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Chapter 1 
 

Introduction 
A team of surgeons preparing for a complex colon cancer surgery 

procedure decides to review the video files of similar procedures 
performed the last three years in the hospital. They search through the 
huge collection of video files and retrieve the relevant videos. During the 
review process different portions of the video are accessed based on the 
nature of the procedures being performed in the video with frequent 
comparisons between the cases (video files). While reviewing one of the 
video files, a surgeon recalls a different procedure that was performed on 
a similar anomaly. A search through the video collection yields another 
set of video files. At the end of the review process the team has all the 
background information necessary to perform the procedure. The 
complete review process takes up an entire day for the surgery team. 
More than half the time spent for review is consumed by the process of 
searching for the appropriate video files and navigating through the files 
looking for particular techniques. 

The example is meant to illustrate the powerful nature of video as a 
medium of information representation and the effort involved in dealing 
with large collections of video. Utilizing video collections effectively 
requires the ability to access video by its content. The ability to search 
through video collections based on the information contained in the 
videos, the visual events, audio events and many such interesting patterns 
is termed content based access of video. There are many different 
applications which require such content based access of video. 

A computer based system which provides the functionality 
necessary to manage collections of video while providing the capability 
of content based access of video is called a Video Data Management 
System (VDMS). Using a video data management system, the surgery 
team in the example would have been able to complete the review in 
less than half the time. 
 
 

Problems In Digital Video Data Management 
 The problems involved in digital video data management arise due 
to three factors. The first set of problems arises from the nature of the task, 
data management. The second set of problems is due to the non alpha 
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numeric, spatio-temporal and audio-visual nature of video data. The final 
set of problems arises due to the digital medium of video storage. 
 

1) Data management: The task of managing any collection of data 
involves four basic problems, data modeling, insertion, organization 
and retrieval. Data modeling entails the choice of data aspects 
most relevant to the application. Adding new data units to a 
collection is termed data insertion. Data organization deals with the 
task of suitably arranging data units with reference to one another 
to facilitate easy and fast access to the data. The process of 
requesting the data (querying for the data) and extracting it from 
the collection is called data retrieval. All the tasks mentioned 
above have been addressed in the context of alpha numeric data, 
but many of techniques applicable to alpha numeric data do not 
apply to video due to its non alpha numeric, spatio-temporal, 
audio-visual nature of video. 

2) The non alpha numeric, spatio-temporal and audio-visual nature of 
video data: The non alpha numeric nature of video makes it 
opaque to computer systems thus any computer system that deals 
with video has to manage video through an associated alpha 
numeric representation of video. Designing task directed 
representations of video is called video data modeling. The nature 
of video makes the task of incorporating new video units into an 
existing collection of video very cumbersome and tedious. The 
manual effort involved in adding to a collection of video becomes 
formidable as the volume of data to be managed grows. 
Introducing new data items into an existing collection is termed 
video insertion. 

3) Digital medium of video storage: The digital storage of video data 
provides the freedom of random access to video data at the level 
of individual frames of video. This increase in the accessibility of 
video data as compared to the traditional storage medium of 
video tapes gives rise to the problem of representing video at very 
fine temporal intervals. The fine temporal granularity of video 
compounds the video insertion problem making it more labor 
intensive. 

 
The problem of organizing video data is more complex than that of 

organizing alpha numeric data. This is primarily due to the fact that the 
concept of equality of two data items is invalid for non alpha numeric 
media like video. Equality translates to similarity in the case of non alpha 
numeric data. The design of suitable representations can make the 
problem of video data organization comparable to the traditional data 
organization problem. The audio-visual properties of video and the spatio-
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temporal nature of video give rise to new problems in specifying the video 
items to be retrieved from the collection. Designing methods of specifying 
audio-visual, spatio-temporal queries and techniques for processing such 
queries is termed video data retrieval. 
 

Video Data Management Systems, A General Idea 
 Database management systems are a part of normal day to day 
operation of computer systems. The type of databases available on 
computers today is mainly limited to alpha numeric databases. In the 
recent past there has been some research into image data management 
systems. A few such systems are commercially available. With the coming 
of age of digital video technology video data promises to be an 
ubiquitous medium of information representation in computer systems.  
The need for managing video data on computer systems is growing. 
However there has been very little research on video data management 
systems. It is important to mention a few things about the video itself. In 
the following paragraph it will be presented the content of the video. 
 
 

Nature Of Video Data  
 It is the right time to pose the question. What is in video? Video is an 
audio visual medium of information presentation. The Figure 1.0 below 
shows a very high level view of the content of video. In this figure the 
content of video has been grouped into two types: 
 

• Information Content: This is the message or information conveyed by 
the video. For example, after watching a news story about a crime, 
the viewer has acquired information from the video about several 
aspects of the crime, like what was the crime, where did it occur, 
who were the victims etc. This information was conveyed to the 
viewer via the audio visual medium of video. 

• Audio Visual Content: This is the audio visual content of video. This 
includes the video clips and audio signals. For example, in the news 
story on crime, the viewer sees the location of the crime, hears the 
associated sound track. Depending on how the video was 
produced, the same information content can be presented 
through infinitely many different audio-visual presentations. 
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Figure 1.0: Content of Video 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The key distinction between the information content and audio 
visual content is the amount of contextual information and knowledge 
required to extract each of these contents. The information content of 
video requires the use of contextual information along with a large body 
of associated knowledge where as the audio visual content is primarily 
oriented towards the aural and visual senses and does not require an 
understanding of the information. The audio visual content can be 
extracted from video based on the capabilities like speech recognition, 
image understanding and interpretation. 

The management of video from an information content perspective 
has similarities to managing textual information. The management of 
information is addressed by the library and information sciences 
community. They address the issues at a very coarse grain. For example in 
conventional libraries the unit of information is a book, and the access 
patterns are by the title, author, subject etc. However the granularity of 
content based access envisioned for in video data management is much 
finer. For example, some queries, access video by content at the 
granularity of scenes and shots. This granularity of access corresponds to 
accessing books at the level of chapters and sections. Thus managing 
video from an information content perspective has some degree of 
overlap with the traditional information management problem. 

The audio-visual content of video arises either as a visualization of a 
message or as a log of audio-visual activity. For example, in the case of 
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feature films, the audio-visual content is created explicitly with the 
purpose of visualizing the script, where as in a video taken from a security 
camera in a shopping mall, the video is just a log of the audio-visual 
activity within the range of the camera. Many different types of audio-
visual events can be extracted from video. The visual medium can be 
used for recognizing objects, tracking objects over time, recognizing 
temporal events etc. The audio track can be used to recognize words 
and sentences, unusual sound events etc. The task of managing video 
based on its audio-visual content is a largely unaddressed research 
problem. 

In summary, a video can be considered as an audio-visual 
representation of information. The information may be generated for the 
purpose of making the presentation or may be generated as a part of 
some other process. The audio-visual content is directly extractable from 
the video with minimal external knowledge, where as the information 
content requires the use of significant amount of contextual knowledge. 
 
 

Unique Characteristics Of Video 
 Another important question that has to be answered is How is video 
different from other classes of data? This question is answered by 
classifying data into two categories, namely alphanumeric data and non 
alphanumeric data and comparing them. The definition of the classes 
and a list of comparison criteria are presented here. 
 

• Alphanumeric Data: The data in this class is generated from a finite 
set of symbols. The symbols may be drawn from some given finite 
set of languages. For example, the data in a telephone directory is 
composed of a finite set of symbols. The symbols are drawn from 
the valid set of telephone numbers in a city, the possible set of 
names, and the valid set of addresses in the city. There are several 
other examples of alphanumeric data, like free text data, computer 
programs, product data etc. 

• Non Alphanumeric Data: This is non symbolic data, in other words 
the data is not derived from a finite set of symbols. Typical examples 
in this class include signal level data like images, speech signals, 
ECG Data, MRI Data, Video Data, Weather Data etc. The key 
difference between symbolic and non symbolic data is that the 
former is essentially generated by human agency as compared to 
the later which is gathered by some automatic means. 
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The criteria for comparing alpha numeric and non alpha numeric data 
are listed. A short explanation of each of these criteria is presented, 
followed by a discussion of how the criteria vary for different types of 
media. The different types of media considered are a structured record, 
free text, line drawings, an image and a video. 
 

• Resolution: The resolution of a particular media is the detail that the 
media provides. For example, a textual description of a scene has 
much less detail that an image or a video of the scene. Non alpha 
numeric media provides much higher detail than the alphanumeric 
media. 

• Production Process: The source of data goes from being a finite 
symbolic alphabet as in the case of the structured record, to being 
generated from larger and larger sets of symbols in the case of line 
drawings to an infinite symbol set in the case of images and video. 
Alphanumeric media originates through direct human agency, i.e., 
it originates from a human being. Non alphanumeric data 
originates from sensors, i.e., it is recorded by some type of sensor. 
For example, a camera, a microphone, a MRI imager etc. 

• Ambiguity of Interpretation: This criterion is a measure of the number 
of interpretations derivable from the data. The number of 
interpretations for video is much larger than for a structured data 
record. The interpretation process depends on the interpreting 
agent. For example, on viewing the video clip, a person may 
register the color properties of the video, while another may take 
note of the aural properties. But given a structured record of 
information the ambiguity is limited. 

• Interpretation Effort: This is a measure of the computational effort 
required to interpret a given unit of information. The effort required 
to interpret a structured record is much smaller than that required to 
interpret an image or a video. 

• Data Volume: In terms of digital storage, the volume of video is 
about seven orders of magnitude larger than a structured data 
record. 

• Similarity: The idea of similarity between two units of information is 
very precisely defined in the case of structured records. This 
concept becomes less and less well defined as the media resolution 
grows higher. 

 
Table 1.0 below summarizes the comparison between alphanumeric 

and non alphanumeric data. The voluminous nature of video data, its 
higher degree of interpretation ambiguity, interpretation effort and ill 
defined concept of similarity pose the most significant challenges in 
managing video. The greatest advantage of video as a medium is the 
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Criteria Alphanumeric Data Non Alphanumeric Data

Resolution Low High
Production 
Process

Finite Symbol Set Infinite Symbol Set

Interpretation 
Amguity

Low High

Interpretation 
Effort

Low High

Data Volume Low High
Similarity Well Defined Ill Defined

Table 1.0: Comparison between Alphanumeric & 
Non Alphanumeric Data 

resolution of information, the expressive power of video surpasses that of 
any other medium. Video is a very natural form of communication given 
the audio-visual sensory capabilities of human beings. 
 

 
 

 
 

Applications Of Video 
 This section presents a detailed study of different usages of video. 
The goal is to understand that video plays an important role in different 
perspective of our life. Each of the applications is analyzed from several 
perspectives like video intent, video content, video production and video 
usage. The example applications used are feature films and news videos. 
 

• Video Intent: Why was this video made? This questions the purpose 
of producing the video. The answer to this question provides clues 
into the structure of video, content of the video and the 
organization. 

• Video Content: What is the typical content? This question probes 
the issue of video content for the particular class of videos. 
Depending on the domain of the video the predictability of the 
content varies. 

• Video Production: How was the video made? This addresses the 
issue of the nature of the production process. The answer to this 
question provides information about the syntactic structure, the 
audio-visual properties etc. Video production is viewed from the 
following perspectives: 
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o Script Control: Video can be a visualization of a certain script 
or an audio-visual log. Script control is a measure of the 
degree of visualization control. For example, a feature film 
has multiple filming of the same scene where as a sporting 
event video must capture the event as it occurs. 

o Filming Control: The key process in making a video is the step 
which captures images onto the media. This involves an 
environment in which the video is made, a subject and the 
video filming parameters. Filming control is a measure of the 
degree of control exercised by the film maker on these 
parameters. 

o Composition Control: A video can be the result of composing 
many individual pieces of film footage into a temporal 
composition. Using this as criteria for classifying videos 
provides a broad classification of videos. 

o Channel Control: Since video is an audio-visual medium, the 
relative information content in the two channels can be used 
as criteria to classify videos. This provides clues into the best 
techniques for indexing a class of videos. 

 
• Video Usage: The way a video is used dictates the queries that arise 

in the database context. Different users of video have different 
query requirements. The users typically examine the video from a 
certain perspective. The examples illustrate this issue. 

 
 

Examples Of Videos 
 
Example 1: Feature Films 
 

 
Video Intent: The main purpose of this class of videos is to provide 
entertainment. The director of the film has a message to convey to 
the audience. Video is used as a communication channel to 
communicate this message. The feature film can be considered the 
directors visualization of the script. 
 
Video Content: The content of feature films is very widely varied. 
There are many different types of feature films. The classification 
scheme used for feature films is referred to as film genre’ s. Extensive 
studies on the classification of films based on content can be found 
in literature. Western Movies and War Movies are examples of 
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classes of movies. Given a particular class of movies the content is 
predictable. For example, in the case of war movies, a number of 
things are known the subject of the movie is a war; typically it would 
contain a number of battle scenes.  
 
Video Production: The production of feature films is a planned and 
controlled process. 
 

Script Control: The degree of control that the film maker has 
on the exact message to be conveyed is very high. The script 
can be altered and hence the nature of the video produced 
is very structured. 
 
Filming Control: The degree of control that the film maker 
exerts on the filming process is very high. All aspects of filming, 
the location, the action, and the cinematography are 
planned and controlled. 
 
Composition Control: A significant portion of film production is 
done through the use of editing, which plays a very important 
role. The degree of control on the editing process is very high. 
 
Channel Control: This parameter is completely under the 
control of the film maker. Some films have a strong visual 
orientation while others tend to be dominated by aural 
information. 
 

Video Usage: A collection of feature films has many different groups 
of users. These user groups have certain queries about feature films. 
The following is a list of users. The list is not exhaustive but does cover 
the major categories of users. 
 

Film Viewer: This is a set of users who use feature films just for 
the purpose of entertainment. They are typically interested in 
a particular type of film. 

 
Film Critic & Analysts: This set of users, views films with the 
purpose of evaluating the films from many different 
perspectives like, general appeal, artistic appeal, director 
evaluation, actor evaluation, cinematographic evaluation, 
special effect evaluation etc. In addition to being able to 
locate films, this group of users will require finer grain access 
to the films. 
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Film Database Managers: These are the group of people who 
own and operate movie rental organizations. 
 

 
Example 2: News Video 
 

News video here stands for a regular television news bulletin. A news 
bulletin like the BBC for example. 

 
Video Intent: The purpose of a news video is to convey the news to 
its audience. The news here is defined as the events that occurred 
over a given duration of time as observed by a certain team of 
people. A news video reports the events along with the necessary 
background information to provide a complete and 
understandable presentation. 
 
Video Content: The content of a news video is unrestricted. But a 
news cast has a definite structuring. For example, news casts begin 
with the main points and have segments dedicated to politics, 
sports, social stories, science etc. All the news segments are 
presented to the viewer by the anchor person, and each individual 
segment has a structuring of its own, with a reporter anchoring the 
individual segment.  
 
Video Production: The production of television news is less controlled 
than a feature film. 
 

Script Control: The degree of control is limited to the structure 
of the news. Specifically, the stories that are reported on a 
news bulletin are controlled. However the exact content of 
the stories and their presentation are less controlled. With the 
use of satellites, news bulletins incorporate live news reports in 
which the degree of control on the content is very limited. 
Thus as compared to a feature film the degree of control 
exerted on the actual message conveyed by a news bulletin 
is smaller. 
 
Filming Control: The environments typically involved in a news 
bulletin include the studio environment which tend to be well 
controlled and the news location environment which tends to 
be less controlled. The subjects involved in news reports 
include the news reporters and anchor persons etc, who are 
used to presentation and other subjects where the degree of 
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control is much lesser. The cinematographic aspects of news 
bulletins again have two distinct portions the studio segments 
incorporate standard cinematographic practices, while the 
actual news reports in many cases do not adhere to standard 
practices. Thus the overall degree of control that can be 
exercised on the filming aspects of news bulletins is lesser that 
of feature films. 
 
Composition Control: News bulletins are composed video.  
The degree of control exercised on recorded reports is higher 
than that exercised on live reports or on transitions between 
live segments and recorded segments. As compared to 
feature films the degree of composition control tends to be 
smaller. 
 
Channel Control: The information in news tends to be more in 
the audio channel; the visuals are used mainly as a 
enhancing mechanism for the audio report. The degree of 
control exercised on the distribution again tends to be smaller 
as compared to feature films. 
 

Video Usage: The following is a list of news video users and the 
expected queries. 
 

News Browser: This set of users is interested in news only from 
the perspective of getting news 

 
News Producers & Reporters: These users reuse news for news 
report production. They are interested in researching facts 
related to a particular story. For example, the nomination of a 
new presidential candidate will typically result in a report with 
highlights in the person’s life beginning from birth. 
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Chapter 2 
 

Multimedia Authoring & Video Production 
 Multimedia authoring is the term used for the operation of 
composing digital documents which include different types of media 
objects. The typical types of media objects involved in multimedia 
authoring include text, graphics, sound, images and video. Such an 
authoring system will have a collection of video objects from which video 
clips will be included into different multimedia documents. The video 
collection will be updated with new video objects from time to time. 
During the authoring process, different clips of video will need to be 
retrieved from the video collection based on the content of the video. 
Thus a multimedia authoring system needs a video data management 
system to manage the video data that is associated with the authoring 
system. 
 Video Production is a term being used to cover the areas of film 
and video production. Specifically, editing is one of the operations that 
uses a large collection of video as a source for generating the final cut. In 
short, the video production process involves, shooting which generates a 
significant amount of raw footage and editing which organizes the raw 
footage into the final video. During the editing phase, video objects from 
the collection are retrieved based on content and these are organized 
into the final presentation. As the shooting operation progresses new clips 
are produced which are introduced into the video collection available to 
the editor. Thus the video production operation also requires a video data 
management system to manage the video data. 
 Both multimedia authoring and video production have a large 
degree of overlap in the access patterns they use for video collections. 
This is due to the fact that both the operations have the same goal, 
composing a presentation which includes video information. Hence both 
these applications are being treated as a single application for the 
purpose of identifying the requirements and for designing the data model. 
 

Typical Examples 
 Two examples, one each from multimedia authoring and video 
production are considered. These examples are used to derive the typical 
queries in each of these applications. The examples have been chosen so 
that they cover the most typical access patterns that occur in each of the 
application. The examples are presented below: 
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Multimedia Authoring Example 
 Let the topic of the document being authored be The President’s 
favorite sport: Golf. The document could include video clips of the white 
house, the president in golfing attire and the president playing golf. The 
following types of queries are possible: 
 

1. Retrieve long shot of white house. 
2. Retrieve shot of president on golf course. 
3. Retrieve shot of president putting. 
4. Retrieve tracking shot of putt. 

 

Video Production Example 
 Consider a film segment which is picturing a car chase. Let the 
video have the following large scale structure: 
 

• A panoramic view of the road and its surrounding area. 
• The first car entering the scene. 
• The second car in pursuit. 
• Several shots of the chase in progress. 
• The cars exiting the scene. 

 
The following are queries which could arise while editing together such a 
segment: 
 

1. Retrieve establishing shot of road scene. 
2. Retrieve medium shot of car entering scene. 
3. Retrieve zoom in shot of driver of car lead car. 
4. Retrieve shots of cars passing the camera. 

 
 

Design Of Data Model 
The design of the video data model involves the following steps: 
 

Step 1: Choice of Video Interval 
 It is used a video unit called shot. In film and video production 
terminology, the term shot refers to the sequence of images 
generated by the single operation of a movie camera. In all 
composed video productions the shot is the smallest identifiable 
visual unit which does not depend on the content of the video. 
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 The video interval in the data model is chosen to be a shot. 
There are several implications of this decision: 
 

• Since the shot is the finest visual granularity in a video, 
all other visual video units can be composed of shots. 
Thus using the shot as the basic temporal interval 
generates the finest visual index into video. 

• Since the temporal interval choice is based solely on 
the visual property of video, this process segments the 
associated audio into undefined units. This is because 
of the reason that video and audio are not 
synchronized at the granularity of shots. 

 

Step 2: Design of Temporal Relationships 
 Since the basic representation of video to be used is the shot, 
the relationships between various shots in a video and how they 
combine to form larger units is a question of general interest. This 
can be achieved by maintaining temporal relationships between 
the different units of video using a set of temporal relations. 
However, given the example query presented above, since none of 
the queries use the temporal relationship, the relationship need not 
be maintained in the data model. Thus no temporal relationships 
are maintained in the authoring and production support data 
model. 
 

Step 3: Choice of Video Features 
 The video features in the video data model  refer to the video 
interval specified in the data model. Each of the features describes 
a certain aspect of the video specified by the interval. In the query 
examples, the shot has been described in terms of some of its 
cinematographic properties and in terms of its content label. Thus 
the features to be used in the case of the authoring and production 
support data model are the cinematographic features of video 
and a set of labels which describe the content of video. 
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The Data Model 
 The previous three steps outlined the procedure for designing the 
video data model based on the model query. The data model for a 
database which supports the multimedia authoring and video production 
application is presented below. Let Vap be the video model: 
 
 Vap: Video Interval: Shot 
                 : Temporal Relations: 0 

      : Feature Count: 2 
      : Type: ( )10 ,ωω  
      : Features: ( )10 , FF  

: where =0F Cinematographic Label Set, =1F Content Labels                                            
(Equation 2.0) 

 

Video Processing Approaches, An Introduction 
 This paragraph makes an introduction to the video processing 
approaches which will be presented in detail to a fore come chapter. The 
goal of the approaches is to provide the tools necessary for reducing the 
effort involved in inserting video into a video database based on a video 
model. The tools presented here are specifically aimed at the multimedia 
authoring and production support database. However the ideas that are 
used in designing these video processing tools and the way in which the 
tools are applied can be used in the design of video data management 
systems for other applications. There are two video processing algorithms 
that have been presented: 
 

Video Segmentation Algorithm: This algorithm processes a video 
stream and identifies in the stream the boundaries of video shots. 
The shot boundaries identified by the algorithm constitute the video 
interval in the video data model (equation 2.0). The use of such an 
algorithm in the video insertion process totally removes the effort 
necessary to manually identify video shot boundaries, the segment 
location step, in the video insertion process.  
 
Video Indexing Techniques: The goal of the indexing algorithms is to 
simplify the video description process, the segment description step 
in the video insertion process. These algorithms process the 
individual video shots identified by the video segmentation 
algorithm. The shots are assigned a label based on the results of the 
video processing. The labels extracted by the video processing 
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algorithms can be used to partially automate the video description 
process. 

 

Video Production 
 Video production is defined as the process that transforms a script 
into the final video. This paragraph presents a structured view of video 
production. The goal of the presentation is two fold: firstly, to present a 
clear picture of video production, with a view to identifying the various 
stages in the process. The second main objective is to identify the key 
labels or terms used to describe the videos generated by differing 
production parameter control strategies or styles. During the following 
discussion the term video represents movies, television programming, 
video recordings and any other form of moving image capture. 
Production techniques used in television production, news production and 
many other types of production have their origins in movie production 
and hence have a large degree of overlap with movie production. 
 The study presents a broad overview of movie production. The goal 
once again is to illustrate that there are clearly identifiable stages with 
codifiable rules in video production and that these rules can be 
systematically listed out and translated into constraints. The focus of this 
paragraph is on the editing and shot framing processes of video 
production. 
 

Phases in video production 
 Video production is treated as a set of transformations that 
transform a given script to a video. Figure 2.0 shows the three main phases 
involved in video production. The flow indicated in the figure is a logical 
flow of the process; the phases have been identified based on the nature 
of the transformation that occurs. The first phase in the production process 
involves the creation of the content of the video, the second phase 
mainly deals with the capture of this content on to a media and the last 
phase involves the organization of this content into a coherent 
presentation. All the three phases occur simultaneously in many cases. 
Typically, the different shots are filmed out of order. Some of the dialogue 
is recorded during the shooting while others are recorded in the studios. 
The final organization of all the pieces is carried out in the editing and 
mixing rooms. For the purpose of video retrieval the temporal ordering of 
the phases is not very critical. Each of these phases has been discussed in 
further detail in the following sections. The processes that compose each 
phase have been represented in a diagram called the video production 
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Figure 2.0: Phases in video production. 

diagram (figures 2.1, 2.2, 2.3). These diagrams use the following 
standardized notation: 
 

Rectangle: Each rectangle in the figures represents an independent 
sub process. The process name is listed in bold face at the top of 
the box. The underlined labels within each rectangle represent the 
process parameters. And each process has inputs and outputs. In 
some rectangles composite processes are listed below the process 
name in smaller bold face letters. 
 
Oval: The ovals in figures represent products or objects produced by 
the processes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Phase 1: Content Creation: Direction 
 Content creation is defined as the process which transforms the 
script into an audio visual presentation. The process is referred to as 
direction in movie literature. Here the director along with the actors 
transforms the script into a form which can be captured onto film. This 
phase can be split into two sub-phases. The following discussion is 
intended only to bring out the organization of various aspects of content 
creation. 
 
 
 
 



 24 

 
Visual Content Creation: Visual content arises from the combination 
of the script, actors and set. Based on the script and the directors’ 
style, the actors’ movements, expressions and gestures are 
controlled. At the same time visual content is very strongly 
influenced by the location or setting of the scene. The direction 
process has control over the choice of the location and on factors 
like lighting, background. In many cases, the visual content may be 
created in the studios through the use of special effects which 
place the actors into a non existent setting. 
 
