
A CONTENT-BASED PUBLISH/SUBSCRIBE SYSTEM, ITS
MATCHING ALGORITHM & APPLICATIONS

by

Vasilis P. Dialinos

A thesis submitted in partial fulfillment of the
requirements for the diploma of

Electronic and Computer Engineering

Technical University of Crete
Department of Electronic and Computer Engineering

Intelligent Systems Laboratory

Abstract

In the near future, the majority of human information will be in the Web. The
searching, quering and retrieving information approach, while very efficient for
static information, does not integrate well with the dynamic aspect of the Web.
To address this issue, notification systems emerged, being able to capture the
dynamic aspect of the Web by notifying users of interesting events. These may
vary from stock markets updates, weather reports, availability of auction items
etc. In this context, a notification system was proposed called Le Subscribe, upon
which the Event Notification system we present in this work was based. The
Event Notification system is able to cope with high rate of events, large number
of user demands (post subscription, remove subscription) and efficiently notify
users with very short delay. Moreover it provides a simple and comprehensive API
enabling easy integration of existing Web applications with an event notification
mechanism.

Contents

1 Introduction 2
1.1 Publish/Subscribe Systems . 2
1.2 Content vs. Subject-Based Systems 3
1.3 Contributions . 3
1.4 Thesis Organization . 3

2 Related Work 5
2.1 SIENA notification system . 5

2.1.1 SIENA semantics . 5
2.1.2 Server topology . 6
2.1.3 Routing strategies in Siena 7

2.2 DIAS . 8
2.2.1 DIAS architecture . 8
2.2.2 DIAS data models and query language 9

2.3 P2P-DIET . 10
2.3.1 P2P-DIET architecture . 10
2.3.2 Data models and query language 11
2.3.3 Routing and query processing 11

2.4 Le Subscribe . 13
2.5 Other publish/subscribe systems 14

3 Event Model & Subscription Language 15
3.1 Integrated event schema . 15
3.2 Integration model . 17
3.3 Subscription language . 18

4 Matching Algorithm 20
4.1 Reformulation of the matching problem 20
4.2 Pre-processing phase . 21
4.3 Counting algorithm . 21

2

5 System Implementation 25
5.1 System architecture . 25
5.2 Server-side implementation . 25

5.2.1 Thread pooling . 25
5.2.2 XML-based communication 26
5.2.3 Server implementation summary 28

5.3 Request handling thread . 29
5.3.1 Extention schema request handling 30
5.3.2 Subscription request handling 32
5.3.3 Event request handling . 32

5.4 Web application implementation 32
5.5 Client application implementation 34

6 Using the API 42
6.1 eBay auction site . 42
6.2 eBay auction site(Event Notification integrated) 43

6.2.1 Installing the Event Notification Server daemon 43
6.2.2 Extend eBay site . 44

7 Counting Algorithm Implementation 48
7.1 Pre-processing phase implementation 48
7.2 Matching phase implementation 50
7.3 Hit applying phase implementation 51
7.4 Counting phase implementation 52
7.5 Algorithm snap-shots . 52

8 Running Simulation 57
8.1 Random subscription generation 57
8.2 Random event generation . 58
8.3 Evaluate results . 58

8.3.1 Evaluate event matching 58
8.3.2 Evaluate new subscription processing 59

9 Conclusions 61
References . 63

A Sample IE schema XML file 66

B Sample log XML file 70

C XML requests and DTDs 73

List of Figures

2.1 Siena general peer-to-peer topology, as illustrated in [4]. 6
2.2 DIAS architecture, as illustrated in [16]. 8
2.3 P2P-DIET architecture, as illustrated in [?]. 11

4.1 Graphic representation of matching problem 21
4.2 Naive algorithm . 22
4.3 Counting algorithm . 24

5.1 System architecture representation 26
5.2 Thread pooling technique . 27
5.3 Sample XML event publication 29
5.4 Sample event publication DTD 30
5.5 Index page (non member) . 35
5.6 Index page (member) . 35
5.7 Login page . 36
5.8 Subscribe page . 36
5.9 Add domain page . 37
5.10 Add attribute page . 37
5.11 Extend event schema page . 38
5.12 Extend event schema page(cont’) 38
5.13 Add event page . 39
5.14 Post event page . 39
5.15 Publish subscription page . 40
5.16 Matched event page . 40
5.17 Posted subscription page . 41

6.1 eBay auction site . 43
6.2 eBay auction site using Event Notifucation API 44

7.1 Predicate to subscription association table 49
7.2 Predicate Clusters representation 50
7.3 PredToSub clusters struct snap-shot 53
7.4 Predicates clusters struct snap-shot 54
7.5 SatisfiedPredicate vector snap-shot 55

4

7.6 PredToSub data structs . 55
7.7 SatisfiedSubscriptions vector snap-shot 56

8.1 Event processing results . 59
8.2 Subscription processing results . 60

Chapter 1

Introduction

In this chapter a brief discussion of the systems currently available for quering
and retrieving information will be made and how we contribute in this context.

1.1 Publish/Subscribe Systems

As pointed out in [8], the majority of human information will be on the Web in
a few years. Besides the searching, quering and retrieving information approach
widely being used, there is a need for systems being able to capture the dynamic
aspect of the Web by notifying users of interesting events. These may vary from
stock markets updates, weather reports, availability of airplane tickets etc. A tool
that implements this functionality must be able to cope with high rate of events,
large number of user demands (post new subscription, remove subscription) and
must be efficient to notify the users with very short delay. In addition, it should
provide a simple and comprehensive web application interface to enable users to
easily add or remove subscriptions, view events matching their subscriptions, post
events and modify the rules upon the events and subscriptions are posted. The
system we present in this work is based upon Le Subscribe[22] and succesfully
addresses these issues.

To better illustrate the issues that led Publish/Subscribe systems to emerge
let us consider the set of auction sites in the internet(e.g. eBay[6], Amazon[14] or
Yahoo![15]). Every day a large number of auction items are posted in each site.
So users, in order to find an item of interest, must periodicaly access each site and
repeat their queries, which may differ from site to site, to get the new interesting
items. In a publish/subscribe system, a user posts one or more queries in the form
of subscriptions. When an event matches a user subscription, the user is informed
about the event. Moreover, in a pub/sub system each query is posted only once,
the user does not have to deal with the heterogeneous quering mechanisms each
site supports and when a query is not longer interesting, the user just removes
the query.

2

Final Year Thesis Introduction

1.2 Content vs. Subject-Based Systems

We can distinguish two kinds of pub/sub systems: subject-based and content-
based. Subject-based systems, classify the events in groups or subjects and can
only be filtered according to their group. A subject-based system would assign a
group for each category. A publisher must assign each event with a group. Users
can subscribe to groups, and be notified if an event belogs to groups of interest.
For example, a subscriber can subscribe to be notified if a new auction item of
type car is being put up.

Content-based systems are the emerging type of pub/sub systems, where
events are evaluated according to attribute-value pairs, against subscriptions
posted by subscribers. This way, subscribers can have more specific subscrip-
tions. Example of such subscription is an auction item of type car and price
lower than 1300e.

Comparing subject-based and content-based systems, the latter offer more
subscription expressiveness, which of course has an impact in the complexity of
the matching process. This complexity combined with a high event rate can
severely degrade the matching efficiency. So systems devoted to handle high rate
of events and a large number of subscribers have to face a trade of between the
subscription language sophistication and matching efficiency.

1.3 Contributions

The system we present in this work implements efficiently the concepts illustrated
in [8], which are

• A semi-structured event model which is well suited for the information
published on the Web, and flexibe enough to support easy intergation of
publishers.

• A subscription language which supports the most common queries.

• An efficient main memory algorithm to process on the fly a high rate of
events with a large number of subscriptions.

• A simple and comprehensive API to enable easy integration of existing
applications with an event notification mechanism.

• A demo web application to better illustrate the API usage.

1.4 Thesis Organization

This thesis is organized as follows. In Chapter 2 we briefly discuss releated work
done in this context. Chapter 3 presents the event model and the subscription

3

Final Year Thesis Introduction

language the system currently supports for event publication, subscription post-
ing and schema extension. In Chapter 4 we discuss the problem of matching
events with subscriptions and present an efficient solution to this problem. In
Chapter 5 the programming languages, tools and technologies engaged in this
project are described. Moreover, in Chapter 5 we present the application which
was build for demostration purposes. In Chapter ?? the Event Notification API
is documented and in addtition we describe how an application can be integrated
with an notification mechanism. In Chapter 7 the implementation details of the
matching algorithm are presented. In Chapter 8 we show the experimental re-
sults of perforance tests of the matching algorithm with a variety of work loads.
Appendix A presents a sample XML schema upon which events and subscriptions
are posted, Appendix B presents a sample XML log file holding subscriptions and
matched events for subscribed users and finally Appendix C shows some sample
XML requests with the corresponding DTDs.

4

Chapter 2

Related Work

The last few years the topic of event notification systems is gaining much pop-
ularity and attention. In this chapter we try to make a synopsis of the most
important and influencing researches done so far. In the following sections
SIENA[4], DIAS[16], P2P-DIET[?] and Le Subscribe[22] event notification sys-
tems will be discussed and see how these systems contributed in the context of
publish/subscribe systems.

2.1 SIENA notification system

SIENA[4] is a distributed event notification service over a P2P server network.
Clients connect to the network via access points provided by the servers, through
which they can post events, subscriptions and advertisements. SIENA extends
the standard publish/subscribe protocol with the use of advertisements, which
reflect the client intension to publish particular kind of information. That infor-
mation is valuable in routing subscriptions towards object of interest that intend
to generate relevant notifications to that subscription.

The event notification service carry out a selection process, in order to deter-
mine which notifications are of interest to which clients. In addition, the selection
process also provides means in controling the traffic in the P2P network. So filters
can be applied in the notifications propagated resulting notification forwarding
only to interested clients.

The architecture, the routing algorithms and the subscription language used
by SIENA is the subject of discussion in the following subsections.

2.1.1 SIENA semantics

event notification In SIENA implementation is a set of triples of the form
(type, name, value). Type is the data type of the value, name is the at-
tribute name and value is the attribute value. Arbitrary notifications are

5

Final Year Thesis Related Work

composed from attributes selected by an restricted and well defined at-
tribute set.

filters An event filter matches events by specifying a set of attributes and con-
straints over that attributes. In the set of available operators provided
by SIENA, belong all standard comparison operators. An attribute a =
(typea, namea, valuea) matches an attribute constraint φ = (typeφ,nameφ,operatorφ, valueφ)
if and only if typea = typeφ ∧ namea = nameφ ∧ valuea = valueφ. When a
matches φ, we signify it as a ≺ φ. When a filter is used in a subscription,
all constraints must be matched with each subscription attribute.

Patterns Patterns can be matched against one ore more notifictions based on
both their attribute values and on the combinations they form. Patterns
syntactically are a sequence of filters.

adertisements An advertisement is relevant to a subscription if these to set of
notifications have two non empty intersection.

unsubscribe/unadvertise An unadvertise/unsubscribe query cancels an adver-
tisement, subscription respectively that it is covered by the unsuscribe/unadvertise
filter.

2.1.2 Server topology

Before concluding to general peer-to-peer server topology, other solutions were
considered.

Hierarchical client/server architecture The servers in this topology form a
directed graph, where each server can have many incoming connections
from servers, but only one outgoing connection to its own master server. A
server with no master is referred to as root. This topology suffers from fault-
tolerance issues, because if a master fails, all servers and clients connected
to it, also fail. In addition servers high in the hierarchy take up much work
load.

Acyclic peer-to-peer architecture In this topology, servers form a acyclic by-
directional graph. Servers communicate with each other symmetrically as
peers excanging subscriptions, events and advertisements. In such topology,
algorithms should be aware and benefit from this property, but maintaining
the property of acyclicity in a wide-area network is very defficult. More-
over, fault tolerance issues also arise (if a server fails, the network is split
in two).

