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                                                                                            Chapter1  
 

 

1 Introduction 
This thesis is part of a major project. Three other colleagues and I have formed a team for 

its fulfillment. The objective of the project is the connection of two computer systems via 

an experimental wireless link. This wireless link will be used for transferring all kind of 

computer files from one computer system to the other. One of the computer systems plays 

the role of the transmitter and the other of the receiver. In our case the transmitter unit is a 

laptop, whereas the receiver unit is a desktop computer. The file transferring supported is 

one way, which means that only files from the laptop can be send to the desktop PC.  

 

    Figure 1.1 Transmitter Unit-Receiver Unit 

 

 

Necessary prerequisite is that both computers are equipped with audio cards and Matlab. A 

low-power FM transmitter is connected to the audiocard’s line-out RCA jack of the one 

computer. The FM transmitter is connected through a shield cable with a half wave dipole 

antenna. Likewise, a wideband communication receiver is connected to the audiocard’s 

line-in RCA jack of the other computer. The transmitter unit generates digital data, which 
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are transmitted by the FM transmitter and the half wave dipole antenna over analog FM. 

The receiver unit receives the analog data and converts them back to digital. In this way, 

computer files are transferred. Both hardware and software are fully developed by the 

members of the team. A detailed analysis of their implementation follows. 

 

 
Figure 1.2 Complete System 

 

1.1 Hardware 

The hardware used consists of the following parts: 

• a low-power FM transmitter 

• a half wave dipole antenna connected to the FM transmitter 

• a wideband communication receiver 

• 2 audiocards equipped with line-in and line-out  

 

The FM transmitter used is a simple low-power kit. Its power is about 1 watt and the 

range of the signal that produces is a 1-2Km. The power is kept under or about 1 Watt, 
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so that there is no interference with other FM transmissions in the area. The user can 

adjust the frequency of the transmission between 88MHz and 108MHz by simply 

changing the value of a resistance with the use of a screwdriver. The input of the 

transmitter is the signal coming from the audiocard’s line-out. The output signal of the 

transmitter is transferred through a shield cable to the half wave antenna where it is 

finally transmitted. The transmitter needs 4.5 Volt supply in order to give out power of 1 

Watt. Three 1.5 Volt batteries in series are used to provide the 4.5 Volt needed power 

supply.  Instead of using batteries, we also experimented with an AC/DC adaptor which 

we connected to a wall socket. The result was a constant drone caused by the frequency 

of the electrical AC/DC supply. For this reason, we concluded in using batteries which 

performed better. The transmitter is placed into a metallic box for electromagnetic 

shielding purposes.  

 

 

 
      Figure 1.3 FM transmitter and half wave dipole antenna 
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The wideband communication receiver is used to detect the transmitted signal. Its 

specifications follow:        

• Frequency range: 0.1-1300Mhz 

• Antenna Impedance: 50Ωhm 

• Battery Voltage: 3.6-6Volt 

• Sensitivity: 30-559Mhz less than -3db 

 

 
Figure 1.4 FM transmitter, wideband communication receiver and power supply for the FM transmitter 

 

 

 

1.2 Digital Communication System 

All different modules of the digital communication system are analyzed in this section. For 

better explanation, the system is divided in the transmitter and the receiver unit. 

 

1.2.1 Transmitter Unit 

The transmitter unit comprises of the following modules: 

• binary “reading” of file which will be transmitted 

• encoder 

• interleaver 

• modulator 
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Binary reading of file 

First, the file we desire to send must be read. After being binary read the file is divided in 

groups of bits called packets. Then, the bits of each packet are imported in the encoding 

stage. 

 

Encoding stage 

In this stage the bits are encoded. By encoding, we mean that redundant bits are added and 

certain algorithms are implemented in order for the receiver to detect and correct the errors 

occurred. Our system supports both block and convolutional coding. In block coding, cyclic 

codes, BCH codes, Reed Solomon codes and Hamming codes are implemented. In 

convolutional coding, convolutional codes are implemented. Either one separately may be 

used. 

 

Interleaving stage 

In this stage the encoded bits are interleaved. By interleaving, we mean that the bits are 

“mixed” in order to help the encoders detect and correct as many errors as possible. 

Interleaving improves the system’s performance especially when burst errors occur. Block 

interleaving and random interleaving are both supported. 

 

Modulating stage 

M-ary PSK, M-ary QAM and M-ary PPM are the modulation schemes our system supports. 

The user can define the symbol period T and the order M of the modulation scheme. First, 

the bits are converted to symbols and finally to samples. The output of this stage is the 

samples of the waveforms that will be transmitted. These samples are then “played” by 

Matlab and through the transmitter and antenna are sent to the receiver. 
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                            Figure 1.5 Transmitter Unit 

 
 
 
 

1.2.2 Receiver Unit 

The receiver unit comprises of the following modules: 

• synchronization 

• correlators 

• amplitude and phase recovery 

• equalizer 

• detector 

• deinterleaver 

• decoder 

• “write” file consisting of bits received 

 
 

Synchronizing stage 
This stage is responsible for the system’s synchronization. A training sequence known by 

the receiver is used, so that the beginning of our signal can be detected. After detecting it 

the training sequence is removed and the rest of the signal is processed. 

 

Correlating stage 
Depending on the modulation scheme, the correspondent correlators are used. The 

correlators convert samples to symbols by multiplying the waveforms with the basis 

functions. 

 

Block encoder 

 Convolutional    
       encoder 

Interleaver Modulator 

Source 
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Equalizing stage 
The training sequence is also used by the equalizer. In this stage, certain algorithms such as 

LMS, RLS and CMA process the training sequence, which is now in the form of symbols 

since it has exited the correlating stage. This results to a direct estimate of an appropriate 

equalizer. This estimation is used to equalize the rest of the data symbols. The received 

symbols, after equalization, are ready to enter to the correlating stage.  

 

Note: We have also tried to equalize samples instead of symbols but this resulted to a great     

delay in the processing of each packet. This fact urged us to implement symbol-level 

equalization, which also proved to have a good performance.  

 

Amplitude and phase recovery stage 
Our system also tries to recover the amplitude and the phase of the symbols, which a very 

fast and efficient method.  

 

Detecting stage 
Depending again on the modulation scheme, the corresponding detector is used. All 

detectors are “minimum distance” detectors, since they calculate the distance between the 

received symbol coming from the correlating stage and the constellation of each 

modulation scheme and they detect each symbol according to the minimum of these 

distances.   

 

Deinterleaving stage 
The deinterleaver performs the inverse procedure compared to the interleaver. The bits are 

placed to their correct positions before being decoded. 

 

Decoding stage 
In this stage the bits are decoded. If errors have occurred during transmission, they are 

detected and then corrected. The number of errors corrected depends on the error detection 

and correction capability of the code used. 

 
“Writing” file stage 
When the bits of all packets have exited the decoding stage, they are joined together to form 

a file. Necessary prerequisite is that no errors occurred. 
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     Figure 1.6 Receiver Unit 

 

1.3 First Design 

During the design of the system the existence of an Automatic Repeat Request (ARQ) 

scheme was predicted. In that scenario, the transmitter unit would transmit continuously 

packets, whereas the receiver would be divided in two sub-units. The first one would be 

responsible for “recording” the packets transmitted and the second unit would only process 

the received packets. In other words, there would be a kind of pipelining. By using a Cyclic 

Redundancy Code (CRC), we would know if the packet is damaged. If it is damaged or if 

the packet is lost, the receiver unit would demand the retransmission of this packet. This 

demand would reach the transmitter through the local area network (LAN) connection, 

using UDP objects associated with remote host, Matlab provides. However, the fact that was 

not predicted was the amount of memory needed to implement the above system. Indeed, 

the amount of memory needed to work with 2 Matlab platforms on a single computer (this 

refers to the receiver) is prohibitive. For this reason, the distributive system described was 

never implemented. However, we concluded to another system. Its description follows. 

 

 

1.4 Final System 

The system works either in open loop (no ARQ) or in a closed loop (with ARQ). The 

transmitter unit sends a “handshake” signal to the receiver unit through the local network 

Equalizer 

Detector Deinterleaver 

       Block  
      decoder 

Convolutional 
       decoder 

Correlators 
Am/Phase 
Recovery 
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connection in order to establish a link. When the link is established, the transmitter may 

begin sending packets. The receiver unit has already started “recording” after the reception 

of the “handshake” signal. This first stage is the same both for open and close loop link. 

 

 

1.4.1 Open loop link 
In this type of connection, CRC is not added. For this reason, damaged packets or lost 

packets are not retransmitted. The receiver unit first “records” and then processes each 

packet. When the process is finished, the receiver unit asks the transmitter to transmit the 

next packet. The receiver unit and the transmitter unit exchange the messages “start 

recording” (Transmitter  Receiver) or “send next packet” (Receiver  Transmitter) 

through the LAN connection. This is succeeded by continuously switching roles of server 

and client. When the message “start recording” is sent, the transmitter unit plays the role of 

a server, whereas the receiver unit the role of a client. By contrast, when the message “send 

next packet” is sent the receiver unit is the server and the transmitter unit the client. At the 

end of the transmission of all packets the connection is closed using again signal through 

the LAN. 

 

1.4.2 Closed loop link 
In this type of connection CRC is added. CRC detects when a packet has not arrived correct 

at the receiver and alerts the system. In case a packet is damaged the receiver unit demands 

from the transmitter unit the retransmission of the same packet. This procedure repeats until 

the packet arrives correct. The rest of the procedure remains the same as in the open loop 

link. It is obvious that a closed loop link is a more secure way of communication, since the 

transmission’s result is guaranteed under normal levels of noise. However, we must also 

notice that by using CRC the process time of each packet increases. The cost in time will be 

fully analyzed in the last chapter, where the total system will be evaluated.  
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Figure 1.7 Open loop and closed loop link 

 

 

1.5 Concluding Remarks 
In this chapter, a general presentation of the whole system was made. Each member of the 

team was responsible for the implementation of certain software modules. As far as it 

concerns the hardware parts, all members contributed equally in their assembling. The 

analysis of the software modules is included in each of our thesis.  

 

Ηλιάκης Ευάγγελος implemented: Convolutional encoders/decoders , Phase Shift Keying 

(PSK) modulation scheme , Cyclic Redundancy Check (CRC) , Graphical User Interface 

 

Καρδαράς Γεώργιος implemented: Block encoders/decoders , Interleavers/Deinterleavers , 

Pulse Position Modulation (PPM) scheme,  Graphical User Interface 

 

Κοκκινάκης Χρήστος implemented: Equalizers 

 

Μπερβανάκης Μάρκος implemented: Viterbi decoder , Quadrature Amplitude Modulation 

scheme (QAM) ,Amplitude phase recovery, responsible for the assembly of all modules 
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2 Introduction to coding 

A communicational system may be characterized as reliable if no errors occur during                  

transmission. However, regardless of the design of the transmission system there will be 

errors resulting in the change of one or more bits in a transmitted frame. The existence of 

errors depends on three important factors: the signal-to-noise-ratio (or better 0/bE N  , where 

bE  is the energy per bit and 0N  the noise variance), the data rate and the bandwidth. With 

other factors held constant the following statements are true: 

 

• An increase in data rate increases bit error rate (BER) 

• An increase in SNR decreases bit error rate 

• An increase in bandwidth allows an increase in data rate 

 

 

In order to cope with data transmissions errors, there are three basic approaches in common 

use:  

• Error detection codes 

• Error correction codes , also called forward error correction (FEC)  codes 

• Automatic repeat request (ARQ)  protocols 

 

An error detection code simply detects the presence of an error. Typically, such codes are 

used in conjunction with a protocol at the data link or transport level that uses an ARQ 

scheme. With an ARQ scheme a receiver demands the retransmission of the block of data, if 

an error has occurred. FEC codes are designed not just to detect but correct errors avoiding 

the need for retransmission. Of course the retransmission is avoided only if the code is 

strong enough to correct all errors. FEC schemes are frequently used in wireless 

transmission where retransmission scheme is highly inefficient and error rates may be 

high.[10, page204]  
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The goal of channel coding can be explained using the model depicted in figure 1.1. The 

information vector i is transformed into the coded bit vector c. Transmission over the 

channel introduces additive noise which results in the received bit vector r.  r is decoded to 

produce the information bit vector  î  which is designed to have a reduced probability of 

error due the coding technique implemented. In order to correct or identify errors caused 

during transmission it is equivalent to calculate an estimate of the codeword or the error 

vector from the received vector r. 

 
     Figure 2.1 Fundamental Structure 

          

 

 All coding techniques implemented operate on the following technique. Before the 

transmission of each frame of bits the transmitter adds redundant bits to it. These additional 

bits constitute the error-detecting code. This code is calculated as a function of the other 

transmitted bits. Typically, for a data block of k bits the error detection algorithm yields an 

error detection code of n - k bits where n-k < k. The error detection code also referred to as 

the check bits is appended to the data block to produce a frame of n bits which is then 

transmitted. The incoming frame is separated by the receiver into the k bits of data and the 

rest n-k bits of the error correction code. Then, the same error detection calculation on the 

data bits as happened at the transmitter is performed at the receiver. This value is compared 

with the value of the incoming detection code. If there is a mismatch a detected error occurs. 

Generally, when a received word is decoded the output is correct or false, or no decision can 

be made. These outputs may be defined as correct decoding, false decoding and decoding 

failure respectively. 

 

   

source 

encoder  + decoder 
r î  c 
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2.1 Possible decoding results 

• Correct decoding: the transmitted codeword is equal to the decoded codeword. Errors   

introduced by the channel are successively removed. 

• Incorrect (erroneous) decoding: the transmitted codeword differs from the decoded 

codeword. In this case the decoder has calculated an error which does not correspond to 

the true error introduced by the channel or due to excessive noise or other transmission 

impairments the correction code was not able to correct all the errors. 