Aural Content Creation: Aural content is created by a combination 
of three distinct types of sound generation processes, dialogues, 
music and sound effects. The dialogue director uses the script and 
the actors to create dialogues. This process controls many of the 
parameters of dialogue delivery like pitch, intonation etc. Music is 
generated by the music director using the score and an orchestra. 
Here again several sound parameters of the music are manipulated 
to generate the desired effect. The effects process pertains mainly 
to generating different types of sound effects like background 
noises, special sound effects, etc. A variety of different procedures 
are used to generate these effects. 
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Figure 2.1: Video Production: Phase 1: Content Creation 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Phase 2: Content Capture: Shooting & Recording 
 Content capture is referred to as cinematography in movie 
literature. Cinematography means writing with movement. In many cases 
cinematography includes the process of recording sound. 
Cinematography is an active process which captures the content with a 
unique perspective. There are several conventions and practices followed 
in cinematography. These conventions are applied to many different 
types of content. Thus from the perspective of deriving constraints usable 
in the database design process, cinematography is a very interesting 
process to study. 
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Visual Content Capture: Shooting: Visual content capture or shooting 
captures the visual content created by the director onto a medium like 
film or video tape or digital storage. The camera is the instrument which 
transforms the visible portion of the visual content into a form that can be 
stored onto a medium. Thus the process of shooting involves the control of 
various camera parameters like zoom, focus, aperture, etc. In addition to 
camera parameters the spatial relationship between the camera and the 
scene are also parameters which are constantly changed and varied 
during the shooting process. There are three main sets of parameters 
groups that are controlled during the shooting process photographic, 
framing and shot time as shown in figure 2.2. The time parameter in 
shooting mainly deals with the length of time for which the current visual 
content is captured onto film. This is referred to as length of the take in 
movie literature. The photography and framing parameters are discussed 
below: 
 

Photographic Parameters: This group of parameters deals with the 
control of the camera optics. The goal of the control operation here is to 
generate a particular image quality. Image quality is normally measured 
in terms of the contrast of the image, quality of the colors etc. The main 
parameters in this group are: 

 
• Chromatic Parameters: One of the important factors under 

this category is film speed i.e. the sensitivity of the film to light 
and to different frequency ranges of light. With the changes 
in technology, this parameter also refers to the frequency 
response of the CCD elements used in current video 
cameras. The other parameters that are grouped under this 
category include the lens aperture setting which controls the 
total amount of light entering the camera and the filters used 
on the lens to create various effects like haziness, fogginess 
etc. 

• Filming Speed Parameter: This parameter controls the number 
of frames captured per second. The choice of this parameter 
depends mainly on the speed of the motion being filmed and 
the temporal resolution desired for capturing this motion. 

• Image Perspective Parameters: This set of parameters 
specifies the field of view of the lens and the focal length. The 
typical types of lenses used include wide angle, normal and 
telephoto. A zoom lens is a lens which can be changed from 
a wide angle to a telephoto depending on the zoom setting. 

 
 



 27 

 
Framing Parameters: The framing of shot deals with the relationship 

between the finite field of view of the camera system and the scene. This 
is considered a very important parameter in film production as the 
relationship between the frame (borders of the image)  and the content 
of the image has a very significant effect on the way the viewer perceives 
the content of the image. A number of conventions are used in 
controlling this relationship. The following are the different parameters 
grouped under framing: 

 
• Frame Geometry: This deal with the size and shape of the 

frame (image). This parameter was varied in the early days of 
movie making but has been standardized since. In the case 
of digital video applications the frame shape and size can be 
treated as a constant. 

• Space Definition: This parameter deals with the relationship 
between the objects within the field of view and objects that 
are implicitly perceived by the viewer as being outside the 
field of view. This relationship cannot be directly used in 
automatic video processing in the context of VDMS as it is a 
perceptual parameter. 

• Vantage Point: This is the set of parameters that define the 
relative geometry between the camera system and the 
scene. These set of parameters are very critical from the 
perspective of video analysis in VDMS. This includes 
parameters like relative camera angle and apparent 
distance. 

• Frame Motion: This deal primarily with the way the framing 
changes over the duration of the shot. This depends on the 
camera motion and lens angle changes during a shot. 

 
Aural Content Capture: Recording: The recording of sound is done on a 
number of separate tracks, each track being dedicated to a particular 
audio content. All these tracks are combined in stages to generate the 
final audio tracks which are synchronized with the video. There are three 
different types of audio tracks dialogue, music and effects. The dialogue 
tracks consist of a number of separate tracks some time the dialogue of 
each actor may be initially stored onto a separate track. Music is similarly 
recorded into a number of different tracks. Special sound effects are 
generated in the sound studios and stored onto different tracks as shown 
in figure 2.2. 
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Figure 2.2: Video Production: Phase 2: Content Capture 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Phase 3: Content Organization: Editing & Mixing 
 The final phase of video production is an organization phase, where 
all the content that has been captured is placed in some temporal 
ordering and the relative importance given to each of the different types 
of content is varied over time to generate the final video. This is referred to 
as the final cut in movie literature. The organization of visual content is 
done in the editing process; the organization of the audio tracks is carried 
out in the pre-mixing process. The final synchronization between the audio 
and visual tracks is done in the mixing process. This process also controls 
the relative importance of the audio as compared to the video, by 
controlling the various parameters of the audio tracks. Figure 2.3 shows 
the flow of the content organization phase of video production. 
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Figure 2.3: Video Production: Phase 3: Content Organization 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

The Shot Framing Process In Detail 
 Framing of the shot is one of the most important parameters to be 
controlled during the shooting process. The frame or the edges of the 
image define for the viewer the visible area of the scene. The relationship 
of objects to the frame significantly affects the perception of the content 
of the video. There is significant amount of literature which deals with the 
various conventions that are followed during the framing of a shot. The 
shot framing process is of interest from both the database perspective 
and from the data analysis point of view. From the database perspective 
being able to index video based on shot framing parameters will allow the 
database to support queries based on different types of shots. The 
conventions used in shot framing can be used to provide constraints for 
developing video analysis algorithms. The goal of the study is to identify 
different types shot labels used in movie literature based on different 
parameters of the shot. These labels are later used in the development 
video models which define the ideal index into video. Shot classes are 
identified based on the vantage point parameter group of shot framing. 
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Figure 2.4: Apparent Distance based shot labels 

 
 
 
 Apparent Distance based labels: Apparent distance is the distance 
perceived between the subject and the camera. It is a function of the 
actual distance between the camera and the subject, the type and 
setting of the lens used in the shot (zoom setting) and the size of the 
object. The apparent distance affects the framing of the subject within 
the picture. The classification of shots based on this parameter uses the 
relative area occupied by the subject within the frame as a basis for 
grouping of shots. Figure 2.4 shows the relationships between the frame 
size and subject size assigned. The following are the apparent distance 
labels used: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

• Extreme Long Shot (XLS): A shot in which the subject is very far from 
the camera. Hence the subject occupies a very small portion of the 
frame and the shot gives an overall picture of the location. 

• Long Shot (LS): The apparent distance between the subject and the 
camera is large. The subject in general occupies about half the 
eight of the frame. Some area of the scene both above and below 
the subject is visible. 
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Figure 2.5: Relative Camera angle based shot labels 

 
 

• Medium Long Shot (MLS): The apparent distance between the 
camera and subject is lesser that a long shot but more than a 
medium shot. The subject completely occupies the height of the 
frame. The frame includes some part of the background scene in 
addition to the subject. 

• Medium Shot (MS): A shot which captures about half the length of 
the subject within the frame. The frame has lesser part of the 
background than the subject. 

• Medium Close Up Shot (MCU): The apparent distance between the 
subject and the camera lies in between that of a close up and a 
medium shot. The subject occupies a significant portion of the 
frame but not the entire frame. 

• Close Up Shot (CU): The apparent distance between the subject 
and the camera is small. The subject occupies almost the entire 
frame. 

• Extreme Close Up Shot (XCU): A shot which shows only a small 
portion of the subject. Hence the subject occupies the entire frame. 
Example: A portion of the human face like just the eyes. 

 
Relative Camera Angle based labels: Labels assigned here depend 

on the angle from which the camera views the subject. They are a 
function of the height of the camera, the height of the subject and the 
orientation of the camera with reference to the ground plane. Figure 2.5 
shows the three basic labels that are used. The labels from literature are 
listed below: 
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• Eye Level Shot (ELS): The height of the camera and the height of the 
subject are approximately the same. The tilt of the camera with 
reference to the ground is typically zero. 

• Low Angle Shot (LAS): The height of the camera is lesser than that of 
the subject and the camera is tilted upwards towards the subject. 

• Extreme Low Angle Shot (XLAS): A shot where the camera height is 
very small compared to the subject and the camera is tilted up 
towards the top of the subject. 

• High Angle Shot (HAS): The height of the camera is larger than the 
height of the subject. The camera is tilted downwards with 
reference to the ground plane. 

• Extreme High Angle Shot (XHAS): A shot where the camera height is 
very large compared to the height of the subject and the camera is 
tilted down towards the subject. Such shots are generally acquired 
from helicopters, tower, etc. 

•  

The Editing Process In Detail 
 Editing is the process in which the film is composed from its 
component shots. This is the most important process in the content 
organization phase. This process involves the selection of shots from a set 
of shots and shaping or trimming the shots to the required length. The shots 
are then composed into scenes, sequences etc to match the script of the 
video. 
 Editing is the process which allows a video to present time and 
space at a scale different from reality. This process relies on the viewers 
perception and understanding to compress time and space. The editing 
process provides the editor with the following degrees of freedom 
between the two shots being edited. 
 

• Graphic Relations: This is the visual relationship between the two 
shots being edited. This is the most important property from the 
perspective of segmenting video based on visual shot transitions. 
The editing process can minimize the visual discontinuity to the 
viewer across an edit; such an edit is called a graphic match. In 
some cases the director may maximize the visual discontinuity 
between shots. 

• Rhythmic Relations: This is the relationship between the lengths of 
the shots being edited. 

• Spatial Relations: This is a perceptual property where disjointed 
space is composed using editing. 

• Temporal Relations: This is a perceptual property where the 
perceived time between two shots is controlled. 
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Figure 2.6: Editing Operation 

From the perspective of image based video segmentation the 
complete process of editing can be split into the following two phases 
illustrated in figures 2.6, 2.7. 

 
• Edit Decision: This is the process of deciding the temporal ordering 

of shots. It also involves deciding on the transitions or edits to be 
used between different shots. The result of the editing process is a list 
called the Edit Decision List. 

• Assembly: This is the physical process which the Edit Decision List is 
converted into frames on the final cut. The process involves taking 
the shots from the shot set in the specified order, and implementing 
the edits between the shots. The assembly process in general adds 
frames called edit frames to the final cut in addition to the frames 
from the original shots. 
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Figure 2.7: Editing Operation: Assembly Operation 
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Chapter 3 

VIDEO PROCESSING TECHNIQUES: A Review of 
Uncompressed Video Segmentation Techniques 
 One of the components of a video database system is a set of 
algorithms or techniques which handle and process video. There has 
been an increase in the research in the area of digital video processing. 
One of the main processing needed when dealing with multimedia data 
is multimedia sequence indexing. The importance of this research field 
can be shown by the number of recent communications and publications 
on the subject. In order to index multimedia data, we may need a 
preprocessing the aim of which is to temporally segment the videos, that 
is to say detect the shot changes present in the video sequences.  
 The number of shot change detection methods is now important 
and several reviews of these methods have been done. These reviews 
often present the different methods and their efficiency based on some 
quality measures. So they are very useful when one wants to select and 
implement a shot change detection method for a global video 
processing which could be done off-line. When processing has to be 
done on-line, the selection of a particular method should also consider 
computation time. This is especially true when dealing with uncompressed 
video sequences which contain a huge quantity of data. If the method 
has to be implemented on common hardware architecture, computation 
time is directly linked with complexity of the method. 
 Before it is presented a large number of methods, it is necessary to 
recall and describe the different forms a shot change can take. It is also 
defined the notations used in this chapter. The classification of the 
presented methods it is based on the basic elements used in the 
segmentation process: pixels, histograms, blocks, features, motion and 
combination of several approaches. 

Shot Change Description 
 A shot is defined as a continuous video acquisition (with the same 
camera). When the video acquisition is done with another camera, there 
is a shot change. The simplest way to perform a change between two 
shots is called a cut. In this case, the last frame of the first video sequence 
is directly followed by the first frame of the second video sequence. This 
kind of shot change is also called abrupt change. Because of their 
simplicity, cuts are often the easiest shot changes to be detected. 
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More complex shot changes are now available for video editing, 
thanks to improvement of the video production software. Instead of 
cutting and pasting the second video next to the first one, it is possible to 
insert an effect, as a wipe, a fade, or a dissolve. A wipe is obtained by 
progressively replacing the old image by the new one, using a spatial 
basis. A dissolve is a transition where all the images inserted between the 
two video sequences contain pixels whose values are computed as linear 
combination of the final frame of the first video sequence and the initial 
frame of the second video sequence. Fades are special cases of dissolve 
effects, where a monochrome frame replaces the last frame of the first 
shot (fade in) or the first frame of the second shot (fade out). There are 
also other kinds of effects (combining for example wipe and zoom), but 
actually most of the shot change detection methods are concerned only 
by the effects described previously in their indexing task. 

Notations 
 Video sequences are composed of successive frames or images. 
We define tI  the frame of the video obtained at time t . So it is possible to 
define ( )jiIP t ,,  the intensity of the pixel with coordinates i  and j  in the 
frame tI . We assume that the size of the images is X -by-Y  pixels, so we 
have Xi ≤≤1  and Yi ≤≤1 . 
 When methods are dealing with color images, the notation 

( )jiCIP kt ,,,  will be used. kC  represents the color component numbered k . 
As an example, we can consider that 1C , 2C , and 3C  are respectively 

representing the R, G, and B components in the RGB color space. So 
( )jiCIP kt ,,,  is representing the value of the color component kC  for the 

pixel with coordinates i  and j  in frame tI . 
 Some methods are dealing with histograms. So we define ( )vIH t ,  
the number of pixels of the image It with an intensity equal to v , with 

[ ]Vv ,0∈  where V  is the maximum gray-level value. If we consider color 
images, indexing methods can use several histograms, one for each color 
component. We then use the notation ( )vCIH kt ,,  to define the number of 
pixels with an intensity value of v  for the color component  kC  in the 
image tI . 
 Another common approach for video segmentation is to use block-
sampled images. Let us note B  the number of blocks b  in each frame. 

Finally, because a lot of methods are using some thresholds for shot 
change detection, we have also noted T  some threshold fixed by the 
user. Several authors propose a learning procedure in order to use an 
appropriate threshold value. 
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 As can easily be imagined from this introduction part, the works 
dealing with video sequence segmentation are quite numerous. Even if 
the complexity of the methods is naturally increasing along time we have 
not chosen a chronological thread to present the various methods. Rather 
we have sorted them according to the basic elements they are relying 
on. We have organized them from the most simple; the pixel in the image 
to the most sophisticated ones, those that are using a combination of 
methods. More precisely we have distinguished 6 large categories 
characterized by the respective use of: 
 

• Pixel characterization. 
• Histogram of the frames. 
• Partition of the image in blocks. 
• Features. 
• Motion during the sequence. 
• Combination of approaches. 

 

Pixel-based Methods 
 Shot change detection can be performed by comparing 
successive frames. The simplest way to compute the dissimilarity between 
two frames is to compare corresponding pixels from two successive 
images. As we will see, some improvements of the initial pixel comparison 
have been proposed. First we present the methods considering two 
consecutive frames and then those that extend the study to a longer 
temporal interval. 
 

Pixel comparison between two successive frames 
 One of the first methods described in literature was from Nagasaka 
et al in 1991. Shot changes are detected using a simple global inter-frame 
difference measure, defined as: 
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Nagasaka et al also introduced a shot change detection method 

based on pixel pair difference called template matching. For every two 
successive frames, differences of intensities are computed on pixels 
having the same spatial position in the two frames. Then the cumulated 
sum of differences is compared to a fixed threshold in order to determine 
if a shot change has been detected: 
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A color version has also been presented: 
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A couple of years later, Zhang et al were comparing the pixels of 

two successive frames on a Boolean basis. The fact that pixels are 
different is noted: 
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for the gray-level case and requires one operation per couple of pixels. 
Definition is quite similar for color images. In order to allow some variations 
on pixel intensities, a better (but more complex as it needs three 
operations instead of one) definition is given: 
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where DT  is considered as the tolerance value. The amount of different 
pixels is computed and is compared to a given threshold, which results in 
the detection or not of a shot change: 
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In order to avoid false detections due to motion in the video 

sequence, they also propose to smooth the images with a filter of size 3 × 
3 before computing the D values. The filter limits the effects due to noise 
and camera motion. 

Several other statistical measures have been proposed in the 
literature. The normalized difference energy and the normalized sum of 
absolute differences can be used for shot detection, as shown by the 
following equations: 
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Pixel intensity time variation 
 The previous two frame study can be generalized by analyzing 
variations of intensities through time. Taniguchi et al label pixels with 
respect to the evolution of their intensities on several successive frames. 
The labels used are “constant”, “step( tI )”, “linear(

1t
I ,

2t
I )”, and “no label”. 

These labels represent respectively pixels with constant values, pixels with 
a change in value at frame It, pixels with a progressive change in value 
between frames 

1t
I  and 

2t
I , and finally pixels with random values due to 

motion. Two Boolean conditions ( )jiII tt ,,,
211Θ  and ( )jiII tt ,,,

212Θ  are 

introduced in order to define the constancy of a set of pixel values  
( )jiIP t ,,  with 21 ttt ≤≤ : 
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with 

21 ,ttϑ  defined as: 
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These similarity conditions 1Θ  and 2Θ  are then used to determine the label 
( )jiIIL

fo tt ,,,  of each pixel of a video sequence involving 1+f  frames, 

using the following scheme: 
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which can also be defined as: 
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Quantities of pixels associated with each label are computed. Cuts 
(respectively dissolves) are detected thanks to the analysis of the ratio 
between quantity of pixels labeled “step” (respectively “linear”) and 
quantity of pixels labeled (i.e. with a label different of “no label”). A cut is 
detected at frame tI  if: 
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A dissolve is detected between frames 

1t
I  and 

2t
I  if: 
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Lawrence et al use evolution of temporal derivative of the pixel 

intensities as a criterion for shot change detection. First pixels with high 
spatial derivative are discarded in order to avoid motion effect. A pixel 

( )jiIP t ,,  is considered if and only if the following condition holds: 
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( ) ( ) ( ) ( )( ) TjiIPjiIPjiIPjiIP tttt <−−−− 1,,,,,,1,,,max  (Equation 3.15) 

 
A convolution process involving remaining pixels and a Gaussian 

mask is then performed to obtain temporal derivative of ( )jiIP t ,, . 
Absolute values of these derivatives are summed up in order to define the 
distance measure which will be analyzed through time. Shot boundaries 
correspond to local maxima of this distance measure. False detections 
due to noise or motion are limited if the neighborhood of the local 
maxima obtained previously are further analyzed. 

Histogram-based Methods 
 The previous section was dedicated to pixel-based methods. It is 
also possible to compare two images based on global features instead of 
local features (pixels). Histogram is a global image feature widely used in 
image processing. The main advantage of histogram-based methods is 
their global aspect. So they are more robust to camera or object motion. 
The main drawback appears when we compare two different images 
having a similar histogram. It will often results in missing a shot change.
 Different uses of the histogram can be distinguished. Some methods 
only compute differences between histograms and then the quality of the 
result is linked to the kind of histogram considered. A first extension is the 
use of weighted differences between histograms. Another approach 
consists in the definition of an intersection operator between histograms or 
the definition of different distances or similarity measures. 
 

Histogram Difference 
 Tonomura et al proposed a method based on gray-level 
histograms. Images are compared by computing a distance between 
their histograms, as shown in the following equation: 
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Nagasaka et al propose a similar method using only 64 bins for color 

histograms (2 bits for each color component of the RGB space). Using the 
notation ( )vIH t ,64 , the detection is defined by: 
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Gargi et al apply histogram difference to other color spaces (HSV, 
YIQ, L*a*b*, L*u*v*, and Munsell). More precisely, only non-intensity 
components are used (i.e. Hue and Saturation for HSV, I and Q for YIQ, a* 
and b* for L*a*b*, u* and v* for L*u*v*, and hue and chroma for the 
Munsell space). Shot change detection is then defined by: 
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Pye et al compute three histogram differences, considering 

separately the three color components of the RGB space. The highest 
value is compared to a threshold for shot change detection: 
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Ahmed et al present several shot change detection algorithms 

using color histograms. The first algorithm compares two frames using 
histograms computed on the Hue component HC . So can be represented 
by: 
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where ∆  is the temporal skip between two frames. 
 The second algorithm by Ahmed et al is based on reduced RGB 
space histograms. As in Nagasaka et al, histograms are composed of only 
64 bins, using 2 bits for each color component. The detection is done 
through a computation similar to the previously mentioned method: 
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O’Toole et al detect shot changes using a cosine similarity measure 
computed between two histograms. First three 64 bin histograms 
representing respectively the Y, U, and V components are obtained from 
each frame. Next the three histograms are concatenated into a single 
one in order to get only one 192 bin histogram per frame. Then two 
successive frames are compared based on their histogram using a cosine 
similarity measure to perform shot change detection: 
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 Chiu et al rely their video segmentation on a genetic algorithm 
using color histogram differences. Possible shot boundaries are evaluated 
with similarity adjacency functions. In order to limit the optimization cost of 
these functions, a genetic algorithm is used instead of traditional methods. 
A video sequence is encoded as a string of binary values, 1 and 0 
representing respectively the presence or not of a shot boundary in the 
current frame. The fitness function used in the algorithm is defined as a 
similarity adjacency function based on color histogram differences. Finally 
crossover and mutation processes are derived from classical genetic 
algorithms in order to be adapted to video segmentation task. 
 Zhang et al propose a method called twin comparison. Successive 
frames are compared using a histogram difference metric. The difference 
values obtained are compared with two thresholds. Cuts are detected 
when difference is higher than a high threshold HT . Possible starts of 
gradual transition are detected when difference is higher than a low 
threshold LT . In this case, an accumulated difference is computed until 
the current difference is below LT . Finally the accumulated difference is 
compared to the high threshold HT  for shot change detection. The two 
thresholds can be automatically set using standard deviation and mean 
of the inter-frame differences in the whole video sequence. 
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 Li et al use also a two step method, detecting successively the 
location of the end of the transition and its start. Frames are compared 
using the color ratio histogram metric. First two frames 

1t
I  and  

2t
I  (with 

∆+= 12 tt ) are compared using this metric. While the difference is below a 
given threshold T , 2t  is set to 12 +t . When the difference is above T , the 
transition end has been obtained. In order to determine the transition 
start, 1t  is set to 12 −t . The difference between frames 

1t
I  and  

2t
I  is then 

computed and compared to the threshold T . While the difference is 
below T , 1t  is set to 11 −t . When the difference is above T , the transition 
start has also been obtained. 
 Several other statistical measures have been reviewed in . The 
quadratic histogram difference can be computed between histograms 
from two successive frames, whereas the Kolmogorov-Smirnov statistic is 
computed between cumulative histograms from two successive frames. 
These two measures are detailed below, using the notation ( )vIH tC ,  to 
represent the cumulative histogram up to bin v  for the frame tI . 
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 Weighted Difference 
 In color images, some color components may have a bigger 
influence than others. So it is possible to detect shot changes by weighting 
the histograms of each color component depending on their importance: 
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where ( )kt CIL ,  and ( )tmean IL  are respectively the luminance for the 

thk color component of the frame tI  and the average luminance of the 
frame tI  considering all the color components. 
 Zhao et al use a learning procedure to determine the best weight 
values for weighted histogram difference computation. They first compute 
the original histogram difference defined by equation 3.16. Then a 
learning step formulated as a min-max optimization problem is performed 
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in order to select the best weights to use in weighted histogram 
differences. The detection process relies finally on the following equation: 
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where ( )vkw ,  represents the best weight selected after the learning step. 
 Gargi et al presented a method based on the difference of 
average colors of a histogram, which can be as well considered as a 
histogram weighted difference. The shot change detection can then be 
represented by: 
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Another method by Gargi et al using color histograms has also been 
proposed. More precisely, it uses a reference color table as a frame 
difference measure. Reference color table can be seen as a coarse 
quantization of RGB color space into 27 different color triples which are 
used as bins for a 3-D color histogram refH . The shot change detection 

can be represented by: 
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where the weight ( )tvw ,  is defined as: 
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Histogram Intersection 
 Similarity between two images can also be evaluated thanks to 
histogram intersection. Histogram intersection is computed using different 
operators, for example a min function. Similarity ratio belonging to interval 
[0, 1] is then compared to a given threshold. This comparison allows the 
detection of shot changes: 
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where XY  represents the number of pixels in frames processed. 
Another version of the histogram intersection-based shot change 
detection method is defined by the following equation: 
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Haering et al apply histogram intersection defined in equation 3.30 

to HSV (Hue, Saturation, Value) color space, using 16 bins for Hue 
component and 4 bins each for Saturation and Value components. 

An extension of the above method has been proposed by Javed et 
al. Hue is represented using only 8 bins. Instead of thresholding the 
histogram intersection of two successive frames, they compute the 
difference between two successive histogram intersection values and 
compare this derivative to a threshold. 
 
 

Use of  2χ Test 
Nagasaka et al have also proposed a 64 bin histogram comparison based 
on 2 test. The shot change detection is then defined by: 
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with the assumption ( ) 0,64 ≠vIH t . If this assumption does not hold, we use 
the following equation instead: 
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with the assumptions ( ) 0,164 ≠− vIH t  and ( ) 0,64 =vIH t . This method is 
considered as more efficient than simple histogram comparison-based 
methods. 
 A modification has been proposed by Dailianas et al where the 
detection is represented by: 
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Gunsel et al perform a K-means clustering algorithm to determine the 
location of shot boundaries. Successive frames are compared using 2 test 
or histogram difference on YUV histograms. Every inter-frame difference 
value is classified into shot change or non-shot change. 
 

