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Abstract 
 

 

Geneticists try to find the truth behind the genomes that contain the 

blueprint for all parts of life’s machinery. All these genes store ‘digital’ information 

represented in serial format where every group of digits create a specific type of 

entity. Next challenge will be corresponding DNA data to the various types of 

proteins; thus deriving meaningful knowledge for the understanding of biological 

systems. Proteins will give us answers for the human evolution while others, such 

as membrane proteins, will reveal the developing mechanisms of diseases, such as 

muscle disease, deafness, blindness, diabetes, arthritis, and cancers. 

Currently, artificial neural networks are used to model human organs and 

predict diseases from digital scans. Transmembrane segment topology is crucial for 

visualizing protein’s folding into space; thus understanding it’s role inside and 

outside of the cell. Unfortunately conventional identification processes use 

laboratory methods which are slow; most of them are inaccurate while still not 

using all the available information and cost a fortune. For that reason, a feed 

forward neural network was constructed using the back-propagation algorithm 

aiming at the prediction of transmembrane segments (transmembrane helices) in 

membrane proteins from a single amino acid sequence. More than 300 proteins 

were used to train the network. Variable input and output lengths urged the 

implementation of a sliding-window technique, converting variable protein lengths 

to a fixed number of inputs/outputs. Several configurations were tested and 

optimal parameters, such as learning rate, hidden units and window size were 



elaborated. Finally, the system was evaluated based on its ability to efficiently 

predict the topology of new, unknown membrane proteins. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

Περίληψη 
 

 

Οι Γενετιστές προσπαθούν να ανακαλύψουν τα μυστικά που κρύβουν τα 

γονίδια τα οποία αποτελούν τα λεπτομερή προσχέδια για όλους τους μηχανισμούς 

της ζωής. Όλα τα γονίδια αποθηκεύουν «ψηφιακή» πληροφορία, η οποία 

αναπαριστάται σε σειριακή μορφή. Κάθε ομάδα ψηφίων μπορεί να παράγει μια 

διαφορετική οντότητα. Η επόμενη πρόκληση θα είναι να γίνει η πλήρης αντιστοίχιση 

του γενετικού υλικού με τους διάφορους τύπους πρωτεϊνών που κωδικοποιεί. Κάποιες 

πρωτεΐνες  θα μας βοηθήσουν να δώσουμε απαντήσεις για την κατανόηση πολύπλοκων 

βιολογικών συστημάτων, ενώ άλλες, όπως οι διαμεμβρανικές πρωτεΐνες θα μας 

βοηθήσουνε να κατανοήσουμε καλύτερα τους μηχανισμούς που διέπουν τις διάφορες 

αρώστειες, όπως μυοσκελετικές παθήσεις, κώφωση, τύφλωση, διαβήτης και καρκίνος. 

Προς το παρών, τα τεχνητά νευρωνικά δίκτυα χρησιμοποιούνται για να 

μοντελοποιούν ανθρώπινα όργανα ή για να κάνουν πρόγνωση ασθενειών μέ τη 

βοήθεια ψηφιακών σαρώσεων. Η θέση των διαμεμβρανικών τμημάτων είναι πολύ 

σημαντική για την αναπαράσταση της τριτοταγούς δομής της πρωτεΐνης με σκοπό την 

κατανόηση του ρόλου της μέσα αλλά και έξω από το κύτταρο. Δυστυχώς οι 

συμβατικές μέθοδοι ανίχνευσης διαμεμβρανικών τμημάτων εντάσσονται στα πλαίσια 

εργαστηριακών πειραμάτων, είναι πολυδάπανες και οι περισσότερες είναι ανακριβείς 

μιας και δεν μπορούν να εκμεταλλευτούν τον όγκο των πληροφοριών. Γι’ αυτό τον 

λόγο, ένα κατασκευάστηκε ένα feed-forward νευρωνικό δίκτυο με τη χρήση του 

αλγορίθμου back-propagation, με στόχο την πρόβλεψη των διαμεμβρανικών 

τμημάτων (διαμεμβρανικών ελίκων) στις μεμβρανικές πρωτεΐνες, με βάση την 



αλληλουχία αμινοξέων. Περισσότερες από 300 προτεΐνες χρησιμοποιήθηκαν για να 

εκπαιδεύσουν το δίκτυο. Το πρόβλημα των μεταβλητών μηκών των πρωτεϊνών 

αντιμετωπίστηκε με την τεχνική του κυλιόμενου-παραθύρου, μετατρέποντας τα 

μεταβλητά μήκη των πρωτεϊνών σε σταθερό αριθμό εισόδων και εξόδων. Αρκετές 

διατάξεις δοκιμάστηκαν και οι βέλτιστοι παράμετροι ρυθμίστηκαν, όπως ο ρυθμός 

εκπαίδευσης, οι κρυφοί νευρώνες και το μέγεθος του παραθύρου του νευρωνικού. 

Τελικά, το σύστημα αξιολογήθηκε με βάση την ικανότητά του να προβλέπει 

αποτελεσματικά την ακριβή θέση όλων διαμεμβρανικών τμημάτων σε μεμβρανικές 

πρωτεΐνες. 
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Chapter 1 

Introduction 
 

 

DNA is the centre of evolution in all living organisms and it is organized in 

chains of pairing amino acids. These chains form the chromosomes, which are 

responsible for the shape, structure and function of an organism, from tiny 

eukaryotes cells to animals and humans. DNA decoding, based on the genetic 

code, creates different types of proteins which are major functional units of the 

cells. Proteins differ in type and role according to their DNA 3D folding in space. 

Membrane proteins, for example, gather unique characteristics. Studying their role, 

shape and behavior is critical for many diseases such as cancer. This folding is still 

a major predictive problem in biology and systems biology. 

However, before we move on to that level, it is crucial to identify the 

primary structure of the protein and its transmembrane parts. Identification is a 

very costly, problematic and time-consuming procedure due to the vast amount of 

information and the need for accuracy. Geneticists and biologists used to work on 

an extremely reduced data set for weeks until they would come up with some 

convincing results.  

Nowadays, the growth of Bioinformatics, biotechnology and Systems 

Biology offer advanced tools and algorithms for classification, pattern recognition 

and prediction problems; Neural networks are an inextricable associate of these 

tools. Algorithms would accept a set of unknown protein inputs and would output 

the exact topology of its TM segments. This diploma thesis is based on the same 

algorithmic pattern and deals with the detection of TM segments in membrane 
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proteins. Using neural networks, the detections of TM segments is a simple task: 

no more endless experiments are needed, the cost is minimized and the vast 

amount of information can at last be exploited.  

This project has six chapters: it begins with biology fundamentals: a 

description of the genetic material, how DNA is decoded into amino acids and 

how amino acids connect to each other for the synthesis of proteins. The genetic 

code is presented to explain protein structure and membrane proteins are 

introduced. The potential of a digital representation of DNA and protein 

sequences is realized. Chapter 3 initially describes the transition from biological to 

artificial neurons and then focuses on the artificial neural networks. Basic 

principles, architectural models and main function parameters are thoroughly 

analyzed. Back-propagation algorithm is extensively described as it will be the basic 

learning algorithm used for training. Chapter 4 describes the problem core, main 

emergent issues and suggested solutions. It explains the suggested information 

processing plan and describes the architecture and basic parameters of the artificial 

neural network used as the basis of our predicting system. Optimization methods 

are discussed at the end of this Chapter. Chapter 5 analyzes the overall results and 

evaluates system’s performance by examining the mean square error, sensitivity and 

specialty.  In Chapter 6, final remarks and conclusions are reported and future 

perspectives are examined. 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

Chapter 2 

DNA decoding 
 

 

Decoding of the DNA that constitutes the human genome has been widely 

anticipated. Since the first bacterial genome sequence completion in 1995 [1] and 

the first eukaryote (yeast) in 1996 [2] scientists try to find the truth behind the 

genomes that contain the blueprint for all parts of life’s machinery. In 2003 

researchers managed to identify all the approximately 25.000 genes in human DNA 

[3]. All these genes store ‘digital’ information represented in serial format where 

every group of digits create a specific type of entity. In the case of the DNA we 

have the four letter coding: A, T, C, G (corresponding to the four bases) while in 

protein level we use the twenty letter coding (corresponding to the twenty amino 

acids). After having revealed the sequences of human DNA the next challenge will 

be corresponding DNA data to proteins; thus deriving meaningful knowledge for 

the understanding of biological systems. This will give us answers for the human 

evolution, the developing mechanisms of diseases, such as muscle disease, 

deafness, blindness, diabetes, arthritis, and cancers. Furthermore, we will be able to 

understand the interplay between the environment and heredity in defining the 

human condition. 

 

 

 

 

 

http://www.embl-heidelberg.de/~rost/Papers/pre1999_tics/paper.html#ref1#ref1
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2.1 DNA structure 

 

DNA is a macromolecule created by the union of smaller molecules named 

nucleotides. Each nucleotide consists of three sub-groups: a phosphate group, a 

base containing nitrogen attached to a 5-carbon sugar (deoxyribose). (Figure 2.1) 

Several nucleotides are joined in ester links named phosphodiester bonds forming 

a chain of deoxyribose nucleic acid (DNA).  

 

 

Figure 2.1 Space-filling visualization (left) and 3D representation of a nucleotide (right) 

 

These bonds link the hydroxyl on the 3'- carbon pentose of the first 

nucleotide with the phosphate group which is linked on the 5’- carbon pentose of 

the next nucleotide in order to form the DNA backbone. The first nucleotide of 

every polynucleotide chain always has a free phosphate group connected on 5’- 

carbon pentose and the last nucleotide always has a free hydroxyl on the 3’- carbon 

pentose (Figure 2.2). For that reason, the first end of polynucleotide chain is called 

5’-end and the other end is called 3’-end. 
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Figure 2.2 Orientation of the two nucleotide chains that form the molecule of DNA. The left chain has a 5’ – 3’ 

orientation and the complementary clone has a 3’ – 5’ 

 

James Watson and Francis Crick (1953) suggested a model to explain the 

structure of the DNA, presuming that the molecule of the DNA consists of two 

polynucleotide chains each coiled round the same axis to form a double helix in a 

right-handed spiral [7]. The double helix has a steady backbone with alternating 

sugar-phosphate sequence. The backbone is external and has hydrophilic behavior 

while the bases are found in the interior of the structure of DNA showing 

hydrophobic behavior. 
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Figure 2.3 DNA double helix 

 

Four different nitrogenous bases extend away from chains, and stack atop 

each other, like the steps of a spiral staircase (Figure 2.3). These bases are: ‘A’ for 

adenine (a purine), ‘C’ for cytosine (a pyrimidine), ‘G’ for guanine (a purine) and ‘T’ 

for thymine (a pyrimidine) (Figure 2.4). The two polynucleotide chains run in 

opposite direction because the direction (or polarity) of the first chain is 5’-3’ (top 

to bottom) and the direction of the second chain is 5’-3’ (bottom to top). 