• Decoding failure: the decoder can find no solution (e.g. no valid codeword).  
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           Chapter3 
 

3 Galois Fields 
Rational, real and complex numbers are well-known examples of infinite fields. For coding 

applications, a finite field is needed. Such a field is a Galois field. The following definitions 

are necessary for the understanding of Reed Solomon coding. They can be found in 

[5,chap2], where there is also a more detailed analysis of the Galois field theory. 

 

 
3.1 Group 

 A non-empty set A of elements is called a group under the operation * if the following 

axioms are satisfied: 

• Closure , :a b A a b A∀ ∈ ∗ ∈  

• Associativity: , , : ( * ) ( * )*a b c A a b c a b c∀ ∈ ∗ =  

• The existence of the neutral element e: : : *e A a A a e a∃ ∈ ∀ ∈ =  

• Inverse element: 1: : *a A b a A a b e−∀ ∈ ∃ = ∈ =  

 

Commutative or Abelian groups satisfy the additional axiom 

 

• Commutativity: , : * *a b A a b b a∀ ∈ =  

 
 
 
 

3.2 Field 

A set A with two operations (+,*) is called a field if the following axioms are satisfied: 

 
• A is an Abelian group under addition 

 
• A (without the null element) is an Abelian group under multiplication 

 
• Distributive law: , , : ( )a b c A a b c a b a c∀ ∈ + = ⋅ + ⋅   
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3.3 Galois Field and Prime Fields 

A Galois field is defined as any finite set satisfying the axioms of a field, and is denoted by 

GF(q), where q∈ . A prime field GF(p) has the additional condition that p∈ is prime. 

The set of integers (0,……,p-1) satisfies the axioms of a field under the operations (+,*) 

mod p. 

 

 

Example 

 

 

Table 3.1 

 

3.4 Primitive Element 

The multiplicative group of a prime field GF(p) is a cyclic group. This means that an 

element a  exists such that any non-zero element of the field can be represented as some 

power of a . 

 

Example 

GF(5) includes the elements 0,1,2,3,4.  

A primitive element of GF(5) is 2 because any non-zero element of the field can be 

represented as some power of 2. 

 

                                

1

2

3

4

2 2
2 4
2 8 3
2 16 1

=

=

= =

= =

 

+ 0 1 2 3 4 

0 0 1 2 3 4 

1 1 2 3 4 0 

2 2 3 4 0 1 

3 3 4 0 1 2 

4 4 0 1 2 3 

* 0 1 2 3 4 

0 0 0 0 0 0 

1 0 1 2 3 4 

2 0 2 4 1 3 

3 0 3 1 4 2 

4 0 4 3 2 1 
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3.5 Extension fields 

There also exist fields GF(q) where q is the power of a prime p, mq p= .For other numbers 

no finite fields exist. The field GF(q) with  mq p=  m>1 , are called extension fields. 

 

3.6 Irreducible polynomial 

A polynomial p(x) with the coefficients from GF(p) is irreducible if there are no non-zero 

polynomial factors of smaller degree that also have coefficients from GF(p). 

 

3.7 Primitive Polynomial 

p(x) is an irreducible polynomial with deg p(x) =m and coefficients ( )m
ip GF p∈ . An 

element ( )ma GF p∈  is called a primitive element if mod ( )ia p a can produce all 

1mp − elements of the extension field ( )mGF p  (excluding the zero element). The 

polynomial p(x) is called primitive if it has a primitive element as root.  
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             Chapter4                  

                 
 

4 Cyclic Codes 
Cyclic codes form an important subclass of linear block codes. These codes are attractive for 

two reasons: first, encoding can be implemented easily by employing shift registers with 

feedback connections, and second because there are various methods for decoding them. 

Cyclic codes are widely used in communication systems for error control. Many classes of 

cyclic codes have been constructed over the years, including BCH codes and Reed Solomon 

codes. 

 

 

 

4.1 Description of Cyclic codes 

If we cyclically shift the components of an n-codeword 0 1 1( , ,..., )nv u u u −= one place to the 

right, we obtain another codeword 1 0 2' ( , ,..., )n nv u u u− −=  which is called a cyclic shift of v . 

If the components of v  are cyclically shifted i places to the right, the resultant codeword 

is 1 1 0 1 1' ( , ,..., , , ,..., )n i n i n n iv u u u u u u− − + − − −= . [8 ,page 136] 

 

 

 

Definition   

A ( , )n k linear code C is called cyclic code if every cyclic shift of a codeword in C is also a 

codeword in C. The encoding and decoding procedure of a cyclic code will be analyzed in 

the next chapter, where Reed Solomon codes, which are cyclic, are thoroughly explained.  
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Example 

 Using Matlab we will create a (7,4) cyclic code in order to verify the above definition. 

 

Script  

 

 

 

 

 

 

 

 

 
 

 

codewords = 

     0     0     0     0     0     0     0 

     1     0     1     1     0     0     0    

     1     1     1     0     1     0     0         cyclic shift of second row results in the fourth row   

     0     1     0     1     1     0     0             

     1     1     0     0     0     1     0 

     0     1     1     1     0     1     0 

     0     0     1     0     1     1     0 

     1     0     0     1     1     1     0 

     0     1     1     0     0     0     1  

     1     1     0     1     0     0     1 

     1     0     0     0     1     0     1 

     0     0     1     1     1     0     1 

     1     0     1     0     0     1     1 

     0     0     0     1     0     1     1 

     0     1     0     0     1     1     1 

     1     1     1     1     1     1     1 
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                                                                                            Chapter5 

                                                                                                           
5 Reed Solomon Codes 
Among the non-binary cyclic codes, the most important subclass is the class of Reed 

Solomon codes. The RS codes were discovered by Irving S.Reed and Gustave Solomon in 

1960 independently of the work by Hocquenghem, Bose and Chaudhuri [9, introduction]. 

Reed Solomon codes are a class of codes that are often used in practical systems. They are 

based on the Galois field theory. All arguments and algorithms are applicable not only for 

prime Galois fields but also for extension fields. 

 

 

Definition 5.1 

Let ( )a GF p∈ be an element of order n. The Reed Solomon code of length n is defined by 

the set of polynomials A(x) of degree less than k such that 
2 1

0 1 2 1( ) ... , ( ), .k
k iA x A A x A x A x A GF p k n−
−= + + + + ∈ ≤  The codewords a= ( 0, 1 1,..., na a a − ) 

are generated by ( )i
ia A a= : 

 

 : { | ( ), 0,1,..., 1,deg ( ) }i iC a a A a i n A x k= = = − <       [5, page 46] 

 

The minimum distance is d = n - k + 1 and the dimension of the code is k. 

          

With Reed Solomon codes, data are processed in chunk of m bits, called symbols. An (n, k) 

Reed Solomon code has the following parameters: 

 

         Symbol length         : m bits per symbol 

         Block length            :  2 1mn = −  symbols = (2 1)mm −  bits 

         Data length              :  k  symbols  

         Size of check code   :  2n k t− =  symbols (2 )m t=  bits 

         Minimum distance   : min 2 1d t= +  symbols 

 

where t  is the error correction capability of the RS code. 
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Example 

The construction of the RS code of length 6 with minimum distance 5 over GF (7). We must 

first find a primitive element for this field, or, in other words an element with the order 6. 

We must also choose all polynomials A(x) with degree 1k n d− ≤ − .This results in k=2. 

 

We first verify that a =5 is a primitive element from GF(7). 
15 =  5  
25 = 25  =  mod (25, 7) = 4  
35 25 5 4 5 20= ⋅ = ⋅ = = mod (20, 7) = 6 
45 = 30 =  mod (30, 7) = 2 
55  = 10 = mod (10, 7) = 3 
65  = 15 =  mod (15, 7) = 1 

 

We notice that indeed any non-zero element of the field can be represented as some power 

of 5. 

 

 

We can now obtain the codewords of the RS code through the 

formula ( )i ia A a= , 0 1( )A x A x A x= +  with 0 1, (7)A A GF∈ . The calculation of the codeword 

for example for the information polynomial ( ) 5 3A x x= +  gives: 

 
0

0
1

1
2

2
3

3
4

4
5

5

1 5 3 8 7 1

5 5 3 5 20 7 6

4 5 3 4 17 7 3

6 5 3 6 23 7 2

2 5 3 2 11 7 4

3 5 3 3 14 7 0

1 6 3 2 4 0

( ) ( ) mod( , )

( ) ( ) mod( , )

( ) ( ) mod( , )

( ) ( ) mod( , )

( ) ( ) mod( , )

( ) ( ) mod( , )

( , , , , , )

a A a A

a A a A

a A a A

a A a A

a A a A

a A a A

a

= = = + = =

= = = + ⋅ = =

= = = + ⋅ = =

= = = + ⋅ = =

= = = + ⋅ = =

= = = + ⋅ = =

⇒ =
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Definition 5.2 

The discrete transform is defined as ( , 0... 1)i j n∈ −  

  Transform    ( )i
ia A a=  

                  Inverse         1 ( )j
jA n a a− −=  

( )a GF p∈  is an element of order n and ( )a x  and A(x) are polynomials of degree ≤  n-1 

with coefficients from GF(p). 

 

Let 1
0 1( ) ... n

nA x A A x −
−= + +  and 1

0 1( ) ... n
nB x B B x −
−= + +  be two polynomials from GF(p). 

Then the cyclic convolution A(x)*B(x) is defined as a polynomial 1
0 1( ) ... n

nC x C C x −
−= + +  

where 
1

0
, 0,1,..., 1

n

j i j i
i

C A B j n
−

−
=

= = −∑  .All indices are calculated modulo n. 

 

 

5.1 Generator Polynomial 

The Reed Solomon code of length n, dimension k and minimum distance d=n-k+1 can also 

be defined by all (information) polynomials i(x) of degree<k. The codewords are calculated 

through multiplication by the generator polynomial: 

     

                                          ( )a x =i(x)g(x)  deg g(x)=n-k 

 

 

Each codeword ( )a x must be divisible by g(x). In each codeword ( )a x , the elements ix a=  

must be roots, where a is a primitive element. These correspond to the linear factors ix a−− . 

The product of these linear factors results in the generator polynomial g(x) of degree n-k. 

     
1

( ) ( )
n

i

i k

g x x a
−

−

=

= −∏  
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Example 

We should like to construct the RS code of length n=6 with minimum distance d=5 over 

GF(7) like we did in the previous example. The dimension of our code is 

1 2k n d= − + = and a primitive element is a =5. We will now calculate the generator 

polynomial: 

 
5

2

( ) ( )i

i

g x x a−

=

= −∏   

                                  2 3 4 5( )( )( )( ) | mod 6x a x a x a x a− − − −= − − − −  

                                               4 3 2( )( )( )( )x a x a x a x a= − − − −  

                                  2 4 3 7 2 2 3( ( ) )( ( ) )x a a x a x a a x a= − + + − + +  

                                                2 2( 5)( 2 6)x x x x= − + − +  

                                   4 3 2 3 2 2( 5 2 2 10 6 6 30) | mod 7x x x x x x x x= − + − + − + − +                   

  

              4 3 2( ) 4 6 5 2g x x x x x= + + + +     

 

 

The codeword from the previous example must be divisible by g(x). Therefore 

( ) / ( ) ( )a x g x i x=       

  

     4 3 2 4 3 2(4 2 3 6 1) /( 4 6 5 2) 4x x x x x x x x+ + + + + + + + =  

 

 

Therefore the polynomial is ( ) 4 ( ), ( ) 4 0a x g x i x x= = +      
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5.2 Encoding 

There are different methods to generate the Reed Solomon encoding scheme. All methods 

employ the same code but a particular information vector is mapped, in general, to a 

different codeword, depending on the encoding technique. Some of these methods are 

systematic and some of them non-systematic. The difference between systematic and non-

systematic methods of encoding is that in systematic encoding, information and parity check 

symbols are separated. Moreover, information symbols remain the same. In our application, 

a systematic method is used.  

 

 

5.3 Method 1 (non-systematic) 

The k information digits are the coefficients of the polynomial 1
0 1 1( ) ... k

ki x i i x i x −
−= + + +  . 

The codeword ( )a x  results from the multiplication by the generator polynomial 

( ) ( ) ( )a x i x g x=  

 

Example 

We would like to construct the RS code of length n=7 and dimension k=3 over the extension 

field GF (8) = 3(2 )GF  of GF (2). 

The information digits are the coefficients of the polynomial: 
2( ) 2 1 3i x x x= + +         ,   data = { 2  1  3 } 

 

 

Since we work over the extension field GF (8) we first define the primitive polynomial to be 

used. The primitive polynomial is 3 1 0a a+ + =  and its coefficients belong to GF (2). 

Moreover, as a root of the primitive polynomial we will use 2a = .We will now verify that 

the primitive polynomial and the root we selected are indeed correct.  
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 Calculate ia  , [0,7]i∈  Substitution with 2a =  

 0a   1                  1 
1a  a                   2 
2a  2a                   4 
3a  a +1 *                  3 
4a  a ( a +1) = 2a + a                   6 
5a  a ( 2a + a ) = 3a + 2a  = 2a + a +1                  7 
6a  a ( 2a + a +1) = 3a + 2a + a  = 2a + a + a  +1= 2a +1  **                  5 
7a  a ( 2a +1) = 3a + a = a +1 + a  = 1                  1 

 

*   3a is equal to a +1 because its coefficients belong to GF (2). 