Similarity measures between normalized Histograms 
 Several measures computed on normalized histograms have been 
reviewed by Ren et al and by Kim and Park . Using the notation ( )vIH tN ,  
to represent the probability of intensity v  in the frame tI , cross entropy, 
divergence, Kullback Liebler distance, and Bhattacharya distance are 
respectively defined as: 
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All these methods are based on a uniform process all over the image. The 
heterogeneity present within a frame led to use block-based methods. 
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Blocked-based Methods 
Block sampling of the video frames can be performed in order to 

increase the quality of shot change detection but also to decrease the 
computation time. Once block representation has been obtained from 
original images, it is possible to perform some algorithms derived from pixel 
or histogram-based methods presented previously. Use of blocks allows a 
processing which is intermediate, between local level like pixel-based 
methods and global level as histogram-based methods. Main advantage 
of block-based methods is their relative insensitivity to noise and camera 
or object motion. We have distinguished between several approaches all 
working on blocks. 
 

Block Similarity 
 Kasturi et al perform a similarity test on block-sampled images. Like 
in pixel-based methods, pairs of blocks (with same spatial coordinates) 
from two successive frames are compared. The similarity is based on block 
features like mean and variance. The likelihood rate L   is defined for a 
block b  as: 
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 (Equation 3.39) 

 
where bt ,µ  and 2

,btσ  are respectively the mean and the variance of block 

b  pixel values in image tI . Then thresholded values DL  of L  are defined 
by the equation: 
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where DT  is considered as a tolerance value. Detection is obtained when: 
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where bc  is used to give more or less importance to block b . Most of the 
time bc  is set to 1 for all the blocks. This likelihood ratio can also be used 
directly on full-frames. 
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Another well-known measure involving variance is the Yakimovsky 
likelihood ratio which can be applied also on blocks or frames directly. For 
each block this ratio is computed as: 
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where 2

,btσ  and 2
,1 bt−σ  represent the variances of the pixel intensity  values in 

the frames tI  and 1−tI  considering a block b . The notation { }
2

,1, btt −σ  is used 

to denote the variance of the pooled data from both frames for a block 
b .  

Freund statistic can also be used to detect shot changes. Distance 
measure is then defined by: 
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 Lee et al perform shot change detection using block differences 
computed in the HSV color space. First RGB images are converted to HSV 
in order to avoid camera flashes. Then the mean values of Hue and 
Saturation components are computed for each block. Two successive 
blocks are compared using these mean values: 
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where ( )Ht CbI ,,

1
µ  is the mean of a block b  in the frame tI  considering the 

color component kC . HD  and SD  represent respectively differences for 
Hue and Saturation color component. These two distances are used to 
determine if each block has changed: 
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Finally the ratio between the number of changed blocks and the total 
number of blocks is compared to another threshold in order to detect shot 
changes: 
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 (Equation 3.47) 

 
where ∆  represents the temporal skip used in the shot change detection 
process. 
 

Histogram Comparison 
 Swanberg et al present a method detecting shot changes thanks to 
the comparison of color histograms computed on the blocks of the 
images noted ( )vCbIH kt ,,, . The detection process is then defined as: 
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 (Equation 3.48) 

 
 Nagasaka et al extend their histogram comparison to images 
divided in 4x4 blocks. Every pair of blocks from two successive frames is 
compared using the 2χ  test on 64 bin histograms: 
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which requires for each block 4 operations per histogram bin. The values 
obtained are then sorted in an ascending way and the 8 lowest are kept. 
The sum of these values is computed and compared to a threshold to 
detect shot changes: 
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where the sχ  values represent ascending sorted values of χ  (i.e. for 

[ ]16,1∈b  we have ( ) ( ) ( )16,,1, tststs IbII χχχ ≤≤ ). 

 Ueda et al proposed to use the rate of correlation change instead 
of the magnitude of correlation change proposed by Nagasaka. Each 
value ( )bI t ,χ  obtained from a pair of blocks is compared to a threshold. 
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The detection depends on the number of significant values ( )bI t ,χ  instead 
of the sum of the highest ( )bI t ,χ . 
 Ahmed et al propose also a block-based version of their method 
using the 6 most significant RGB bits as described in equation 3.21. They 
compare histograms computed on blocks instead of global histograms. 
The sum of the histogram differences obtained for each block is 
computed and compared to a predefined threshold in order to detect 
shot changes, as shown in: 
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where ∆  represents the temporal skip between two successive frames to 
be analyzed. 
 Ahmed et al proposed an improved version of their algorithm 
described previously. Instead of comparing two frames considering a 
fixed temporal skip, the method is based on an adaptive temporal skip. 
First, two images 

1t
I  and 

2t
I  are compared according to equation 3.51. 

Then if the difference is greater than a threshold, 2t  is replaced by 
2

21 tt +
 

and the frames are again compared. If the difference is still greater than 

the threshold, 1t  is also set to 
2

21 tt +
 (considering the current values of 1t  

and 2t ) and frames are compared. This process is repeated until  21 1 tt =+  
which represents a shot change between frames 1t  and 2t . 
 Lee et al introduce a selective HSV histogram comparison 
algorithm. First, pixels are classified with respect to their color level. If a 
pixel is characterized by high values for V and S, it is classified into a 
discrete color using H component. Otherwise the classification is based on 
the intensity (or gray-level) value. For a given pixel ( )jibIP t ,,, , two 

complementary states are defined: 
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( ) ( )jibISjibIS thuetgray ,,,1,,, −=  (Equation 3.53) 
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Computation of these states requires 4 operations per pixel. For 
each block two selective histograms ( )bIH thue ,  and ( )bIH tgray ,  are then 

computed in a classical way considering the two states previously 
defined. The notation ( )vbIH thue ,,  (respectively ( )vbIH tgray ,, ) represents the 

number of pixels in block b  of frame tI  with state hueS (respectively grayS ) 

equal to 1 and with hue (respectively intensity or gray-level) value equal 
to v . These histograms are used for shot change detection: 
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Bertini et al compare in the HSI color space histograms of successive 
frames divided in 9 blocks. In order to improve robustness to change in 
lighting conditions, the Intensity component is not used. The detection 
can then be represented by the following equations: 
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Detection if ( )( ) ( )( )( ) ( )( ) ( )( )( )( )0000 11 >′∧<′∨<′∧>′ ++ tHStHStHStHS IDIDIDID  

(Equation 3.57) 
 

Chahir et al [19] based their method on histogram intersection 
computed on frames divided in 24 blocks. The color space used in their 
method is L*u*v*. For each block, color histogram intersection is 
computed between two successive frames requiring 12 operations per 
bin. A comparison with a threshold allows determining whether the block 
has been changed or not. The number of changed blocks is then 
compared to another threshold in order to detect a shot change. 
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Combination of Histogram differences & Likelihood rate 
 This method proposed by Dugad is based on two successive steps 
to detect cuts and other transitions. Shot changes are detected using 
successively histogram difference and likelihood ratio. In this method three 
thresholds have to be set. Histogram difference step is defined as in 
equation 3.16 and is compared with two thresholds. The difference is first 
compared to a high threshold in order to avoid false alarms. If it is lower 
than this threshold, it is then compared to a low threshold. If it is higher 
than this low threshold, the final decision is taken by computing likelihood 
ratio values. In this case, the two frames to be compared are divided in 64 
blocks and the 16 central blocks are kept. For each block, the likelihood 
ratio is computed between the block ( )bIP t ,  and the blocks ( )bIP t ′,  
where b′  belongs to the neighborhood of b , and the minimum of the 
likelihood value is kept. Then a mean of the 16 minimum likelihood ratios is 
computed and is compared with the third threshold, which may result in 
shot change detection.  
 

Use of Neighborhood color ratio 
 Adjeroh et al compare two successive frames using neighborhood 
color ratios. A local averaging step is first performed in order to obtain one 
value ( )bIP t ,′  per block: 
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Pairs of blocks from two different frames are then compared using this 
measure: 
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where ∆  represents the temporal skip. Shot changes are finally detected if 
the number of significant D′  values for all selected blocks is higher than a 
fixed threshold, or if the average value of D′  is higher than another 
threshold. 
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Evolution of block dissimilarity 
 Shot changes can also be detected by analyzing the evolution of 
block dissimilarity. Demarty et al compute locally a distance criterion in 
RGB color space between blocks of two successive images. Result 
obtained consists in distance values between the two images for every 
block. Then the sum of these values is computed and an evolution curve 
of this sum is built. This evolution curve is filtered using a top-hat 
morphological operation and is finally compared with a threshold in order 
to detect shot changes.  

Lefevre et al proposed a method using HSV color space on block-
sampled images in order to avoid false detection due to illumination 
effects. A value is obtained for each block from Hue and Saturation 
components. Then a block-based difference is computed between two 
frames based on the block values. This difference is tracked through time, 
as well as its derivative. Analysis of this derivative allows cut detection, 
whereas the initial (non-derivated) difference values are used to initialize 
a cumulative sum computation of the derived values. This allows 
detection of gradual transitions.  
 

Temporal & Spatial sub-sampling 
 Xiong et al propose to sub-sample the video sequence in both 
space and time. An abrupt change is detected between two frames tI  
and ∆+tI  if: 
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where B′  represents a set of a priori selected blocks and ( )bIID tt ,,

21µ  is 

defined as: 
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Gradual transitions are detected using an edge-based frame-to-frame 
difference measure. If a shot change is detected, a binary search is 
performed reducing ∆  to determine the exact shot boundaries. The 
method proposed is called “Net Comparison” and has also been tested in 
HSV color space. 
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Feature-based Methods 
 All the methods we have already presented were using features, 
but they can be qualified of trivial features. Here we are considering more 
sophisticated ones. We consider: 
 

• The moments computed on the image. 
• The contour lines extracted from the image. 
• Some feature points extracted using Hough Transform. 
• The planar points. 
• Color transition. 
• Modeling of the video transition effects. 
• The use of some decision process as Bayesian methods. 
• Features computed from classical statistical approaches. 
• The use of Hidden Markov Models. 

 

Moment invariants 
 Arman et al use moment invariants combined with histogram 
intersection to detect shot changes. Moment invariants have properties 
such as invariance to scale change, rotation, and translation. The 
moments of a frame tI  are defined as: 
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Dailianas proposed that shot changes are detected thanks to the 
computation of the usual Euclidean distance between two frames using a 
vector composed of the first three moment invariants, defined as: 
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  (Equation 3.63) 

 
Considering equation 3.62, all moments used in equation 3.63 require 3 
operations per pixel; expecting 2,1m  and 1,2m  which need 4 operations per 

pixel. The detection can be finally defined as: 
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Edges 
 Zabih et al use edge extraction to detect shot changes. Global 
motion compensation is per-formed on successive frames. Next, edges 
are extracted using Canny algorithm and dilated. Normalized proportions 
of entering edges and exiting edges are then computed using the 
following equations: 
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where E  and dE  are respectively the contour image and its dilated 
version, and ( )tttt ,1,1 , −− βα  represents the global motion translation vector 

between the two successive images tI  and 1−tI . Then a dissimilarity 
measure ( )tIECF  called edge change fraction is computed by: 

 
( ) ( ) ( )( )tintoutt ICPICPIECF ,,,max=   (Equation 3.67) 

 
Finally this value is compared to a threshold to detect shot changes: 
 

Detection if  ( ) TIECF t >   (Equation 3.68) 
 

Smeaton et al proposed an evolution of the previous method where 
the detection is based on the evolution of the edge change fraction on 
several frames instead of the analysis of this dissimilarity measure on only 
one frame. Detection can then be defined by: 
 

Detection if ( ) ( )( ) TIECFIECF tt >− −1   (Equation 3.69) 

 
Lienhart also uses edge information to perform dissolve detection. 

First edges extracted with the Canny edge detector are confronted with 
two thresholds to determine weak and strong edges: 
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where wT  and sT  are respectively the lowest and highest thresholds for 
detecting weak and strong edges. wE  and sE  represent the weak and 
strong edge images. Then the edge-based contrast EC  is obtained for a 
frame tI  according to the equation:  
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Finally dissolves are detected when the current value of EC  is a local 
minimum. 
 Yu et al use edge information to detect gradual transitions. Cuts are 
first detected using a histogram difference measure computed between 
two successive sub-sampled frames. Then a second pass is necessary for 
detecting gradual transitions. For every frame tI  between two successive 
cuts at time 1t  and 2t , the number ( )tE IQ  of edge points present in the 

image is computed and temporally smoothed. Then for every local 
minima ( )tE IQ ′  which is below a predefined threshold, a search of the two 
closest local maxima ( )

1tE IQ ′  and ( )
2tE IQ ′  is performed with 21 ttt ′<′<′ . A 

fade out effect is detected between 1t′  and t ′  if: 
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Similarly, a fade in effect is detected between t ′  and 2t ′  if: 
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For dissolve effect detection, a new measure called double chromatic 
difference is computed for every frame belonging to the interval [ ]21 , tt ′′ : 
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If the frame number mint  corresponding to the global minimum value 

( )
mintIDCD  is close enough to t′  ( ε<−′ mintt  with ε  defined as a small 

number), a dissolve effect is assumed to be found between frames 
1t

I ′  

and 
2t

I ′ . 

 Heng and Ngan also propose a method based on edge 
information. They introduce the notion of edge object, considering the 
pixels close to the edge. Occurrences of every edge object are matched 
on two successive frames. Shot changes are detected using ratio 
between the amount of edge objects persistent over time and the total 
amount of edge objects. 
 Nam and Tewfik propose a coarse-to-fine shot change detection 
method based on wavelet transforms. Image sequences are first 
temporally sub-sampled. Frames processed are also spatially reduced 
using a spatial 2-D wavelet transform. Intensity evolution of pixels 
belonging to coarse frames is analyzed using a temporal 1-D wavelet 
transform. Sharp edges define possible shot change locations. Video 
frames around these locations are further processed at full-rate. Temporal 
1-D wavelet transform is applied again on the full-rate video sequence. 
Edge detection is also performed on every coarse frame and the number 
of edge points is computed on a block-based basis. Difference between 
two successive frames is computed using the number of edge points for 
each block. True shot boundaries are located on sharp edges in the 1-D 
wavelet transform and high values of inter-frame difference considering 
block-based amount of edge points. An extension to wipe transitions 
detection has been proposed by Nam and Tewfik also. 
 

Feature points 
 Ardebilian et al detect shot changes by comparing between 
feature points extracted from two successive images. They use Hough 
transform to extract feature points. Success or not of the feature points 
matching between two successive frames results directly in cut detection. 
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Planar points 
 Silva et al perform shot change detection using spatio-temporal 
representation of an image sequence. A video sequence is represented 
in 4ℜ  as a hyper-surface: 
 

( ){ }jiIPtjiV t ,,,,,=   (Equation 3.76) 
 
The amount of planar points in every frame is considered as the measure 
for detecting cuts. We recall that planar points are points contained in a 
flat neighborhood of the hyper-surface. For a given frame tI , planar 

points are determined using the characteristic polynomial coefficients of 
the Hessian matrix of ( )jiIP t ,, . Then the percentage of planar points is 

computed. A cut is detected (in a four frame interval) when this value is 
greater than three times the temporal variance of the percentage of 
planar points. 
 

Color Transitions 
 Sanchez et al compare between two successive frames using color 
histograms computed on specific regions. These regions are defined from 
the most significant color transitions of the image, considered as high 
values of its multi-spectral gradient and computed with Sobel 
approximation. Color histograms are compared between regions of two 
successive frames to determine the coherence of the region through 
time. Shot changes are finally detected if the amount of changed regions 
is above a given threshold. 
 

Transition modeling 
 Some shot changes are created from production effects. These 
transitions can be modeled explicitly with mathematical tools in order to 
be detected. Several methods using these assumptions are presented 
below. 
 Hampapur et al model several kinds of fades and wipes with 
mathematical functions. Knowing the two last shots and their respective 
durations, it is possible to estimate the duration of the current shot. 
Detection of shot changes can rely on a constancy measure defined for 
frame tI  as: 
 



 60 

( )
( )

( ) ( ) 







−+−+

=
∑∑

= =

22
1

,,
1 1

Y
IY

X
IX

jiIS
IC

tCtCt

X

i

Y

j
tbinary

t

σ
  (Equation 3.77) 

 
where tσ  represents the standard deviation of pixel intensities in frame tI . 
The binary state ( )jiIS tbinary ,,  of a pixel is defined as: 
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The components of the centroid of image tI  are noted ( )tc IX  and ( )tc IY . 
They are computed as: 
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Adami et al perform dissolve detection applying a model of dissolve 

effects on frame histograms. For every frame, two specific histograms are 
computed: 
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where ( )tIH
2
1  represents the histogram of the frame tI  scaled by half, ∆  is 

a fixed parameter, and the operator ∗  figures a convolution. It is then 
possible to compute a dissimilarity measure using these histograms: 
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where the 2χ  operator is computed between two histograms. Maxima 
values of ( )tIR  indicate dissolve locations:  
 

Detection if ( ) ( ) ttIRIR tt  of odneighborho in the '' ∀>  (Equation 3.84) 
 

Aigrain et al detect shot changes using the assumption of the 
absence of important motion in the different shots. Their method is based 
on a motion differential model and uses density function estimation as the 
difference between two images. First, two successive images are reduced 
spatially and normalized using histogram equalization. Then the histogram 
of pixel-pair difference is computed and is simplified to two values, which 
are respectively the amount of differences belonging to the interval [128, 
255] computed on normalized images and the amount of differences 
belonging to the interval [1, 40] computed on non-normalized images. 
Cut and gradual transition detections are respectively based on local 
maxima of the first and second value described previously. 

Lienhart relies on fade modeling from Hampapur to perform fade 
detection. The proposed algorithm uses the standard deviation of pixel 
intensities as an estimation of the scaling function introduced in fade 
effects. First, all monochrome frames are located as they are fade start or 
end candidates. These frames are characterized by a standard deviation 

( )tIσ  close to zero. Fades are then detected by searching in both 
temporal directions for a linear increase in the standard deviation. 

Alattar bases also the shot change detection on variance of pixel 
intensities. Fades are detected using a two steps scheme. First local 
minimum values of the second order difference of the pixel intensity 
spatial variance time series are obtained. Then a test is performed to 
determine whether the first order difference of the pixel intensity mean is 
relatively constant in the neighborhood of the local variance minimum or 
not. In the positive case, a fade is assumed to be found. A similar method 
by Alattar also has been proposed for dissolve. 
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Truong et al combine approaches from Lienhart and Alattar. First, all 
monochrome frames are detected. Then only monochrome frames, 
which are next to a local minimum of the intensity variance second order 
difference, are kept. Finally a test is performed on the first order difference 
of the mean intensity. If this value is constant through time and other 
conditions are satisfied, a fade has been detected. The other conditions 
correspond to comparison between thresholds and the absolute value of 
the first order difference and the intensity variance of the first or last frame. 
Dissolve detection is performed using the evolution of the variance first 
order difference through time. This difference value should be 
monotonically increasing from a negative value up to a positive value. So 
zero crossings are used to locate dissolve frames. 

Fernando et al use also mean and variance of the luminance signal 
to determine fade and dissolve transitions locations. For every frame, the 
mean and the variance of the luminance are computed. The ratio 
between second temporal derivative of the variance to the first temporal 
derivative of the mean is then compared between two successive frames. 
Shot changes are located when this ratio is constant through time. 
 

Bayesian approaches 
 Vasconcelos et al propose a segmentation method using a 
Bayesian model of the editing process. For each frame a local activity 
measure is computed based on a tangent distance. In order to detect a 
shot change, this measure is compared (following a Bayesian framework) 
to an adaptive threshold, depending on the a priori duration of a shot 
and on the time elapsed between the previous shot change and the 
current frame tI . 

Hanjalic et al use also a statistical framework for the shot change 
detection, which is modeled as a probability minimization problem of the 
average detection error. Detection criteria are linked with visual content 
discontinuity (based on motion compensation) and knowledge about 
shot length distribution. 
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Han et al base their detection on gray-level or color histogram 
differences computed between successive frames using equation 3.16 or 
equation 3.18. A filtering step combining an average clipping operation 
and a subsequent local convolution is used to improve the shot change 
detection. The evolution curve of the filtered histogram difference value is 
analyzed and decision for the detection of a shot change is taken 
following a Bayesian framework. Detections of a cut or a gradual effect 
are respectively linked with the presence in the evolution curve of a 
rectangular or triangular shape. 
 
 

Statistical approaches 
 Yilmaz et al use Principal Coordinate System to perform shot 
change detection on RGB frames. First, image rows are concatenated in 
order to obtain only one row vector per color component for each frame. 
We use the notations ( )Rt CIV , , ( )Gt CIV ,  and ( )Bt CIV ,  for the row vectors 
associated with the Red, Green and Blue components. Then the 3x3 
covariance matrix ( )tIM  of the RGB color space is computed following: 
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Next the vector representing the principal axis is selected and noted 

( )tIV
maxλ . We recall this vector is the eigenvector associated with the 

maximum eigenvalue maxλ  of the covariance matrix. Finally two successive 
frames are compared with respect to the angle between their respective 
principal axes following the equation: 
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 Han et al use also a principal component analysis to perform shot 
change detection. First frames are sub-sampled and represented as 
column vectors. Then successive frames are grouped in a temporal 
window. The mean vector µ  and the empirical covariance matrix M  of 
this window are computed. Then the unique set of orthonormal 
eigenvectors of M  and their associated eigenvalues are obtained. Each 
frame in the window is then projected onto the K  eigenvectors 
corresponding to the K  largest eigenvalues. Finally shot changes are 
detected using the temporal variations of angle and length of the K  first 
principal components. 
 Li et al based their algorithm on the computation of joint probability 
images between frames. They use a spatio-temporal representation of the 
successive joint probability images obtained in order to detect shot 
changes. First a joint probability image is computed between two frames, 
which consist in the frequency of the co-occurences of intensity or 
chrominance values. Two similar images 

1t
I  and 

2t
I  will be characterized 

by a joint probability image ( )
21

, tt IIJ  composed of non-zero values on the 

diagonal. A distance measure is then defined between two frames using 
the joint probability image: 
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 (Equation 3.87) 

 
where ℑ  and ℑ′  represent respectively the set of all pixels ( )ji,  in the joint 
probability image and the set of all pixels near the diagonal line with a 
given tolerance  δ  (i.e. ( ){ }δ<−=ℑ′ jiji :, ). If the value JD  obtained is 

higher than a fixed threshold, several algorithms are used in order to 
confirm the presence of a shot change. Dissolve effects are detected 
using histogram intersection performed on spatio-temporal 
representations of joint probability images. 
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 Gong and Liu perform shot change detection using the Singular 
Value Decomposition. Every frame is divided in 3×3 blocks on which a 3-D 
color histogram composed of 125 bins is computed. A vector of 1125 
components is then obtained for every frame. The video sequence is 
represented by a matrix which is processed by a singular value 
decomposition algorithm. The K  largest singular values are kept and are 
used to compute a similarity measure between two frames. Detection of 
a shot change is done by comparing the similarity computed between 
the two frames 

1t
I  and 

2t
I  with a low and a high threshold. If the similarity 

measure is below the low threshold, no shot change has been detected. 
On the contrary, if the measure is higher than the high threshold, a shot 
change is assumed to be found. In the last case (i.e. the similarity measure 
is between the two thresholds), a refinement step is performed involving 
frames between 

1t
I  and 

2t
I . 

 

Hidden Markov models 
 Eickeler et al use Hidden Markov Models to perform video indexing. 
Some of the classes represent shot boundary frames. Several features are 
defined to describe each frame, but only some of them characterize shot 
boundary frames: 
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where ( )tId1 , ( )tId2 , and ( )tId3  represent respectively the intensity of 

motion, the median filtered intensity of difference histograms, and the 
ratio between the difference pixel and the difference from interpolated 
pixel. After a learning step using the Baum-Welch algorithm, segmentation 
is performed using the Viterbi algorithm. 

A similar approach using Hidden Markov Models has been 
proposed by Boreczky . The model is based on image, audio, and motion 
features. Classification of a frame into a shot boundary class is done using 
only the image feature of the frame. This feature is defined as a 
luminance 64 bin histogram difference similar to the one described in 
equation 3.16. 
 

Motion-based Methods 
 As the nature of motion is usually continuous in a video sequence, it 
can also be used as a criterion to detect shot changes. Based on this fact, 
several approaches using motion information were proposed in the 
literature. We review here methods based on global (or camera) motion, 
motion vectors, optical flow, and correlation in the frequency domain. 
 

Global motion 
 Cherfaoui and Bertin detect shot changes in two steps. First the 
global motion parameters are estimated using an affine transformation 
model. The estimated motion is then used to classify a shot as fixed, pan, 
or zoom. If the motion is not coherent through time, a shot change is 
assumed to be found. 

Bouthemy et al based their detection on dominant multi-resolution 
motion estimation. This estimation uses a global 2-D parametric model 
composed of 6 parameters. Once the dominant motion has been 
estimated, a coefficient ji ,ω  is also available for every pixel ( )ji, . It 

represents the coherence of the pixel with the dominant motion 
estimated. Using a predefined threshold, it is possible to define the set of 
dominant motion-coherent pixels in each frame. The evolution of the set 
size through time is analyzed in order to detect shot changes. 

