Technical University of Crete

Department of Electronic and Computer Engineering

Diploma Thesis

Development of a language and Universal Run-Time

Environment for FPGA programming

Kyriakidis Thomas

Supervising Professor : Professor Apostolos Dollas

Thesis Committee : Associate Professor Kostantinos Kalaitzakis

Assistant Professor Dionysios Pnevmatikatos

M arch 2002

Microprocessor and Hardware Laboratory

A@iepmveTal 0TO0G YOVEIG HOD KAl TNV OLKOYEVELA HOD...
Dedicated to my parents and my family...

Thomas Kyriakidis

| would liketo thank

Professor Apostolos Dollas for his support throughout the whole duration of this thesis and for
giving me the opportunity to be a member of Microprocessor and Hardware Laboratory (MHL).

The thesis committee, Associate Professor K ostantinos Kalaitzakis and Assistant Professor
Dionisios Pnevmatikatos for their contribution to this thesis.

Markos Kimionis, member of the Technical Staff of the MHL for his support regarding technical
matters.

Associate Professor Manolis Antonidakis for assisting us by lending a logic analyzer.

My friend and co-worker in thisthesis Dionissis Efstathiou for his excellent work and co-
operation that resulted in the success of the system.

All the undergraduate and graduate students for their valuable help.

And last, but not least, | would like to thank my parents and my friends for being there to support
me.

Contents

Chapter 1
[gL A oo [T A o o FOU PSSP page 7

Chapter 2
FPGA/CPLD Configuration and Related Work
2.2 1NtroduCtion..... ..o e e e e e pEGE 10

2.2 CoNfigUration PrOCESS......cuue it it ies e et e et e e e et e ee e e aees page 11
2.3CoNfigUration MOOES.ot e e e e e e page 13
2.3 1 MaASter MOUES. ettt e e e e e e e e e e e e page 13
2311 Master Serial Mode........ccoviiii i page 13

2.3.1.2 Master Parallel Up/Low and Down/High Modes................. page 14

2.3.29aVEMOMES. ... e e PB0E 15
2321 Master Serial Mode.........ccouviiiiiii page 15

2.3.2.2 Slave Parallel /Express/SelectMAP Modeccvvveennee page 15
2.3.3Peripheral Modes..........c.cco i i e PAGE 16
2.3.3.1 Serial ASYNCIONOUS.uietetetee et et e ateeteeaeeeeaeeaaeaneenan page 16
2.3.3.2Parallel ASYNCroNOUS..........cuuitiiiiieieae e e e page 17
2.3.3.2Parallel SynCronouUS..........cuviuiieiiiie i e page 17

2.3 4JTAG (BOUNAArY SCAN)cuuirerieeie e e ae e e veneneeeaaene e eenaens page 17

2.4 CoNfigUration PiNS.......ccoui i e e e e e e e e page 18
2.5 Configuration Bitstreamsand Files............coooviii i page 21
2.5.1Bit File (.bit) — XilINX..ooooe e page 23
2.5.2 Raw Bit File (.rbt) = XilinXccoooiiii i e page 23
2.5.3Raw Binary File(.rbf) - Altera..........coooeie i, page 23
2.5.4 Hexadecimal (Intel Format) File(.hex) —Altera.............c.ccoveiennes page 24
255 Tabular Text File(.ttf) —Altera ..o page 24

2.6 Spartan-I1 and Virtex Configuration — XilinX...........cccoo o ii i, page 24
2.6.1 Configuration Modesand Daisy-Chains................cccooeviiviinn page 24
2.6.2 Initialization and TIMING.........uveiieiitiie e e page 25
2.6.3Mixed Voltage ENVIronmMentsS.ovveiiiiiiiiie e e e e page 25

2.6.4 BitGen Switchesand OptionS..........ccoovviiii i i e page 26

265 CCLK and Length Count.........coviiviie i e e page 27
2.6.6 Configuration PINS..........oooiiiiiir e e e e page 28
2.7 PCl PammMELE VL.ot e e e e e e e e e e page 29
2.7.1TheHardware ArchiteCture..........cooeiiiiii i e e e e page 29
2.7.2Programming TOOIS.......c.oovii i e e e e e page 30
2.7.31NLerfaCeMOUES.t e e e e e page 30
2.8 The JIBItSAPI - XilINX. ..o e e page 31
2.8.1TheJBitsDesign FIOW.........ccooiii i i e e e e PAGE 32
2.8.2 The JBits System Design and BoardScope................ccevvvvvene......page 32
2.8.3LIiMItationS Of JBILS... ... ouuitiieie it page 33
2.9 MasterBlaster Serial/lUSB Communications Cable - Altera................... page 34
2. 10 MUIILINX = XIINX. 1 e e e e e e e e e e e e e e aea page 34
FZ S U 0 =T page 35

Chapter 3

Architecture of ReRun
S ABrief desCription.......covei i i e e e en e -2 PAGE 37
3.2Featuresand Attributes...... ..o, page 38
G G 20 1 0 o] page 39

3.3.1 TheProgrammingand TestingLanguage.............cceovvvvveiiennannnn.

3.3.2The Graphical User Interface............ccccoviiiii i iiiiiienvnnn..page 41
3.3.30perating INStrUCLIONS.vuiiee e e e e e page 42
3A4The SCript LangUage.......c.vvuvieiieieie e e e et ie e e e e e eee e pAGE 42
03t I 1= o [page 43
34.2Main Program........cooiveiiiiiieie e e e e e e e ae e ee e e e o p0E 46
3.4.3CoMPIler OULPUL... ... ottt e e e e e e e e page 49
S5 BaCK-ENG. ... page 49
3.0 SUMIMIAT Y ..t e e e e e e e e e e e e e page 50

Chapter 4
L anguage
4 Lexical ANAlYZEN ... e e e e 2. PAOE B2

4.2 Syntactical ANAIYZENe i page 55
4.3Symbol Table.......coooi i e P0E 60
4.4 Integrity Checksand Compiler Errors.......ocooeveiiviiiiiiiieiieee e page 61
A5 SUMIMI@IY .. et ettt e e e et e e et e e e et e et et e e et e e ae e aaeeaeeas page 65
Chapter 5
Graphical User Interface
5.1 Graphical User Interface Classes.........oovviii i i e page 67
5.1.1 APPFIITEr Class....vviie it e e e e page 67
5.1.2 ConfigurationPanel Class..........ccovviiiii i e e e page 67
5.1.3CoNNection ClasS.........uvuuiiiiiiieiie it ii i e e ieeeeen e 2 pAGE 69
5.1.4 ConnectionEXCeption Class.......ccovii it page 70
5.1.5 Parameter SCIaSS. .. ovv it e e page 70
5.1.6 PortRequestedDialog Class...........ccccovviiiie i i v veeennnnpage 71
5.1.7RERUN CIASS... ...t e e page 71
5.1.8 SplashWindow ClaSS.......c.uieiiiiieiie e e e e e page 73
5.2 Communication ProtoCol..........c.uveiieiie e e e e e e e page 73

5.3USage I NStrUCLIONS.veiie e e e e et e e ete e een e e eee 2 PAGE 74
SAFULUr@WOIK ... e e e e e et ne e eee2 2 PAOE 7D

Chapter 6

Examples of Usage
6.1 Example 1 — Script for programming a Xilinx XC3042-50PC84 page 77
6.2 Example 2 - Script for programming a Xilinx XC4010XLPC84.......... page 79
6.3 Example 3 - Script for programming an Altera Flex 8000..................... page 81
6.4 EXampPled — TSt SCriPt. ..ot e e e e e et page 82

Chapter 7

Conclusions and Future Work
7.1 CONCIUSIONS. .. et ettt e e e e e et e e et et e e ee et e aeeaennas page 86
T2FULUr@WOIK ... e e et et e e e e eee 2 POE 86

Appendix
A- Graphical Representation of thegrammar..................ccooeiiiiin e, page 89
B- ReRun Installation INStructions...........c.cooiiiiiiiiii e page 94
C- INSLrUCtioN OPCOUES.ttt et e et e e e e e e e e e e e aen page 97
D- ReRun File Structureand Files.............cccocevviiii i i eeeene.page 101
RS L= = 10T page 103
List of Tables
2.1 Spartan-I1 and Virtex BitGen OptioNns..........o.uveiieiiiiii i page 26
2.2 Configuration Pinsfor Spartan-11 and VirtexX..........ccccooviiiii i e page 28
3.1 FPGA ProgrammerS COSt.v ittt e e e e page 38

List of Figures

2.1 A general block diagram for the configuration of an FPGA/CPLD.................. page 10
2.2 XiliNX Configuration PrOCESS.ue ittt e e e e e e eaas page 12
2.3 Master Serial FPGA Configuration.............covoiiiiiiiiiiiiiiici i eieee e e page 14
2.4 Slave Par alle/SelectM AP Configuration Mode............ccoviiiii i, page 16
2.5 Start-Up Timing for Xilinx XC4000/XC5200 deVICES.........cvvvieireieiniiienannns page 21
2.6 Configuration and Start-Up for XC3000..........coveiiiriiiiiiiiieieae e eeneennen ... page 22
2.7 Default Start-Up SEQUENCE.e ettt page 27

2.8 PClI Pammete V1 ArchiteCture..........ccoveieiiiii i i i ee e e 22 PB0E 29
2.9 SEALIC M OUE. .. ettt e e e e e et e e e e e e e e e page 31
2.10 JBItSDEeSIgN FIOW... ...t e e e e e P0G 32
211 IBItS SYSLOM DBSION. ..ttt et e e e e e page 33

Bl RERUN STUCTUI ... et e e e e et e et e e e e e e e e e e page 39
3.2Compiler DevEOPMENT. e e e e e page 40

O R or= | N g = Y 7= PP o =0 [= 2724

Appendix.1 Language GrammMarocee ettt e e e et e ae e e e page 89

Microprocessor and Hardware Laboratory

Chapter 1

| ntroduction

Chapter 1

| ntr oduction

| ntroduction

Reconfigurable logic is one of the most rapidly growing sectors of the semiconductor industry.
FPGA s are becoming an important implementation technology, as the need for quick production
of products with relatively fluid specifications is becoming more urgent. Time to market has
become a very important factor. To shorten this time it important to shorten the validation and
debugging times.

Design Simulation provides complete observability and controllability, but on the other hand
execution times are very slow. Millions of simulated cycles can take hours or even daysto run on
acomputer. This means longer verification and debugging times. Finally, simulation does not
guarantee that the designs will operate as desired when they are loaded on an FPGA that ison a
board because the simulated cases are by necessity limited.

Development boards have proven to be areliable solution in such cases. They usually consist of
aboard with one or more FPGA of the same vendor and family and a User Interface, or
implemented classes of alanguage (C/C++ or Java[1]). This solves many problems, but creates
other. The developer is limited to testing his design on the board and on the specific FPGA that
isonit. Totest it on his own board, the devel oper has to buy a programmer. Programmers are
usually vendor specific and quite expensive.

The purpose of thisthesisisto develop alanguage and a Run-Time Environment for FPGA
programming, that are vendor-independent. These along with a board containing an Atmel AVR
[2] microprocessor provide avery good solution to al the problems mentioned above.

The language is used to create scripts that give the programmer essential information on how to
perform the configuration or that can be used for test purposes.

A Graphical User Interface has been developed for writing, compiling and sending scripts to the
programmer. The programmer parses the script, takes the necessary stepsto executeit. This
includes configuration, readback and testing.

The Run-Time Environment enables the programming of an FPGA by providing the necessary
script or using one of those already created and giving the configuration bitstream file. The user
can aso create scripts that will be executed by the hardware for debugging purposes.

Thisthesisis divided in seven chapters and the appendix.
The second chapter discusses matters concerning FPGA configuration and related work. More

specifically, the chapter contains explanations of the configuration modes, configuration pins and
bitstreams. A reference is made to the programming of Xilinx’s[3] Spartan-I1 [4] and Virtex [5]

devices. And finally the PCI Pamette v1 [6], Xilinx’s JBits API [7], Xilinx’s MultiLinx
Download Cable[8] and Altera s[9] MasterBlaster Serial/USB Communications Cable [10] are
discussed.

The third chapter describes the architecture of the Reconfigurable logic Run-time environment
(ReRun). Thefirst two sections contain a brief description as well as the features and attributes.
In the third section the structure and operating instructions are discussed. The fourth presents the
instructions of the language, while the fifth describes the back-end.

The fourth chapter is dedicated to the language. The first two sections detail the lexical and
syntactical analyzers. The third describes the contents of the symbol table. And finaly, the fourth
refers to the integrity checks and error messages.

The fifth chapter analyzes the Graphica User Interface developed. The first two sections discuss
the classes created and the communication protocol. Finally, the third contains usage information
for the GUI.

The sixth section is dedicated to presenting compl ete examples of PTL code. The three first
scripts were used for programming FPGAs. Thefirst isfor a Xilinx XC3000, the second for a
Xilinx XC4000 and the third for an Altera Flex 8000. The fourth example is atest script.

Finally, the seventh chapter contains conclusions and future work.
There are three Appendixes. Thefirst contains a graphical representation of the language

grammar. The second provides instructions on how to install ReRun and the third analyzes the
instruction opcodes created by the ReRun compiler.

Microprocessor and Hardware Laboratory

Chapter 2

FPGA Configuration and Related Work

Chapter 2
FPGA/CPLD Configuration Guidelines

This chapter contains information about the configuration process of FPGASs. The first section
isabrief introduction to configuration. The second describes the configuration process in more
detail. The third section analyzes the various configuration modes. The fourth contains the
configuration pins and their description. Next, the fifth analyzes the configuration bitstreams
and files. The sixth section refers to the configuration of Xilinx’'s Spartan-11 and Virtex
devices. The next four sections contain related work. Section seven describes the PCI Pammete
v1. Section eight presents the Xilinx JBits API. The ninth and tenth sections describe Xilinx’s
MultiLinx Download Cable and MasterBlaster Serial/USB Communications Cable,
respectively. Finaly, the eleventh section contains a summary of this chapter.

2.1 Introduction

Configuration is the process of |oading design-specific programming datainto one or more
FPGAS/CPLDs to define the functional operation of the internal blocks and their
interconnections. An SRAM-based FPGA can be configured on its power-up or even on
demand, depending on the architecture of the device. The reason we have to do thisis because
their configuration memory is generally volatile. That means that they lose their configuration
if the power isturned off. The EEPROM based CPLDs can be programmed on demand and
they keep their configuration data even after power-off. After configuration the device resets
its registers, enablesits I/0O pins and begins normal operation asalogic device. Thisis called
User Mode.

Configuration
Data «— | FPGA
Source

A A

A 4 A 4
Control
Logic
(optional)

Figure2.1 - A general block diagram for the configuration of an FPGA/CPLD

10

2.2 Configuration Process

Generally the configuration process is partitioned into several stages. Each stage is responsible
for a specific task. For example the configuration starts with the device power-up which
coincides with memory initialization in some SRAM based devices. Then the device enters
programming mode, by activating the appropriate signals. The first stage of configuration,
Configuration Memory Clear, is unpublished for Altera devices, while for Xilinx and Lucent
[11] devicesit isthe stage in which the configuration memory is cleared. After that, the
configuration datais loaded serially or in parallel. In the final stage, the device resetsits
registers, enablesits 1/0 pins and begins operation as alogic device.

The Altera Company does not provide such information about its devices. The configuration
process stages can be generally described as Power-Up - Configuration - Initialization >
User Mode.

The configuration process for Xilinx devices consists of four stages:

v Configuration Memory Clear
v Initidization

v Load Configuration data

v’ Start-up

The full process for Xilinx devicesisillustrated in Fig. 2.2. The first stage is Configuration
Memory Clear. An interna circuit initializes the configuration logic. Then the V¢ reaches an
operational level. When that is done atime delay occurs and during this delay the FPGA
memory is cleared. During the second stage, Initialization, the initialization pin is released and
the mode pins are sampled. Loading Configuration Data, which is the third stage, loads the
device with the configuration bitstream. And finally, the fourth stage, Start-Up, prepares the
device for normal operation. It releases or activates the configuration control signals and then
the FPGA is active and functional with the loaded design.

