
P2P INDEXING OF ENTERPRISE JAVA BEANS

By

Georgios A. Dementis

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE

DIPLOMA IN ELECTRONICS AND COMPUTER ENGINEERING

AT

TECHNICAL UNIVERSITY OF CRETE

CHANIA, GREECE

JULY 2005

c© Copyright by Georgios A. Dementis, 2005

ii

TECHNICAL UNIVERSITY OF CRETE

DEPARTMENT OF

ELECTRONICS AND COMPUTER ENGINEERING

The undersigned hereby certify that they have

read and recommend to the Faculty of Graduate Studies

for acceptance a thesis entitled “P2P indexing of

Enterprise Java Beans ” by Georgios A. Dementis

in partial fulfillment of the requirements for the degree of

Diploma in Electronics and Computer Engineering.

Dated: July 2005

Supervisor:
Prof. Vasilis Samoladas

Readers:
Prof. Manolis Koubarakis

Prof. Euripides Petrakis

iii

TECHNICAL UNIVERSITY OF CRETE

Date: July 2005

Author: Georgios A. Dementis

Title: P2P indexing of Enterprise Java Beans

Department: Electronics and Computer Engineering

Degree: Diploma Convocation: July Year: 2005

Signature of Author

iv

To my family.

Table of Contents

Table of Contents v

Abstract vii

Acknowledgements viii

1 Introduction 1

1.1 Distributed Hash Tables . 2

1.2 Indexing . 4

1.3 Enterprise Java Beans (EJB) . 6

1.4 Our contribution . 8

1.5 Outline . 9

2 Related Work 11

2.1 Peer-to-Peer Technologies . 11

2.1.1 GISP . 11

2.1.2 Project JXTA . 12

2.2 J2EE technologies . 14

2.2.1 EJB Architecture . 14

2.2.2 JBoss Application Server 15

2.3 Other Projects . 18

2.3.1 PROST . 18

2.3.2 pSearch . 19

2.3.3 Data Indexing in Peer-to-Peer DHT Networks 20

2.3.4 Coral . 20

2.3.5 OceanStore . 21

3 P2P indexing of EJB: The Design 22

3.1 Defining P2P Indexing of EJB’s 22

3.1.1 Transactional issues . 24

3.2 Basic components . 26

v

CONTENTS vi

3.2.1 Container issues . 27

3.3 The Indexing mechanism . 28

3.3.1 Insert mechanism . 28

3.3.2 Delete mechanism . 29

3.3.3 Lookup mechanism . 30

4 P2P indexing of EJB: The Implementation 32

4.1 DHT : GISP . 32

4.2 EJB Container : JBoss . 34

4.3 Implementing the Indexing mechanism 35

4.3.1 Insert mechanism . 35

4.3.2 Delete mechanism . 39

4.3.3 Lookup mechanism . 40

5 Conclusions 43

A User’s Manual 45

A.1 Prerequisites . 45

A.2 Step 1: Platform Setup . 47

A.3 Step 2: Extend your EJB . 48

A.4 Step 3: Define the indexed attributes 51

A.5 Step 4: Create the Finder methods 55

A.6 Step 5: Deploy your Bean . 61

A.7 Step 6: Running a client application 61

B Javadoc 63

Bibliography 64

Abstract

As the Web continues to grow in both content and the number of connected

devices, peer-to-peer (P2P) systems are becoming increasingly popular. The

core operation in every P2P system is to efficiently locate the node that stores

a particular data item. To address this problem lately a lot of research effort

has been put into the design and analysis of Distributed Hash Tables (DHT),

resulting in a variety of applications built on top of them.

This thesis proposes such an application and in particular presents a P2P

infrastructure that allows an application based on Entity EJB’s to be deployed

in multiple Application Servers and form a P2P network, where it is possible

to create indexes on the data of EJBs and thereupon implement corresponding

finder methods that can locate EJBs, inside the P2P, that hold particular data.

Since Entiry EJB’s are an object-oriented representation of data in a persistent

store, such as the records in a database, our architecutre actually extendes the

idea of indexing over a single database, to a P2P database. The DHT provides

the required indexing functionality.

We outline the design specific characteristics of such an indexing mechanism

and provide an implementation that can be easily adopted by an EJB developer

on top of his application and through a given API, extend the standard EJB

functionality with P2P indexing capabilities.

vii

Acknowledgements

I would like to thank Vasilis Samoladas, my supervisor, mostly for his patience

during this past year. His guidance, relevant or not to this Thesis, will always be

appreciated.

I would also like to thank Costas Harizakis, Christos Vosnidis, Nikos Pallas

and Panagiotis Paterakis. Each of them provided some help relevant to this work,

not to mention their support and friendship.

Special thanks goes to my Dad. I will never forget how supportive he has

been all this time I was a ”lazy” son.

Finally, I wish to thank all those people that are next to me and support

me all those years..and I am happy they are a lot; The friends for life i made

here in Chania and we really had the best time together; Stavros, John, Dim-

itris(kyb), Dimitris (Kontokos), Fanouris, Nikos, Akis; and the ones I already

had;Dimitris(cousin), Alexandros(!), Ali, Giorgos(cousin), Giorgos(Antonop), Eric

Cartman (Ooops no he is just a cartoon) and last but not least Stella.

Chania, Crete Georgios Dementis

July 18, 2005

viii

Chapter 1

Introduction

As the Web continues to grow in both content and the number of connected

devices, peer-to-peer (P2P) systems are becoming increasingly popular. Powerful

PCs and broad-band networks made it possible to do calculations on the network

edge and inevitably several recent distributed applications based on the P2P

paradigm have drawn media headlines and industry attention. Formally P2P

systems and applications are distributed systems without any centralized control

or hierarchical organization, where the software running at each node is equivalent

in functionality. Informally, P2P systems are composed of a collection of peer

nodes that cooperate in order to perform some task and share their resources

by direct exchanges. In the P2P model, each node may be both a provider and

consumer of services (i.e., a peer), which differs from the client-server model where

only a relatively small number of server nodes provide services to a potentially

large number of client nodes.

The core operation in every peer-to-peer system is to efficiently locate the

node that stores a particular data item. To address this problem lately a lot

of research effort has been put into the design and analysis of Structured P2P

overlay systems, which are virtual communications structures that are logically

laid over an underlying physical network such as the Internet. They conform

1

2

to a specific graph structure that allows them to locate objects by exchanging

O(logN) messages where N is the number of nodes in the overlay. The most

common service abstraction implemented by them is Distributed Hash Tables

(DHT). Exploring the notion of DHT as a starting point, in the rest of this

chapter we briefly present all the relevant components that are necessary for this

thesis.

1.1 Distributed Hash Tables

Distributed Hash Tables (DHT) research was originally motivated, in part, by

peer-to-peer systems such as Napster and Gnutella. These systems were able to

take advantage of resources distributed across the Internet to provide a single

useful application. In particular, they took advantage of increased bandwidth

and hard disk capacity to provide a file sharing service. Napster and Gnutella

themselves were different solutions to a search problem - how to find files located

on different computers around the world that have no knowledge of one another.

Napster solved this problem by acting as an index and introduction service: when

computers joined the Napster network, they would notify a central server of the

files they held locally. Searches were performed on the server, which would refer

the queerer to the machines that held files relevant to the search. This central

component left the system vulnerable to attack. In response, Gnutella and similar

networks moved to a flooding query model - in essence, each search would result

in a message being broadcast to every other machine in the network. While

avoiding a single point of failure, this method was significantly less efficient than

Napster. Distributed hash tables attempt to find a more optimal method for

organizing nodes while still avoiding the problems of Napster.

A DHT typically seeks to achieve some or all of the following properties:

3

• Decentralized operation: every node should be able to function inde-

pendently and collectively form the complete system without any central

coordination.

• Scalability: the system should function efficiently even with large number

of nodes. That is, it should scale.

• Load balance: keys (i.e. data) should be distributed evenly among the

different participants.

• Fault tolerance: the system should be reliable (in some sense) even if

nodes fail or leave the system.

• Performance: Operations such as routing and data storage or retrieval

should complete quickly.

• Data integrity: It should be easy to verify the correctness of data stored

in or retrieved from the system.

• Security/Robustness: The system should continue to function ”cor-

rectly” even if some (possibly large) fraction of the nodes are conspiring

to prevent correct operation.

• Anonymity: The system should not allow observers to determine who is

doing what inside the system.

It is difficult to achieve all of these properties simultaneously; research into achiev-

ing these goals is on-going.

Nodes in a DHT are organized in a network overlay (such as a circle or a

hypercube) over some space. Each node has a logical identifier that determines

its logical position in the overlay. A join protocol allows a new node to bootstrap

4

into the existing system, usually by contacting a node that is known to be in the

system already. This protocol introduces the node to a set of neighbours and

typically facilitates the construction of the new node’s routing table .

Routing tables are used by DHT nodes to efficiently determine what other

node is responsible for a given piece of data. Data is given a key (in the same

identifier space) and assigned to the closest node in the overlay. The definition of

closest varies depending on the DHT and the topology chosen and usually does

not have to do with the physical distance between nodes. The routing table allows

any node to find the closest node to any given key efficiently, often in O(logn)

network hops . This style of routing is sometimes called key based routing.