      Therefore, 3a + a +1 = 0 

       ⇒ 3a = - a -1 

      Because mod (-1, 2) = 1 

                  ⇒ 3a = a +1 

 

** 2a + a + a  is equal to 2a +1 because its coefficients belong to GF (2).  

    Therefore, 2a + a + a +1 = 2a +2 a +1 = 2a +1 because mod (2, 2) = 0 

 
                                                                      Table 5.1 

                                                
            Integer      Representation Binary Representation Element of 

               GF(8)                       

                 0                 000                 0 

                 1                 001                 1 

                 2                 010                 a  

                 3                 011                a +1 

                 4                 100                2a  

                 5                 101                2a +1 

                 6                 110                2a + a  

                 7                 111                2a + a +1 

                                                                       Table 5.2 
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After substituting with the root 2a =   we can produce any non-zero element of the field. 

We also verify that our code is cyclic. 

We now proceed by calculating the generator polynomial g(x). 

  
6

3

( ) ( )i

i

g x x a−

=

= −∏   

          3 4 5 6( )( )( )( ) | mod 7x a x a x a x a− − − −= − − − −  

          4 3 2( )( )( )( )x a x a x a x a= − − − −  

                     2 4 3 7 2 2 3( ( ) )( ( ) )x a a x a x a a x a= − + + − + +  

          2 2 2 2( ( 1) 1)( ( ) 1) | 2x a x x a a x a a= − + + − + + + =  

                     2 2( 3 1)( 6 3)x x x x= − + − +  

                     = 4 3 27 6 3x x x x+ + + +  

Then we can calculate the codeword by multiplicating the information polynomial with the 

generator polynomial. 

  

 6 5 4 3 2( ) ( ) ( ) 2 4 3 6 6 0 5a x i x g x x x x x x x= = + + + + + +   

 

            data { 2 1 3}    ⇒   encoded data { 2 4 3 6 6 0 5 }  

 

 

Calculate in Matlab  

We must first create the extension field GF (8).  

x_gf = gf(x, m) creates a Galois field array from the matrix x. The Galois field has 2^m 

elements, where m is an integer between 1 and 16. In our case m=3. The elements of x must 

be integers between 0 and 2^m-1. The output x_gf is a variable that Matlab recognizes as a 

Galois field array, rather than an array of integers. As a result, when you manipulate x_gf 

using operators or functions such as + or *t, Matlab works within the Galois field you have 

specified. 

 

 



 

         Reed Solomon Codes            
   

29

 Script 
 
                            

 

 

 

Then we must create the generator polynomial.  

genpoly = rsgenpoly(n,k) returns the narrow-sense generator polynomial of a Reed-Solomon 

code with codeword length n and message length k. The output genpoly is a Galois row 

vector that represents the coefficients of the generator polynomial in order of descending 

powers. The narrow-sense generator polynomial is 1 2 2( )( )...( )tx a x a x a− − −  where a  is a 

root of the default primitive polynomial for the field GF (n+1) and t is the code's error-

correction capability, (n-k)/2.  

Script     

 

 

 

Finally, we multiply the information polynomial with the generator polynomial using the 

conv on Galois vectors that represent the polynomials. Multiplication of polynomials is 

equivalent to convolution of vectors. 

Script 

 
 

 

 

5.4 Method 2 (systematic) 

The k information coordinates are 1 1, ,...,n k n k na a a− − + − . A codeword can be obtained in 

systematic form by adding n-k parity check symbols to the data symbols. The n-k parity 

check coordinates are calculated in the following manner: 

 



 

         Reed Solomon Codes            
   

30 

 

1
1

1
1

( ... ) : ( ) ( ), ( )

( ) ... ( )

n n k
n n k

n n k
n n k

a x a x g x i x remainder x

a x a x a x remainder x

− −
− −

− −
− −

+ + =

= + + −

 

 

 

Calculate in Matlab  

We will encode the data of the above example in a systematic way. 

data { 2 1 3}    ⇒   1 6 5 4
1 ... 2 3n n k

n n ka x a x x x x− −
− −+ + = + +  

 

Script 

                    

 

 

 

We will use the default generator polynomial Matlab produces: 

Script 

      

 

             g = GF (2^3) array. Primitive polynomial = D^3+D+1 (11 decimal) 

Array elements =  

            1      3      1      2      3 

 

Therefore, 4 3 2( ) 3 2 3g x x x x x= + + + +  

 

 

 

Finally, we calculate the parity symbols by division. 
1

1( ... ) : ( ) ( ), ( )n n k
n n ka x a x g x i x remainder x− −
− −+ + =  

 

Script 
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            remainder = GF (2^3) array. Primitive polynomial = D^3+D+1 (11 decimal) 

            Array elements =  

            0      0      0      6      0      4      5 

 

Numbers in bold are the parity symbols. So, the encoded data are: 

encoded data { 2 1 3 6 0 4 5 } 

 

 

 

We can verify our result by using Matlab’s rsenc function. 

 Script 

 

 
            

                   encoded_data = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal) 

    

                    Array elements =  

                    2      1      3      6      0      4      5 

 

 

5.5 Decoding 

We will assume that a Reed Solomon code whose codewords are ( )a x are defined according 

to definition 1.1 as:         0 1 2 2( ) ( ), ... 0da x A x A A A A −↔ = = = = =  

A(x) has exactly d-1 successive coefficients equal to zero; hence the RS code has distance d 

and can correct 1
2

d −⎡ ⎤
⎢ ⎥⎣ ⎦

 errors. We assume that we receive the vector 

( ) ( ) ( )r x a x f x= + where the coefficients ( )if GF q∈ . The error polynomial ( )f x  is defined 

as having 0if ≠  for every error location i. We shall also assume that fewer than 1
2

d −⎡ ⎤
⎢ ⎥⎣ ⎦

 

errors have occurred during the transmission. 
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To determine whether r(x) is a codeword, r(x) is transformed and one checks if 

0 2... 0dR R −= = =  since  

  ( ) ( ) ( ) ( ) ( ) ( )a x f x r x R x A x f x+ = ↔ = +  

 

If f(x) =0 then R(x) =A(x) and the coefficients 0 2... 0dR R −= = =  are equal to zero. On the 

other hand if  ( ) 0f x ≠  then we define the syndrome polynomial 
2

0 1 2( ) ... d
dS x S S x S x −
−= + + +   where , 0,1,..., 2i i iR F S i d= = = − .The syndrome polynomial 

depends only on the transformed error polynomial F(x) because by definition 

0 1 2 2... 0dA A A A −= = = = =  

 

 

5.6 Error locator polynomial 

The error locator polynomial is defined such that: 

  0 0i ic f= ⇐ ≠      i.e.   0i ic f =  

The coefficients of c(x) are equal to zero at the error locations and arbitrary at the non-error 

locations. This defines a large class of polynomials. From this class of polynomials we 

select only those for which deg C(x) ( ) ( )c x C x↔  is equal to the number of errors. This 

implies that 0 0i ic f≠ ⇐ = . With the transformation according to definition 5.2 we can 

map c(x) to C(x) as: 

   

  
{ | 0}

( ) : ( )i

i fi

C x x a
≠

= −∏  

The degree of C(x) is the number of coefficients from c(x)that are equal to zero or in other 

words the number of errors in the vector f(x).  

( )a x  sent codeword 

( )f x error Χ  marks an error location 

( ) ( ) ( )r x a x f x= + transmitted word 

 

 

 

 



 

         Reed Solomon Codes            
   

33

 

( )a x         A(x) 

 
 

    Figure 5.1 Error correction concept 

                             

 

it then applies  

 0 ( ) ( ) 0mod( 1)n
i ic f C x F x x= ↔ = −  

 
 
 

5.7 Berlekamp-Massey Algorithm 

The Berlekamp-Massey algorithm is a very efficient method of calculating the error location 

polynomial C(x). “The BMA solution can also be formulated as the shortest feedback shift 

register with feedback coefficients iC  that can generate all syndrome coefficients”. The 

algorithm is iterative and begins with the error locator polynomial C(x) with degree 1. At 

every iteration, the degree of C(x) is increased by at most one. The new ( )iC x  is calculated 

from the preceding polynomial 1( )iC x− . The flow chart of Berlekamp-Massey algorithm 

follows [5, page 62]. The complexity of Berlekamp-Massey algorithm is 2( )O n . 

 

                 x   x   . . . x 

                 0   0 . . .    0 

     0     

                           0 

  S(x) 

( )f x+  ( )F x+  

( )r x=  ( )R x=  

( )c x  ( ),deg ( )C x C x
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                      Starting Values                          

Shift register length                  l = 0              

Error locator polynomial         (0) ( ) 1C x =  

Connection polynomial           (0) ( ) 0B x =  

Indices                                       j=0 , k=0 

 
 

                                                      Figure5.2 Berlekamp-Massey algorithm flowchart 

 

 

 

( 1) ( ) ( )( ) ( ) ( )j j k j
jC x C x x B x+ = − Δ

( 1) 1 ( )( ) ( )j j
jB x C x+ −= Δ  

          l= j + 1 - l  
              k=0 

j=j+1 
k=k+

( 1) ( )( ) ( )j jC x C x+ =  

( 1) ( )( ) ( )j jB x B x+ =  

       END

( )
1

1
0

l
j

j j i j
i

S C S −
=

Δ = + =∑  

   2 l >j 

j >d -2

Yes 

No 

Yes 

No 

Yes No 
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Example 

We created the RS code of length 6, with minimum distance 5 over GF (7). 

  

Our data were:        data {5, 3}    

After encoding the result was:             encoded_data {1, 6, 3, 2, 4, 0} 

 

Therefore, the received polynomial should have been:    4 3 2( ) 4 2 3 6 1a x x x x x= + + + +  

 

However, we assume that during transmission two errors occurred. The error polynomial 

is 4( ) 5 3f x x x= + .The received polynomial in this case is: 

4 3 2( ) ( ) ( ) 2 2 3 2 1r x a x f x x x x x= + = + + + +  

 

At the receiver we know only r(x) and the RS code used. We calculate the syndrome S(x) of 

the received vector ( a = 5 is the primitive element)  

  

4 16 12 8 4
0 2 6 ( ) 6(2 2 3 2 1)S R r a a a a a= = = + + + +  

                             4 0 2 46(2 2 3 2 1)a a a a= + + + +  

                             6(2 2 2 1 3 4 2 2 1)= ⋅ + ⋅ + ⋅ + ⋅ +  

                              = 5 

 

3 12 9 6 3
1 3 6 ( ) 6(2 2 3 2 1)S R r a a a a a= = = + + + +  

                             0 3 0 36(2 2 3 2 1)a a a a= + + + +  

                             6(2 12 3 12 1)= + + + +  

                              = 5 

 

2 4 3S R= =  

3 5 3S R= =  

2 3( ) 5 5 3 3S x x x x⇒ = + + +  
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We will now use the Berlekamp-Massey algorithm in order to calculate the error locator 

polynomial C(x). 

j k l            jΔ         ( 1) ( )jC x+  2l j> ( 1) ( )jB x+         

0 0 0 0 0 5SΔ = =  (1) 01 5 0 1C x= − =    No (1) 15 3B −= =  

1 1 1 (1)
1 1 1 0S C SΔ = +  

      = 5 

(2) 1 5 3C x= − ⋅  

        1 6x= +  

  Yes (2) (1) 3B B= =  

2 2 1 (2)
2 2 1 1S C SΔ = +  

      =3 + 6 5⋅  

      = 5 

(3) (2) 2 (2)
2C C x B= −Δ  

         = 21 6 5 3x x+ − ⋅   

        = 21 6 6x x+ +  

  No (3) 3 (1 6 )B x= + +      

3 4x= +  

3 1 2 (3) (3)
3 3 1 2 2 1S C S C SΔ = + +

      = 3+6 3 6 5⋅ + ⋅  

      = 2 

(4) (3) (3)2C C xB= −  

        = 21 6 6x x+ +  

            2 (3 4 )x x− +  

         = 21 5x+  

  Yes (4) (3)B B=  

 

                                        

We calculated the error locator polynomial: 2( ) 1 5C x x= +  

The degree of the error locator polynomial is equal to the number of errors. In our case the 

degree is 2, so there are two errors. In order to find the location of these errors we must 

calculate c(x). The coefficients of c(x) are equal to zero at the error locations and arbitrary at 

the non-error locations. 

 
0

0
1 2

1
2 2

2
3 2

3
4 2

4

( ) (1) 1 5 1 mod(6,7) 6

( ) (5) 1 5 5 mod(126,7) 0

( ) (4) 1 5 4 mod(81,7) 4

( ) (6) 1 5 6 mod(181,7) 6

( ) (2) 1 5 2 mod(21,7) 0
(6,0, 4,6,0)

c C a C

c C a C

c C a C

c C a C

c C a C
c

= = = + ⋅ = =

= = = + ⋅ = =

= = = + ⋅ = =

= = = + ⋅ = =

= = = + ⋅ = =
⇒ =

 

 
According to Berlekamp-Massey algorithm the error coordinates are 1 and 4 which is true 

since the error polynomial is  4( ) 5 3f x x x= +  
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5.8 Calculation of the error values 

By finding C(x) we know the error locations in the received codeword. In a case of a binary 

code we also know the error value .In the case of a non-binary code we must calculate the 

error values. For this reason we use the Forney algorithm. We need to introduce the variable 

l which corresponds to a cyclic shift of F(x), where ( )f x the error polynomial. 