11

Microprocessor and Hardware Laboratory

Boundary Scan
Instructions
Available:
Test MODE, Generate (I
One Time-Out Pulse PROGRAM
of 16 or 64 ms . = Low
Yes
Keep Clearing
Configuration Memory
EXTEST"
SAMPBL‘E;PAF;ELOAD Completely Clear
. Configuration Memory ~1.3 us per Frame
CONFIGURE Once More
(* if PROGRAM = High)
Master Delays Before
Sampling Mode Line
Sample
Meode Line
Master CCLK
Goes Active
Load One :F
Configuration L
Data Frame F
Q
=
I
I -
Pull INIT Low »
and Stop %
-
SAMPLE/PRELOAD
BYPASS
Pass
Configuration
Data to DOUT
CCLK
Count Equals
Length
Count
Start-Up
Sequence
; e ——
2
Operational 3
EXTEST perafiona 3
SAMPLE PRELOAD o)
BYPASS -
USER 1 If Boundary Scan
USER 2 is Selected
CONFIGURE
READBACK
86076_01

Figure 2.2 - Xilinx Configuration Process[9]

12

2.3 Configuration Modes

FPGAS/CPLDs can be configured using several schemes. Some modes configure the device
using serial configuration data, while others use paralel. On many occasions the FPGA/CPLD
produces by itself the control signals needed while in other modes these signals must be
provided by external circuitry. When choosing a configuration mode, we must first consider
the speed and configuration resources factors. Then we can choose a scheme that is supported
by the device, as a device cannot aways be configured in all modes. This section categorizes
the configuration modes as M aster [12]/Active[13], Slave[12]/Passive[13] and JTAG[12][13].
The names Master and Slave are used by Xilinx and Lucent, while Active and Passive are used

by Altera. The two first modes will be mentioned as Master and Slave for ssimplicity.

2.3.1 Master Modes

In Master configuration modes the device control s the entire configuration process and
generates the synchronization and control signals necessary to configure and initialize itself
from an external memory. These configuration modes can be used when fast time-to-market
Is an important factor in our design. They are easy and quick to implement and they require
no external intelligence. A device in Master mode can be used in adaisy-chain to configure
dlave devices by providing the control signals. Finally, a master modeisideal for automatic
configuration at system power-up in most SRAM-based devices, although during an
erroneous situation an external circuit must be present to issue reconfiguration. The Master
modes are Master Serial and Master Parallel Up/Low and Down/High, which will be

explained in the following sections.
2.3.1.1 Master Serial Mode

Master Serial Mode is supported by all FPGAs. As the name implies this mode uses a serid
bitstream as a data source and data is loaded at arate of 1 bit per configuration clock.
Whether the MSB or LSB of each data byte is aways written first to the data pin, depends on
the manufacturing company. The configuration clock pin, which is driven by the target
device (FPGA), clocks the sequential data bits from the configuration bitstream into the data

pin. Since the target device is the one that controls the entire programming process, the

13

bitstream istypically stored in an EPROM. Figure 2.3 displays a block diagram for Master
Serial Modes.

CCLK

Serial FPGA
Data

>
rd

Data

Figure2.3- Master Serial FPGA Configuration

2.3.1.2 Master Parallel Up/Low and Down/High M odes

In these modes the target device generates sequential addresses that drive the address inputs
of an external PROM. The PROM then returns the byte-wide data to the configuration data
input pins of the device. The HEX starting address is 00..0h and increasesto alimit for
Master Up mode, and it is xx..xh and decrements for Master Down. The limit varies
depending on the device. Thisway they provide address compatibility for microprocessors
which begin execution from opposite ends of memory. The device generates addresses until
the pin indicating configuration completion, is released. The parallel modes simply activate
an internal parallel-to-serial converter and then use the serial bitstream internally. In this
mode the RDCLK/RCLK, aclock signal that is generated by dividing the configuration clock
signal by eight (frocLk= 8*fpcLk), IS used to frame the data bytes supplied by the external
PROM. In both modes the configuration clock is generated internally and is used to serialize
the incoming data bytes. On each pulse of the RDCLK (RCLK in Xilinx) signal, the byteis
latched and the following 8 pulses on the configuration clock convert the 8-bit value into a
serial data stream. The address generation starts when the signal used to indicate the status of
the configuration process (i.e. DONE for Xilinx and CONF_DONE for Altera) is de-asserted.

14

2.3.2 Slave M odes

Slave Modes use external control logic to generate the configuration clock and allow Daisy-
Chain configurations. It allows the FPGA to be configured using other logic devices such as
MiCroprocessors, or in adaisy-chain. The deviceisincorporated into a system with an
intelligent host that controls the configuration process. The intelligent host transparently
selects a seria or paralel data source and the data is presented to the device on acommon
data bus. Such systems can store the configuration data on a mass-storage device, such asa
hard disk. Thisway, installing new configuration data becomes easier and the number of
Integrated Circuits (ICs) required for a system is reduced. The two slave modes are Serial
and Parallel:

2.3.2.1 Slave Serial Mode

Slave Serial Mode is supported by essentially all devices. It places, like all serial modes, the
device configuration data at arate of 1 bit at atime on the configuration data pin of the target
device. Depending on the manufacturing company, either the LSB or the MSB is presented
first. After all the data has been transferred, the configuration clock must be clocked afew

additional timesto initialize the device.

2.3.2.2 Slave Parallel /Express/SelectM AP M ode

ThisModeis similar to Slave Serial, but the configuration datais loaded at arate of 1 byte
per configuration clock. Each byte is then serialized as described earlier in Master Parallel
Mode. Slave Parallel Mode is used when speed is afactor. The Slave Parallel Mode differs
from Peripheral Parallel Modes in that devices in this configuration scheme can not be
serially daisy chained. At this point, it must be noted that Altera devices do not have a* pure”
Slave Parallel Mode. Instead there are the Passive Parallel Synchronous (PPS) and
Asynchronous (PPA) Modes. Due to the fact that these modes use an intelligent host (i.e.
microprocessor) to control the configuration process they are considered Peripheral Modes
and will be described in the Peripheral Modes Section. This is a convention made to

categorize the configuration modes efficiently.

15

Byte- Wide > FPGA
Data
Data
A A A
Control Signals CCLK
External

Control Logic

Figure 2.4 - Saave Parallel/ SelectM AP Configuration Mode

2.3.3 Peripheral Modes

Peripheral modes provide a simplified interface through which the device may be loaded bit
or byte-wide, as a processor peripheral. Processor write cycles are decoded by controlling the
Write Strobe and the Chip Select pins. These modes provide a pin indicating whether the
target device is ready to receive the next bit or byte of configuration data. Aswith Master
modes, Peripheral mode may also be used as alead device for a daisy-chain of slave devices.

2.3.3.1 Serial Asynchronous (Altera Specific)

The microprocessor places a configuration bit on the configuration data input pin and uses
the Write Strobe (WS) signal to write data to the device. On the next rising edge of the WS
the device latches a bit of configuration data. Subsequently, the device drives the
Ready/Busy signal to the appropriate level, indicating that it is processing the configuration
data. The microprocessor can then perform other system functions while the deviceis
processing the data bit. It can also monitor other control signalsin order to send the next data
bit, start initialization stage or restart configuration. An optional address decoder can control
the device' s Chip Select (CS) pins. This decoder allows the microprocessor to select the
device by accessing a particular address, simplifying the configuration process. The

microprocessor can control the CS signals directly. The device can process data internally

16

without the microprocessor. When it is ready to receive the next bit of configuration data, it

inverts the Ready/Busy, causing the microprocessor to strobe it into the device.

2.3.3.2 Parallel Asynchronous

Parallel Asynchronous schemes are similar to Peripheral Serial Asynchronous. As the names
imply, their main difference isthat configuration datais loaded at arate of one byte, instead
of bit, at atime. In this mode the FPGA’ sinternal oscillator generates a configuration clock
burst signal used to time the byte-wide data. Asynchronous Mode uses the trailing edge of
the logic AND condition of WS and one of the CS signals, aswell asthe AND of the Read
Strobe (RS) and another of the CS signals to accept the data from a microprocessor bus. The
Ready/Busy signal isinverted when a byte has been received and returnsto its former level
again when the byte-wide input buffer has transferred its information into the shift register
and is ready to receive new data. This mode allows the RS signal to be strobed, causing the

Ready/Busy signal to appear on one of the configuration data inputs pins.

2.3.3.3 Parallel Synchronous

In this mode the data can be driven directly onto a common data bus between the intelligent
host and the device. The configuration control signals are connected to a port on the local
host. The configuration clock can be driven from the system clock, but complete control over
the interruptsis needed. Like in Master Parallel Up/Down, on the first rising clock edge a
byte of configuration datais latched into the target device. The subsequent 8 falling clock
edges serialize the datain the device. On the ninth rising clock edge the next byte islatched
and serialized. The Ready/Busy pin indicates whether the device serializes data or isready to

receive the next byte.

234 JTAG

The Bed of Nails was the traditional method of testing electronic assemblies, but it has
become obsolete due to smaller pin spacing and more sophisticated assembly methods (like
surface mount technol ogies and multilayer boards). The Joint Test Action Group has

devel oped a specification for boundary scan testing. The Boundary Scan Test (BST) isan

17

industry standard (IEEE 1149.1, or 1532) and it offers the capability to efficiently test
components on PCBs with tight lead spacing. It can also test pin connections without using
physical probes (like the Bed-of-Nails technique) and capture functional data while the
device is operating normally. Another reason that this mode has gained popularity is due to
its standardization and ability to program both FPGAs and CPLDs. Finally BST can be used
to shift configuration datainto the device. In this mode external logic is also required but this
timeto drive the JTAG specific pins, Test Dataln (TDI), Test Mode Select (TMS) and Test
Clock (TCK), and one optional the Test Reset (TRST). All other pins are tri-stated during
JTAG configuration. JTAG configuration can start at any time, even during configuration
through another mode. To avoid starting JTAG configuration accidentally, the JTAG pins
should be kept stable during configuration of Altera devices and for Xilinx devices, at |east
one of the TCK, TDI, TMS should be kept High. The JTAG pins are described in Section 2.4
Configuration Pins. To configure asingle device in aJTAG chain, the software places all the
other devicesin BY PASS mode. JTAG testing can be performed before and after, but not
during, configuration. The chip-wide reset and output enable pins do not affect JTAG
boundary scan or programming operations. Toggling these pins does not affect JTAG
operations. When designing a board for JTAG configuration, the regular configuration pins
should be considered.

2.4 Configuration Pins

The configuration of FPGAS/CPLDs is performed through certain pins. During the
configuration specific pins on the FPGA are used and these pins may act differently depending
on the chosen mode (i.e. CCLK isan input in some modes and an output in some others).
Finally one important note is that some pins are used in specific modesonly (i.e. TDI, TMS,
TCK areonly used in JTAG). Also, most of the configuration pins, are not dedicated and
reserved for configuration, so after the configuration process is complete, these pins can be
used as user /0. Each manufacturing company uses different names for the configuration pins,
but although the names are different, there is afunctiona analogy among them.

This section gives a detailed description of the configuration pins and defines a universal pin
naming, where thisisfeasible.

18

The Mode Select (MS) are the input pins and as denoted by their name they are used to select
the configuration mode. The number of these pins varies, depending on the target device, from
one up to three. It must also be mentioned that the encoding of a specific value in the MS pins
is device dependent. If for example the value “010” implies Passive Seria configuration mode
in one device, it does not necessarily mean that this applies to the rest. They are sampled before
the start of the configuration and after the configuration process these pins can be used as user
1/0.

The Program is an active-low configuration control input pin. A low transition forces the
FPGA to reset. It is used to initiate the configuration process. When it goes high the FPGA
begins configuration. All device 1/Os go to tristate when the Program is de-asserted.

The Configuration Clock (CCLK) iseither an input (i.e. Slave Modes) or an output (i.e.
Master Modes). In Xilinx devices after configuration the Configuration Clock can be selected
as aReadback Clock. In Altera, if selected from the software, this pin can be used as a user
1/O.

The Datal n pinisthe seria configuration data input receiving data on the rising edge of
Configuration Clock (CCLK), during the Serial Modes. During Parallel Modes, Dataln isthe
DatalnO input. In certain Peripheral configuration schemes, the Datal n pin represents the
Ready/nBusy signal after the RS pin has been strobed. Thisis more convenient, for
microprocessors, than using the Ready/nBusy pin. After configuration it is a user
programmable /O pin.

The Datal n[7..0] pins are the parallel configuration data input bus receiving data on the rising
edge of Configuration Clock (CCLK), during Parallel Modes. Each configuration data byte is
serialized according to the specifications of the device. In some cases Datal n0O isthe MSB
whilein other casesit is LSB.

The DataOut pin during configuration is the serial output that can drive the Datal n of daisy-
chained slave devices. Configuration Data appears on the DataOut pin after a specific number
CCLK cycles. After configuration it isauser programmable 1/O pin.

P_Doneisan I/0O signal. When used as an output the device drives this pin low before and
during configuration. Once all datais loaded without error and the initialization cycle starts,
the target device releases it. In other words, P_Done indicates the completion of the
configuration process. When used as an input, aLow level on P_Done can be configured to
delay the global logic initialization and the enabling of outputs.

nCS, CS, nWS, nRS are four inputs used in most Peripheral Modes. The chip is selected when

NnCSisLow and CSisHigh. After configuration these are user programmable I/O pins. If only

19

one chip select input is used the other must be tied to the active value (e.g., NCS can betied to
ground if CSisused). These two pins must be active during configuration and initialization.
The nWS and nRS pins should be mutually exclusive, but if both are Low simultaneously the
Write Strobe overrides

The signal NWSis an active low Write Strobe input. A low-to-high transition causes the device
to latch a bit or byte of data on the Dataln or Dataln[7..0] pins, respectively.

The signal NRSis an active low Read Strobe input. A low input on this pin directs the device
to drive the Ready/nBusy (High if Ready, Low if Busy) signal on the Dataln7 or Dataln pin
and drives Datal n[6..0] High. If the nRS pinis not used, it should be tied high.

FPGA/CPLD vendors provide certain status pins that can be monitored in order to detect errors
in the configuration process and observe the configuration progress.

For example the AlteranSTATUS pinis pulled low if an error occurs. If thisis done by an
external source, during configuration or initialization, the target device enters an error state.
Driving this pin low after configuration does not affect the device. The nSTATUS pin can be
used to indicate an error during configuration.

A similar pinisthe bidirectional INIT pinin Xilinx devices. During configuration a Low on
this output indicates that a configuration data error has occurred. This pin acts as an active Low
open-drain output and is held low during the power stabilization and internal clearing of the
configuration memory. As an active Low input it can be used to hold the FPGA in the internal
WAIT state before the start of the configuration.

Similarities can also be observed between the INIT (Xilinx) and INIT_DONE (Altera). Thisis
a status pin that indicates when the device has finished start-up and isin user mode. It drives
low during configuration. Before and after configuration it is released and pulled to V¢ by an
external pull-up resistor. Because INIT_DONE is tri-stated before configuration it is pulled
high by the external pull-up resistor. Thus the monitoring circuit must be able to detect alow-
to-high transition.

Finally therearethe TDI, TMS, TCK and TDO for the JTAG. The TDO isthe Test Data Out
if Boundary Scan is used, if not it is a 3-state output after configuration is completed.

TheTDI, TCK and TM S pins are the Test Data In, Test Clock and Test Mode Select
respectively. They come directly from the pads, bypassing the IOBs. In some devices, once
configuration is completed these pins become user programmable I/O. In some others, they can
be used as user 1/0O but they must be kept stable before and during configuration, so as to
prevent accidental loading of JTAG instructions.