Furthermore, one chain is complementary to the other meaning that if a cytosine 

forms one member of a pair, on either chain, then the other member must by 

guanine; similarly for adenine and thymine. The above expression forms the rule of 

complementation of bases. Consequently, the two chains of the DNA are 

complementary (Figure 2.2). 

 

 

Figure 2.4  The four nitrogenous bases which are found in DNA molecule 
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In addition, hydrogen bonds link the pair of bases of the nucleotides. 

Therefore, the macromolecule keeps the structure of the right-handed direction, 

double helix in space. Within the DNA double helix, Adenine forms two hydrogen 

bonds with Thymine on the opposite strand, and Guanine forms three hydrogen 

bonds with Cytosine on the opposite strand [4] (Figure 2.2). 

DNA is the genetic material of every cell and most of the viruses. In 

human cells DNA is organized in structures, called ‘chromosomes’ (Figure 2.5). 

Within the DNA molecule there is genetic information that determines the 

characteristics of an organism which is organized in functional units, called ‘genes’ 

[6]. DNA molecule preserves and transfers the genetic information from cell to cell 

and from organism to organism due to the feature of self-duplication. The process 

of DNA copying is feasible because of the complementation of bases. The 

expression of the genetic information is achieved by controlling the synthesis of 

proteins. 

 

 

Figure 2.5 DNA molecule is coiled and packed to form a chromosome inside a nucleus. 
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2.2 Proteins 

 

Referring to shape and functions, proteins are the most popular and 

multidimensional macromolecules. These molecules are created by the union of 

smaller elements called ‘amino acids’. Amino acids are joined to other amino acids 

by homopolar bonds (Figure 2.6).  

 

Figure 2.6 Synthesis (polymerization) of two amino acids forming a dipeptidic chain after the creation of peptidic 

bond 

Twenty different types of amino acids are combined together to produce 

each time a different sequence; hence producing a vast amount of variant proteinic 

molecules. Amino acids molecule consists of two functional groups, a constant and 

a variable. The constant functional group holds a hydrogen atom, a carboxylic acid 

(-COOH) and an amino (-NH2) attached to the same tetrahedral carbon atom, 

while the variable group holds a distinct R-group [7]. Distinct R-group has a 

different chemical structure for each of the twenty amino acids (Figure 2.7). 
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Figure 2.7 3D model of the molecule of the amino acid methionine (met) 

 

Apart from primary structure, proteins as well as polynucleotides have a 

quaternary structure (three-dimensional structure involving the association of two 

or more polypeptide chains into a multi-subunit structure). It is this three-

dimensional structure that allows proteins to function. The final folding of the 

proteinic molecule in space which will specify the proper function of the protein is 

defined by the amino acids sequence in the peptide chain and stabilized by peptide 

bonds among amino acids R-groups [8]. 

There are more than thirty thousand different proteins in humans, each 

one of them having a special biological role to play. Metabolism, multiplication and 

other major cell functions are based upon the action of these amazing molecular 

tools [7]. 

 

 

 

2.3 Genetic code 

 

Information stored in genes is transferred from the nucleus of the cell to 

outer cell organelles with the help of another bio-molecule, called ‘messenger 

RNA’ (or m-RNA), so as the protein synthesis can be accomplished.  Genetic 
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information stored in the DNA molecule is transcribed into m-RNA due to the 

complementation of nucleotide bases. Then the single helix m-RNA strand gets 

out of the cell’s nucleus and connects to sub-cell organelles called ‘ribosomes’. 

Ribosomes (found on the endoplasmic reticulum and free within the cell) are 

responsible for the synthesis of proteins (Figure 2.8). Ribosomes scan the m-RNA 

chain and read the sequence of bases responsible for the amino acids sequence. 

The correlation between bases and amino acids is based on a code mostly known 

as the genetic code (Figure 2.9). Therefore, during protein synthesis a translation 

between “base language” and “amino acid language” is taking place.  

 

 

Figure 2.8 m-RNA molecule attached to a ribosome is translated for the synthesis of a peptide chain (proteins 

usually consists of more than one peptide chain) 

 

According to the genetic code, three nucleotides (triplet) correspond to a 

single amino acid due to the fact that there are twenty different types of amino 

acids in proteins that must come up after the combination of the four nucleotides 

(43 = 64). All possible combinations that come up when three nucleotides define a 

single amino acid is sixty four; thus the twenty different types of amino acids found 

in living organisms are over covered by the above combination. For that reason, 
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the Genetic Code is also called ‘Triplet Code’. Three nucleotides form a codon and 

the last decodes an amino acid [7]. 

 

 

Figure 2.9 The Genetic Code – Triplets (codons) correspond to amino acids 

 

Genetic code is continuous meaning that m-RNA is read constantly in 

groups of three nucleotides without any dropped nucleotides. Furthermore, every 

nucleotide belongs to a single codon. All living organisms have the same genetic 

code; therefore the genetic code is characterized as universal. Another 

characteristic of the genetic code is that it is degenerated with the exception of two 

amino acids (methionine and tryptophan); the other eighteen amino acids are 

encoded by two to six different codons. Codons which encode the same amino 

acid are called ‘synonyms’. Genetic code has a start and a stop codon. The start 

codon is AUG (valid for all organisms) and encodes methionine. There are also 

three end codons: UAG, UGA and UAA. Their presence in the molecule of m-

RNA marks the termination of the synthesis of the polypeptide chain. 

Nevertheless, no amino acid is encoded by the end codons. The term ‘codon’ 

refers not only to m-RNA but also to the gene that produces it. For example, start 
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codon AUG corresponds to start codon ATG of the chain of DNA on which the 

gene is located. 

As previously mentioned, the segment of a gene and its equivalent m-RNA 

segment that encodes a polypeptide chain starts with a start codon and ends with 

an end codon. In superior species, genes are discontinuous meaning that between 

the start and end codon of a gene, there are nucleotide sequences that interpolate 

among genomic DNA segments, holding no information. The above “worthless” 

segments are called ‘introns’ whereas the information source segments are called 

‘exons’ [6]. During the activation of a gene for the production of protein introns 

are neutralized through a process called ‘splicing’. Figure 2.10 shows an example of 

a protein genesis from a gene that contains introns and exons. The whole segment 

of the DNA that consist the gene transcribes itself into a m-RNA molecule. Right 

after this precursor m-RNA molecule leaves the nucleus and before it reaches the 

ribosomes, the process of “splicing” takes place. All introns are cut off and all 

exons are connected. Finally, a new (mature) m-RNA molecule is constructed with 

a start codon on one end and an end codon on the other end. 

 

 

Figure 2.10 Splicing procedure 

 

Every DNA segment which is activated for decoding in order to produce 

the proper protein is a result of the combined presence or absence of appropriate 

controlling proteins that usually link at the ends of genes [5]. It is worthy of note 

that the synthesis of proteins is an economical procedure because a cell is able to 
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produce vast amounts of multiple proteins from a single gene through the 

procedure of ‘alternative splicing’ (more than one third of all human genes may be 

affected by alternative splicing [9]) (Figure 2.11). 

 

Figure 2.11 Alternative splicing procedure 

 

Primary goal of bioinformatics is to identify the role of every nucleotide 

segment of DNA chain. Furthermore, knowing the role of specific amino acid 

segments and the implementation of the genetic code via reverse procedure we can 

identify the nucleotide regions and the genes that will eventually produce a 

specified protein. This project follows the above direction aiming at the detection 

of transmembrane segments (or helices) in unknown proteins. 

 

 

 

2.4 Transmembrane proteins 

 

The membrane of a cell consists of lipids and proteins also known as 

membrane proteins. There are two types of membrane proteins: integrals and 

peripherals (Figure 2.11). Integral membrane proteins that span across the lipid 

bilayer are called ‘transmembrane’ whereas other proteins are peripherally linked to 

the lipid bilayer that consist the cell membrane. 
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Figure 2.11 Model of a cell membrane showing the lipid bilayer and membrane proteins crossing it 

 

The most interesting type of proteins is the integral. Proteins can penetrate 

the under layer more than once. For example, according to Figure 2.12, ‘A’ protein 

has one transmembrane segment, ‘B’ protein has four, ‘C’ protein has six and ‘D’ 

protein has four. However, the hydrophobic domain of the protein resides in the 

oily core of the membrane, while hydrophilic domains protrude into the watery 

environment inside and outside the cell. Transmembrane proteins often have their 

N-terminal on the exoplasmic face and their C-terminal on the cytoplasmic face. 

Many transmembrane proteins have multiple membrane spanning alpha helix 

segments which anchors them to the membrane. The biological role of these 

proteins is to form a hydrophilic (polar) channel where specific ions and molecules 

can pass through it [6]. 

 

Figure 2.12 Schematic diagram of transmembrane protein topology. Proteins vary in the number of transmembrane 

helices and in the number and size of N-terminal, C-terminal, and interhelical domains. 

http://en.wikipedia.org/wiki/Hydrophobic
http://en.wikipedia.org/wiki/Lipid_bilayer
http://en.wikipedia.org/wiki/Hydrophilic
http://en.wikipedia.org/wiki/N-terminal
http://en.wikipedia.org/wiki/C-terminal
http://en.wikipedia.org/wiki/Alpha_helix
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 Analyses of complete genome sequences indicate that over 25% of an 

organism’s proteins are embedded in cellular membranes. Transmembrane proteins 

play vital roles in cell-to-cell communications, transmembrane signaling, ion 

transport and maintenance of cell structure and are the targets for the majority of 

pharmaceuticals in use today. While transmembrane proteins may comprise as 

much as twenty percent of an organism's genome, they comprise only a fraction of 

a percent of known protein structures. Thus, the need for accurate and efficient 

structure prediction is crucial for this group of proteins. For example, the 

misfolding of specific transmembrane proteins can result in disease, such as in 

cystic fibrosis. In spite of the vast importance of transmembrane proteins, there are 

far fewer structures and molecular mechanisms known for transmembrane 

proteins than for soluble proteins. This difference is due to the presence of 

hydrophobic sequences that can make it difficult to express and isolate large 

amounts of these proteins and makes them refractory to many biochemical and 

structural methods. This project, using the artificial neural networks will try to 

accurately predict the topology, size and number of transmembrane sequences in 

unknown transmembrane proteins which are basic definition parameters of 

proteins’ structure.  

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

Chapter 3 

Artificial Neural Networks 
 

 

An Artificial Neural Network (ANN) is an information processing network 

that attempts to model the architecture and operation of human neural networks. 