Zugaj et al extend the previous method to wipe detection. Here 
only pixels which are non-coherent with the estimated dominant motion 
are considered. For each frame, two histograms are computed based on 
the number of non-coherent pixels along horizontal and vertical axes. For 
every couple of frames, absolute differences between corresponding 
histograms are computed and result in two other histograms. The 
correlation between two successive absolute difference histograms is 
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then measured along the two axes. If one of the two correlation values 
exceeds a predefined threshold, a horizontal or vertical wipe is detected. 

Mann et al proposed a method where global motion estimation is 
performed using a 8 parameter model. They define “video orbits” as 
collection of pictures starting from one picture and applying all possible 
projective coordinate transformations to that picture using the 8 motion 
parameters. Two frames belonging to the same scene will lie in the same 
orbit or nearly so. So shot changes are detected when the distance 
between the orbits of successive frames is higher than a threshold. 
 

Motion vectors 
 Akutsu et al use a motion smoothness measure to detect shot 
changes. The indexing method uses sub-sampled video sequences and 
processes only one frame every k frames. Then the selected frame is 
divided into 8x8 blocks and each block is matched to a block in the next 
chosen frame. Motion vector is estimated thanks to the closest matched 
neighboring block, which is also used to compute the value of the 
correlation coefficient. An inter-frame similarity measure can be defined 
as the average of these correlations. Another measure called motion 
smoothness is defined as the ratio between the number of blocks which 
have significantly moved and the displacement of these blocks. Shot 
changes are finally detected in presence of local extrema in the 
correlation and motion smoothness ratio values.  

Shahraray proposed a similar method. Sub-sampled video 
sequences are used and every frame is divided in 12 blocks. A research is 
performed to match each block from one frame to the most similar block 
(in a spatial neighborhood) in the next frame. Motion vector and 
correlation value are computed in a way similar to the Akutsu et al 
method. Main difference with the previous method is the use of a 
nonlinear digital order statistic filter. Correlation values are sorted into 
ascending order and the first values and their respective motion vectors 
are used for the computation of an average value which is considered as 
a similarity measure. As in Akutsu et al, a local temporal extremum in the 
similarity measure means shot change detection. A motion-controlled 
temporal filter is used to avoid false detection due to motion. 

Liu et al based their method on motion compensated images 
obtained from motion vector information. First motion vectors of frame 1−tI  
are used to create a motion compensated version tI ′  of the frame tI . The 
next step is luminance normalization. The motion compensated frame tI ′   
is normalized in order to get the same energy as the original frame tI . 
Normalized image is noted tI ′′  . The original frame tI  is then compared to 
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the two modified frames tI ′  and tI ′′  using a modified version of the 2χ  test 
applied on their histograms. The result ( )tt II ′,χ  is compared to an adaptive 

threshold in order to detect cuts. Fade detection is based on the 
comparison between ( )tt II ′,χ  and ( )tt II ′′,χ  which are the two histogram 
differences computed previously. 
 

Optical flow 
 Fatemi et al use optical flow as information to detect shot changes. 
First the video sequence is divided into overlapping subsequences, 
defined as 3 consecutive frames and a fourth predicted frame. Every 
frame is then divided into B  blocks, which are predicted from the first 
frame to the second one and from the second frame to the third one. 
Finally a set of 3 matching blocks from the first three frames is used for 
block prediction into the last frame. If the block prediction does not 
correctly estimate the content of the last frame, a shot change is 
assumed to be found. 
 

Frequency domain correlation 
 Porter et al propose a technique inspired by motion-based 
algorithms. Correlation between two successive frames is computed and 
used as a shot change detection measure. In order to compute the inter-
frame correlation, a block-based approach working in the frequency 
domain is taken. Frames are divided into blocks of 32×32 pixels. Every 
block in a frame 1−tI  is matched with a neighboring block in frame tI  by 
first computing the normalized correlation between blocks and then seeks 
and located the correlation coefficient with the largest magnitude. The 
normalized correlation is computed in the frequency domain instead of 
the spatial domain to limit computation time. The average correlation is 
then obtained for a couple of frames. Shot changes are detected in 
presence of local minima of this value. 
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Chapter 4 

Video Segmentation & Modeling Digital Video 
 A video data model was presented in a previous chapter. This data 
model uses a temporal interval as the basic unit of video. The process of 
determining the temporal interval of a video data model based on some 
criteria is termed video segmentation. Several different types of 
segmentation criteria can be used to segment a video. Subjective criteria 
like change in emotion to objective criteria like change in audio volume 
levels are all valid criteria. Video is treated as a visual medium, so the goal 
of segmentation is to identify the smallest visual unit of a video, the shot. 

The problem of segmenting digital video occurs in many different 
application of video. Multimedia authoring systems which reuse produced 
video need access to video in terms of video shots. The edit detection 
algorithms presented in this chapter can be used in digital video editing 
systems for edit logging operations. There are several other applications in 
video archiving and movie production which can use the segmentation 
techniques presented here. 

Video segmentation requires the use of explicit models of video. 
Most of the current approaches to video segmentation do not use explicit 
models. A review of these techniques has been presented in the previous 
chapter (chapter 3). They pose the problem as one of detecting camera 
motion breaks in arbitrary image sequences. The solutions that have been 
presented typically involve the application of various low level image 
processing operations to the video sequences. These approaches have 
not utilized the inherent structure of video. Defining models of video which 
capture the structure provides the constraints necessary for effective 
video segmentation. The work presented in this chapter uses the 
production model based classification approach to video segmentation. 

This chapter presents a video edit model which is based on a study 
of video production processes. This model captures the essential aspects 
of video editing. Video features extractors for measuring image sequence 
properties are designed based on the video edit model. The extracted 
features are used in a production model based classification formulation 
to segment the video. The models are also used to define error measures, 
which in conjunction with test videos and correct video models are used 
to evaluate the performance of the segmentation system. 
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Video Edit Model 
 The video edit model presented here captures the process of 
editing and assembly discussed in chapter 2. The model has three 
components, the Edit Decision Model which models the output of the 
editing, the Assembly Model which represents the assembling phase of 
video production and the Edit Effect Model which describes the exact 
nature of the image sequence transformation that occurs during the 
different types of edit effects. 
 Consider a set of shots ( )NSSSS K,, 21=  with cardinality N . Each shot 

SS i ∈  can be represented by a closed time interval: 
 

[ ]ebi ttS ,=  (Equation 4.0) 
 
where bt  is the time at which the shot begins and et  is the time at which 
the shot ends. Before the final cut is made SSt ib ∈∀= 0  since there is no 
relative ordering of the shots. Let ( )kEEEE K,, 21=  be the set edits 

available. Each edit E  is represented by a triple: 
 

[ ]{ }ettE eb ,,, τ=  (Equation 4.1) 

 
where [ ]eb tt ,  is the duration of the edit, ( )nττττ K,, 21∈  is the type of the  
edit ( cuts, fades, dissolves) and e  is the mathematical transformation that 
is applied during an edit or the edit effect model. Consider a video V . Let 
V  be composed of n  shots taken from the set S . Then the Edit Decision 
Model edmV  can be represented as follows: 
 

( ) ( ) ( ) ( ) ( )( ) nnnnnnedm SSSESSSESSSESV oooKoooo ,,, 1113223221121 −−−=  (Equation 4.2) 

 
where SS i ∈ , the subscript i  denotes the temporal position of the shot in 
the sequence (i.e. if ji < , shot iS   appears before shot jS  in the final cut) 

and ijE  denotes the edit transition between shots iS  and jS . The o  

denotes the concatenation operation and EEij ∈ . The Assembly Model 

for V  is given by: 
 

( ) ( ) nnneneeam SSSSSSSV oooKoooo 11232121 −−=  (Equation 4.3) 

 
where xS  represent the shots used to compose the video and exxS  

represent the edit frames. The assembly model can be rewritten as 
follows: 
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( ) ( ) ( )12114321 −+−= nnnnc ssssssssV ooooKoooo  (Equation 4.4) 

[ ]{ }iebi ltts ,,=  
( )shoteditli ,∈  

 
cV  is called the video computational model. In this representation, every 

segment of video is a temporal interval with a label indicating the 
content. Segmentation of video requires two labels namely (shot, edit). It 
is important to keep in mind that the edit frames are also image 
sequences, they differ from shots in the production technique used. Cuts 
are a special type of interval with zero length. This computational model 
of video is used to define error measurements. 
 

Edit Effect Model 
 The edit effects commonly used in video production are modeled 
by using 2D image transformations. The mathematical model for the 
process of generating edit frames from a pair of shots is discussed in this 
paragraph. Consider an image sequence, where the pixel positions are 
denoted by yx,  and the frame number is denoted by t . Let bgr ,,  denote 
the three (red, green, blue) color values assigned to each pixel. Let the 
image space be denoted by { }1,,, tyx=ξ

r
 and the color space be 

denoted by { }1,,, bgr=η
r

. Homogeneous Coordinates are used for 
representing both the image and color spaces in order to accommodate 
affine transformations. Using these notations and assuming linear affine 
transformations, the possible set of edit frames ( )tyxE ,,  given two shots 

( )tyxSout ,,  and ( )tyxS in ,,   can be denoted as follows: 

 
( ) ( ) ( ) 2211,, csincsout TTSTTStyxE ××⊗××= ξξ

rr
 (Equation 4.5) 

 
Here outS  represents the shot before the edit or the out going shot and inS   
represents the shot after the edit or the incoming shot, sT  and cT  denote 

the transformation applied to the pixel and color space of the shots being 
edited and ⊗  denotes the function used to combine the two shots in 
order to generate the set of edit frames. In general sT  and cT  can be any 
type of transformation (linear, non-linear) and ⊗  can be any operation. In 
practice however, the transformations are either linear or piecewise linear 
and the operation ⊗  is addition. The remainder of the discussion assumes 
this simplified edit effect model. Edit effects are classified into four types 
based on the nature of the transformation used during the editing 
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Table 4.0: Edit Types 

process. Table 4.0 shows a classification of edit effects. I
r

 denotes the 
identity transformation. 
 

Type  Name 
 
 

 
 Meaning Duration Examples 

1 Identity 
  Concatenate 

Shots Zero Cut 

2 Spatial 
  Spatial 

Changes Finite Translate, 
Page 

3 Chromatic 
  Intensity 

Changes Finite Fade, 
Dissolve 

4 Combined 
  Spatial & 

Intensity 
Changes 

Finite Morphing 

 
 
 
The classification presented in table 4.0 has a simple physical explanation. 
The classes correspond to the different types of operations that an editor 
can perform when editing two shots. The options are: 
 
Type 1: Identity Class: Here the editing process does not modify either of 
the shots. No additional edit frames are added to the final cut. Cuts 
comprise this class of edits.  
Type 2: Spatial Class: Only the spatial aspect of the two shots is 
manipulated by this class of edit effects. The color space of the shots is not 
affected. This class is comprised of effects like page translates, page turns, 
shattering edits and many other digital video effects. 
Type 3: Chromatic Class: Edits in this class include fade in’s, fade out’s and 
dissolves. Here the edit effect manipulates the color space of either of the 
shots without changing the spatial relation of any of the pixels. 
Type 4: Spatio-Chromatic Class: Here both the space and color aspects of 
the shots is simultaneously manipulated during the editing process. This 
class consists of effects like image morphing and wipes. 
 
 
 
 
 
 
 
 
 
 
 

sT

sT

cT

cT

cTsT

I
r

I
r
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Problem Definition of Video Segmentation 
 Video segmentation is the process of decomposing a video into its 
component units. There are two equivalent definitions of video 
segmentation: 

 
• Shot Boundary Detection: Given a video V  (equation 4.2) 

composed from n  shots, 
 

[ ] shot  theof points external  the, locate ebi ttVS ∈∀  (Equation 4.6) 

 
• Edit Boundary Detection: Given a video V  (equation 4.2) 

composed from n  shots, 
 

[ ] edit  theof points external  the, locate ebi ttVE ∈∀  (Equation 4.7) 

 
The above two definitions are equivalent as edits and shots form a 
partition of the video. These two definitions are analogous to the region 
growing versus edge detection approaches to image segmentation. 
 The techniques presented in this chapter treat video segmentation 
as edit boundary detection. The reason is the relative simplicity of edit 
effect models as compared to shot models. Edits are simple effects that 
are artificially introduced using an editing suite to compose a video. Shots 
on the other hand incorporate all the factors that affect the static image 
formation process and the changes of these factors over time. This makes 
shots much harder to model analytically as compared to edits. 
 
 

Video Segmentation using Production model based 
classification 
 Video segmentation is formulated as a production model based 
classification problem. In production model based classification the 
essential aspect is the existence of a computational model of the data 
production process. This data production model is used in designing 
feature extractors which are used in the automatic analysis of the data 
which is being classified. The use of the data production model 
distinguishes production model based classification from the traditional 
feature based classification. The video edit model (equation 4.2, 4.3, 4.4) 
and the edit effect models (equation 4.5) are the data production models 
in video segmentation. 
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Figure 4.0: Block Diagram of Production Model based Video 
Segmentation 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The above figure shows the stages in model based classification. The 
design phase of the problem has the following steps: 
 

• Production Model Formulation: This step involves the study of the 
data production process (in this case video and film editing) to 
develop a model of the process. The first step is to isolate the 
essential steps used in data production. These steps are then 
translated into computational models. 

• Feature Extractor Design: Here the production models 
developed in the previous step are used to systematically design 
features extractors which can be applied to the data in the 
automatic analysis phase. 

 
The analysis or online portion of the production model based classification 
approach is the feature based classification process where the feature 
extractors previous designed are used. The steps in feature based 
classification are: 

 
• Feature Extraction: The data to be classified is processed by the 

feature extractors to generate features which are indicators of 
the data classes of interest. 
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• Classification: The different features extracted in the previous 
step are combined using a discriminant function to assign a class 
label to the data set being classified. 

In the current formulation of video segmentation as production 
model based classification, the four edit classes (table 4.0) are the classes 
of interest. Feature extractors are designed for each of these classes. The 
feature extractors are applied to the individual frames of the video. The 
features are combined using a discriminant function to assign to each 
frame of video the label edit or shot. The segmentation block essentially 
groups the frames into segments based on the labels assigned. A finite 
state machine is used to achieve this segmentation step. 
 

Cut Detection 
 A cut is an identity edit and unlike other edits cannot be modeled 
or defined independently of the two shots it concatenates, since it does 
not contribute any edit frames to the video. Cuts can be categorized in 
terms of the shots that they concatenate. When a video with a cut is 
presented to a viewer, the viewer will experience a sudden transition (or 
discontinuity) of visual properties across the transition. Visual properties of 
a shot include factors like speed and direction of motion of objects and 
camera, shapes, color, brightness, distribution, etc. During the editing 
phase of video production, the director controls various visual property 
transitions across a cut. Some directors try to minimize the visual 
discontinuity experienced by the viewers across a cut. This criterion is 
termed as a graphic match in editing literature; others maximize the visual 
discontinuity across the cut to evoke a specific viewer reaction. 
 A cut detector is an algorithm which can detect the discontinuity of 
a certain visual property across two consecutive frames in a video. Most 
of the cut detectors used in literature rely on the color space of the 
frames to identify a discontinuity. The techniques also have an implicit 
shot model in terms of the expected variation of the visual property within 
the bounds of the shot. The performance of these detectors is fairly 
acceptable and accuracies in the range of  
90% to 95% have been reported. There are two ways of achieving better 
cut detection, use additional visual properties and use explicit models of 
shots. There are several techniques which can be used to identify 
discontinuity of feature tracks in image sequences and other such 
properties. The problem of developing general models of video shots is an 
extremely difficult problem due to the number of factors that affect the 
nature of the video data. However different aspect of video can be 
individually modeled and used in developing tuned cut detectors. Cut 



 76 

Table 4.1: Cut features 

detectors presented in this chapter are based on results presented by 
other researchers in the field. 
 
 

Name Measurement Formula Description 

Template 
Matching 

 
Intensity 

Difference 

Histogram 2χ  
 

 2χ  Histogram 
Comparison 
 

 
 
Table 4.1 shows two features for cut detection that have been proposed 
in literature. Consider a shot S . Let the pixel size of the frames be yx NN × . 

Let G  be the number of gray levels. Let t  denote the time or the frame 
number. Let the shot length be L . Let yx,  denote pixel location within a 
frame. Let tH  be the histogram of the tht  frame of the shot. These features 

were extracted from videos with cuts between different types of shots 
(object motion shots, camera motion shots, etc).  
 
 

Chromatic Edit Detector 
 Chromatic editing manipulates the color space of the two shots 
being edited (table 4.0). The goal of the chromatic edit detector is to 
discriminate between intensity changes due to chromatic editing as 
opposed to intensity changes due to scene activity. The intensity changes 
in the image sequence resulting from chromatic editing have a particular 
pattern which is modeled analytically by the edit effect model. The 
chromatic edit detector analyses the video data and detects the 
presence of the data patterns conforming to the edit effect model. Fades 
and Dissolves are the two most prevalent types of chromatic edits. These 
edit effects are used as the focus of the rest of the paragraph. 
 

Chromatic Scaling 
 Fades and dissolves can be modeled as chromatic scaling 
operations. During a fade one of the shots being edited is a constant 
(normally black). A dissolve typically involves the scaling of two shots that 
are being edited. Thus a detector which can detect chromatic scaling in 
a video can be used to detect both fades and dissolves. Following it is 
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presented the model for a chromatic scaling of an image sequence, and 
derives a feature for detecting such an effect in a video. Once the 
scaling detector is designed, the use of that detector for detecting fades 
and dissolves is discussed. 
 Consider a gray scale sequence ( )tyxg ,, . Let the color space of the 
sequence be scaled out to black over the length of sl  frames. Then the 
model ( )tyxE ,,  for the output video of the scaling operation is: 
 

( ) ( ) 







−×=

sl
t

tyxgtyxE 1,,,,  (Equation 4.8) 

 
During a single frame scaling, only the last frame of the shot is used in the 
scaling operation, i.e. the last frame of the shot is frozen and the intensity is 
scaled to zero (or the intensity is scaled from zero in the case of a fade in). 
Thus during a single frame scaling there is no motion within the sequence. 
In this case equation 4.8 can be written as 4.9 where k  indicates that the 

thk  frame of the shot is being used in the scaling. 
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




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tl

kyxgtyxE ,,,,  (Equation 4.9) 

 
Differentiating  ( )tE  with respect to time: 
 

( )
sl

kyxg
t
E ,,−

=
δ
δ

 (Equation 4.10) 

 
Equation 4.10 can be rewritten as 
 

( ) ( ) slkyxg
t

E
tCI

1
,,

−
== δ

δ
 (Equation 4.11) 

 
where CI  chromatic image, is the scaled first order difference image. This 
image is a constant image with the constant value being proportional to 
the fade rate. A simple function based on the distribution of intensities can 
be designed to provide a measure of the constancy of an image. Let 

( )tFCS  be the chromatic scaling feature which is a measure of constancy 
of CI . 
 

( ) ( )( )tCIUtFCS =  (Equation 4.12) 
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For multi-frame scaling, the scaling is done over a sequence of frames. 
Thus there is scene action in progress during the scaling edit. Here the 
differences in the pixel values during a scale will be due to a combination 
of the motion generated intensity difference and the scale generated 
intensity difference. The chromatic scaling feature, CSF , is applicable if the 

change due to the editing dominates the change due to motion. 
 
 

Fades & Dissolves as Chromatic Scaling 
 The fade and dissolve operations can be represented as some 
combination of chromatic scaling operations. 
 
Fade Detection: Two types of fades are commonly used in commercial 
video production, fade in from black and fade out to black. In both these 
cases the fades can be modeled as chromatic scaling operations with a 
positive and negative fade rate. foE  in equation 4.13 represents the 

sequence of images generated by fading out a video 1g  to black. 1l  is 

the fade out rate in terms of the number of frames. 0
r

 represents the black 
image sequence. Comparing equations 4.5 and 4.13, for a fade out one 
of the shots 1gSout = , 0

r
=inS  and +=⊗ . Similarly, fiE  (equation 4.14) 

represents the images generated by fading in a sequence 2g , at the rate 

of 2l . Here 0
r

=outS  and 2gS in = . The equations 4.13, 4.14 represent how the 
fade operation maps on to the edit effect model (equation 4.5). Since the 
operations on the individual sequences in the fade are chromatic scaling 
operations, the chromatic scaling feature 4.11 can be used for detecting 
fades in videos. 
 

( ) ( ) 0,,,
1

1
1
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


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yxgtyxE fo  (Equation 4.13) 

( ) ( ) 
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
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l
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yxgtyxE fi

r
 (Equation 4.14) 

 
Dissolve Detection: A dissolve is a chromatic scaling of two shots 
simultaneously. Let dE  be the set of edit frames generated by dissolving 
two shots 1gSout =  and 2gS in = . Equation 4.15 models the process of 
dissolving two shots. 
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=  (Equation 4.15) 

 
Here ( )21 , tt  are the times at which the scaling of 21 , gg  begin and ( )21 , ll  
are the duration for which the scaling of 21 , gg  lasts. The relative values of 
these parameters can be used to group dissolves into different classes. 
Such a grouping can be used to analyze the effectiveness of the 
detection approach. Comparing equations 4.14, 4.13 and equation 4.15 it 
can be seen that the dissolve is a combination of the fade in and fade 
out operation occurring simultaneously on two different shots. 
 A dissolve is a multiple sequence chromatic scaling. Designing the 
dissolve detector can now be treated as a problem of verifying that the 
chromatic scaling detector (equation 4.12)  can be used to detect the 
dissolve. The approach followed in this work is to classify the dissolves into 
groups based on their qualitative properties and to verify the detect 
ability of each group using the chromatic scaling operator. 
 Figure 4.1 presents the sequence activity graph (SAG) during a 
dissolve edit. It shows the qualitative labeling of dissolves. The hatched 
area indicates the Out Shot activity and the filled area the In Shot. A 
positive slope in the SAG indicates a fade in operation and the negative 
slope indicates a fade out operation. A zero slope in the SAG indicates no 
sequence activity due to editing. 
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Figure 4.1: Sequence Activity Graph during a dissolve 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The basis used for the qualitative labeling is the start time and the dissolve 
length. The labels are based on Shot of Initial Activity-Dominating Shot 
attributes of the sequence� which are defined as follows:  
 
Shot of Initial Activity: This is defined as shot s , where ( )21 , tt  are the times 
at which Out, In shots begin scaling. 
 

s = In if ⇒> 21 tt  Fade In begins before Fade Out. (Equation 4.16) 
s = Out if ⇒< 21 tt  Fade Out begins before Fade In. (Equation 4.17) 

s = Both if ⇒= 21 tt  Fade In, Fade Out begins together. (Equation 4.18) 
 
Dominating Shot: This is defined as shot s , where ( )21 , ll  are the dissolve 
lengths of the Out, In shots begin respectively. 

 
 
 



 81 

s = In if ⇒> 21 ll  In Shot dominates dissolve. (Equation 4.19) 
s = Out if ⇒< 21 ll  Out Shot dominates dissolve. (Equation 4.20) 

s = Equal if ⇒= 21 ll  No Shot dominates dissolve. (Equation 4.21) 
 
A shot is said to dominate the dissolve if its activity slope is higher. In other 
words, if the shot contributes more to the inter frame change in the video 
sequence. 
 
Observing figure 4.1 two things can be reported: 

1. Except in the case of Both-Equal type of dissolves, all the other 
types have portions during which there is an exclusively single 
sequence chromatic scaling in progress. 

2. Except in the case of Equal Dominance Sequences the change 
contribution of one sequence dominates the other. 

 
Thus the cases in which the chromatic scaling feature (equation 4.12) will 
not respond to the dissolve are those in which very similar sequences are 
being dissolved with precisely equal fade rates over the dissolve. In most 
commercially produced video sequences dissolves are seldom executed 
with such precision and dissolving very similar sequences are avoided. 
Hence the chromatic scaling feature can be used to detect most 
dissolves. 
 

Limitations of Chromatic Edit Detector 
 There are several limitations of the chromatic edit detector which 
follows below: 
 

• Additional Chromatic Transforms: The chromatic edit detector 
presented can be used for detecting chromatic edits which are 
scaling of the color space. There are other possible types of 
chromatic transforms like chromatic translations, rotations etc. 
However this is not a serious practical limitation as chromatic 
transformations other than scaling are seldom used in practice. 

• Multiple Sequence Scaling: The scaling detector is primarily 
designed to detect the scaling of single image sequences. It can 
be used to detect two sequences scaling as in the case of dissolves 
provided that the effect of sequence domination is present. If there 
are segments of video with dissolves of more than two sequences 
the chromatic scaling detector cannot be guaranteed to respond. 

• Piecewise Transformations: The detectors are designed to respond 
to global image transforms. The detector responses become 
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unpredictable if the chromatic transforms are applied to spatial sub 
windows in the sequence. 

• Transformation Rates: This is the inverse of the duration for which a 
particular transformation is applied to create an edit. When the 
transformation rate is very high the extended edit approaches the 
cut or identity. In this case the change will be large enough for the 
cut detector to respond. In the case of extremely small 
transformation rates (dissolves and fades over 100’s of frames), the 
change due to the effect between frames may be too small. In 
such cases detecting these effects based on two frames of video 
will not be possible and approaches involving extended set of 
frames will have to be adopted. 