General peer-to-peer architecture Removing the constraint of acyclicity from
a acyclic topology, we obtain a general peer-to-peer architecture, as shown

6

Final Year Thesis Related Work

Figure 2.1: Siena general peer-to-peer topology, as illustrated in [4].

in Figure 2.1. The advantages of such topology are that less coordination
needed. In addition the system is more fault tolerant and robust because
more than one route exit between servers. In the other hand, special algo-
rithms should be implemented and routes must be established using mini-
mum spanning trees.

2.1.3 Routing strategies in Siena

The information routing inside the network is a very important issue, which can
determine the robustness of the service. It is fair to say that all subscriptions
must be matched with the notifications reaching the network. This could be done
either by routing the notifications to subscriptions, or the opposite. Dude to the
overwhelming number of notifications compared to subscriptions, propagating
notifications to all network nodes is a solution least efficient. This issue was
addressed in SIENA with the following techniques, as presented in [4].

downstream replication A notification is propagated as close as possible to
the interested clients, and then is copied.

7

Final Year Thesis Related Work

upstream evaluation Filters and patterns are applied the closest possible to
the notification source.

subscription forwarding In an implementation that does not use advertise-
ments, paths should be set by the propagating subscriptions, which a sat-
isfied notification follows back to the interested client.

advertisement forwarding In implementations that do use advertisements, it
is safe to send subscriptions only towards object of interest which have
advertised notifications relevant to the subscription.

2.2 DIAS

DIAS[16] stands for Distributed Information Alert System, was developed in the
context of the European project DIET[17, 10], and contributed in the area of
event notification systems in the following ways. First, DIAS introduced a P2P
agent architecture inspired by the event dissemination system SIENA[4] and sec-
ond, formalized expressive data models and query languages suited for this con-
text.

2.2.1 DIAS architecture

As illustrated in Figure 2.2 found in [16], the DIAS P2P network of middle-
agents handle the notification of users about interesting events posted by the
information providers, according to user subscriptions. Users and information
providers interact with the P2P network through end-agents and resource-agents
respectively.

User subscriptions are posted through the end-agent to the network of middle-
agents, which handle the matching of the subscription and the forwarding to
other agents. Subscription forwarding is done in an efficient way, e.g., if less
general subscription found than those already posted then it is not forwarded.
If more general subscrition is satisfied, less general are also satisfied. To decide
whether a subscription is more or less general than another is called entailment
or subsumption problem and it is handled efficiently with the data models DIAS
supports.

2.2.2 DIAS data models and query language

Much of the work in DIAS was in building an expressive and formal subscription
language. The data model used in DIAS is AWP[16] which is based on text
valued attributes and its query language is an extension of the query language of
data model WP.

8

Final Year Thesis Related Work

Figure 2.2: DIAS architecture, as illustrated in [16].

Lets now have a brief look on WP and AWP data models. The WP data
model assumes that textual information is in form of free text and can be matched
with word patterns. Word pattern may be any expression with conjunction, dis-
junction or negation of word patterns. For example,

Information ∧ alert ∧ ¬DIAS
is a word pattern. A very important feature of the WP data model are the
proximity operators, which are represented with the ≺[i,j] symbol. The ≺ symbol
specifies an ordering in word patterns, while i, j specify how close or far, in means
of words, two word patterns separated by a proximity operator can be. So the
following word pattern

Information ≺[0,0] alert ≺[1,5] DIAS

means that the word Information must be exactly before alert, while word DIAS
must be in a distance of at least one word and most five after word alert.

Finally, WP defines the entailment operator |=. Let wp1 and wp2 be word
patterns. Then wp1 entails wp2 (wp1 |= wp2) if and only if every text value that
entails wp1, also entails wp2.

An example of this operator is that Information∧alert entails Information.
This feature is used in choosing the most general subscription in subscription
propagation between middle-agents.

9

Final Year Thesis Related Work

Now, we have seen the WP data model, we can define AWP. Indeed, AWP
is based on attributes with WP expressions as values. Attributes can be chosen
from an attribute universe specific to each notification schema1.

Over this notification schema, notifications can be posted in terms of attribute,
value pairs. A notification is valid if it provides a binding for every attribute in
the notification schema. A notification example over a notification schema with
three attributes author, title and abstract would be

{(Author=Koubarakis), (Title=Boolean Queries with Proximity Op-
erators for Information Dissemination), (Abstract=...)}

Finally, a query over a notification schema could be an expression of the
form A = wp or A = s, where A is an attribute from the attribute universe, wp
any proximity free or not word pattern and s a simple text value. In addition,
conjunctions, disjunctions and negations of queries are also valid.

For example the query

Author = “Koubarakis“,

Title = (Boolean ≺[1,5] Proximity)

would be satisfied by the event presented above.
The P2P-DIET we present next, is a direct ancestor of DIAS and supports

successfully all its features.

2.3 P2P-DIET

P2P-DIET[?] is a system based on the concepts of DIAS[16] and extends them
in many interesting ways. P2P-DIET was build on top of the open source DIET
Agents Platform, and successfully unifies ad-hoc and continuous query processing
in P2P networks. With the term ad-hoc we are addressed to queries serviced by
the network once when posted, while the term continuous queries specifies long
lasting queries which notifies the interested party whenever resources of interest
appear in the network. Now we are going to take a brief look in P2P-DIET
architecture, functionality and query language.

2.3.1 P2P-DIET architecture

A high-level view of the P2P-DIET architecture is illustrated in Figure 2.3, as
presented in [?]. The structural units of a P2P network are the nodes. In P2P-
DIET are two kinds of nodes: super-peers and clients. All super-peers are equal

1Notification schema N is a (A, V) pair, where A is a subset of the attribute universe and
V a vocabulary.

10

Final Year Thesis Related Work

Figure 2.3: P2P-DIET architecture, as illustrated in [?].

in terms of responsibilities, so the node subset of the network composed only of
super-peers, is a pure P2P network. Each super-peer share the work load of the
network, serving a subset of clients and keeps indices of the client resources.

Resources are kept at client nodes and a client downloads directly from the
resource owner node. Clients connect to the P2P network through a super-peer,
where information about them are stored. Clients can migrate to an other access
point or/and use dynamic IP.

Moreover, P2P-DIET has the ability to add or remove super-peers and in
addition to recover when super-peers fail. Finally, security issues are also taken
into account, with the use of message encryption and authentication between the
peers.

2.3.2 Data models and query language

The P2P-DIET supports theWP andAWP data models and their corresponding
query languages, as presented in [16]. The support of AWPS data model is
currently under development.
WP is based on free text and its query language is based on the boolean model

with proximity operators. Data model AWP is based on text valued attributes,
and its query language is an extension of the query language of data model WP.
Finally the model AWPS extends AWP by introducing a similarity operator.
Data models AWP and AWPS, are attractive for the representation of textual

11

Final Year Thesis Related Work

metadata due to their formality and expressive power.

2.3.3 Routing and query processing

The routing in the super-peer subnetwork is done using minimum weight span-
ning trees, which are rearranged whenever a new super-peer enters or leaves the
network. Answers and notifications are unicasted to the interested super-peer
through the shortest path connecting the super-peers. Now lets see the basic
functionalities provided by the P2P-DIET:

Ad-hoc quering P2P-DIET supports the typical ad-hoc query senario, where
a client C posts a query to its access point AP. AP multicasts this query
using the minimum spanning tree to all the super-peers of the network.
Answers are posted back to the AP through the shortest path connecting
each super-peer with with AP.

Continuous quering The selective information dissemination senario is dis-
cussed here. A client C posts a continuous query to its access point AP.
AP forwards the query to other super-peers. When a resource satisfies the
forwarded query, the answer travels back to AP through the path set by
the query propagation.

Lets now see some additional functionalities P2P-DIET supports:

joining the network A new client, in order to enter the network must first
aquire the IP-address and public key of a convenient client. Then the client
sends an encrypted new-client message containing its public key, identifier
and IP-address. After the message decryption and processing the client can
be securely identified.

Publish resources After clients joining the network, may publish resources by
sending resource metadata to the access point using the data models sup-
ported. Resources metadata are not multicasted, as they are matched with
incoming queries.

Disconnecting A client upon disconnect, notifies the super-peer used as access
point. The super-peer keeps the resources metadata of the disconnected
client for a specific period of time. On reconnect, the client tries to connect
to the access point connected the last time, unless the user requests a
migration to a different access point.

Processing notification and answers A client, in order to download from the
resource client, must know his IP-address and the local path of the resource.
This information is stored in the notification of the resource the interested
client receives. More useful information are also stored in the notification,

12

Final Year Thesis Related Work

such as the resource client identifier and its status when the notification was
produced. If the resource client is on-line and the client which received the
notification chooses to download the resource immediately, then is directly
connected to the resource and downloads it. In other case (resource not
currently available or interested client downloads later), the interested client
must query his super-peer the current IP-address of the client with the
resource, using the resource client identifier.

Stored notifications and rendezvous For the reason that clients are not on-
line all the the time, there must be a mechanism to ensure that the clients
always receive their notifications. This is done with the use of a notification
storage in the access point of the client notified. When the client logs in,
is informed about its notifications. Moreover, the rendezvous functional-
ity enables clients to exchange resources without actually being online at
the same time. This is accomplished with the use of temporary storage
in super-peers called rendezvous directories, where resources are temporary
stored.

Fault-tolerance The system is self-organized when a fault on a super-peer or on
a client occur. A super-peer failure is traced when the super-peer with the
problem can not respond to the are-you-alive messages send periodically
by other super-peers. In this situation, the minimum-spanning trees con-
necting each super-peer with another, are rearranged. Identical messages
are also sent periodically to the clients.

The P2P-DIET is an query and event notification system which is scalable,
fault tolerant and location address indepentent, so it can work efficiently in the
real world, the internet.

2.4 Le Subscribe

Le Subscribe[22] is the system upon our system is built. The main contributions
in Le Subscribe are:

• A semi-structured event model which is well suited for the information
published on the Web, and flexible enough to support easy integration of
publishers.

• A subscription language which is designed to be simple while supporting
the most usual queries on the event notifications.

• An efficient matching algorithm for processing in real time which can handle
a large number of volatile subscriptions (several millions) and supports high
event rates (several millions per day).

13

Final Year Thesis Related Work

• Simple interface for publishing and subscribing which enable an easy in-
tegration of the system in the Web. The system supports both HTTP
protocols and Java RMI.

The three matching algorithms developed for Le Subscribe, apply a global
optimization strategy to exploit predicate redudancy and predicate dependen-
cies among subscriptions to reduce the number of predicate evaluations. Such a
strategy is particularly efficient in the Web context where a lot of attributes have
enumerated domains ranging over a limited number of values. The fair-predicate
matching algorithm2 is pure predicate based. The other two algorithms, equality-
preferred and nonequality quarantining result from optimizations applied to the
first one and are more efficient in time but less in space.

2.5 Other publish/subscribe systems

Publish/subscribe systems are divided into major categories, subject-based and
content-based. Examples of subject-based systems are OrbixTalk[7] and TIB/Rendezvous[5].
In subject-based systems, events are classified by groups and can be filtered only
according to their group.

Content-based systems are the emerging type of publish/subscribe systems
where events are filtered according to their attribute values. Content-based sys-
tems, other than Le Subscribe, are Gryphon[1], NEONet[20] and READY[11] and
publish/subscribe mechanisms integrated in commercial DBMS products like Or-
acle8i, SQL Server 7.0, or Sybase. The cost of this gain in excpressiveness is an
increase in the complexity of the matching process: the more sophisticated the
constructs, the more complex and time consuming the matching process.

The subscription languages of Gryphon, and NEONet are quite similar to Le
Subscribe language. Their matching algorithm do not exploit predicate redun-
dancy nor dependencies. The READY system[11] has a more expressive sub-
scription language supporting grouping constructs, compound event matching
and event aggregation. Its matching algorithm uses only local optimizations un-
like Le Subscribe which intensively exploits global optimization opportunities and
predicate redundancies. Commercial DBMS products use SQL as their subscrip-
tion language, and these products are designed for contexts where the number
of subscriptions is relatively small, as might occur in the context of enterprise
application integration.

Hanson et al proposes a matching algorithm in [12]. During a pre-processing
phase, the algorithm chooses the most selective predicate for each subscription
and places it in an index (IBS tree) associated with the predicate’s attribute.
During the processing of an event, the algorithm first computes the set of sub-
scriptions whose most selective predicate is verified and then checks the remaining

2similar to Counting algorithm we implemented.