Both human neural networks and artificial neural networks are a collection of 

connected neurons that interact to produce an action: for human brain’s neural 

networks, mnemonic functions and key brain operations (vision, taste, hearing) are 

the basic actions while for artificial neural networks, actions would involve sales 

forecasting, risk management and optical recognition. In spite the fact that ‘neural 

networks’ is a biological term, it is commonly used for artificial neural networks as 

well. Also, artificial neural networks, like people, are based upon training and learn 

by example [10]; thus meaningful results can derive from complicated or imprecise 

data. It is this striking ability of ANNs that can recognize patterns and predict 

solutions that are too complicated for a computer program or a human eye to 

notice. While architecture of neural networks can vary greatly from type to type, 

different learning methods can be used to solve specific problems. Currently, 

artificial neural networks are used to model human organs and predict diseases 

from digital scans. In the next few years, ANNs are said to lead the way in 

biomedical systems.  
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3.1 Introduction to Neural Networks 

 

A Neural Network is an interconnected assembly of simple processing 

elements (neurons) working together to solve specific problems [10].  The 

architecture and operation of such information processing networks are based on 

the human nervous system (Figure 3.1). Like human brain, every new task, a 

repetition of a common task and learning of a task in neural networks can cause an 

alternation of the neuro-connections: some will be weakened, others will be 

reinforced and new ones will be created. Furthermore, according to the type of 

neurons, some of them are fired with excitation and others with inhibition in a 

variation of levels: for example very sensitive neurons may fire with very little input 

while other may fire within the limits of specific threshold. The addition after the 

final adjustment of all connecting weights will eventually define the proper action 

(output) for given stimuli (inputs) [11]. 

 

Figure 3.1 Three-dimensional representation of human brain’s neural network 

 

Back in 1943, McCulloch and Pitts (1943), based on their knowledge on 

neurology, developed the very first model of neural network which was consisted 

of simple neurons with fixed thresholds. After that, many engineers and 

neuroscientists had invested time and efforts in a promising and emerging 
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technology. In 1958, Rosenblatt designed the perceptron, the first three-layered 

neural network comprised of an input, middle and output layer. During the sixties, 

there was a deep frustration and prejudice against neural networks which lasted 

until the early seventies. However, in the late eighties, the re-emergence of this 

technology was a fact: many new algorithms were invented (including the popular 

back-propagation algorithm and the error correction method) and extensive 

research project were initiated in US, Europe and Japan. Since then, the progress 

was great and the commercialization of neural applications attracted funds and 

attention. 

 

 

 

3.2 From biological to artificial neurons 

 

Billions of biological neurons are used to train the human brain. The 

structure and function of such a biological neuron are quite simple yet perfect:  a 

set of branching structures, called ‘dendrites’ are connected to the cell body, called 

‘soma’. In the opposite direction, a long, thin stand called axon extends away from 

the cell body. At the end of each axon there are fine structures, called ‘synapses’ 

that help two neurons to connect (Figure 3.2). Signals that have previously 

collected from the dendrites are transmitted between neurons via electrical pulses 

traveling along the axon to the synapse. Then, the signal activity is converted into 

excite or inhibit effect for the neurons. Depending on each neuron’s previous state 

and threshold a specific change on its synapse effectiveness occurs. This constant 

process enables learning. 
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Figure 3.2 Dendrites of a neuron send the received impulses through the axon to the synapses where 

neurotransmitters are released to stimulate other neurons. 

 

Practically, the above description of natural information processing can be 

generally modeled as input signals (stimulus in synapses), multiplied by some 

weight (strength of synapse) producing an activation unit (summation of weights), 

that gives an output response according to a certain threshold [12]. 

 

 

 

3.3 Architecture 

 

Similarly to the nervous systems, neurons (often called ‘nodes’) are the 

keystones of neural networks and incorporate three major functional features: 

connection strength, excitation/inhibition and transfer function. Connection 

strengths (or ‘weights’) are modified by learning: new connections among neurons 

are created; others are being strengthened or weakened according to specific 

inputs. The above is closely connected to excitation or inhibition [11]. Each neuron 

is excited or inhibited which means that its activation could level up the connected 

neurons or level them down. Also, the transfer function is responsible of 

determining the response (output) of a neuron: according to the input value and 

the threshold, a neuron may fire in small inputs or not fire at all or even fire up 

vigorously till the specified threshold and then fire a little (Figure 3.3). 
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Figure 3.3 A simple artificial neuron with i weighted inputs and a transfer function 

 

Activation α is given by summing up weighted (wi) inputs (xi): 

 

The output y is given by thresholding the activation: 

 

Many of these artificial neurons construct an artificial neural network that 

can be either single-layer (the inputs are fed directly to the outputs via a series of 

weights) or multi-layer (each neuron in one layer has directed connections to the 

neurons of the subsequent layer). There are two different types of neural network 

organization: the feed-forward networks and the feedback networks [13]. Since this 

project utilizes multi-layer, feed-forward networks we will focus on the first type. 
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3.3.1 Feed-forward networks 

 

While feedback neural networks allow information to travel in both 

directions, feed-forward networks allow information to travel one-way from input 

to output without any loops (feedbacks). The output of a layer does not affect the 

same layer at any point. Feed-forward networks are constructed in a three-layered 

structure (Figure 3.4): the first layer has a set of input nodes, the second has one or 

more layers of ‘hidden’ nodes and the third has a set of output nodes. Initial data 

are “captured” at the input nodes and initial activation is assigned to nodes (usually 

numbers representing the level of activation) [11]. Then, the activated information 

is passed through the network and weights and transfer functions determine the 

activation level of each node. Each node sums up all the activation levels it receives 

from all previous nodes and passes the output (new activation level) to the next 

node. 

 

 

Figure 3.4 A feed-forward network with three layers 
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As mentioned earlier, the flow of the network is one-way and travels from 

input layer, through hidden layers, to the output layer. This procedure is the 

beginning of a training session that should result (in a sense) an output similar to 

the input. 

 

3.4 Learning 

 

Learning is basically a process of adjusting connection weights. In adaptive 

networks (capable of changing their connection weights), learning can be either 

‘supervised’ or ‘unsupervised’. During supervised learning each output unit is told 

what the desired output value should be. If actual and desired outputs are 

compared then it is easy to calculate an error which will guide the adjustment of 

weights (error correction, stochastic learning). In unsupervised learning there is no 

external teacher. Network uses only local information while it self-organizes its 

data (Hebbian learning, competitive learning). The most popular learning algorithm 

for supervised training of multi-layer feed-forward neural networks is called ‘back-

propagation’ [13]. 

 

 

3.4.1 The Back-Propagation algorithm 

 

The Back-Propagation (or Error-Backpropagation, or backprop) algorithm 

was first introduced by Werbos in 1974 and named after the fact that error signals 

are propagated backwardly, layer by layer, through the entire neural network. 

Algorithm’s main idea is to adjust weights of each node in such a way that the error 

between actual and desired output is reduced (Figure 3.5). During this process and 

while weights are modified back-propagation constantly watches error behavior 

and stops if error has reached a minimum point. This minimization is achieved by 

using the gradient descent method [12]. 
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Figure 3.5 The Back-Propagation algorithm updates weights backwardly aiming at the minimization of error rate. 

 

Training a neural network with the back-propagation algorithm consists of 

two phases: the forward pass and the backward pass. During the forward pass 

initial input data are fed to the network and “local” outputs are calculated. These 

outputs are fed into the next layer; finally, the data reach the output layer while at 

the same time connecting weights are fixed. During the backward pass, mean 

square error is calculated and all the weights are backwardly adjusted so as actual 

output meets desired output. This error minimization process needs several to 

several thousands iterations (or epochs) to complete. Furthermore, training mode 

can be on-line or batch. On-line training adjusts weights per input while batch 

training adjusts weights when all inputs are given [10]. 

A simple programming description of the algorithm is: 

 

Loop 

   for each training pattern 

    Train 

   end for 

  Until the error is “acceptably low” 

In general, an output node follows the below steps before deciding what to 

respond. First, it computes the total weighted input xj, using the formula:  
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where yi is the activity level of the jth unit in the previous layer and Wij is the weight 

of the connection between the ith and the jth unit. Next, the unit calculates the 

activity yj using some function of the total weighted input: 
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Finally, the network computes the error E, which is defined by the 

expression: 
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where yj is the activity level of the jth unit in the top layer and dj is the desired 

output of the jth unit. 

The back-propagation algorithm is completed in four steps: First step is to 

compute how fast the output error (EA) changes, that is the difference between 

the actual and the desired output: 
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Second step is to compute how fast the error of inputs to output changes 

(EI). EA from step 1 is multiplied by the rate at which the output of a unit changes 

as its total input is changed: 
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Third step is to compute how fast the output weight error changes (EW). 

EI from step 2 is multiplied by the activity level of the unit from which the 

connection emanates: 
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Fourth, compute how fast the previous layer error changes allowing back 

propagation to be applied to multilayer networks. EI in step 2 is multiplied by the 

output weights and then summed to compute the overall effect of previous layers 

to the output units. 
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Once we know the EA of a unit, we can use second the third step to 

compute the EWs on its incoming connections [12]. 

 

 

 

3.5 Generalization 

 

Sometimes neural networks are over trained meaning that the network has 

memorized the training data but it has not learned to generalize to new data. 

Therefore, testing results are poor and unpredicted. This phenomenon is called 

over-fitting and it is a common problem when using the back-propagation learning 

method. The simplest method to avoid such a problem is to choose a network 

which will be just large enough to adequately fit all the data. However, this is a very 

difficult task and it is hard to predict. Two other methods for preventing neural 

networks from over-fitting are regularization and early stopping [14]. 

 

 

3.5.1 Improving generalization using Early Stopping 

 

Early stopping (or ‘stopped training’) is a technique for improving 

generalization. In early stopping, available data is divided intro three sub sets: the 

training set, the validation set and the testing set (Figure 3.6).  
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Figure 3.6 Sample training stops at epoch 15 when validation error “starts to go up” 

 

Training set is responsible for teaching the neural network by modifying all 

connecting weights. The validation set is responsible of stopping training when 

validation error starts to rise, meaning that the network has just started to over-fit 

data. With testing set we can receive an unbiased, actual network response to new 

data and compare different ANN models. Testing set contrary to the validation set 

is not used during training so it is a better estimate of the generalization error. 

Early stopping is very popular because it is fast, needs only the size of the 

validation set and can be applied to networks in which the number of weights far 

exceeds the sample size [14]. 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

Chapter 4 

Materials and methods of 
transmembrane segments detection 

system  
 

 

Designing a neural network is basically a matter of defining the problem 

well in mind; one must recognize the values that would influence the outcome of 

the system, shape them, feed them into a carefully constructed neural network and 

evaluate the results for optimal performance. Mathworks® Matlab® provided us 

with a powerful environment and useful tools such as the Neural Network and 

Bioinformatics toolbox in order to cope with the demands of the design. All 

learning algorithms, improved functions and commonly used neural network 

scripts needed ad hoc were included in the latest Matlab® release (Release 14, 

August 2005). 