 

Spatial Edit Detector 
 Spatial edits are achieved by transforming the pixel space of the 
shots being edited. These are Type 2 transforms in table 4.0 where ITC

r
=  

and ST  has different values depending on the exact nature of the spatial 

effect used, takes on different values depending on the specific type of 
spatial edit. One of the most commonly used edits is the page translate, 
where the shot preceding the edit is translated out of the view port 
uncovering the shot that follows the edit. This type of edit is used as an 
exemplifier of the class of spatial edits and a feature derivation is 
presented. 
 Consider a video ( )tyxE ,,  with a translate spatial edit. In such an 
edit the first shot translates out, uncovering the second shot. Let ( )tyxE ,,  
be a gray scale sequence for notational simplicity. Let ( ) ( )tyxgtyxg inout ,,,,,  
be the gray scale models of the incoming and outgoing shots in the edit. 
Let yx αα ,  be the translation coefficients in the x  and y  directions 

respectively. Let yx NN ,  be the number of pixels in the x  and y  dimensions 

of each frame. The translate edit can now be modeled as: 
 

( ) ( )
( )


 ++

=
tyxg

ttytxg
tyxE

in

yxout

,,
,,

,,
αα

else
0 and 0 if yyxx NyNx ≤+≤≤+≤ αα

 

 (Equation 4.22) 
 
Equation 4.22 represents the process where a pixel in the final cut is taken 
either from outg  if it lies within the bounds of the frame, or from ing . In the 

case of a pure spatial edit the brightness of a particular point does not 
change over time, the change in the video is caused by the motion of the 
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point due to the edit. This fact can be used to write down the constant 
brightness equation for the edit: 
 

0=
dt
dE

 (Equation 4.23) 

 
Using the chain rule for differentiation equation 4.23 can be rewritten as 
equation 4.24: 
 

0=+⋅+⋅=
t
E

dt
dy

y
E

dt
dx

x
E

dt
dE

δ
δ

δ
δ

δ
δ

 (Equation 4.24) 

 
substituting for E  from equation 4.22 in equation 4.24 and assuming that 
the motion in the incoming shot is negligible as compared to the motion 

due to the edit 0=
t

g in

δ
δ

 the following equation can be written: 
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 (Equation 4.25) 

 
which can be rewritten as 
 

0=+





 +






 +=

t
E

a
dt
dy

y
E

a
dt
dx

x
E

dt
dE

yx δ
δ

δ
δ

δ
δ

 (Equation 4.26) 

 
Assuming that there is no scene action in progress during the edit (i.e. the 
first shot freezes before the translation begins) there will be no relative 

changes in the image due to scene motion. Hence 0==
dt
dy

dt
dx

. Therefore 

equation 4.26 can be rewritten as follows: 
 

0=+⋅+⋅
t
E
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E
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δ

δ
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δ

 (Equation 4.27) 

 
For the case of pure translation in the x  direction 0=ya . Hence 

 

( )

x
E

t
E

atSI x

δ
δ

δ
δ

−
==  (Equation 4.28) 
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Equation 4.28 shows that in the case of the edit being a pure translation in 
the x  direction, the scaling of the difference image by the X  gradient 
image results in a constant image SI , the spatial image. Let sgxF  represent 

the spatial translate feature: 
 

( )( )tSIUFsgx =  (Equation 4.29) 

 
where U  denotes the measure of uniformity of the scaled difference 
images. Thus the feature sgxF  can be used as an indicator of the spatial 

translate in x . Similar features can be designed for detecting spatial 
translates edits in different directions. This is feasible given that the cost of 
computing each feature is limited and the number of directions in a 
quantized image is small. Many other types of spatial transforms like the 
page turn and several other digital editing effects can be modeled as 
piece wise transforms applied to image windows. A similar process can be 
used to design detectors for these various types of edits. However as the 
edits effects become more complex with significant local effects the 
design of effective detectors becomes more difficult. 
 
 

A Measure of Image Uniformity 
 The output of the image manipulation operations both in the case 
of the chromatic edit detector equation 4.12 and the spatial edit 
detector equation 4.29 are gray scale images with a constant value. In 
the case of real images this will seldom be the case� a constant image 
will have a uni-modal histogram. The following is a measure which 
responds to images with a uni-modal histogram. Let ( ) ( )1,,,,, +tyxItyxI  be 
the two consecutive frames in the video for which the features are being 
computed. Let ( )xNx ,1∈  and ( )yNy ,1∈  where yx NNN ∗=  is the total 

number of pixels in the image. Let XI  represent the image whose 
constancy is being measured, where CIXI =  for the chromatic scaling 
detector and SI  for the spatial operator. There are two aspects that can 
be measured from XI . 
 

• Spatial Uniformity: For the ideal case where yxKXI ,∀=  all the pixels 

in the image will have the same value. In the case of a real image 
the ( )yxXI ,  is valid only if the difference pixel at that point is non 

zero, because a constant set of frames in the video will yield 0=XI . 
Hence the uniformity measure is directly weighted be the number of 
non zero difference pixels or the Area of the non zero difference 
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image. Also a computationally cheap measure of the spatial 
uniformity is the location of the centroid of the valid pixels of XI .In 
the ideal case the centroid should be located at the physical 
center of the image. Thus the uniformity measure can be inversely 
weighted by the distance centroid from the physical image center. 

• Value Uniformity: For the ideal case where yxKXI ,∀=  the variance 

of XI  will be zero. Hence inversely weighting the uniformity measure 
by the variance guarantees that the measure will have a strong 
positive response for a constant image. 

 
Based on the above consideration U  shown in equation 4.30 is the 
measure of image constancy. The meaning of the different symbols and 
their computational formulas are presented in table 4.2: 
 

)),()))0),((((0.1()))(((
)0)),((((

Measure Uniformity
yxcx cctIDTCtIV

tIDTA
U

−+⋅
==

σ
 

 (Equation 4.30) 
 
 

Computational Requirements of Feature Detectors 
 This paragraph presents the computational requirement analysis of 
the three feature detectors used. Let N  be the number of pixels per frame 
in the digital video sequence being segmented. Let 

compabsmultdivsubadd κκκκκκ ,,,,,  be the cost of performing one operation of 

addition, subtraction, division, multiplication and absolute value, 
comparison respectively. Table 4.2 lists the costs of various operations in 
the feature extraction process and estimates the complexity of the 
computation. Let Λ  represents the cost of a compound operation in 
terms of the basic image computations.  
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Table 4.2: Computational Cost Table 

 
 
 

 
 
 

Operation Symbol Computation Formula Cost 
Histogram ))(( tIH  ++∀ )),,((, tyxIHyx  )( addN κ∗  

Difference ))(( tID  ),,()1,,(, tyxItyxIyx −+∀  )( abssubN κκ +∗  
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Uniformity ),( DXIU  Equation 4.30 

adddiv

threshcentroid

area

threshdiff

κκ +
+Λ+Λ

+Λ+Λ

+Λ+Λ

var  

Cut cutF  
∑ = +

+−G

i
t

tt

iH
iHiH

0

2

)(1
))(1)((

 

)

(

3

mult

divadd

add

G

N

κ
κκ

κ

+
+∗

+∗∗
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Figure 4.2: Feature Extractors: Computational Block Diagram 

Feature Detector Summary 
 The above paragraphs presented a systematic approach to 
designing features. The feature design was based on the edit effects 
models. Figure 4.2 shows a flow diagram for extracting all the features 
from a pair of images )(tI  and )1( +tI . The cut feature involves the 
computation of a histogram for each image and a 2χ  comparison of the 
histograms. The chromatic feature requires the computation of a 
difference image, an image division and an image constancy 
computation, while the spatial feature requires an image difference, 
image division and a constancy computation. The most important 
aspects of the feature detectors designed are: 
 

• Local Computation: The extended edit effects like fades and 
dissolves are being extracted based on using just two consecutive 
frames in the sequence. This is a very efficient method of extracting 
extended edit effects. 

• Algorithm Simplicity: The computations needed to accomplish the 
task of extracting extended edits are very simple and hence 
reliable. 

• Modularity: The set of operations necessary to compute all the 
features is modular and the results of some computations can be 
used in more than one feature detector. 
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Classification & Segmentation 
 The features extracted from the video undergo several steps of 
processing before the video segments are identified. This paragraph 
presents the various steps involved. Figure 4.3 provides an illustration of the 
details involved in the classification and segmentation process. A 
modification of a standard two class discrete classifier has been used to 
achieve the segmentation process. The lack of prior probability density 
functions for the various features makes the use of standard Bayesian 
decision models unsuitable for this application. 
 

• Feature Thresholding: The first step in the classification and 
segmentation process is feature thresholding. The response space 
of each of the features, namely cut, chromatic edit and spatial 
edit, are discretized into a number of regions. A single threshold is 
used to categorize the response as either positive or negative. The 
thresholds iT  for the different features are chosen based on the 

conditional probability distributions of the features over an 
experimental data set. 

• Discriminant Function: The discriminant function is a function 
designed to combine the feature responses of the three features. 
The output of the discriminant function thus assigns to each frame in 
the video one of two labels edit or shot. The label assignment takes 
into account the correlation that exits between the features and 
the conditional distributions of the features. The discriminant 
function used in this system is spcscspcsc ffffffD ∧∧=),,(  where ∧  is 

the logical OR operator. Thus the output of the discriminant function 
is a two label pulse train that needs to be segmented. 

• Segmentation: The two label pulse train (i.e. each frame is either 
called an edit or shot) is segmented by using a finite state machine 
show in Figure 4.4. The notation used is the standard notation of 
finite state machines. The circles indicate states and the arrows 
indicate the transition between states. The machine for 
segmentation has 3 states oq SS ,  and 1S  where qS  is the quiescent 

state, oS  is the shot segment state, 1S  is the edit segment state. The 
machine has two outputs namely begin segment, end segment. 
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Figure 4.3: Steps in Classification & Segmentation 

Figure 4.4: Finite State Machine of Segmentation 
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Error Measures for Video Segmentation 
 The video computational model (equation 4.4) is used for the 
purpose of measuring segmentation error. Shots and extended edits 
(fades, dissolves, spatial edits etc) are closed intervals with non zero 
length. A cut however is not an interval. But for the sake of consistency 
cuts can be treated as a closed interval of length zero. The error in 
segmenting a video is the difference between the correct model of the 
video V  and the output of a segmentation algorithm V ′ . Let V  have n  
segments. Let V ′ have κ  segments. Then 
 

nn SSSSSSV oooooo )1(4321 ... −=  (Equation 4.31) 

κOOOOV oooo ...321=′  (Equation 4.32) 

 
where iS  and iO  are segments in the correct video computational model 

and the output of the segmentation algorithm. The difference between 
two videos with reference to segmentation has the following two error 
components, the Segment Boundary Error due to the improper location of 
the segment boundaries, and the Segment Classification Error due to the 
improper labeling of the segments. Thus the overall segmentation error E  
can be defined as follows 
 

scscsbsb WVVEWVVEVVE ×′+×′=′ ),(),(),(  (Equation 4.33) 

 
sbE  represents the segment boundary error and scE  represents the  

segment classification error. The weights  sbW  , scW  allow the error measure 

to reflect the bias of the application, and can be set based on which 
error involves more cost to the user. 
 
 

Segmentation Error Classes 
 Given a correct video model  V  (equation 4.31) with n  segments 
and an output model V ′  (equation 4.32) with k , let n′  and k ′  be the 
number of unassigned segments in V  and V ′  after computing the 
correspondence (Given 2 video computational models, the process of 
measuring errors involves comparing the individual segments in the 2 
models. This requires a mapping between the individual segments of 2 
models. The process of generating this mapping is called Segment 
Correspondence). Then the segmentation can be classified as follows: 
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• Under Segmentation nk ′<′ : The number of unassigned segments in 
the output model are fewer than in the correct model. This implies 
that the segmentation algorithm has missed a number of 
boundaries and that the number of false positives in the edit 
detection is lesser than the number of missed edits. 

• Equal Segmentation nk ′=′ : The number of segments unassigned in 
both the output and the correct model are the same. This implies 
that the number of false positives and missed edits are the same. 

• Over Segmentation nk ′>′ : The number of unassigned segments is 
greater in the output model as compared to the correct model. This 
implies that the video has been broken up into more segments than 
necessary or that the number of false positives in the edit detection 
is greater than the number of missed edits. 

 
The classification of a segmentation error provides a qualitative labeling 
of the error. In addition to this the error classes are used in the definition of 
the error measure. In most real videos the number of segments in the 
video tends to be much smaller than the number of frames. 

Segment Boundary Errors: sbE  

 Once the corresponding segments have been assigned between 
V  and V ′  the boundary error can be computed as the absolute 
difference of the corresponding intervals scaled by the length of the 
video. An additional penalty is added for the unassigned segments from 
both the correct and output models. 
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VVE
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i
iii

sb

′+′
+=′
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,
,  (Equation 4.34) 

 
where n=λ  for under and equal segmentation and ( )VLength=λ  for over 
segmentation, ie  is the interval error between iS  and iO . The error 
between two intervals [ ] [ ]ebeb ttTttT 222111 ,,, ==  is defined as follows: 

 
( ) eebbi ttttTTe 212121 , −+−=  (Equation 4.35) 
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Segment Classification Errors: scE  

 Given two corresponding segments 1s  and 2s  with labels 1sl  and 2sl  
the segment classification error is defined as follows 
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 (Equation 4.36) 

 
The overall segment classification error for the entire video is given by 
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where n=λ  for under and equal segmentation and ( )VLength=λ  for over 
segmentation, sce  is the classification error between iS  and iO . 
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Chapter 5 
 
 

Five Approaches for Uncompressed Video Segmentation 
In chapter 3 several methods for segmentation of uncompressed 

video were presented. In this chapter three histogram based and two 
motion based approaches will be examined, for the segmentation of the 
uncompressed video, extensively.  

The first histogram based approach is called Twin Comparison (TC) 
and was introduced by Zhang et al. TC can detect both camera cuts and 
gradual transitions with a double thresholding, using global thresholds. 
More details for TC will be discussed next on this chapter. The second 
histogram based method is similar to the first one. In the second method 
we use a local window based threshold (SW). This threshold is calculated 
like one of the thresholds in TC. The third histogram based method is an 
adaptive algorithm using adaptive mean and adaptive standard 
deviation to calculate the threshold. The last two methods will be broadly 
examined next on this chapter. 

Both motion based methods use motion vectors to segment the 
uncompressed video. After the calculation of motion vectors, the 
histogram of their angle is produced. The histogram difference of motion 
vector’s angle is used finally in these two methods. The first one is the 
same with the second of the histogram based methods with the 
difference that now we have angle histogram difference and not intensity 
histogram difference. The second is the same with the third of the 
histogram based methods but, as in the first motion based method, the 
histogram difference is for angle and not for intensity. 
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Figure 5.0: Four frames across a camera break from a documentary video 
with their intensity histograms. The first two frames are in the first camera 
shot. The third and fourth belong to the second camera shot. There are 
significant content changes between the second and the third frame. This 
change can be seen from their intensity histograms. 
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Figure 5.1: Five frames across a cross dissolve. The first frame is the one just 
before the dissolve starts, and the last one is the frame immediately after the 
end of the dissolve. The rest are the frames within the dissolve. In the right 
column intensity histograms for each frame can be seen. 
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Histogram Based Methods 
  

Twin Comparison 
 

Difference metric selection 
 The detection of transitions involves the quantification of the 
difference between two image frames in a video sequence. To achieve 
this, we need first to define a suitable metric, so that a segment boundary 
can be declared whenever that metric exceeds a given threshold. As 
mentioned in chapter 3 difference measures used to partition video can 
be divided into two major types: the pair-wise comparison of pixels or 
blocks, and the comparison of the histograms of pixel values (intensity 
histograms). 
 

Difference 
Measure 

Name 
Difference Measure Formula Advantages Disadvantages 

Pair-wise 
Comparison 

 

Simple 
implementation, easy 
understanding 

Sensitive to camera 
movement 

Likelihood 
Ratio 

 

Raise of the level of 
tolerance to slow & 
small object motion 
from frame to frame. 

If 2 sample areas to 
be compared have 
the same mean & 
variance, but 
different probability 
density function, no 
change will be 
detected. 

Histogram 
Comparison 

 Less sensitive to 
object motion, since 
it ignores spatial 
changes. 

Two images have 
similar histograms 
but different content. 
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Table 5.0: Difference metrics that are discussed in Zhang et al paper. In this table 
also appears the mathematic formula that is used to implement metrics and the 
most important advantages/disadvantages.   



 98 

 
 
 

Notation & Explanation of Pair-wise comparison: In grayscale images, a 
pixel is judged as changed if the difference between its intensity values in 
the two frames exceeds a given threshold t . This metric can be 
represented as a binary function ( )lkDPi ,  over the domain of 2-D 
coordinates of pixels, ( )lk,  where the subscribe i  denotes the index of the 
frame being compared with its successor. ( )lkPi ,  denotes the intensity 
value of the pixel at coordinates ( )lk,  in frame i . The pair-wise 
segmentation algorithm simply counts the number of pixels changed from 
one frame to the next. A segment boundary is declared if more than a 
given percentage of the total number of pixels, given as a threshold T , 
have changed. The total number of pixels in a frame of dimensions M  by 
N  is NM ∗ . 
Notation & Explanation of Likelihood Ratio: To make the detection of 
camera breaks more robust, instead of comparing individual pixels, we 
can compare corresponding regions (blocks) in two successive frames on 
the basis of second order statistical characteristics of their intensity values. 
Let im  and 1+im  denote the mean intensity values for a given region in two 
consecutive frames, and let iS  and 1+iS  denote the corresponding 
variances. Camera breaks can now be detected by first partitioning the 
frame into a set of sample areas. Then a camera break can be declared 
whenever the total number of sample areas whose likelihood ratio 
exceeds the threshold t  is sufficient large. 
Notation & Explanation of Histogram Comparison: An alternative 
approach is to compare some feature of the entire image. One such 
feature that can be used in segmentation algorithms is a histogram of 
intensity levels. Two frames having an unchanged background and 
unchanged objects will show little difference in their respective 
histograms. Let ( )jH i  denote the histogram value for the i -th frame, 
where  j  is one of the G  possible grey levels (NOTE: The number of 
histogram bins can be chosen on the basis of the available grey-level 
resolution and the desired computation time). If the overall difference iSD  
is larger than a given threshold T , a segment boundary is declared. This 
metric was chosen to implement because of the advantage that is less 
sensitive to object motion and because of the low probability of the fact 
that there may be cases in which two images have similar histograms but 
completely different content. 
 Figures 5.0 and 5.1 shows in the right column grey-level histograms 
of the frames from the left column. In figure 5.0 it is obvious the difference 
between the histograms across the camera break between the second 
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and the third frame, while the histograms of the first and second frame are 
almost identical. The histograms of the third and fourth frame are also 
identical. Figure 5.2 illustrates the application of histogram comparison to 
three news videos. The three plots display the sequence of iSD  values, 
defined in table 5.0, between every two consecutive frames over the 
entire video. The formula was applied to grey-level intensities computed 
from the intensities of the three color channels Red, Green and Blue by 
the conversion formula which is displayed below: 
 

BGRGREY ∗+∗+∗= 074.0715.0211.0  
 
In this formula GR,  and B  stand for intensities of the red, green and blue, 
respectively. This formula also gives the impact of individual color changes 
on the overall grey level and indicates the significance of the green 
component. The high pulses in the plots correspond to camera breaks. 
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Figure 5.2: Three histogram difference plots from different 
video files. Camera breaks and gradual transitions can be 
observed 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 In addition to the weaknesses of each of the individual metrics that 
have been cited in table 5.0, all three types of difference metric face a 
severe problem if there are moving objects, of either large size or of high 
speed, or a sharp illumination change between two frames in a common 
shot, resulting in a false detection of a camera break. Flashing lights and 
flickering objects (such as video & computer monitors) are common 
sources of errors. 
 
 

Twin-Comparison approach for shot detection 
 The TC approach adapts a difference metric to accommodate 
gradual transitions. The histogram comparison difference metric is used in 
the TC approach. As one can see from figure 5.2, there are three plots of 
the frame-to-frame histogram differences. In the first plot there are eight 
high pulses that correspond to camera breaks. There are also eight high 
pulses in the second plot. It is easy to select a suitable cutoff threshold 
value (such as 100000 and 70000 for first and second plot respectively) for 
detecting these camera breaks. However, the inset of both the first and 
second plot displays sequences of pulses the values of which are higher 

Gradual Transition: 
Cross Dissolve  
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than those of their neighbors but are significantly lower than the cutoff 
thresholds.  
 The simplest approach to this problem would be to lower the 
thresholds. Unfortunately, lower thresholds cannot be effectively 
employed, because the difference values that occur during the gradual 
transition implemented by a special effect may be smaller than those that 
occur during between the frames within a camera shot. For example, 
object motion, camera panning and zooming also entail changes in the 
computed difference value. If the cutoff threshold is too low, such 
changes may easily be registered as “false positives”. The problem is that 
a single threshold value is being made to account for all segment 
boundaries, regardless of context. 
 In figure 5.1 it is obvious that the first and last frames are different, 
even if all consecutive frames are very similar in content. The problem is to 
detect these first and last frames. If they can be determined, then each of 
them may be interpreted as a segment boundary and the period of 
gradual transition can be isolated as a segment unto itself. The inset of the 
third plot in figure 5.2 illustrates that the difference values between most of 
the frames during the dissolve are higher, although only slightly, than those 
in the preceding and following segments. What is required is a threshold 
value that will detect a dissolve sequence and distinguish it from an 
ordinary camera shot. A similar approach can be applied to transitions 
implemented by other types of special effects. 
 TC requires the use of two cutoff thresholds: bT  is used for camera 
break detection and sT  is used for special effect detection (such as cross 
dissolve). The detection process begins by comparing consecutive frames 
using histogram comparison metric. Whenever the difference value 
exceeds threshold bT , a camera break is declared, for example BF  in 

figure 5.3. However, the TC also detects differences that are smaller than 
bT  but larger than sT . Any frame that exhibits such a difference value is 

marked as the potential start of a gradual transition SF . Such a frame can 

be seen in figure 5.3. This frame is then compared to subsequent frames as 
shown in figure 5.3 in second plot. This is called accumulated comparison 
since, during a gradual transition, this difference value will normally 
increase. The end frame EF  of the transition is detected when the 
difference between consecutive frames decreases to less than sT , while 
the accumulated comparison has increased to a value larger than bT . 

The accumulated comparison is only computed when the difference 
between consecutive frames exceeds sT . If the consecutive difference 
value drops below sT  before the accumulated comparison value 
exceeds bT , then the potential start point is dropped and the search 
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continues for other gradual transition. A problem with TC is that there are 
some gradual transitions during which the consecutive difference value 
does fall below sT . This problem is solved by permitting the user to set a 

tolerance value that allows a number of consecutive frames with low 
difference values before rejecting the transition candidate. 
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bT  
sT  

BF  

bT  

SF  EF  

Figure 5.3: Illustration of TC. The first plot qpSD ,  is the difference between 

consecutive frames defined by the difference metric; the second plot qpDS ,′  is 
the accumulated difference between the current frame and the potential 
starting frame of a transition; sT   is the threshold used to detect the starting 
frame SF  of a transition; bT  is the threshold used to detect the ending frame 

EF  of a transition. bT  is also used to detect camera breaks such as BF . 

qpDS ,′  is only calculated when sqp TSD >, . 

qpDS ,′  

qpSD ,  
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Selection of Thresholds 
 Selection of appropriate threshold values is a key issue in applying 
the segmentation algorithms. Thresholds must be assigned that tolerate 
the variations in individual frames while still ensuring a desired level of 
performance. A “tight” threshold makes it difficult for “impostors” to be 
falsely accepted by the system, but at the risk of falsely rejecting true 
transitions. Conversely, a “loose” threshold enables transitions to be 
accepted consistently, at the risk of falsely accepting “impostors”. In order 
to achieve high accuracy in video partitioning, an appropriate threshold 
must be found. 
 Considerable research has been done on the selection of 
thresholds for the spatial segmentation of static images. A good summary 
can be found in Digital Picture Processing by Rosenfeld & Kak (1982). 
Typically, selecting thresholds for such spatial segmentation is based on 
the histogram of the pixel values of the image. The conventional 
approaches include the use of a single threshold, multiple thresholds and 
variable thresholds. The accuracy of single threshold selection depends 
upon whether the histogram is bimodal, while multiple threshold selection 
requires clear multiple peaks in the histogram. Variable threshold selection 
is based on local histograms of specific regions in an image. In spite of this 
variety of techniques, threshold selection is still a difficult problem in image 
processing and is most successful when the solution is application 
dependent. In order to set an appropriate threshold for temporal 
segmentation of video sequences, we draw upon the same feature, the 
histogram of the frame-to-frame differences. It is necessary to know the 
distribution of the frame-to-frame differences across camera breaks and 
gradual transitions. 
 The automatic selection of threshold bT  is based on the frame-to-

frame differences over a video source. The red curve in figure 5.4 shows a 
typical distribution of difference values (The graph of these values is the 
first plot in figure 5.3). This example is based on the difference metric for 
comparison of grayscale histograms obtained from a news video. The 
range of difference values is given on the horizontal axis, and the 
frequency of occurrence of each difference value is given on the vertical 
axis. This distribution exhibits a high and sharp peak on the left (near 
50000) corresponding to a large number of consecutive frames that have 
a small difference between them. There is also a small peak near vertical 
axis (near 12000) corresponding to a small number of consecutive frames 
between which a very small or zero difference occurs. There is a small 
peak and a long tail on the right (near 125000) corresponding to a small 
number of consecutive frames that have a significant difference. Because 
this histogram has only a single modal point, the approaches for threshold 
selection already mentioned are not applicable. 
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 If there is no camera shot change or camera movement in a video 
sequence, the frame-to-frame difference value can only be due to three 
sources of noise: 
 

1. Noise from digitizing the original analog video signal. 
2. Noise introduced by video production equipment. 
3. Noise resulting from the physical fact that few objects are perfectly 

still. 
 
All three sources of noise can be assumed to be Gaussian. Thus, the 
distribution of frame-to-frame differences can be decomposed into a sum 
of two parts: the Gaussian noises and the differences introduced by 
camera breaks, gradual transitions and camera movements. Obviously, 
differences due to noise have nothing to do with transitions. 