14

Final Year Thesis Related Work

predicates of each selected subscription in a naive way.

15

Chapter 3

Event Model & Subscription
Language

In order to integrate the system to handle publications from different users, it
must solve the problem of heterogeneity of information sent by different publish-
ers. That is accomplished by having publishers publish their events with respect
to an event schema, and subscribers post queries using an well-defined subscrip-
tion language. So the system must define:

• An integrated event schema for modeling the events published via the
pub/sub system.

• An integration model.

• A subscription language over the schema.

3.1 Integrated event schema

The purpose of the integated event schema, is to provide the model over which
events are published. As illustrated in Le Subscribe[22] an Integrated Event
schema1 S is a sixtuple(A, ET , D, DOM, EVENT TYPE, E). The semantics
associated with each symbol of the sixtuple are the following:

A This symbol represent the attribute universe of the IE schema. Each attribute
is identified uniquely by its name. In the set of attributes A defines exists
an distinct attribute event type with a special meaning.

D This symbol represents the set of attribute domains. Each domain can be
either of string, enumerated or numeric type and is associated with a set
of operators from those available for each data type. For example numeric
domains support all standard comparoson operators2, enumerated domain

1From now on we are going to address to Integreted Event schema, as IE schema.
2Meaning =, 6=,≥, >,≤, <.

16

Final Year Thesis Event Model & Subscription Language

supports equality and non equality comparison operators over a pre-defined
value set. Finally, a string operator supports equality, non equality as well
as contains comparison operator.

DOM This symbol represents the function which associates each attribute with
its domain. The DOM set holds an entry for each attribute with two
identifiers, the attribute name and the attribute domain.

ET Represents the domain of the distinguished attribute event type. Its domain
exists in the domain set of D and its domain type is of enumerated type.

EVENT T YPE This symbol represents the set of values over which event type
is ranging.

E Represents the function which associates each value of EVENT T YPE with
the corresponding event schema. An event schema is a set of triples of the
form (A, n, u), with A ∈ A and n, u two annotations with the first ranging
over values in {mandatory, optional} set while the latter over values in
{unique, multiple}.

This concepts will be better understood with the following example: Suppose
an item of type antique which is described by three mandatory attributes price,
period and quantity and an item of type car which is also described by three
mandatory attributes brand, cc and price, while has one optional attribute color.
We observe that attribute price is in common for the two items. The IE schema
in this case is the following:

• A = {price, period, quantity, brand, cc, color, event type}

• ET = {antique, car}

• E(car) = {(price, mandatory, unique), (brand, mandatory, unique), (cc,
mandatory, unique), (color, optional, unique)}.

To make the concept of publication of an event/subscription over an event
schema solid and formal lets see the following definitions, as given in [22].

Attribute set, Mandatory set, Unique set 3.1.1 Let S = (A, ET ,D,DOM,
EVENT T YPE , E) be an IE schema and e an element of ET . Then the At-
tribute set for e is defined as the set of attributes present in e event schema.
Mandatory set and Unique set are subsets of the Attribute set, only containing
attributes of A which have a mandatory and unique notations respectively. For
Example, the Mandatory set for car is constituted by attributes price, brand and
cc.

17

Final Year Thesis Event Model & Subscription Language

View over an IE schema 3.1.1 A view V over IE schema S = (A, ET , D,
DOM, EVENT T YPE , E), is a pair {E ,R}, with E a set of event types occuring
in ET and R the conjuction of (A, n, u) triples found in the event schema
associated with each event type of E. (A, n, u) triples must satisfy the following
rules:

1. For each mandatory attribute A of each e ∈ E must be a (A, n, u) triple
in R,

2. (A, n, u) triple occurs in R only if A occurs in the attribute set of at least
one e of E,

3. every (A, n, u) triple must be unique in R over its attribute. Mandatory
and multiple annotations have priority over the optional and unique ones.

Event instance 3.1.1 Let S = (A, ET ,D, dom, E) be an IE schema, and V =
(E, R) a view over S. Then an event instance ei over S with respect to V is a
collection of attribute, set of values pairs satisfying the following rules:

Rule 1 ei contains the pair (event type, E)

Rule 2 for each element (A, n, u) of R, ei contains a pair A, V with V subset of
A value domain. If u has the unique value, then V is a singleton.

Rule 3 Only pairs satisfying rule R1 or R2 occur in ei.

Suppose the following example: A publisher posts an event of an antique
car. In this case, the event belongs to both event types. Consider the follow-
ing events e1={(event type,(antique, car)), (price, 1300), (period, 1970), (quan-
tity, 1), (brand, cooper), (cc, 1000)} and e2={(event type,(antique, car)), (price,
3500),(period, 1970), (brand, audi), (cc, 1200)}. Event e1 satisfies all the rules
while e2 does not satisfy 2nd Rule (and obviously the 3rd), since the mandatory
attribute quantity is missing in e2.

3.2 Integration model

The IE schema, as illustrated in [8], provides an unified representation of the
publications issued by distinct clients. With the term integration model we mean
the publication language over the IE schema, as well as the IE schema extension
capabilities our system provides to clients.

Publication language 3.2.1 In the system we present in this work, a publica-
tion is valid only if it is expressed in the form of an event instance over the IE
schema.

18

Final Year Thesis Event Model & Subscription Language

IE schema modification rules 3.2.1 As proposed in [8], the system we present
allows publishers to extend the IE schema using four simple modification rules.
Lets consider the S = (A, ET ,D, dom, E) IE schema

Domain creation rule 3.2.1 makes a new domain entry in D and specifies
the comparison operators over this domain, with respect to the set of available
operators the domain type supports.

Attribute creation rule 3.2.1 adds a new attribute in A and makes a new
entry in the DOM set associating the new attribute with a value domain.

Event schema extension rule 3.2.1 extends the event schema of an event type
e by adding a triple (A, optional, u) to the event schema of e. A is an attribute
not previously in the event schema.

Event schema creation rule 3.2.1 creates a new event type by adding a new
entry in the ET set and extends the E function with the new event type schema.

Note The modification rule effect is global, meaning that it does
not only effect the publisher who modified the schema, but all the
publishers in general. For this reason, an event schema can only be
extended with optional attributes, which do not further restrict the
schema.

3.3 Subscription language

A subscription S is defined as a conjunction of elementary predicates. A predicate
is a triple of the form (A,OP, V), with A the name of the attribute, OP one
operator from the set of operators associated with the attribute domain and V a
value from the attribute value domain.

Event instance matches subscription 3.3.1 Given a subscription S and ie
an event instance ,ie matches S if the following contitions are met:

Rule 1 If e provides a binding for every attribute in S.

Rule 2 All predicates are true with respect to this binding.

For example, given the subscription [(event type contains car) and (price <
1300) and (brand equals mini)] and the event instances ei1={(event type, (an-
tique, car)), (price, 900)}, ei2={(event type, (antique, car)), (price, 900), (brand,
audi)}, ei3={(event type, (antique, car)), (price, 1100), (brand, mini)}. Apply-
ing the rules of 3.3.1, we can see that only ei3 matches the subscription, while
ei1 does not satisfy the 1st rule and ei2 does not satisfy the 2nd.

19

Final Year Thesis Event Model & Subscription Language

we can see that only ei3 matches the subscription.
Currently, the system we developed provides all standard comparison opera-

tors over numeric domains, for enumerated domains provides equality and non
equality comparison operators over pre-defined value set and for string domains
equality, non equality and the distinguished contains operators are available. A
contains predicate (A, contains, V) is true if its value V occurs in the set of values
associated with the attribute A. For example [(event type contains car) and (price <
1300)], describes an event of any car costing less than 1300e.

Disjunction of the elementary predicates and hierarchical domain are not yet
supported.

20

Chapter 4

Matching Algorithm

The matching problem can be formulated as the following question:

Given an event e and a set S of subscriptions, how can we found
efficiently the subscriptions of S satisfied by e?

A graphical representation of this concept is illustrated in Figure 4.1. In this
chapter, an efficient algorithm is presented to address this issue. This algorithm
is resposible for matching every single event with all the subscriptions, one at a
time. This algorithm was presented in [8], and is called Counting Algorithm.

4.1 Reformulation of the matching problem

A naive approach to this problem, would be the testing of each subscription
against each event. This naive algorithm, as presented in [22] is shown in 4.2.

Taking a closer look to the algorithm, we see that in line 6, the fuction
pred match is responsible for matching all predicates of each subscription with the
incoming event. During the processing of one event, the calls made to pred match

function are equal to the number of subscriptions multiplied with the number of
predicates found in each one. In a real world senario, we expect naive algorithm
being a hardly satisfactory solution, since the naive response time is proportional
to the number of subscriptions.

The main drawback of the naive approach is that it does not consider the pred-
icate redudancy among subscriptions to reduce the number of predicate evalua-
tions. Such strategy is quite efficient in the Web context where a lot of attributes
have enumerated domains ranging over a limited value set. So focusing on pred-
icates instead of subscriptions can result in an optimazation to the efficiency of
the algorithm, proportional to the redudancy of predicates.

Additional optimazation can be applied to the algorithm efficiency, consid-
ering the predicate dependencies, which means that if predicate (price, ≤, 10)
is verified by an event then the predicate (price,≤, 20) is also verified; but if

21

Final Year Thesis Matching Algorithm

Figure 4.1: Graphic representation of matching problem

predicate (price, =, 10) is verified, predicate (price, =, 20) cannot be verified.
So keeping predicates suitably ordered can result to further deduction of the
proccesing time of the mathcing algorithm.

So the problem now is to compute the set of satisfied subscriptions from the
satisfied predicates. A solution proposed in [22], is the Counting algorithm which
was also used and evaluated by us in this work.

For every algorithm, there is always a pre-processing phase, responsible for
representing the data sent to the algorithm in a suitable form. In the following
sections the pre-processing and the matching algorithm is discussed.

4.2 Pre-processing phase

In this phase, the subscriptions are decomposed in their predicates and two hash
tables are maintained. The first hash table clusters the predicates by comparison
operator and value, while the second hash table is an association table which
makes the correspondence between each predicate and the subscriptions it ap-
pears in.

each predicate is stored just once

Each hash table cluster is kept sorted in order to achive a further decrease in
predicates evaluation (if predicate (price, ≤, 10) is verified by an event then the
predicate (price, ≤, 20) is also verified).

4.3 Counting algorithm

The counting algorithm (Figure 4.3), as illustrated in [22] is a three step algo-
rithm. The first step of the algorithm (lines 4-9) computes the satisfied predicates
applying each event predicate to all the subscription predicates, which are stored

22

Final Year Thesis Matching Algorithm

naive match(S, e)

1 // S is the set of subscriptions, e is the event to match

2 matched← {}

3 foreach s ∈ S do

4 m ← true

5 foreach p ∈ s.preds do

6 if ¬ predmatch(p, e) then

7 m ← false

8 break // leave loop for

9 endif

10 endloop

11 if m then

12 matched ← matched ∪ s

13 endif

14 endloop

Figure 4.2: Naive algorithm

in the predicate hash table maintained in the pre-processing phase. eqpredmatch,
lesspredmatch, lesseqredmatch, greaterpredmatch, greatereqpredmatch and con-
tainspredmatch functions compute the equality,less than, less than equal, greater
than, greater than equal and contains predicates satisfied by a given event, re-
spectively.

In the second step of the algorithm (lines 11-15), for each satisfied predicate
p found in the previous step and for each subscription s containing p, a hit count
is applied in s.

finally, in the last step of the algorithm (lines 17-21) the number of each
subscription predicates is compared with the hit counter specific to each sub-
scription. If these two numbers are equal, means that all subscription predicates
where satisfied by the event.

Taking a closer look at the functions of the first step, we have the eqpredmatch
function which searches, for each event’s attribute, the predicate with the same

23

Final Year Thesis Matching Algorithm

value as the attribute value in the equality cluster associated to the attribute.
The lesseqpredmatch searches, for each event’s attribute, the predicate with

the greatest value less than or equal to the attribute value in the less than equal
cluster associated to the attribute. After having found this predicate, we know
that all predicates that are placed before (while predicates are stored in increasing
order) are also satisfied by the event. The greatereqpredmatch function is similar
to lesseqpredmatch.