20

r Length Count Match |7 CCLK Period

CCLK J_

F
DONE
C1 U2 U3 U4
XC4000E/EX Y
XC5200/ 02 U3 Ul
UCLK_NOSYNC
GSR Active | |
u2 u3 U4
DONE IN
_+ F
DONE |
c1 U2 :
XC4000E/EX o
XC5200/ DI DT D2
UCLK_SYNC !
GSR Active
Di Di+1 Di+?
Synchronization —'e———» .
Uncertainty |“'—"|— UCLK Period

Figure2.5- Start-Up Timing for Xilinx XC4000/XC5200 devices[12]

2.5 Configuration Bitstream and Files

The Bitstream is a stream of bits that contains location information for logic on a device, that
is, the placement of Configurable Logic Blocks (CLBS), Input/Output Blocks (I0OBs), TBUFs,
pins, and routing elements. Xilinx, unlike Altera, provides a substantial amount of information
concerning the structure of its devices bitstream, therefore the main part of this section refers to

Xilinx.

21

The bitstream includes empty placeholders that are filled with the logical states sent by the
device during a readback. Only the memory elements, such asflip-flops, RAMs, and CLB
outputs, are mapped to these placeholders, because their contents are likely to change from one
state to another. When downloaded to a device, a bitstream configures the logic of a device and
programs the device so that the states of that device can be read back. An example bitstream,
for XC3000[14], and the switching characteristics are shown in Fig. 2.6 below.

Postamble

|

-4

Diata Frame Last Frame
- 12 e |- 24 w| 4 - | 1)y -

—| 3 |=— —h-|3

FTor
OIN | Stop

| Preambls Length Ciount | | | Diata | | | | |

Bit Length Count* —

The configuration data consists of a composits)
* 40-bit preambleflangth count, followed by one or Waak Pull-Up

more concatenatad FPGA programs, separated by

4-bit postarmblas. An additional final postamble kit

is added for each slawe device and the result rounded

up to a byte boundary. The length count is two less

than the number of rasulting bits.

110 Active

@
g

DCME

Tirming of the assertion of DONE and
terrmination of the INTERMALRESET
may each be programmed o coour
one cyde before or after the [0 autputs
become active Internal Resat

Heawy lines indicate the default condition K0S

Figure 2.6 - Configuration and Start-up for XC3000 [9]

The bitstream format is very similar in Xilinx Families XC3000, XC4000[15], XC5200[16]
and SPARTAN/XL. It starts with 8 Dummy or Fill bits and is followed by the preamble code
which is 4 (0010 in XC3000, XC4000 and Spartan) or 8 bits (11110010 for XC5200 and
Spartan XL Express Mode). The next part is the 24-bit length count. When configuration is
initiated a counter in the FPGA is set to zero and begins to count the total number of
configuration clock cycles applied to the device. The Configuration Loading process is
completed when the current length count equals the loaded length count and when the required
configuration program data frames have been written. The last part of the header is 4 fill or
dummy bits or 8 in the XC5200 Family and none in the Spartan XL Express Mode. For

22

Spartan XL Express Mode the Length Count is not used by configuration logic and is
considered fill bits. The next part of the bitstream is Data Frame which is divided in frames.
The number and length of frames depends on the device. Each frame begins with a start field
ranging from 1 bit for XC3000 to 8 bits in XC5200 and Spartan XL Express Mode. Its next
field is the configuration data which varies in size from one device to another. And the frame
ends with a Cyclic Redundancy Check (CRC) or a Constant Field Check which is 4 bits
(XC3000 and Spartan XL in Express Mode do not support CRC). The Constant Field Check is
used if the CRC error check is disabled. Detection of an error, as mentioned before, results in
the suspension of dataloading and the pulling down of the INIT pin.

Altera does not provide any information regarding the structure of its configuration files, so we
are limited to a brief reference to the programming files. The following sections contain a
description of the files used to program Alteraand Xilinx FPGAS.

2.5.1 Bit File (.bit) - Xilinx

A Bit file is used to program a single FPGA. It is a binary file, which contains all the
configuration information, as well as device specific information from other files. The Bit
fileisthe standard bitstream file created.

2.5.2 Raw Bit File (.rbt) - Xilinx

A Raw Bit fileis also used to program a single device, but it isan optional file. It isan ASCII
version of the Bit file, containing ASCII ones and zeros. Another difference from the Bit file
isthat the header information is removed from the Raw Bit File.

2.5.3 Raw Binary File (.rbf) - Altera

The Raw Binary Fileisabinary file, containing configuration data. Data must be stored so
that the least significant bit (LSB) of each data byte is|oaded first. The converted image can
be stored on a mass storage device. The microprocessor can read data from the binary file
and load it into the device. A microprocessor can be used to perform real time conversion

during configuration. In PPS and PPA configuration schemes, the target device receivesits

23

information in parallel from the data bus, a data port on the microprocessor or some byte-
wide channel. In PS and PSA the datais shifted in serially, LSB first.

2.5.4 Hexadecimal (Intel Format) File (.hex) - Altera

A Hex fileisan ASCII filein the Intel Hex format. Thefileis used by third-party
programmers to program Altera’s serial configuration devices. Hex files are also used to
program parallel configuration devices with third-party programming hardware. Y ou can use
parallel configuration devicesin PPS, PPA or PSA configuration schemes, in which a
microprocessor uses the parallel configuration device as the data configuration source.

2.5.5 Tabular Text File (.ttf) - Altera

The Tabular Text fileisatabular ASCII text file that provides a comma-separated version of
the configuration data for the PPA, PPS, PSA and bit-wide PS configuration schemes. In
some applications, the storage device containing the configuration data is neither dedicated to
nor connected directly to the target device. For example, a configuration device can also
contain executable code for a system and other data. The TTF alows you to include the
configuration data as a part of the microprocessor’ s source code using the include or the
source command. The microprocessor can still access this data from a configuration or mass
storage device and load it into the target device. The TTF can be imported into nearly any

assembly language or high level language compiler.

2.6 Spartan Il and Virtex Configuration - Xilinx

2.6.1 Configuration M odes and Daisy-Chains

Spartan 11 and Virtex FPGAs can be configured in 8 different modes. There are four primary
modes (Master Serial, Slave Serial, Slave Parallel (Spartan 11) or SelectMAP (Virtex) and
Boundary Scan), each with the option to have the user I/Os pulled up or floating during

24

configuration. If pull-ups are selected, they are only active during configuration. After
configuration unused 1/0Os are de-asserted.

The Serial M odes perform essentially the same as those of previous FPGAs families.

In Parallel Modes, the Slave Parallel/SelectM AP are the 8-bit parallel mode for these
devicesthat are similar to the Express Mode in X C4000XLA and Spartan/XL. Aswith these
other device families, the DO is considered the MSB. Spartan Il and Virtex FPGAs do not
have a Master Parallel mode, but can be configured using a parallel EPROM.

Spartan Il and Virtex devices can be serially Daisy-Chained for configuration as all previous
FPGA families. All devices must be in one of the serial modes. The Slave Parallel and
SelectM AP modes do not support any serial daisy-chaining. Multiple devices can still be
programmed using these modesin a parallel fashion.

Boundary Scan is aways active from the moment of power-up, before, during and after
configuration. Boundary Scan modes select the optional pull-ups and prevent configuration

in any other modes.

2.6.2 Initialization and Timing

The initialization sequence is somewhat simpler in Spartan |1 and Virtex devices. Upon
power-up the INIT signal is held low while the FPGA initializes the interna circuitry and
clearsthe internal configuration memory. Configuration may not commence until this cycle
is complete, indicated by the positive transition of INIT. Previous FPGASs families required
an additional waiting period after INIT transitioning high before configuration could begin.
Spartan 11 and Virtex devices do not require an additional waiting period after INIT
transitioning high. As soon as this occurs, configuration may commence. The Spartan 11 and
Virtex configuration logic does however require severa CCLK transitionsto initialize
themselves. For this reason the configuration bitstream is padded with several dummy data

words at the beginning of the stream.
2.6.3 Mixed Voltage Environments
Spartan 11 and Virtex FPGASs have separate voltage sources for the internal core circuitry

(Vee=2.5V) and the 1/O circuitry (Selectl/O). Selectl/O is separated into eight banks of 1/0

groups. Each bank may be configured with one of severa 1/0 standards. Before and during

25

configuration all 1/0 banks are set for the LV TTL which requires an output voltage of 3.3V

for normal operation.
2.6.4 BitGen Switches and Options
This section describes the new optional settings for bitstream generation that pertain only to

Spartan 11 and Virtex devices. The new BitGen options found in the configuration options
template of the Xilinx development software are listed in table 2.1 and described below.

Switch Default Setting Optional Setting
Readback N/A N/A
Config Rate (MH2z) 4 4,5,7,8,9, 10, 13, 15, 20, 26, 30,
(nominal) 34, 41, 45, 51, 55, 60
StartupClk CCLK UserClk, JtagClk
DONE _cycle 4 1,2,35,6
GTS cycle 5 1,2, 34,6, DONE
GSR _cycle 6 1, 2,3, 4,5 DONE
GWE cycle 6 1,2, 3,4,5 DONE
LCK _cycle NoWait 0,123,456
Persist No Yes, No
DriveDONE No Yes
Donepipe No Yes
Security None Levell, Level2
UserlD FFFF FFFF <hex string>(32-hit)
GclkdelO 11111 <binary string>11111
Gclkdell 11111 <binary string>
Gclkdel2 11111 <binary string>
Gclkdel3 11111 <binary string>

Table2.1 Spartan |l and Virtex BitGen Options

Note: Spartan 11 has the extra option KEEP for GTS, GSR and GWE cycles.

26

2.6.5 CCLK and LengthCount

Spartan 11 and Virtex FPGAs do not use any LengthCount number in the configuration
bitstreams. The Start-Up sequence for these devicesis controlled by a set of configuration
commands that are embedded near the end of the configuration bitstream. Thus afree
running oscillator can be used to drive the CCLK pin. Figure 2.7 below displays the default
Start-up sequence timings for Virtex FPGAS, with the bold lines. Thisfigure also appliesto
Spartan || FPGAsif weinvert the GWE signal.

Default Cycles

Start-upCLK ||||||||||||||||||

Phase
DONE HEEEN
GTS LI T [1]
GSR HEEEN
GWE [T T[]

Sync to DONE

Start-upCLK ||||||||||||||||||
Phase 0\ X 2)EEENT

DOMNE High **

DONE BN

GTS :|
GSR i|
.|

GWE

Figure 2.7 - Default Start-Up Sequence [17]

27

2.6.6 Configuration Pins

The configuration pins for Spartan Il and Virtex arelisted in Table 2.2 below.

Name Direction Driver Type Description

Dedicated Pins

CCLK Input/Output Active Configuration clock. Output in
Master mode.

Input Activel Open-Drain | Asynchronous reset to configuration

PROGRAM logic.

DONE [nput/Output Configuration status and start-up
control.

M2, M1, MO Input Configuration mode selection.

T™MS Input Boundary-scan tap controller.

TCK Input Boundary-scan clock.

TDI Input Boundary-scan data input

TDO Output Active Boundary-scan data output.

Dual Function

DIN (DO) Input/Output | Active Bidirectional | Serial configuration datainput.

D[0:7] Input/Output | Active Bidirectional | Slave Parallel configuration data
input, readback data output.

Input Chip Select (Slave Parallel only).

CS

Input Active Low write select, read select

WRITE (Slave Parallel only).

BUSY/ DOUT Output Open-Drain/Active | Busy/Ready status for Slave
Parallel (open drain).

- I nput/Output Open-Drain Serial configuration data output for

INIT serial

Table 2.2 Configuration Pinsfor Spartan Il and Virtex

28

2.7 PCl Pamettevl

The PCI Pamette is manufactured by Compag and is a generic PCI card based on
reconfigurable logic.

2.7.1 The Hardware Architecture

The PCI Pamette has footprints for 5 Xilinx 4000 series FPGAs in PQ208 packages. One
FPGA serves as the PCI interface (a 4010-E), while the other four (4044-XL) are organized
in asimple two by two matrix. The FPGA implementing the PCI interface has arelatively

SRAM
Download /
PMC
Readback |—
> or
{ FPGA FPGA Daughter
P Board
C FPGA
I Secondary
FPGA FPGA Daughter
Board
Clocks [™ Connector
-
SRAM DRAM

Figure 2.8 —PCl Pammete vl Architecture[18]

fixed configuration, while the remaining four can be programmed with application specific
configurations. As depicted in Fig.1, the front two user FPGASs connect to private scratchpad
SRAMSs and funnel data from the rear two user FPGASs to the interface FPGA. The rear two
user FPGA s connect to the daughter board connectors and the DRAM SIMM sockets. The
SRAM isdivided in two banks of 16-bit wide 64k, and through the supplied connectors,
industry standard 72-pin SIMM DRAM modules which permit from 4MB to 256MB of
DRAM can be attached. The board has also a clock generation scheme.

29

The interface FPGA controls download and readback of the user area and generation of
clocks. User FPGAs can be individually reconfigured without affecting other FPGAS,
however when multiple FPGAs are reconfigured or their configurations are read, thisis done
inparallel.

2.7.2 Programming Tools

The PCI Pamette can be programmed using one of the following programming tools:

0 Code-based module libraries from Compaq (PamDC[19])
o0 Toolsfrom Xilinx, Inc.

o Any logic synthesis tools which generate the Xilinx .rbt raw bitstream format

Provided with the Pamette is a set of CAD tools called PamDC for implementing designs.
PamDC is derived from PerlelDC, the CAD system of DECPeRLe-1. PamDC isa C++ class
library which alows netlist descriptions to be embedded in user-written C++ code. The
Pamette CAD provides support for attaching placement directives to nets at the C++ level.
C++ classes are used to represent the hierarchy of a design, equivalent to blocks and sub-
blocks in a schematic.

The Pamette design flow consists of writing a C++ program which, when compiled and run,
produces a netlist. This netlist is then passed to the Xilinx backend tools to produce a Xilinx
bitstream. Use of the CAD tools is not mandatory; any technique which generates a Xilinx
bitstream can be used to configure the Pamette FPGAS.

2.7.3 Interface M odes

In firmware v2.0 four distinct interface modes are supported. These are selected through the

<PamRT.h> function PamSetMode or PamSetModeAndDelay which set the appropriate

value(s) in the decode register at address 0x30 in PCl Pamette memory space. The modes are
Static mode a simple low-performance interface that provides statically configured

16 bit paths to and from the user-area. The static mode is displayed in Fig.2.

30

Promiscuous mode transmits a selection of data and control values present on the PCI
bus to the user-area. The flow of data is one-way. The name promiscuous is chosen by
analogy with modes on some ethernet adapters which allow them to accept and observe
all packets on the network.

Transaction mode is a high performance transaction oriented mode that supports both
target and master operation. Thisisthe preferred mode for all but the smplest designs.
Promiscuous Transaction mode combines the protocol state machine of Transaction
mode with the trace collection capabilities of Promiscuous mode. It can aid in the debug

of Transaction mode applications.

PIF User-area

Link

16
Reg .‘+ EBus<31:16>
<31:16>

: 16
Link |/ . EBus<150>
Reg
<15:.0> ‘_‘
CIkPCI Clock +
Recovery ClkSys

Figure 2.9 — Static Mode[18]

2.8 The JBits API - Xilinx

The JBits SDK contains a set of software tools and API's which let you create Xilinx XC4000
and Virtex bitstreams from Java code. All configurable resources of the device can be
programmed individually through the software. Included is a graphical debugger called
BoardScope, which allows you to view chip internals at runtime. BoardScope can aso be used

in simulator mode if hardware is unavailable.

31

2.8.1 The JBits Design Flow

The JBits API is based on the Java Environment for Reconfigurable Computing for the
XC6200 family of devices (JERC6K). JERC6K was also implemented completely in Java
and provided fast compile times and supported dynamic reconfiguration.

JBitsisalibrary which gives complete accessto all of the configurable architectural features
of the device. Thislibrary is pre-compiled Java classes, so the result is not a static
configuration bitstream, but rather executable code. This code executes and supplies
configuration control and data to the reconfigurable logic. The Design Flow for JBitsis
depicted in Fig. 2.10.