 

 

 

4.1 Information gathering 

 

The most difficult aspects of the neural network are: a) decision on the 

information type used and b) decision on how to collect that information. 

Furthermore, the precision of these decisions will also affect the network’s overall 

performance. Accurate and well organized data will eventually produce very 
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promising results. However, if the database is inconsecutive, deficient or corrupt 

then the outcome of the neural net will be misleading or absolutely erroneous. 

Information gathering needs hard work and thorough search for valid data that will 

uniquely characterize the problem and match all the solution criteria posed during 

the neural net design. 

For the implementation of a transmembrane (TM) segment prediction 

system using neural networks, our goal was to gather as much information 

(proteins) as possible in order to create a wrought training that would effectively 

generalize to new, unknown proteins. This vast amount of information should also 

be accurate, confirmed and widely accepted. Keeping all the above basic principles 

in mind, the popular and most-cited Swiss-Prot Protein Knowledgebase (release 

48.1, September 2005) was chosen to be the source of raw protein data. Swiss-Prot 

contains approximately 481 fully annotated membrane (MEM) protein sequences 

with known topologies. Sequences are selected by searching the entire database 

using the feature keyword ‘TRANSMEM’. However, not all protein sequences are 

used since some of them have not fully-identified transmembrane segments 

(usually called transmembrane helices) or have unknown or missing information. 

 

 

4.1.1 Data set 

 

The useful information collected will be the basis for teaching (training), 

evaluating (validation) and scoring (testing) the system (neural network). That 

information is often called data set. Our data set consists of four hundred and ten 

(410) membrane proteins (human and non-human) which have at least one 

transmembrane segment and meet the criteria posed during information gathering 

(Figure). As explained in Chapter 2, proteins (in primary structure) are represented 

by a sequence of amino acids. Protein size is not fixed; therefore, protein length 

can vary from a few hundred to several thousands of amino acids. Our data set 

includes membrane proteins with variable lengths of one hundred (100) to about 

three thousands five hundred (3500) amino acids which can contain from one (1) 

to fourteen (14) transmembrane segments. TM segment length also varies from ten 
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(10) to thirty (30) amino acids, with an average length of about twenty two (22) and 

a standard deviation of approximately three (3) amino acids. 

The complete data set is then divided into three sub sets: a training set 

containing three hundred (300) membrane proteins, a validation set containing fifty 

five (55) membrane proteins and a testing set containing the rest fifty five (55) 

membrane proteins. The method of cross-validation [15] is used to train the neural 

network. This means that the protein order within the sub sets is not fixed. 

Membrane proteins are randomly selected to form three different groups of three 

sub-sets each (Figure 4.1).  

 

 

Figure 4.1 Schematic overview of information processing plan 

 

Since the suitable data are found, we proceeded to choose the appropriate 

variables that may be influential; in other words, which variables to use, and how 

many (and which) cases to gather. This process is guided mainly by intuition 

and/or experience. As we will examine later on, (in ‘Pre-processing of data’), all 

numeric data had to be fixed into a specific range (this usually requires scaling) and 

all non-numeric data had to be represented numerically. 
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4.1.2 Encoding scheme 

 

Encoding of the protein data is a very elaborative process that will 

determine the successful outcome of this effort. Protein data had to be numerically 

transformed into values in such way, that every value should be uniquely 

definitional of its role within the protein structure and also descriptive of the 

relations among neighboring values. Since membrane proteins are characterized by 

high discission of their transmembrane segments due to the hydrophobicity of 

amino acids, an encoding scheme using amino acids’ hydrophobicity indices could 

be suggested. Such an encoding scheme based on laboratory experiments is shown 

in Table 4.1. 

 

Amino acids Letter code Hydrophobicity indices 

Alanine A 1.8 

Arginine R -4.5 

Asparagine N -3.5 

Aspartic acid D -3.5 

Cysteine C 2.5 

Glutamine Q -3.5 

Glutamic acid E -3.5 

Glycine G -0.4 

Histidine H -3.2 

Isoleucine I 4.5 

Leucine L 3.8 

Lysine K -3.9 

Methionine M 1.9 

Phenylalanine F 2.8 

Proline P -1.6 

Serine S -0.8 

Threonine T -0.7 

Tryptophan W -0.9 

Tyrosine Y -1.3 

Valine V 4.2 

 

Table 4.1 Amino acids hydrophobicity values and lettering code 
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However, the above encoding scheme wouldn’t work since it does not 

offer enough information about the ‘weighted’ connections among amino acids 

and requires the approach to complex models that should clearly explain the 

relationship between the amino acids (inside or outside TM segments) and the 

repeated passes of the membrane protein through the lipid bi-layer. 

For that reason, the method of propensity of amino acids is used. This 

representation method - based on the TMALN [16] and BKALN database [17] 

analysis containing more than 1000 TM segments - associates every amino acid 

with a propensity value which describes the potential of that very amino acid 

belonging to a transmembrane region: 

i

TM
i

i F
FP =

 

where Pi is the propensity value of the ith amino acid, Fi
TM the frequency of 

ith amino acid in TM segments and Fi the frequency of ith amino acid [18]. For a 

better evaluation of the relativity of TM segments the SHTM (HTM-propensity 

Scaling) method was presented and the SHTM propensity values (Pi,SHTM) were 

used which were estimated using the following equation: 

BRKALNi

TMALNi
SHTMi F

F
P

,

,
, =  

 where Fi,TMALN is the propensity of the ith amino acid to appear in the 

TMALN database and Fi,BKALN is the propensity of the ith amino acid to appear in 

the BRKALN database. 

Values range between +0.1 and +2.3: values above 1 indicate a strong 

possibility of an amino acid to belong to a TM segments while values below 1 

indicate a small possibility. Using the sequences of these values as inputs to our 

neural network requires normalization through scaling (ranging between 0 and 

+0.1) (Table 4.2). 
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Amino acids Letter code Normalized Pi,SHTM

Alanine A 0. 055 

Arginine R 0.017 

Asparagine N 0.018 

Aspartic acid D 0.0067 

Cysteine C 0.071 

Glutamine Q 0.025 

Glutamic acid E 0.009 

Glycine G 0.04 

Histidine H 0.038 

Isoleucine I 0.1 

Leucine L 0.083 

Lysine K 0.0056 

Methionine M 0.088 

Phenylalanine F 0.1 

Proline P 0.029 

Serine S 0.041 

Threonine T 0.034 

Tryptophan W 0.1 

Tyrosine Y 0.044 

Valine V 0.073 

 

Table 4.2 Amino acids normalized propensity values 

 

After encoding the neural network inputs (a sequence of amino acid 

propensities with the same length as the initial amino acid sequence), we also need 

to define the outputs and its neural network-based, numerical-compatible 

representation. The best method is to represent outputs as binary sequences of 

zeros (0) and aces (1). Within a protein sequence, all TM segments are represented 

by sequences of aces (1) and zeros (0) elsewhere. The relationship between inputs 

and outputs is shown in Figure 4.2. 

 

 

 

 



Materials and methods 45

4.1.3 Pre-processing of data 

 

Transmembrane protein information is extracted from Swiss-Prot 

knowledge base search engine and written into a single ASCII text file. This text 

file is divided into two ASCII text files: one that contains the input sequences of 

amino acids along with identity information and description of the proteins and 

another (output file) that contains the topology of the TM segments per protein 

(Figure 4.2). Topology information includes a starting and ending pointer of each 

TM segment. Multiple TM segments within the same protein are represented by 

multiple entries of topology information for the same protein. 

First phase of pre-processing refers to the implementation of the encoding 

scheme: an algorithm had to read the protein input data file character by character, 

distinguish and tag the protein sequences and assign the correct propensity value to 

every amino acid in sequence. At the same time, another algorithm had to read the 

output (usually called target) file holding the known topologies and create a 

sequence of zeros (0) and aces (1) with the same length as the input (Figure 4.3). 

For example, protein CXCR4_HUMAN is annotated according to the 

following format (Figure 4.2): first line includes a unique Swiss Prot identification 

number, followed by the official name and a short description about the type, 

special characteristics and function of the membrane protein. Identification 

number has the following format: >sp|YXXXXX|, where Y can be any capital 

Latin letter and X a one-digit integer number. X and Y then form a six-digit 

alphanumeric code. The name is written in a single, capital Latin lettered word 

containing no spaces or special symbols except for the underscore symbol ‘_’. 

Description is of a low practical importance; however its informational value was 

unquestionable. Next lines would include the entire letter-coded sequence of the 

protein grouped in a block of amino acids, sixty (60) proteins wide. Each 

description would end with a full stop (‘.’) (Figure 4.2). 
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Figure 4.2 Raw input (a) and target (b) data format 

 

During the pre-processing stage we had to find a way to distinguish and 

correlate protein name and sequence. Since every protein started with the symbol 

‘>’, has its name placement fixed and its description always ends with a full stop, 

the algorithmic solution to our problem would be the following: 

 

Step 1:  Read chars from ‘>’ to ‘|’ and exclude them (Swiss 

Prot coding was indifferent to us). 
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Step 2: Continue reading all chars after ‘|’ until you meet 

<space> and store them. (that’s the protein name). 

Step 3:  Continue reading chars after <space> until you meet 

a full stop and exclude them (description had not 

value to us). 

Step 4:  Continue reading all capital chars after ‘.’ (that’s the 

protein sequence) 

Step 5:  Switch to next protein when ‘>’ is found and repeat 

steps 1 to 4 (which denotes the end of the previous 

protein and the beginning of next; ‘>’ works as a 

protein separator). 

Step 6:  Continue executing steps 1 to 5 until the end of file 

(EOF). 

 

For the output (target) file a different strategy had to be considering that 

the format of the output data was different: A line starts with a numbering string 

of the TM segment of a protein and then the sting ‘parent’, followed by the parent 

protein name. Next to the protein name is the string ‘FT’ followed by 

‘TRANSMEM’. Next to ‘TRANSMEM’ there are two integers separated by a 

<space>: first integer is the start and second integer is the end point of the TM 

segment (Figure 4.3). Moreover, multiple lines with the same parent name denote 

multiple TM segments within the same membrane protein. The target data are 

contiguous meaning that TM segments coming from different proteins are not 

separated by any symbol or line break (Figure 4.4 shows a line break in Target info 

between TM segments of different protein only for visual reasons). The 

algorithmic solution here is the following: 

 

Step 1:  Read chars from the beginning of line to the ‘:’ 

symbol and exclude them (this information was 

indifferent to us). 
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Step 2: Continue reading all chars after ‘:’ until you meet 

<space> and store them. (that’s the protein name). 

Step 3:  Continue reading chars after <space> until you meet 

<space>again, convert them to integer and store 

them (that’s our TM segment start point). 

Step 4:  Continue reading chars after <space> until you meet 

<space> again, convert them to integer and store 

them (that’s our TM segment end point). 