The lesspredmatch function searches, for each event’s attribute, the predicate
with the greatest value less but not equal to the attribute value. Because the
predicates are kept ordered with a binary algorithm, all the predicates below the
one found are also satisfied. The greaterpredmatch function works in a similar
manner.

The hash tables maintained to store the subscriptions predicates and the
binary search algorithms used for predicate quering in the hash table clusters,
guarantee the efficiency of the algorithm, as we will see in Chapter 8.

24

Final Year Thesis Matching Algorithm

counting algorithm(e)

1 // e is the event to process

2 matched ← {}

3 // Step 1 - Compute the predicates satisfied by e

4 satisfied preds ← eqpredmatch(e)

5 satisfied preds ← satisfied preds ∪ lesspredmatch(e)

6 satisfied preds ← satisfied preds ∪ lesseqpredmatch(e)

7 satisfied preds ← satisfied preds ∪ greatereqpredmatch(e)

8 satisfied preds ← satisfied preds ∪ greaterpredmatch(e)

9 satisfied preds ← satisfied preds ∪ containspredmatch(e)

10 // Step 2 - Applies hits on subscription for each satisfied predicate

11 foreach p ∈ satisfied preds do

12 foreach s ∈ pred to subs[p] do

13 hitcounts[s] ← hitcounts[s] + 1

14 endloop

15 endloop

16 // Step 3 - Counts the satified predicates per subscription

17 foreach s ∈ S do

18 if hitcount[s] = #subscriptions[i]preds then

19 matched ← matched ∪ s

20 endif

21 endloop

Figure 4.3: Counting algorithm

25

Chapter 5

System Implementation

In this chapter, the system implementation details are presented. Namely, the
programming laguages and tools used and the technologies engaged in this project.
Moreover, the implementation choices made and why preferred over other solu-
tions are discussed. The algorithm implementation is presented in chapter 7.

5.1 System architecture

As we can see in the Figure 5.1, the system we developed is a centralized client/server
application. Clients establish TCP/IP connections with the server and send XML
requests, while the server replies with XML responses to clients.

5.2 Server-side implementation

The server-side of the application, is the part responsible for handling the client
requests. This task is managed by a daemon application, the Notification Dae-
mon. Notificication Daemon correspons to the excecution of a Java program.

5.2.1 Thread pooling

Notification Daemon creates a TCP/IP server socket and waits on a listen() com-
mand to accept user requests. When a request comes, a new TCP/IP connection
is established between the server and the request publisher, functionalities pro-
vided by the Java built-in java.net package for network support. In every user
request, a new thread from the Thread Pool wakes and continues the request han-
dling. The thread pooling techinique is very popular among web applications1

because the memory and time consuming thread intitialization is done once in
server startup, during while a number of threads are initialized and suspended.

1or client/server applications, more generaly speaking

26

Final Year Thesis System Implementation

Figure 5.1: System architecture representation

When a new request comes to the server, a sleeping thread wakes and handles
the event, without the overhead of a new thread initialization. Figure ?? is a
simple representation of this concept.

5.2.2 XML-based communication

The communication between the server and the client is done with the use of XML
documents. XML is a markup language heavily used in the Web. XML among
others uses, can represent data and force some restrictions on the document
format, with the use of DTDs. DTD is a set of restrictions which can be embedded
in the XML document or, as in our case, can be linked externally.

In our case, XML is used by the client-side application (publishers, subcribers)
in order to have a uniform representation of the requests posted to the server. In
this manner, heterogeneity of similar information sent by different users can be
masked. This enables subscribers to specify their requirements without having
to face with heterogeneous information. Moreover, XML-based communication
specifies a well-defined common interface, which enables easy integration of the
system in a distributed environment.

The DTDs in the system play a two-fold role. First, validate the XML requests
to ensure that are well formatted. That is that XML document follows some rules

27

Final Year Thesis System Implementation

Figure 5.2: Thread pooling technique

in order to be complete and valid. And second, DTDs perform a parsing in the
data send. Taking into consideration that the IE schema upon requests are send,
changes dynamically with the schema extension rules 2, DTDs must be themselves
dynamically redeclared whenever a schema modification occurs.

DTDs reside on the server-side and in order a request to be valid, must be
externally linked with the appropriate DTD, depending on the request type. The
concept of DTD validation and parsing becomes more comprehensible with the ex-
ample of figures 5.2.2, 5.2.2. This example considers the IE schema of appendix A.
The figures show how an event may look like in XML representation and how the
DTD, over the event publication schema, would be formatted. The first of the fol-
lowing figures, represents the event e={(event type,(antique, car) , (price, 1300),
(period, 1970), (quantity, 1), (brand, cooper), (cc, 1000)}. Taking a closer look
at the first figure of the example, between the <EVENT_TYPE> and </EVENT_TYPE>

intentifier are the two event types of e and the attributes are enclosed between
<ATTRIBUTES> and </ATTRIBUTES> intentifiers3 . The distinct pair (contact,
sbile@intelligence.tuc.gr), which is a parameter in the <PUBLISH_EVENT> root ele-
ment holds the information required in order to get in touch the interested party

2Covered extensively in section 3.2.
3from now on, we going to address to these identifiers as element, which is the proper XML

terminology.

28

Final Year Thesis System Implementation

(i.e. subscriber) with the event publisher and does not have to be representet
somehow in the IE schema.

The second figure illustrates the the Document Type Definitions document
(DTD), based on the sample schema of appendix A, over the event publica-
tion schema. Since it is beyond the scope of this thesis to get in much de-
tails about DTD usage, we are going to have a brief discussion about some
lines in the DTD document of the figure 5.2.2. So, the first line of the DTD,
<!ELEMENT PUBLISH_EVENT (EVENT_TYPE , ATTRIBUTES)> specifies that in-
side the <PUBLISH_EVENT> scope must be exactly two elements, <EVENT_TYPE>
and <ATTRIBUTES>. In the third line we see <!ELEMENT EVENT_TYPE (VALUE+)>

which means that inside scope designated as <EVENT_TYPE> must be at least one
element named VALUE and nothing more. The + symbol has the regular expres-
sion semantics. Finally, in fourth line of the document is <!ATTLIST VALUE type

(antique | furniture | surf-board | car | painting) #REQUIRED> which
means that the elements <VALUE> attribute type, can take a value from the enu-
merated set antique, furniture, surf-board, car, painting. In the first two examples
we saw DTDs apply on the XML format, while in the last example DTD was
applied in the data of the document also.

Note that the DTD check imposed on the XML documents may
be redundant, if we consider that the requests have been previously
checked by the HTML form4 used by the publisher with the help of
JavaScripts. But these checks is important to be performed since the
system must be extentible to work with other clients and possibly
other servers.

5.2.3 Server implementation summary

To sum up, events are handled by the Notification server daemon which has the
following characteristics

• Multithreaded Java Application.

• Implements thread pooling technique to minimize response time.

• XML-based communication over the IE schema.

• DTDs sees that the XML documents send are well-formatted.

4we will see later the details.

29

Final Year Thesis System Implementation

An XML event

<PUBLISH_EVENT contact="sbile@intelligence.tuc.gr">

<EVENT_TYPE>

<VALUE type="antique" />

<VALUE type="car" />

</EVENT_TYPE>

<ATTRIBUTES>

<ATTR type="price">1300</ATTR>

<ATTR type="period">1970</ATTR>

<ATTR type="quantity">1</ATTR>

<ATTR type="brand">cooper</ATTR>

<ATTR type="cc">1000</ATTR>

</ATTRIBUTES>

</PUBLISH_EVENT>

Figure 5.3: Sample XML event publication

5.3 Request handling thread

So far, we saw how the Notification server accepts requests and incorporates new
request handling threads to handle each one. It is also discussed that the requests
arriving to the server is the XML representation of those posted by the user. In
this section we will see in details the course of actions followed by each thread in
order to handle the request.

The first thing that has to be done, is to represent the XML document in
a way convenient for reading and manipulation. This functionality is provided
by the JDOM API[18]. JDOM uses the jdom.org.input. SAXBuilder class
which implements a validating SAX[19] parser. The SAX parser reports pars-
ing events (such as the start and end of elements) directly to the application
through callbacks and does not have to build an in-memory tree structure of the
XML document5, which put a great strain on system resources, especially if the
document is large.

So after the XML request has been read and validated by the parser, we
are ready to access it’s elemens values and attributes in which the request in-
formation are stored. A request may be an extensions schema request, an event
request or a subscription request. The information concering the category each
request belongs is specified by the name of the document’s root element, which
is at the first line of the document6. If the document is in any way malformed
an org.jdom.JDOMException is thrown and the document receives no further
processing.

5as DOM does
6after the XML tag of course

30

Final Year Thesis System Implementation

DTD over event schema

<?xml version="1.0" encoding="UTF-8"?>}

<!ELEMENT PUBLISH_EVENT (EVENT_TYPE , ATTRIBUTES)>

<!ATTLIST PUBLISH_EVENT contact CDATA #REQUIRED>

<!ELEMENT EVENT_TYPE (VALUE+)>

<!ELEMENT VALUE EMPTY>

<!ATTLIST VALUE type (antique | furniture | surf-board |

car | painting) #REQUIRED>

<!ELEMENT ATTRIBUTES (ATTR*)>

<!ELEMENT ATTR (#PCDATA)>

<!ATTLIST ATTR type (price | period | quantity |

furniture_category | material | year | volume | cc |

brand | artist | size | event_type) #REQUIRED>

Figure 5.4: Sample event publication DTD

5.3.1 Extention schema request handling

In this category falls every request concerning the extension of the schema. An
extension schema request may be either of the following: add domain request ,
add attribute request , extent event schema request or add event request. Sample
schema extension requests are presented in appendix C. When an extension
schema request is about to be processed no other thread must be reading or
writing the IE schema. In order to achieve this we have to synchronize the
processes to have serial access to the IE schema. IE schema is a XML document
parsed and manipulated with the use of SAX (sample IE schema lays in appendix
A).

add domain request During the processing of an add domain request the course
of action followed are discussed here. At first, the handling thread acquires
a write lock on the IEschemaLock object, which manages the access to the
IE schema. When the lock is acquired, the thread is ready to add an new
element <DOMAIN> entry in the parent element <D>. This entry holds the
information concerning the domain type and operators of the new domain.
In addition, there is a unique id number assigned to each new domain.
When the IE schema update is over, the IEschemaLock is released and a
new lock, DTDlock, is aquired to serialize access to the DTDs documents.
This lock prevents other running threads from either reading or writing any
DTD. Then the thread updates the add domain and add event DTD, which
are the DTDs affected by the new domain insertion. DTDlock is released
when DTD update is finished and thread suspends.

add attribute request With the same manner as above add atribute request is

31

Final Year Thesis System Implementation

handled. First of all, the thread aquires a write lock on the IEschemaLock, if
the object is locked by other thread, suspends. When lock aquired, two new
entries are inserted in the schema. One element <VALUE> entry in the parent
element <A> and one <ATTR_DOM> entry in the parent element <DOM>. The
first is an entry in the attribute repository, while the second is the associa-
tion of the attribute with it’s value domain. If the attribute is already in the
attribute repository, a thesis.exception.SameAttributeInSchemaException
is thrown.
Then IEschemaLock is released, thread enters the DTDLock monitor and
DTDs for extent event schema, add event, publish event and publish sub-
scription are updated. When done, thread leaves monitor, suspends and
waits in thread pool to handle another request.

extent event schema request Likewise, after entering IEschemaLock moni-
tor, the thread updates the IE schema by associating the attributes with the
corresponding event type schema. During this operation three types of ex-
ceptions may be thrown. A thesis.exception.NoSuchAttributeException,
if one of the attributes specified in the request is not in the IEschema
repository, a thesis.exception.SameAttributeInSchemaException, if an
attribute is already in the event type’s schema and a thesis.exception.Event
TypeNotFoundException, if no such
event type as one about to be extented exists in IE schema. If no exception
is thrown after this operation, the IE schema must contain in the element
<E>, where all event types are hold, in the <E_TYPE> element corresponding
to the event type the extension is done, the new <E_ATTR> element (or el-
ements). which represent the new element (or elements) associated to this
event type schema. After that, extent event schema DTD is created and
thread suspends7.

add event request Adds a new request in the schema, by adding an element
<VALUE> entry in the parent element <ET>, where all event type names
are stored and updates the content of element <E>, which maps the event
types with the attributes appearing in their schema. In this context an
thesis.exception. SameEventInSchemaException or a thesis.exception.
NoSuchAttributeException may be thrown, if the event type schema about
to be added is already in the IE schema or one of the new event type’s at-
tributes are not in the attribute repository, respectively. After that, the
DTDs for extent event schema, add event, publish event and publish sub-
scription are created and then thread suspends.