Figure 5.4: M, distribution of computed frame-to-frame differences based on a 
grayscale histogram for all frames of the news video; G, Gaussian distribution 
derived from the mean and variance of distribution M. 
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 Let σ  be the standard deviation and µ  the mean of the frame-to-
frame differences. If the only departure from µ  is due to Gaussian noise, 
then the probability integral  
 

( ) ∫
−

−
=

x
x

dxexP
0

2 2

2

2
1 σ

µ

σπ
 (Equation 5.0) 

 
will account for most of the frames within a few standard deviations of the 
mean value. In other words, the frame-to-frame differences from the non-
transition frames will fall in the range of 0 to ασµ +  for a small constant 
value α . The black curve G in figure 5.4 shows the Gaussian distribution 
obtained from σ  and µ  for the frame-to-frame differences from which 
the M curve was calculated. Therefore, the threshold bT  can be selected 

as 
 

ασµ +=bT  (Equation 5.1) 
 
That is, difference values that fall out of the range from 0 to ασµ +  can be 
considered indicators of segment boundaries. From experiments, the 
value α  should be chosen between 3 and 4. Under a Gaussian 
distribution, the probability that a non-transition frame will fall out of this 
range is practically zero. 
 For detecting gradual transitions, another threshold sT  also needs to 
be selected. Experiments have shown that sT  should be selected along 
the right slope of the M distribution shown in figure 5.4. Furthermore, sT  
should generally be larger than the mean value of the frame-to-frame 
differences of the entire video. Therefore, the threshold sT  can be 

selected as 
 

βµ=sT  (Equation 5.2) 
 
From experiments, the value β  should be chosen between 1.5 and 2. 
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Sliding Window Method 
 

Difference metric selection 
 To partition the video, we should first define suitable metrics, so that 
a shot boundary is declared whenever that metric exceeds a given 
threshold. It is been used histogram difference because histogram is less 
sensitive to object motion than other two metrics which presented in table 
5.0. 
 

Sliding Window (SW) approach for shot detection 
 As mentioned before the metric which will be used for SW 
approach, will be the histogram difference. Some example graphs can 
be seen in figure 5.2. Next follows how SW approach is used with 
histogram difference. 
 Before the explanation of the SW algorithm, it is necessary to give 
some notations. The sliding window which is used has a size of WindowSize 
frames. The value of WindowSize is standard to 15 which do not change 
during the process of the entire video. ( )ix  is the frame-to-frame histogram 
difference value of i -th frame. The video has a size of TotalFrames frames. 
So we have for variable i , )1(0 −≤≤ sTotalFramei . ( )jWµ  is the mean value 
of the data within the sliding window. ( )jWσ  is the variance of the data 
within the sliding window. ( )jTW  is the threshold of the data within the 
sliding window. The variable j  denotes how many instances of the sliding 
window can be produced during the processing of the entire video. So 
the limits of variable j  are ( )1)(0 −−≤≤ WindowSizesTotalFramej . 
 We build a sliding window preceding the current frame. The next 
step is to calculate the mean ( )jWµ  and variance ( )jWσ  value of the 
histogram difference data in the window. The threshold ( )jTW  is 
calculated by the formula ( ) ( ) ( )jjjT WWWW σαµ += , where Wα  is a constant 
variable for the entire video. The value of variable Wα  is changing 

according to video type. A typical value, for video type news is between 
3.5 and 5. The following step is to compare the threshold ( )jTW  with the 
histogram difference value which is next to the right of the sliding window. 
In other words, if ( ) ( )1,, −+ WindowSizeixix K  are in the sliding window, the 
threshold ( )jTW , which calculated from the above values, is compared to 

( )WindowSizeix + . If ( ) ( )WindowSizeixjTW +> , the sliding window is moving 
one frame to the right, so ( )ix  is getting out from the left of the window 
and ( )WindowSizeix +  is getting in from the right of the window. If 
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( ) ( )WindowSizeixjTW +≤ , the sliding window is not moving and none value 
get in the window if the first condition, ( ) ( )WindowSizeixjTW +> , is not 
satisfied.  The value ( )WindowSizeix +  is declared as Camera Break. The 
value of ( )jTW  will be the same while the condition ( ) ( )WindowSizeixjTW +≤  
is satisfied.  
 One threshold need to be calculated in SW approach in order to 
partition video in shots. The camera breaks happens in one frame and 
gradual transitions occupy more than one frame. So, if the condition 

( ) ( )WindowSizeixjTW +≤  is satisfied for one frame, then we have a Camera 

Break. If the previous condition is satisfied for more than one continuous 
frame, then we have Gradual Transition. Some possible instances of sliding 
window can be seen in figure 5.5. 
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Selection of Thresholds 
 As mentioned before, the threshold WT  is calculated by the formula 

WWWWT σαµ += . The reason of selection this value for threshold is 

explained in TC approach. One threshold is used in SW approach 
because this threshold is adapted to the local variations of histogram 
difference. In other words, the graph of the threshold follows the variations 
of the histogram difference graph. An example of WW σµ ,  and WT  graphs 
with histogram difference graph can be seen in figure 5.6. 
 
 
 
 
 
 
 
 

Sliding Window 

( )ix  ( )1−+WindowSizeix  

( )WindowSizeix +  ( )1−ix  

Histogram Difference values 

d Gradual Transition 

Figure 5.5: (a) Illustration of a sliding window instance j  in histogram difference 
graph. (b) Illustration of a sliding window instance 1+j , if condition 

( ) ( )WindowSizeixjTW +>  is satisfied. (c) Illustration of a sliding window instance 
1+j , if condition ( ) ( )WindowSizeixjTW +≤  is satisfied for one frame. In this case 

we have Camera Break. (d) Illustration of a sliding window instance 1+j , if 
condition ( ) ( )WindowSizeixjTW +≤  is satisfied for more than  one frame. In this 
case we have Gradual Transition. 
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Figure 5.6: The three plots are for ( )jWµ , ( )jWσ  and ( )jTW , respectively. 
It is worth mention that the first 15 values of histogram difference are 
used to calculate the first value of ( )jWµ , ( )jWσ  and ( )jTW . Before the 
first value, we can not calculate ( )jWµ , ( )jWσ  and ( )jTW , so their values 
are zero. 
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Adaptive Method 
 

Difference metric selection 
 For video partition, it is necessary to define suitable metrics, so that 
a shot boundary is declared whenever that metric exceeds a given 
threshold. It is been used histogram difference because histogram is less 
sensitive to object motion than other two metrics which presented in table 
5.0. 
 

Adaptive approach for shot detection 
 As mentioned before the metric which will be used for Adaptive 
approach, will be the histogram difference. Some example graphs can 
be seen in figure 5.2. Next follows how Adaptive approach is used with 
histogram difference. 
 Before the explanation of the Adaptive algorithm, it is necessary to 
give some notations. ( )ix  is the frame-to-frame histogram difference value 
of i -th frame. The video has a size of TotalFrames frames. So we have for 
variable i , )1(0 −≤≤ sTotalFramei . ( )iAµ  is the mean value of the data 
which is calculated by the adaptive algorithm. ( )iAσ  is the variance of the 
data which is calculated by the adaptive algorithm. ( )iTA  is the threshold 
of the data which is calculated by the adaptive algorithm. 
 The calculation of adaptive mean value ( )iAµ  and adaptive 
standard deviation ( )iAσ  is being by the following formulas: 
 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )icxiciixicii AAAAA +−−=⇔−−−−= 1111 µµµµµ  (Equation 5.3) 

( ) ( )iii AAA λµσ −= 2)(  (Equation 5.4) 
 
where c  is a controlling coefficient [ ]1,0∈c  and ( )iAλ  is the adaptive 
second moment 
 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )22 1)1(11 icxiciixicii AAAAA +−−=⇔−−−−= λλλλλ  (Equation 5.5) 
 
The initial values are ( ) ( )00 xA =µ  and ( ) ( )200 xA =λ . Default value for 05.0=c . 
The threshold ( )iTA  is calculated by the formula ( ) ( ) ( )iiiT AAAA σαµ += , 
where Aα  is a constant variable for the entire video. The value of variable 

Aα  is changing according to video type. A typical value, for video type 
news is between 4 and 5. The next step is to compare the threshold ( )iTA  
with the next histogram difference value. In other words, the threshold 
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( )iTA  is compared to ( )1+ix . If ( ) ( )1+> ixiTA , then we continue with the 
calculation of ( )1+iTA . If ( ) ( )1+≤ ixiTA , then ( ) ( )iTiT AA =+1  until the first  
condition, ( ) ( )1+> ixiTA , is satisfied.  The value ( )1+ix  is declared as 
Camera Break. 
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Figure 5.7: (a) Illustration of adaptive method in a histogram difference graph. 
(b) Illustration of adaptive method, if condition ( ) ( )1+> ixiTA  is satisfied. (c) 
Illustration of adaptive method, if condition ( ) ( )1+≤ ixiTA  is satisfied for one 
frame. In this case we have Camera Break. (d) Illustration of adaptive 
method, if condition ( ) ( )1+≤ ixiTA  is satisfied for more than one frame. In this 
case we have Gradual Transition. 
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Selection of Thresholds 
 As mentioned before, the threshold AT  is calculated by the formula 

AAAAT σαµ += . The reason of selection this value for threshold is explained 
in TC approach. One threshold is used in Adaptive approach, as in SW 
approach, because this threshold is adapted to the local variations of 
histogram difference. In other words, the graph of the threshold follows 
the variations of the histogram difference graph. An example of AA σµ ,  
and AT  graphs with histogram difference graph can be seen in figure 5.8. 
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Figure 5.8: The six plots are for ( )iAµ , ( )iAσ  and ( )iTA  with different c , 
respectively. (a) It is ( )iAµ  with 05.0=c . For five frames after a Camera Break 
or Gradual Transition 20.0=c . (b) It is ( )iAσ  with 05.0=c . For five frames after 
a Camera Break or Gradual Transition 20.0=c . (c) It is ( )iTA  with 05.0=c . For 
five frames after a Camera Break or Gradual Transition 20.0=c . (d) It is ( )iAµ  
with 05.0=c  in whole video. (e) It is ( )iAσ  with 05.0=c  in whole video. (f) It is 

( )iAσ  with 05.0=c  in whole video. The arrows show the graph after a Camera 
Break or Gradual Transition. 

 

 

(e) 

(f) 
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It is necessary to make a small introduction about motion estimation   
before we continue to motion based methods. 
 

A different value for c  variable  
 We observed in (c) and (f) graphs in figure 5.8 that when 20.0=c  
after five frames of a Camera Break or Gradual Transition, we have a 
peak that decrease faster than the peak when 05.0=c . In both cases, the 
peak has a big value and it is necessary to decrease that value. The value 
is big because of the standard deviation (we have big difference values 
in standard deviation) as we can see in (b) and (e) graphs in figure 5.8. In 
order to achieve small values we cannot change the equations 5.3 and 
5.5, but we can change the value of c  in a way that can be adaptive to 
the values of histogram difference. So, the value of c  can be 
 

( ) ( )( )
( ) ( ){ }ixi

ixi
c

,1max
1

−
−−

=
Α

Α

µ
µ

 (Equation 5.6) 

 
With the above equation, the threshold adjusts with the signal (histogram 
difference) for five frames after a Camera Break or Gradual Transition. 
Figure 5.9 shows a graph with the above improvement. 
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Figure 5.9: The three plots are for ( )iAµ , ( )iAσ  and ( )iTA  with c  calculated by 
equation 5.6, respectively. (a) It is ( )iAµ  with 05.0=c . For five frames after a 

Camera Break or Gradual Transition 
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Introduction to Motion Estimation 
 Motion is a prominent source of temporal variations in image 
sequences. In order to model and compute motion, we need to 
understand how images (and therefore image motion) are formed. 
Motion in image sequences acquired by a video camera is induced by 
the movements of objects in a 3D scene and by camera motion. Thus, 
camera’s parameters, such as its 3D motion (rotation, translation) or focal 
length, play an important role in image motion modeling. If we know 
these parameters precisely, only object motion needs to be recovered. 
However, this scenario is rather rare, and both object and camera motion 
usually needs to be computed. The 3D motion of objects and cameras 
induces 2D motion on the image plane via a suitable projection system. It 
is this 2D motion, also called apparent motion or optical flow, which needs 
to be recovered from intensity and color information of a video 
sequence. 2D motion finds diverse applications in video processing and 
compression as well as in computer vision, primarily because the temporal 
correlation of intensities in an image sequence is very high in the direction 
of motion. 
 In video compression, the knowledge of motion helps remove 
temporal data redundancy and therefore, attain high compression ratios. 
Motion estimation became a fundamental component of such standards 
as H.261, H.263 and the MPEG family. Although motion models used by 
the older standards are very simple (one 2D vector per block), the new 
MPEG-4 standard offers an alternative (region-based) model that allows 
increased efficiency and flexibility. In video processing, motion 
information is used for standards conversion (motion-compensated 3D 
sampling structure conversion), noise suppression (motion-compensated 
filtering), or deblurring (motion-compensated restoration). In computer 
vision, 2D motion usually serves as an intermediary in the recovery of 
camera motion or scene structure. 
 To compute motion trajectories, three basic elements need to be 
specified. First, underlying models must be selected, e.g. the motion 
model (representation, region of support), motion and image data 
relationship model (observation model), motion boundary model and 
occlusion model. The choice of models and their parameters is 
application dependent. For example, the occlusion model may not be 
relevant for block-based compression, whereas it would be essential in 
image analysis. Second, an estimation criterion must be identified. Such a 
criterion may take different forms, such as a simple mean-squared error 
over a block, a robust criterion (e.g. with saturation for large errors), or a 
complex rate-distortion or Bayesian criterion involving multiple terms. Third, 
a search strategy must be implemented to determine the motion 
parameters that optimize the selected criterion. In general, by a suitable 
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selection of search strategy, one can trade, to a large extent, 
optimization performance against computational load. The strategy may 
be deterministic or stochastic in nature. Exhaustive and simplified search 
methods as well as deterministic relaxation belong to the most popular 
schemes and include, as special cases, block matching and gradient-
based methods. Among the best-known deterministic relaxation methods 
are Iterated Conditional Modes and Highest Confidence First. Mean-field 
techniques stemming from statistical mechanics are important 
deterministic optimization techniques based on the approximation of a 
partition function. Stochastic relaxation techniques, including simulated 
annealing, are dominant among the stochastic approaches. An 
important element of the optimization strategy is its hierarchical 
implementation in order to avoid the violation of some underlying 
assumptions (e.g. local intensity linearity) and/or reduce the 
computational complexity of the algorithm. 
 

Motion Models 
  

Motion Representation 
Consider a point on an object moving in 3D space. Let its position at 

time t  be  
 

( ) ( ) ( ) ( )( ) 3,, ℜ∈== TtZtYtXtXX  (Equation 5.7) 
 
expressed in camera coordinates. ( )( )tt ,X  defines a curve in 3D space 
over time which we refer to as the world motion trajectory. For any two 
time instants t  and τ , the world motion trajectory identifies a 3D 
displacement in position 
 

( ) ( ) ( )tDt XXX −= ττ,  (Equation 5.8) 

 
 An image acquisition system projects the 3D world onto a 2D image 
plane with image coordinates ( ) Λ∈= Tyx,x , where Λ  is a sampling grid, 
usually an orthogonal lattice. Upon this projection, the world motion 
trajectories result in motion trajectories ( )( )tt ,x . We adopt the definition of 
a 2D motion trajectory proposed in Dubois & Konrad: a trajectory is 
defined only in the time interval in which the associated point is visible in 
the image. Thus, assuming that we are dealing with non-transparent 
objects, each spatio-temporal position ),( tx  belongs to a motion 
trajectory of only one visible point. As depicted in figure 5.10, the 2D 
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Figure 5.10: Motion trajectory ( )tx  and associated 

displacement vector ( )xt τ,d  

displacement can be expressed, similarly to the 3D displacement, as 
follows  
 

)()()(, tt xxxd −= ττ  (Equation 5.9) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
  
 
  In general, a motion field is a vector-valued function of continuous 
spatial coordinates. In practical applications, this function is often 
described in a parametric form using a finite, usually small, number of 
parameters. 
 Since 2D motion results from the projection of moving 3D objects onto 
the image plane, a model for 2D motion fields can be derived from the 
models describing 3D motion, 3D surface function and camera projection 
geometry. If these models are parametric, the resulting 2D motion model 
will be parametric as well. As an example, consider a 3D planar patch 
undergoing 3D affine motion under orthographic projection. The 3D affine 
motion can be written as follows 
 

x  

y  

t  

τ  

( )( )tt ,x  

( )( )ττ ,x  
( )xt τ,d  
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( ) sI)XRX +−= (D  (Equation 5.10) 
 
In general, the 3x3 matrix )( ijr=R  has nine degrees of freedom and the 

translational motion vector Tssss ),,( 321=  has another three degrees of 
freedom. Equation 5.10 includes rigid motion as a special case. Then, R  is 
a rotation matrix, i.e. its columns are orthonormal, thus allowing only three 
degrees of freedom corresponding to the three rotation axes. 
 Let the planar patch be specified by three parameters γβα ,,  as 
follows 
 

1=++ ZYX γβα  (Equation 5.11) 
 
The camera model provides two additional scalar equations mapping 3D 
world coordinates onto 2D coordinates of the image plane. For 
orthographic projection, the following relationship holds: 
 

ℜ∈== ccYycXx ;,  (Equation 5.12) 
 
Substituting equations for the camera model (Equation 5.12) and for the 
3D surface (Equation 5.11) into equation 5.10, we readily obtain a model 
for 2D motion which, for the given example, becomes the 2D affine model 
 

bI)x(Ad(x) +−=  (Equation 5.13) 
 
with 
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Clearly, a 2D motion model does not uniquely correspond to one 3D 
model; identical 2D motion models may result from different assumptions 
about 3D motion, surface and camera projection models. 
 Table 5.1 summarizes some parametric models for 2D motion and 
provides possible underlying assumptions. 
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Figure 5.11: Examples of parametric motion vector fields & 
corresponding motion-compensated predictions of a center 
square: (a) Translational, (b) affine, (c) projective linear & (d) 
quadratic. The motion models are illustrated in table 5.1. 

 
 
 
The first four models are illustrated in figure 5.10. The simplest, translational, 
model for 2D motion is used in the existing coding standards H.261, H.263 
and MPEG family. It accounts for a rigid translational 3D motion under 
orthographic projection, resulting in a spatially constant 2D motion. 
Clearly, motion compensation with such fields preserves any 2D shape. 
This model was used in this work. 
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Region of Support for Motion Representation 
 As discussed in the preceding section, 2D motion in an image can 
be described spatially by a model form from table 5.1. Models differ in 
terms of the number of parameters and in terms of the functional 
dependence of d(x)  on those parameters. In general, the higher the 
number of parameters, and thus the higher the function order, the more 
precise the description of the motion field. At the same time, however, an 
excessive number of parameters may result in motion “overmodeling” 
(excessive number of degrees of freedom – important in video processing 
& computer vision) and increased coding cost (important in video 
coding). In this case, the motion estimation accuracy may actually 
decrease. This is due to ill-posed ness of motion estimation; for example, 
no unique solution may exist. The precision of the motion field also 
depends on the region of support Λ⊂R  for the model, i.e. the set of 
image points to which the model applies. Since the true motion field d

~
 is 

rarely purely translational or divergent or exhibits other regularity, the 
smaller the region of support R , the better the approximation. The quality 
of approximation for a given motion field d  can be measured, for 
example, by mean-square error 
 

22 ~1 ∑
∈

−=
R

d R
E

x

d(x)(x)d  (Equation 5.15) 

 
Thus, for a given number of parameters the precision of a motion field can 
be adjusted by choosing a suitable region of support. Unfortunately, the 
mean-square error can be measured only if d

~
 is known, i.e. for computer 

generated images. There are different support regions with both fixed and 
variable size. There are four kinds of region of support: 

1. Global Motion. 
2. Motion of Individual Image Points. 
3. Motion of Regions. 
4. Hierarchical Motion Models. 

 
A brief description of the above kinds of region of support follows. 
 
Global Motion: The most constrained, yet simplest case is global motion, 
motion such that all image points are displaced in a uniform manner. The 
region of support for such models consists of the whole image 
 

Λ=R  (Equation 5.16) 
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Figure 5.12: Various regions of support for a motion model: (a) 
global, (b) dense, (c) block-based and (d) region-based. The implicit 
underlying scene is of “head-and-shoulders” type as captured by the 
region based model. 

where it is assumed that the sampling grid Λ  is an orthogonal lattice: 
{ } { }LK ,,1,,1 KK ×=Λ  with LK ,  being the number of columns and lines in 

the image. See figure 5.12a. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
Motion of Individual Image Points: At the other extreme of the spectrum, 
the region of support may consist of a single image point: 
 

{ } Λ∈= xx ,xR  (Equation 5.17) 

 
Then, motion of each image point can be described by a set of 
parameters, such as displacement in the case of linear motion, or velocity 
in the case of quadratic trajectories.  The pixel-based or dense motion 
representation is the least constrained one since at least two parameters 
describe movement of each image point, and thus at least LK ××2  
parameters are used to present motion in an image. See figure 5.12b. 
Motion of Regions: Between the two extremes above, one can find 
methods that apply motion models from table 5.1 to image regions. The 
motivation is to ensure a more accurate modeling of motion fields than in 
the global motion case and a reduced number of parameters in 
comparison with the dense motion. The simplest image partitioning is into 
non-overlapping rectangular regions mnR  of fixed size LK BB × , referred to 

as blocks, whose union covers the whole image: 
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{ }LLKK
T

mn BnjBnBmiBmjiR ≤<−≤<−Λ∈== )1(,)1(:),(x  (Equation 5.18) 

LK BLnBKm /,,1,/,,1 KK ==  
 
Block partitioning with simple translational motion is used today in all 
digital video compression standards such as H.261, H.263 and MPEG 
family. See figure 5.12c.  
 For better results a general image partitioning is necessary. The 
reasoning is that for objects with sufficiently smooth 3D surface and 3D 
motion, the induced 2D motion fields in the image plane can be suitably 
described by models from table 5.1 if applied to the area of object 
projection. A natural image partitioning can be provided by the image 
acquisition process itself. Because several 3D objects typically move in 
front of a camera, it is straightforward to group all pixels arising from one 
surface of a 3D object into one region. It is more interesting to find image 
partitioning such that all image points in a region arise from objects that 
undergo one motion. Then motion parameters can be estimated from all 
the image points in a moving region. In both cases, a region is described 
as follows 
 

Λ⊂= nnR ξ  (Equation 5.19) 

 
where all arbitrarily shaped regions nξ  are non-overlapping and their 
union covers the complete image. 
Hierarchical Motion Models: The practical concept of a variable size block 
for motion models can be regarded as a special case of hierarchical 
representation that has often been exploited in computer vision 
applications.  In such a representation, the estimate (in this case motion) 
can be modeled at multiple levels of detail, making it possible to extract 
coarse characteristics first and add finer details later.  In figure 5.13, we 
show a multiresolution representation of a motion field in dual form. On 
the left, a motion field is represented at multiple resolutions and scales at 
the same time. On the right, is shown an equivalent representation that 
can be obtained from the left representation by upsampling and 
interpolation. This representation is at multiple resolutions, but at a single 
scale. 
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Interdependence of Motion and Image Data 
 At the very essence of every motion estimation algorithm lie 
assumptions about the relationship between motion parameters and 
image intensity. Let )(xtg  be the image intensity at position ),( tx . The usual 

and reasonable assumption made is that image intensity remains 
constant along the motion trajectory. This assumption implies, among 
others, that any intensity change is due to motion, that scene illumination 
is constant and that object surfaces are opaque. Although these 
constraints are almost never satisfied exactly, the constant intensity 
assumption approximately describes the dominant properties of natural 
image sequences and motion estimation methods based on it work well. 
 Let s  be a variable along a motion trajectory. Then, the constant 
intensity assumption translates into the following constraint equation 
 

0=
ds
dg

 (Equation 5.20) 

 
By applying a chain rule, the above equation can be written as the 
motion constraint equation 
 

( ) 0=
∂
∂

+∇=
∂
∂

+
∂
∂

+
∂
∂

t
g

gu
t
g

v
y
g

u
x
g T v  (Equation 5.21) 

 
where 
 

Figure 5.13: Dual representation of a motion field at multiple 
resolutions: at multiple scales (left) and at a single scale (right). 
The representations are equivalent since one can be obtained 
from the other by filtering/downsampling or 
upsampling/interpolation operators.  



 133 

T

yx 







∂
∂

∂
∂

=∇ ,  (Equation 5.22) 

 
denotes the spatial gradient and Tvu ),(=v  is the velocity. The above 
constraint equation, whether in the continuous form or as a discrete 
approximation, has recently served as the basis of many algorithms 
estimating linear motion. Note that equation 5.21 applied at one position 
( )t,x  is underconstrained, since it only determines the component of 
velocity v  in the direction of image gradient. Due to this aperture 
problem, additional constraints must be used to uniquely solve for 
velocity. 
 
 
 

Estimation Criteria 
 Various motion representations as well as the relationship between 
motion and images discussed in the previous section can be used now to 
formulate an estimation criterion. There is no unique criterion for motion 
estimation. The difficulty in establishing a good criterion is primarily caused 
by the fact that motion in images is not directly observable and that 
particular dynamics of intensity in an image sequence may be induced 
by more than one motion. Another problem is that most of the models 
discussed above are far from ideal. Therefore, all attempts to establish 
suitable criteria for motion estimation require further implicit or explicit 
modeling of the image sequence. There are four kinds of estimation 
criteria: 

1. DFD-Based Criteria. 
2. Frequency Domain Criteria. 
3. Regularization. 
4. Bayesian Criteria. 

 
A brief description of the above kinds of estimation criteria follows. 
 