JBits
Libraries

User Java
Java Compiler Executable
Code

Reconfigurable H/W

Figure 2.10 JBits Design Flow

2.8.2 The JBits System Design and Boar dScope

The JBits System Design isillustrated in Figure 2.11. The User Java Code utilizes the JBits
Interface to manipulate the configurable resources of the FPGA. The Bit Interface Level is
called by function calls at the JBits Interface Level. At this point asingle bit can be
configured or cleared. The Bit Level Interface also interacts with the Bitstream class, which
manages the device bitstream and provides support for reading and writing bitstreams to and

from files. The Bitstream class can a so take data read back from the device and map it the

32

underlying bitstream data format. Finally, the Core Library is a collection of Java classes

which define macrocells or cores.

JBits
Core User Java 1 N .
) L it
Library Application Bit-Level <;:> filles

Interface

T r Bitstream

XHWIF

Reconfigurable
Hardware

Figure2.11 - The JBits System Design

BoardScope is atool that enables the user to examine graphically the operation of FPGA
circuits on any reconfigurable computing board. It can be used to verify the design’s
operation.

The JBitsinterface is used to access resources in the FPGA’ s bitstream. Then using XHWIF
[20] the bitstreams are downloaded to configure the FPGAS, or readback to analyze them.
BoardScope graphically displays the states of all CLB flip-flops for al computational FPGASs
on the board. All the CLB flip flops can be examined in one view and flips flops changes
from one state to the next can be observed. BoardScope also provides a more detailed view

of the state of a Configurable Logic Block showing the look up table states, the X and Y flip-

flop configuration and states, and the CLB’ s internal interconnect.

2.8.3 Limitations of JBits

The most important limitation of JBitsisits manual nature that requires that everything is
explicitly stated in the source code, including the routing. This need for explicit specification

33

of all resources makes the JBits interface more appropriate for structured circuits. Unstructured circuits
such as random logic are not well suited for direct implementation in JBits applications.
JBits also requires that the user is familiar with the architecture. This makes it hard to use,
because most users have never had the need of such details. It is also the greatest barrier to
the widespread acceptance of JBits interface.

In addition, the JBitsinterfaceis at the most downstream end of the tool chain. While JBits
API may make use of circuits produced by standard devel opment tools, modification or
reconfiguration of the circuit at the JBits level eliminates any possibility of using any
analysistools available to circuit designers further up the tool chain. One tool which appears
to have at least partially offset the lack of analysis toolsis the recent devel opment of
BoardScope.

2.9 MasterBlaster Serial/lUSB Communications Cable - Altera

The MasterBlaster Serial/USB Communications Cableis atypical Altera programmer that
interfaces with an RS-232 serial or Universal Serial Bus (USB) port. It supports the Signa Tap
[21] embedded logic analyzer in the Quartus Il software [22]. PC and UNIX users can
configure every Altera FPGA/CPLD with the MasterBlaster. The power is received from 5.0-V
or 3.3-V circuit boards, a DC power supply or 5.0-V from the USB cable.

The data is downloaded from the Quartus 11 devel opment software or the MAX+PLUSII
software [23] versions 9.3 and higher. The modes supported are Passive Serial and JTAG.
Finally, a 10-pin circuit board connector is used.

2.10 MultiLinx Download Cable - Xilinx

The MultiLINX Cableis a peripheral hardware product released by Xilinx in 1999. This cable
is primarily used for the purpose of downloading configuration and programming data to
Xilinx FPGAs and CPLDs from a host computer to ausers' target system.

The MultiLINX cable supports a USB interface. The MultiLINX Cable is also outfitted with all
the appropriate flying leads for multiple configuration mode support, as well as supporting
multiple readback modes such as verification, Capture, and the Virtex SelectMAP interface.

Finally, a noted feature of MultiLINX isthat itsinterna hardware is upgraded via software,

something that allows future expansion of cable features

2.11 Summary

In this chapter we discussed matters concerning the configuration of FPGAs and related work.
The PCI Pammete v1 development board was presented. The Pamette design flow consists of
writing a C++ program which, when compiled and run, produces a netlist. This netlist is then
passed to the Xilinx backend tools to produce a Xilinx bitstream. This bitstream can then be
downloaded to the FPGA s either by writing C++ code and including the libraries or by using a
command prompt utiliy that requires writing the same program without including the libraries.
The JBits AP, is apowerful tool, but requires that the user is familiar with the FPGA
architecture. Thismakes it hard to use and is probably the reason for not being widespread.
MultiLinx and MasterBlaster are reliable solutions but they are vendor specific and as we will
seein the next chapter, their prices are inhibiting.

35

Microprocessor and Hardware Laboratory

Chapter 3

Ar chitectur e of ReRun

Chapter 3

Architecture of ReRun

This chapter describes the architecture of ReRun and its purpose, the development of a
language and a universal run-time environment for FPGA programming. The language is
named PTL and it is supplemented by a Graphical User Interface (GUI).

The first section contains a brief description of ReRun (Reconfigurable Run-Time
Environment). The second section moves on to describing its features and attributes. The third
analyzesits structure and gives an insight of the language and the GUI. In the fourth section
the commands of the PTL are described. The fifth section makes a functional description of the

back-end. Finally, the sixth section contains a summary of this chapter.

3.1 Brief Description

ReRun (Reconfigurable Run-Time Environment) is a system developed at the Microprocessor
and Hardware L aboratory (MHL) [24] of the Technical University of Crete[25]. It isthe
software part of a Universal Run-Time Environment for FPGA programming. Asthetitle
denotes during the implementation of ReRun alanguage was devel oped along with a Graphical
User Interface. The language can be used to write scripts describing the configuration or testing
process. The scripts are then passed through the compiler using the GUI. The compiler
produces two files, one to be downloaded to the FPGA, the avr.dl and one to be used by the
GUI, the props.gui. In case the script isintended for configuring an FPGA, the bitstream file
produced by the Development Tools of the FPGA vendor, has to be provided by the user. Then
through the GUI, the user can program and test any FPGA. The hardware platform of the Run-
Time Environment is named Hardware Programmer and Tester (HPT) and was implemented
by Dionissis Efstathiou. The software-hardware interface is established using the RS-232 serial
port protocol.

37

3.2 Features and attributes

ReRun has a number of features that make it unique. First of al, itisversatileasitisa

programmer and tester of FPGAS. It is also vendor-independent for it can be used for FPGASs

of any vendor. Looking at Table 3.1, that lists FPGA programmers along with their prices, itis
obvious that the cost of buying oneis quite considerable, even more so if you require one
programmer from each vendor. Besides being a many-in-one tool, ReRun is an open system

with a cost which can be aslittle as $25.

Xilinx Cable Price
MultiLinx Cable $495
Parallel Cable |11 [26] $95

Altera Cable Price
M asterBlaster $576
ByteBlaster [27] $576

Table 3.1 FPGA Programmers Cost

Another notable feature is the Graphical User Interface (GUI). A GUI isafundamental aspect

of the design of this system. It presents tasks visually, so that the tasks are easy to learn and
prevent errors. It also combines functionally and usability. ReRun has a user-friendly GUI that
allows the user to open, edit, compile and execute a script file, change the port settings, etc. A
more thorough description of its featuresis made in Section 3.3.2.

The language has been devel oped using Flex [28] and Bison [29], while the GUI was
implemented with Java. This has made ReRun portable and platform-independent. Java

compilers do not produce native object code for a particular platform but rather ‘ byte code’
instructions for the Java Virtual Machine (JVM) [30]. Making Java code work on a particular
platform is then simply a matter of writing a byte code interpreter to smulate a VM. What this
means is that the same compiled byte code will run unmodified on any platform that supports
Java. Flex and Bison on the other hand produce a C program, which with few modifications
can become cross-platform.

The communication between hardware and software is achieved using the serial port of a

computer. Thusit does not consume alot of system resources, like for example a PCI card

would. Moreover, it does not require the installation of hardware drivers specific to the

38

Operating System. A common problem for cardsisthat driversfor all operating systems are

not available.

3.3 Structure

The Language and GUI are the most important parts of ReRun. Fig 3.1 isagraphical
illustration of the structure. The tools used to implement the language, as well asthefiles
produced by the PTL compiler are discussed in Section 4.3.1, while Section 4.3.2 describes the
GUI in more detail.

) OO O0OO0OO0O0OO0OO0Oo
Graphical ° °
User 8 g
Interface © FPGA o
@) (@]
@) (@)
@) O
I . x : OO O0OO0OO0OO0OO0OoOo
i0< - | Hardware
: Programmer FPGA
Workstation and Tester Device
(HPT)

Figure 3.1 ReRun Structure

3.3.1 The Programming and Testing Language (PTL)

The PTL language was developed using GNU’ s Flex Lexical Analyzer Generator and Bison
Syntactical Analyzer Generator. More specifically:

Flex isatool for generating scanners. programs which recognized lexical patternsin text.
Flex reads the given input files, or its standard input if no file names are given, for a
description of a scanner to generate. The description isin the form of pairs of regular
expressions and C code, called rules. Flex generates as output a C source file, “lex.yy.c,
which defines aroutine "yylex()'. Thisfileis compiled and linked with the "-Ifl" library to

produce an executable code. When the executable code isrun, it analyzesitsinput for

39

occurrences of the regular expressions. Whenever it finds one, it executes the corresponding
C code.

Bison is a general-purpose parser generator that converts a grammar description for an
LALR context-free grammar into a C program to parse that grammar.

Figure 3.2 depicts the steps taken to devel op the compiler. First the input file containing the
rulesisread from Flex and the lex.yy.c file is generated. On the other hand thefile
expressing the grammar in Bison syntax is read from Bison and afilename.tab.c fileis
produced. Finally, the two files generated by Flex and Bison are compiled by a C/C++
compiler and the PTL Compiler is ready.

Lexical
Analyzer
Description

| :
[C/C++

Flex > Lexical e —

Analyzer C/C++
~ Compiler
9 cic++ (gce)

Bison |[——>| Syntactical |

Analyzer

2)
Syntactical
Analyzer
Description -
PTL
Compiler

Figure 3.2 Compiler Development

The user can choose to compile a script from the command line or load the script using the
GUI and compileit by pressing one button. Doing this will produce two files. Thefirst,
avr.dl, isthe one that will be downloaded to and parsed by the HPT. The second file,
props.gui, contains information that is utilized by the GUI. Specifically thisinformation is
the Configuration Clock Frequency, the Voltage Sour ce, the Signal and Static M apping
and the Number of Signals Used. Section 3.4 provides more information concerning the
language and presents its commands, while Chapter 4 delves into more technical details.

40

3.3.2 The Graphical User Interface

The GUI was implemented using the Java Programming Language and the Java
Communications Application Programming Interface (API) [31]. This choice was made,
taking into consideration two factors, the increasing usage of Java-based tools and
technology in the Reconfigurable Logic Industry and the cross-platform operability of Java
Applications.

Examples, of Javain Reconfigurable Logic are Xilinx’s JBits APl and JHDL [32]. JBitsisa
Java API that allows designersto write information directly to a Xilinx FPGA to carry out
whatever customer logic operations were designed for it. It permits the modification of
FPGA bitstreams and can be used to partially or fully reconfigure the internal logic of
Xilinx’s Virtex devices. On the other hand, JHDL is adesign tool for Reconfigurable
Systems, implemented as a set of Java class libraries, that allows the user to design the
structure and layout of a circuit, debug the circuit in simulation, netlist and interface with
back-end tools for synthesis, and so forth.

The Java Programming L anguage and Communications API can be used to write platform-
independent applications. The Java Comm API used contains support for RS232 serial ports
and |EEE 1284 parallel ports. More specifically, the user of the API can:

Enumerate ports available on the system.
Open and claim ownership of ports.
Resolve port ownership contention between multiple applications.

Perform asynchronous and synchronous I/O on ports.

AN N NN

Receive Beans-style events describing communication port state

changes.

A test was performed to ensure that the Java Comm API can be sent to and received from the
HPT hex numbers ranging from 0x00 to OXFF. The test was successful, thus no encoding was
needed to ensure transmission of special characters through the serial port and this does not
depend on the seria port driver.

The GUI was created using Sun’s Forte™ for Java™ Community Edition Integrated
Development Environment (IDE) [33]. The GUI isfurther analyzed in Chapter 5.

41

3.3.3 Operating I nstructions

ReRun is not a completely independent Run-Time Environment. It requires that the user
provides the configuration bitstream file. Thisfile is produced by the development tools of
the FPGA vendor. For Xilinx, the Bit file (.bit), described in Section 2.5.1 isrequired, while
for Altera, the Raw Binary File (.rbf), described in Section 2.5.3 must be provided. Thisfile
is not produced automatically by the development tools, so the user must convert the
bitstream produced to .rbf.

The user must also choose a script or write one in the GUI. The script must be compiled
before it is downloaded to the HPT.

For programming scripts, the user must load the configuration bitstream file. When loaded,
its sizeis displayed, to help the user calculate the load instruction’ s arguments.

For Xilinx devices, the Bit files contain a header which must be cut from the bitstream. To do
this, the user must check the Process Bitstream checkbox. This option should be left
unchecked for Altera devices or the device will not be configured.

To download a script to the FPGA, the user must connect the serial cable to the HPT. Then
the appropriate set of cables must be connected to the FPGA and the system must be powered
up. To connect these cables to the correct FPGA pins, the user must read the data sheet
provided by the vendor.

During program scripts, the Clock is generated by the HPT, thus the user does not have to
take any actions to create and map asignal for it in the script. On the other hand, in atest
script, it must be implemented by the user, using the set instructions, which are described in
the following section.

Finally, the configuration datais loaded to the device from a specific set of flying wires and
the user only has to use the load instruction for the data to be loaded to the device. This

means that no signal declaration isrequired for the data.

3.4 The Script Language

The Programming and Testing Language (PTL) is designed to support the programming and
testing of FPGAs. It isinterpreted to binary code that is sent through a port (the serial port in
this implementation) to the Hardware Programmer and Tester (HPT). The HPT then executes
the code and either programs a device or testsit. A PTL script consists of the header and the

42

main part of the script. The header is a series of declarations and the signal mappings. The
main part is where the user types the code to be executed by the HPT.

Comments are supported by PTL. Line comments start with a double backslash (//) and stop at
the end of the line. On the other hand, multi-line comments start with a backslash followed by
an asterisk (/*) and terminate when an asterisk and a backslash are found (*/). Commentsin
comments are not alowed.

Finally, the PTL language supports instructions that are not implemented by the HPT. These
instructions are optional and the user can write and execute scripts for the HPT without any

problem.

3.4.1 Header

In the beginning of the script the user can write some comments about the FPGA. The next
step is defining whether it is aprogram or test script. Then he can define the frequency of the
configuration clock and the voltage source. These three parts are optional, but if used they
must be defined in the specific order. Finally the header of the script consists of the
declaration of integers, signals and statics and the mapping of the last two.

The commands that can be used in the header of the script are listed below, in the order they
must be typed.

Comments (Optional)

Comments are used to provide information about the device to be programmed or tested.

Below is an example of a comment:

manufacturer "Xilinx";
family " XC4000";
device "XC4044XLHQ208";

The comment statement, if present, requires al fields (manufacturer, family, device) to be

specified. Thisfeature is not utilized by the current version of the HPT.

Program or Test Script (Optional)

This part defines the type of the script. In case of a program script the user must type:

43

program®“PM” ;

PM isthe programming mode. Currently this can be serial or parallel and instructs the HPT
about how to load the data, serial or parallel. To define that the script is atest script the user
must type:

test;

This causes the HPT to use the port reserved for |oading the configuration data, as inputs for

testing.

LSB or MSB (Optional)

This part defines how the configuration datais loaded to the FPGA, Least Significant Bit
(LSB) first or Most Significant Bit (MSB) first. Xilinx for example loads the configuration
data MSB first, while Alteraloads it LSB first. This command can be used only in program

scripts. The syntax is

[sb;
or
msb;

Clock Declaration (Optional)

In this part the user can define the configuration clock rate or the test clock frequency. This
command has two versions. Thefirst is:

clk value (unit);

The value is an integer and the units are KHz, Khz, khz, MHz, Mhz, mhz. Thisfeature is not
utilized by the current version of the HPT.