 
( ) ( ) ( )

0 0 1 1 2 1 2 1, ,...,l l l
t tF S F S F S− −= = =  

 

5.9 Error value computation 
( ) ( )lT x  is called the error evaluator polynomial and is calculated by multiplication of the 

error locator polynomial C(x) and the syndrome S(x). The error values if  can be calculated: 

 
( )

1 ( )
'( )

l
l i

i
T xf x nx x a
C x

− −= =  

The integer l  is defined by  

 

:l             ( ) ( ) ( )
0 0 1 1 2 1 2 1, ,...,l l l

t tF S F S F S− −= = =   

 

therefore ( ) ( )( ) ( )l lF x x F x=  mod ( 1)nx −  

 

and  ( ) ( )lT x  is defined by 

 ( )
1

0

, 0,1,..., 1
j

l
j j i

i

T S C j e−
=

= − = −∑    with  degC(x) = e 

 

Example 

We will continue with the same example. We have already calculated the syndrome to 

be 2 3( ) 5 5 3 3S x x x x= + + + . The error locator polynomial was also calculated to be 

2( ) 1 5C x x= +  using the Berlekamp Massey algorithm. 
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We must calculate now the error evaluator polynomial ( 2) ( )T x−  
( 2)

0 0 0
( 2)

1 0 1 1 0

2

2

T C S

T C S C S

−

−

= − =

= − − =
  ( 2) ( ) 2 2T x x− = +  

 

Then, we calculate the error values for 1f  and 2f . 

 

1

4

' ( 2)

( 2)
2 1

1,4 ' 5
2

55 6 31
62 6 56

( ) 3 , ( ) 2 2

( ) |
( ) x a

x a

C x x T x x

T xf x n
C x

−

−
−

= =
= =

⋅ ⋅ =

⋅ ⋅ =

= = +

⎧⎪= = ⎨
⎪⎩

 

 

 

 
5.10 Implementation of Reed Solomon coding on our system 

On our system we chose to implement a non-binary Reed Solomon coding using a 

systematic method. In this chapter we will explain the procedure that was followed. 

 

We must first define the parameters of the Reed Solomon code we will use: 

 

• symbol length                                   :   m  bits per symbol 

• block length               :    2 1mn = −   symbols 

• error correction capability             :   ( ) / 2t n k= −   

• data length                                       :   k  symbols 

 

Thus, the encoding algorithm expands a block of k  symbols to n symbols by adding n k−  

redundant check symbols. The input of our encoder is a bit stream. First, we define the 

symbol length in order to convert bits into symbols. Every symbol contains m bits. Each 

symbol is stored in a row of a table. In order to implement a non-binary RS code we must 

convert the binary values of each row into decimal.  
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                                    Figure 5.3 Construction of information vector 

 

Then, we must create groups of k  symbols. Each group is called a “message” and is stored 

in a row of a table which is called message table. 

 

           Figure 5.4 Construction of message table 

1 
0 
0 
0 
1 
. 
. 
. 
. 
. 
. 
. 
1 
0 
1 

1 0 0  
 
1 0 1  
 
1 1 0  
 
1 1 1  

    . 
      
    . 
 
    . 
     
    .

m bits 
         4 
 
         5 
 
         6 
      
         7 
 
 . 
 
 . 
 
 . 
 

Bit Stream 

        4 
 
        5 
 
        6 
 
        7 
  
          . 
  
          . 
  
          . 
  
          . 
  
          . 

   Symbols in 
decimal values 

 k symbols 

4            5        6 
 
7                 .                    . 
 
  . 
   
  . 
 
  . 
 
  . 
 
  . 
 
  . 
 
  . 

    Message Table 

   Symbols in  
  binary values 

   Symbols in  
 decimal values 
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Since we use a systematic method of encoding, each row of the message table contains the k 

coordinates 1 1, ,...,n k n k na a a− − + −   of the information vector ( )i x .The result of the 

implementation of the Reed Solomon code on each row of the message table is also a table 

containing codewords in each row. The codewords, in binary form, are the output of the 

encoder. 

 

                                                             
                   Figure 5.5 Codeword table 

 

The decoder follows a similar, but inverse process in order to produce the decoded data from 

the codewords. Both encoder and decoder are familiar with the block length n and data 

length k. The decoder “translates” the codewords back to messages and then implements the 

Berlekamp-Massey algorithm in order to detect the error locations and then if it is possible 

to correct them. Reed Solomon codes are well suited for burst error correction. Burst errors 

are called those that occur in groups that cover hundreds or even thousands of bits. In our 

system burst errors are a common phenomenon since we use an FM channel for 

transmission and reception, where there are multiple sources of noise due to other FM 

transmissions in the area. 
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     SYM 1     SYM 2     SYM 3   SYM 4 
                                                                                                                                              

5.11 Why RS Codes Perform Well Against Burst Noise 

Consider an (n, k) = (255, 247) R-S code, where each symbol is made up of m = 8 bits (such 

symbols are typically referred to as bytes). Since n - k = 8, this code can correct any four 

symbol errors in a block of 255. For example, supposing there is a noise burst lasting for 25 

bit durations and disturbing one block of data during transmission, as illustrated in Figure 5. 

 

 

       

       NOISE BURST   
 

                  Hit          Hit               Hit            Hit  
        

 

Figure 5.6 Reed Solomon against burst noise 

                                                                          

   

 

In this case, we notice that a burst of noise that lasts for duration of 25 contiguous bits must 

disturb exactly four symbols. The RS decoder for the (255, 247) code will correct any four-

symbol errors without regard to the type of damage suffered by the symbol. In other words, 

when a decoder corrects a byte, it replaces the incorrect byte with the correct one, whether 

the error was caused by one bit being corrupted or all eight bits being corrupted. Thus if a 

symbol is wrong, it might as well be wrong in all of its bit positions. This gives an RS code 

a tremendous burst-noise advantage over binary codes. In this example, if the 25 bit noise 

disturbance had occurred in a random way rather than as a contiguous burst, it should be 

clear that many more than four symbols would be affected (as many as 25 symbols might be 

disturbed). Of course, that would be beyond the error capability of the (255, 247) code. 
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5.12 Selection of RS length and dimension 

The most basic criteria in order to select Reed Solomon’s length n and dimension k are: 

 

• the error correction capability of the code which we desire to be high 

• the length of redundant symbols used which we desire to be small 

 

Obviously, we must combine these two parameters in order to achieve a satisfying result. 

The error correction capability of a (n, k) Reed Solomon code is: ( ) / 2t n k= − . We also 

know by definition that  2 1mn = −  , where m  is the number of bits per symbol. The value 

for m  in applications usually is between 3 and 8. Therefore, we know the possible block 

lengths. Since we know the block length n we can easily define the dimension of the code k 

so that the error correction capability t of the code becomes as high as possible. However, 

when t increases, the number of redundant symbols also increases. This results to a big 

amount of extra data to be transmitted, which we try to avoid. The amount of extra data is 

equal to ( )n k−  symbols. Another metrics is the ratio /n k  (encoded data / data) which 

represents a measure of the code’s redundancy. The code rate is defined as its inverse that 

is /k n . 

 

The following tables contain some block lengths, data lengths, the corresponding error 

capability, the code rate and the code’s redundancy metrics. 

 

m=3             n           k        t          k/n          n/k 

             7           3     2         0.42         2.33 

             7           5     1         0.71         1.4 

 

 

m=4             n           k        t          k/n          n/k 

           15           5     5 0.33          3 

           15           7     4 0.46          2.14 

           15           9     3 0.60          1.66 

           15         11     2 0.73          1.36 

           15         13     1 0.86          1.15 
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m=5             n           k        t         k/n          n/k 

           31          11    10 0.35          2.81 

           31          13     9 0.42          2.38 

           31          15     8 0.48          2.06 

           31          17     7 0.54          1.82 

           31          19     6 0.61          1.63 

           31          21     5 0.68          1.47 

 

We can already observe that if for example we want to correct up to 5 symbol errors (20 bit 

errors) using a RS(15,5) code the ratio n/k is equal to 3 , whereas using a RS(31,21) code 

(25 bit errors) the ratio n/k is equal to 1.47 (marked with red color on the tables).Practically, 

this means that if we try to encode 10000bits using a RS(15,5) code the output would be 

30000bits. On the contrary if we use a RS(31,21) code the output would be 14700bits. 

We continue the same procedure. 

 

m=6             n           k        t          k/n          n/k 

            63          33    15 0.52         1.90 

            63          35     14 0.55         1.80 

            63          37     13 0.58         1.70 

            63          39     12 0.62         1.61 

            63          41     11 0.65         1.53 

            63          43     10 0.68         1.46 

 

We can observe the same if we want t = 10. (marked with blue color on tables) 

 

m=7             n           k        t          k/n          n/k 

           127          91    18 0.71        1.39 

           127          93    17 0.73        1.36 

           127          95    16 0.75        1.33 

           127          97    15 0.76        1.30 

 

It is obvious that as the number of bits per symbol increases, we can set a higher value for 

the error correction capability t, while the ratio n/k decreases and the code rate increases. 
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5.13 Reed Solomon performance as a function of size, redundancy and 
code rate 

In general, the performance of a coded communication system can be measured by two 

factors: 

 

•   Its probability of bit error, also called bit error rate (BER), which is defined as the   

probability that a decoded information bit at the output of the decoder is in error. 

 

•  Its coding gain over an uncoded system that transmits information at the same rate.   

Coding gain is defined as the reduction in the 0/bE N  required to achieve a specific error 

probability for a coded system compared to an uncoded system. 

 

Although RS codes can be designed to have any redundancy, the complexity of a high-speed 

implementation increases with redundancy. Thus, the most attractive RS codes have high 

code rates (low redundancy). For Reed Solomon codes error probability is an exponentially 

decreasing function of block length n and decoding complexity is proportional to a small 

power of the block length [1]. Moreover, a Reed Solomon code has a good performance 

when the noise duration represents a small percentage of the codeword. Hence, error 

correcting codes become more efficient (error performance improves) as the block size 

increases. This is clearly seen by the family of curves in  figure 5.7 , where the rate of the 

code is held at a constant 7 / 8  , while its block size increases from n=31 symbols (with 

5m =  bits per symbol) to n=256 symbols (with 8m =  bits per symbol). Thus, the block size 

increases from 160 bits to 2048 bits. The performance curves are plotted for BPSK 

modulation over an AWGN channel. 

 

Block length 

          n 

 Data length    

         k      

Error correction

    capability 

    Code rate    Code gain for 

    -6BER=10  

         31         27           2       0.8730        2.96db 

         63         55           4       0.8710        4.30db 

       127       111           8       0.8740        5.51db 

       127       111           8       0.8740        5.51db 

       255       223         16       0.8745        6.51db 
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                                                Figure 5.7 Constant code rate-various block lengths 

                               

     

 

 

As the redundancy of an RS code increases (lower code rate), its implementation grows in 

complexity since the number of symbols that need processing grows. However, the benefit 

of increased redundancy, just like the benefit of increased symbol size, is the improvement 

in bit error performance. This is made clear in figure 5.8 where the block length n is held at 

a constant 31, while the number of data symbols decreases from k=29 to k=21 ( redundancy 

increases from 2 to 10 symbols) 

 

 

Block length 

          n 

 Data length    

         k      

Error correction

    capability 

   Code rate    Code gain for 

    -6BER=10  

         31         29            1       0.935         1.66db 

         31         27            2       0.871         3.01db 

         31         25            3       0.806         3.78db 

         31         23            4       0.741         4.41db 

         31         21            5       0.677         4.91db 
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     Figure 5.8  Constant block length-various data lengths 

 

 

 

 By studying figure 5.8 one may suggest that the improved error performance versus 

increased redundancy is a monotonic function that will continually provide system 

improvement even as the code rate approaches zero. However, this is not happening in a 

real-time communication system. As the rate of a code varies from minimum to maximum 

(0 to 1) we can observe the effects shown in figure 5.9. In the following table, the properties 

of all (31,k) codes are presented: 
 

Block length  n  Data length    k Code Rate 
b oE /N  necessary for -6BER=10  

31 29 0.935 9.08 db 
31 27 0.871 7.84 db 
31 25 0.806 6.90 db 
31 23 0.741 6.25 db 
31 21 0.677 5.99 db 
31 19 0.612 5.52 db 
31 17 0.548 5.34 db 
31 15 0.483 5.42 db 
31 13 0.419 5.38 db 
31 11 0.354 5.40 db 
31 9 0.290 5.99 db 
31 7 0.225 6.18 db 
31 5 0.161 7.09 db 
31 3 0.096 8.57 db 
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                  Figure 5.9 Behavior of codes with different code rates 

 
 
 
 

In figure 5.9, we plotted the necessary SNR in db to achieve a certain bit error rate versus 

the code rate of each code. It is shown clearly that the optimum code that minimizes the 

required 0/bE N  is (31,17) with code rate 0.548. For a Gaussian channel, it seems that the 

optimum code rate is about 0.5 to 0.7. If we were to plot error performance versus code rate 

for other block lengths different than 31, the curve would have the general “shape” as it does 

in figure 5.9.We observe that for both high and low code rates there is 0/bE N  degradation. 

For high rates the degradation compared to the optimum rate can be explained in the 

following way. Codes with high code rate use a small number of redundant symbols and for 

this reason their error correction capability is low. As the code rate approaches unity (no 

coding), the system suffers worse error performance. On the other hand, the degradation at 

low code rates is due to the demodulator. Codes with low code rates use a large number of 

redundant symbols (high error correction capability). For this reason the demodulator has to 

process a larger amount of data which results to an increase of the bit error rate. “For error-

performance improvement due to coding, the decoder must provide enough error correction 

to more than compensate for the poor performance of the demodulator” [2]. In this case, 

coding proves unable to improve system’s performance.      
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5.14 Relation between code rate and bit rate 

The main reason coders are used is to improve system’s performance and achieve higher bit 

rates. However, by using a coder redundant bits are also transmitted. There is a relation 

between this redundancy, which can be expressed by the code rate, and the system’s bit rate. 