Step 5:  Switch to next protein when a line breaks and repeat 

steps 1 to 4 

Step 6:  Continue executing steps 1 to 5 until the end of file 

(EOF). 

 

Finally, the entire I/O set of proteins is vectored into two arrays of equal 

size whereas each row held one protein and each column one amino acid. Thus, 

the entire set is primary converted into two <410 by maxLength> arrays, where 

maxLength is the maximum length among the membrane proteins. Proteins with 

less amino acids than maxLength are filled up with null elements. 

 

 

Figure 4.3 The implemented encoding scheme translates raw protein data into aligned membrane protein sequences 
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Second phase of pre-processing had to answer to the question: what kind 

of reshaping should be applied to the vectored data in order to adequately match 

the requirements of our neural network system. One major problem we 

encountered was the variable lengths of membrane proteins. Since every neural 

network must have a specific number of inputs (and outputs) we had to express 

the variability of the amino acid sequences to a fixed number of inputs/outputs. 

The optimal method chosen to solve that problem is the method of the 

sliding window. Both input and output vectored sequences are scanned by a sliding 

window of thirty (30) amino acids creating input and output groups of thirty amino 

acids. The first input would include amino acid in position one (1) to thirty (30) 

then the window would slide right by one amino acid and the second input formed 

would include amino acid in position two (2) to thirty one (31). Third input would 

be the group three (3) to thirty two (32) and so forth (Figure 4.4).  

Hence, every membrane protein is serially read from the primary array 

producing a sub-array of <WS by (proteinLength-WS)>, where WS is the window 

size and proteinLength is the length of the protein meaning that the number of 

sliding windows is equal to the full length of the protein minus the window size. 

The output vector followed exactly the same pattern. The above method is 

accordingly applied to training, validation and testing set.  

 

 

 

4.2 Neural network system 

 

According to Haykin [19], a Neural Network is a massively parallel-

distributed processor that has a natural prosperity for storing experiential 

knowledge and making it available for use. It is the heart of the predicting system 

which is responsible for successfully processing the information and making 

decisions about the outcome of the system. After acquisition and pre-processing of 

data, this section will discuss in detail the design principles, requirements and 

specifications of the suggested neural network. Furthermore, issues concerning 
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layer topology, weight initialization and optimal parameterization of the network 

will be thoroughly examined. 

 

 

4.2.1 Description 

 

The most common type of neural network used for prediction systems is 

the multi layered, feed forward, supervised-learning neural network. This means 

that our neural net will have multiple layers, processed information will travel from 

one layer to the next in a forward direction and knowledge is obtained from pairs 

of inputs and corresponding desired outputs. The difference between the actual 

and desired response of the net is calculated and the error is then used for weight 

adjustment until it becomes extremely small (Figure 4.4). Continuous 

experimentation eventuated in a 30:45:30 feed forward model meaning that there 

will be three layers: an input layer having thirty (30) neurons, one hidden layer 

having 45 hidden neurons and an output layer with thirty (30) neurons (Figure 4.5). 

Each neuron is connected to all the other neurons of the next layer.  

 

 

Figure 4.4 The supervised learning operational system 
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The neural network was trained using the back propagation algorithm [12]: 

inputs of the training set are fed into the neural net, the new neuron values are 

calculated and through the activation functions they pass on to the next layer until 

they reach the output layer. Just when the output neurons output their result values 

the process of weigh adjustment begins. The network compares the desired output 

values (usually called target values) with the predicted output values and adjusts 

weights backwardly in order to decrease the mean square error until this difference 

between target and predicted output values reaches a minimum. The neural 

network can repeat the above procedure using the entire training set as long as it 

needs in order to reach that minimum. These repetitions are called epochs (or 

iterations). 

 

 

Figure 4.5 Neural network system architecture using the sliding window input method 

 

Input range was set between zero (0) and one (1). Since we expected from 

the network to give us straight answers whether an amino acid belongs to a TM 
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helix or not, we had to use a transfer function that would work as a switch: zero (0) 

would mean that an amino acid is definitely outside a TM segment while one (1) 

would mean that the amino acid is definitely a part of a TM segment. Furthermore, 

all intermediate output values had to fall into one of the above two categories: for 

example, an output value of 0.2 would mean that an amino acids has a very small 

probability to belong to a TM segment; thus it can be considered as an ‘outsider’ 

(zero) while an output value of 0.8 would mean that an amino acid has a strong 

probability (one) to belong to a TM segment. There are two basic transfer 

functions that have switching behavior: the first is the hyperbolic tangent (tan-

sigmoid) function and the second is the log-sigmoid transfer function. The tan-

sigmoid (Figure 4.6a) squashes input values between -1 and 1 while the log-sigmoid 

(Figure 4.6b) squashes input values to 0 and +1 depending on the threshold; in 

other words, it’s a pure switch that can be turned-off (0) or turned-on (1) if the 

output values are smaller or greater of a given threshold. Thus, unit response was 

determined by the log sigmoid transfer function for input-to-hidden, hidden-to 

output and final output layer (Figure 4.7). Threshold is set to 0.5 meaning that 

values equal or below 0.5 will result in a 0 response, 1 otherwise. 

 

 

Figure 4.6 The tan-sigmoid (a) and log-sigmoid (b) transfer functions 

 

Along with training, another procedure called validation works in parallel. 

Validation uses the validation set which contains new proteins that haven’t been 

used during training so as to evaluate the response of the system at any time. If this 

response decreases with time then the learning is performing well and training 
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procedure continues until the response starts to rise. Should the rising occurs, the 

network has just started to over fit data and the system can not learn any more. 

Finally, testing set is used to evaluate the performance of the neural 

network system. A brand new set of unknown proteins is fed into the network and 

the predicted output is compared to the target. These proteins must not be 

included in either the training or the validation set because we want to check 

whether the system has reliably generalized. 

 

 

4.2.2 Implementation and parameterization 

 

The skeleton of the neural network is constructed using the newff 

command in Matlab® which creates a feed-forward, back-propagation neural 

network:  

net = newff(PR,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF) 

where PR = R x 2 matrix of min and max values for R input elements, Si = 

Size of ith layer for Nl layers, TFi = Transfer function of ith layer, BTF = Back-

propagation network training function, BLF = Back-propagation weight/bias 

learning function and PF = Performance function. 

As mentioned above, the variable size of membrane proteins was a real 

problem for every fixed input neural network. To deal with the problem we had to 

correlate the variable lengths with a fixed input window (Figure 4.4) that would 

read every amino acids by sliding right (by one) through the entire protein 

sequence n times: 

WSpLengthn ii −=  

where ni is the number of window slides in the ith protein sequence, 

pLengthi the sequence length of the ith protein and WS the window size. 

Since the length of a TM segment ranges between ten (10) and thirty (30) 

amino acids we had to find both an input and output formula that would best fit 

the TM segments. Basically, the formula should define the size of the sliding 
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window. After experimentation, the optimal window size was fixed to thirty (30) 

amino acids which allowed the effective screening of the smallest up to the largest 

TM segment. 

Having calculated the propensities of each amino acid to be positioned 

inside a TM segment during the encoding phase, we presented an input array with 

dimensions (DP): 

pp YXD ⋅=  

where  (window size) and WSX = ∑= ip pLengthY . All input data were 

grouped in a single input array named Pglobal and then randomly divided into the 

three sub sets: Pglobalt (for training inputs), Pglobalv (for validation inputs) and 

Pglobalts (for testing inputs). Accordingly, all target data (DT) were divided into the 

three corresponding sub sets: Tglobalt (for training targets), Tglobalv (for 

validation targets) and Tglobalts (for testing targets) (Figure 4.6). 

 

 

(a) 
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(b) 

Figure 4.7 Training set input (a) and target (b) arrays. The two contrasting surfaces (pink and white) depict the 

sliding (by one) of a 30 amino-acid window as it runs through the sequences. 

 

Passing on to the neural net, strengths (called states) Sj of each connection 

is weighted and can be modified during the training procedure: 
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where Sj is the state in the jth layer, wj0 is the bias and ΣWijSi the summation 

of weights. Moreover, we have to define our basic benchmark: the error during the 

training and testing stage. The following equation explains how the training error 

rate is calculated:  
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where Ptrain is the net input for the training samples, ½ Σ(di
p-yi

p)2 the 

difference between the desired (di
p) and the actual (yi

p) net output sized N. Using 

the same equation we can calculate the error during the testing stage: 
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where Ptest is the net input for the testing samples, ½ Σ(di
p-yi

p)2 the 

difference between the desired (di
p) and the actual (yi

p) net output sized N. 

Therefore, the next step to system optimization would focus on the minimization 

of this error [10,19]. 

Along with the mean square error calculation, sensitivity ( ) and specialty 

( ) factors are the other two basic evaluation criteria of our method. Sensitivity 

factor is the fraction of the total number of correctly predicted TM segments 

( ) divided by the total number of actual TM segments ( ), while 

specialty factor is the fraction of the total number of correctly predicted TM 

segments ( ) divided by the total number of predicted TM segments 

( ). 

seQ
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During the training stage we engaged validation and testing processes in 

parallel by feeding the network a two-arrayed structure containing both the 

validation and test set. All these stages were monitored via both a real time history 

report and a visual representation of the mean square error (MSE) progress for 

every five (5) epochs. The visual representation included a real time graphical plot 

of the progress, deployment and diffusion of the three basic MSEs: the training 

MSE, the validation MSE and the testing MSE Figure. The testing stage involved 

the evaluation of the network in predicting unknown proteins through average 

error monitoring, history report logging and manual sampling verifications of 

random sequence parts. 
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4.3 Model optimization 

 

The optimization process is a continuous struggle for perfection and runs 

through every stage of system’s development. Model optimization starts with 

finding the appropriate encoding scheme for the representation of the information 

gathered. This is mostly achieved by combining the visualization of the problem 

with common experience and experimentation. Should we manage to gather 

satisfactory data and pre-process them successfully (the last will be presumably 

certified later on), thereafter we need to adjust the parameters of the neural 

network system so as to achieve best performance. An important factor is the 

sample size problem, meaning that the training set might not be large enough for 

teaching the neural network system correctly. So, the need for a big collection of 

data was essential. Our collection of three hundred (300) membrane protein 

sequences only for training (approximately 145,000 amino acids) would definitely 

solve that problem. Window size had also played an important role to prediction 

effectiveness. Many experiments have taken place utilizing four different input 

window sizes: 5, 10, 20 and 30 amino acids. As previously analyzed, input window 

with a length of 30 amino acids matched the criteria. Main system parameters in a 

feed forward back propagation neural network include: the total number of 

training samples, number of hidden neurons, type of transfer function applied on 

each layer, error evaluation, learning algorithm, number of iterations, weights 

initialization and learning rate. 