The routing algorithm that we used in order to achieve DHT functionality is

called GISP (Global Information Sharing Protocol).The implementation of GISP

is based upon JXTA, which is a set of protocols for building peer-to-peer networks.

Both are discussed in the next chapter.

Currently, the idea of distributed indexes is adaptable to many peer-to-peer

applications including distributed file systems[10],event notification[4], content

distribution [5], e-mail delivery[11], web caches[6],indirection services[15] to name

a few. This thesis proposes another P2P application built on top of a DHT and

in particular an indexing mechanism for a specific type of persistent data called

Entity Enterprise Java Beans (EJB).

1.2 Indexing

Indexing techniques are very well known as a basic feature of any database man-

agement system (DBMS). The classic analogy to database indexes is the index in

the back of reference books. If we wanted to find everything in the book about a

particular subject we could start at the beginning and scan every page, but it is

5

much faster to look in a smaller, alphabetized subject index that directs us to a

list of pages. Then we need to scan only those pages to find information about

our chosen subject. Not everything in the book is indexed, however, so if our sub-

ject is not mentioned in the index, we must still scan for it. Likewise, a database

index is a look-up mechanism that helps a DBMS find the information we request

faster than it could with a full scan. As with book indexes, not everything in the

database is indexed, so an occasional scan may still be necessary.

The primary reason to build an index is to improve performance. But it is not

the only reason to build an index. The second reason has to do with enforcing

uniqueness among rows stored in a database table. Tables in a SQL database

are usually designed with a primary key; that is, a set of columns with a unique

value that identifies a row in the table. When a new row is inserted into a table

defined with a primary key, it is up to the DBMS to ensure that the primary key

value for that row is unique. Performance would be unacceptable if the DBMS

had to scan the entire table each time a new row was inserted. Therefore, the

accepted solution is to build a unique index on the primary-key columns and let

the DBMS use that as the physical enforcement mechanism for the primary key

uniqueness requirement.

Therefore while it’s mandatory to build a unique index on a table’s primary

key (primary index), in order to enforce uniqueness among rows stored in a

database table, there are other times when an index is desirable. For example for

a query like :

SELECT *

FROM Customer

WHERE fname = ’Georgios’ ;

where column fname is not part of a primary or foreign key, the system would

have to read every record and check the fname column for the name ’Georgios’. If

6

this query that accesses the fname column was frequently used, the performance

would be poor. To facilitate queries such as this one, we often create one or more

indexes on a relation. An index is any data structure that takes as input the

value of one or more columns and finds the records with that value ”quickly”, by

exporting a small fraction of all possible records that we must check for results.

The more indexed columns (secondary index) in a where clause, the more likely it

is that a DBMS will be able to use an index to speed up query performance. But

there is a trade-off here: Not enough indexes results in slow queries; too many

indexes results in slow changes to the database.

There are many different data structures that are used in order to implement

indexing techniques.The two basic kinds of indexes are :

• Ordered indexes. Based on a sorted ordering of values

• Hash indexes. Based on a uniform distribution of values across a range of

buckets.The bucket to which a value is assigned is determined by a function,

called a hash function

No one can be characterized as best solution in any occasion.Rather, each

technique is best suited to particular database application, based on the nature

of the actual data stored and the queries performed on them. For instance in

the case of columns that don’t change frequently and the there are commonly

”equality” queries on them, hash indexing will probably boost performance.

1.3 Enterprise Java Beans (EJB)

Sun Microsystems’ definition of the Enterprise JavaBeans architecture is:

The Enterprise Java Beans architecture is component architecture

for the development and deployment of component-based distributed

7

business applications. Applications written using the Enterprise Java

Beans architecture, are scalable, transactional, and multi-user secure.

These applications may be written once, and then deployed on any

server platform that supports the Enterprise JavaBeans specification.1

A somehow shorter definition is :

Enterprise JavaBeans is a standard server-side component model for

distributed business applications.

A server-side component model may define an architecture for developing dis-

tributed business objects that combines the accessibility of distributed object sys-

tems with the fluidity of objectified business logic. Server-side component models

are used on the middle-tier application servers, which manage the components at

runtime and make them available to remote clients. They provide a baseline of

functionality that makes it easy to develop distributed business objects and as-

semble them into business solutions. Therefore the second definition means that

EJB offers a standard model for building server-side components that represent

both business objects (customers, items in inventory, and the like) and business

processes (purchasing, stocking, and so on). Once you have built a set of compo-

nents that fit the requirements of your business, you can combine them to create

business applications. On top of that, as ”distributed” components, they don’t all

have to reside on the same server. Components can reside wherever it’s most con-

venient: a Customer component can ”live” near the Customer database, a Part

component can live near the inventory database, and a Purchase business-process

component can live near the user interface. You can do whatever’s necessary for

minimizing latency, sharing the processing load, or maximizing reliability.

1Sun Microsystems’ Enterprise Java Beans Specification, v2.1, Copyright 2002 by Sun Mi-
crosystems, Inc.

8

Enterprise Bean Type Purpose
Session Performs a task for a client
Entity Represents a business entity object that exists

in persistent storage
Message-Driven Acts as a listener for the Java Message Service

API, processing messages asynchronously

Table 1.1: Enterprise Bean Types

For several reasons, enterprise beans simplify the development of large, dis-

tributed applications. First, because the EJB container provides system-level

services to enterprise beans, the bean developer can concentrate on solving busi-

ness problems. The EJB container –and not the bean developer– is responsible for

system-level services such as transaction management and security authorization.

Second, because the beans–and not the clients–contain the application’s busi-

ness logic, the client developer can focus on the presentation of the client. The

client developer does not have to code the routines that implement business rules

or access databases. As a result, the clients are thinner, a benefit that is partic-

ularly important for clients that run on small devices.

Third, because enterprise beans are portable components, the application

assembler can build new applications from existing beans. These applications

can run on any compliant J2EE server provided that they use the standard APIs.

In our case as an EJB container JBoss, a popular open-source J2EE Applica-

tion Server was used.

The three types of enterprise beans are discussed in the following table:

1.4 Our contribution

In this current Thesis, we propose a flexible P2P infrastructure that allows an

application based on Entity EJB’s to be deployed in multiple Application Servers

9

and form a P2P network, where it is possible to create indexes on the data of

EJBs and thereupon implement corresponding finder methods that can locate

EJBs, inside the P2P, that hold particular data.

Since Entiry EJB’s are an object-oriented representation of data in a persistent

store, such as the records in a database, our architecutre actually extendes the

idea of indexing over a single database, to a P2P database. The DHT provides

the required indexing functionality, over the P2P network, with similar to hash

indexing properties and usage.

We outline the design specific characteristics of such an indexing mechanism

and provide an implementation that can be easily adopted by an EJB developer

on top of his application and through a given API, extend the standard EJB

functionality with P2P indexing capabilities.

1.5 Outline

The rest of the thesis is organized as follows:

The next chapter 2, briefly presents the Peer-to-Peer, J2EE Technologies, or

other proposed technologies that are relavant to this particular work.

Then in Chapter 3, we present the reader with our proposal regarding the

design that allows the indexing of Entity EJB’s over a P2P network, regardless

of the underlying technologies that can be used during the implementation phase.

Based on the above design in Chapter 4, we present a specific implementation

we created, using JBoss as an EJB container and GISP as our DHT.

Finally, in Chapter 5 we present our conclusion.

Appendix A, serves as a user’s manual, describing the necessary steps that

an EJB developer should perform, in order to make use of our architecture and

10

therefore extend the functionality of his application with P2P indexing capabili-

ties.

Appendix B, contains the Javadoc pages for our implementation.

Chapter 2

Related Work

This chapter provide a small introduction to each one of the technologies has

some kind of relevance to our work, either because we used it or it shares similar

ideas. References to the appropriate bibliography is given each time.

2.1 Peer-to-Peer Technologies

2.1.1 GISP

Recently a diverse set of DHT implementations have been proposed, such as

Chord [16], CAN [12], Pastry [13], or Tapestry[18]. The implementation we

used in order to build our DHT, as mentioned in the introduction, is based on

GISP (Global Information Sharing Protocol)[8]. Usually a distributed hash table

consists of (key, value) pairs of data that are shared among peers. GISP allows

not only (key, value) pairs but also any kind of XML element to be shared and

XPath is used to query the XML elements, which was particularly usefull for our

purpose.

GISP defines among others how data are inserted, queried and replicated ,how

message routing is performed and what local information each peer must store.