The second versionis:

clk low;
clk high;

Thisversion tellsthe HPT that if, for example, clk low is selected, the configuration clock

has no maximum low time, but thereisalimit to the high time.

Operating Voltage Declaration (Optional)

It iswell known, that FPGASs can operate at various voltage supplies. If the HPT can provide
more than one voltage supply, the user can use the language to define the preferred value.
The syntax is:

vs value (unit);

The valueis an integer and the unitsare V, v, mV, mv. Thisfeature is not utilized by the
current version of the HPT.

Variable Declar ations
Thetypical variable declarations are:

typeid;
or
typeidl,id2,...idn;

The type can be int and signal and the name can be anything that is not a reserved word. The
typeint isthe same asin C programming language. The signals declared here must be
mapped in the Signal Mapping part.

Static Variables (Optional)

This feature can be used to hold certain signals at the specified value throughout the whole
configuration or testing process. Its syntax is:

Saticid ‘state’;

The statics declared must be mapped in the Signal and Static Mapping part of the script.

Signal and Static Mappings

In the signal mapping part of the script, the user must correspond the declared signals and
statics to a specific cable of the HPT. To define that the signal or static is an output the user
must use the symbol => and to define that it is an input the <=. Finally a static can not be
defined to be an input. For example to correspond the signals MmO, mmL, init and prog to

cables 0, 1, 2, and 3 asinput, output, input and output respectively, the user must write:

45

map{

mmO0 => 0,
mml <=1,
init=> 3;
prog <= 4;
}

A signal or static can not be mapped to more than one wire and vice versa.

Warning! The maximum number of signals that can be mapped is 23. Thefirst 16 (0-15) can
be inputs and outputs, while the last 8 (16-23) can only be inputs, to the HPT, in the case of a
test script. In programming mode pins 16-23 are used for loading configuration data to the
FPGA so they can not be used!

3.4.2 Main Program

Thisisthe main part of the script and the code is written between a start — end statement.

The language supports the following statements:
0 Assignment

For Loop

Set

Load (Byte, Kbyte)

Readback (Byte, KByte)

Get

Nop

Wait

Compound Statement

O O O O O O o o

Assignment

An integer variable can be assigned to an expression. An expression can be an integer
variable, anumber or a simple arithmetic operation such as addition, subtraction,
multiplication and division. For example:

idl=idl+ id2+ id3;

id2 =id3 + 15;

46

Compound Statement

Commands within a compound statement are executed simultaneously by the HPT. Only set
statements are allowed and they must be two or more. For example to set the values of

signalsinit, program and confdoneto 1, 0, 1 you type:

{

setinit‘1’;

set prog ‘0’;

set confdone‘1’;

}

For Loops

The For Loop can be used to repeat commands for a number of times equal to that specified
by the user. It starts with the for keyword followed by a number and ends with an endfor:

for expression

endfor

The expression can be a number or avariable, denoting the number of iterations. The current
maximum value for the expression is 256. Load and readback instructions can not be inside a
for loop.

Get

This command returns the values of all the signals and statics declared by the user. The HPT
checks them and sends their values in the appropriate form. This command consists of a

single word, the word get followed by a number from 0 to 3 and a semicolon:
get O;

Depending on the number, the HPT returns the values of all or some signals:
0 — Get data from all signals (Input and Output)

1 — Get datafrom signals mapped to pins 0-7.

2 — Get data from signals mapped to pins 8-15.

3 — Get data from signal's mapped to pins 16-23.

47

L oad

This command notifies the HPT that the next x Bytes or Kbytes of data sent through the
serial port are from the bitstream file and must be loaded to the FPGA. Depending on the
programming mode, the HPT loads the datain the device at arate of 1 bit/clock cyclein
serial modes or 1 byte/clock cycle in parallel modes. The data loaded by one load instruction
can be up to 256 bytes or Kbytes. This means that to load afile of size 3,526 bytes, the user
must type:

loadkb 3;
loadb 256;
loadb 198;

As mentioned above, the current limit for thisinstruction is 256.

Nop

Thisinstruction can be used for adding delays. The argument defines how many nops will be
sent to the HPT.

nop 5;

Readback

The readback command is similar to load but causes the HPT to send data read back from the
FPGA, to the GUI. There are two versions of this command. The one specifies number of
bytes to read and the other number of Kbytes. Its syntax issimple, it is the keyword
readbackb or readbackkb followed by the number of bytes or Kbytes respectively and a

semicolon:
readbackb 230;
readbbackkb 20;
Reverse

The reverse command toggles the state of asignal from input to output or vice versa. Thisis
very useful in the case of input/output signals. Its syntax is the keyword reverse followed by

the name of the signal:

48

reverseinit;

Thisis command is not alowed for signals mapped to pins 16-23 and statics.

Set

This command is used to set the value of asignal to a specific state. Finally a static can not
be set. For example:

set program ‘1’ ;

Wait

The wait command causes the HPT to wait until asignal gets a specific value to continue
normal operation.

waitinit ‘1’;

Thisfeature is not utilized by the current version of the HPT.

3.4.3 Compiler Output

The compiler produces two output files. The oneis the script that will be sent to the HPT and
the other provides information to the GUI.
o Script File

The script file produced by the compiler is downloaded to the HPT. The HPT then, parsesit
and executes its commands.

0 PropertiesFile

Thisfile contains information that is utilized by the GUI. Specificaly, the Configuration
Clock, the Voltage Sour ce, the Signals and Statics M apping, the Number of Signals Used
aswell asinformation about the ports of the HPT that are used.

49

3.5 Back-End

The Back-End of ReRun is the hardware platform developed by Dionissis Efstathiou. The
platform is based on an AV R Microcontroller and communi cates with the computer and GUI
through the seria port using the RS-232 protocol. The HPT can be used for programming an
FPGA device aswell astest it.
To program adevice, the user writes the appropriate script, compilesit, chooses the bitstream
and presses the Start Button in the GUI. Then the compiled script and the bitstream are sent to
the HPT through the serial port using the protocol developed. In the end the user receives a
message that confirms the successful or unsuccessful configuration of the device.
In case of atest script, the user writes a script, compiles it and presses the Start Button. The
script is then downloaded to the HPT using the same protocol. The HPT returns the values of
the signals to the GUI, which stores them in afile and displays them in the form of arrays.
The crystal oscillator used for the AVR Microprocessor is 7.68 MHz.
The HPT can provide up to 24 signals to the user.
Caution!! These signals are limited to 16 when in programming mode, because the 8
signals are used for loading configuration data to the FPGA. In test mode, these 8 signals
can be used, but only asinputsto HPT.
The language is not AV R-specific, thusit is possible to devel op another platform for
programming and testing FPGAS, as long as it complies with the specifications set by the
language.

3.6 Summary

In this chapter we referred to the architecture of ReRun. We saw a brief description of the
system, aswell asits features and attributes. Then we moved on to describing its structure, the
tools used to create ReRun and some operating instructions. We presented the Programming
and Testing Language (PTL) and itsinstructions. And finally we discussed the back-end of
ReRun, also implemented at the Microprocessor and Hardware Laboratory, by Dionissis
Efstathiou.

50

Microprocessor and Hardware Laboratory

Chapter 4

L anguage

Chapter 4

L anguage

This chapter analyzes the language that was devel oped for ReRun in more depth. More
specifically, the first two sections describe the Lexical and Syntactical Anayzers. The third
section moves on to the Symbol Table. The fourth contains the type checking and error

messages. And finally, the sixth section contains a summary of this chapter.

4.1 Lexical Analyzer

A lexical analyzer is an input procedure that reads blocks of input conforming to a specified set
of patterns (tokens). A lexical analyzer reads from the current input (usualy afile). It
consumes characters until a complete token has been found. It then returns them to the
Syntactical Analyzer. Usua tokens are keywords, variable identifiers, delimiters and operands.
The procedure followed to build the lexical analyzer is depicted in Fig. 4.1.

Input

Flex Stream

Source

Program

Lex.| Lex.yy.c

| | | RSO | — YT
Compiler

Stream of
Tokens

Fig4.1 —TheLexical Analyzer

As mentioned in Chapter 3, the tool used to develop the lexical analyzer is GNU’s Flex. Flex is
Lexical Analyzer Generator in C/C++. It isbased on UNIX’slex tool. Flex isrelatively easy to
use and is quite flexible. It can also cooperate with syntactical analyzer generators. The codeis

divided in three parts that are separated with the % symbol.

52

Part A
%
Part B
%
Part C

Thefirst part contains commentsin /* and */ and C/C++ code in %{ and %}, that will be

embedded asis. For example:

%f
#define TK_EOF 0
#define TK_ID 1
int lineCount = O;

%0}

The first part also contains mnemonic name definitions for character families or canonical

expressions. For example:

NOT_DQUOTE [™]
identifier {letter}({letter}|{digit})*

Finally it includes instructions to Flex and initial state definitions.

In the beginning of the second part one can write C/C++ code in %{ and } % to declare

variables for the lexical analyzer function. The most important part isthe rules. Rules arein the

form of:
Canonical expression Action
For example:

clk {printf("clk");return TK_CLK;}

Comments are not allowed in the second part and the syntax is strict, so trivial mistakes can
lead to different results.

53

Finally, the third part, as well as the % separator, is optional. It contains C/C++ codethat is
embedded asis and is usually used to define helpful functions that can be called from the

lexical analyzer in the actions of the second part.

Thelexical analyzer of PTL recognizes the following keywords:

(0]

0O O O 0O O 0O 0O O OO0 O O OO o O OO O 0o o 0o o o o o

vs (The voltage source declaration) TK_VS

clk (Configuration Clock declaration) TK_CLK
manufacturer (The DUT vendor declaration) TK_MANUFACTURER
family (The FPGA family) TK_FAMILY

device (The device) TK_DEVICE

int (Integer variable declaration) TK_INT

signal (signal declaration) TK_SIGNAL

program (Program Script declaration) TK_PROGRAM
static (Static declaration) TK_STATIC

test (Test Script declaration) TK_TEST

map (Start of Signal and Static Mapping) TK_MAP

start (Start of Script) TK_START

end (End of Script) TK_END

set (Change the value of asignal) TK_SET

loadb (Load bytes) TK_LOADB

loadkb (Load KBytes) TK_LOADKB

get (Get the values of the signalson aport) TK_GET
readbackb (Readback KBytes) TK_RDBKKB

readbackkb (Readback Bytes) TK_RDBKB

wait (Wait for asignal to get the specified value) TK_WAIT
reverse (Toggle asignal between input and output) TK_REV
for (Start of for loop) TK_FOR

endfor (End of for loop) TK_ENDFOR

low (Value for the Configuration Clock) TK_LOW

high (Value for the Configuration Clock) TK_HIGH

Isb (Load least significant bit first) TK_LSB

msb (Load most significant bit first) TK_MSB

nop (No Operation) TK_NOP

The lexical analyzer also recognizes the following symbols. (TK_LPA,) TK_RPA, { TK-
LBRA,} TK_RBRA, , TK_COM, ; TK_TERM, = TK_EQ, <= TK_VASSGN, =>
TK_ASSGN, + TK_PLUS, - TK_MINUS, * TK_MULT, / TK_DIV and comments. There can
be line comments and multi-line comments. Line comments start with // and multi-line
comments start with /* and end with */. Finally, the lexical analyzer recognizes numbers and
identifiers and returns their values to the syntactical analyzer.

Another function performed is keeping the line number of each token in avariable. This

variable is later utilized by the syntactical analyzer for error messages.

4.2 Syntactical Analyzer

Syntactical analysisimposes a hierarchical structure on the program. This structure is specified
by the rules of a context-free grammar. A syntactical phrase isintroduced by giving one or more
alternatives. An aternative specifies how to construct an instance of the phrase. It lists the
members that build up the phrase, where such a member is either atoken or the name of a phrase
(anon-terminal).

Consider the rule to define statements:

statement : id ASSIGN expression
| set signal state

For example, the first alternative specifiesthat if D isanid and if E is an expressionthen D :=
E is astatement.

The syntactical analyzer generator used to develop the language is GNU’ s Bison. In order for
Bison to parse alanguage, it must be described by a context-free grammar. The most common
way to describe rules is the Backus-Normal-Form (BNF). Any language expressed in BNF
form is context-free. In the formal grammatical rules for alanguage, each kind of syntactic unit
or grouping is named by a symbol. Those which are built by grouping smaller constructs
according to grammatical rules are called non-termina symbols; those which can't be
subdivided are called terminal symbols or token types. A piece of input corresponding to a
single terminal symbol is called atoken, and a piece corresponding to a single non-terminal
symbol is called a grouping.

The Bison fileisin the form:

55

%f

C/C++ declarations
1%

Bison declarations
%

Grammar rules

%

Extra C/C++ code

The Bison declarations are termina and non-terminal symbol declarations. For example:

%token TK_ID

%type<number> expression

There can also be precedence and associativity declarations:

%left TK_PLUS
%right TK_EXPON

Symbol type declaration:

%union{
int number;
char *string;
}

The third part, the Grammar Rules has declarations of the general form:

left_part: right_part;

The left part being a non-terminal symbol and the right part, zero or more terminal and non-
terminal symbols. There can be alternative right parts and they can have semantic actions. For

example:

main: TK_START {
printf(* Start of main program”);
} smts TK_END {

56

printf(* End of program”);
3
The last part, as well as the % separator, is optional. It contains C/C++ code that is embedded
asis. It can be used to define functions that can be called by the semantic actions.

The grammar of the language developed is presented below in BNF form:

<script> ::= <comment >
<PT>
<| oadl n»
<CLK>
<VS>
<decl arati ons>
<mappi ng>

<mai n>

<decl arations> :: =

| <decl arati ons> <decl aration>

<decl aration> ::= <var_def >

| <static>

<coment> :: =
| TK_MANUFACTURER TK_CHARCON TK_TERM TK_FAM LY
TK_CHARCON TK_TERM TK_DEVI CE TK_CHARCON TK_TERM

<var _def> ::= <type> <def _sonme> TK _TERM
<type> ::= TK_INT

| TK_SI GNAL
<def sone> ::.= <def one>

| <def _sone> TK _COM <def _one>

<def _one> ::= TK ID

57

<CLK> ::=
| TK_ CLK TK_NUM TK_LPA TK_FUN TK_RPA TK_TERM
| TK CLK TK_LOW TK_TERM
| TK CLK TK_H GH TK_TERM

<VS> =
| TK_ VS TK_NUM TK_LPA TK _VUN TK_RPA TK _TERM
<PT> ::= <test>
| <prograne
<test> ::= TK _TEST TK_TERM
<progrant ::= TK PROGRAM TK_CHARCON TK TERM
<loadlnp ::=
| TK LSB TK_TERM
| TK_ MSB TK_TERM
<static> ::= TK_STATIC TK_|I D TK_STATE TK_TERM
<mappi ng> ::= TK_ MAP TK LBRA <maps> TK RBRA
<maps> .=
| <maps> <map>
<map> ::= TK I D <assgn> TK_NUM TK_TERM
<assgn> ::= TK_ASSGN\

| TK_VASSGN

<mai n> ::= TK START <snts> TK END

58

<conpound> ::

<cnp_snts> ::

TK_LBRA <cnp_snt s> TK_RBRA,

| <cnp_snts> <cnp_snt >

<cnp_sm> : <set>

<snts> .=

| <smts> <snt>

<smt > ::= <assignnment>

<set >
<l oad
<get >
<conp
<reve
<wai t
<read

| <nop>

<assi gnnment > :

<expressi on> :

<for_sm> :

<for_sms> ::

<for_snt>

>

ound>
rse>

>

back>

TK I D TK_EQ <expressi on> TK_TERM

: = <expression> TK PLUS <expressi on>
<expressi on> TK_M NUS <expressi on>
<expression> TK MILT <expressi on>
<expression> TK DI V <expressi on>
TK_NUM

TK_ID

:= TK_FOR <expression> <for_snt s> TK_ENDFOR

| <for_snmts> <f_snt>

59

<f _sm > ::= <assignnment>
<set >

<conpound>
<reverse>

<wai t >

| <nop>

<wait> ::= TK WAIT TK | D TK_STATE TK_TERM

<set> ::= TK_SET TK_ID TK_STATE TK_TERM

<l oad> ::= TK_LOADB TK_NUM TK_TERM
| TK_LOADKB TK_NUM TK_TERM

<get > ::= TK_GET TK_NUM TK_TERM
<reverse> ::= TK REV TK I D TK_TERM
<readback> ::= TK_RDBKB TK_NUM TK_TERM

| TK_RDBKKB TK_NUM TK_TERM

<nop> ::= TK_NOP TK_NUM TK_TERM

4.3 Symbol Table

The symbol table constructed for the language is dynamically increasing list with pointersto

thefirst and last node. Each node has a pointer to the next node and is a struct of type node.