A short proof of this relation follows: 

 

If we assume that xbits  will be transmitted by using a modulation scheme of order 1M , then 

if we divide them in symbols it holds that: 2 1# / logsymbols xbits M= . Every symbol is 

divided into # symbols T⋅  samples. The sampling of our system is                         

sF samples/sec. In order to transmit xbits  we need:  

                            
2 1

sec
log s

xbits T
M F
⋅
⋅

   

 
Finally, the bit rate is given by: 
 

                           2 1
1

2 1

log / sec

log

s

s

M FxbitsR bitsxbits T T
M F

⋅
= =

⋅
⋅

     (1) 

 

If the order of the modulation scheme remains the same and an encoder with code rate 

/k n is used, it is proved that: 1' ( / )R k n R= ⋅  

     

In case we desire a higher bit rate we can either increase the order of the modulation scheme 

or decrease the symbol period. We choose to increase the order of the modulation scheme 

to 2M  and use an encoder with code rate /k n , in order to correct the errors that will occur. 

We assume again that we want to transmit xbits . Since an encoder is used the result is that 

( / )n k xbits⋅  will be transmitted in: 
2 2

( / ) sec
log s

n k xbits T
M F
⋅ ⋅

⋅
   

 

Therefore,              2 2
2

2 2

( / ) log_ / sec( / )
log

s

s

k n M FxbitsBit rate bitsn k xbits T T
M F

⋅ ⋅
= =

⋅ ⋅
⋅

     (2) 
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Then we divide the relation (2) with (1). Since we desire that  2 1_ _Bit rate Bit rate>  the 

result of the division must be greater than unity. It will be equal to unity if 

2 1_ _Bit rate Bit rate=  

 

                                        2 2

2 1

log( / ) 1
log

Mk n
M

⋅ ≥          (3) 

 

For example, if the code rate was 10 15/  and 1 24 8,M M= =  then: 

2 2(10 /15) (log 8 / log 4) 1⋅ =  . This means that we achieve the same bit rate. 

 

By contrast if 1 24 16,M M= =  with the same code rate then,  

2 2(10 /15) (log 16 / log 4) 1.33   > 1⋅ = .  This means that we achieve a higher bit rate by a 

percentage of 33%. 

 

 

5.15 Conlusions   

Reliability and a high bit rate are the two main factors that define which Reed Solomon code 

will be used. For a given bit rate, we must consider the result of relation (3), proved in the 

previous section. When we conclude to a value for the code rate, we must select a value for 

the block length and the data length. It is already shown that for a constant code rate, longer 

Reed Solomon’s codes perform better than those with a short block length. However, if the 

code rate is close to unity, it is very possible that the usage of an encoder will deteriorate 

system’s performance. Moreover, as mentioned already, decoding complexity is 

proportional to a small power of the block length and for this reason we are not restricted to 

use codes with small block lengths. Therefore, it is preferable to compromise with a code 

rate not very close to unity and select an average or long block. In many applications blocks 

of 255 symbols are used because in this case the symbol length is 8, which corresponds to 1 

byte.  
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5.16 Simulations of Reed Solomon coding over AWGN channel 

In order to study the performance of Reed Solomon coding we run several Monte-Carlo 

simulations of various modulation schemes over an additive white Gaussian noise (AWGN) 

channel. Reed Solomon coding was tested for Phase Shift Keying (PSK), Quadrature 

Amplitude Modulation (QAM) and Pulse Position Modulation (PPM). The codes selected 

for the Monte Carlo simulations were RS(31,21) and RS(127,97) with the following 

properties: 

 

 

            n           k        t        code rate 

           31          21     5           0.68 

          127          97    15           0.76 

 

 

We observe that the two codes have different block lengths, different error correction 

capability and different code rate. One could assume that RS(127,97) would have a better 

performance than RS(31,21) since its error correction capability is higher. However, this is 

not true because: 

 

RS(31,21) is capable of correcting 5 symbols in each codeword.           Percentage: 16.13% 

RS(127,97) is capable of correcting 15 symbols in each codeword.       Percentage: 11.81% 

 

 

The simulations will show that RS(31, 21) will perform better than RS(127,97) in most 

cases or that both will not be capable of improving the system’s performance and in fact 

they will cause degradation. If we wanted to achieve a better performance with similar code 

rate using block length of 127 symbols, we would select RS(127,85) with code rate 0.67. 

 

RS(127,85) is capable of correcting 21 symbols in each codeword.        Percentage: 16.54% 
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5.17 Performance of RS coding using Phase Shift Keying 

We performed Monte-Carlo simulations for 4-8-16-32 PSK. For each simulation 510  bits 

were used as input. The two coders were tested for 100 values of noise variance. The 

minimum value was 0.01 and the maximum value was 1 .   The bit error performance of 

RS(31,21) and RS(127,97) over an AWGN channel using PSK is depicted in the following 

figures. For comparison, the bit error performance of an uncoded PSK system is also 

included.  

 

                      Figure 5.10 PSK simulations           

                                                                                    

In general, we see that the coded system provides a lower bit error probability than the 

uncoded system for the same SNR when the SNR is above a certain threshold. This 

threshold is called coding threshold. Below the coding threshold the codes lose their 

effectiveness, the coding gain becomes negative and actually they make the situation worse. 

The existence of the coding threshold is obvious in the figures for 4-8 PSK. 
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4-PSK 

 RS(31,21)     RS (127,97) 

Coding 

Threshold 

    2.4db          3.6db 

 

     BER    

RS(31,21) 
      BER  

RS(127,97) 
Uncoded      

system 
SNR=3.98db 2.810−  2.510−  1.910−  

 

For a 410BER −≈   RS(31,21) has a coding gain of  

almost 3.5db over the uncoded PSK. 

8-PSK 

 RS(31,21)           RS (127,97) 

Coding 

Threshold 
     5.52db                       6.57db 

 

    BER    

RS(31,21) 
    BER  

RS(127,97)

Uncoded    

system 
SNR=7.45db 3.4710−  3.1910−  2.0510−  

 

For a 410BER −≈   RS(31,21) has a coding gain of  

almost 3.2db over the uncoded PSK. 

 

16-PSK 

 RS(31,21)     RS (127,97) 

Coding 

Threshold 

    9.2db            10db 

 

     BER    

RS(31,21) 
      BER  

RS(127,97)

Uncoded  

system 
SNR=10.97db 2.4910−  2.210−  1.8910−

 

For a 3.610BER −≈  RS(127,97) has a coding gain 

 of 3.2db over the uncoded PSK. 

 

 

 32-PSK 

For 32-PSK the coding threshold is very high and for  

that reason the coding gain for both codes remain  

negative. 

 

For 4-8 PSK, RS(31,21) performs better for a greater range of  
0

Eb

N
 than RS(127,97). 

However the performance of both is poor for 16-32 PSK. 
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5.18 Performance of RS coding using Quadrature Amplitude Modulation 

We performed Monte-Carlo simulations for 4-8-16-32 QAM. The simulations settings are 

the same as mentioned above in PSK. The theoretical bit error performance for an uncoded 

QAM system is also presented for comparison. 

 

                                                                                          

                                                                                  Figure 5.11 QAM simulations 

 
 
It is obvious that for all orders of QAM, RS(31,21) code has a better performance than 

RS(127,97). We also notice that by using the encoders the necessary SNR for all orders of 

QAM is always lower than 6db. 

 
 
 
 
 

 



 

         Reed Solomon Codes            
   

54 

 
4-QAM 

 RS(31,21)     RS (127,97) 

Coding 

Threshold 

    1.3db          3db 

 

     BER    

RS(31,21) 
      BER  

RS(127,97) 
Uncoded      

system 
SNR=3.98db 3.3510−  2.910−  1.910−  

 

For a 4.310BER −≈   RS(31,21) has a coding gain of 4.3db 

 over the uncoded QAM. 

8-QAM 

 RS(31,21)           RS (127,97) 

Coding 

Threshold 
      -                          - 

 

    BER    

RS(31,21) 
    BER  

RS(127,97)

Uncoded    

system 
SNR=3.98db 3.4210−  2.7510−  1.3510−  

 

For a 4.310BER −≈   RS(31,21) has a coding gain 

almost 7.25db over the uncoded QAM. 

 

16-QAM 

 RS(31,21)     RS (127,97) 

Coding 

Threshold 

        -               - 

 

     BER    

RS(31,21) 
      BER  

RS(127,97)

Uncoded  

system 
SNR=3.98db 3.9610−  3.0210−  1.210−  

 

For a 4.310BER −≈  RS(31,21) has a coding gain of  

7.3db over the uncoded QAM. 

 

 

 32-QAM 

 RS(31,21) RS (127,97) 

Coding Threshold       -       - 

 

    BER    

RS(31,21) 

   BER  

RS(127,97)

Uncoded    

system 

SNR=4.2db 3.6410−  3.8910−  1.0410−  

   

For a 4.310BER −≈  RS(31,21) has a coding gain 

10.2db over the uncoded QAM. 
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5.19 Performance of RS coding using Pulse Position Modulation 

We performed Monte-Carlo simulations for 4-8-16-32 PPM. The implementation of PPM, 

especially for our system, is explained in chapter 7. The symbol period remains the same for 

all cases, 64T = . The results are presented in the following figures. 

 

  
             Figure 5.12 PPM simulations 

 
RS(31,21) code had a better performance than RS(127,97) for 4-PPM and 32-PPM. In the 

cases, of 8-PPM and 16-PPM, it is not clear which code performs better. However, it is clear 

that RS(31,21) has a lower coding threshold. 
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4-PPM 

In case of 4-PPM, RS(31,21) code managed to detect 

and correct all errors that occurred. For this reason, there 

are no red dots on the first figure. RS(127,97) code 

also corrected a large number of errors but not all of them. 

8-PPM 

         RS(31,21)     RS (127,97) 

Coding 

Threshold 

                -            -2db 

 

For a 410BER −≈  RS(127,97) has a coding gain of 

 about 3db over the uncoded PPM. 

 

16-PPM 

           RS(31,21)     RS (127,97) 

Coding 

Threshold 

              0.26db            1.8db     

 

    BER 

RS(31,21)  

    BER  

RS(127,97)

Uncoded system

SNR=2.67db       310−     3.2510−   1.7410−  

 

For a 410BER −≈  RS(127,97) has a coding gain of  

2.5db over the uncoded PPM. 

 

 32-PPM 

        RS(31,21)     RS (127,97) 

Coding 

Threshold 

             3db              5db 

 

This is only case where it is obvious that RS(31,21)  

code has a greater code gain than RS(127,97) code. 

. 

 

5.20 Simulations’ Conclusions 

• The decrease of SNR for a given BER was greater for the code with the shorter block 

length, even if its error correction capability was lower than that of the code with long 

block length  

• Reed Solomon coding apparently works better with QAM 

• In PSK for high values of noise variance Reed Solomon coding had negative coding gain, 

so coding actually deteriorate the system’s performance   
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                                                                                             Chapter6 

 
6 Interleaving 
An interleaver permutes symbols according to a mapping. A corresponding deinterleaver 

uses the inverse mapping to restore the original sequence of symbols. Interleaving and 

deinterleaving can be useful for reducing burst errors in a communication system. There are 

a number of different ways in which interleaving can be performed. The simplest 

interleaving method is termed block interleaving.  

 

 

6.1 Block interleaving 

Block interleaving is a common technique used with block codes in wireless systems. The 

advantage of interleaving is that a burst error that affects a sequence of bits is spread out 

over a number of separate blocks at the receiver so that error correction is possible. 

Interleaving is accomplished by reading and writing data from memory in different orders. 

In this case the data to be transmitted are stored in a rectangular array in which each row 

consists of n bits equal to the block size. Data are then read out one column at a time. The 

result is that the k data bits and their corresponding  ( n – k ) check bits , which form a single 

n bit block , are spread out and interspersed with bits from other blocks. At the receiver the 

data are deinterleaved to recover the original order. If, during transmission, a burst of noise 

affects a consecutive sequence of bits, those bits belong to different blocks and hence only a 

fraction of the bits in error need to be corrected by any one set of check bits. In other words, 

a burst of length l=mb is broken up into m bursts of length b. Therefore, in case we have an 

(n,k) code than can correct all combinations of t or fewer errors, where ( ) / 2t n k= −⎢ ⎥⎣ ⎦ . If 

we use an interleaver of degree m, then the result is an (mn, mk) code that can correct burst 

errors of up to mt bits.  An example of block interleaving follows: [10, page 231] 
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Note: The numbers in the matrix indicate the order in which bits are read in.Interleaver output 
sequence: 1,n+1,2n+1,…  

                 Figure 6.1 Block Interleaver  

 

Constructing a block interleaver is quite simple. The bits are first converted to symbols and 

grouped in order to form the codeword table. Then, the elements of each column of the table 

are first converted back to bits and finally read out to the modulator. 

 

6.1 Random interleaving 

Random interleaving is a technique where symbols are reordered using random permutation 

before the modulation stage. In order to construct a random interleaver we used Matlab’s 

function rand ('state'). This function generates arrays of random numbers whose elements 

are uniformly distributed in the interval (0, 1). The state parameter initializes the random 

number generator that the function uses to determine the permutation. Since the value of 

‘state’ is known to the receiver unit, we are in position to invert the random permutation 

which has taken place in the transmitter unit. The value of variable ‘state’ is defined by the 

user of our system and different states produce different permutations.  
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           Chapter7 
 

7 Pulse Position Modulation (PPM) 

 

7.1 Multidimensional Signal Waveforms 

Besides the two dimensional QAM and PSK modulation methods, we also implemented on 

our system a multidimensional modulation method and more specifically the Pulse Position 

Modulation (PPM). We begin by designing a set of 2kM =  signal waveforms, which are 

mutually orthogonal. The dimension N  is equal to the number of waveforms M . The special 

characteristic about these waveforms is that their orthogonality is due to the fact that there is 

no overlapping in the domain of time.  