7to avoid repetition, monitor entering and leaving will not be discussed further

32

Final Year Thesis System Implementation

5.3.2 Subscription request handling

As we will see in a consequent chapter, all subscription’s predicates are kept in an
in-memory structure called PredicateClusters. In addition, another structure is
maintained in main memory called PredToSub, that holds the mapping between
the predicates and the subscriptions they appear in. The access to these struc-
tures must be managed in a read/write manner. Meaning that concurrent access
to these structures for reading must be allowed, but only one thread must update
their content at a time. This structures are kept in the native side of the system,
meaning that they are maintained and processed by the C++ code. To this part
of subscription handling we are reffering to as the preprocessing of the matching
algorithm.

Before XML subscriptions are fed to the preprocessing face, the subscriptions
data are parsed and stored in an array of java.lang.String. Then the native func-
tion UpdateClusters(String [][]) is called which updates the structures. After that,
the subscription is stored in the User Log file maintained in secondary storage,
which holds the subscriptions posted and the matched event per subscription, for
every subscribed user. This file is also a XML document, and a sample of this
file is presented in appendix B. If the last function fails to locate the username of
the user posted the subscription in the User Log file, a NoSuchUserException is
thrown and if the User Log file is for any reason unreadable, a LogFileException
is raised. If none of the above, thread finishes normally and suspends.

5.3.3 Event request handling

Each event handling thread must first acquire a read access to the Prediacate-
Cluster in order to continue processing the event. After that, the event XML
document is parsed in an array of java.lang.String and passed as argument to
the native function String [] CountingAlgorithm(String [][]). The latter is the
function implementing the Counting algorithm and is written in C++. As ex-
pected, this function matches the given event with the subscriptions currently in
the PredicateClusters, and returns an array of java.lang.String containing the
subscriptions ids matched (if any). The next step is to browse through the User
Log file and add the matched event to each statisfied user subscription speci-
fied by the subscription id. If the User Log file is anyhow unreadable, or if no
such user or no such subscription exists in User Log file as those specified by the
subscription ids, then a LogFileException, NoSuchUserException or NoSuch-
SubscriptionException is thrown respectively.

5.4 Web application implementation

For system evaluation and demonstration, a web application was build. This
application considers the eBay[6] auction site and integrates it with an event

33

Final Year Thesis System Implementation

notification mechanism. The application built, applies the notification mechanism
on the eBay cars8, which has thousands of auction items (cars). The purpose
of this application is to enable users, with the use if a web interface, to post
subscriptions and keep track of auction items put up on the eBay site. The
application we ipmplemented is composed of two distinct components, the eBay
parser and the Web Interface.

The eBay parser, is a set of JAVA classes which can be executed locally or
remotely, the purpose of which is to access periodically the eBay auction site
and post the eBay events to the Event Notification system. Upon eBay parser
application startup, the eBay cars HTML index page is parsed, in which all the
brands and models are listed. This information is used in order to build the IE
schema and the DTDs over which the events are going to be posted. Then, for
every eBay cars auction item, a new XML event is formed and posted to the
Event Notification system.

The web interface enables users to publish subscriptions and events, as well
as extend the IE schema to support additional event types, attributes and value
domains. Not all functionalities are available to guest users, so a non subscribed
user can publish events and extend the schema, while in addition, a subscribed
member has his own subscription and matched event repository stored. The
interface was build with the use of JSP (JavaServer Pages) and Java Servlets.

In succession, some screenshots of the system with brief comments are pre-
sented.

Index page (non-member) In figure 5.5, the index page of the application is
shown. The options available to the user are, publish event, add domain,
add attribute, extend schema, add event, log in and subscribe.

Index page (member) In figure 5.6 is the index page of the application avail-
able only to subscribed members. In addition to the non-member index
page, the publish subscripton, log off, satisfied, my subs options are avail-
able. The last two options are links to the matched events per subscription
and the posted subscriptions repository page of the user, respectively.

login page This page shown in figure 5.7, is the login page of the system, where
the user is prompted for username and password. On successful login, the
user is redirected to the index page (member), else to index page (non-
member).

subscribe page As presented in figure 5.8, the user is prompted for username,
password and password confirmation. The fields are checked with JavaScripts
and only alphanumeric usernames at least 5 digit long are valid.

8subset of eBay site

34

Final Year Thesis System Implementation

Add domain page As we see in figure 5.9, the user can post a new domain
request by choosing the domain value type from a drop-down list and the
set of operators associated with that domain from a combo box. If the
domain chosen is of enumerated type, the user fills a text area with comma
separated values specifying the domain value range.

Add attribute page In this page, the user can post a new attribute request by
giving the name and the value domain for this attribute . If the attribute
name already exists in the IE schema, the user is informed with an error
page. The add attribute page is presented in figure 5.10.

Extend event schema pages The extension of an event’s schema, is a two
phase operation and is completed in two pages. In the first page (figure
5.11), the user chooses which event type wish to extend and in the second
page (figure 5.12) chooses one or more attributes to add to the schema.

Add event page As shown in figure 5.13, the user can create a new event type
by giving a name to the event and specifying one or more attributes to
build it’s event schema. If an event with the same name already exists in
the schema the user is informed with an error page.

Post event Pages The event posting is a two step operation completed in two
pages. In the first page, the event type (or types) of the event is specified
and in the second page the attribute values are given. The user must fill all
mandatory fields. The second page of the operation is illustrated in figure
5.14

Publish subscription pages As pointed out above, this operation is available
only to subscribed users. As in event posting, the user first chooses the event
type (or types) of the event and then specifies the values and comparison
operators of the attributes.The second page of this operation is shown in
figure 5.15.

Matched events page In figure 5.16 is shown the page where the matched
events per published user subscription are presented.

Published subscriptions page Figure 5.17 illustrates the page where the user
can see and manage his subscriptions. The user can delete a subscription
in which has no longer interest.

5.5 Client application implementation

The client application Java code, implements a distinct process which connects
to the server port and posts events and subscriptions in various rates. Uppon

35

Final Year Thesis System Implementation

Figure 5.5: Index page (non member)

Figure 5.6: Index page (member)

36

Final Year Thesis System Implementation

Figure 5.7: Login page

Figure 5.8: Subscribe page

37

Final Year Thesis System Implementation

Figure 5.9: Add domain page

Figure 5.10: Add attribute page

38

Final Year Thesis System Implementation

Figure 5.11: Extend event schema page

Figure 5.12: Extend event schema page(cont’)

39

Final Year Thesis System Implementation

Figure 5.13: Add event page

Figure 5.14: Post event page

40

Final Year Thesis System Implementation

Figure 5.15: Publish subscription page

Figure 5.16: Matched event page

41

Final Year Thesis System Implementation

Figure 5.17: Posted subscription page

client startup, a client daemon thread is spawned which in a while loop posts
request in a ratio of ten events per subscription. In every while iteration, a new
socket is created, connects with the server process and randomly either a new
subscription is created or a new event.

A new subscription XML document is created by calling the
NewRandomSubscription() function provided by the thesis.post. Post class.
This function parses the XML IE schema (provided in appendix A) and randomly
selects an event type. For each attribute in the event type schema, an operator
and value is chosen randomly from its domain. If the domain is of String type,
there are 150 possible values and only the contains operator is available. The
attributes with domain type numeric can take any value in the field {0,2000},
and can have all the standard comparison operators. Finally, the enumerated
valued attributes, take random values from a value set specific to each enumerated
domain and can appear in equal and not equal predicates.

Thesis.post.Post class also provides the NewRandomEvent() function, which
returns a new event XML document. The document is build in the same manner
that the subscription documents are build. Namely, after the IE schema is parsed,
an event type is randomly chosen. Then for each attribute appearing in that
events schema, a random value is given from the attribute value domain.

42

Chapter 6

Using the API

An event notification mechanism can be applied in a very wide range of appli-
cations, the purpose of which are to handle the dynamic aspect of the Web and
notify users when interesting events occur. These may vary from stock market
updates, weather reports, airplane tickets and other type of information which
are highly dynamic and where the searching, quering and retrieving information
approach cannot be efficiently applied.

In this context, a demonstration application was built to illustrate the Event
Notification API usage. We consider the eBay[6] auction site, in which every day
a large number of auction items are put up, and present how it can be integrated
with an event notification mechanism. We will give in details the procedure to
integrate the eBay auction site with an event notification mechanism, which is
not exactly the procedure followed in the demonstration application, since access
to the eBay database was not available. In order to have the eBay auction items
for the demo application, the HTML pages of the site had to by parsed.

6.1 eBay auction site

The eBay[6] auction site is among the most popular auction sites in the Web
with thousands of new auction items being put up every day and thousand of
users bidding or selling items. eBay sites are currently available in 21 different
countries worldwide, each one having distinct databases of users and auction
items. In Figure 6.1 we have a quite simplified overview of the eBay site, only
illustrating the query and subscribe mechanism of the site. eBay supports only
simple string queries over the items which makes finding an item with specific
charateristics quite difficult. So, finding an item of interest is not a trivial task
considering the huge number of items available and most times more the one
queries must be done to narrow down and particularize the results. Moreover, an
user may be interested in participating in auctions in distict eBay sites. In this
case, the user not only has to repeat queries in each eBay site he is interested in,

43

Final Year Thesis Using the API

Figure 6.1: eBay auction site

but he has to face with interfaces in different languages.

6.2 eBay auction site(Event Notification inte-

grated)

In figure 6.2 is represented the eBay auction site with the use of the Event No-
tification API. As we see in Figure 6.2, the integrated eBay auction site has the
quering functionality which eBay already supports plus the event notification
functionality added with the API. This functionality enable users to have long
lasting queries, which means that an user instead of repeating his queries until
an event of interest occurs, he just submits queries in form of subscriptions and
he is notified when an auction item matches a subscription.

The integration of the site with the notification mechanism is done in two
simple steps, which are the installation of the Event Notification server daemon
and the extention of the eBay aution site with an interface for event posting,
subscribing and extending the IE Schema .

6.2.1 Installing the Event Notification Server daemon

One of the reasons that JAVA language is very popular among developers for
building Web applications is the code portability. In the application we build,
we had to face a dilemma about choosing between code portability and matching
algorithm efficiency. The solution was obvious, because the system should be

44

Final Year Thesis Using the API

Figure 6.2: eBay auction site using Event Notifucation API

efficient enough to cope with high rate of events and large number of subscriptions
and this could only be achieved if the matching algorithm was implemented in an
efficient language like C++. This fact allows the installation of the Notification
Server daemon only in Linux environments. Moreover, for the reason that the
Counting Algorithm is a main memory algorithm the Event Notification daemon
must be installed and run in a Linux workstation1 with sufficient CPU speed and
RAM, propotional to the number of users expected to use the functionality.

If the above requirements are met, installing and running the daemon, is a
very simple task. First, the thesis.jar JAR file must be copied in the installa-
tion directory and then the deamon can be excecuted with the java -jar the-
sis/server/NotificationServerDeamon -port -dir command. The -jar option enables
the execution of a class encapsulated in a jar file, the -port option specifies the
port the server listens for requests while the -dir option specifies the directory in
which the User Log and IESchema XML files will be stored.

6.2.2 Extend eBay site

The eBay auction site must be extended with an comprehensive and user-friendly
Web interface, through which the notification functionality will be available to
subscribed members. An user, who is subscribed for event notification service,

1Not neccessary in the same computer the eBay site is in.