During the training process, the neural net calculates the mean square error 

(MSE) for every iteration until it reaches a minimum point. This point (called goal) 

was set to 0.001 or 0.1%. If training error reaches 0.1% before validation’s early 

stopping does then training stops. On the other hand if the lower limit is not met 

during training, validation can trigger an early termination of the training as long as 

it detects data over-fitting. The detection is carried out using the Early Stopping 

method described in Chapter 3. Number of epochs (or iterations) was set to 1000 

meaning that the network can be repeatedly fed with the entire training set up to 

1000 times until it reaches a gradient descent minimum. 

Optimization continues with the adjustment of the number of hidden units 

(neurons) in the hidden layer. Hidden units adjustment can be very tricky because 
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there is always the danger of under-fitting or over-fitting. On one hand, under-

fitting usually occurs when there are only a few hidden units available and the 

neural network is not capable of learning with the given training set. On the other 

hand, too many hidden units can increase the learning capability of the system but 

the CPU execution time and memory cost would be significantly greater. Since 

there is no rule for calculating the exact number of hidden units, experimentation 

gave us the golden mean: forty five (45) fully connected hidden units. Previous 

tries which presented lower performance ratio included neighboring models with 

35, 40, 42, 48, 50 and 55 hidden units. 

Several learning algorithms are tested and the performances to costs ratios 

are compared. Costs include both execution time and memory resources size. 

Because of the large data set many algorithms are out of memory such as 

Levenberg-Marquardt while others like BFGS quasi-Newton performed poorly. 

Gradient Descent based algorithms (especially with variable learning rate) have a 

good performance with medium memory requirements but are significantly slower. 

The Resilient Back-propagation algorithm (or TrainRP) has the best performance 

to cost ratio among 8 different learning algorithms tested [20]. It is the fastest 

algorithm with almost the best performance and relatively moderate memory 

requirements. After some tests to the parameters of the TrainRP algorithm we 

decided to set the minimum performance gradient (min_grad) parameter to 1e-6, 

maximum validation failures (max_fail) to 5, learning rate (lr) to 0.01, increment, 

decrement and initial weight change to 1.2, 0.5 and 0.07 respectively with a 

maximum of 50 weight changes. 

Initialization of weights has a key role to model optimization. The use of 

small random weights is suggested so as to avoid the saturation effect (identical 

weights will results in identical weight updates). Using the equation below, we can 

calculate the weights for every neuron: 

( ) jijinewji www Δ+=  

where  is the weigh of the ijiw th neuron of the jth layer,  is the new 

weight of the i

( )newjiw

th neuron, and jiwΔ is the update weight value. 

Learning rate needs special attention as it is crucial for an effective learning. 

Very small learning rates can lead to extremely slow neural network responses 
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while high learning rates can make the system unstable. Learning rate derives from 

the below equation: 

jijji xw δη ⋅−=Δ  

where  is the update weight value, jiwΔ jij xδ  is the error for each unit ij in 

hidden and output layer and η  is the learning rate. Different values of learning rate 

can change the step of gradient descent towards the error surface minimum, 

meaning that a small learning rates takes longer to converge to minimum error 

whereas higher learning rates may converge too fast missing the global minimum 

[10,19]. 

Other minor improvements are made including Matlab® scripting 

acceleration, extension of memory usage of variables, graphical interface 

enhancements. Due to the fact that the data set are unspeakably huge the process 

of implementation and optimization of the neural network system is time and 

resources consuming. However, it is an important procedure that defined the 

success of our predictive system. The end of the optimization is followed by the 

testing stage (Chapter 5), where all the qualitative and quantitative characteristics of 

the results along with the overall performance are analyzed and evaluated. 

 



 

 

 

 

 

 

 

Chapter 5 

Results  
 

 

Since there are virtually zero tools for defining the optimal parameters of a 

predictive system, we had to discover those criteria that would produce the best 

results. The basis of our comparisons was the mean square error and ad hoc 

experience through various trials and experiments. Important factors that would 

influence the performance of the system, such as the optimal inputs dimension, 

number of hidden layers and learning rate, were tested. In the beginning of the 

testing stage, a small number of these influential factors stayed fixed while others 

received several testing values. Short after the progress of the tests, more factors 

stayed fixed while the first optimal values started to transpire. Figures and 

observations that follow explain the relations of these factors, clarify our systems 

optimal set of characteristics and reveals its simulated response and performance. 

Results begin with some basic facts and figures and continue with overall 

benchmarking and three case studies. 

 

 

5.1 Statistics 

 

As previously mentioned in Chapter 4, our dataset contained 410 

membrane proteins where of 300 were used for training, 55 of them were used for 

validating and the rest 55 were used for testing the network (Figure 5.1). 
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Figure 5.1 Distribution percentage of the dataset 

 

Membrane proteins had variable lengths which varied from 100 to 3600 

amino acids and different number and sizes of TM segments which also varied 

from 1 to 14 and from 10 to 30 amino acids respectively (Figure 5.2). The majority 

of membrane proteins are found to have lengths between 200 and 600 amino acids 

and gather more TM segments than any other group. Proteins with lengths 

between 600 and 1000 amino acids follow. It is clear that bigger proteins may 

usually contain more TM segments. The number of TM segments per protein in 

proteins whose lengths vary from 1400 to 1800 amino acids is maximized (the 

small number of proteins bigger than 1800 amino acids does not allow us to 

generalize safely).  

 

Figure 5.2 Distribution of protein lengths, total and average number (yellow line) of TM segments per size 
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Dataset propensities per amino acid are also represented (Figure 5.3). This 

is a helpful count in order to observe the appearance frequency of every amino 

acid in the dataset and check whether the propensities used for input pre-

processing matched the propensities found in the dataset. Figure 5.3 shows the 

dominance of Leucine (L), Serine (S) and Valine (V) over the rest amino acids. 

Comparing the propensities of this dataset with the propensities used as inputs 

(Table 4.2) there is an obvious similarity; Phenylalanine (F), Isoleucine (I) and 

Leucine (L) have a strong probability to be a part of a TM segment whereas 

Arginine (R), Aspartic acid (D) and Lysine (K) are probably outside a helix. Overall 

performance trials that follow use the random-ordered Data set with the highest 

scattering of proteins. 

 

Figure 5.3 Amino acid occurrence frequencies in dataset (green bars) and their propensities (blue line) for residing 

in a TM segment 
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5.2 Overall performance 

 

Initial tests for studying the behavior of several training algorithm were 

performed using a sliding window of 10 amino acids on a reduced dataset, because 

it was more flexible and less time-consuming. As described in Chapter 4, several 

training algorithms were applied to test system’s performance: TrainGDA 

(adaptive gradient descent), TrainGDX (variable learning rate gradient descent), 

TrainCGF (conjugate gradient back-propagation), TrainSCG (scaled conjugate 

gradient back-propagation), TrainRP (resilient back-propagation) and others. 

Figure 5.4a shows the TrainGDA algorithm progress of train, validation and test 

MSE till epoch 70 when Early Stopping occurred. 

 

 
 (a) (b) 

Figure 5.4 Training, validation and testing MSE for (a) TrainGDA and (b) TrainGDX algorithm per epoch 

 

Despite the fair performance, TrainGDA evolved quite rapid at first but 

ended extremely slowly and needed approximately 70 epochs to complete. 70 

epochs might not seem many; however the small input size and number of hidden 

layers must be taken into consideration. Figure 5.4b shows the results of the 

TrainGDX for the training of the same network. TrainGDX with variable learning 

rate had slightly worse performance and needed 50 epochs more to stabilize. Next 

figure (Figure 5.5) shows the progress of TrainCGF and TrainSCG algorithm while 

training the reduced training set in a 10:25:10 neural network. 
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 (a) (b) 

Figure 5.5 Training, validation and testing MSE for the TrainCGF algorithm per epoch 

 

Examining the test MSE of TrainCGF (Figure 5.5a) it is visible that the 

network performed relatively well and needed few epochs to reach the minimum 

MSE; thus TrainCGF is potential candidate as the optimal training algorithm. 

However, as proved after many trials on large datasets, TrainCGF algorithm had 

lower performance compared to others. The TrainSCG algorithm, if compared to 

previous algorithms, had modest performance and required extra virtual memory 

to run. Finally, the TrainRP algorithm was applied for testings (Figure 5.6).  

 

 

Figure 5.6 Training, validation and testing MSE for the TrainRP algorithm per epoch 

 

The results for TrainRP were satisfactory especially when used for much 

larger 30-input/30-output train sets. Speed was extremely high and memory 

requirements quite low while, for the given network, test mean square error was 

kept low. 
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Trials that followed had to arrive at a decision about the input window 

length that would definitely affect the size of the dataset (which was in turn 

unbreakably bonded with the number of units in the hidden layer). Usual practice 

in prediction systems using neural networks emphasizes the importance of an 

analogy between the size of the input and hidden layer. Hence, we had to relatively 

increase the number of hidden units while the input window size was increasing 

from 10 to 20 and then to 30 amino acids. Three out of approximately twenty 

different configurations were chosen to depict the performance differences among 

different architectural patterns. These milestones along with their progress during 

training, validation and testing and their error response are shown below (Figures 

5.7, 5.9, 5.11).  

 

 

Figure 5.7 Training, validation and testing MSE per epoch for the 10:15:10 net architecture 

 

Figure 5.7 shows the recorded error response of our entire test data set in a 

10:15:10 neural network scheme; meaning that net had 10 inputs, 15 hidden and 10 

output units in input, hidden and output layer respectively. Test MSE and train 

MSE reached 7.87% and 6.98% respectively, while the network needed about 160 

epochs to finish training. The Early Stopping method detected an increase 

tendency to validation error and immediately terminated the training at epoch 160. 

Training history log file that recorded the train error progress is shown in Figure 
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5.8. Learning rate changes were applied from 0.01 to 0.9 but it would not affect the 

performance significantly; thus it was fixed to 0.01 throughout the trials. 

 

 

Figure 5.8 Training MSE history per epoch for the 10:15:10 net architecture 

 

Trying to minimize test MSE some new configurations were tried out 

involving input window extension. Extending window length caused the need for 

more hidden units. Figure 5.9 shows the results obtained after the extension of the 

window length to 20 amino acids and the addition of 20 extra hidden units. 

 

 

Figure 5.9 Training, validation and testing MSE per epoch for the 20:35:20 net architecture 
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This configuration presented an enthusiastically lower test MSE and 

increased the overall performance by almost 1 %. Train error dropped down to 

6.1% and test error to 6.9%. Less hidden units would increase the MSE by making 

the network incapable of learning due to under-fit. More hidden units would cause 

an over-fit of data; thus a decrease in performance. Training history of the above 

configuration is shown in Figure 5.9. Training needed over 470 iterations to 

complete. 

 

 

Figure 5.10 Training MSE history per epoch for the 20:35:20 net architecture 

 

Having in mind that a TM segment’s maximum size is 30 and since the 

increase of the window size had improved system’s performance, the next idea was 

to extend window length to 30 amino acids and increase hidden units. 