DFD-Based Criteria: An important class of criteria arising from the constant-
intensity assumption aims at the minimization of the following error 
 

Rxggx ttt ∈∀−= ),(ˆ)()( ,, xx ττε  (Equation 5.23) 

 
where 
 

))(()(ˆ ,, xgg tt τττ dxx +=  (Equation 5.24) 
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is called a motion compensated prediction of )(xg t . If R  is a complete 
image ( Λ=R ), this error is called a displaced frame difference (DFD). 
However, when R  is a block or an arbitrary shaped region, the 
corresponding error is called a displaced block difference or a displaced 
region difference.  
 Motion fields calculated solely by minimization of the magnitude of 
the prediction error (Equation 5.23) are, highly sensitive to noise if the 
number of pixels in the region of support R  is not large compared to the 
number of motion parameters estimated, or if the region is poorly 
textured. However, such a minimization may yield good estimates for 
parametric motion models with few parameters and a reasonable region 
size. 
 To measure the magnitude of the prediction error ε , a common 
choice is an pL  norm. For the 2L  norm, this corresponds to the mean-

squared motion compensated prediction error: 
 

( )∑
∈

+−=
Rx

t ggJ 2
1 ))(()()( xdxxd τ  (Equation 5.25) 

 
This criterion, although very often used, is unreliable in the presence of 
outliers; even for a single large error ( )xε , ( )x2ε  is very large and by 
overcontributing to 1J  it biases the estimate of d . Therefore, a more robust 
mean absolute error criterion 
 

∑
∈

+−=
Rx

t ggJ ))(()()(2 xdxxd τ  (Equation 5.26)  

 
is the criterion of choice in practical video coders today. This criterion is 
less sensitive to bias due to the piecewise linear dependence of 2J  on ε , 
and at the same time is less involved computationally. There are two more 
DFD-based criteria, the median squared error criterion 
 

( )2
3 ))(()()( xdxxd +−=

∈
τggJ t

Rx
med  (Equation 5.27) 

 
and a criterion based on the Lorentzian function 
 

( )( )∑
∈

+−+=
Rx

t ggJ 22
4 2/))(()(1log)( στ xdxxd  (Equation 5.28) 
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Frequency Domain Criteria: Another class of criteria for motion estimation 
uses transforms, such as Fourier transform. For example, due to its shift 
property, the 2D Fourier transform of an image undergoing spatially 
constant motion. 
Regularization: Instead of dealing with the unconstrained nature of 
equation 5.21 by restricting the motion model to a few parameters, 
another approach is to explicitly model additional constraints. This can be 
done by a weak constraint on the estimate itself, reflecting the empirical 
observation that typical motion fields are spatially smooth. 
Bayesian Criteria: A general framework for motion-field estimation is 
provided by Bayesian methods. 
 
 

Search Strategies 
 With models expressing out knowledge about motion and images 
specified, and an estimation criterion selected, what remains is to identify 
an estimation procedure. This procedure involves an optimization of the 
selected criterion with respect to the parameters of the chosen model. For 
dense motion fields, both the number of unknowns and the state space 
for each of them may be large as their state spaces; an exhaustive search 
over the complete state space is, with rare exception, computationally 
prohibitive. Below, we briefly discuss some search strategies. 
 
Matching: For a small number of motion parameters and a small state 
space, the most common search strategy, when minimizing a prediction 
error, is matching. In this approach, motion compensated predictions for 
various motion candidates are compared with the original image within 
the region of support of the motion model. The candidate yielding the 
best match for a given criterion becomes the optimal state. For small state 
spaces, as is the case in block-constant motion models, the full state 
space of each motion vector can be examined. This leads to exhaustive-
search block matching. Figure 5.14 shows the principles of block matching 
estimation. 
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Figure 5.14: The three figures illustrate the principles of block-
matching estimation. (a) Find one displacement vector for each block, 
(b) Within a search range, find a best “match” that minimizes an error 
measure such as ∑

∈

+−=
Rx

t ggJ ))(()()(2 xdxxd τ  and (c) Shows the 

above principles using a point (small black hole) in two video frames. 
The exhaustive-search block matching algorithm compares all 
possible displacements within the search range, for that reason is 
computationally expensive. 

 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Relaxation: For dense motion fields based on a non-causal model, 
simultaneous optimization of all parameters may be computationally 
prohibitive. To alleviate the problem, relaxation techniques construct a 
sequence of estimates such that consecutive estimates differ in one 
variable at most. 
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HCF Method: Another deterministic optimization technique for Markov 
random fields that update a single site in each step is the highest 
confidence first (HCF) algorithm. In contrast to relaxation schemes, its site 
visiting schedule is not fixed, but is driven by the input data. Initially, all the 
sites are marked as “uncommitted”. At the beginning, the HCF algorithm 
selects sites with a “peaked” likelihood function, which is typically the 
case for highly structured regions. Later, the algorithm includes more and 
more sites that may not possess such an ideal likelihood function, and thus 
builds on the neighborhood information of already estimated sites. Since 
only variables at committed sites influence the optimization, and initially 
all the sites are uncommitted, the estimated field is independent of the 
initial state. 
Gradient-Based Optimization: Gradient-based techniques require an 
estimation criterion ( )dJ  that is differentiable. Because this criterion 
depends on motion parameters via the image function g , such as in 
equation 5.25, it is usually approximated by a Taylor expansion with 
respect to motion parameters. Then, the differentiation of the Taylor 
approximated criterion involves differentiation and interpolation of image 
intensities. Due to the Taylor approximation, the model is applicable only 
in a small vicinity of the desired motion estimate. 
Mean-Field Techniques: Much work on the theoretical analysis of 
Gibbs/Markov random fields has been performed in equilibrium statistical 
mechanics. Mean-field approaches have proven a powerful tool for the 
approximation of the mean of each field. The motivation for mean-field 
techniques is based on the important result from statistical mechanics 
stating that mean values of a Gibbs/Markov random field can be 
obtained from its partition function. For this purpose, the partition function 
is considered to be a function of the data. Therefore, mean-field 
approaches first formulate the desired mean-field through the partition 
function and then approximate the partition function by assuming that 
this sum is governed by realizations near the equilibrium state. Then one 
can benefit from the property that typical optimization criteria exhibit 
fewer local optima at higher temperatures. Hence, one can design 
deterministic optimization procedures that find initial estimates at high 
temperatures and improve them by decreasing the temperature 
(annealing). 
Hierarchical Optimization: The search strategies presented in the 
preceding paragraphs are often computationally expensive. To lower this 
computationally burden, the hierarchical motion representations 
discussed in “Hierarchical Motion Models” are often exploited. In the 
multiresolution/multiscale approach (figure 5.13, left), the motion field is 
represented over a multiresolution pyramid. In the 
multiresolution/multiscale motion estimation, motion parameters are 
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computed at the lowest resolution first. The computational load of this task 
is low as compared to the estimation at full resolution because the 
dimension of the state space of motion vector fields is reduced by v22  
and the amplitude of motion is reduced by v2 . Also, due to the scale 
change between levels of the motion pyramid, methods based on a 
spatial smoothness constraint converge much faster than their non-
hierarchical counterparts. Consequently, a coarse estimate is found very 
rapidly at the highest level, especially by fast schemes such as the 
deterministic relaxation. By a suitable projection, this estimate is 
decreased in scale to serve as an initial state for the motion estimate at 
the next lower level of the pyramid. More detailed information is added at 
this level by the same or another optimization scheme. This procedure is 
repeated until an estimate at the lowest level of the pyramid is found. 
 

In this work the motion model which was used is the first one in the 
table 5.1, translational. Motion of Regions was selected as region of 
support. For estimation criteria the DFD-based criteria was selected with 
equation 5.26 as error criterion. Finally, the exhaustive-search block 
matching algorithm was selected as a search strategy. All the models and 
methods mentioned before are used today in all digital video 
compression standards such as H.261, H.263 and MPEG family. 
 

As mentioned before the two methods, which will be presented 
below, use the histogram of the angle of motion vectors. The size of each 
block in a frame is 16x16 (Width x Height) pixels. The number of motion 
vectors in each frame is stable, for example if we have a video with frame 
size 352x240 (Width x Height) pixels, the number of motion vectors in each 
frame will be 330 =22x15 (Width x Height). In figure 5.15 some information 
about motion vector and histogram can be seen. 
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Interpretation of Histogram of Motion Vector’s (MV) Angle 
 Motion Vectors (MV) are divided in two categories, Static MVs and 
Dynamic MVs. Static MVs are those of which the length is smaller than 

one, 1<MV . Their length is so small that do not affect the total motion. 

Dynamic MVs are those MVs with length bigger than one, 1≥MV . The 

maximum length of a MV is 314.112888
max

22

max
≈=⇔+= MVMV  if 

search region is (-8, 8). Figure 5.16 shows a typical histogram of MV angles. 
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Figure 5.15: In the left side of this figure is a motion vector MV  and how is 
produced by its horizontal and vertical component ( xMV , yMV ). The length 

of the vector is given by 22 yxMV +=  and the angle by 
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ϑ o ). In the right side of 

this figure is the trigonometric circle divided in eight regions (eight basic 
directions that a block can move). The division in eight regions was made 
to help us out with the calculation of histogram of motion vector’s angle. In 
other words, we use eight bins to calculate histogram and we do not use 
360 bins which is unwieldy. 



 140 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Next follows some typical exams of camera panning, tilting, zoom-in and 
zoom-out and how the histogram behaves. Figure 5.17 illustrates a 
camera pan and figure 5.18 illustrates a camera tilt, zoom-in and zoom-
out. 
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Figure 5.16: This figure illustrates a histogram of MV angles. We divide the 
histogram in two regions. In the first region we can see the number of Static 
MVs. The first region is Bin 1. The second region is from Bin 2 to Bin 9. This 
region shows the number of dynamic MVs according to their angle. 
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 Figure 5.17: In the left column there are four frames from video “coast guard” 

(first two frames a camera pan to the left & next two to the right) with their 
motion vectors. In the right column there are the histograms of MV angles for 
each frame. We observe that when we have movement to the left, there is a 
peak in bin 6 (180o-225o). When we have a movement to the right, there is a 
peak in bin 2 (0o-45o).   
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Figure 5.18: In the left column there are two frames from a camera tilt, two 
frames from a zoom-in (from NASA’s satellite) and two frames from a zoom-
out (from NASA’s satellite). In the right column there are the histograms of MV 
angles for each frame. We observe that in camera tilt, we have a peak in bin 4 
(90o-135o). In zoom-in and zoom-out the histograms are almost the same, 
tend to be flat. 
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The following figure contains histogram differences of several videos. We 
can observe that the histogram difference behaves the same when we 
have a constant motion no mater what motion we have (tend to be a flat 
line). So we cannot draw safe conclusions from a histogram difference 
about the kind of motion. In a histogram difference, we can see clear the 
change of the motion. All the above are illustrated in figure 5.19. 
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Figure 5.19: In the left column there are two histograms of consecutive frames 
and in the right column there are their histogram differences. The first two 
histograms are from a camera pan and the next two are from a zoom-in. We 
observe that in these two kinds of motion, the histogram differences tend to be 
flat because we have a constant motion without change. The final three 
histograms are from a camera pan which changes direction. We can observe 
the distinct difference of histogram differences in the right column.  
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Finally, before the two methods will be presented, in figure 5.20 there are 
some typical sum of histogram differences. 
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Figure 5.20: The first graph has a camera pan, the second has a 
zoom-in, the third has a camera pan with a cross dissolve and the 
fourth has no motion, camera pan, zoom-out and cross dissolve. 
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Sliding Window Method for MVs 
 

Sliding Window (SW) approach for shot detection 
 As mentioned before the metric which will be used for SW 
approach, will be the MV’s angle histogram difference. Some example 
graphs can be seen in figure 5.20. Next follows how SW approach is used 
with MV’s angle histogram difference. 
 Before the explanation of the SW algorithm, it is necessary to give 
some notations. The sliding window which is used has a size of WindowSize 
frames. The value of WindowSize is standard to 15 which do not change 
during the process of the entire video. ( )ix  is the frame-to-frame MV’s 
angle histogram difference value of i -th frame. The video has a size of 
TotalFrames frames. So we have for variable i , )2(0 −≤≤ sTotalFramei  (we 

have TotalFrames-2 because for two frames we have a MV field ). ( )jMV
Wµ  

is the mean value of the data within the sliding window. ( )jMV
Wσ  is the 

variance of the data within the sliding window. ( )jT MV
W  is the threshold of 

the data within the sliding window. The variable j  denotes how many 
instances of the sliding window can be produced during the processing of 
the entire video. So the limits of variable j  are 

( )( )1)1(0 −−−≤≤ WindowSizesTotalFramej . 
 We build a sliding window preceding the current frame. The next 
step is to calculate the mean ( )jMV

Wµ  and variance ( )jMV
Wσ  value of the 

histogram difference data in the window. The threshold ( )jT MV
W  is 

calculated by the formula ( ) ( ) ( )jjjT MV
W

MV
W

MV
W

MV
W σαµ += , where MV

Wα  is 

a constant variable for the entire video. The value of variable MV
Wα  is 

changing according to video type. The following step is to compare the 
threshold ( )jT MV

W  with the histogram difference value which is next to the 
right of the sliding window. In other words, if ( ) ( )1,, −+WindowSizeixix K  are 

in the sliding window, the threshold ( )jT MV
W , which calculated from the 

above values, is compared to ( )WindowSizeix + . If ( ) ( )WindowSizeixjT MV
W +> , 

the sliding window is moving one frame to the right, so ( )ix  is getting out 
from the left of the window and ( )WindowSizeix +  is getting in from the right 

of the window. If ( ) ( )WindowSizeixjT MV
W +≤ , the sliding window is not 

moving and none value get in the window if the first condition, 
( ) ( )WindowSizeixjT MV

W +> , is not satisfied.  The value ( )WindowSizeix +  is 
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declared as Camera Break. The value of ( )jT MV
W  will be the same while 

the condition ( ) ( )WindowSizeixjT MV
W +≤  is satisfied.  

 One threshold need to be calculated in SW approach in order to 
partition video according to his motion. The motion change, usually, 
happens in one frame. So, if the condition ( ) ( )WindowSizeixjT MV

W +≤  is 
satisfied for one frame, then we have a motion change. Some possible 
instances of sliding window can be seen in figure 5.21. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
  
 
 
 
 
 
 
 

Sliding Window 

( )ix  ( )1−+WindowSizeix  

( )WindowSizeix +  ( )1−ix  

MV’s Angle Histogram Difference values 

Sliding Window 

( )ix  ( )1−+WindowSizeix  

( )WindowSizeix +  ( )1−ix  
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MV’s Angle Histogram Difference values 
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Selection of Thresholds 
 As mentioned before, the threshold ( )jT MV

W  is calculated by the 

formula MV
W

MV
W

MV
W

MV
WT σαµ += . The reason of selection this value for 

threshold is explained in TC approach. One threshold is used in SW 
approach because this threshold is adapted to the local variations of 
MV’s histogram difference. In other words, the graph of the threshold 
follows the variations of the MV’s histogram difference graph. An example 
of MV

W
MV

W σµ ,  and ( )jT MV
W  graphs with histogram difference graph can be 

seen in figure 5.22. 
 
 
 
 
 
 
 
 

Sliding Window 

( )ix  ( )1−+WindowSizeix  

( )WindowSizeix +  ( )1−ix  

c 
Motion Change 

Figure 5.21: (a) Illustration of a sliding window instance j  in MV’s histogram 
difference graph. (b) Illustration of a sliding window instance 1+j , if condition 

( ) ( )WindowSizeixjT MV
W +>  is satisfied. (c) Illustration of a sliding window 

instance 1+j , if condition ( ) ( )WindowSizeixjT MV
W +≤  is satisfied for one frame. 

In this case we have Motion Change. 

MV’s Angle Histogram Difference values 
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Figure 5.22: Three graphs, each one have the MV’s angle 
histogram difference, the SW Threshold ( )jT MV

W  (Red line), the SW 

Mean ( )jMV
Wµ  (Yellow line) and SW Deviation ( )jMV

Wσ  (Black line). 
It is worth mention that the first 15 values of MV’s histogram 
difference are used to calculate the first value of ( )jMV

Wµ , ( )jMV
Wσ  

and ( )jT MV
W . Before the first value, we cannot calculate ( )jMV

Wµ , 

( )jMV
Wσ  and ( )jT MV

W , so their values are zero. 
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Adaptive Method for MVs 
 

Adaptive approach for shot detection 
 As mentioned before the metric which will be used for Adaptive 
approach, will be the MV’s angle histogram difference. Some example 
graphs can be seen in figure 5.20. Next follows how Adaptive approach is 
used with MV’s angle histogram difference. 
 Before the explanation of the Adaptive algorithm, it is necessary to 
give some notations. ( )ix  is the frame-to-frame histogram difference value 
of i -th frame. The video has a size of TotalFrames frames. So we have for 
variable i , )2(0 −≤≤ sTotalFramei  (we have TotalFrames-2 because for two 

frames we have a MV field ). ( )iMV
Aµ  is the mean value of the data which 

is calculated by the adaptive algorithm. ( )iMV
Aσ  is the variance of the 

data which is calculated by the adaptive algorithm. ( )iT MV
A  is the 

threshold of the data which is calculated by the adaptive algorithm. 
 The calculation of adaptive mean value ( )iMV

Aµ  and adaptive 

standard deviation ( )iMV
Aσ  is being by the following formulas: 

 
( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )icxiciixicii MV

A
MV

A
MV

A
MV

A
MV

A +−−=⇔−−−−= 1111 µµµµµ  
(Equation 5.28) 

( ) ( )iii MV
A

MV
A

MV
A λµσ −= 2)(  (Equation 5.29) 

 
where c  is a controlling coefficient [ ]1,0∈c  and ( )iMV

Aλ  is the adaptive 
second moment 
 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )22 1)1(11 icxiciixicii MV
A

MV
A

MV
A

MV
A

MV
A +−−=⇔−−−−= λλλλλ  

(Equation 5.30) 
 
The initial values are ( ) ( )00 xMV

A =µ  and ( ) ( )200 xMV
A =λ . Default value for 

05.0=c . The threshold ( )iT MV
A  is calculated by the formula 

( ) ( ) ( )iiiT MV
A

MV
A

MV
A

MV
A σαµ += , where MV

Aα  is a constant variable for the 

entire video. The value of variable MV
Aα  is changing according to video 

type. The next step is to compare the threshold ( )iT MV
A  with the next 

histogram difference value. In other words, the threshold ( )iT MV
A  is 

compared to ( )1+ix . If ( ) ( )1+> ixiT MV
A , then we continue with the 

calculation of ( )1+iT MV
A . If ( ) ( )1+≤ ixiT MV

A , then ( ) ( )iTiT MV
A

MV
A =+1  until the 
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first  condition, ( ) ( )1+> ixiT MV
A , is satisfied.  The value ( )1+ix  is declared as 

Motion Change. 
 
 
 
 
 
 
  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
  
 
 
 
 
 
 
 
 
 

( )ix  

( )1+ix  

( )1−ix  

MV’s Angle Histogram Difference values 

a 

b 

Current Frame 

Previous Frame which is required to 
calculate ( )iT MV

A  

( )1−ix  

( )ix  

( )1+ix  

MV’s Angle Histogram Difference values 
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Selection of Thresholds 
 As mentioned before, the threshold MV

AT  is calculated by the 

formula MV
A

MV
A

MV
A

MV
AT σαµ += . The reason of selection this value for 

threshold is explained in TC approach. One threshold is used in Adaptive 
approach, as in SW approach, because this threshold is adapted to the 
local variations of histogram difference. In other words, the graph of the 
threshold follows the variations of the histogram difference graph. An 
example of MV

A
MV

A σµ ,  and MV
AT  graphs with MV’s angle histogram 

difference graph can be seen in figure 5.24. 
 
 
 
 
 
 

Figure 5.23: (a) Illustration of adaptive method in a MV’s angle histogram 
difference graph. (b) Illustration of adaptive method, if condition ( ) ( )1+> ixiT MV

A  

is satisfied. (c) Illustration of adaptive method, if condition ( ) ( )1+≤ ixiT MV
A  is 

satisfied for one frame. In this case we have Motion Change. 

c 

( )1−ix  

( )ix  

( )1+ix  

Motion Change 

MV’s Angle Histogram Difference values 
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A different value for c  variable  
 We can put the value of c  according to equation 5.6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.24: Three graphs, each one have the MV’s angle histogram 
difference, the Adaptive Threshold ( )iT MV

A  (Red line), the Adaptive 

Mean ( )iMV
Aµ  (Yellow line) and Adaptive Deviation ( )iMV

Aσ  (Black 
line). 
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Chapter 6 
 

Experimental Results 
 The algorithms described before, the three algorithms for intensity 
and the two for motion, have been tested in a number of video 
sequences which categorized in news, animation, sports and 
documentary. In order to evaluate their performance we use ROC 
(Receiver Operating Characteristics) curves. 
 

ROC Curves 
 The starting point for signal detection theory is that nearly all 
decision making takes place in the presence of some uncertainty. Signal 
detection theory provides a precise language and graphic notation for 
analyzing decision making in the presence of uncertainty. Next follows an 
example which will help understand ROC curves. 
 We want to detect brief, dim light in a dark room. Imagine we use a 
simple-force choice method in which the light is flashed on half of the 
trials, randomly interleaved. On each trial, the subject must respond “yes” 
or “no” to indicate whether or not they think the light was flashed. We 
assume that the subjects’ performance is determined by the number of 
photon absorptions/photopigment summarizations on each trial. There 
are two kinds of noise factors that limit the subject’s performance: internal 
noise and external noise.    
External noise: There are many possible sources of external noise but the 
main source of external noise is the quantal nature of light. On average, 
the light source is set up to deliver certain stimulus intensity, say 100 
photons. A given trial, however, there will rarely be exactly 100 photons 
emitted. Instead the photon count will vary from trial to trial following a 
Poisson distribution. 
Internal noise: Internal noise refers to the fact that neural responses would 
be noisy, even if the stimulus was exactly the same on each trial. Some of 
the emitted photons will be scattered by the cornea, the lens and the 
other goopy stuff in the eye. The number of scattered photons will vary 
randomly from trial to trial. Of the photons that reach the photoreceptors, 
not all of them will be absorbed by the photopigments. 
 In practice, it would be impossible to measure the number of 
photons absorbed on any given trial because we would have to record 
simultaneously from all the rods in the retina. It is possible to characterize 
the probability that a certain number of photons will be absorbed. Each 
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of the relevant factors (number of photons emitted, number of photons 
scattered, and number of photons absorbed) can be modeled as a 
Poisson process. A sequence of Poisson processes behaves altogether like 
a single Poisson process with an overall rate constant equal to the 
products of all of individual constants. For example, assume that 100 
photons are emitted on average that 10% of those photons pass through 
the eyes’ optics on average, and that 10% of those are absorbed by 
photoreceptors on average. Then there will be 1 photon absorbed on 
average for each trial on which the light is flashed, and this number will 
vary from trial to trial following a Poisson distribution. 
 On trials for which no light is flashed, there will typically be some 
non-zero level of response, due to thermal isomerizations of photopigment 
molecules. Barlow called this the “dark light” because a spontaneous 
isomerization will lead to the same neural signal as if a proton was actually 
absorbed. The subject will not be able to tell the difference between real 
light and dark light.              
 

Internal Response Probability Density Functions 
 Because the task is so hard, there is always some uncertainty as to 
what was there or not. Either there was a flash (signal plus noise) or there 
was no flash (noise alone). Either the subject saw the flash (respond “yes”) 
or did not (respond “no”). So, there are four possible outcomes: 

1. hit (signal present and subject says “yes”) 
2. miss (signal present and subject says “no”) 
3. false alarm (signal absent and subject says “yes”) 
4. correct rejection (signal absent and subject says “no”) 

 
Hits and correct detections are good, contrary to false alarms and misses. 
Figure 6.1 shows a graph of two hypothetical internal response curves. The 
curve on the left is for the noise-alone trials, and the curve on the right is 
for the signal-plus-noise trials. The height of each curve represents how 
often that level of internal response will occur. Notice that we never lose 
the noise. The internal response for the signal-plus-noise case is generally 
greater but there is still a distribution (a spread) of possible responses. 
Notice also that the curves overlap, that is the internal response for a 
noise-alone trial may exceed the internal response for a signal-plus-noise 
trial. 
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The Role of Criterion 
 There are two main components to the decision making process: 
stimulus strength and criterion. The stimulus strength affects the probability 
density functions in the obvious way: a stronger signal (brighter flash) will 
shift the signal-plus-noise curve to the right. 
 The second component of the decision process is quite different. 
The subject is being asked to use their own judgment in making a 
decision. Different subjects may feel that the different types of errors are 
not equal. Perhaps the simplest strategy that the subject can adopt is to 
pick a criterion location along the internal response axis. Whenever the 
internal response is greater than this criterion they respond “yes”. 
Whenever the internal response is less than this criterion they respond 
“no”. 
 An example criterion is indicated by the vertical lines in figure 6.2. 
The criterion line divides the graph into four sections that correspond to: 
hits, misses, false alarms and correct rejections. On both hits and false 

Figure 6.1: Internal response probability density functions for noise-alone and for 
signal-plus-noise trials. On noise-alone trials, in this example, there will generally 
be about 10 units of internal response (i.e. 10 photopigment isomerizations). 
However, there will be some trials with more (or less) internal response because 
of the internal and external noise. 
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alarms, the internal response is greater than the criterion, because the 
subject is responding “yes”. Hits correspond to signal-plus-noise trials when 
the internal response is greater than criterion, as indicated in the figure. 
False alarms correspond to noise-alone trials when the interval response is 
greater than criterion, as indicated in the figure. 
 