The symbol table stores the variables, signals and statics declared by the user. The struct has

the following elements:

0 A string containing the name of the variable, signal or static declared. The maximum

length is currently defined to 20. This number is sufficient for naming variables, signals

and static that a user may declare.

60

0 Aninteger recording its value.

0 Aninteger definingitstype (1isinteger, 2 issignal and 3 is static).

0 Aninteger that appliesto signals and statics and defines whether the signal has been
mapped. Thisfield is 0 when this element has not been mapped and 1 if it has. For
integersit is aways 0 and can not be changed.

0 Another integer that also appliesto signals and statics, but not integers. This integer
keeps the value of the pin to which the element has been mapped. The previousfield is
always check first to ensure that this one won't be read accidentally for an integer.

0 Another, third integer existsin the symbol table and appliesto signals and statics only.

0 It defines whether the signal is an input or an output.

o Finadly thereisapointer to the next element of the symbol table.

Besides the essential functions needed to insert, delete and find an element, some additional
have been implemented.

One function named error has been created to produce better error messages than the ones
produced from yyerror.

Another, vartype, returns the type of the element with the name that is passed as an argument.
The getsignals returns the current values of signals and statics to two global variables, so that
they can be processed by set or other command.

The getiosis similar to the getsignals with the difference that it returns whether the signals are
inputs or outputs.

The gethames is used to write the variable names along with the pin to which each is mapped
to afilethat islater used by the Graphical User Interface.

And finally, the ismapped returns whether the signals or static passed as an argument to this

function has been mapped.

4.4 Integrity Checksand Compiler Errors

The compiler performs the following integrity checks:

o TypeChecking

In this case the correctness of operands is checked. For example, the user can not set the

61

value of an integer or a static using the command set, or assign avalue to asignal or
static.

0 Check for unique declaration
This checks whether the name of asignal, variable or static is being declared more than

one time. If so an error is produced.

Below the error messages and their explanation is presented:

o Variablex already exists!

This error is produced when the user tries to declare a variable or signal with the name x
but there is one with the same name already declared.

0 Unrecognized programming mode!

This means that a programming mode other than the currently supported serial or
parallel isdeclared.

o Staticx, already declared!

The user has declared a static with the name x but there is one with the same name
already declared

o Signal or Static x, not declar ed!

The user hastried to map a signal or static with the name x that has not been declared to a
pin.

0 X, hasalready been mapped!

The signal or static x has aready been mapped.
0 X,isnot aSignal or Static!
The user tried to map x to apin, but it isnot asignal or static.

o Cablex, hasbeen mapped to another Signal or Static!

The user tried to map asignal or static to a cable that is already mapped.

o Static,x, can not bean input
A static can only be mapped as output.

0 A signal cannot be mapped as an output on pinsgreater than 15, in test mode!
The reason this error message was produced is that test mode uses pins 16-23 only as
inputs.

o Nosuch cable!

The current HPT supports a maximum of 23 pins and the user tried to map a signal or
static to a pin greater than 23.

62

Unableto map beyond the 16th cablein programming mode!

Programming mode uses pins 16-23 for downloading configuration data to the FPGA, so
these pins are not accessible.

Maximum number of signalsreached!

The user has already mapped 24 signals which is the maximum and tries to map one
more.

Error! Compound statement in compound statement!

A compound statement can not exist inside another compound statement.

Use mor e than one set command inside a compound statement!

A compound statement is used to change the values of signals with the set command
simultaneoudly. It is meaningless to use only one set command.

Variablex, isnot declared!

Trying to assign avalue to a variable that has not been declared produces this error.
Error assigning, x!lllegal types

The user tried to assign signals or statics, instead of integers.

X, does not exist!

Expressions with variables that have not been declared, produces this message.
Addition between x and y is not defined

Adding signals and statics with variables or signals and staticsisillegal and produces this
error message.

Subtraction between x and y isnot defined

The same as the previous but appears when the user subtracts.

Multiplication between x and y is not defined

The same as the previous but appears when the user multiplies.

Division between x and y isnot defined

The same as the previous but appears when the user divides.

You can not iterate morethan x times!

The maximum number of iterationsislimited due to the HPT. Current x is 256 iterations,
but can be changed through the macro MAXITER.

You can not store morethan x bytes!

The maximum number of instructionsin afor loop is limited due to small HPT storage.
Currently x is 256 bytes. This limit can be changed through the MAXDATA macro.

Consult the Instruction Opcodes and Sizes for more information.

63

x isnot asignal!

The set instruction can only be used for signals. Using it on integers or statics produces
this message.

You can not change the value of an input signal!

Input signals can not be set to avalue. This can only be done if the reverse command is
used first and then the set.

Signal x, not declared!

Signals must be declared to be used with the set instruction.

You can not usetheloadb command in a Test Script!

The loadb command can only be used in a program script, thisis the error message when
the user triesto use it in a Test Script.

You can not load mor e than x bytes at a time!

The maximum value for aloadb is currently 256. To loadb more bytes, type another
loadb command immediately after this one.

You can not use theloadkb command in a Test Script!

Same as the loadb error, but for Kbytes.

You can not load morethan " ,tmp," KBytesat atime!

Same as the loadb error, but for Kbytes.

The argument for get must be 0, 1, 2 or 3!

The get command can only take one of four possible arguments. Thisisthe error message
produced for any other case.

You must map signalsto all portsto use'get 0'!

It isimportant to have signals mapped to all ports of the HPT to use the get command.
Y ou have not mapped any signals beyond 8!

Y ou can not get the values of pins you have not mapped signals to.

Y ou have not mapped any inputsto the Data Port!

Y ou can not get the values of pins you have not mapped signalsto.

Can not reverse a signal mapped to the Data Port!

Trying to reverse asignal mapped to the Data Port is not allowed.

Can not reverse a static!

Statics can only be outputs, so reversing them is not allowed.

You can not use thereadbackb command in a Program Script!

Readbackb command can only be used in atest script.

0 You can not readbackb morethan x bytesat a time!
The same limit with the load command applies to readbackb.
0 You can not use thereadbackkb command in a Program Script!
Readbackkb command can only be used in atest script.
0 You can not readbackkb morethan x KBytes at a time!
The same limit with the load command applies to readbackkb.
0 Themsb instruction can not beused in atest script!
This command has no use in tests scripts, as there is no bitstream to send.
o Thelsb instruction can not beused in atest script!
The same as the previous error message, for the Isb command.
0 Theget instruction can not be used in afor loop!
A get instruction can not be used inside for loops.
o Argument for nop must be greater than O!

Passing 0 as an argument to the nop instruction is not possible.

4.5 Summary

This chapter discussed development issues of the PTL, such as the process of constructing the
lexical and syntactical analyzers and their structure. Then we moved on to the contents of the

Symbol Table. And finally, we described the code integrity checks and the compiler errors.

65

Microprocessor and Hardware Laboratory

Chapter 5

Graphical User Interface

Chapter 5

Graphical User Interface

This chapter analyzes the Graphical User Interface developed. The first section describes the
Java classes. The second refers to the communication protocol. The third section contains
information about its usage.

5.1 Graphical User Interface classes

As mentioned in Chapter 3, the GUI was developed using Sun’s Forte for Java Community
Edition Integrated Development Environment. As this denotes, the programming language
used is Java. The JFC Swing classes were used for the graphical components and the Java
Communications API for implementing the connection to the HPT.

A total of eight classes were developed. Each one is described in the following sections.
5.1.1 AppFilter Class

Thisclassisafilefilter. It is used when a File Chooser Window appears and only allows
filesthat pass the filter to appear in the window. This classis used when the user chooses to
open a script file or load a bitstream. Scripts have an .spt extension, so all other files are not
shown. The case that the script file has another extension is covered. An option enables the
File Chooser Window to print all the files.

5.1.2 ConfigurationPanel Class

This class creates a Configuration Panel with the port settings. Currently, the seria port is

used so the parameters are for a serial port. The following parameters are set by this class:

o Port Name. Thislist contains the names of the ports and is dynamically created by
scanning the available serial ports on the system.

67

o Baud Rate. This option refers to the speed at which the serial port can transmit and
receive data. The Baud Rates sel ected were those supported by the HPT:

2400
4800
9600
14400
19200
28800
57600
115200

O N o o ~ W NP

The default Baud Rate is 9600.

o Flow Control In/Out. Flow control means the ability to slow down the flow of bytes
inawire. For seria ports this means the ability to stop and then restart the flow
without any loss of bytes. The available options listed below apply to both Flow

Control In and Flow Control Out:

1. None
2. Xon/Xoff In
3. RTS/CTSIn

The default value is None.

o DataBits. Thisisthe number of bits used to represent each character. The available
options are 5, 6, 7, 8. ReRun works with this option set to 8, which is aso the default
value.

0 Stop Bits. The stop bits represent how many bits mark the end of a data block when

using asynchronous data transmission. The available options are 1, 1.5, 2 and the
default is 1.

68

o Parity. The parity adds an extrabit to each character, which is set or cleared based on
the type of parity used (odd or even). The default choice is none, but the user can

select odd or even.

5.1.3 Connection Class

The Connection and ReRun classes are the most important for the GUI. The Connection class
implements the connection to the serial port and all the associated functions. More
specifically the following methods are implemented:

0 openConnection. This method opens the port represented by the CommPortldentifier
object. Gives the open call atimeout of 30 seconds to allow a different application to
give up the port if the user wishes to. Then the parameters for the connection are set.
If, for any reason they can't be set, the port is closed and an exception is thrown. After
that the input and output streams for the connection are opened. If they can't be
opened the port is closed and an exception is thrown. Then the
notifyOnDataAvailableis set to true, to allow event driven input and break handling
correspondingly and adds an ownership listener to allow ownership event handling.
Finally the parameters for the connection are set with a starting Baud Rate of 2400, a
reset is sent to the HPT and the GUI waits for aresponse to verify correct operation.
If it gets one, the Baud Rate instruction is sent to the HPT with the desired Baud Rate
and the GUI isready to send the rest of the data. If it gets no response, it retries the

operation atotal of 3 timesand if unsuccessful it produces an error message.

0 setConnectionParameters. This method is called by the openConnection method to
set the connection parameters (Baud Rate, Parity, etc).

o closeConnection. Takes the appropriate steps to close the connection.

o isOpen. Returns a Boolean that denotes the state of the connection to the port.

69

o waitData/waitDatal. These two methods are invoked when a script requires
feedback from the HPT. If the appropriate data is received, the script continues. If no
datais received or isincorrect, the GUI sends areset instruction to the HPT and waits
for an acknowledge. If no datais received, the waitData method sends two more
resets and then produces an error message. The waitDatal produces an error message
if no data after the first reset.

o Findly, the SerialEvent Listener isimplemented in the Connection class. This
Listener waits for data from the serial port and depending on what isreceived, it
performs specific actions. The FSM that is responsible for sending the script to the
HPT, raises certain flags when some instructions are sent. For example, a get
command walits for the values of signals and the GUI must stop sending data until
they are received. The following instructions must receive feedback before the GUI
resumes sending the script:

Reset

All get instructions

For loops

Readback instructions

CRC Checks

The Reset and for loop instruction await one byte, 0x00 and 0xOC respectively. Get 1,

o O O O o

get 2, get 3 instructions wait one byte that depends on the values of the signals on the
HPT. And finally, get 0 waits for 3 bytes.

5.1.4 ConnectionException Class

Thisis constructs a Connection Exception with a detailed on no message. It is by the
Connection class to throw exceptions regarding the connection.

5.1.5 Parameters Class
Thisisaclassthat stores the seria port parameters. The default constructor sets the

parameters to no port, 9600 Baud Rate, no flow control, 8 data bits, 1 stop bit and no parity.

There is a'so another constructor that sets all the parameters to the desired values. This class

70

also implements the methods for settings the parameters and getting the various parameters

as strings or integers.

5.1.6 PortRequestedDialog Class

This class notifies the user that another application has requested the port, and then asks if
they are willing to give it up. If the user answers"Yes' the port is closed and the dialog box

isclosed, if the user answers "No" the dialog box closes and no other action is taken.

5.1.7 ReRun Class

Thisisthe basic class of the GUI. It creates the graphical components and i mplements their
Action Listeners. Thisiswhere the “main” function is. Running this classfirst brings up a
Splash Screen which remains for afew seconds or until the mouse clicks on it. Then the
interface components are created and shown. This class also implements the Action Listeners

for the Buttons, Text Areas and Menus. The following menu options are created:

M enus

FileMenu

0 Open Script. Thisbrings up aFile Chooser Window that allows the user to select the
script file. Only .spt files are displayed .After the file is selected, it is opened in the
first Text Areawhereit can be viewed or edited. When a script file isloaded, the
Save Script menu option and the Compile Script button are enabled.

0 Load Bitstream. This option also brings up a File Chooser Window. This time the
user can select a bitstream file. The name of thisfileis displayed along with a
message on the third Text Area. Selecting a bitstream file is necessary for a program
script. If the user tries to download a program script without choosing a bitstream, an
error message is popped up.

0 Save Script. The Save Script menu option saves the script.

0 SaveAs. The Save Asoption brings up a File Chooser Window, where the user must
specify a name and extension with which the file will be saved. This option can be
used to save anew script or an existing one with a different name.

71

o Exit. This option closes the connection to the serial port if it is open and closes the
GUI.

Port Settings

0 Port Settings. This menu option brings up awindow with the Settings for the Serial
Port.

Help

0 Help. Thisoption provides the user links to online help.

0 About. This produces an about box.

Buttons

o Download Script. This button starts the process of downloading the script to the
HPT. This part is the heart of the GUI.

Test scripts require only one file, the script, while program scripts also require the
bitstream. Each type of script calls a different method. Each method implements a
different Finite State Machine, due to the fact that certain instructions do not apply to
both scripts. This method handles the data from get commands. It printsit to the
screen and savesit to afile (output.txt). In case of scripts meant for readback. The
datais saved to the readback.bit file. The CRC Check is also performed here every
about 256 bytes.

o Compile Script. This button creates a new Thread and compiles the script. The
compilation results are displayed on the third Text Area. Here the props.qui file
produced by the compiler is processed. The GUI reads the signals’ and statics' names
and mapping, the type of script and prints them to the middle text area and the
output.txt file.

0 Reset. The Reset Button sends areset instruction to the HPT and clears variables that

have been set to specific values.

Check Box
0 ProcessBitstream. Xilinx bitstreams contain a header with information about the
design. This header must be removed before the bitstream is ready to be sent. This
check box can be used for such purposes.

72

A number of other methods are implemented here, openFile, saveFile, shutdown, restart, etc.

These methods are used to ssimplify and modularize the code.

5.1.8 SplashWindow Class

The SplashWindow class pops up a Splash Screen when the GUI isrun. Thisis achieved by
creating athread that runs for time equal to that specified when the constructor is called. If a
mouse click on the Splash Screen is detected, it disappears, but the thread keeps running until
the specified time has elapsed. This does not affect the performance, asit does nothing.