11

12

The Java interface it provides is the following :

• public void insert(String key, String str);

• public void insert(String key, String str, long ttl);

• public void insert(String key, byte[] xml);

• public void insert(String key, byte[] xml, long ttl);

• public void query(String key, ResultListener l);

• public void query(String key, ResultListener l, long timeout);

• public void query(String key, String xpath, ResultListener l);

• public void query(String key, String xpath,ResultListener l,long timeout);

The fact that it doesn’t support data deletion, had an impact in our design

as we will discuss in a later chapter. GISP started as a project of JXTA which

provides most of the undelying P2P functionality, required to implement the

GISP protocol. The main source for information about the GISP project is its

homepage http://gisp.jxta.org/

2.1.2 Project JXTA

JXTA is an open network computing platform designed for peer-to-peer (P2P)

computing. Its goal is to develop basic building blocks and services to enable

innovative applications for peer groups. It provides a common set of open pro-

tocols and an open source reference implementation for developing peer-to-peer

applications. The JXTA protocols, which are defined as a series of XML message

formats, standarize the manner in which peers:

13

• Discover each other

• Self-organize into peer groups

• Advertise and discover network services

• Communicate with each other

• Monitor each other

The JXTA protocols are designed to be independent of programming lan-

guages, and independent of transport protocols. The protocols can be imple-

mented in the Java programming language, C/C++, Perl, and numerous other

languages. They can be implemented on top of TCP/IP, HTTP, Bluetooth,

HomePNA, or other transport protocols. They enable developers to build and de-

ploy interoperable P2P services and applications. Because they are independent

of both programming language and transport protocols, heterogeneous devices

with completely different software stacks can interoperate with one another. Us-

ing JXTA technology, developers can write networked, interoperable applications

that can:

• Find other peers on the network with dynamic discovery across firewalls

• Easily share documents with anyone across the network

• Find up to the minute content at network sites

• Create a group of peers that provide a service

• Monitor peer activities remotely

• Securely communicate with other peers on the network

14

The Java programming language API was used to access operations supported

by these protocols. A Programmers Guide along with other useful material about

Project JXTA can be found in the following URL : http://www.jxta.org/

2.2 J2EE technologies

2.2.1 EJB Architecture

Enterprise Java Beans have been introduced in the previous chapter. However

here we will provide a brief overview of the EJB architecture [3]. The EJB

architecture endows enterprise beans and EJB containers with a number of unique

features that enable portability and reusability:

• Enterprise bean instances are created and managed at runtime by a con-

tainer. If an enterprise bean uses only the services defined by the EJB

specification, the enterprise bean can be deployed in any compliant EJB

container. Specialized containers can provide additional services beyond

those defined by the EJB specification. An enterprise bean that depends

on such a service can be deployed only in a container that supports that

service.

• The behavior of enterprise beans is not wholly contained in its implementa-

tion. Service information, including transaction and security information, is

separate from the enterprise bean implementation. This allows the service

information to be customized during application assembly and deployment.

The behavior of an enterprise bean is customized at deployment time by

editing its deployment descriptor entries. This makes it possible to include

an enterprise bean in an assembled application without requiring source

15

code changes or recompilation.

• The Bean Provider defines a client view of an enterprise bean. The client

view is unaffected by the container and server in which the bean is de-

ployed. This ensures that both the beans and their clients can be deployed

in multiple execution environments without changes or recompilation. The

client view of an enterprise bean is provided through two interfaces(Home

and Remote). These interfaces are implemented by classes (enterprise bean

classes) constructed by the container when a bean is deployed, based on

information provided by the bean. It is by implementing these interfaces

that the container can intercede in client operations on a bean and offer

the client a simplified view of the component. Figure 2.1 illustrates the

implementation of the client view of an enterprise bean.

Besides the EJB specification an excellent reading about EJB’s and J2EE

in general is [9]

2.2.2 JBoss Application Server

JBoss’s primary goal is to provide a full J2EE-based implementation. JBoss

consists of JBossServer, the basic EJB container, and Java Management

Extension (JMX)[1] infrastructure. It also provides JBossMQ, for JMS

messaging, JBossTX, for JTA/JTS transactions, JBossCMP for CMP per-

sistence, JBossSX for JAAS based security, and JBossCX for JCA connec-

tivity. Support for web components, such as servlets and JSP pages, is

provided by an abstract integration layer. Implementations of the integra-

tion service are provided for third party servlet engines like Tomcat and

Jetty.

16

Figure 2.1: Implementation of Client View of Enterprise Beans

17

JBoss enables you to mix and match these components through JMX by re-

placing any component you want with a JMX compliant implementation for

the same APIs. JBoss features depends on JMX or Java Management Ex-

tension, which is an ideal solution for software integration. JMX provides a

common spine or a bus through which the components(modules, containers,

and plug-ins) of the JBoss architecture interact. Components are declared

as MBean Services that are then loaded into JBoss. The components may

subsequently be administered using JMX.

Java Management Extenstions (JMX)

JMX architecture [1] defines three levels. The level closest to the application

is called the instrumentation level. This level consists of four approaches

for instrumenting application and system resources to be manageable (i.e.,

making them managed beans, or MBeans), as well as a model for send-

ing and receiving notifications. The middle level of the JMX architecture is

called the agent level. This level contains a registry for handling manageable

resources (the MBean server) as well as several agent services, which them-

selves are MBeans and thus are manageable. The third level of the JMX

architecture is called the distributed services level. This level contains the

middleware that connects JMX agents to applications that manage them

(management applications). An MBean is a Java object that implements

one of the standard MBean interfaces and follows the associated design

patterns. The MBean for a resource exposes all necessary information and

operations that a management application needs to control the resource.

The four types of MBeans are :

18

– Standard MBeans: These use a simple JavaBean style naming con-

vention and a statically defined management interface. This is cur-

rently the most common type of MBean used by JBoss.

– Dynamic MBeans: These expose their management interface at

runtime when the component is instantiated for the greatest flexi-

bility. JBoss makes use of Dynamic MBeans in circumstances where

the components to be managed are not known until runtime.

– Open MBeans: These are an extension of dynamic MBeans.

– Model MBeans: These are also an extension of dynamic MBeans.

Model MBeans simplify the instrumentation of resources by providing

default behavior. There is a Model MBean implementation used by

JBoss known as an XMBeans.

Our implementation is based on the construction of an XMBean, who me-

diates between the EJB and the DHT. Most of the material covered here

and much more about JBoss can be derived from [14].

2.3 Other Projects

2.3.1 PROST

PROST[2] is a programmable infrastructure based on the key-based routing

layer of a structured P2P network. Applications and services can be de-

ployed in PROST by dynamically loading code modules onto nodes of the

P2P overlay. These code modules, which we call peerlets, implement the

application-specific functionality, while making use of the efficient lookup

19

Figure 2.2: Node architecture

facilities of the shared KBR layer. Figure 2.2 illustrates the architecture of

a programmable peer node in PROST.

Our design shares similar ideas with PROST in the sence, that both try to

integrate the use of an Application level software, such as an Application

Server with a Key-based Routing mechanism, such as a DHT.

2.3.2 pSearch

pSearch [17] is an effcient peer-to-peer information retrieval system, that

supports state-of-the-art content- and semantic-based full-text searches.

pSearch avoids the scalability problem of existing systems that employ cen-

tralized indexing, or index/query ooding. It also avoids the nondetermin-

ism that is exhibited by heuristic-based approaches. In pSearch, documents

20

in the network are organized around their vector representations (based on

modern document ranking algorithms) such that the search space for a given

query is organized around related documents, achieving both effciency and

accuracy.

2.3.3 Data Indexing in Peer-to-Peer DHT Networks

This paper [7], describes techniques for indexing data stored in peer-to-

peer DHT networks, and discovering the resources that match a given user

query. The system creates multiple indexes, organized hierarchically, which

permit users to locate data even using scarce information, although at the

price of a higher lookup cost. The data itself is stored on only one (or few)

of the nodes. Experimental evaluation demonstrates the effectiveness of

the indexing techniques on a distributed P2P bibliographic database with

realistic user query workloads.

2.3.4 Coral

Coral (http://www.coralcdn.org/) is peer-to-peer content distribution net-

work, comprised of a world-wide network of web proxies and nameservers.

It allows a user to run a web site that offers high performance and meets

huge demand, all for the price of a $50/month cable modem.

Publishing through Coral is as simple as appending a short string to the

hostname of objects’ URLs; a peer-to-peer DNS layer transparently redi-

rects browsers to participating caching proxies, which in turn cooperate to

minimize load on the source web server. These volunteer sites that run

21

Coral automatically replicate content as a side effect of users accessing it,

improving its availability. Using modern peer-to-peer indexing techniques,

Coral will efficiently find a cached object if it exists anywhere in the net-

work, requiring that it use the origin server only to initially fetch the object

once.

One of Coral’s key goals is to avoid ever creating hot spots that might

dissuade volunteers from running the software for fear of load spikes. It

achieves this through a novel indexing abstraction we introduce called a

distributed sloppy hash table (DSHT) [6], and it creates self-organizing

clusters of nodes that fetch information from each other to avoid commu-

nicating with more distant or heavily-loaded servers.

2.3.5 OceanStore

OceanStore [10] is a utility infrastructure designed to span the globe and

provide continuous access to persistent information. Since this infrastruc-

ture is comprised of untrusted servers, data is protected through redun-

dancy and cryptographic techniques. To improve performance, data is al-

lowed to be cached anywhere, anytime. Additionally, monitoring of usage

patterns allows adaptation to regional outages and denial of service at-

tacks; monitoring also enhances performance through pro-active movement

of data. A prototype implementation is currently under development.

Chapter 3

P2P indexing of EJB: The
Design

In this chapter we will present our P2P indexing mechanism for Entity

EJB’s. Our design will be regardless of the underlying technologies that

will be used during the implementation phase. The analysis identifies the

basic components needed, specify their responsibilities and demonstrate

how the components connect to each other, in order to achieve the desired

functionality. We begin our discussion by defining the exact nature of P2P

indexing of EJB.

