some of the key aspects of the techique.

Consider the nominal system with m = 1, K = 1, σ0 = 2, σ1 =
√

2, σ2 = 0.4,

fc = 1, fs = 1.5, and vs = 0.001. To implement the on-line approximator we have
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employed HONNs, with sigmoid activation function s(x) = m
1+e−l(x−c) + λ. Specifi-

cally, for the term ŵ>2 S2(|x2|) we have chosen a 5th-order HONN with (m, l, c, λ) =

(0.8,−4, 2.119,−1.5), while for ŵ>1 S1(x2, |x2|) a 2nd-order HONN with (m, l, c, λ) =

(1.41,−10.0225, 0.5974,−2.11). To highlight the fault detectability issue, we first

simulated the system with a fault of the form ∆F1 = 20 + e10x2 occurring at

T = 60 sec (alteration in friction parameters). Then we simulated it for the type

of fault, ∆F2 = −1 occurring at T = 60 sec which represents the spring’s break.

In both cases the design parameters were k1 = 100 and k2 = 200. The input u

was 3 sin(0.2t). The results for faults ∆F1 and ∆F2 are depicted in Fig. 4.1 and

Fig. 4.2, respectively. The detection time in which |ξ̃2| ≥ ρ, where ρ is the threshold

defined in (4.27), for the first one was td = 0.0076 sec, while for the second one,

td = 0.0209 sec. The subplots (4.1c-4.2c) depict the detectability condition ((4.32) or

| ∫ T+t2
T+t1

e−(k2+α1)(T+t2−τ)Bidτ |−ρ−ρe−(k2+α1)(t2−t1)−| ∫ T+t2
T+t1

e−(k2+α1)(T+t2−τ)Adτ |,
and confirm the occurrence of the faults when becomes greater than zero. Fig. 4.3

shows the decreasing behavior of the detection time as a function of k2.

4.5 Summary

In this chapter, we have presented an approach to detect faults in mechanical systems

with friction that perform linear motion. The friction is modeled with the aid of the

dynamic LuGre model. However all system nonlinearities and critical parameters

are assumed unknown. Moreover, the frictional internal state is not available for

measurement. The main contributions of this work are: 1) the development of an on-

line neural network approximator for mechanical systems with friction that does not

require full state measurement; and 2) the derivation of fault detectability conditions

and the upper bounds of the detection time. Simulation results clarify and verify the

theoretical analysis. In the following chapter, the DAMADICS benchmark problem

is defined where the methodology developed here is applied yielding results that
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Figure 4.1: Behaviors of the: (a) position error ξ̃1 = x1 − x̂1; (b) velocity error
ξ̃2 = x2 − x̂2; (c) detectability Condition

clarify and verify, additionally, its reliability.
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Figure 4.2: Behaviors of the: (a) position error ξ̃1 = x1 − x̂1; (b) velocity error
ξ̃2 = x2 − x̂2; (c) detectability Condition
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Chapter 5

Fault Detection in Damadics

benchmark problem

In this chapter we concentrate on detecting faults giving emphasis to the DAMADICS1

actuator2 benchmark problem applying the methodology developed in Chapter 4. In

the framework of the DAMADICS research network funded by the European Union,

a benchmark model was developed to approximate the behavior of the evaporation

stage of a sugar factory in Lublin (Poland). Actuators under consideration consist

of a control valve, a pneumatic linear servomotor and a positioner. In such a kind of

electromechanical systems, the presence of friction phenomena is unavoidable and

significantly increases the complexity of the FD problem.
1The author acknowledge funding support under the EC RTN contract (RTN-1999-00392)

DAMADICS. Thanks are expressed to the management and staff of the Lublin sugar factory,
Cukrownia Lublin SA, Poland for their collaboration and provision of manpower and access to
their sugar plant.