45

Final Year Thesis Using the API

should be able to add a value domain, add an attribute ,add an event type,
extend an existing event schema, post an event, publish a subscription, view
posted subscriptions and view matched events. Each one of the above operations
can be performed from the corresponding Web pages listed below.

add a value domain page In this page, the user should be prompted to choose
an value domain from the string, numeric and enumerated value domains
currently supported. Also the set of operators over this domain should be
selected from the user. In the case of enumerated domains, also a text field
should be filled with comma seperated values, specifying the value universe
of the enumerated domain. In the end, the public static org.jdom.Document
thesis.create.AddDomain(String type, List opers, List enumer) function must
be called, which returns an org.jdom.Document object, which represents the
XML request. opers and enumer lists are String lists holding the operators
and the enumerated values (in case of enumerated domain) respectively.

add a new attribute page In this page, the user should be able to add a new
attribute by specifying the name and the domain of this attribute. The
name should be given in a text field, while the domain should be choosen
from a drop-down list, holding all the available domains. Reading the avail-
able domains from the IE Schema, is done with the use of the public static
List thesis.schema.DomainListWeb() function which returns a list of domains.
Finally, the public static org.jdom.Document thesis.create.AddAttribute(String
name , String domain) should be called, which returns the request object.

add an event schema page This page should enable the user to add a new
event in the IE Schema. This could be done by prompting the user to give
a name for the new event and give one or more attributes, from those
available in the attribute respository, to make up the new event type.
mandatory and unique notations for each attribute must also be speci-
fied by the publisher. The function which reads the attributes from the
IE Schema is the public static List thesis.schema.AttrListWeb(). Finally the
public static org.jdom.Document AddEventType(String type , List attributes
) should be called, taking as parameters the new event name, and a list of
thesis.structs.attribute class objects.

extend an event type page In this page, the user should be able to extend
the event schema of an existing event type. This could be done by first
choosing the event type which he wish to extend and then adding one or
more attributes to this event type, not currently in its schema. The XML
IE Schema is parsed for the available event types with the public static
List thesis.schema.EventListWeb(). In the end, the public static Document
ExtendSchema(String event , List attributes) function should be called.
attributes is an thesis.structs.attributes class objects list.

46

Final Year Thesis Using the API

post an event page In this page the publisher should be able to choose the
event type or types which best describes his event. Then he should fill a form
which contains the event attributes (if one event type is chosen), or conjuc-
tion of the events attributes (if multiple events are chosen). Each attribute
should have a mandatory and unique notation. The former ranging over
values in {mandatory, optional}, which specifies whether a field is manda-
tory to be filled or not. The latter ranging over values in {unique, multiple},
which determines if the attribute can take one or multiple values. The func-
tion which returns the attributes for each event type in a list is public static
List thesis.schema.EventListWeb(String eventType). The org.jdom.Document
object is created by calling the public static org.jdom.Document PublishEvent(
List eventTypes, List attributes), taking two JAVA lists as parameters hold-
ing the event type (or types) of the event and the attributes of the event.

publish a subscription In this page the operation of subscription posting must
take place. During this procedure the user should be first promted to signify
the event type (or event types) in which is interested in posting the sub-
scription. Then he should fill a form which contains the event attributes (if
one event type is chosen), or conjuction of the events attributes (if multiple
events are chosen). A subscription should be a set of triples of the form
(attribute name, operator, attribute value). A form should be valid if at
least one such triple is defined. In every subscription posted by a user, the
User Log file will be updated which holds all the subscriptions published
by the subscribers. To form an org.jdom.Document from the information
collected, the public static org.jdom.Document PublishSub(List eventTypes,
List subAttributes) should be engaged. This functions parameters are two
JAVA lists, the first holding the event type (or types) of the subscription,
while the second holds the thesis.structs.subAttributes class objects.

view posted subscription page In this page, all the subsctipions posted by
the user should be presented. The subscriptions posted by each user are
kept in the User Log XML file and can be accessed by the public static
java.util.List thesis.schema.subscriptions(String user) function which returns
a list of thesis.structs.triple class objects. Moreover, the user should able
to delete a subscription. This is done with the public static void the-
sis.schema.seleteSub(String subID)

view matched events page In this page, all the events matched by user sub-
scriptions must be listed. This is done with the public static List the-
sis.schema.matchedEvents(String user) function which returns a list of the-
sis.structs.event class objects.

After every request creation, the public static void thesis.post.postRequest(
org.jdom.Document request) function should be called, which is responsible for

47

Final Year Thesis Using the API

forming an XML request from the org.jdom.Document object and posting it to
the Event Notification daemon.More information about the classes and functions
of the API can be accessed with the javadoc tool.

48

Chapter 7

Counting Algorithm
Implementation

The counting algorithm corresponds to a set of C++ classes and functions com-
piled and linked in the shared library libCounting.so. This library is linked
dynamically with the NotificationServer code on server startup through Java
Native Interface (JNI), which provides a convenient and easy way for integrating
Java with native code. This is very useful for time critical applications because
allows part of code (like algorithms) that the excecution time is an important
factor, to be implemented in more efficient languages (like C++). The declara-
tion of the native functions in the Java code is similar to the plain Java functions
except the additional native keyword preceding each method1.

The Counting algorithm has four distinct phases, the pre-processing, the
matching, the hit-applying and the counting phase. The first corresponds to
the execution of the native function UpdateClusters(String [][]) which is engaged
when a new subscription arrives, while the other three correspond to the execu-
tion of the native function String [] CountingAlgorithm(String [][]) which is called
after a new event reaches the server.

7.1 Pre-processing phase implementation

In this phase two in-memory structures are kept and updated by the Update-
Clusters(String [][]) function. The first structure called PredicateClusters, as
shown in Figure 7.2, consists of six hash tables of vectors, the EqPred, LessPred,
LessEqPred, GreaterPred, GreaterEqPred and the ContainsPred hash table, which
hold the equality, less, less equal, greater, greater equal and contains predicates
respectively. Each predicate is represented by an Predicate class entry in Pred-
icateClusters structure. The Predicate class has four fields to store the name,
operator, value and domain of the predicate. The contains predicates have an

1no function body is given in this context

49

Final Year Thesis Counting Algorithm Implementation

Figure 7.1: Predicate to subscription association table

additional field which is a vector holding comma, space and dot separated tokens
of their value. This is useful when the value of a predicate is of string type. The
usage of this vector becomes clear below.

The second structure called PredToSub, as illustrated in Figure 7.1, is an
association table which holds the mapping between the predicates and the sub-
scriptions they appear in. It also consists of six hash tables of vectors, the EqPred,
LessPred, LessEqPred, GreaterPred, GreaterEqPred and the ContainsPred hash
table.

As described in 5 chapter, when a new subscription comes, it is decomposed
in predicates and is sent to the native function UpdateClusters(String [][]) as an
array of attribute, operator, value triples. Then, each predicate is hashed with
the hash code returned from the int HashFunction(char *name) function, to the
appropriate hash table of the PredToSub structure, according to its operator. If
an identical predicate entry is already in that vector, the subscription in which
the predicate was found is added to the list of the subscriptions the predicate
was found so far, else a new predicate entry is made in the vector containing the
predicate name, value and the subscription in which it appeared. In the first
case, where a predicate is already in the PredToSub structure, no new entry has
to be done to the PredicateClusters, because each predicate is stored only once.
In the second case however, the predicate is hashed to the appropriate hash table
of the PredicateClusters structure and a new entry is added to the corresponding
hash table vector.

50

Final Year Thesis Counting Algorithm Implementation

Figure 7.2: Predicate Clusters representation

7.2 Matching phase implementation

When a new event reaches the server a sequence of actions occur in order to be
processed. As already discused in previous chapter, after the XML event is parsed
and decomposed in predicates, is send to the native function CountingAlgorithm(
String [][]) as an array of attribute, value pairs. Then, each pair is given as input
to the equalpredmatch(pair p), lesspredmatch(pair p), lesseqpredmatch(pair p
), greaterpredmatch(pair p), greatereqpredmatch(pair p) and containspredmatch(
pair p) functions, which are responsible for matching each pair with the equality
(and non equality), less, less equal, greater, greater equal and contains predicates
in the PredicateClusters respectively.

The equalpredmatch(pair p) function searches, for each event’s pair p, the
predicate with the same value as the p value in the equality cluster associated
to the attribute hash code. Each cluster of equality predicates is kept suitably
ordered by adding new elements with a binary insertion algorithm. If a predicate
with the same value is found is inserted in a vector called satisfiedPredicates.

The lesseqpredmatch(pair p) searches, for each event’s pair p, the predicate
with the greatest value less than or equal to the p value in the less than equal
cluster associated to the attribute hash code. After having found this predicate,
we know that all predicates that are placed before (while predicates are stored in
increasing order) are also satisfied by the event. We use a binary search algorithm
to find the predicate with the greatest value less than or equal to the p value.
The greatereqpredmatch(pair p) function is similar to lesseqpredmatch(pair p).
The predicates satisfied by the p value are stored in the satisfiedPredicate vector.

The lesspredmatch(pair p) function searches, for each event’s pair p, the pred-

51

Final Year Thesis Counting Algorithm Implementation

icate with the greatest value less but not equal to the p value. Since predicates are
kept ordered with a binary algorithm, all the predicates below the one found are
also satisfied. The greaterpredmatch(pair p) algorithm works in a similar way. If
satisfied predicates found by the p value, they are added to the satisfiedPredicate
vector.

The containspredmatch(pair p) function works a little bit different from the
other functions. As illustrated above, each Predicate class entry of the Predicate-
Clusters structure, has a vector field which holds comma, space and dot separated
tokens of the predicate value. The matching of each events pair p with a contains
predicate, is not done by comparing the two values, but by searching for each
token in the Predicate tokens vector for a matching pattern in the p value. If one
is found then the predicates is satisfied by p and is stored in the satisfiedPredicate
vector.

The matching of each pair to the corresponding hash table vector, is done by
comparing the hash code of the pair value, with the hash code of each predicate
value in the PredicateClusters. In comparisons, we choose the hash code of the
value instead of the value itself, because the hash code permits numeric operations
regardless of the value type2.

7.3 Hit applying phase implementation

For the hit applying phase, a new structure needs to be used. This structure, is a
vector of subscription classes and is called satisfiedSubscription. The subscription
class has three fields, the subscriptionID field, which holds the subscription unique
id, the NumberOfPredicates, which holds the number of predicates found in the
subscription and the HitCount field, which is initialized to zero and its purpose
is discussed in details below.

In this phase, we need to count the number of predicates satisfied for each
subscription in the matching phase of the algorithm. This is implemented by
applying a hit to every subscription having a satisfied predicate. So, for each
predicate in SatisfiedPredicates, a binary search is performed in the PredToSub
in order to find the subscriptions in which each predicate exists. For each sub-
scription found, either a new entry is added in the satisfiedSubscriptions vector
and the HitCount is set to one, or, if there is already an entry in the satisfied-
Subscriptions with the same subscriptionID, then the HitCount of that entry is
increased by one.

2numeric, enumerated, string.

52

Final Year Thesis Counting Algorithm Implementation

7.4 Counting phase implementation

In the last phase of the algorithm, we just traverse through the satisfiedSubscrip-
tions vector and compare the values of the NumberOfPredicates and HitCount
fields of each entry. If the two numbers are equal, then the event has satisfied the
specific subscription, as all the predicates of the specific subscription are matched
by the event.

The String [] CountingAlgorithm(String [][]) native function returns an array
of subscription ids of the subscriptions satisfied by the event processed.

7.5 Algorithm snap-shots

Suppose a senario of three subscriptions s1, s2 and s3 being posted to the system,
where

s1 = {(a>6), (b=6), (c<12)},

s2 = {(a>6), (d=7},

s3 = {(d=7, (e<3)}

The subscriptions are then processed by the counting algorithm. In the pre-
processing phase of the algorithm the subscriptions are decomposed in their ele-
mentary predicates. So we have :

s1 =⇒ p1 : (a>6), p2 : (b=6), p3 : (c<12),

s2 =⇒ p1 : (a>6), p4 : (d=7),

s3 =⇒ p4 : (d=7), p5 : (e<3)

Identical predicates share the same number.