 

 
 
 
 
 
 

Suppose that the subject chooses a low criterion, as shown in figure 
6.3 at the top, so that they respond “yes” to almost everything. Then they 
will never miss a flash when it is present and they will therefore have a very 
high rate. On the other hand, saying “yes” to almost everything will greatly 
increase the number of false alarms. Thus, there is a clear cost to 
increasing the number of hits, and that cost is paid in terms of false alarms. 
If the subject chooses a high criterion, as shown in figure 6.3 at the 
bottom, then they respond “no” to almost everything. They will rarely 
make a false alarm, but they will also miss many real flashes. 

Figure 6.2: Internal response probability density functions for noise-alone and for 
signal-plus-noise trials. Since the curves overlap, the internal response for a 
noise-alone trial may exceed the internal response for a signal-plus-noise trial. 
Vertical lines correspond to the criterion response. 



 164 

 
 

 
 There is no way that the subject can set their criterion to achieve 
only hits and no false alarms. It is inevitable that some mistakes will be 
made. Because of the noise it is simply a true, undeniable, fact that the 
internal responses on noise-alone trials may exceed the internal responses 
of signal-plus-noise trials, in some instances. Thus the subject cannot 
always be right. They can adjust the kind of errors that they make by 
manipulating their criterion, the one part of this diagram that is under their 
control. 
 

The Receiver Operating Characteristic 
 We can describe the full range of the subject’s options in a single 
curve, called an ROC curve. The ROC captures, in a single graph, the 
various alternatives that are available to the subject as they move their 
criterion to higher and lower levels. 
 ROC curves, which shown in figure 6.4, are plotted with the false 
alarm rate on the horizontal axis and the hit rate on the vertical axis. We 
already know that if the criterion is high, then both the false alarm rate 
and the hit rate will be very low. If we move the criterion lower, then the 
hit rate and the false alarm rate both increase. So the full ROC curve has 
an upward sloping shape. Notice also that for any reasonable choice of 
criterion, the hit rate is always larger than the false alarm rate, so the ROC 

Figure 6.3: Effect of shifting the criterion 
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curve is bowed upward. The subject may set the criterion anywhere, but 
any choice that they make will land them with a hit and false alarm rate 
somewhere on the ROC curve. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

The Role of Signal Strength 
 If we present a brighter flash (e.g. with 200 photons emitted per 
flash on average rather than 100), then the subject’s internal response 
strength will, on average, be stronger. Pictorially, this will have the effect of 
shifting the probability density function for signal-plus-noise trials to the 
right, a bit further away from the noise-alone probability density. 

Figure 6.4: Internal response probability density functions and ROC curves for 
different signal strengths. When the signal is stronger there is less overlap in the 
probability of occurrence curves, and the ROC curve becomes more bowed. A: 
Probability density functions when the signal evokes an average of 2 photon 
absorptions per trial. B: Probability density functions when the signal evokes an 
average of 5 photon absorptions per trial. C: ROC curves for a series of signal 
strengths that evoke an average of n=0, 1, 2, 3, …, 10 photon absorptions per 
trial. In all cases the dark noise (average number of spontaneous isomerizations 
per trial) was 3.  
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 Figure 6.4 shows two sets of probability densities and two ROC 
curves. When the signal is stronger there is less overlap between the two 
probability density curves. When this happens the subject’s choices are 
not so difficult as before. They can pick a criterion to get nearly a perfect 
hit, with almost no false alarms. ROC curves for stronger signals bow out 
further than ROC curves for weaker signals. 
 

Varying the Noise 
 There is another aspect of the probability densities that also 
determines detectability: the spread of the curves. For example, consider 
the two sets of probability densities in figure 6.5. The separation between 
the peaks is the same but the second set of curves is much skinnier. 
Clearly, the signal is much more discriminable when there is less spread 
(less noise) in the probability densities. So the subject would have an 
easier time setting their criterion in order to be right nearly all the time. 
 In our example, we have assumed Poisson noise so the absorption 
count variance is proportional to the mean absorption count. However, 
one can easily imagine situations in which the response variance depends 
on factors that are independent of the mean response. 
 

 
 
 
 
 
 
 
 
 

Figure 6.5: Internal response probability density functions for two different noise 
levels. When the noise is greater, the curves are wider (more spread) and there is 
more overlap. 



 167 

 
 
 
 

ROC Curves of Algorithms 
 Next follows ROC curves of each algorithm for the four categories of 
videos. At the end we have the overall results for all videos. 
 

Category documentary 
 In the next figure, figure 6.6, we can see the ROC curves of Camera 
Break detection for category documentary. 
 

ROC Curves for Camera Break - Category Documentary
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 Observing the above figure we can notice that the curves of Sliding 
Window and Adaptive Method are parallel to x-axis. X-axis is FP (False 
Positives) and y-axis is TP (True Positives). Next follows the mathematic 
formula of FP and TP for Camera Break detection. 
 

Figure 6.6: ROC curves for algorithms of Twin Comparison, Sliding Window 
and Adaptive Method for Camera Break detection in videos of category 
documentary. We used variable α  of threshold as a criterion for these curves. 
The values of α  which were used are 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5 and 6. 
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Breaks Cameranot  are which frames ofNumber 
Breaks Camera as Detected False are which frames ofNumber 

=FP  (Equation 6.1) 

 

Breaks Camera are which frames ofNumber 
Breaks Camera as DetectedCorrect  are which frames ofNumber 

=TP (Equation 6.2) 

 
 
 The curves which are parallel to x-axis denote that for all values of 
variable α  the algorithms can detect a standard number of frames which 
are Camera Breaks. In our case the value of TP is 1, so all the frames which 
are Camera Breaks are detected. We also observe that while the value of 
variable α  increasing, the curves, including the curve of Twin 
Comparison, are directed to a zero value of FP. This means that while the 
threshold increasing, the number of frames which are False Detected as 
Camera Breaks decreasing. For curve of Twin Comparison we observe 
that for big values of α  not only we don’t have False Detected frames but 
also the number of Correct Detected frames is decreasing. Apparently 
this happens to the other two algorithms, but for bigger values of α  which 
are not shown in this graph. In other words, the algorithm of Twin 
Comparison reach the zero value of this graph (FP=0, TP=0) much faster 
than the other two algorithms. So, the derivative of curve of Twin 
Comparison is smaller than the derivative of the other two algorithms. The 
area below the graph is smaller than the algorithms of Sliding Window and 
Adaptive Method meaning that the other two algorithms are better for 
this category. 
  The duration of Camera Break is varying from algorithm to 
algorithm. So, in Twin Comparison the duration is one frame and in the 
other two algorithms the duration is less than or equal three frames. We 
chose the different duration in Sliding Window and Adaptive Method 
because the threshold has not a stable value as in Twin Comparison and 
the values of threshold are sensitive to histogram difference values. 
 In the next figure, figure 6.7, we can see the ROC curves of Gradual 
Transition detection for category documentary. 
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ROC Curves for Gradual Transition - Category 
documentary
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 Observing the above figure we can notice that the curves of Twin 
Comparison for several values of α  have the same form and while the α  
increasing, the curves are directed to a standard value which will be the 
upper limit. Above that value, there will be no curve. This is logical for Twin 
Comparison because while the α  value increasing, the first threshold 
increasing (the threshold for Camera Break detection) to a value that will 
not detect any Camera Break (the value of the threshold will be bigger 
that of the histogram difference). This is the upper limit and above that 
value there will be no change in the results for any value of β  for Gradual 
Transition detection. X-axis is FP (False Positives) and y-axis is TP (True 
Positives). Next follows the mathematic formula of FP and TP for Gradual 
Transition detection. 
 
 

Figure 6.7: ROC curves for algorithms of Twin Comparison, Sliding Window 
and Adaptive Method for Gradual Transition detection in videos of category 
documentary. We used variable α  of threshold as a criterion for algorithms 
Sliding Window and Adaptive Method. For the algorithm of Twin Comparison 
we used variable β  as a criterion for the curves. The values of β  which were 
used are 1.5, 1.7, 1.9 and 2.1. For Twin Comparison we kept the variable α  
stable (which is used for Camera Break detection) and for several values of α  
we increase β . 
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Transition Gradualnot  are which frames ofNumber 
Transition Gradual as Detected False are which frames ofNumber 

=FP  (Equation 6.3) 

 

Transition Gradual are which frames ofNumber 
 Transition Gradual as DetectedCorrect  are which frames ofNumber 

=TP      (Equation 

6.4) 
 
 
 It is worth mention that for algorithms of Sliding Window and 
Adaptive Method the duration of a Gradual Transition is larger or equal 
three frames. In Twin Comparison the duration is larger or equal one 
frame. We chose the different duration because the threshold of Sliding 
Window and Adaptive Method has not a stable value and the values are 
sensitive to histogram difference. Observing the diagram above, we can 
notice that the curve of Adaptive Method is above all the others, so this 
method has better results in this category. The curve of Sliding Window is 
between the Twin Comparison curve of value 3=α  and 5.3=α . We 
observe that the curve of Sliding Window is similar to the curves of Twin 
Comparison with the difference that for big values of β  the curve is 
directed to zero value (FP=0, TP=0). The Twin Comparison curves for big 
values of β  are parallel to x-axis, in other words the FP are decreasing 
and the FP have a stable value. 
 In the next figure, figure 6.8, we can see the ROC curves of Camera 
Motion Change detection for category documentary. 
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ROC Curves for Camera Motion Change -  Category 
documentary
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 X-axis is FP (False Positives) and y-axis is TP (True Positives). Next 
follows the mathematic formula of FP and TP for Camera Motion Change 
detection. 
 

ChangeMotion  Cameranot  are which frames ofNumber 
ChangeMotion  Camera as Detected False are which frames ofNumber 

=FP   

(Equation 6.5) 
 

ChangeMotion  Camera are which frames ofNumber 
 ChangeMotion  Camera as DetectedCorrect  are which frames ofNumber 

=TP  

(Equation 6.6) 
 

 Observing the above two curves we can notice that for small 
values of α  (the right most values) the value of ROC curve is small and 
while the α  is increasing the value of ROC curve increasing too. After a 
value of α  and while α  is still increasing the value of ROC curve is 
decreasing directed to zero value. Before we give an explanation of 
these curves it is worth mention that the duration of a Camera Motion 
Change is less or equal three frames, just as Camera Break. We chose this 
duration because threshold is sensitive to histogram difference values. If 

Figure 6.8: ROC curves for algorithms of Sliding Window and Adaptive 
Method for Camera Motion change detection in videos of category 
documentary. We used variable α  of threshold as a criterion for algorithms 
Sliding Window and Adaptive Method.  
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we had chosen the duration as one frame, we would have a lot of false 
and missed detections. 
 While the α  value is small, the threshold is also small and a lot of 
histogram difference values are bigger than threshold. In other words the 
duration is bigger than three frames and so these frames are false 
detected. While the value of α  increasing, the threshold increasing too 
and we have less false detected frames and much more correct 
detected. For big values of α , the threshold is big enough than most of 
the histogram difference values, so we have not only less false detections 
but also less correct detection. For that reason the two curves are 
directed to zero value (FP=0, TP=0). 
 

Category news 
 In the next figure, figure 6.9, we can see the ROC curves of Camera 
Break detection for category news. 
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Figure 6.9: ROC curves for algorithms of Twin Comparison, Sliding Window 
and Adaptive Method for Camera Break detection in videos of category news. 
We used variable α  of threshold as a criterion for these curves. The values of 
α  which were used are 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5 and 6. 
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 X-axis is FP (False Positives) and y-axis is TP (True Positives). The 
mathematic formula is given by equations 6.1 and 6.2. We can observe 
that while the value of α  increasing the curves are directed to zero value 
(FP=0, TP=0). The curves of Sliding Window and Adaptive Method are 
similar. The curve of Twin Comparison is above the other two curves so it 
has better results in this category. As we mentioned in the explanation of 
figure 6 the duration of Camera Break for Sliding Window and Adaptive 
Method is less or equal three frames. So, while the value of  α  is 
decreasing, the threshold decreasing and a lot of histogram difference 
values are bigger than threshold, in other words we have a lot of false 
detections. While the α  increasing the threshold increasing and so we 
have less false detected frames and much more correct detected. For 
big values of α  the value of threshold is much bigger than of histogram 
difference values, so we have not only less false detections but also less 
correct detection. 
 In the next figure, figure 6.10, we can see the ROC curves of 
Gradual Transition detection for category news. 
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Figure 6.10: ROC curves for algorithms of Twin Comparison, Sliding Window 
and Adaptive Method for Gradual Transition detection in videos of category 
news. We used variable α  of threshold as a criterion for algorithms Sliding 
Window and Adaptive Method. For the algorithm of Twin Comparison we used 
variable β  as a criterion for the curves. The values of β  which were used are 
1.5, 1.7, 1.9 and 2.1. For Twin Comparison we kept the variable α  stable 
(which is used for Camera Break detection) and for several values of α  we 
increase β . 
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 X-axis is FP (False Positives) and y-axis is TP (True Positives). The 
mathematic formula is given by equations 6.3 and 6.4. We observe that 
for small values of α  the curves of Sliding Window and Adaptive Method 
are parallel to x-axis for value of TP=0.52. Observing the two curves, the 
curve of Sliding Window is above the other so has better results from the 
Adaptive Method for this category. Twin Comparison has better results 
from Sliding Window as it can be seen from the ROC curves. In this 
category and for Twin Comparison, for small values of β  we have big 
values for ROC curves. For big values of β  the values of the curves are 
parallel to x-axis, in other words the FP are decreasing and the FP have a 
stable value. 
 In the next figure, figure 6.11, we can see the ROC curves of 
Camera Motion Change detection for category news. 
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 X-axis is FP (False Positives) and y-axis is TP (True Positives). The 
mathematic formula is given by equations 6.5 and 6.6. Observing the 
above two curves we can notice that for small values of α  (the right most 
values) the value of ROC curve is small and while the α  is increasing the 
value of ROC curve increasing too. After a value of α  and while α  is still 

Figure 6.11: ROC curves for algorithms of Sliding Window and Adaptive 
Method for Camera Motion change detection in videos of category news. We 
used variable α  of threshold as a criterion for algorithms Sliding Window and 
Adaptive Method.  
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increasing the value of ROC curve is decreasing directed to zero value. 
While the α  value is small, the threshold is also small and a lot of histogram 
difference values are bigger than threshold. In other words the duration is 
bigger than three frames and so these frames are false detected. While 
the value of α  increasing, the threshold increasing too and we have less 
false detected frames and much more correct detected. For big values 
of α , the threshold is big enough than most of the histogram difference 
values, so we have not only less false detections but also less correct 
detection. For that reason the two curves are directed to zero value 
(FP=0, TP=0). 
 

Category animation 
 In the next figure, figure 6.12, we can see the ROC curves of 
Camera Break detection for category animation. 
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 X-axis is FP (False Positives) and y-axis is TP (True Positives). The 
mathematic formula is given by equations 6.1 and 6.2. Observing the 
above graph we can notice that the curve of Twin Comparison is above 

Figure 6.12: ROC curves for algorithms of Twin Comparison, Sliding Window 
and Adaptive Method for Camera Break detection in videos of category 
animation. We used variable α  of threshold as a criterion for these curves. 
The values of α  which were used are 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5 and 6. 
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the other two curves, which means that has better results from the other 
two algorithms. Next follows the Adaptive Method and then Sliding 
Window. It is worth mention that for three values of α  ( 3,5.2,2=α ) we have 
TP=1. The same happens for four values of α  ( 5.3,3,5.2,2=α ) for Sliding 
Window and Adaptive Method. 
 In the next figure, figure 6.13, we can see the ROC curves of 
Gradual Transition detection for category animation. 
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 X-axis is FP (False Positives) and y-axis is TP (True Positives). The 
mathematic formula is given by equations 6.3 and 6.4. We observe that all 
the curves of Twin Comparison are parallel to x-axis indicating that while 
β  is increasing we have a stable value for TP which is TP=0.43 and a 
decrease of false positive. The curve of Adaptive Method is above the 
other curves, so it has better results in this category. The curve of Sliding 
Window for small values of α  ( 5.3,3,5.2,2=α ) has the same value of TP as 
Twin Comparison. 

Figure 6.13: ROC curves for algorithms of Twin Comparison, Sliding Window 
and Adaptive Method for Gradual Transition detection in videos of category 
animation. We used variable α  of threshold as a criterion for algorithms 
Sliding Window and Adaptive Method. For the algorithm of Twin Comparison 
we used variable β  as a criterion for the curves. The values of β  which were 
used are 1.5, 1.7, 1.9 and 2.1. For Twin Comparison we kept the variable α  
stable (which is used for Camera Break detection) and for several values of α  
we increase β . 
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 In the next figure, figure 6.14, we can see the ROC curves of 
Camera Motion Change detection for category animation. 
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 X-axis is FP (False Positives) and y-axis is TP (True Positives). The 
mathematic formula is given by equations 6.5 and 6.6. Observing the 
above diagram we can notice that the curve of Adaptive Method is 
parallel to x-axis and the value of TP is one. For small values of α  
( 3,5.2,2=α ) the values of ROC for Sliding Window are the same TP=0.83. 
When α  is increasing, TP values are increasing to value one while FP are 
decreasing. So the best results come from Adaptive Method. 
 

Category sports 
 In the next figure, figure 6.15, we can see the ROC curves of 
Camera Break detection for category sports. 
 

Figure 6.14: ROC curves for algorithms of Sliding Window and Adaptive 
Method for Camera Motion change detection in videos of category animation. 
We used variable α  of threshold as a criterion for algorithms Sliding Window 
and Adaptive Method.  
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ROC Curves for Camera Break - Category Sports
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 X-axis is FP (False Positives) and y-axis is TP (True Positives). The 
mathematic formula is given by equations 6.1 and 6.2. We observe that 
the curve of Adaptive Method is above the other curves, so we have 
better results with this method for this category. Next follows Sliding 
Window and then Twin Comparison. 
 In the next figure, figure 6.16, we can see the ROC curves of 
Gradual Transition detection for category sports. 
 

Figure 6.15: ROC curves for algorithms of Twin Comparison, Sliding Window 
and Adaptive Method for Camera Break detection in videos of category sports. 
We used variable α  of threshold as a criterion for these curves. The values of 
α  which were used are 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5 and 6. 
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ROC curves for Gradual Transition - Category sports
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 X-axis is FP (False Positives) and y-axis is TP (True Positives). The 
mathematic formula is given by equations 6.3 and 6.4. We observe that 
the curves of Twin Comparison are parallel to x-axis with a value of TP=1. 
The same happens for the Sliding Window and Adaptive Method with the 
difference that in the last value of α  the value of TP=0. 
 In the next figure, figure 6.17, we can see the ROC curves of 
Camera Motion Change detection for category sports. 
 

Figure 6.16: ROC curves for algorithms of Twin Comparison, Sliding Window 
and Adaptive Method for Gradual Transition detection in videos of category 
sports. We used variable α  of threshold as a criterion for algorithms Sliding 
Window and Adaptive Method. For the algorithm of Twin Comparison we used 
variable β  as a criterion for the curves. The values of β  which were used are 
1.5, 1.7, 1.9 and 2.1. For Twin Comparison we kept the variable α  stable 
(which is used for Camera Break detection) and for several values of α  we 
increase β . 
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ROC Curves for Camera Motion Change - Category sports 
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 X-axis is FP (False Positives) and y-axis is TP (True Positives). The 
mathematic formula is given by equations 6.5 and 6.6. Observing the 
above two curves we can notice that for small values of α  (the right most 
values) the value of ROC curve is small and while the α  is increasing the 
value of ROC curve increasing too. After a value of α  and while α  is still 
increasing the value of ROC curve is decreasing directed to zero value. 
While the α  value is small, the threshold is also small and a lot of histogram 
difference values are bigger than threshold. In other words the duration is 
bigger than three frames and so these frames are false detected. While 
the value of α  increasing, the threshold increasing too and we have less 
false detected frames and much more correct detected. For big values 
of α , the threshold is big enough than most of the histogram difference 
values, so we have not only less false detections but also less correct 
detection. For that reason the two curves are directed to zero value 
(FP=0, TP=0). 
 
 
 
 
 
 

Figure 6.17: ROC curves for algorithms of Sliding Window and Adaptive 
Method for Camera Motion change detection in videos of category sports. We 
used variable α  of threshold as a criterion for algorithms Sliding Window and 
Adaptive Method.  
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Overall Results (All Videos) 
 In the next figure, figure 6.18, we can see the ROC curves of 
Camera Break detection for all videos. 
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 X-axis is FP (False Positives) and y-axis is TP (True Positives). The 
mathematic formula is given by equations 6.1 and 6.2. We observe that 
the curves of Sliding Window and Adaptive Method for small values of α  
have almost the same ROC values. When α  increasing, the two curves 
are directing to zero value (FP=0, TP=0). The derivative of the curve of 
Sliding Window is smaller than the derivative of Adaptive Method. The 
derivative of Twin Comparison is smaller than the derivative of Sliding 
Window. So, the algorithm with the best result is Adaptive Method then 
follows Sliding Window and Twin Comparison. 
 In the next figure, figure 6.19, we can see the ROC curves of 
Gradual Transition detection for all videos.  
 

Figure 6.18: ROC curves for algorithms of Twin Comparison, Sliding Window 
and Adaptive Method for Camera Break detection in videos of all videos. We 
used variable α  of threshold as a criterion for these curves. The values of α  
which were used are 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5 and 6. 
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ROC Curves for Gradual Transition - All Videos
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 X-axis is FP (False Positives) and y-axis is TP (True Positives). The 
mathematic formula is given by equations 6.3 and 6.4. We observe that 
the curve of Adaptive Method is above all the other algorithms, so it has 
the best results. Next follows the curve of Twin Comparison for 2=α . The 
curve of Sliding Window follows next and finally the rest curves. It is worth 
looking that while the curves of Sliding Window and Adaptive Method 
directed to zero value, the curves of Twin Comparison are directed to a 
stable value parallel to x-axis. 
 In the next figure, figure 6.20, we can see the ROC curves of 
Camera Motion Change detection for all videos. 
 

Figure 6.19: ROC curves for algorithms of Twin Comparison, Sliding Window 
and Adaptive Method for Gradual Transition detection in videos of all videos. 
We used variable α  of threshold as a criterion for algorithms Sliding Window 
and Adaptive Method. For the algorithm of Twin Comparison we used variable 
β  as a criterion for the curves. The values of β  which were used are 1.5, 1.7, 
1.9 and 2.1. For Twin Comparison we kept the variable α  stable (which is 
used for Camera Break detection) and for several values of α  we increase β . 
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ROC Curves for Camera Motion Change - All Videos
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 X-axis is FP (False Positives) and y-axis is TP (True Positives). The 
mathematic formula is given by equations 6.5 and 6.6. Observing the 
above two curves we can notice that for small values of α  (the right most 
values) the value of ROC curve is small and while the α  is increasing, the 
value of ROC curve increasing too. While α  is increasing, the value of 
ROC curve is decreasing directed to zero value. While the α  value is 
small, the threshold is also small and a lot of histogram difference values 
are bigger than threshold. In other words the duration is bigger than three 
frames and so these frames are false detected. While the value of α  
increasing, the threshold increasing too and we have less false detected 
frames and much more correct detected. For big values of α , the 
threshold is big enough than most of the histogram difference values, so 
we have not only less false detections but also less correct detection. For 
that reason the two curves are directed to zero value (FP=0, TP=0). 
 
 
 
 
 
 
 
 
 
 

Figure 6.20: ROC curves for algorithms of Sliding Window and Adaptive 
Method for Camera Motion change detection in videos of all videos. We used 
variable α  of threshold as a criterion for algorithms Sliding Window and 
Adaptive Method.  
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Conclusion and Future Work 
 In this work we implemented five algorithms for Video 
Segmentation. Three of the algorithms use the histogram intensity 
information of the video and the other two the motion information. 
 From the above results we can notice that the behavior of 
algorithms in four categories of video is different. For Camera Break 
Detection, Twin Comparison gives best results in categories of news and 
animation. Adaptive Method gives best results in the other two 
categories, sports and documentary. Sliding Window has generally good 
results except the category of animation. For Gradual Transition 
Detection, Twin Comparison gives best results in categories of news and 
sports. Adaptive Method gives best results in the remaining categories, 
documentary and animation. Sliding Window has good results. For 
Camera Motion Change Detection, Adaptive Method gives best results in 
categories of documentary, news and animation. Sliding Window gives 
best results in category of sport. In the overall results for Camera Break 
Detection, Adaptive Method gives best results. Adaptive Method gives 
also best results for Gradual Transition Detection and Camera Motion 
Change Detection. 
  It is worth mention that in ROC curves, of both Adaptive Method 
and Sliding Window, of Camera Motion Change Detection, for small 
values of α  the curve falls, directing to TP=0. This is something that we 
don’t want to happen. So we can put a threshold that α  should not fall 
below this. 
 Generally the overall results are not so important as the results by 
category. The overall results give a general idea about the performance 
of the algorithms. On the other hand, the results by category give an idea 
about the performance of the algorithms for a specific portion of videos. If 
we had, for example, a Video database, we could categorize the videos 
while inserting them in the database. Then we could implement the 
appropriate algorithm in each category. 
 The above algorithms were tested separately for each video 
category. The combination of the above algorithms may lead to much 
better results, if the execution time is not so important factor for our 
application. 
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