 

 

The M waveforms can be expressed as: 

  

     ( ) ( ( 1) / )m Ts t A g t m T M= ⋅ − − ⋅ ,     
1, 2...,

( 1) / ( / )
m M
m T M t m T M
=
− ⋅ ≤ ≤ ⋅

              

    

where ( )Tg t is a pulse of duration /T M and arbitrary shape. We also note that the whole set 

of our waveforms has the same energy since they have the same amplitude A . The 

calculation of this energy follows: 

 

                     
/

2 2 2

0 ( 1) /

( ) ( ( 1) / )
T mT M

m T
m T M

s t dt A g t m T M dt
−

= − −∫ ∫   

                         

                                     
/

2 2

0

( )
T M

TA g t dt= ∫  

                       

                                     2
g sA E E= ⋅ =  
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In order to represent our waveforms geometrically we must construct the orthonormal basis 

functions using the Gram-Schmidt procedure. In our case we can define the M basis 

functions as: 

  

                         

1 ( ( 1) / ), ( 1) / /

( )

0 ,

g t m T M m T M t mT MTEgtm

otherwise

ψ

⎧
⎪

− − − ≤ ≤⎪
⎪⎪= ⎨
⎪
⎪
⎪
⎪⎩                            

 

 

 

for 1,2,...,m M=  

 

 

 

Since we have constructed the set of N of orthonormal waveforms ( )tmψ  we are in position 

to express our M signals ( )ms t  as linear combinations of ( )tmψ . We can therefore write: 

   

                           
1

( ) ( ), 1, 2...,
N

m mn n
n

s t s t m Mψ
=

= =∑   

 

 where 

    

                                  ( ) ( )mn m ns s t t dtψ
+∞

−∞

= ∫  

        

 

The notation and parts of theory were borrowed from [4, pages 402-406].  
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In our case, the M-ary PPM waveforms are represented by the M-dimension vectors: 

 

 

1

2

( ,0,0,...,0)

(0, ,0,...,0)

(0,0,0,..., )

s

s

M s

s E

s E

s E

=

=

=

       

 

 

 

These vectors are orthogonal and the distance between any pair of vectors is equal to: 

 

  2 2 ,mn m n sd s s E for all m n= − = ≠     

 

 

For example, if we desire three orthogonal signals we follow the procedure below. Since we 

want to construct three orthogonal signals we also have three dimensions 3M N= = . We 

begin by constructing three orthonormal basis functions. We define pulse ( )Tg t =1 with 

duration T/3. 

1,2,3m =  

 

For m=1   

1 ( ) 0 /3
( )1

0

g t t TTEgt

otherwise

ψ

⎧
⎪
⎪⎪
⎨
⎪
⎪
⎪⎩

≤ ≤

⇒ =

   

          

 

 

 

 For m=2   2

1 ( /3) /3 2 /3
( )

0

g t T T t TTEgt

otherwise

ψ

⎧
⎪
⎪⎪
⎨
⎪
⎪
⎪⎩

− ≤ ≤

⇒ =
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 For m=3   3

1 ( 2 /3) 2 /3 3 /3
( )

0

g t T T t TTEgt

otherwise

ψ

⎧
⎪
⎪⎪
⎨
⎪
⎪
⎪⎩

− ≤ ≤

⇒ =

   

          

 

We continue by multiplying the M-dimensional vectors with the basis functions. In our 

example the M-dimensional vectors are: 

                                                   

1

2

3

( ,0,0)

(0, ,0)

(0,0, )

s

s

s

s E

s E

s E

=

=

=

 

 

1 11 1 12 2 13 3

11 1

1

( ) ( ) ( ) ( )
( )

( )
1 ( )

( )

T

T

s

s
g

s t s t s t s t
s t

E t

E g t
E

A g t

ψ ψ ψ
ψ

ψ

= ⋅ + ⋅ + ⋅

= ⋅

= ⋅

= ⋅

= ⋅

   

   

   

   

   

 

In the same way we calculate: 

2

3

( ) ( / 3)

( ) ( 2 / 3)
T

T

s t A g t T

s t A g t T

= ⋅ −

= ⋅ −
       

 

 

 
 

                                
               

 

 
 
 
 

                                                 Figure 7.1 

                                                                                                   M=3 orthogonal signal    waveforms 
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7.2 Modulator 

The pulse position modulator has been implemented in a module called ppm_modulator. 

The bits coming out of the encoder, if we use one, are the input for the ppm_modulator. 

Otherwise the input of the ppm_modulator is the bits of the file we will transmit. The user 

defines the order M of PPM and the symbol period T . The bit rate of our system depends 

exclusively on these two factors if a coder is not used. 

 

#_ bitsBit rate
time

=     (bits/sec) 

 

Since the order of PPM is M the input bits are divided into symbols according to the 

relation: 

2

##
log

bitssymbols
M

=     

 

Moreover, every symbol has a symbol period T. Therefore, every symbol is divided into 

# symbols T⋅  samples. The sampling rate of our system by default is sF . In order to transmit 

#bits we need: 

 

 
2

# sec
log s

bits T
M F
⋅
⋅

   

 

Finally, the _Bit rate can now easily be calculated: 

 

2

2

#_ #
log

log_ / sec

s

s

bitsBit rate bits T
M F

M FBit rate bits
T

=
⋅
⋅

⋅
=    
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We notice that by increasing the order M of PPM or by decreasing the symbol period T we 

can achieve higher bit rates. Certainly, upper and lower bounds exist for M and T 

respectively for a reliable transmission.  

 

The ppm_modulator module first constructs the M orthonormal basis functions. The 

arbitrary pulse ( )Tg t  is set to be equal to 1 for a period T/M. The symbol energy sE  is 

defined to be equal to the energy of pulse ( )Tg t  gE . In this way the amplitude of the final 

signal waveform ( )ms t  is equal to 1
s

g
E

E
⋅ =1. We forced the amplitude of ( )ms t  to be 1 

because Matlab’s functions ‘wavplay’ and ‘wavrecord’, which we use to transmit and 

receive, work with amplitudes in the range[ 1 , 1]− . Any higher or lower amplitudes are cut 

off. The bit stream that will be modulated is divided into symbols. Each symbol is mapped 

to a unique waveform from the set of waveforms ( )ms t . The transform from symbols to 

waveforms, or to be exact the transform from symbols to samples, is the final stage of the 

modulation. The samples are ready to be transmitted by the ‘wavplay’ function. 

 

For example, the following waveform shows the waveforms for 4-PPM with symbol 

period 8T = . The correspondent symbols of each waveform are presented on the top of the 

figure. 

 

                     Figure 7.2 4-PPM, T=8  
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7.3 Demodulator 

The demodulation stage is divided in two modules:  

•  the ppm_correlators module 

•  the ppm_detector module 

 

 

7.3.1 Correlators 

In the ppm_correlators module the same orthonormal basis functions as in the 

ppm_modulator module are constructed. By multiplying the received signal with the basis 

functions, we calculate the vector ms  which represents the M dimensions. The value of   

vector ms   in one of the M dimensions is equal to sE , whereas in all other dimensions is 

zero. The vector ms is the output of ppm_correlators module. 

 

7.3.2 Detector 

The detector used is called ‘minimum distance detector’. The input of the ppm_detector 

module is the output of the ppm_correlator module, which is vector ms . This vector is used 

in order to detect the symbol received. This is done by calculating the Euclidean distance 

between vector ms  and each vector of the set:      

                                             

1

2

( ,0,0,...,0)

(0, ,0,...,0)

(0,0,0,..., )

s

s

M s

s E

s E

s E

=

=

=

       

 

The vector from the set, whose distance from ms  is minimum, is selected. According to this 

vector we retrieve the symbol transmitted. Since the symbols are known, it is easy to convert 

them back to a bit stream.  
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                                                                                             Chapter8 

 

8 System’s Evaluation 

 

8.1 General 

In this chapter, the performance of the real time digital communication system will be analyzed 

thoroughly. The evaluation that follows is based on a large number of trial transmissions 

conducted by the members of the team. All experiments were repeated several times using the 

same computer systems in order to draw safe conclusions. The main objective, which was the 

connection of two computer systems via a wireless link, is achieved. However, new objectives 

arise now concerning the performance of the digital communication system. 

 

8.2 New objectives 

It is necessary for the system to combine the following characteristics that nowadays all digital 

communication systems do: 

 

• reliability 

• as low as possible bit error rate 

• as high as possible transmission and transfer rates 

 

 

Reliability is ensured through the use of the Automatic Repeat Request (ARQ) scheme. As 

explained in the chapter1, a “Stop and Wait” ARQ scheme was implemented. Unfortunately, the 

loss in time, due to the delay for the acknowledgement of each packet, is great. However, it is 

certain that every packet will reach its destination containing no errors. The delays caused by 

ARQ may be avoided, if all bits arrive correct at the receiver. For this reason, we would prefer 

the probability of bit error, or in other words the bit error rate, to be as low as possible and in 

ideal conditions equal to zero. Finally, besides reliability, speed is also an important issue.  
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The definitions of transmission rate and transfer rate are given. Transmission rate is defined as 

the rate with which bits are transmitted. It is equal to the following ratio:    

#_
_ _

bitsTransmission rate
time of transmission

=  

 

 

For our system, as already explained in chapter7 it holds that: 

2log_ / secsM FTransmission rate bits
T

⋅
=    , 

 

where M is the order of the modulation scheme, sF  the sampling frequency of the audiocard 

and T  is the symbol period. We observe that transmission rate depends on the modulation 

scheme selected (software) and also on the audiocard’s capacity of sampling. (hardware) 

 

 

On the other hand, transfer rate is defined as the rate with which bits are transferred to the other 

computer system and create a file. The time, from the moment the wireless link is established 

and the “handshake” takes place, until the moment the transmitter informs the receiver that there 

is no other packet to send and the link closes, is defined as the transfer time. This means that 

transmission time and processing time of each packet are added to form the denominator of the 

ratio.   

 

#_ /
( _ _ )

bitsTranfer rate bits sec
transmission time processing time

=
+

    

 

 

 

8.3 Hardware and software constraints 
The new standards are met only if both hardware and software cooperate properly. Certain 

features of hardware and software are responsible for the deterioration of the performance of our 

system. More specifically, as far as hardware is concerned, in order to succeed high transfer 

rates the need of a high power process computer system is necessary. Moreover, in order to 

succeed high transmission rates, the sampling frequency the audiocard supports must also be 
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high. As far as software is concerned, three major constraints appear. The first is already 

mentioned in the introductory chapter and concerns the fact that Matlab does not support 

multitasking. Thus, it is difficult to implement a distributive system. The second constraint 

concerns the communication using the local network through Matlab. The communication with 

the UDP objects is not reliable, since often these objects are lost and the retransmission is 

inevitable. Finally, although the modules of all stages are programmed and measured to work as 

fast as possible, small delays still appear.  

 

 

 

8.4 Evaluation plan and metrics 
In the following sections, there is a detailed evaluation of the system’s performance. The 

evaluation and several conclusions are based on two metrics: the transfer rate and the bit error 

rate. Both metrics are calculated for all experiments including open and closed loop links. The 

results of the experiments are grouped according to the modulation scheme used each time. 

Finally, we underline that issues such as Reed Solomon encoding, interleaving and Pulse 

Position Modulation scheme, which are included in the particular thesis, are processed with 

additional detail.  

 

 

8.5 General presentation 
We experimented in transmitting a file of size 108Kbytes. The selection of the file size was not 

random. The goal was to succeed a bit error rate of order 610−  in every file transfer. Such a bit 

error rate is satisfying. In this case, the need for retransmission of the same packet (ARQ 

operation) will be rare. As far the sampling frequency Fs is concerned, its value depends on the 

specific audio hardware installed. Typical values supported by most sound cards are 8.000, 

11025, 22050, and 44100 Hz. The experiments were performed using as sampling frequency 

44100samples/sec and 88200samples/sec, since the audiocard available could support it. It is 

expected that transmission and transfer rates will be higher using 88200samples/sec.The length 

of the training sequence used is 500bits. In the following table, all parameters of all stages of our 

system are shown. These parameters were combined during the experiments in order to 

understand the channel behavior and of course achieve the objectives set.  
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Encoders/Decoders      Convolutional    Reed Solomon   

    type of encoder message   length   

       method codeword length   

     

Interleavers block interleaver random interleaver   

     

Modulation Schemes          PSK         QAM      PPM symbol period 

     

Equalizers          LMS         RLS    CMA Viterbi Equalizer 

         # taps       # taps       # taps      # taps 

       LMS step   RLS  initialization      CMA step       depth 

        RLS   forget factor     

     

LS Amp/Phase Recovery       On/Off    

CRC      On/Off    

Fs 44100,88200samples/sec    

 

 

8.6 Definition of packet size 
Before beginning the experiments, it was essential to define the size of the packet in bits. Several 

trial transmissions with different packet sizes and different file sizes were made. We already 

knew that the functions of Matlab for playback and recording begin their operations with 

random delays. This complicates a lot our “Stop and Wait” system. For this reason and to be 

sure that each packet is completely recorded, we were forced to record for an extra amount of 

time, 0.5 sec, for each packet. This means that for every packet 0.5 sec are lost and added to our 

transfer time. After taking under consideration this fact, we concluded that as the size of the file 

increases the packet size should also increase in order to avoid sending a large number of 

packets. If the number of packets for transmission is large (# _ _ 0.5)number of packets ⋅ sec of 

delay are inevitable. For this reason, it is preferable to use large packets in order to avoid these 

delays. This is clearly shown in the following figure, where size of packet vs transfer time is 

plotted. Three different packet sizes were tested (15000, 50000, 100000 bits) for three different 

file sizes (880848, 143952, 44288 bits) and we measured the corresponding transfer times. The 

modulation scheme was 4PSK, the sampling frequency 44100samples/sec and CRC was off. 
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Figure 8.1 Packet size simulation 

 

For the large size file (blue color), as the packet size increases the transfer time diminishes. For 

the medium size file (red color), the minimum transfer time is succeeded for 50000 packet size. 