Experimenting with the number of hidden units resulted in a hidden layer 

consisted of 45 neurons. More than 45 units made the network unstable and 

exhausted every single memory resource, although a slight improvement was 

noted. The implementation of the 30:45:30 configuration on the entire data set 

resulted in a test MSE decrease (Figure 5.10). 
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Figure 5.11 Training, validation and testing MSE per epoch for the 30:45:30 net architecture 

 

After about 380 iterations early stopping found a global minimum and 

caused an interrupt: training was terminated forcing train MSE to reach 5.72% and 

test MSE 5.77%. Figure 5.11 shows a close-up of training, validation and test MSE 

during the last 110 iterations.  

 

 

Figure 5.12 Training, validation and testing MSE during last the 100 epochs for the 30:45:30 net architecture 
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The results of the 30:45:30 / TrainRP configuration were extremely 

satisfactory with overall performance reaching almost 95%. Training history 

(Figure 5.11) shows the MSE descent per 5 epochs. Similarly to previous 

configurations, during the first 10 to 15 epochs all MSEs drop quite fast from 

about 45% to 20% and then to 10-12%. After that, the MSE descents smoothly till 

the 80th epoch from about 12% to 7.5%; then training continues dropping the 

validation another 2%-3% before early stopping traces a validation error ascent. 

 

 

Figure 5.13 Training MSE history per epoch for the 30:45:30 net architecture 

 

Figure 5.14 shows the overall output spectrum of the entire test set in three 

subplots: the actual output spectrum (Figure 5.14a), the predicted output (Figure 

5.14b) and the raw network response (Figure 5.14c). In actual output spectrum 

several thin or thicker green blocks mark the existence of TM segments for each 

one of the 55 test membrane proteins. Figure 5.14b shows the predicted output of 

the system which is quite similar to the actual output. The excessive thin, green 

blocks in the predicted spectrum - before or after the correctly predicted blocks - 

are included in the overall error and they physically reflect network’s local weight 

weakness to rapidly oscillate between 0 and 1. It is worthy of note that predicted 

TM segments smaller than 10 or bigger than 30 amino acids are ignored. 
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Figure 5.14 Actual output (a), normalized predicted output (b) and raw output response spectrum for the entire, 

windowed test set 

 

Nevertheless, it is necessary to examine how the real output sequences and 

the above output sequences are tangled with the sliding window method. In reality, 

test output sequences are <1 by length(testprotein)> vectors. However, according 

to the sliding window method analyzed in Chapter 4, our systems inputs and 

outputs were organized in arrays whose rows were equal to window size and whose 

columns were equal with the number of window slides throughout the test set 

minus one window (because last window slide stops when its right-end (position 

30) hits the last amino acid in sequence without needing to do 30 more slides). 

Thus, every slide of the window added an extra column to output array. So, the 

final array would contain many instances of the same amino acid in different slide 

positions of the window. This means that the second amino acid in sequence 

would be read twice: once in the beginning of the first window (being element 

number 2) and twice when the window would slide right by one (being element 

number 1). In the same way, third amino acid in sequence would be read three 

times: first as element number 3 of the first window, second as element number 2 

of the second window and third as element number 1 of the third window. 

Although it seems a bit confusing, this method actually re-feeds the same amino 
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acids into the network thirty times during training (except from the first 30 and last 

30 amino acids in sequence), improving learning efficiency and saving execution 

time by reducing the iterations. Finally, only amino acids’ ‘30-pass’ positions will be 

selected as the final output since in those positions the corresponding input has 

already re-fed to the network 30 (maximum) times. Figure 5.15 shows the 

beginning and the end of the input array of protein LRTM2_MOUSE. 

 

 

 

Figure 5.15 The beginning (a) and the end (b) of protein LTRM2_MOUSE input array. Selected inputs are 

outlined with a red rectangular. 
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In Figure 5.15a the green diagonal shows the position change of the 14th 

amino acid (L=0.083) and how it is finally selected after being re-fed to the 

network maximum times for training (maximum for L is 14). Leucine (L) in 

position 30 (row 30, column 1) would have to re-fed 30 times before it is selected. 

Note that the 31st amino acid in sequence would be Glycine (0.04) in array position 

(30, 2). This amino acid will be read 30 times until it diagonally reaches position 

(1,31) and then placed at first row, within the selection area (red rectangle in Figure 

5.15). Since the last 30 amino acids of the sequence would be read only once, 

selection of inputs completes with the addition of the last window (Figure 5.15b). 

The above rules apply to output arrays as well. Both the correct actual and 

predicted output sequences had to be ‘extracted’ from the windowed arrays. In 

accordance with the input ‘extraction’ method, output sequence was selected from 

the last response of every amino acid except from the last 30; meaning that the last 

responses of the system would be more accurate since the decision would be 30 

times more ‘mature’. Figure 5.16 shows the first 16 (Figure 5.15a) and the last 13 

(Figure 5.16b) predicted window outputs of the LRTM2_MOUSE output array. 
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Figure 5.16 The beginning (a) and the end (b) of protein LTRM2_MOUSE output array. Selected outputs are 

outlined with a red rectangular. 

 

After the input / output sequence regulation described above, the 

evaluation of sensitivity ( ) and specialty ( ) factors can be calculated 

(equations are referred in Chapter 4). Total number of correctly predicted TM 

segments was 151 while the total number of actual TM segments was 162 (Table 

5.1). The comparison between the actual and predicted output for the entire test 

set is presented in Figure 5.17. Note that we have excluded TM segments less than 

10 and greater than 30 amino acids since these segments are out of TM segment 

size limits. Finally, overall sensitivity and specialty are: 
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Overall test MSE stopped at 5.77% and overall performance based on the 

mean square error reached 94.23%. Next section describes the case study of three 

proteins and presents the three basic evaluation criteria and local performance 

scoring of the system. 
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Test set 

order 

Protein name 

(Test set) 

Dataset 

order 

Final dataset 

order actq  predq  predcorq  

#1 TMP21_RAT #356 #351 1 1 1 

#2 TMPS4_MOUSE #357 #357 1 1 1 

#3 TMPS4_HUMAN #358 #356 1 2 1 

#4 TMPS2_HUMAN #359 #352 1 1 1 

#5 TMPS3_HUMAN #360 #354 1 1 1 

#6 TMPS2_MOUSE #361 #353 1 1 1 

#7 TMED9_MOUSE #362 #313 1 1 1 

#8 TMM15_HUMAN  #363 #335 14 13 13 

#9 LOLE_ECOLI  #364 #139 4 5 4 

#10 TMG1_HUMAN  #365 #322 1 1 1 

#11 TMPS9_HUMAN  #366 #362 1 1 1 

#12 SIDT1_RAT  #367 #201 11 10 10 

#13 SCTM1_HUMAN  #368 #195 1 1 1 

#14 TM50A_HUMAN  #369 #254 4 3 3 

#15 ROR2_HUMAN  #370 #191 1 1 1 

#16 TSN7_PANTR  #371 #398 1 1 1 

#17 TMPS4_MOUSE  #372 #357 1 2 1 

#18 TMG4_HUMAN  #373 #326 1 1 1 

#19 NETO2_MOUSE  #374 #172 1 1 1 

#20 TMPS6_HUMAN  #375 #360 1 1 1 

#21 TM14B_HUMAN  #376 #236 4 4 4 

#22 TM16E_HUMAN  #377 #242 8 7 7 

#23 TM45A_HUMAN  #378 #246 5 4 4 

#24 TM11D_RAT #379 #227 1 1 1 

#25 TMM33_MOUSE #380 #342 3 3 3 

#26 TMCC3_HUMAN  #381 #298 2 1 1 

#27 TMPSD_MOUSE #382 #366 1 1 1 

#28 BAMBI_MOUSE #383 #6 1 1 1 

#29 TM60_MOUSE #384 #266 4 4 4 

#30 TM9S2_RAT #385 #282 9 8 8 

#31 LRTM4_HUMAN #386 #149 1 1 1 

#32 CXCR4_BOVIN #387 #29 7 7 7 

#33 TM9S4_HUMAN #388 #285 9 8 8 

#34 STM1_SCHPO #389 #211 1 1 1 

#35 TSN15_HUMAN #390 #384 4 4 4 

#36 LETM1_MOUSE #391 #129 1 1 1 
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#37 EFR1_MACFA #392 #45 2 1 1 

#38 EFCB_PAPAN #393 #39 2 2 2 

#39 TM55B_RAT #394 #262 2 3 2 

#40 ROR2_DROME  #395 #190 1 1 1 

#41 LRTM1_PONPY #396 #143 1 1 1 

#42 TM59_MOUSE  #397 #264 1 1 1 

#43 ENW1_HYLPI #398 #85 2 2 2 

#44 MS4A7_HUMAN  #399 #165 4 3 3 

#45 MTRP_HUMAN  #400 #166 4 5 4 

#46 FZOL_SCHPO #401 #106 2 2 2 

#47 SMS1_MOUSE  #402 #206 5 5 5 

#48 ENK7_HUMAN  #403 #66 2 2 2 

#49 TM9S3_MOUSE #404 #284 9 8 8 

#50 TM47_XENLA  #405 #252 4 5 4 

#51 TM50B_PONPY #406 #258 4 4 4 

#52 LRTM2_HUMAN  #407 #144 1 1 1 

#53 TMED4_HUMAN  #408 #303 1 1 1 

#54 T4S1_PONPY  #409 #217 4 4 4 

#55 LRTM2_MOUSE  #410 #145 1 1 1 

   Total 162 157 151 

 

Table 5.1 Network’s overall scoring per protein for the entire test set (sample test proteins are colored orange) 

 

If we compare the actual output with the network’s response we will notice 

high prediction scores when the TM segments are scattered within the protein but 

we will also notice some ‘noise’ among the transitions of proteins since the instant 

weight adaptation from zeros to aces or the reverse are virtually impossible due to 

the fact that weights need some time to gain or loose force respectively. 
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Figure 5.17 Overall comparisons between the actual (a) and the predicted (b) output for the entire test set 

 

 

5.3 Protein sample tests 

 

The network was simulated for a sample set of three proteins: 

CXCR4_BOVIN, FZOL_SCHPO and LRTM2_MOUSE. Each protein had a 

different length, was of a different type and had a different number of TM 

segments with variable lengths; in other words the three proteins had a completely 

different primary structure. Although overall performance was more or less 

calculated, protein examples would make the objective of this project more 

comprehensible.  

 

 

5.3.1 C-X-C chemokine receptor type 4 (CXCR4_BOVIN) 

 

CXCR4_BOVIN (#29 in our initial dataset) is a multi-pass membrane 

protein that works as a receptor for the C-X-C chemokine CXCL12/SDF-1. Its 
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role is to transduce a signal by increasing the intracellular calcium ions level. It 

exists in bovines and it can be found in brain, heart, lung, kidney and liver tissue. 