5.2 Communication protocol

The GUI communicates with the HPT through a protocol. This protocol is substantially a Finite
State Machine (FSM). This FSM is different in the case of atest script and a program script.
For exampl e test scripts can not contain the loadb or loadkb instructions. Such instructions
produce an error and the GUI isreset. In each case a different function is called, the function
for test scripts needs the path of the script, while the one for program scripts requires both the
script and bitstream files.

In both cases the props.qui file is read and depending on the properties the FSM is
dynamically modified. For example a set instruction has one argument if no signals are mapped
on pins beyond 8, otherwise it has two arguments. This means that another byte must be read
from the script and sent to the HPT.

Most instructions are simply sent to the HPT, but some require feedback or acknowledge. The

following instructions must wait for data from the serial port:

0 Get. All get instructions wait for one byte from the serial port, with the exception of get
0 (get data from al ports), that waits for 3 bytes.

0 Readback. Theseinstructions receive the bitstream of an FPGA and storeit in afile,
So the GUI waits until all the requested data has been read back to continue.
Reset. In case of areset the HPT must send back one byte (0x00) to acknowledge the
reset. If this does not happen, the reset is sent atotal of 3 times. If nothing happens, the

user is notified with an error message.

73

In case the GUI does not receive data for a specific amount of time, the programmer isreset, as
there is probably a synchronization or data transfer error. Currently the time limit is 3 seconds.
When the GUI receives data from a get instruction, the following actions are performed. First it
writes the datato afile that has been created. Thisfilesis named outputs.txt and thefirst line
contains the names of the signals used, separated by |. Each get the user writes creates a new
lineto thisfile. The values of signals that were not asked for are n/a (not available). Thisfileis

also printed on the second text area of the GUI.

When the interface starts communicating with the HPT, it startsat aBAUD RATE of 4800.
Then it sends the new BAUD RATE and resets the HPT. When and if the HPT returns the
appropriate byte (0x00), the script is downloaded, otherwise an error message notifies the user.

The implementation of a CRC Check was deemed unnecessary. There were two reasons for
this decision. First, the user can enable CRC from the vendor’ s development tools. This CRC is
embedded in each frame of the configuration bitstream and if the check fails, the configuration
fails and must restart. The same thing would happen even if we had implemented a CRC,
because the HPT does not support error recovery. This brings us to the second reason. Taking
into consideration that wrong data causes the configuration to fail, a CRC would be
meaningful, if the HPT could storeit, perform the CRC and then load it. But thisis not possible
in the current version of the HPT, due to insufficient memory.

5.3 Usage Instructions

The Graphical User Interface developed for ReRun is quite easy to use. Starting, the user has
the following options:

o Change the port settings

0 Openascript file.

0 Writeascriptinthefirst Text Areaand save it.

o Load the bitstream file. If the script opened is not a program script, this does not affect

the transmission of data.

Opening afile enables the Save Script menu option and the Compile Script menu option and
button. From here the user can compile the script. After doing so, the compiler messages are

74

displayed on the third text area. They can either be errors or the message that the compilation
was successful.

Having compiled the script and set the port settings, the user can download the script to the
HPT. Thisis done by pressing the Download Script Button.

In case the user is programming a device, the Process Bitstream button is enabled. If the device
vendor is Xilinx, this button must be pressed before downloading the script.

The user can view the results of any get commands in the middle text area or in the output.txt
file. Thisfileis created in the directory ReRun was installed. If the user is writing a readback
test script, the data read back is saved in the readback.bit file which is aso in the directory
ReRun isinstalled.

Finally, the user can press the Reset button at any time. Thisis useful, when an unexpected
error has occurred and the GUI can not communicate with the HPT. Pressing Reset, will reset
the HPT.

5.4 Summary

This chapter discussed devel opment issues of the Graphical User Interface. We analyzed the
Java classes created. Then we described the communication protocol between ReRun and the
Hardware Programmer and Tester. And finally, usage instructions for the GUI were presented.

75

Microprocessor and Hardware Laboratory

Chapter 6

Examples of Usage

Chapter 6

Examples of Usage

This chapter contains examples of PTL scripts used to test the system. The tests performed
were the programming and testing of 3 FPGASs (two Xilinx and one Altera). The successful
configuration was confirmed by viewing the status of the DONE signal (for the Xilinx FPGAS)
and CONF_DONE and INIT_DONE signals (for the Altera FPGA). The status of the signals
was viewed both on alogic analyzer and on the GUI.

The first section contains the script used to program Xilinx’s XC3042-50PC84. The section
refers to the programming of Xilinx’s XC4010XLPC84. The third contains the PTL code for
Altera’ s Flex 8000 (EPF8282ALC84-3). Finaly the fourth section presents a test script.

6.1 Example 1 — Script for programming a Xilinx XC3042-50PC84

The configuration process for the XC3000 family is described in Chapter two. The following
script will configure the FPGA using Slave Serial configuration mode. This mode requires
three control, three configuration mode select and two status signals. Thefirst control signal is
the configuration clock (CCLK) and is produced by the HPT when there is aload instruction.
The next isDIN and is used for loading the configuration data. These two signals need not be
declared in the script as they have a specific purpose and are controlled when a load command
isissued. The configuration select signals are MMO, MM 1 and MM 2 and must all be set high
to select Slave Serial mode. From the remaining three signals, the RESET controls the
initialization of the configuration, while the INIT and DONE/PROG are status signals. A high-
low-high transition on the RESET signal initiates configuration. The INIT signal isinitially
high, then low to indicate that the configuration memory is being cleared and then again high.
If an error occurs, the INIT will go low. The DONE/PROG signal islow during configuration
and it goes high if the configuration is successful. The following script was used to program
the XC3000 FPGA.. Only three signals were declared, reset (connected to the RESET pin of the
FPGA), init (connected to the INIT pin of the FPGA) and done (connected to the
DONE/PROG pin of the FPGA). Init and done were declared as inputs to the HPT and reset as
an output. After the end of the configuration, the init and done signals were, indicating a

77

successful configuration. The script iswritten for Xilinx and was thus downloaded with the

Process Bitstream option in the GUI.

© 00 N O 0o A W DN P

e
N R O

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

program "serial"; Il

nsbh;

cl k high;

signal reset,done,init;

static MmO ‘1’ ;

static mmi ‘1’ ;
static m2 ‘1’ ;

map
{
prog <= 0; Il
/1
reset => 1; Il
/1
init <= 2; I
/1
m0 => 3; /1l
ml => 4; Il
mR =>5; Il
}
start
set reset '1';
set reset '0';
set reset '1';
| oadkb 3;
| oadb 256;

Set the programm ng node to Seria

/! The M5B will be | oaded first

/'l The configuration clock has a

[/ mnimmlowtine

/'l Three signals wll be used

/'l The node pins should be statics
/'l For Slave Serial they nust be
/'l set to 111

/'l Signal Mapping

prog i s an input and connected to
cable 0 of the HPT

reset is an output and connected to
cable 1 of the HPT

init is an input and is connected to
cable 2 of the HPT

The node pins are statics and

can only be nmapped as

out puts fromthe HPT

/] Start of script

/'l Generate a high-1ow high
/'l pul se on the reset

/'l signal

/1
/'l Load a total of 3,927 bytes

78

32 | oadb 256; [/ This is the size of the

33 | oadb 256; Il bit file

34 | oadb 87; Il

35

36 get 1; /'l Get back the val ues
37 end

The configuration was successful, as not only did the status signals go both high, but also the
design downloaded, operated as expected. This was the first FPGA programmed by ReRun.
The FPGA was on a GERM Board with various designs. The FPGA was programmed with
Baud Rates up to 115200 which is the maximum. For more information on the VHDL code
downloaded to the device, refer to the HPT report.

6.2 Example 2 - Script for programming a Xilinx XC4010XL PC84

The script described below configures the FPGA using Slave Serial mode. The configuration
of the XC4000 device required three control, three configuration mode select and two status

signals as the XC3000. The only difference isthat the reset pin is called PROGRAM and the
DONE/PROG, is called DONE. Consequently, the programming script is very similar to the

one in the previous section.

1 program "serial"; /'l Set Serial Programm ng Mde

2

3 msb; /'l Load LSB of configuration data
4 Il first

5

6 cl k high; /'l The clock has a nmaxi num | ow

7 Il time

8

9 signal prog,init,done; /'l Declare the signals that wl|
10 /'l be used

11 static m0O ‘1’ /'l The node pins should be statics
12 static mil ‘1’ /'l For Slave Serial they nust be

79

13 static mmR ‘1'; /!l set to 111

14 map /1 Signal Mapping

15 {

16 init <= 0; /1 init is an input to the HPT

17 prog => 1; /'l prog is an output fromthe HPT
18 done <= 2; /'l done is an input to the HPT

19 m0 => 3; /'l The statics are nmapped and

20 nmil => 4, /'l their values can not change

21 m2 => 5; /'l while the script is executed
22 }

23

24 start /1l Start of Script

25 set prog '1'; /'l Produce a high-1ow high pul se
26 set prog '0'; /1 on the prog signal to initiate
27 set prog '1'; /'l configuration

28

29 nop 13; /1 Wait until the FPGA clears its
30 /'l configuration nenory

31 | oadkb 34; /1

32 | oadb 256; /'l Load the configuration data

33 | oadb 256; /'l (Size of bitstreamis

34 | oadb 172; /1 35500 byt es)

35

36 get 1; /'l Get the values of the signals
37 end

The XC4010XL-PC84 FPGA was configured with Line's Round Movement using Bresenham's
Line algorithm. The VHDL code for this design was implemented by Giannis Sourdis and the
FPGA configured was on an XS-40 Board with a VGA output. The result was visible on a PC
Monitor. This FPGA was programmed with Baud Rates up to 115200 which is the maximum.
The MultiLinx Download cable, has a maximum Baud Rate setting of 57600.

80

6.3 Example 3 — Script for programming an Altera Flex 8000

The following script is used to program an Altera Flex 8000, specifically, the EPF8282A L C84-
3. The configuration mode that will be used is Passive Serial. The signals used as outputsis are
nConfig and the three configuration mode select signals. The ConfDone and nStatus are
indicative signals. The nS/P signal must be set low, MSELO high and MSEL1 low to enable
Passive Serial configuration mode. The Altera devices receive configuration data LSB first,
thisisdeclared in line 4 of the script. The clk instruction takes the argument high, which isthe
default value, if thisinstruction is omitted. Then we declare the signals. The only output is
nConfig, as the mapping defines. The other two, are used for monitoring the configuration
process. To initiate configuration the nConfig signal is given a high-low-high pulse, thisis
donein lines 12-14. Then we use the nop instruction to give the nStatus enough time to be
high. Then we load the configuration data to the device. The size of the raw binary file is 5kb.
The seria dataloading continues until ConfDone goes high, indicating that the deviceis
configured. After the last byte of dataisloaded, the DCLK pin is clocked another 10 times
until the Flex 8000 releases the ConfDone and initializes the device. Finally, we use the get
instruction, to view the state of the signals and confirm the success or failure of the
configuration.

1 program "serial"; /'l Set Serial Progranmm ng

2 /' NMode

3 cl k high; /'l The clock has a nmaxi num
4 Il lowtinme

5 1sb; /'l Load LSB of configuration
6 /1 data first

7 signal nConfig, nStatus, ConfDone; // Declare the signals
8 /1 that will be used

9 static nSP ‘0’ ; /'l Set the node pins to

10 static MSELO *1’; /1 010 to enabl e Passive

11 static MSEL1 ‘O ; /1 Serial configuration node
12

13 map /'l Signal Mapping

14 {

15 Conf Done <= 0; /'l ConfDone is an input to the HPT

81

16 nStatus <= 1, /'l nStatus is an input to the HPT

17 nConfig => 2; /'l nConfig is an output fromthe HPT

18 nSP => 3; /'l The node pins are statics and

19 MBELO => 4; /'l can only be nmapped as

20 MSEL1 => 5; /'l outputs

21 }

22

23 start /1l Start of script

24

25 set nConfig '1'; /'l Produce a high-1ow high

26 set nConfig '0'; /1 on the nConfig to

27 set nConfig '1'; /1l initiate configuration

28

29 nop 13; /'l Sent 13 usel ess bytes

30 | oadkb 5; /'l Load 5 Kb of configuration data
31 | oadb 5; /1l Load 5 nore bytes to initialize
32 /'l the FPGA.

33

34 get 1; /'l Get the values of the signals
35

36 end /1 End of Script

This script has been executed at Baud Rates up to 115200 and the configuration was
successful. Thiswas confirmed from both the GUI and alogic analyzer. A custom board was
created for testing the design. The board had a seven segment display, driven by the FPGA. For
more information regarding the VHDL code loaded and extratests to ensure correct

configuration, refer to the HPT report.

6.4 Example4 —Test Script

In this section we present atest script written to verify the correct configuration of adevice
with a4-bit counter. This script presumes that the FPGA has aready been configured. First the
user must connect the flying wires to the device. The signals used will be clk (connected to the
pin defined as the clock by the design), bit0, bit1, bit2 and bit3 of the counter. The following

82

script will run the design for 5 clock cycles then get the values of the pins, then run it for

another 10 and again return the results.

1 test;

2

3 signal clk, bitO, bitl, bit2, bit3;

4

5 map

6 {

7 clk => 0; /'l The clock is an output and is
8 /'l connected to cable O

9 bit0 <= 1, /1 The bitO is an output and is
10 /'l connected to cable 1

11 bitl <= 2; /1 The bitl is an output and is
12 /'l connected to cable 2

13 bit2 <= 3; /1 The bit2 is an output and is
14 /'l connected to cable 3

15 bit3 <= 4; /1 The bit3 is an output and is
16 /'l connected to cable 4

17 }

18

19 start /1l Start of script

20

21 for 5 /Il Iterate 5 tines

22 set clk "1'; /'l Create one

23 set clk *0; /'l clock pul se

24 endf or

26

25 get 1; /'l Get the val ues

26

27 for 10 Il Iterate 10 tines

28 set clk “1'; /'l Create one

29 set clk ‘0 ; /'l clock pul se

30 endf or

83

Microprocessor and Hardware Laboratory

31
32 get 1; /'l Get the val ues
33 end /1 End of script

Thisisarelatively simple script, but it demonstrates the basic techniques of testing designs.

Microprocessor and Hardware Laboratory

Chapter 7

Conclusions and Future Work

Chapter 7

Conclusions and Future Work

7.1 Conclusions

In the early chapters of this document, we discussed the need for a Universal Programmer and
Tester as well as the configuration process and modes. Then we moved on to describing the
structure of ReRun, analyzing the language and the Graphical User Interface that were
developed. Finally, we saw some tests that were performed.

The results of this thesis were more than satisfactory. Three FPGAs were successfully
programmed, two Xilinx FPGAs and one Altera FPGA. By doing so, we achieved our initial
goal, to make ReRun a Universal Run-Time Environment for FPGA programming.

Also, the FPGAs were programmed up to a maximum Baud Rate of 115200. Thisis quite
important achievement, considering that the speed matched Altera’s MasterBlaster and
surpassed the 57600 maximum Baud Rate for the MultiLinx Cable!

Finally, the system devel oped is modular, which makes it easy to upgrade. Future work is
discussed in the next section.

7.2 Future Work

The language can be upgraded in many ways. An array type can be devel oped along with
instructions to use its values as output signals. The instructions can be easily changed so that
the parser produces a different output to accommodate for the needs of an upgraded version of
the HPT. More instructions, such asifs, can be added to provide additional functionality.
Finally, the parser output can become even more abstract to become completely independent of
the current HPT.

The modular structure of the Graphical User Interface allowsit to be upgraded easily. The
communication with the HPT is currently implemented using the serial port. This module can
be changed with one for a parallel or USB port. The Java Communications API provides
support for serial and parallel, but in the future USB port will be supported.

86

Another improvement would be the implementation of a CRC Check. Thisisrelatively easy in
the case of a CRC 32, because the java.util. library has a CRC32 class.