2Actuator or a final control element is a physical device, structure or assembly of devices acting
on controlled process
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5.1 Plant description

The plant under concern is the sugar factory Cukrownia Lublin S.A located in

Lublin (Poland). Specifically, we consider the evaporation process where the main

task is to thicken the beet juice coming from the cleaning and filtering stages, at

the minimum heat-energy consumption. The first three sections work with natural

juice circulation and the last two work with juice circulation forced by pumps. We

focus on the first section, consisting of one evaporator and containing an important

actuator, located on the inflow of thin juice and controlling its level in the first stage

of evaporation station.

F

P2P1

x

CV Positioner

X

V1 V3V

V2

ps

F

F

P2P2P1

x

CV Positioner

X

V1 V3V

V2

ps

F

Figure 5.1: A control valve-pneumatic servomotor-positioner device.

As shown in Fig. 5.1, the actuator is made of three main components [55]:

• Control valve driven by a servomotor, which is used to prevent, to allow and/or

to limit the flow of fluids.

• Spring-and-diaphragm pneumatic servomotor; this is a compressible fluid pow-

ered device where the fluid acts upon the flexible diaphragm thus providing

linear motion of the servomotor stem.

99



Symbols Meaning Symbols Meaning

ks Spring constant FfV Viscosity friction force

kd Diaphragm constant FfC Coulomb friction force

ps Air pressure in chamber Fvc Vena-contracta force

Fn Normal packing force FdA d’Alambert force

Fp Active force x Rod’s displacement

Fg Gravity force x0 Initial spring compression

Fs Spring compression force m mass of rod, valve, diaphragm

Table 5.1: Explanation of the symbols of the pneumatic servomotor and its physical
layout.

• Positioner; this device is used to eliminate control-valve stem miss-positions

due to external or internal sources such as friction, hydrodynamic forces, etc..

Fig. 5.2 shows a more detailed overview of the servomotor as well as its physical

layout; the effects (forces) of the other two components are emphasized (the meaning

of the symbols is straightforward and is presented in Table 5.1).

ps

ks

Ae kd

Fn

xd

Fg

m

Fg

Fp

Fs Fd

x

FfvFfC

Fvc

FdA

FN

m

FgFg

Fp

FsFsFs Fd

x

FfvFfCFfC

FvcFvc

FdAFdA

FN

Figure 5.2: The pneumatic servomotor and its physical layout.

A rather detailed dynamic model of the above evaporation process (and of the

actuator as well) has been developed and validated in the context of the DAMADICS

research training network. The unavoidable friction effects are modelled by means of
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suitable hysteresis functions. In this work instead, the frictional effects are described

by the already mentioned dynamic model, the LuGre model. The reason to use this

friction model is that it is able to capture important phenomena such as presliding

displacement, frictional lag, stick-slip motion, etc.. Another important reason is

that, in the considered actuator, the motion corresponds to a low-velocity motion.

In such a case, the friction nonlinearities dominate and the LuGre model is very

suitable to characterize these nonlinear effects.

5.2 Problem formulation for DAMADICS case

The linear motion provided by the servomotor device, the use of LuGre model

as well as the fault definition given by the DAMADICS benchmark motivated us

to apply our developed methodology. It is important to clarify that the above-

described dynamic model for a mechanical system with friction phenomena in both

nominal and faulty modes of operation has a different structure with respect to

the DAMADICS model. However, the complexity of the DAMADICS model rules

out the possibility of using it in the framework of a nonlinear model-based FD

algorithm. Therefore, the key idea is to determine a suitable LuGre model to make

its behavior very similar to the DAMADICS one from an input–output perspective.

This will allow us to use the LuGre model to design a model-based FD scheme as

it is described in the previous sections. In Fig. 5.3, this intuitive idea is shown in a

schematic way.3

In this respect using the theoretical results, the approximator’s output will serve as

the residual signal for fault detection. Owing to the convergence analysis presented
3The use of the LuGre model needs the velocity measurement which is not available in the

DAMADICS actuator case. However, the velocity can be easily estimated using the position mea-
surements by means of a suitably designed Kalman filter.
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On-line

approximator

Velocity

Input Output

Figure 5.3: Architecture of the adaptive on–line approximation scheme.

before, it follows that Φ can be used to define the threshold function ρ as:

ρ =
|Φ|
k2

(5.1)

Choosing now as a residual signal ξ̃2 with its correspondent threshold (5.1), we can

say that a fault will be detected when ξ̃2 ≥ ρ.