3.1 Defining P2P Indexing of EJB’s

From the beginning of this thesis the term P2P indexing of Entity EJB has

been used several times. However we haven’t really analyzed the meaning

of this term and what actions are required in order to achieve it. Therefore

the most appropriate way to begin is by clarifying what the term actually

means. A simple answer is that it stands for the existence of indexes on

the value of a single(or combined) Entity EJB attribute(s). The EJB

22

23

Operation Purpose
put/insert(key,value) Stores the(key,value)pair to the appropriate

peer, based on the hashed key
get/lookup(key) Locate the peer(s) holding the (key,value) pair, by hashing the

key

Table 3.1: The DHT API

developer will somehow define for which single (or combined) attributes he

wants indexes to be created for their values.

Moreover, the P2P part in our definition means that the underlying struc-

ture that will be used to store the index is actually a P2P network. A

traditional hash indexing mechanism, would hash the indexed attribute

value(key) and the result would give the position in the hashtable, this key

must be stored in. Afterwards when someone tries to find the key, he will

again hash the key and the result will be the correct hashtable position, if

it exists. In our case the notion of a hashtable position is replaced by a peer

in the P2P network. The DHT used will provide the hashing functionality

over the P2P network. As explained earlier, nodes (peers) in a DHT are

organized in a specific network overlay and each node has a logical identi-

fier that determines its logical position in the overlay. Then through the

standard put/get operations, all DHT’s provide, they can by hashing a key,

store the key and retrieve it, in and from the appropriate peer, respectively.

Table 3.1 summarizes the API available by all DHT’s.

To conclude however, our discussion here, we must make some final remarks.

– Defining an index on a value entails three basic responsibilities:

1. When a new value is created, the index must be populated with

this value.

24

2. When a value is changed or deleted again the index must be up-

dated accordingly.

3. When we have a query about an indexed value, the index is used

in order to find the results.

In order to achieve these properties, our design makes use of the ap-

propriate EJB call-back methods (ejbStore, ejbRemove)and some user

defined finder methods, in a way that will be explained later.

– Entity EJB’s are an object-oriented representation of data in a persis-

tent store, such as the records in a database. During the deployment

phase the Beans attributes will be mapped to specific database ta-

ble attributes. However attributes are not directly accessed. Instead

methods declared as part of the Bean’s Home or Remote Interface, are

used. These methods execute in a transactional manner (their invoca-

tion eventually is translated into some kind of SQL statement), which

in turn means that only when the database ”commits”, the requested

changes take place. In order for our indexing mechanism to be able to

synchronize its state with this of the database, another Session EJB

will be used. This Session Bean extends Interface SessionSynchroniza-

tion.

3.1.1 Transactional issues

Here we must add some theory about EJB Transactions and the above

Interface in order to understand what it is and why it solves our problem. In

an enterprise bean with container-managed transactions, the EJB container

sets the boundaries of the transactions. When deploying a bean, you specify

25

which of the bean’s methods are associated with transactions by setting

the transaction attributes (in our case we assume that all methods are

associated with the Required attribute, which is the strickest requirement).

A transaction attribute controls the scope of a transaction. Figure 3.1

illustrates why controlling the scope is important. In this figure, method-A

begins a transaction and then invokes method-B of Bean-2. If method-

B has also a Required transaction attribute then they are both executed

within method’s A transaction (TX=TX1). Therefore in our design an

Entity Bean method, with Required transaction attributes calls a method

in our Session Bean which is also declared as Requiredand as so the second

method is executed in the same transaction with the first.

On the other hand the SessionSynchronization interface allows a Session

Bean instance to be notified by its container of transaction boundaries.

It provides three standard methods. The afterCompletion(boolean com-

mitted) method, which interest us, notifies a session Bean instance that a

transaction commit protocol has completed and tells the instance whether

the transaction has been committed or rolled back(by setting the value of

parameter committed to true or false respectively).

Combining both observations it becomes obvious that the Session Bean is

actually notified, if the transaction started by an Entity’s Bean method has

committed. Only if so we will perform the actions needed.

26

Figure 3.1: Transaction Attributes

3.2 Basic components

Having said all of the above we can now identify the basic components that

participate in order to build our indexing mechanism. These are:

– Obviously the textbfEntity EJB whose attribute(s) values are those

that we want the indexing to be performed. Container Managed Per-

sistence is assumed as the most general case.

– The Session EJB, that extends the Synchronization Interface in order

to synchonize the index with the actual database state.

– The EJB container. The Container besides the obvious responsibil-

ity to provide the enviroment where the above mentioned EJB’s will be

deployed, plays another very important role in our design. It provides

an internal mechanism(some kind of software component)that will be

responsible to maintain an active ”connection” to the underlying DHT

and delegate the EJB’s methods invocations that want to access the

DHT, to it. Therefore it will act as a mediator or a server that the

27

EJB instances will have to send their calls, through an appropriate

API, and from where the results of their calls will be returned back

to them. Moreover in order to cover the case of a System failure, this

component must store the indexed values. Then, during the recovery

phase a Boostrap operation must be invoked and insert back into the

P2P network, previously inserted values. How the EJB container will

provide the above functionality, clearly depends on the Container that

will be used and what features he offers.

– A database, as the persistent storage, the attributes values are stored.

Support for Transactions was assumed, in our design

– An API. This is actually the various methods defined in the Entity

EJB Home and Remote Interface.

– A DHT implementation that is used to access the P2P network,

through its standard API methods. However implementation specific

features of the API will determine the nature of the key,value pair

3.2.1 Container issues

Before we continue we must make a notice about the EJB containers in

general. The EJB specification (until version 2.1) defines a contract between

an enterprise Bean and its container. This component contract describes,

through a set of Interfaces, the responsibilities of the container, in regard

to the required set of methods that must be implemented along with the

desired behaviour. However the actual implementation is left to the EJB

container. Therefore it provides great flexibility to each EJB container

vendor, to choose how he will internally implement the various methods

28

and when and how they will be called, by him.

On the contrary it sets certain constraints in our design, as it must reflect

the most general case. Because, although the end results of each method

invocation is the one the component contract dictates, the internals may

change the order certain operations are performed. As so it becomes essen-

tial to place our code carefully in order to eliminate the danger of incorrect

execution, based on vendor specific implementation. Even the Configu-

ration options inside the same EJB container can completely change its

behaviour, causing some functions not to be executed and so on (for ex-

ample declaring a specific cache policy in JBoss can cause ejbLoad not to

execute). The methods particularly affected by this are the call-back meth-

ods that notify the bean class of life-cycle events. At runtime, the container

invokes these methods on the bean instance when relevant events occur.

3.3 The Indexing mechanism

The final step in order to complete our design is defining the way the

different components are connected, in order to perform the indexing. To

achieve this we will follow the reverse course and discuss step by step how

the indexing mechanism functions. This discussion will eventually unveil

the aforementioned connections.

3.3.1 Insert mechanism

Part of the indexing mechanism resides inside the ejbStore call-back method.

This method is called when the container is about to write an entity bean

29

instance’s state to the database. That is, after a client application has

called a create or setter method, although practically it is called after a

getter too. Each time ejbStore is called, our mechanism checks if an in-

dexed attribute value is created or updated. If so, the new or updated

value along with a value that identifies the EJB instance this value belongs

to, are sent through an insert method to an instance of our Session Bean.

The Session Bean implements the necessary Interface, in order to be notified

if the transaction that called it committed. If so it will call the appropriate

Container component method which will in turn process the attribute(s)

value and the identifier. Thereupon, it will pass the processed values as

parameters to the DHT put/insert method. Moreover the Component must

somehow store the indexed pair, in case of a System failure, as mentioned

earlier. Notice here that whether we have a new or updated value, method

put/insert is invoked in the DHT. DHT’s don’t actually have an update

method. A validation mechanism must be created in order to check whether

the results of a finder method are correct.

3.3.2 Delete mechanism

We would like for a procedure similar to the above to be performed also

whenever a remove method is invoked. Again DHT don’t necessarily define

a delete method and a validation mechanism is used to check that the

bean exists. However since as said before the Container component stores

indexed values, a proper delete function is provided by the Session Bean. In

case the transaction committed a corresponding method of the Container

Component will be called and erase this Beans values from its local storage.

30

As so we prevent the event, of a Bootstrap method, inserting back into the

P2P network, previously deleted pairs.

3.3.3 Lookup mechanism

The reason we create indexes all along is in order to have finder methods

that can make use of them. The corresponding to the indexes finder meth-

ods must be able to take as parameters specific attribute values and return

the Remote References of those EJB’s holding such value. The intermediate

steps executed are:

1. The finder method collects the parameters and passes them to the

appropriate Container Component method

2. The Component processes these parameters and creates a search key

3. This key is then passed as a parameter to a get/lookup DHT method

4. The results are returned, again through the Component, to the EJB

instance that called the finder method

5. The returned values contain the necessary information, as mentioned

earlier, to identify the specific EJB that holds this (key,value) pair

6. The validity mechanism checks if indeed the EJB’s value is valid and

hasn’t changed or deleted. If so its Remote Interface is returned as a

result

To conclude our design, Figure 3.2 gives us a graphical reprsentation of the

above procedure:

31

Figure 3.2: Indexing mechanism

Chapter 4

P2P indexing of EJB: The
Implementation

As the title suggests in this chapter we will present an actual implementa-

tion, based on our Design, produced for the purpose of this current Thesis.