Finally, for the small file size (green color), as the packet size increases, the transfer time 

increases too.  

 

8.7 Evaluation of PSK modulation scheme  

As already mentioned the maximum values for the sampling frequency sF  are: 44100 and 

88200 samples/sec. The value for the symbol period used was 10T = .The system was first 

tested without equalizers and encoders. The only module working on the receiver unit, besides 

the demodulator was the amplitude and phase recovery stage. In this way, we succeeded the 

least processing time and therefore the maximum transfer rate. PSK of order 4 and 8 had a good 

performance, with bit error rate constantly equal to zero, for both sampling frequencies and both 

for open and closed loop. We continued by adding an equalizer to the system. The transfer rate 

decreased, due to the extra processing time for equalizing. However, this deterioration was small 

and varied from 0.1–0.4 Kbps. The bit error rate remained at the same levels. We may conclude 

that the cost of using an equalizer is not so great and there is no doubt that equalization is always 

for our benefit. Using any coders was not judged necessary, since in no case errors occurred to 

correct. In the closed loop, at least during the experiments performed, we did not notice any 

retransmissions of the same packet. 
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      4 PSK Results 

Settings     Fs    Total Bits   BER Transmission  
Rate 

Transfer 
Rate 

LMS Off 44100 Hz    59 10⋅ bits     0   8820 bps    5518 bps 
 88200Hz    59 10⋅ bits     0 17640 bps    8281bps 
LMS   On 44100 Hz    59 10⋅ bits     0   8820 bps    5480 bps 
 88200Hz    59 10⋅ bits     0 17640 bps    7808 bps 

                   Open Loop 

  

Settings     Fs    Total Bits   BER Transmission 
Rate 

Transfer Rate 

LMS  Off 44100 Hz    59 10⋅ bits     0   8820 bps   4888 bps 
 88200Hz    59 10⋅ bits     0 17640 bps   6921bps 
LMS    On 44100 Hz    59 10⋅ bits     0   8820 bps   4851bps 
 88200Hz    59 10⋅ bits     0 17640 bps   6587bps 

                    Closed Loop 

             

        8 PSK Results 

Settings     Fs    Total Bits   BER Transmission 
Rate 

Transfer 
Rate 

LMS   Off 44100 Hz    59 10⋅ bits     0   13230 bps  8635 bps 
 88200Hz    59 10⋅ bits     0   26460 bps 12525bps 
LMS    On 44100 Hz    59 10⋅ bits     0   13230 bps   8378bps 
 88200Hz    59 10⋅ bits     0  26460 bps 12403bps 

                            Open Loop 
 

Settings     Fs    Total Bits   BER Transmission 
Rate 

Transfer Rate

LMS   Off 44100 Hz    59 10⋅ bits     0    13230 bps   7168bps 
 88200Hz    59 10⋅ bits     0   26460 bps    9656bps 
LMS    On 44100 Hz    59 10⋅ bits     0    13230 bps    6977bps 
 88200Hz    59 10⋅ bits     0  26460 bps    9574bps 

                       Closed Loop 

 

Then, we tested 16PSK without using any equalizers or coders. The average bit error rate was 
41.24 10−⋅  for sampling frequency 44100 Hz and  25.6 10−⋅  for sampling frequency 88200 Hz. The 

need of equalization was in that case essential. By using an equalizer we managed to achieve 

again a lower bit error rate equal to 41.03 10−⋅   for 44100sF = Hz. However, for 88200sF = Hz 

the bit error rate only decreased to 22 10−⋅ . Instead of using only an equalizer, we tried correcting 
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the bit errors with coders for both values of sF . Both Reed Solomon and convolutional coders 

achieved a sufficient low BER for 44100sF = Hz. However, the cost was a significant loss in 

transfer rate.  For 88.200sF = Hz, their error correction capability was not proved sufficient. In 

the closed loop no retransmissions of the same packet occurred. 

 

         

     16 PSK Results 

Settings     Fs    Total Bits   BER Transmission 
Rate 

Transfer  
Rate 

LMS  Off 44100Hz    59 10⋅ bits 41.24 10−⋅
  

    17640 bps 11370 bps 

 88200Hz    59 10⋅ bits 25.6 10−⋅     35280 bps 16636 bps 
LMS   On 44100Hz    59 10⋅ bits 41.03 10−⋅

 
    17640 bps 11296 bps 

 88200Hz    59 10⋅ bits 22 10−⋅      35280 bps 15914 bps        

RS(255,231) 
& LMS 

44100Hz    59 10⋅ bits     0     15876 bps   9940 bps 

 88200Hz    59 10⋅ bits 21.1 10−⋅      26460 bps  7006 bps 
Conv(3,2,6) 
& LMS 

44100Hz    59 10⋅ bits     0       7033bps  7329 bps 

 88200Hz    59 10⋅ bits 36 10−⋅        8881 bps       10857 bps 
Open Loop 

 

Settings     Fs    Total Bits   BER Transmission 
Rate 

Transfer  
Rate 

RS(255,231)  
& LMS 

44100 Hz    59 10⋅ bits     0      15876 bps    7154bps 

Conv(4,3,6) 
LMS 

44100 Hz    59 10⋅ bits     0      13230 bps    6912bps 

                                                                            Closed Loop 
 

 

 

The same procedure continued for 32PSK. The system was tested only for sampling frequency 

44100Hz, because its failure at 88200Hz was certain since neither PSK16 at 88200Hz was 

capable of providing us with a BER under the desired threshold.. The results for 32PSK even at 

44100Hz were disappointing. The only thing worth noticing in the following table is that BER is 

constantly decreasing by using an equalizer or a combination of an equalizer and a coder but 

never reaches a low probability, whereas in parallel the transfer rate also decreases.      
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    32 PSK Results 

Settings     Fs    Total Bits   BER Transmission Rate   Transfer Rate 
LMS   Off 44100 Hz    59 10⋅ bits 215 10−⋅      22050 bps 13722 bps 
LMS   On 44100 Hz    59 10⋅ bits 212.8 10−⋅

 
    22050 bps 13447 bps 

RS(255,201) 
& LMS 

44100 Hz    59 10⋅ bits 211.1 10−⋅
  

    17199 bps  3467 bps 

Conv(2,1,5) 
& LMS 

44100 Hz    59 10⋅ bits 210.8 10−⋅
 

    11025 bps  4973  bps 

                                                                         Open Loop 

 

8.8 Evaluation of Reed Solomon coders for 16-32PSK  
For sampling frequency equal to 44100Hz, the quantity of errors Reed Solomon should correct 

was not so large. For this reason, coders with high codes rates were preferred. In this way, the 

loss in transmission and transfer rate would not be so great. At first randomly a high code rate 

was selected, 0.96, and the coders with this code rate were tested. Particularly, RS(255,247) 

never achieved a serious decrease of BER . Since this result was not satisfying, we tested coders 

with lower code rates. We concluded to a code rate of 0.9.  Coders of this code rate are: 

RS(255,231) , RS(127,115) and RS(63,57). These three coders decreased, almost in all cases 

BER to zero but with a loss of 12.6% in transfer rate. According to theory, when the code rate is 

held constant coders with longer block lengths perform better than coders with short block 

lengths as far as error correcting is concerned. For this reason, we could use RS(255,231) or 

RS(127,115) to keep up with theory. 

 

Coders Code rate BER Transmission Rate Transfer Rate 

RS(255,231)     0.905   0     15876 bps    9940 bps 

RS(127,115)     0.905   0     15876 bps   10035 bps 

RS(63,57)     0.904   0     15876 bps    9850 bps 

 

Moreover, we observe that the transfer rates the coders achieved were similar. According to 

theory, we would expect that the coder with the higher complexity that is RS(255,231) would 

correspond to the lower transfer rate. However, that part of theory is not verified totally. This is 

probably due to the fact that the results are experimental and their values are very close. Then, 

we continued by trying increasing a little the code rate to 0.92 and use an interleaver. This 

resulted also to a low BER near zero, for the case of RS(127,117) but there was no serious gain 

in transfer rate. Since the modules of interleaving do not demand a great amount of processing 
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time and seem to improve performance rather than deteriorating it, we concluded to use them in 

combination with the coders. Block interleavers are specially implemented for RS coders, 

whereas random interleavers are used with convolutional coders. Finally, coders with lower code 

rate than 0.9 were also tested, RS(255,223) , RS(127,111) and RS(63,55) with code rate 0.87 . 

This resulted again to a BER, almost in all cases equal to zero, but also to a reasonable decrease 

of transfer rate.    

 

 

Coders Code rate BER Transmission Rate Transfer Rate 

RS(255,223)     0.874   0     15346 bps    9036 bps 

RS(127,111)     0.874   0     15346 bps    9331 bps 

RS(63,55)     0.873   0     15346 bps    8850 bps 

 

 

 

For sampling frequency 88200Hz Reed Solomon coders are used to decrease a BER= 21.1 10−⋅ .  

The coders tested had a greater error correction capability of those for 44100Hz and therefore a 

lower code rate. More specifically, RS coders with code rates 0.82, 0.78, 0.76 were tested. The 

result was that the BER decreased, which is totally meaningless for our system, since the transfer 

rate loss was near 60%. We also checked if by using a longer training sequence the equalizer 

performed better. After several trials, even when the training sequence became 7 times longer, 

the bit error rate remained at high levels. Correspondingly, in case of 32PSK, the situation was 

similar or even worse since the transfer rate reached 3467bps, performance even lower compared 

to 4PSK at 44100Hz. 

 

 

8.9 Conclusions for PSK 
Some useful conclusions were drawn by the experiments performed for PSK. The first 

conclusion was that the use of an equalizer does not cause a serious decrease of the transfer rate. 

For this reason, its use is suggested for all orders of all modulation schemes. The same also holds 

for the interleavers, which as explained can be used, whenever coding is necessary. Using PSK 

the transfer rates achieved are between 7329bps and 12525bps for an open loop. For a closed 

loop, the transfer rates are between 4851bps and 9656bps. The difference between open and 
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closed loop is due to possible retransmissions that occurred and to the processing time needed for 

CRC. The higher transfer rate reached was by 8PSK at 88200Hz. We also note that the encoded 

16PSK with RS at 44100Hz performed better than 8PSK at 44100Hz, which proves that the use 

of encoders was not useless.  

 

The following diagrams present the order of M vs the higher transfer rates of each order for open 

and close loop for the two sampling frequencies.  

 

       Figure 8.2 PSK open-closed loop comparison 
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8.10Evaluation of QAM scheme 
Based on the conclusions for PSK, all the experiments for QAM were performed keeping always 

the equalizing unit on. The symbol period was 10T = for all experiments and the sampling 

frequencies 44100Hz and 88200Hz. Similarly to 4PSK the bit error rate was zero for both 

sampling frequencies. In the closed loop, no retransmissions of the same packet were observed. 

 

     
 4 QAM Results 
 

Settings     Fs    Total Bits   BER Transmission  
Rate 

Transfer 
Rate 

LMS   On 44100 Hz    59 10⋅ bits     0 8820bps 5483bps 
 88200Hz    59 10⋅ bits     0 13230bps 7343bps 

                   Open Loop 
 

Settings     Fs    Total Bits   BER Transmission  
Rate 

Transfer 
Rate 

LMS    On 44100 Hz    59 10⋅ bits     0 8820bps 4853bps 
 88200Hz    59 10⋅ bits     0 13230bps 6250bps 

                               Closed Loop 
 

However, for 8QAM the system did not behave the same way it did for 8PSK. For sampling rate 

44100Hz the bit error rate was sufficiently low but for 88200Hz BER was 33.6 10−⋅ . The next step 

was to use coders but they did not manage to guarantee error free transmission. Certainly, BER 

was decreased and that was very helpful for the closed loop, which with repeated retransmissions 

was capable of sending correctly the file, but with a serious decrease of transfer rate. 

 

   8 QAM Results 
Settings     Fs    Total Bits   BER Transmission 

 Rate 
Transfer  

Rate 
LMS    On 44100Hz    59 10⋅ bits     0     13230 bps 8569bps 
 88200Hz    59 10⋅ bits 33.6 10−⋅     26640 bps 12308bps 

RS(127,111) 
& LMS 

88200Hz    59 10⋅ bits 31.4 10−⋅       23126bps 4557bps 

Conv(2,1,6) 
& LMS 

88200Hz    59 10⋅ bits 43.7 10−⋅
 

     13230bps   6077bps 

                Open Loop 
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    Closed Loop 
 

For sampling frequency 44100Hz and QAM16 the system achieved a low bit error rate, only by 

using a coder. On the contrary, when the sampling frequency was 88200Hz neither of the coders 

could assure that the bit error rate would be zero but only an expected improvement. 

16 QAM Results 

Settings Fs    Total Bits   BER Transmission 
Rate 

Transfer  
Rate 

LMS    On 44100Hz    59 10⋅ bits 46.4 10−⋅      17640bps 9823bps 
 88200Hz    59 10⋅ bits 36.8 10−⋅      35280bps 13868 bps 

RS(127,111) 
&  LMS 

44100Hz    59 10⋅ bits     0     13759bps  8413bps 

RS(127,105) 
&  LMS 

88200Hz    59 10⋅ bits 30.8 10−⋅       28929bps 6996bps 

Conv(3,1,6) &  
LMS 

44100Hz    59 10⋅ bits     0         5880bps 4082bps 

 88200Hz    59 10⋅ bits 49.18 10−⋅      11760bps      6056bps 
Open loop 

 

Settings Fs Total Bits BER Transmission 
Rate 

Transfer  
Rate 

RS(127,111) &  
LMS 

44100Hz 59 10⋅ bits 0 13759bps  5157 bps 

Conv(3,1,6) &  
LMS 

44100Hz 59 10⋅ bits 0 5880bps  2016bps 

            Closed loop 

 

 

 

 

 

 

 

 

 

Settings Fs Total          
Bits 

BER Transmission 
Rate 

Transfer  
Rate 

LMS     On 44100Hz 59 10⋅ bits 0      13230 bps 7143bps 
RS(127,111) &  
LMS 

88200Hz 59 10⋅ bits 0       22725 bps 4001bps 

Conv(2,1,6) &  
LMS 

88200Hz 59 10⋅ bits 0      13230 bps     4580bps 
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Likewise 32PSK, 32QAM never succeeded a sufficient low BER, even though coders were used. 