In Figure 7.3 we have a snap-shot of the PredToSub struct after predicates
insertion. Each predicate is inserted only once and is associated with the sub-
scriptions it appears in. Each predicate is inserted in the appropriate cluster with
respect to the operator it appears in and hashed to a vector according to its name
hash code. Vectors are kept sorted with a binary insertion algorithm.

Figure 7.4 presents Predicates struct after predicate insertion. Each predicate
is inserted to a cluster specific to its comparison operator and then hashed to a
vector according to its operator. Predicates are inserted to vectors with a binary
insertion algorithm. In this point, the pre-processing phase is complete.

Lets now see how a new event e = {(c,8), (e,0), (d,9)} is handled by the
counting algorithm. Event e is decomposed to pairs (c,8), (e, 0) and (d,9).

53

Final Year Thesis Counting Algorithm Implementation

Figure 7.3: PredToSub clusters struct snap-shot

Then each pair of e is matched against predicates in Clusters struct, as described
in 7.2. To repeat briefly, each event pair is hashed to the appropriate cluster
vector according to its operator and name hash code. Then, predicates satisfied
by the event pair are found with a method based on binary search and stored
in SatisfiedPredicate vector. Snap-shot of SatisfiedPredicate after all events pair
evaluation is shown in Figure 7.5.

In this point, from the set of satisfied predicates we must specify the satisfied
subscriptions. For this phase, one additional structure is needed called Satisfied-
Subscriptions. For every predicate in SatisfiedPredicate vector, we run through
PredToSub structure and find the subscriptions in which the satisfied predicate
appeared3. For each subscription found, depending on if there is already a sub-
scription entry in SatisfiedSubscriptions vector with the same id or not, either
a new entry is made to the SatisfiedSubscriptions vector and the entry variable
Hits count is initialized to one or the Hits count variable of the subscription
entry already in the SatisfiedSubscription vector is increased by one. After this
process the SatisfiedSubscriptions vector is as illustrated in Figure 7.7.

3Figure 7.6 illustrates the data structs of PredToSub structure.

54

Final Year Thesis Counting Algorithm Implementation

Figure 7.4: Predicates clusters struct snap-shot

Finally, SatisfiedSubscriptions vector is traversed and every subscription found
having the Hits count and # of predicates variables equal is returned as sat-
isfied, because all subscription predicates are satisfied.

55

Final Year Thesis Counting Algorithm Implementation

Figure 7.5: SatisfiedPredicate vector snap-shot

Figure 7.6: PredToSub data structs

56

Final Year Thesis Counting Algorithm Implementation

Figure 7.7: SatisfiedSubscriptions vector snap-shot

57

Chapter 8

Running Simulation

In this chapter are shown the experimental results of performance tests of the
matching algorithm with a variety of work loads. The performance results dis-
cussed bellow are performed on a single-CPU Pentium workstation with a i686
CPU at 550MHZ and 256MB RAM running Linux. The generation of events and
the excecution of the matching algorithm are handled by two distinct processes
running in the same machine. The first process sends a set of events to match to
the second process in a rate of 20 events/sec. This one excecutes the matching
algorithm and sends the result back to the first process. The result is represented
by an array of matched subscription ids per event. Both processes correspond to
the execution of JAVA programs.

8.1 Random subscription generation

In what concerns the generation of subscriptions, they are randomly generated
assuming the IE schema of Appendix A. So, every subscription generated, has
an equal probability in appearing in each one of the five event types of the sam-
ple IE schema, used for the simulation. Every events schema, consists of four
mandatory and one optional attributes. A subscription belongs in one event type
and all the event type’s attributes are present in each subscription. Each sub-
scription predicate can take value and operator uniformly distributed over their
value domain and operator set respectively.

The values with domain type string, have 150 possible values and can appear
only in contains predicates. The values with domain type numeric can take any
value in the field {0,2000}, and can have all the standard comparison opera-
tors. Finally, the enumerated valued attributes, take random values from a value
set specific to each enumerated domain and can appear in equal and not equal
predicates.

58

Final Year Thesis Running Simulation

8.2 Random event generation

The Random event Generator represents a distinct Java program which runs
localy and its purpose is to post events and subscriptions to the Notification
server, under various work loads and in various rates. So, with the use of this
client application we can evaluate the matching performance of the algorithm for
various subscription numbers, and of course to evaluate the algorithm correctness.

Performance evaluation In order to evaluate algorithm’s performance, the
client must be able to send subscriptions and events in a high rate. In-
deed, the client sends subscriptions and events in a rate of 20 per second.
The client application generates random subscriptions with respect to a
sample schema of Appendix A.

Correctness evaluation The client has a second mode of operation, in which
the user can see the results of the matching process in a terminal. The
purpose of this operation is basically for debugging and used during the
algorithm development stage.

Every event generated, has an event type randomly chosen between the five
available event types of the sample IE schema of Appendix A. Each event can ap-
pear in any of the event types of the sample IE schema 1. Every events schema,
consists of four mandatory and one optional attribute, which take values uni-
formly distributed over their value domain.

8.3 Evaluate results

The processing of an event is the sum of the excecution time of the matching
algorithm plus the communication time between the Java and C++ program. In
the following figures the communication time is not taken into account, and only
the excecution time of the Counting Algorithm2 is evaluated.

8.3.1 Evaluate event matching

As shown in Figure 8.1, the Counting algorithm performance is close to linear,
which makes it quite predictable and efficient for environments with high event
rates and large number of subscriptions. Moreover, Counting Algorithm is a
predicate based algorithm and its efficiency depends on the high redundancy of
predicates, because (unlike the naive approach) does not reevaluate redundant
predicates. So, taking into account that a number of subscriptions very large
compared to the size of attribute domains incurs in a high predicate redudancy

1Just like in random subscription creation, discussed above.
2The C++ program.

59

Final Year Thesis Running Simulation

Figure 8.1: Event processing results

and the fact that this is true in the web context where many enumerated values
are manipulated (e.g. categories, names, locations), we conclude that Counting
Algorithm is an algorithm suitable for the Web.

8.3.2 Evaluate new subscription processing

For the reason that a new suscription processing involves writing to the predicates
hash table, neither any other new subscription can be processed concurrently, nor
can an event have read access to the predicate table in order to be matched, for
as long the subscription is updating the table. So, for the overall performance of
the algorithm, it is critical that the processing of a new subscription is efficiently
implemented.

As shown in Figure 8.2, the predicate table updating with a new subscription
is very fast. It is very interesting to note that the insertion time of a new subscrip-
tion is not always proporsional to the subscriptions already in the table. That
is fairly reasonalbe, considering the redundancy of the predicates. So, when a
subscription insertion time is low, we have to assume that most of the predicates
in the subscription were already in the table.

60

Final Year Thesis Running Simulation

Figure 8.2: Subscription processing results

61

Chapter 9

Conclusions

The system we present in this work is an implementation of the system proposed
in [22], called Le Subscribe. The main features of this system are an event model
which permits easy representation and integration of the information published
on the Web; a subscription language supporting the most usual queries while
being quite expressive; A matching algorithm which integrates well with high
rate of events and a large number of subscriptions; An easy to use API enabling
easy integration of existing systems with an event notification mechanism.

Of course, the core feature of the system is the Counting algorithm. The
charateristics which makes it very efficient for the Web context are that it is a
main memory algorithm and predicate based. The first means that no access to
secondary storage is necessary, while an in-memory structure is kept holding the
subscriptions predicates while the events are proccessed on the fly. The second
charasteristic means that the algorithm is pure predicate based, applying a global
optimization strategy by exploiting the predicate redudancy.

Moreover, the XML event and subscription matching against the publication
schema is performed upon XML parsing with the use of DTD files. The DTD
files are automatically rearranged on every IE schema modification operation.

All these features are available through a simple API which enables easy
integration of a system to use Event Notification mechanism. The API is fairly
lightweigth, multithreaded and the time critical parts of the code are implemented
in native functions for efficiency.

Much work remains to be done in this context. Currently the subscription
language only supports subscriptions which are conjuctions of elementary pred-
icates. The language can be enriched with disjunctive queries. Moreover, in
addition with string, numeric and enumerated domains, hierarchical domains
could be supported. The hierarchical domain is an enumerated domain whose
elements are organized according to a hierarchy and is useful to depict categories
and subcategories1. Of course, a distributed version of the system can be easily

1This feature is supported in Le Subscribe

62

Final Year Thesis Conclusions

developed, based on XML communication between the decentralized servers.

63

Bibliography

[1] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R. Strom, and
D. Sturman. An efficient multicast protocol for content-based publish-
subscribe systems. In 19th International Conference on Distributed Com-
puting Systems (19th ICDCS’99), Austin, Texas, May 1999. IEEE.

[2] D. Bertsekas and R. Gallager. Data Networks. Prentice Hall, 1987.

[3] A. Carzaniga, D.S. Rosenblum, and A. L. Wolf. Achieving scalability and
expressiveness in an internet-scale event notification service. In Proceed-
ings of the 19th ACM Symposium on Principles of Distributed Computing
(PODC’2000), pages 219–227, 2000.

[4] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Design
and evaluation of a wide-area event notification service. ACM Transactions
on Computer Systems, 19(3):332–383, 2001.

[5] Arvola Chan. Transactional publish/subscribe: The proactive multicast of
database changes. In Proceedings of the ACM SIGMOD International Con-
ference on Management of Data (SIGMOD-98), volume 27,2 of ACM SIG-
MOD Record, pages 521–521, New York, June 1–4 1998. ACM Press.

[6] eBay Inc. http://www.ebay.com.

[7] IONA Technologies. OrbixTalk. http://www.iona.com/products/messaging/index.html.

[8] F. Fabret, F. Llirbat, J. Pereira, and D. Shasha. Efficient matching for
content-based publish/subscribe systems. Technical report, INRIA, 2000.
http://www-caravel.inria.fr/pereira/matching.ps.

[9] Françoise Fabret, H. Arno Jacobsen, François Llirbat, João Pereira, Ken-
neth A. Ross, and Dennis Shasha. Filtering algorithms and implementation
for very fast publish/subscribe systems. SIGMOD Record (ACM Special
Interest Group on Management of Data), 30(2):115–126, 2001.

[10] A. Galardo-Antolin, A. Navia-Vasquez, H.Y. Molina-Bulla, A.B. Rodriquez-
Gonzalez, F.J. Valvarde-Albacete, A.R. Figueiras-Vidal, T. Koutris,

64

Final Year Thesis Conclusions

A. Xiruhaki, and M. Koubarakis. I-Gaia: an Information Processing Layer
for the DIET Platform . In Proceedings of the 1st International Joint Confer-
ence on Autonomous Agents & Multiagent Systems (AAMAS 2002), pages
1272–1279, July 15–19 2002.

[11] R. Gruber, B. Krishnamurthy, and E. Panagos. The architecture of the ready
event notification service, 1999.

[12] E. N. Hanson. A predicate matching algorithm for database rule systems,.
Technical Report WSU-CS-90-01, Washington State University, 1990.

[13] Cefn Hoile, Fang Wang, Erwin Bonsma, and Paul Marrow. Core specifi-
cation and experiments in DIET: a decentralised ecosystem-inspired mobile
agent system. In Proceedings of the 1st International Joint Conference on
Autonomous Agents & Multiagent Systems (AAMAS 2002), pages 623–630,
July 15–19 2002.

[14] Amazon.com Inc. http://www.amazon.com.

[15] Yahoo! Inc. http://auctions.yahoo.com.

[16] M. Koubarakis, T. Koutris, P. Raftopoulou, and C. Tryfonopoulos. Infor-
mation Alert in Distributed Digital Libraries: The Models, Languages and
Architecture of DIAS. In Proceedings of the 6th European Conference on
Research and Advanced Technology for Digital Libraries (ECDL 2002), vol-
ume 2458 of Lecture Notes in Computer Science, pages 527–542, September
2002.