The design identified the basic components that participate, in order to cre-

ate the indexing mechanism. Among them, the EJB(Entity and Session)

along with the database system, provide a well defined API, regardless of

the implementation. As so the specific features of the remaining two com-

ponents, are those that determine our implementation.

4.1 DHT : GISP

As mentioned several times the DHT implementation we used is called

GISP. GISP’s standard API provides an insert(String key, byte[] xml),long

ttl function where the xml parameter is an XML style document. The

interesting feature of GISP is that the corresponding query (String key,

String xpath, ResultListener l,long timeout) method can actually provide,

besides the standard search key and an XPath expression (xpath) that is

32

33

used in order to search inside the xml, for results. The Result Listener

returns the result to the funtion any time an answer is found and long sets

for how long he must search for results. Our implementation accessed GISP

always through these two functions. A standard XML format, that will be

discussed later, was used for the xml part. Why this was useful will become

soon aparent.

Another point we must mention is the fact that GISP doesn’t have a delete

mechanism. The reason most DHT’s don’t have such a mechanism has to

do with data replication. When an insert function is called the DHT sends

the data to the appropriate peers that must hold the particular pair, along

with some other peers, in order for data to be accessible, if any of them goes

down. This means that the DHT looses control of the data and therefore it

isn’t possible to relocate them somehow, in order to update or delete them.

The way it tries to solve this problem, is by setting times to live(ttl) for the

inserted data. When data expire they will be removed from the DHT(all

peers who keep them, will delete it from their local DHT store).

However what we did is extend GISP in order to delete data from the local

DHT storage, in case they where deleted from the database for example.

The idea was that if each peer deletes the data he knows are incorrect from

his local storage, eventually the system load to process incorrect results and

the network load to transfer them among the peers is reduced. Using the

same mechanism GISP uses to query for results, based on an XPath, we

could trace the appropriate results that needed to be removed. Inserting

all data with appropriate information stored in the xml, makes this process

work. Method delete(String xpath) with the above functionality, was added

34

to GISP API.

4.2 EJB Container : JBoss

The EJB Container we used in our implementation was that provided by

JBoss, a very successfull Open Source J2EE Application Server. JBoss

is much more than just an EJB Container. As explained the JBoss ar-

chitecture is based on JMX. Everything in JBoss is actually a Managed

Bean(MBean). The EJB container itself is an MBean. Jboss’s role is simi-

lar to that of an MBean server on the JMX architecture, that is to register

all the resources available and allow them to communicate with each other.

Therefore, the functionallity a specific JBoss instance provides, at any time,

is based on the deployed MBeans. Obviously, it is possible for anyone to

develop an MBean and deploy it in JBoss. The methods your MBean pro-

vides can be accessed either by other MBeans inside the JBoss or from the

outside, through proper adaptor(currently JBoss employs an HTTP and an

RMI Adaptor).

Using the above JBoss characteristic, we creted an MBean (DHTxmbean)

as the Server Component or the mediator between the EJB instances and

the DHT, our design imposed. Because it is possible for the EJB’s deployed

into the JBoss to access our MBean, through the RMI adaptor available,

this approach is suitable for our problem. To be more precise we created

an XMBean which is a JBoss implementation of a Model Bean. The extra

feature XMBeans have is that its attributes and methods can be described

through XML style documents.

35

Each MBean provides standard life-cycle operations. Methods startSer-

vice and stopService are automatically invoked every time an XMBean is

deployed or undeployed (if it is removed), respectively. We used this partic-

ular feature, by placing the appropriate code to connect to GISP(in order to

become part of it) along with the Bootstrap method inside the startService

method. Furthermore each time DHTxmbean is deployed it establishes the

required connection to GISP and if necessary inserts previous data in it.

Thereupon DHTxmbean through the methods it provides(and that we will

see later in details) can be accessed from the EJB instances, using the RMI

adaptor and delegate insert or query requests into and from GISP.

4.3 Implementing the Indexing mechanism

Using the above as a basis, in this section we will follow the exact same

step-by-step presentation we used in the previous chapter(section Indexing

mechanism), and analyze the methods invoked and their underlying func-

tionality. Figure 4.1 is based on Figure 3.2, with the difference that the

specific components and the exact method invocations performed, in our

implementation, are indicated.

4.3.1 Insert mechanism

Specify indexed attributes

Suppose a user called a create, set or get method causing method ejbStore

to be invoked. The first action ejbStrore does is call method indexed data()

36

Figure 4.1: Indexing mechanism Implementation

37

which is defined by the EJB developer in order to create an array with

(identifier,value) pairs. Identifier is a String name used to distinguish the

various single or combined attributes that we want to create an index for

and value is either their actual value(a String representation of it), that we

get through getter methods, or a reserved String value in case any of the

values was NULL(not set). For those pairs, a value actually existes ejbStore

creates a Session Bean instance and calls method insert of its Remote Inter-

face. The parameters passed in it are a concateneted String of the Bean’s

EJBObject and the identifier called object, the actual value, as a String,

that we want to be indexed (key) , the primary key(String representation)

of the Bean (id) and the time this indexed value must expire(ttd).

Synchronize to Database

The dbSync(our Session bean) instance temporary stores these values. The

SessionSyncronization Interface that it extends provides method afterCom-

pletion(boolean committed) that is automatically invoked by the Container

to notify whether the transcation, the invoked method belongs, has com-

mitted(committed ==true). Inside its body we check this value and if its

true, through the RMI adaptor we call DHTxmbean’s method insertDHT

with the same parameters we got.

XMBean Hashtable

DHTxmbean in order to maintain the indexes that will be stored, in case

of a System failure as we said before, creates a temporary hashtable with

(object,class Entry instance) pairs. The object uniquely identifies each one

38

of the hashtable elements while instances of class Entry store the primary

key, id and ttd for each indexed value. Moreover, every time the hashtable

changes, it is serialized into a file that will be used by the Bootstrap()

function. Furthermore, the fact that object can uniquely identify the exact

bean and the exact attributes(single or combined) this Entry belongs to,

allows us to use the hashtable as a mechanism to identify whether the

indexed value is new or not. Because, if an insert request arrives and its

object exists inside the hashtable that means that the same Entity EJB has

previously inserted a value for the same set of attributes.

Insert into GISP

Based on the above, inside method insertDHT our first step is to check

whether object exists into our hashtable :

– If not, it means this is a new value(create or set method). We create a

new Entry and store the (object,Entry) pair into the hashtable. Then

we call method create value(primary key, id). This method creates the

required XML structured value we will pass as a parameter to GISP.

The format we use is the following:

<item>

<key>The indexed value <\key>

<id>The EJB’s primary key as a String<\id>

<ip>The ip of the machine that the bean is deployed<\id>

<\item>

The reason we store these particular values will become apparent later.

39

Thereupon, GISP’s method insert is called with parameters the in-

dexed value , the XML structured value and a time-to-live(ttl) value

(time-to-die(ttd) - CurrentTime).

– If the hashtable contains the object and the key(indexed value) is the

same to both of them, that means the method that called ejbStore was

a getter and as so no action is performed.

– If finally the object exists and has a different value this means the

method was a setter. We remove the previous (object,Entry) pair from

the hashtable, call method delete local that will be discussed later and

follow the exact same procedure as if the object was a new value.

If the hashtable has changed during the above process it is serialized to

the proper file. In case now of a Bootstrap operation during deployment

time, the function deserializes the proper file and for every hashtable entry

it checks to see if the value hasn’t expired and if so it follows the process of

inserting a new value into GISP. Notice here that the informations stored

in each Entry are those needed in order to check if the value has expired(if

not calculate new ttl) and call method create value to construct the XML

value.

4.3.2 Delete mechanism

Method delete local that was mentioned earlier uses the delete mechanism

we presented in section DHT :GISP. It takes as parameters the key and id of

a value we know that exists into the DHT, since it exists into the hashtable.

Inside the body an XPath expression is created with the following format:

40

/item[key=’The indexed value’ and id=’The beans Primary key’ and

ip=’The machine this bean is deployed’]

This String is passed as a parameter in our delete(xpath) GISP method

which in turn locates the local, based on the ip, specific indexed values and

remove them from the local DHT storage, which was our objective.

The delete mechanism must also be invoked and in case a Bean is removed.

Then mehtod ejbRemove is invoked which passes the Primary key of the

Bean to dbSync’s method ejb remove. If the transaction commits, that

is the entry was deleted from the database, through the afterCompletion

method we invoke DHTxmbean’s method remove local ejb. This method

removes from the local hashtable all the elements with the same Primary

key field, that is all the indexes this Bean has inserted into GISP and calls

method delete local bean with only parameter the Primary key. The logic

of this method is the same with that of method delete local. It creates an

XPath expression with the format:

/item[id=’The beans Primary key’ and

ip=’The machine this bean is deployed’]

and passes it to GISP’s delete(xpath) method. All the local, based on the

ip, pairs that have been inserted into GISP form the specific EJB, based

on the id , will be located and removed from the local DHT storage.