Finally, another module that can be upgraded is the one printing the values of signals. This
information is currently displayed in text. A graphical representation would be more
appropriate.

Finally, more scripts could be written to program additional FPGAS.

87

Microprocessor and Hardware Laboratory

Appendix

88

Appendix

Appendix A - Language Grammar

s

TK_CLK TK_CLK
TK LOW 0 TK_NUM
TK TERM TK_LPA
TK_FUN
TK_RPA
TK_TERM

TK_CLK

TK HIGH

TK_TERM

Figure Appendix.1 Language Grammar (continued)

89

Script
\ 4
comments PT loadlm CLK VS declarations mapping main
comment VS
TK_MANUFACTURER TK_VS
TK_CHARCON TK_NUM
TK_TERM TK_LPA
TK_FAMILY TK_VUN loadlm
TK_CHARCON TK_RPA
TK_TERM TK_TERM
TK_DEVICE \ 4
TK_CHARCON TK LB 0 TK MSB
TK_TERM TK_TERM TK_TERM
CLK

PT

/\

prodram test
\ 4
TK PROGRAM v
TK CHARCON TK_TEST
TK TERM TK_TERM
mapping

TK_MAP TK_LBR maps TK_RBR

maps map 0

TK_ID assan TK NUM TK TERM

TK_ASSGN TK_VASSGN

Figure Appendix.1 L anguage Grammar (continued)

90

declarations

I

B
declarations declaration 0
var_def static
) 4
v TK _STATIC
type def some | TK_TERM TK_ID
TK_STATE
TK TERM
TK_INT TK_SIGNAL def one def som TK_COM def one
) 4
TK_ID A4
TK_ID
main
A\ 4
TK_START smts TK_END
set aet reverse readback
A 4 A 4 v /\
TK _SET TK _GET TK _REV TK RDBK TK RDBKB
TK ID TK_NUM TK ID TK_NUM TK_NUM
TK_STATE TK_TERM TK_TERM TK_TERM TK_TERM
TK TERM

Figure Appendix.1 L anguage Grammar (continued)

91

smts

compound
load
\ 4
TK_LBRA cmp_smts | TK_RBRA
TK LOADB TK LOADKB
TK_NUM TK NUM
0 cmp_smst cmp_smt
TK TERM TK TERM
) 4
nop v
set
) 4
TK_NOP TK_NUM TK_TERM
smts
wait for_smt
TK_WAIT TK_FOR expression for smts TK_ENDFOR
TK_ID
TK_STATE
TK_TERM 0 for smts f smt
nop assignment set compound reverse wait

Figure Appendix.1 Language Grammar (continued)

92

smts

\ 4

assignment

expression

TK_TERM

\

TK_PLUS

expression expression
expression TK_DIV | expression - -
expression TK_MINUS | expression
expression TK_MULT expression

Figure Appendix.1 Language Grammar

93

Appendix B —Installing ReRun

The examples in this document assume that you have installed in your C: partition. More
specifically we assume that you unzipped the javacomm20-win32.zip file in C:\commapi and
your JDK instalationisin C:\jdk1.3.1_01. If you haveinstalled JDK in another location or
unzipped javacomm20-win32.zip in another location modify the example commands

appropriately.

1. Install the Java2 SDK, v 1.3.1 01 in your computer. Thefileisj2sdk-1 3 1 01-win.exe.
After the installation is complete Unzip the file javacomm?20-win32.zip. Thiswill produce a
hierarchy with atop level directory commapi.

2. Copy win32com.dll from c:\commapi\ to your <JDK>\bin directory.

C:\>copy c:\commapi\win32com.dll c:\jdk1.3.1 01\bin

If you are using Windows you must also copy the win32com.dll to another directory, the
C:\Program Files\Javasoft\JRE\bin.

C:\>copy c:\commapi\win32com.dll C:\Program Files\Javasoft\JRE\bin

Note! If you can not find the win32com.dll file, remember that dil files are usually hidden and

that you must enable the option view hidden and system filesin Windows.

3. Copy comm.jar file from c:\commapi\ to your <JDK>\lib directory.

C:\>copy c:\commapi\comm.jar c:\jdk1.3.1 01\lib

If you are using Windows must also copy the comm.jar to your C:\Program
Files\Javasoft\JRE\lib directory.

C:\>copy c:\commapi\comm.jar C:\Program Files\Javasoft\JRE\lib

94

4. Copy javax.comm.properties, also from c:\commapi\ to your <JDK>\lib directory.

C:\>copy c:\commapi\javax.comm.properties c:\jdk1.3.1_01\lib

The javax.comm.properties file must be installed. If it is not, no ports will be found by the

system.

If you are using Windows, again you must copy the javax.comm.properties to your C:\Program
Files\Javasoft\JRE\lib directory.

C:\>copy c:\commapi\javax.comm.properties C:\Program Files\Javasoft\JRE\lib

5. Add comm.jar to your classpath.

If you don't have a classpath defined:

C:\>set CLASSPATH=.;c:\jdk1.3.1_O1\lib\comm.jar
If you already have a classpath defined:

C:\>set CLASSPATH=c:\jdk1.3.1_021\lib\comm.jar;%classpath%

In Windows, this must be done from the Environmental tab of the the System Properties
window (Control Panel->System).

6. Set the JAVA_HOME to your <JDK>\ directory. If you don't have JAVA_HOME defined:

C:\>set JAVA_HOME=c:\jdk1.3.1 01\
Add <JDK>\bin to your path.

In Windows the same procedure as the previous step must be followed.

C:\>set PATH=c:\jdk1.3.1 01\bin\;%path%

95

7. Create the directory you wish to install ReRun.

8. Copy thefollowing .javafilesin that directory:

AppFilter.java
ConfigurationPanel .java
Connection.java
ConnectionException.java
MainWindow.java
Parameters,java
PortRequestedDialog.java
SplashWindow.java

9. Compile the previousfiles by typing:

javac * java

10. The next step is copying the compiler to the directory you installed ReRun. The compiler is

thefilererun.exe.

11. Finally, the Splash Screen file must be placed in the same directory. The name of thefileis
mhl.jpg.

96

Appendix C —Instruction Opcodes

CNTRL_8 INST
(1 byte) opcode:

CNTRL_16_INST
(1 byte) opcode:

CNTRL_MAP_INST
(2/3 bytes) opcode:

CLEAR BITS INST
(2/3 bytes) opcode:

SET_BITS_INST
(2/3 bytes) opcode:

DATA_SERIAL_INST

(1 byte) opcode:

DATA_PARALLEL_INST

(1 byte) opcode:

RESET
(1 byte) opcode:

Waits for : 0x00 to ACK

PROG_BYTE_INST
(2 bytes) opcode:

PROG_KBYTE_INST

(2 bytes) opcode:
CTRL_BITS_INST

"0x00"

"0x01"

"0x02"

"0x03"

"0x04"

"0x05"

"0x06"

"Ox07"

"0x08"

"0x09"

;Use one port of the AVR

;Use two ports of the AVR

;Defines Input and Output Signals

:Clear Bits

:Set Bits

;Load Data Serially

‘Load Data Parall€l

:Reset

;Send Programming Data byte(s)

;Send Programming Data Kbyte(s)

;Send Entire Byte(s) to control pins

97

(2/3 bytes) opcode:

FOR LOOP _START_INST

(3bytes) opcode:

FOR_LOOP_END _INST
(1 byte) opcode:

NOP_INST
(1 byte) opcode:

BAUDRATE_2400:

(1 Byte) opcode:"OxO0E"

BAUDRATE_4800:

(1 Byte) opcode:"0x0F"

BAUDRATE_9600 :

(1 Byte) opcode:"0x10"

BAUDRATE_14400:

(1 Byte) opcode:"0x11"

BAUDRATE_19200:

(1 Byte) opcode:"0x12"

BAUDRATE_28800:

(1 Byte) opcode:"0x13"

BAUDRATE_57600:

(1 Byte) opcode:"0x14"

BAUDRATE_115200:

;Start of for loop

;End of for loop

:No Operation Instruction

:Set Baud Rate to 2400

:Set Baud Rate to 4800

:Set Baud Rate to 9600

:Set Baud Rate to 14400

:Set Baud Rate to 19200

:Set Baud Rate to 28809

:Set Baud Rate to 57600

:Set Baud Rate to 115200

98

(1 Byte) opcode:"0x15"

READBACK_KBYTE

(2 Bytes) opcode:"0x16"

Waitsfor : (Byte 2) KBytes

READBACK_KBYTE

(2 Bytes) opcode:"0x17"

Waitsfor : (Byte 2) Bytes

Test Script

(1 byte) opcode:"0x18"

GET_ALL_PORTS

(1 byte) opcode:"0x19"

;Reads back Kbytes

;Reads back Bytes

;Defines that thisis atest script

;Asks for the values of all ports

Waitsfor : 3 Bytes (CTRLO,then CTRL1 and then CTRL_DATA)

GET_CNTRLO

(1 byte) opcode:"Ox1A"

Waitsfor : 1 Byte

GET_CNTRL1

(1 byte) opcode:"0x1B"

Waitsfor : 1 Byte

GET_DATA

(1 byte) opcode:"0x1C"

Waitsfor : 1 Byte

;Get values for signals mapped to the first 8 pins

;Get values for signals mapped to pins 8-15

;Get values for signals mapped to pins 16-23.

99

CLK_LOW ;Defines that the FPGA receives data
;on the falling edge of the clock
(1 byte) opcode:"0x1D"

CLK_HIGH ;Defines that the FPGA receives data
;on the rising edge of the clock

(1 byte) opcode:"Ox1E"

LSB :Load the MSB of the bitstream first
(1 byte) opcode:"Ox1F"

MSB :Load the LSB of the bitstream first
(1 byte) opcode:"0x20"

100

Appendix D —ReRun File Structureand Size

The files of ReRun are:

Java Classes Size (Bytes) | Number of Lines
AppFilter.java 744 38
ConfigurationPanel .java 7,251 222
Connection.java 37,685 901
ConnectionException.java 385 21
Parameters.,java 7,371 319
PortRequestedDialog.java 1955 66
ReRun.java 53,278 1385
SplashWindow.java 2,087 56
Compiler Files
lex.| 1,926 83
synt.y 26,031 1,333
Total 138,713 4,424

101

Microprocessor and Hardware Laboratory

Refer ences

102

References

[1]. Sun Microsystems. Java Platform.2002

[2]. Atmel Corporation. AVR-8 Bit RISC Microcontroller.

[3]. Xilinx.

[4]. Xilinx. Spartan-11. 2001

[5]. Xilinx. Virtex. 2001.

[6]. Compag. PCl Pamette v1. 2002

[7]. Xilinx. Spartan-11 Devices. 2001.

[8]. Xilinx. MultiLinx Download Cable. 2000

[9]. AlteraCorporation.

[10]. AlteraCorporation. MasterBlaster Serial/USB Communications Cable. 2001

[11]. Lucent Technologies.

[12]. Xilinx. XC4000E and XC4000X Series Field Programmable Gate Array. 1999.
Xilinx. XC3000 Series Field Programmable Gate Arrays (XC3000A/L, XC3100A/L).
1998.
Xilinx. XC5200 Series Field Programmable Gate Arrays. 1998.
Xilinx. XAPP176: Spartan-11 FPGA Family Configuration and Readback. 1999.
Xilinx. XAPP138: VIRTEX Configuration and ReadBack. 1999.
Xilinx. XAPP501: Configuration Quick Sart Guidelines. 2001.
Xilinx. XAPP090: FPGA Configuration Guidelines. 1997.

[13]. AlteraCorporation. ALTERA Data Book 1998, 1998.
Altera Corporation. An 116: Configuring SRAM-based LUT devices. 2001
Altera Corporation. An 59: Configuring FLEX 10K Devices, 1995.
Altera Corporation. FLEX 10K Embedded Programmable Logic Family, 1998.
Altera Corporation. ALTERA Programming Hardware Data Sheet, 1998.

[14]. Xilinx. XC3000. 1998.

[15]. Xilinx. XC4000. 1999.

[16]. Xilinx. XC5200. 1998.

[17]. Xilinx. Virtex Configuration Guide. 2000.

[18]. Compag. PCI Pamette v1 Overview.

[19]. Compag. PCI Pamette vl PamDC.

[20]. Xilinx. Xilinx Hardware InterFace.

[21]. AlteraCorporation. Sgnal Tap Embedded Logic Analyzer.

103

[22].
[23].
[24].
[25].
[26].
[27].
[29].
[29].
[30].
[31].
[32].
[33].
[34].
[35].

[36].
[37].
[39].
[39].
[40].
[41].

[42].

[43].

[44].

Altera Corporation. Quartus Il Software.

Altera Corporation. MAX+PLUSII Software.

Microprocessor and Hardware Laboratory, Technical University of Crete. Greece
Technical University of Crete, Chania. Greece.

Xilinx. Parallel Cablelll.

Altera Corporation. ByteBlaster Serial Download Cable Data Sheet, 1998.

GNU. Flex Lexical Analyzer Generator.

GNU. Bison Syntactical Analyzer Generator.

Sun Microsystems. Java Virtual Machine

Sun Microsystems. Java Communications API. 1998.

Brigham Y oung University's Configurable Computing Laboratory. JHDL.1998.

Sun Microsystems. Forte For Java Community Edition IDE. 2001.

Steven A. Guccione and Delon Levi. JBits: A Java-Based Interface to FPGA Hardware.
Eric Lechner and Steven A. Guccione, "The Java Environment for Reconfigurable
Computing", in Proceedings of the 7th International Workshop on Field-Programmable
Logic and Applications, FPL 1997. Lecture Notes in Computer Science 1304", Wayne
Luk and Peter Y. K. Cheung, eds., Springer-Verlag, Berlin, September 1997, pp. 284-
293.

Xilinx, Inc., "XC6200 Development System Datasheet”, 1997.

Steven A. Guccione, "Programming Fine-Grained Reconfigurable Architectures', PhD
Thesis, University of Texas at Austin, May 1995.

Lucent. ORCA Series 2 Field-Programmable Gate Arrays Datasheet.1999.

Lucent. ORCA OR3LxxxB Series Field-Programmable Gate Arrays. 1999.

Lucent. ORCA Series 4 Field-Programmable Gate Arrays. 2000.

John Schewel. A Hardware / Software Co-Design System using Configurable Computing
Technology.

Paul Graham, Brent Nelson and Brad Hutchings. Instrumenting Bitstreams for
Debugging FPGA Circuits. In Preliminary Proceedings of IEEE Symposium on Field
Programmable Custom Computing Machines, FCCM 2001.

Satnam Singh and Phil James-Roxby, Lava and JBits. From HDL to Bitstream in
Seconds. In Preliminary Proceedings of IEEE Symposium on Field Programmable
Custom Computing Machines, FCCM 2001.

104

World Wide Web Stes and Resources

[1].
[2].

[3].
[4].
[5].
[6].
[7].
[8].

Xilinx: Programmable Logic Devices, FPGA & CPLD. pttp://www.xilinx.com/|

Altera Corporation: The Programmable Logic Solutions Company.

http://www.altera.com/|

Lucent. http://www.lucent.com/|

The Source for Java Technology. http://java.sun.com/|

Forte For Java Developer Resources. http://forte.sun.com/|

Java Communications API. http://java.sun.com/products/javacomm/index.html|
Java 2 Platform Standard Edition. http://java.sun.com/j2se/1.3/|

Microprocessor and Hardware Laboratory (MHL) and ReRun information.

http://www.mhl.tuc.qgr/|

105

http://www.xilinx.com/
http://www.altera.com/
http://www.lucent.com/
http://java.sun.com/
http://forte.sun.com/
http://java.sun.com/products/javacomm/index.html
http://java.sun.com/j2se/1.3/
http://www.mhl.tuc.gr/

	Áöéåñþíåôáé óôïõò ãïíåßò ìïõ êáé ôçí ïéêïãÝíåéÜ ìïõ...
	Contents
	List of Tables
	List of Figures