Its primary structure is 353 amino acids long and contains 7 TM segments. A 

membrane protein with 7 TM segments will be a good evaluation test for multiple 

segment detection. 

 

TM 
Actual TM segment 

position 
Pred. TM segment position Abs. error 

#1 41-64 40-62 3 

#2 81-100 82-100 1 

#3 112-137 111-139 3 

#4 156-176 156-176 0 

#5 202-221 202-220 1 

#6 242-262 242-263 1 

#7 287-308 287-308 0 

 

Table 5.2 Actual and predicted TM segment topology for CXCR4_BOVIN 

 

Figure 5.18 shows the actual (red line) and the predicted TM segment 

topology (blue line). The small noises around the segments are faulty aces and they 

are ignored since any group of aces smaller than 10 cannot define a TM segment. 

The network missed some aces and so some predicted segments are slightly 

displaced. 
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Figure 5.18 Actual and predicted TM segment topology for FZOL_SCHPO protein. 

 

It is very interesting to see how the network elaborates the input data and 

tries to respond. According to Table 5.2, the first actual TM segment of the 

CXCR4_BOVIN protein is located in position 41 to 64 and the predicted topology 

is slightly shifted in position 40 to 62. Figure 5.19 shows the predicted output array 

and focuses on the transition effect between the end of the first TM segment and 

the beginning of the non-TM region. Unfortunately, weights didn’t “hold” in order 

to keep the ace up to position 64 and zeros started to reappear.  
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Figure 5.19 Predicted output array for CXCR4_BOVIN. Red line shows the transition between 1 and 0 while 

the TM segment fades away. 

 

 

5.3.2 Transmembrane GTPase fzo-like protein (FZOL_SCHPO) 

 

FZOL_SCHPO (#106 in our initial dataset) is a multi-pass protein that 

belongs to the mitofusin family. It exists in saccharomyces and it is usually located 

in the mitochondrial outer membrane; it probably mediates mitochondrial fusion 

which is an important step in mitochondria morphology. Protein length is 758 

amino acids with 2 TM segments. 

 

TM 
Actual TM segment 

position 
Pred. TM segment position Abs. error 

#1 596-616 597-617 2 

#2 636-656 637-655 2 

 

Table 5.3 Actual and predicted TM segment topology for FZOL_SCHPO 
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Actual versus predicted output response for FZOL_SCHPO is shown in 

Figure 5.20 This case proves that the system can handle quite well large protein 

lengths with a small number of TM segments. Furthermore, two TM segments are 

quite close, so the density of the TM segments is high adding extra difficulty to the 

predictor. Two aces in position 340 and 341 of the predicted sequence are ignored 

since they do not meet the criteria for a valid TM segment. 

 

Figure 5.20 Actual and predicted TM segment topology for FZOL_SCHPO protein. 

 

Figure 5.21 shows the predicted output array of FZOL_SCHPO from 

position 334 to 347. The red circle in Figure 5.21 explains the single line that 

appears in Figure 5.19 and is away from the correctly predicted TM segments. 

These aces falsely appear in position 340-341, they are not part of a group of aces 

larger than 10 (minimum size for a default TM segment); therefore they are 

completely ignored. 
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Figure 5.21 Predicted output array for FZOL_SCHPO. Red circle shows a region of aces that has been ignored 

due to its limited size. 

 

 

5.3.3 Leucine-rich repeat transmembrane neuronal protein (LRTM2_MOUSE) 

 

LRTM2_MOUSE (#145 in our initial dataset) is a single-pass membrane 

protein that belongs to the LRTM family and exists in mice. Possibly, it plays a role 

in the development and maintenance of the vertebrate nervous system and is 

expressed in neuronal tissues. Its sequence length is 515 amino acids and has only 

1 TM segment. We wanted to test how system would react in a single TM segment 

and how fast it could reach few aces (1) in a plethora of zeros. Table 5.4 shows the 

actual and the predicted TM segment position in protein. 

 

TM 
Actual TM segment 

position 
Pred. TM segment position Abs. error 

#1 422-442 423-442 1 

 

Table 5.4 Actual and predicted TM segment topology for LRTM2_MOUSE 
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Figure 5.22 shows the actual (red line) and the predicted (blue line) output 

of the system. Results are extremely good given the fact that aces in position 220 

and 320 are excluded; minimum TM segment size (10 amino acids) is not met, so 

they do not form a TM segment. 

 

Figure 5.22 Actual and predicted TM segment topology for LRTM2_MOUSE protein. 

 

In Figure 5.23, network weights are increased fast in order to give 1 as 

output at position 422. Unfortunately, the increase was not quick enough and 

position 422 had just lost an ace. Aces appearance will continue down to position 

443 until weights rapid change will produce zeros again.  

 



Results 83

 

Figure 5.23 Predicted output array for LRTM2_MOUSE. Red line shows the change between 0 and 1when 

while the TM segment approaches. 

 



 

 

 

 

 

 

 

Chapter 6 

Discussion  
 

 

Membrane proteins are the main communication gateways of the cell. 

Armed with the ability to span the membrane bi-layer of cells, membrane proteins 

form communication channels via which cells can effectively receive or send 

information to other cells. The spanning part of membrane proteins is called 

transmembrane segment (or transmembrane helix). Proteins may contain one or 

several transmembrane segments. The size and frequency of these segments 

determine the structure and role of proteins. Understanding the role of membrane 

proteins – namely predicting its transmembrane segments – is invaluable for the 

development of drugs, antibodies or other reagents that will affect the function of 

proteins. This research suggests a complete, neural network-based prediction 

system that efficiently reads an unknown human and/or non-human membrane 

protein and detects the number and position of its transmembrane segments. 

 

 

 

6.1 Conclusions 

 

Contrary to traditional laboratory analyses and other statistical methods, 

the neural network-based transmembrane segments prediction can offer quite high 
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approximations if supplied with enough information. Apart from quantity, 

information used to train the network must have quality. Approximately 410 

updated, accurate, uncorrupted and fully annotated protein data were extracted 

from the Swiss-Prot knowledgebase in raw text format and formed our dataset. 

The dataset is split into three subsets: one training, one validation and one test set. 

The training set teaches the neural network by providing all the collected, known 

protein information available. Validation set is responsible for checking the 

network’s response periodically, in order to spot minimum error’s exact location. 

When the network’s error starts rising again, validation stops the training 

procedure and locks the minimum mean square error. Test set evaluates the 

performance of the system and defines the optimal prediction model. 

The original protein data is organized in text files which contain: the 

protein name, id, description, sequence and TM region pointers. There were three 

major problems that had to be solved: the encoding of data, the variable protein 

lengths and the optimal neural network model. Data encoding involves: a) the 

selection of the best representation of amino acids to numbers and b) the 

correlation between amino acids and their output topology. Our encoding scheme 

uses the SMTP method, where each amino acid (input) is replaced by a unique 

value ranging between 0 and 0.1. This value represents the possibility of an amino 

acid to belong to a transmembrane segment. Output sequence is a binary sequence 

of zeros and aces and it is created by placing zeros in non-transmembrane and aces 

in transmembrane regions. Then, the encoded information passes through a pre-

processing phase where output sequences are aligned with input sequences in order 

to be fed into the network. The inputs and outputs which vary in length are 

converted into fixed-sized arrays through a sliding-window technique, since neural 

networks only allow fixed size inputs and outputs. The optimal size of the sliding 

window is found to be 30 amino acids. All amino acids in input and output 

sequences are serially scanned in groups of 30 and fed into the network for 

training. The network is trained and the optimal parameters are calculated after 

several hundreds of small or large-scale evaluation trials. The output of the neural 

network is produced by a sequence of zeros and aces: if no transmembrane 

segment is found, zeros are marking the region whereas if a transmembrane 

segment is found, aces are marking the region. Predicted outputs are reshaped back 

to their natural dimensions and are compared with the actual output. This 
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evaluation contributes to the optimization procedure through the mean square 

error minimization (mean square error is the fraction of the error sum of squares 

divided by the total number of data points). The results include the evaluation of 

the prediction net and the calculation of the mean square error, sensitivity and 

specialty indicator. Sensitivity (Qse) expresses the number of correctly predicted 

TM segments divided by the total number of actual TM segments, while specialty 

(Qsp) expresses the number of correctly predicted TM segments divided by the 

sum of correctly and incorrectly predicted TM segments. 

A variety of figures and tables present the final results of this project. 

Evaluation results such as sensitivity and specialty are compared with the results of 

different methods. The predicted transmembrane segment topology is compared 

with the actual topology for the entire test set. Many segments are found in the 

designated position while others are slightly shifted by one to few amino acids – 

some segments are not found at all. Performance ejects to 94.23% and the test 

MSE is held down to 5.77%. Sensitivity is equal to 93.20% and specialty is equal to 

96.17%. Moreover, careful examination of individual protein tests confirms that 

the prediction of the exact topology of transmembrane segments is feasible. In 

some membrane proteins, there is an exact much between the actual and the 

predicted output. Many transmembrane segments are predicted slightly shifted by 

few amino acids. If the shift exceeds the absolute error of 10 amino acids then the 

transmembrane segment is considered non-predicted. Comparing our results with 

results coming from other predictive methods, such as statistical analysis and 

wavelets, a significant improvement of sensitivity and specialty factors can be 

noticed. Statistical analyses are considered outdated, depend too much on the 

dataset and score relatively low because of the strict cut-offs of the hydrophobicity 

indicator. The WCP1 method [21], which is a prediction method based on 

wavelets, when applied to the same transmembrane detection problem, it produces 

sensitivity equal to 84.61% and specialty equal to 95.6% [22]. Additionally, the data 

set used in this project is about five times larger than the one used in the WCP1 

method. Hence, it offers great stability to the network and makes training more 

reliable. 
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6.2 Future research 

 

As Bill Toomey (Olympic gold medalist and six times world champion in 

decathlon) once said “It is always possible to improve”.  In our case, improvement 

can be summarized to the threefold: database growth, encoding optimizations and 

network enhancements. A larger protein database can provide the network with 

more information for the training process and therefore the prediction will become 

more dependable. Also, different encoding schemes can be tested including new 

amino acid representation and numbering which will influence network’s neural 

strengths and weight alterations. Since there are virtually no rules in constructing a 

prediction network, different neural network architectures can be implemented 

involving a different input and output organization, more hidden layer units or 

even different learning methods. 

From a biological point of view, there is a great interest for the decoding of 

ORF regions. ORFs (open reading frames) are regions of chromosomes with no 

STOP triplet that encode proteins with unknown structure and functions, during 

the splicing process. It has been proved that almost one third of these ORF 

regions are translated into membrane proteins. Hence, we can identify these 

regions by defining the structure and role of their unknown membrane proteins. 
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