4.3.3 Lookup mechanism

Having described the process of inserting and deleting items from GISP

it remains to analyze the process of locating correct Remote References

41

based on a given search key. Obviously a corresponding finder method

will be available to the user from the Bean’s Home Interface, for each set

of attribute values, single or combined, that have already been indexed.

This method will take as parameters the attribute’s values that he wants

to find(search key analogy) and that can be of any type and will return the

to user that called it, a Collection(a Vector) with Remote References of

EJB’s that hold the search key.

Besides the finder method the EJB developer must also implement a corre-

sponding check method, as part of the Beans Remote Interface. Each check

method takes as a parameter a String value and returns the result of the

equality check with the concatenated String representation of the current

attributes values, participating in the finder method(through the use of

the appropriate getters).

Query GISP

To achieve all of the above the first step is to query the DHT for possible cor-

rect results. The finder passes it’s parameters to a findp2p method, which

creates a single array of Objects and passes it to method findP2P(Object[]

keys) . DHTxmbean’s method queryDHT(Object[] keys) is then called. This

method concatenates the String representation of each value into a single

String Search key, that is used passed to GISP’s query method. For each

one of the results we get we extract the key, id and ip values from the XML

value part and check if the same value has already been returned(from a

peer which has replicate the value). If so we do nothing else we add these

three values in the same order into a Vector and a concatenated version of

42

them into another Vector that is used to perform the initial check. After a

period of 10 sec, which can be tuned, we return to findP2P the Vector with

the results.

Validate results

Now starts the Validation mechanism which has two phases. Phase one

is executed inside the findP2P method. Using the ip we connect with the

appropriate JBoss instance and get a jndiContext which is used to locate

the class method and as so get a Home Interface of the appropriate EJB.

Afterwards we use the findByPrimaryKey each Entity EJB provides, pass-

ing it the id we got as a result and then add the Bean’s Remote Reference

that is returned into a Vector along with the key. The Vector with the

References is returned through findp2p to the appropriate finder method,

that was initially invoked.

In the second phase of the validation process the finder method calls for

each one of the Remote References the corresponding to the finder, check

method with the key as a parameter. If the method returns true, the specific

EJB, indeed holds the correct value and the Remote Reference is added to

the Vector the finder returns.

Chapter 5

Conclusions

In this thesis, we outlined the idea of a P2P indexing machanism for Entity

EJB’s. The use of Distributed Hash Tables (DHT) for such an application is

a new concept. Therefore our main purpose was to identify the basic design

principles, characteristics and limitations such a system has. The greatest

challenge was to allow the P2P network act as the underlying structure the

actual indexing would be performed, while at the same time preserve its

basic functionality. Although DHT provide a very efficient mechanism to

store and retrieve data over the P2P network it can not guarantee their

consistency .

Moreover the fact that Entity EJB’s represent data stored in a persistent

storage, dictates that our indexing mechanism must be Synchronized at any

time with the persistent storage.

Our design however manages to address both issues, in a simple and easily

adopted manner. Based on our design we implemented such an indexing

mechanism and verified it’s efficient use. It is therefore possible for an EJB

developer to adopt our design and be able to easily extend the functionality

43

44

of his EJB application. Selected Entity EJB attribute(s) can be automati-

cally indexed over a P2P network and as so used answer queries based on

their values. The design is such that the programming effort required is not

a discouraging factor.

Appendix A

User’s Manual

The following pages act as a user manual for the EJB developer who aims to

extend the functionality of his EJB application by providing P2P indexing

capabilities. We provide step-by-step instructions regarding the architec-

ture ”setup” procedure along with detailed examples of how the program-

mer can create data indexes and the corresponding finder methods. The

material that will be used throughout this manual, including the jars and

source code files exist in a single zip file named p2pindex.zip, which can

be extracted anywhere. The files and folders, inside the p2pindex file and

their usage are described briefly in Table A.1.

A.1 Prerequisites

In order to make use of the architecture certain programs must be properly

installed into your system:

1. Sun JDK 1.4+ or higher must be installed and the necessary environ-

mental variables must be set according to the OS in use to ensure that

the java executables are in your CLASSPATH. During our tests JDK

45

46

folder Contains
DHTxmbean Source code for the XMbean that performs the P2P indexing

Running ant inside the directory will build DHTxmbean.sar file
and copy it into the JBoss deploy directory

dbSync Source code for the EJB that performs the database synchronization
Running ant inside the directory will build dbSync.jar file
and copy it into the JBoss deploy directory

exampleBean Source code of an example EJB
Running ant inside the directory will build customer.jar file
and copy it into the JBoss deploy directory

Gisp Source code from altered GISP platform (with delete function)
jars Contains the sar and jar files described above
lib Jar files that must be copied into specific JBoss lib directories

Table A.1: p2pindex file structure

versions 1.4.2(02-05-07) were used. All relevant material is located at

the following URL: Sun’s Java official site

2. Apache Ant building (versions 1.5.4, 1.6.2) tool was used in order to

easily build the source code and run the examples. Make sure you

install Ant and set the necessary environmental variables. All relevant

material is located at the following URL: Apache Ant official site

3. JBoss Application Server must be properly installed and the necessary

environmental variables must be set. It is important to notice that our

architecture can only work with JBoss versions 4.0.1 or higher, due to a

feature (the ability to transfer a bean’s transactional context between

Jboss instances) missing in earlier versions. During our tests the lat-

est version available, JBoss 4.0.2, was used. All relevant material is

located at the following URL: JBoss official site

file:www.sun.java.com
file:www.apache.ant.org
file:www.jboss.org

47

A.2 Step 1: Platform Setup

After you have correctly installed the above programs the ”setup” proce-

dure of our architecture is a very easy task. The first action that must be

performed is copy all the jar files, which are necessary for our platform to

function, from the lib directory of file p2pindex, into the following directo-

ries:

– $JBOSS HOME/lib

– $JBOSS HOME/client

– $JBOSS HOME/server/default/lib/ (JBoss default configuration as-

sumed)

where $JBOSS HOME is the directory JBoss was installed. Then all you

have to do is copy the files DHTxmbean.sar (JBoss XMbean) and db-

Sync.jar (Session EJB) into the JBoss deploy directory (typically $JBOSS HOME/server/default/deploy

if you use the default configuration, like we assume you do). This is JBoss’s

hot-deployment directory and any file (jar,sar,ear etc) that is dropped in

this directory is automatically deployed in JBoss. To achieve that you can:

– Copy the two files directly from the jars directory of file p2pindex into

the JBoss deploy directory

– Use the Ant Build files (build.xml) provided. Open a shell (or com-

mand prompt) and go to where you have unzipped the p2pindex

file. Change into directories DHTxmbean and dbSync and each time

run the ant command. If everything worked fine the ant command

will build the source codes and create files DHTxmbean.sar and db-

Sync.jar respectively, which then will be automatically copied into the

48

$JBOSS HOME/server/default/deploy directory.

Notice: The Ant Build files (build.xml) might not work properly as is,

under the Unix environment. The problem is with the declaration of prop-

erty ”environment”, inside the build.xml file that is used to declare the

”jboss.home” property. In order for the Build file to work, replace the

value inside the brackets ($env.JBOSS HOME), in line

¡property name=”jboss.home” value=”$env.JBOSS HOME”/¿

of every build.xml file, with the absolute path the JBoss Server is installed.

A.3 Step 2: Extend your EJB

Now that we have the basic components properly working the next step is

to start expanding the EJB code in order to be able to take advantage of

our platform capabilities. At this point we have to mention that a moti-

vating factor behind this particular work was the widely adoption of EJB

technology for the development of Enterprise applications. However the ex-

tensive use results in greater complexity for the EJB’s already deployed and

as so the task of modifying the source code must be very cautious. There-

fore whether our implementation was intended to be used in an already

deployed application or an application built from scratch it was essential to

design our architecture in such a way that would require minimum effort

on behalf of the EJB developer/maintainer.

We succeeded in this by organizing large portions of code in functions that

can be added without any modification in the newly or already developed

EJB. Nevertheless, it is obvious that there are limitations in the flexibility

49

and integration the code can reach. The programmer will have to write

code of his own in order to perform specific tasks, yet even there we believe

the task doesn’t entail complex programming operations.

From now on and for the rest of this manual in order to demonstrate the

way an EJB can be expanded we will use an example bean we have created

for this purpose. The bean is called customer and is a typical Entity CMP

(Container -Managed -Persistence) EJB, where we have made the modifica-

tions required. The source code of this bean along with a client application,

that can be used in order to test our Bean, are located inside the directory

exampleBean of p2pindex file. An Ant Build file exists in order to build

the customer Bean and run the client. The demonstration that follows

assumes that an EJB already exists and describes what changes must be

made. This is the process we followed in order to create our customer EJB,

since we took an already developed version of it with standard entity CMP

functionality and start adding to it. However someone can use our example

Bean as a starting point, and by using the opposite logic, alter it in order to

develop a new EJB. The source code from the original customer EJB that

was used is also included inside the directory exampleBean/original src

Notice: Our customer Bean uses the default database embedded in JBoss,

Hypersonic SQL. In order to deploy our EJB, open a shell (or command

prompt) go to where you have unzipped the p2pindex file and change

to directory exampleBean. Then run the ant command. If everything

worked fine the ant command will build the source codes and create file

customer.jar, which then will be automatically copied into the

50

$JBOSS HOME/server/default/deploy directory. After the EJB is hot-

deployed and while you are at the same directory run again the ant com-

mand with argument run.client. This will execute the client application.