The results following are just added to show the performance of coders. 

 

     32 QAM Results 

Settings Fs Total Bits BER Transmission 
Rate 

Transfer 
Rate 

 LMS   On 44100 Hz 59 10⋅ bits 214.3 10−⋅
 

    22050 bps 12330 bps 

RS(255,201) & LMS 44100 Hz 59 10⋅ bits 29 10−⋅     17199bps   3167 bps 
Conv(2,1,5) & LMS 44100 Hz 59 10⋅ bits 27.6 10−⋅    11025bps   5012 bps 

                                                    Open loop 
 
 

8.11 Evaluation of Reed Solomon coders for 8-16-32QAM  

The need of a Reed Solomon coder was necessary in case of 8QAM at 88200Hz. There was an 

improvement in the value of bit error rate. There were also several transmissions with bit error 

rate equal to zero, which means that adding on CRC, each packet will probably arrive at its 

destination correctly. The price, however, was that the coder used, had a code rate 0.87, resulting 

in the delay of our system. More specifically, the transfer rate, with RS(127,111) on, was 

4557bps. This means that the performance of 8QAM at 88200Hz was worse than that of the 

same order at 44100Hz.  

 

For 16QAM at 44100Hz, coders with different code rates were tried and we concluded to those 

who seemed to be more stable. First, we experimented with the same coders as in 16PSK since 

the bit error rate was similar and in fact they had a good performance. 

           

Coders Code rate BER Transmission Rate Transfer Rate 

RS(255,223)     0.874   0     15346 bps       8086bps 

RS(127,111)     0.874   0     15346 bps       8413bps 

RS(63,55)     0.873   0     15346 bps       7763bps 

 
 
 
 
 



 

 System’s Evaluation   

79

Compared to the encoded 16PSK the performance in transfer rate was lower. It was also lower 

than 8QAM at 44100Hz. For this reason, coders with higher code rates were tested. For code rate 

0.9, RS(127,115) gave the lowest average bit error rate and succeeded transfer rate 8999bps, 

which is a little higher than 8QAM. 

 

As far as 32QAM is concerned, the Reed Solomon coders only managed to diminish the 

probability of error, but still its value is so great that the use CRC is prohibitive. It is certain that 

32QAM functioning in a closed loop in our system will result to an endless loop of 

retransmissions.  

 

 
8.12 Conclusions for QAM 
Using QAM the transfer rates achieved are between 5483bps and 8569bps for an open loop. For 

a closed loop, the transfer rates are between 4853bps and 7143bps. The higher transfer rate 

reached was by 8QAM at 44100Hz. It is interesting to notice that the use of encoders on 16QAM 

at 44100Hz decreased the transfer rate of the system compared to 8QAM at 44100Hz. However, 

in the closed loop we observe that transfer rate decreases. This is due to the fact that the RS 

coders did not provide us constantly with a BER=0 and retransmissions were necessary. The 

same diagrams as in PSK evaluation follow: 

 

 
Figure 8.3 QAM open-closed loop comparison 
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8.13Evaluation of PPM scheme 
The case of PPM differs comparing to the other two modulation schemes as far as the 

equalization is concerned. Since PPM is a multidimensional modulation scheme, the number of 

its correlators varies and each time is equal to the dimension selected. For this reason, the typical 

way of equalizing the symbols at the exit of the correlators was not possible. Alternatively, 

another method was tried. The equalization was performed before the samples entered the 

correlation stage. However, this method was not proven so efficient since the equalization on 

samples was very time-consuming. Moreover, the unit of PPM detector also consumes more time 

than the detector unit of the other two modulation schemes. These facts can justify to a point the 

performance in transfer time of PPM. 

 

In case of 4PPM the symbol period selected was 8T = . We note at this point that for 4PPM the 

number of possible waveforms is equal to the dimensions, which are 4. The symbol period 8T =  

corresponds to 8 samples with which 4 different waveforms must be created (see figure 7.2, 

chapter 7), which is possible. This clarification is done to show that the minimum value for the 

symbol period could have been 4 samples, which was tested unsuccessfully. For 4PPM the BER 

was zero for both frequencies and the transfer rates very satisfying. This seems to contradict with 

what was mentioned in the beginning of this section but it is reminded that the others modulation 

schemes were tested for symbol period 10T = . 

 
      4 PPM Results 

             Open Loop 

  

            Closed Loop 

 

Settings     Fs    Total Bits   BER Transmission  
Rate 

Transfer 
Rate 

Equalizers   
Off 

44100 Hz    59 10⋅ bits     0  11025 bps   5659bps 

 88200Hz    59 10⋅ bits     0 22050 bps  11399bps 

Settings     Fs    Total Bits   BER Transmission 
Rate 

Transfer 
Rate 

Equalizers   
Off 

44100 Hz    59 10⋅ bits     0   11025 bps    4988bps 

 88200Hz    59 10⋅ bits     0   22050 bps    9004bps 
CRC On      
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By continuing to 8PPM we tried to hold the symbol period constant. The experiments results 

showed that there was a bit error rate of order 110−  for sampling frequency 44100Hz that no 

coder was capable of correcting. Alternatively, we increased the symbol period. Therefore we 

doubled the samples to 16. With the double symbol period the BER was constantly zero but the 

transfer rate was worse compared to 4PPM. 

      8 PPM Results 

              Open Loop 

  

              Closed Loop 

 

The same procedure was followed for 16PPM. First 16T = was tested and the average BER was 
28.4 10−⋅ . No coders were tested for correcting this error, given that with 16samples per symbol 

plus the redundant symbols from the encoders, the degradation in transfer rate was guaranteed.  

As in 8PPM when we used higher symbol period (the double again) the bit error rate became 

zero. 

        

 16 PPM Results 

             Open Loop 

  

 

 

Settings     Fs    Total Bits   BER Transmission  
Rate 

Transfer 
Rate 

Equalizers   
Off ,  T=16 

44100 Hz    59 10⋅ bits     0    8269 bps    4487 bps 

 88200Hz    59 10⋅ bits     0  16538 bps    5930 bps 

Settings     Fs    Total Bits   BER Transmission 
Rate 

Transfer 
Rate 

Equalizers   
Off ,  T=16 

44100 Hz    59 10⋅ bits     0    8269  bps   4034bps 

 88200Hz    59 10⋅ bits     0   16538 bps   5193bps 
CRC On      

Settings     Fs    Total Bits   BER Transmission  
Rate 

Transfer 
Rate 

Equalizers   
Off , T=32 

44100 Hz    59 10⋅ bits     0    5513 bps    3097 bps 

 88200Hz    59 10⋅ bits     0    11026 bps    4189 bps 
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         Closed Loop 

 

We notice that 16PPM is even worse than 8PPM. There was no reason to continue increasing the 

order of PPM since that would surely deteriorate the transfer rate.   

 
 

8.14 Conclusions for PPM 
In general, the performance of PPM was restricted because of the fact that we were obliged to 

increase continuously the symbol period as the order of the PPM increased. However, 4PPM 

managed a satisfying transfer rate. Finally, we present its performance for both open and close 

loop, like it was done in cases of PSK and QAM. The different symbol periods are indicated on 

the figures. 

 

 

 Figure 8.4 PPM open-closed loop comparison 

 

 
 
 
 

Settings     Fs    Total Bits   BER Transmission 
Rate 

Transfer 
Rate 

Equalizers   
Off 

44100 Hz    59 10⋅ bits     0   5513 bps   2884bps 

 88200Hz    59 10⋅ bits     0 11026 bps   3800bps 
CRC On      
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8.15 Overall summary 
M-ary PSK and M-ary QAM attain similar performances as far as bit error rate and transfer rate 

are concerned for orders 4 and 8 at 44100Hz, with M-ary PSK being slightly better. However, 

M-ary PSK performs obviously better for order 16. This is due to the encoding schemes that for 

16-QAM, although they correct all bit errors, they were not capable of preserving the transfer 

rate at a high level. Both modulation schemes failed for M equal to 32.  

 

From another perspective, we can also borrow from theory that for M-ary PSK and QAM, as M 

grows the same does the probability of bit error for a given SNR. Thus, the only way to perform 

in high orders of M and achieve high data rates is to increase SNR. Trying increasing the symbol 

power for QAM always resulted in cutting off of values from the waveforms and for this reason 

normalization was done. For PSK and PPM there was not a similar problem with the amplitude 

of the waveforms, since the amplitude of PSK was in the bounds [-1,1] and the amplitude of 

PPM was “fixed” to be in these bounds, as explained in chapter 7.  In case of M-ary orthogonal 

PPM, as M increases the data rate diminishes. This is happening because as the order grows, the 

symbol period also grows, in order to succeed a low bit error rate. 

 

As far as Reed Solomon coders are concerned, according to the results their application was 

beneficial only for PSK, where the bit error rate for order 16 was turned to zero and 

simultaneously the transfer rate was greater than that of order 8 (44100Hz). The same holds for 

8QAM (88200Hz), where the bit error rate was zero and the transfer rate was again greater than 

that of order 4. In all other cases, Reed Solomon coders may have decreased or nullified the 

probability of bit error but the price was in transfer rate. Instead of coders CRC can be used, but 

since it is an error detection code and not an error correction code, there is always the probability 

of endless retransmissions. 

 

In the following page, the higher transfer rates of all orders of all modulation schemes for both 

open and close loop are presented. In the figures, it is seen clearly which modulation scheme 

performed better in every order of M. It is reminded that the symbol period of PSK and QAM is 

10, whereas for PPM the symbol period varies.  
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    Figure 8.5 Comparison of all modulation schemes 

 

 

 

 

8.15 System Proposed 
Before proposing a final system we will present a table containing all transfer rates achieved 

with minimum bit error rate and by which configuration in an open loop. Using this table it is 

easy to conclude to a system to propose for an open loop. As far as the closed loop is concerned, 

we will prefer the configuration that resulted to the minimum number of retransmissions, at least 

during the experiments. 
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Average 

Transfer Rate 
 

Modulation 
scheme M Fs 

(Hz) 
Ts 

(samples) Additional System Modules 

4000bps<  PPM 16 44100 10 - - - 
        

PSK 4 44100 10 LMS 
Equalizer - - 

PSK 4 44100 10 - - - 

QAM 4 44100 10 LMS 
Equalizer - - 

PPM 4 44100 10 - - - 
PPM 8 44100 10 - - - 
PPM 8 88200 10 - - - 
PPM 16 88200 10 - - - 

4000 6000bps−  

QAM 16 44100 10 LMS 
Equalizer 

(3,1, 6)  
Convolutional 

encoder 
- 

        

PSK  4 88200 10 LMS 
Equalizer - - 

PSK 16 44100 10 LMS 
Equalizer 

(3, 2, 6)  
Convolutional 

encoder 
- 

QAM 4 88200 10 LMS 
Equalizer - - 

6000 8000bps−  

PSK 16 44100 10 LMS 
Equalizer 

(4, 3, 6)  
Convolutional 

encoder 
- 

        
PSK  4 88200 10 - - - 
PSK  8 44100 10 - - - 

PSK  8 44100 10 LMS 
Equalizer - - 

PSK 16 44100 10 LMS 
Equalizer 

(255, 231) Reed 
Solomon 
encoder 

- 

QAM 8 44100 10 LMS 
Equalizer - - 

8000 10000bps−  

QAM 16 44100 10 LMS 
Equalizer 

(111,127) Reed 
Solomon 
encoder 

- 

        
PSK 8 88200 10 - - - 

PSK 8 88200 10 LMS 
Equalizer - - 10000bps>  

PPM 4 88200 10 - - - 
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According to the table by selecting 8PSK with LMS equalizer or 4PPM without LMS equalizer 

at sampling frequency 88200Hz, we can achieve transfer rates higher than 10000bps. 

Furthermore, we remind that both 8PSK and 4PPM resulted to a sufficiently low bit error rate 

that in the majority of the experiments was constantly equal to zero. This means that for an open 

loop the number of bit errors is very low and therefore the file will not arrive at its destination 

corrupted. Finally, we can use the same configuration for a closed loop since there were rare 

retransmissions and the transfer rate was still over 8000bps. However, for compatibility reasons 

with the audiocards we will propose the value for the sampling frequency to be 44100Hz. The 

final proposed systems compatible with all audiocards for an open and a closed loop follow: 

 

 

        Final proposed system 
 

Modules for 8PSK  

  

   Synchronizer          O N 

   PSK Correlators          O N 

   LMS Equalizer          O N 

   Am/Ph Recovery          O N 

   PSK Detector          O N 

  

Sampling Frequency     44100Hz 

  

  Bit Error Rate         610−  

  Transfer Rate    8378bps 

   Open loop 

            Closed loop 
  

     

 
 
 

Modules for 8PSK  

  

   Synchronizer          O N 

   PSK Correlators          O N 

   LMS Equalizer          O N 

   Am/Ph Recovery          O N 

   PSK Detector          O N 

   CRC          O N 

  

Sampling Frequency     44100Hz 

  

  Bit Error Rate          0 

  Transfer Rate      6977bps 
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