5.3 Damadics Simulation Results

In this part we present the simulation results regarding actuator faults introduced in

friction and servomotor’s spring. Relative to the friction fault an increasing of valve

or bushing friction is considered. Mechanical wear, air pollution, corrosion products

and sedimentation consist the reasons of existence and the physical interpretation of

the fault related to friction. On the other hand relative to the servomotor’s spring

fault, the harsh environment causes fatigue or corrosion of spring material. The

results were taken according to the scheme that is depicted in Fig. 5.4.

P1 and P2 represent the pressure before and after the control valve and were set

to be 3.5 · 106Pa and 2.6 · 106Pa respectively. T represent the water temperature

and was 20oC. CV is the control value that takes values in [0, 1]. A value of “1”
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DAMADICS

Figure 5.4: Architecture used for DAMADICS simulation trials.

expresses that the valve is closed where a value of “0” a fully-opened valve. The

output of the benchmark model X1, represents the rod’s displacements. To im-

plement the on-line approximator we have employed High Order Neural Networks

(HONNs), with sigmoid activation function of the form s(x) = m
1+e−l(x−c) +λ. Specif-

ically for the term ŵ>2 S2(|x2|) we have chosen a 5th-order HONN with (m, l, c, λ) =

(0.8,−4, 2.119,−1.5), while for ŵ>1 S1(x2, |x2|) a 2nd-order HONN with (m, l, c, λ) =

(1.41,−10.0225, 0.5974,−2.11). The design constants k1 and k2 were set to be 100

and 400 respectively. The outputs X1′ and X2′ of the on-line approximator rep-

resent the estimated position and velocity respectively. As simulations have been

carried out in a noise-free environment, the velocity was estimated by introducing

a high-pass filter. According also to benchmark definition, the faults are standard-

ized to the range of [−1 1]. The limiting values “-1” and “1” corresponds to some

pre-defined states or physical values (∆fmin, ∆fmax). Fault notations are given in

Table 5.2.

The type of faults can be either abrupt or incipient. More specifically, the fault

concerning friction is an incipient one. The fault that we simulated occurs at t = 70
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Friction fault Servomotor spring fault
−1 - no friction −1 - spring’s perforation

0 - unchanged friction 0 - no fault
1 - advanced friction 1 - spring’s tightness

Table 5.2: Fault specifications.

sec and takes its final value “1” after 20 sec. A detection decision (0-no fault, 1-

fault) is being made when |ξ̃2| ≥ ρ for more than one sample time. The simulations

results are depicted in Fig. 5.5.

The conclusions that can be drawn from Figs. 5.5(a)-(b) are that the adaptive

scheme is able to learn on line the behavior of the model with very small errors. In

Fig. 5.5(c) a parallel graph of |ξ̃2| and of the corresponding threshold ρ is plotted.

As it mentioned before, a fault decision is taken when |ξ̃2| ≥ ρ for more than one

sample time. Specifically:

|ξ̃2(t)| ≥ ρ(t)

AND

|ξ̃2(t + ∆t)| ≥ ρ(t + ∆t)

where t is the time instant at which |ξ̃2| ≥ ρ and ∆t is the sampling step. This is the

reason why no fault indication is turned on before the actual occurrence of the fault

(see Fig. 5.5(e)), despite some spikes occurring before the time of fault occurrence

(see Fig. 5.5(c)).

As can be noticed from Fig. 5.5(e), the fault is detected at t = 81.12sec. The

fault strength on this time–instant is of about 50% of its final value (Fig. 5.5(d)), a

characteristic which can prevent on time the overall system from serious damages.

Similar comments can be made when we simulate the system with the servomo-

tor spring fault (see Fig. 5.6), which, according to the benchmark definition, is an

abrupt fault. In this case, the fault is detected at t = 70.005sec.
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