Details about the client will be given in a later section.

Notice 2: The first time you will try to deploy the Bean a JXTA Configura-

tion window will be thrown. Fill in the fields with names of your preference.

For more information about the Configuration options download the JXTA

ProgGuide pdf from the JXTA homepage(http://www.jxta.org/.

As mentioned earlier, large pieces of code can be copied as is. Therefore

in this section we begin with some basic copy-paste operations that must

be made inside and outside your Beans source code prior to start writing

code of your own. In later sections we describe how you can write code that

creates the attribute indexes and their corresponding finder methods that

locate Remote References of EJB’s, based on the search key.

The first thing to do is copy into your EJB the Session Bean dbSync.

To do this, open the directory your EJB resides. Create the directory

tuc/p2pindex and copy in it, directory dbSync as is from directory exam-

pleBean/src/main/tuc/p2pindex of p2pindex file. The reason you have to

copy the dbSync in your EJB, is because this way you don’t have to change

any of your EJB XML related files (ejb-jar.xml, jboss.xml).

Then you will have to copy certain pieces of code from the customer’s Bean

Class java file (exampleBean/src/main/tuc/p2pindex/customer/CustomerBean.java

into your EJB’s Class java file. Open both files and:

– Copy all the import commands you don’t have in your Bean.

– Copy the declaration of EntityContext public EntityContext context;

51

along with the two functions that control it (setEntityContext and

unsetEntityContext).

– Copy the body of function ejbStore() as is into the body of your

ejbStore() function

– Copy the body of function ejbRemove() as is into the body of your

ejbRemove() function

The above functions are not the only ones that are copied as is, however

the rest of them are mentioned in a more relevant section.

A.4 Step 3: Define the indexed attributes

In this section we will describe how you can declare the attributes that

you want to be indexed into the P2P network. As we have already men-

tioned our design dictates that each time ejbStore is called (when an EJB’s

setter, getter, create or remove methods is called) it invokes the indexing

mechanism. This indexing mechanism has 2 parts.

– Invoke method indexed data and collect the values of all chosen in-

dexed attributes

– Send these values to dbSync

Therefore it becomes apparent that the whole indexed attributes selection is

performed inside the indexed data function. We will explain the semantics

of this specific function by analyzing the indexed data function we have

created for our customer EJB. Its body can be seen below:

52

Listing A.1: ”indexed data()”

1

2 private Object [] indexed data (){
3

4 //The s i z e o f the array i s based on the number

5 // o f indexes the user wants (2 x Number o f indexed

6 // a t t r i b u t e s (odd number)

7 Object a t t r i b u t e s [] =new Object [4] ;

8

9

10

11 //EXAMPLE SINGLE ATTRIBUTE

12 // f i r s t we de c l a r e the name

13 a t t r i b u t e s [0] = ”lname” ;

14

15 //modify i f , keep e l s e as i s

16 i f (this . getLastName () != null) {
17

18 a t t r i b u t e s [1] = this . getLastName () ;

19 } else {// a t t r i b u t e ’ s va lue has not been s e t

20 a t t r i b u t e s [1] = ” Attr ibute not s e t ” ;

21

22 }
23

24 //EXAMPLE COMPOSITE ATTRIBUTE

25 // f i r s t we de c l a r e the name

26 a t t r i b u t e s [2] = ”fnamelname” ;

27

28 //modify i f (make necessary conca tena t ions) ,

29 // keep e l s e as i s

30 i f ((this . getFirstName () != null) &&

53

31 (this . getLastName () != null)) {
32 St r ing temp =new St r ing (this . getFirstName ()) ;

33

34 temp =temp . concat (this . getLastName ()) ;

35

36 a t t r i b u t e s [3] = temp ;

37

38 } else {// a t t r i b u t e ’ s va lue has not been s e t

39 a t t r i b u t e s [3] = ” Attr ibute not s e t ” ;

40 }
41 return a t t r i b u t e s ;

42 }

A first thing to notice is that the indexed attributes can be either single ones

or combinations of them. We cover both of them, one from each category,

however you may choose as many single ones you want and as many com-

binations of 2 or 3 attributes. (More can be declared however in order for

a finder method to be able to locate them certain changes must be made).

The first thing to do is declare an array of Objects called attributes, the size

of which must be, 2 times the number of all indexed (single or combined)

attributes. If for example you want 3 single and 3 combinations, then the

declaration should be:

Object attributes[] =new Object [12] ;

The elements of this array are filled based on the following logic:

– Each index holds two consecutive places starting from position 0.

– The first place (odd elements: 0,2,4 etc) must contain a String value,

of your choice, which should be relative to the names of the indexed

54

attributes, for simplicity. For example in our case values lname and

fnamelname are relative to attribute fname and lname. This String

value, which from now on we will call name, can be anything you want

and it will be used to uniquely identify each of the indexes. An easy

way to choose the value is for single attributes their name and for

composite their names in one single String. For instance if you wanted

to index the combination of attributes Date, Time, Year then declare

it like

attributes [0 or 2 or 4...] = ”datetimeyear”;

– The second place (even elements: 1,3,5 etc) contains the String rep-

resentation of the attribute(s) value(s) to be indexed or String value

”Attribute not set” in case the attribute is NULL. We assume that,

for each attribute, a get method exists that returns this attributes

value. So you must declare an if statement that checks that the value

of this attribute or in case of composite attributes all (logical AND)

the required attributes don’t have NULL values. If this is true then:

1. For single attribute you set this position with the value of this

attribute, by calling the getter for this EJB. If the value returned is

not a String then function toString() must be invoked (for example

attributes [1 or 3..] = this.getATTRIBUTE().toString();)

2. For composite attributes a temporary String temp must be created

and used in order to concatenate all the String representations of

the participating attributes, in single String. Again if the returned

value is not a String, function toString() must be used. There-

upon we set this element with the value of temp

55

attributes [1 or 3 ..] = temp;

The else part is always the same and sets the value of this index to

”Attribute not set” that will prevent the indexing mechanism to be

invoked, in ejbStore if we don’t have the necessary values. Therefore

it can be copied as is for each index, setting however every time the

correct array position.

In our indexed data function, index lname is an example of a single attribute

and fnamelname of a composite one. However you can create as many

indexes as you like, just by repeating one of the above procedures, each

time.

A.5 Step 4: Create the Finder methods

Now let’s suppose you have created the necessary indexes, through the

indexed data function, described in the previous section. The next step is

to create the corresponding finder methods, because it would be pointless

to create an index without having a method that would make use of him in

order to answer queries related to him. Writing a finder method requires

you copy and modify pieces of code from file CustomerBean.java and write

some code of your own. We begin with some copy operations:

– Copy function findp2p(Object par1) as is into your code

– Copy function findp2p(Object par1 ,Object par2) as is into your code

– Copy function findp2p(Object par1 ,Object par2 ,Object par3) as is into

your code

56

The reason we overload function findp2p will become apparent a little bit

later.

The next copy operation is very important and requires we make certain

modifications. First copy as is function findP2P(Object[] keys) into your

code. This is the function that actually calls queryDHT, which is respon-

sible for looking up the value we search over the P2P network. The value

returned from this function is a Vector that contains Remote References

(Remote Interfaces) to EJB’s of the type our Bean is. In order to obtain

them, we connect to the appropriate jnp server, call jndi’s lookup function

that returns an object we cast to the correct Home Interface and finally

call findByPrimaryKey for a given id, that returns the Remote Reference

we want. The above actions in the case of our customer Bean can be seen

in the following piece of code.

Listing A.2: ”findP2P ”

1

2 Context jndiContext = new I n i t i a lCon t e x t (p r op e r t i e s) ;

3

4 Object r e f c = jndiContext . lookup (”CustomerHomeRemote”) ;

5

6 CustomerHomeRemote c home = (CustomerHomeRemote)

7

8 PortableRemoteObject . narrow (r e f c , CustomerHomeRemote . class) ;

9

10 I n t eg e r idd=new I n t eg e r (id) ;

11

12 CustomerRemote cust =c home . findByPrimaryKey (idd) ;

57

It is therefore necessary for you to change everything that has to do with the

type of the Home/Remote Interface and declare the correct class for your

Bean. Based on our code values CustomerHomeRemote, CustomerHomeR-

emote.class and CustomerRemote must be replaced by the corresponding

values of your EJB. Notice: We assumed that findByPrimaryKey takes an

Integer parameter, something very common for Entity Beans. If however

this is not the case in your Bean then line:

Integer idd=new Integer(id);

must be replaced by a declaration relevant to the type of your Primary key

and the value that must be passed as a parameter in your findByPrima-

ryKey function.

Now in order to create a finder method you must declare two methods: the

actual finder method, and a check method that is called from inside the

finder. At first we will create the actual finder method. The name can be

anything you like, however it is preferable it reflects the actual attributes

involved. If for example you want to crate a finder method based on Date

and time, findByDateTime, is a good name. The return type must always

be a Collection. All finder methods are functions of the EJB’s Home Inter-

face and therefore must be declared there first. A finder method can have

from one to three parameters of any type we want, based on the types of

the attribute(s) that where used to create each of the existed indexes (the

order must also be the same we used to create the index). For example

Collection findByDateTime(Date d,Time t); or

Collection findByPriceNameCode(Interger i, Name n,Code c);

are possible valid declarations. Eventually the String representations from

58

these values are used to create the search key (Remember in function in-

dexed data the String representations of each attribute were used to create

the index). Based on the EJB specification, every Home method must be

declared inside the Beans Class code with prefix ejbHome. The code for

one of our finder methods can be seen below:

Listing A.3: ”FindByName function”

1

2 public Co l l e c t i on ejbHomeFindByName(St r ing fname , S t r ing lname)

3 {
4 Vector returned = new Vector () ;

5 Vector r e s u l t = new Vector () ;

6

7 System . out . p r i n t l n (” findByname c a l l s f indp2p ”)

8 returned =new Vector (f indp2p (fname , lname)) ;

9

10 i f (returned . isEmpty()== fa l se) {
11 for (int i =0; i<returned . s i z e () ; i++){
12

13 CustomerRemote cust =(CustomerRemote) returned . elementAt (i ++);

14 St r ing key= (St r ing) returned . elementAt (i) ;

15 try{
16

17 i f (cust . checkName (key) == true) {
18 r e s u l t . addElement (cust) ;

19 }//end i f

20 } catch (java . rmi . RemoteException re)

21 {

59

22 re . pr intStackTrace () ;

23 }
24 }//end f o r

25 }
26 return r e s u l t ;

27

28 }

The first thing that must be done inside every finder is to call findp2p

method with exactly the same parameters the finder method has and in

the same order. For our imaginary findByDateTime(Date d,Time t) we

should write :

returned =new Vector(findp2p(d,t)) ;

What actually happens is that each of the three overloaded functions findp2p

creates a single array based on the number of parameters passed and calls

findP2P function with this array as a parameter. Therefore the reason we

created functions findp2p, was in order to make the call of function findP2P

transparent to the EJB developer, no matter the number of finder method

parameters. Moreover it is now obvious why there is a limitation to the

number of finder parameters and as so the attribute(s) that create an index

and how this can be extended.

Then for each Vector element we get as a result, we cast it to the appro-

priate Remote Reference, which obviously should be changed to the correct

value for your EJB. This is a good point to describe how to declare the

corresponding to this finder, check* method that was mentioned earlier.

A check* method must be declared for each finder. The name you choose

can be anything you like, however it is preferable it reflects the actual

60

attributes involved. All check* methods are functions of the EJB’s Remote

Interface and therefore must be declared there first. The return type must

always be boolean and the parameter must be a String value. The code for

the corresponding to our FindByName method, checkName, can be seen

below:

Listing A.4: ”checkName function”

1

2 public boolean checkName (St r ing key) {
3

4 St r ing temp =new St r ing (this . getFirstName ()) ;

5

6 temp =temp . concat (this . getLastName ()) ;

7

8 i f (temp . matches (key)) {
9 return true ;

10 }
11 else {
12 return fa l se ;

13 }
14 }

Inside the body of each check method we create a single String by con-

catenating the values of the appropriate attribute(s) (the same attributes

we concatenated inside indexed data, for the index this finder method is

relevant) and we return the result of the equality test with the key.

Going back now to the finder method we must call for each Remote Ref-

erence the corresponding check* method, with the key we got as a result.

61

Only if the result is true, which means the value we got is still valid we add

this Remote Reference to the returned Vector.

Copy both codes into your code the make the necessary changes explained

above. Don’t forget to declare each finder and check method to your Home

and Remote Interface respectively. Remember that this procedure must be

done for every index we have created.

A.6 Step 5: Deploy your Bean

Now that you have finished writing your bean’s code, build it in order to

produce a single .jar file with it and copy it into JBoss’s deploy directory.

Remember that the first time your bean is deployed a JXTA Configuration

window will be thrown. Fill in the fields with names of your preference.

For more information about the Configuration options download the JXTA

ProgGuide pdf from the JXTA homepage(http://www.jxta.org/.

A.7 Step 6: Running a client application

The client application we have created covers all of the possible EJB op-

erations. It creates five beans, sets their values ,re-set some of them, calls

the finder method FindByName we have created and shows the results we

get, calls some getters and finally removes some beans.

For our client application to be meaningful you must deploy the customer

Bean in at least to different machines that run the JBoss Application Server.

In each one of the machines set a different i variable value and run command

62

ant run.client. If everything worked fine you will see that the finder method

returns the correct results, based on the indexes created.

In general every time a Client application creates an EJB and sets the

appropriate attributes an index will be automatically created. Moreover

the client can call a defined finder method, from the Home Interface, to get

a Vector with Remote References to EJB’s of the same type based on the

values specified.

Appendix B

Javadoc

The following pages contain the javadoc produced from the source codes

that we used in order to create the P2P indexing mechanism. The actual

.html pages can be found in following directories of the p2pindex.zip file,

respectively:

– p2pindex/DHTxmbean/javadoc

– p2pindex/dbSync/javadoc/

– p2pindex/exampleBean/javadoc/

63

Bibliography

[1] Java Management Extensions Instrumentation and Agent Specifica-

tion, v1.0, JSR003, Tech. report.

[2] PROST : A programmable structured peer-to-peer overlay network.

[3] Enterprise JavaBeans specification, version 2.1, Specification, Sun Mi-

crosystems, November 2003.

[4] L. F. Cabrera, M. B. Jones, and M.Theimer, Herald : Achieving a

global event notification service, Workshop on Hot Topics in Operating

Systems (Elmau,Germany), May 2001.

[5] M. Castro, P. Drushel, A. M. Kermarrec, A. Nandi, A. Rowstron,

and A. Singh, Splitstream : High-bandwidth content distribution in a

cooperative enviroment, IPTPS, 2001.

[6] M. J. Freedman and D. Mazieres, Sloppy hashing and self-organizing

clusters, In Proceedings of the IPTPS, 2003 (Berkeley), February 2003.

[7] L. Garces-Erice, P.A. Felber, E.W. Biersack, G. Urvoy-Keller, and

K.W. Ross, Data Indexing in Peer-to-Peer DHT Networks, Tech. re-

port, Institute EURECOM, 2002.

[8] Daishi Kaito, GISP : Global information sharing protocol - a distributed

index for peer-to-peer systems-, Tech. report, Computer Science De-

partment, Stanform University, November 2003.

64

65

[9] Nicholas Kassem and the Enterpsise Team, Designing Enterprise Ap-

plications with the JavaTM 2 platform, Enterprise edition, Tech. re-

port.

[10] J. Kubiatowicz, ”oceanstore: An architecture for global-scale persistent

storeage”, ASPLOS 2000, 2000.

[11] A. Mislove and A. Post, Post : A secure, resilient, cooperative messag-

ing system, HotOS IX, May 2003.

[12] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker, A scalable

content-addressable network, In Proc. ACM SIGCOMM, 2001.

[13] A. Rowstron1 and P. Druschel, Pastry: Scalable, decentralized object

location and routing for large-scale peer-to-peer systems, in Proc. of

the 18th IFIP/ACM International Conference on Distributed Systems

Platforms (Middleware 2001) (Heidelberg, Germany), November 2001.

[14] Scot Stark and the JBoss Group, JBoss Administration and Develop-

ment, Tech. report.

[15] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana, Internet in-

direction infastructure, In Proceedings of ACM SIGCOMM’02, August

2002.

[16] I. Stoica, R. Morris, D. kanger, F. Kaanshoek, and H. Balakrishman,

Chord : A scalable peer-to-peer lookup service for internet applications,

In proc. ACM SIGCOMM (San Diego,California).

[17] Chunqiang Tang, Zhichen Xu, and Mallik Mahalingam, pSearch: Infor-

mation Retrieval in structured overlays, Tech. report, HP Laboratories,

2002.

[18] B.Y. Zhao, J. Kubiatowicz, and A. D. Joseph, Tapestry: An infras-

tructure for fault-tolerant wide-area location and routing, Tech. report,

Computer Science Division, University of California, Berkeley, April

2001.

	Table of Contents
	Abstract
	Acknowledgements
	Introduction
	Distributed Hash Tables
	Indexing
	Enterprise Java Beans (EJB)
	Our contribution
	Outline

	Related Work
	Peer-to-Peer Technologies
	GISP
	Project JXTA

	J2EE technologies
	EJB Architecture
	JBoss Application Server

	Other Projects
	PROST
	pSearch
	Data Indexing in Peer-to-Peer DHT Networks
	Coral
	OceanStore

	P2P indexing of EJB: The Design
	Defining P2P Indexing of EJB's
	 Transactional issues

	Basic components
	Container issues

	The Indexing mechanism
	Insert mechanism
	Delete mechanism
	Lookup mechanism

	P2P indexing of EJB: The Implementation
	DHT : GISP
	 EJB Container : JBoss
	Implementing the Indexing mechanism
	Insert mechanism
	Delete mechanism
	Lookup mechanism

	Conclusions
	User's Manual
	Prerequisites
	Step 1: Platform Setup
	Step 2: Extend your EJB
	Step 3: Define the indexed attributes
	Step 4: Create the Finder methods
	Step 5: Deploy your Bean
	Step 6: Running a client application

	Javadoc
	Bibliography