[17] P. Marrow, M. Koubarakis, R.H. van Lengen, F. Valverde-Albacete,
E. Bonsma, J. Cid-Suerio, A.R. Figueiras-Vidal, A. Gallardo-Antolin,
C. Hoile, T. Koutris, H. Molina-Bulla, A. Navia-Vazquez, P. Raftopoulou,
N. Skarmeas, C. Tryfonopoulos, F. Wang, and C. Xiruhaki. Agents in De-
centralised Information Ecosystems: The DIET Approach. In M. Schroeder
and K. Stathis, editors, Proceedings of the AISB’01 Symposium on Informa-
tion Agents for Electronic Commerce, AISB’01 Convention, pages 109–117,
University of York, United Kingdom, March 2001.

[18] H. McLaughlin, J. XML, and w JDOM.

[19] D. Megginson. “SAX 2.0: The Simple API for XML”. Web page, May 2000.
http://www.megginson.com/SAX/index.html.

[20] New Era of Networks Inc. NEONet. http://neonsoft.com/products/neonet.html.

[21] New Era of Networks Inc. NEONRules.
http://neonsoft.com/whitepapers/MQSIRules.html.

65

Final Year Thesis Conclusions

[22] João Pereira, Françoise Fabret, François Llirbat, Radu Preotiuc-Pietro, Ken-
neth A. Ross, and Dennis Shasha. Publish/subscribe on the Web at ex-
treme speed. In Amr El Abbadi, Michael L. Brodie, Sharma Chakravarthy,
Umeshwar Dayal, Nabil Kamel, Gunter Schlageter, and Kyu-Young Whang,
editors, VLDB 2000, Proceedings of 26th International Conference on Very
Large Data Bases, September 10–14, 2000, Cairo, Egypt, pages 627–630, Los
Altos, CA 94022, USA, 2000. Morgan Kaufmann Publishers.

[23] João Pereira, Françoise Fabret, François Llirbat, and Dennis Shasha. Effi-
cient matching for web-based publish/subscribe systems. In Conference on
Cooperative Information Systems, pages 162–173, 2000.

66

Appendix A

Sample IE schema XML file

<?xml version="1.0" encoding="UTF-8"?>

<IESCHEMA>

<A>

<VALUE>price</VALUE>

<VALUE>period</VALUE>

<VALUE>quantity</VALUE>

<VALUE>furniture_category</VALUE>

<VALUE>material</VALUE>

<VALUE>year</VALUE>

<VALUE>volume</VALUE>

<VALUE>brand</VALUE>

<VALUE>cc</VALUE>

<VALUE>artist</VALUE>

<VALUE>size</VALUE>

<VALUE>event_type</VALUE>

<ET>

<VALUE>antique</VALUE>

<VALUE>furniture</VALUE>

<VALUE>surf-board</VALUE>

<VALUE>car</VALUE>

<VALUE>painting</VALUE>

</ET>

<D>

<DOMAIN oid="1" type="numeric">

<OPER type="gt" />

<OPER type="lt" />

<OPER type="gteq" />

<OPER type="lteq" />

<OPER type="eq" />

67

Final Year Thesis Appendix A

<OPER type="noteq" />

</DOMAIN>

<DOMAIN oid="2" type="string">

<OPER type="contains" />

</DOMAIN>

<DOMAIN oid="3" type="enum" attr="bed-room ,living-room

,dining-room">

<OPER type="eq" />

<OPER type="noteq" />

</DOMAIN>

<DOMAIN oid="4" type="enum" attr="antique ,furniture ,

surf-board ,car ,painting">

<OPER type="eq" />

<OPER type="noteq" />

</DOMAIN>

<DOMAIN oid="5" type="enum" attr="wood ,carbon ,epox ,

polyester ,paper ,glass">

<OPER type="eq" />

<OPER type="noteq" />

</DOMAIN>

<DOMAIN oid="6" type="enum" attr="opel ,volvo ,bmw ,

seat ,renault ,mazda ,mini">

<OPER type="eq" />

<OPER type="noteq" />

</DOMAIN>

<DOMAIN oid="7" type="string">

<OPER type="contains" />

</DOMAIN>

</D>

<DOM>

<ATTR_DOM name="event_type" type="7" />

<ATTR_DOM name="price" type="1" />

<ATTR_DOM name="period" type="2" />

<ATTR_DOM name="quantity" type="1" />

<ATTR_DOM name="furniture_category" type="3" />

<ATTR_DOM name="material" type="5" />

<ATTR_DOM name="year" type="1" />

<ATTR_DOM name="volume" type="1" />

<ATTR_DOM name="brand" type="6" />

<ATTR_DOM name="cc" type="1" />

<ATTR_DOM name="artist" type="2" />

<ATTR_DOM name="size" type="1" />

</DOM>

68

Final Year Thesis Appendix A

<E>

<E_TYPE type="antique">

<E_ATTR mandatory="true" unique="true" domid="1"

type="price" />

<E_ATTR mandatory="true" unique="true" domid="2"

type="period" />

<E_ATTR mandatory="true" unique="true" domid="1"

type="quantity" />

<E_ATTR mandatory="flase" unique="true" domid="5"

type="material" />

<E_ATTR mandatory="true" unique="true" domid="1"

type="size" />

</E_TYPE>

<E_TYPE type="furniture">

<E_ATTR mandatory="true" unique="true" domid="1"

type="price" />

<E_ATTR mandatory="true" unique="true" domid="1"

type="quantity" />

<E_ATTR mandatory="false" unique="true" domid="3"

type="furniture_category" />

<E_ATTR mandatory="true" unique="true" domid="5"

type="material" />

<E_ATTR mandatory="true" unique="true" domid="1"

type="size" />

</E_TYPE>

<E_TYPE type="surf-board">

<E_ATTR mandatory="true" unique="true" domid="1"

type="price" />

<E_ATTR mandatory="true" unique="true" domid="1"

type="quantity" />

<E_ATTR mandatory="true" unique="true" domid="1"

type="year" />

<E_ATTR mandatory="false" unique="true" domid="5"

type="material" />

<E_ATTR mandatory="true" unique="true" domid="1"

type="volume" />

</E_TYPE>

<E_TYPE type="car">

<E_ATTR mandatory="true" unique="true" domid="1"

type="price" />

<E_ATTR mandatory="true" unique="true" domid="1"

type="quantity" />

<E_ATTR mandatory="true" unique="true" domid="1"

69

Final Year Thesis Appendix A

type="year" />

<E_ATTR mandatory="false" unique="true" domid="6"

type="brand" />

<E_ATTR mandatory="true" unique="true" domid="1"

type="cc" />

</E_TYPE>

<E_TYPE type="painting">

<E_ATTR mandatory="true" unique="true" domid="1"

type="price" />

<E_ATTR mandatory="true" unique="true" domid="1"

type="quantity" />

<E_ATTR mandatory="false" unique="true" domid="2"

type="period" />

<E_ATTR mandatory="true" unique="true" domid="5"

type="material" />

<E_ATTR mandatory="true" unique="true" domid="1"

type="size" />

</E_TYPE>

</E>

</IESCHEMA>

70

Appendix B

Sample log XML file

<?xml version="1.0" encoding="UTF-8"?>

<USER_LOG>

<USER username="sbile" password="sbileman">

<SUBSCRIPTIONS>

<PUBLISH_SUB id="1.0" username="sbile">

<EVENT_TYPE>

<VALUE type="car" oper="contains" />

</EVENT_TYPE>

<ATTRIBUTES>

<ATTR type="price" oper="gteq">3</ATTR>

<ATTR type="brand" oper="eq">bmw</ATTR>

</ATTRIBUTES>

<EVENTS>

<PUBLISH_EVENT contact="sbile@hotmail.com">

<EVENT_TYPE>

<VALUE type="car" />

</EVENT_TYPE>

<ATTRIBUTES>

<ATTR type="price">4</ATTR>

<ATTR type="quantity">1</ATTR>

<ATTR type="year">1</ATTR>

<ATTR type="cc">22</ATTR>

<ATTR type="brand">bmw</ATTR>

</ATTRIBUTES>

</PUBLISH_EVENT>

</EVENTS>

</PUBLISH_SUB>

</SUBSCRIPTIONS>

</USER>

<USER username="automatic" password="automatic">

71

Final Year Thesis Appendix B

<SUBSCRIPTIONS>

<PUBLISH_SUB id="1.0" username="automatic">

<EVENT_TYPE>

<VALUE type="car" oper="contains" />

</EVENT_TYPE>

<ATTRIBUTES>

<ATTR type="price" oper="gteq">4</ATTR>

<ATTR type="quantity" oper="eq">4</ATTR>

<ATTR type="year" oper="lt">1</ATTR>

<ATTR type="brand" oper="noteq">mazda</ATTR>

<ATTR type="cc" oper="gt">0</ATTR>

</ATTRIBUTES>

<EVENTS />

</PUBLISH_SUB>

<PUBLISH_SUB id="0.0" username="automatic">

<EVENT_TYPE>

<VALUE type="surf-board" oper="contains" />

</EVENT_TYPE>

<ATTRIBUTES>

<ATTR type="price" oper="lt">6</ATTR>

<ATTR type="quantity" oper="lt">6</ATTR>

<ATTR type="year" oper="gteq">0</ATTR>

<ATTR type="material" oper="noteq">epox</ATTR>

<ATTR type="volume" oper="gt">3</ATTR>

</ATTRIBUTES>

<EVENTS>

<PUBLISH_EVENT contact="sbile@intelligence.tuc.gr">

<EVENT_TYPE>

<VALUE type="surf-board" />

</EVENT_TYPE>

<ATTRIBUTES>

<ATTR type="price">5</ATTR>

<ATTR type="quantity">3</ATTR>

<ATTR type="year">6</ATTR>

<ATTR type="material">polyester</ATTR>

<ATTR type="volume">6</ATTR>

</ATTRIBUTES>

</PUBLISH_EVENT>

</EVENTS>

</PUBLISH_SUB>

</SUBSCRIPTIONS>

</USER>

</USER_LOG>

72

Final Year Thesis Appendix B

a Sample user log file with two registered users

73

Appendix C

XML requests and DTDs

Add domain XML request & DTD

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE ADD_DOMAIN SYSTEM

"intellix.intelligence.tuc.gr:8090/dtds/add_dom.dtd">

<ADD_DOMAIN>

<DOMAIN type="numeric">

<OPER type="eq" />

<OPER type="noteq" />

</DOMAIN>

</ADD_DOMAIN>

<!ELEMENT ADD_DOMAIN (DOMAIN)>

<!ELEMENT DOMAIN (OPER+)>

<!ATTLIST DOMAIN type (numeric |

string | enum) #REQUIRED>

<!ATTLIST DOMAIN attr CDATA "">

<!ELEMENT OPER EMPTY>

<!ATTLIST OPER type (eq | noteq

| gt | lt | gteq | lteq | contains) #REQUIRED>

Add attribute XML request & DTD

74

Final Year Thesis Appendix C

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE ADD_ATTRIBUTE SYSTEM

"intellix.intelligence.tuc.gr:8090/dtds/add_attr.dtd">

<ADD_ATTRIBUTE>

<ATTR_DOM name="artist" type="1" />

</ADD_ATTRIBUTE>

<!ELEMENT ADD_ATTRIBUTE (ATTR_DOM)>

<!ELEMENT ATTR_DOM EMPTY>

<!ATTLIST ATTR_DOM name CDATA

#REQUIRED>

<!ATTLIST ATTR_DOM type

(1 | 2 | 3 | 4 | 5 | 6 | 7) #REQUIRED>

Extent event schema XML request & DTD

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE EXTENT_SCHEMA SYSTEM

"intellix.intelligence.tuc.gr:8090/dtds/ext_scm.dtd">

<EXTENT_SCHEMA type="antique">

<E_ATTR unique="true" type="size" />

</EXTENT_SCHEMA>

<!ELEMENT EXTENT_SCHEMA (E_ATTR+)>

<!ATTLIST EXTENT_SCHEMA type (antique

| furniture | surf-board | car | painting) #REQUIRED>

<!ELEMENT E_ATTR EMPTY>

<!ATTLIST E_ATTR unique (true | false) #REQUIRED>

<!ATTLIST E_ATTR type (price | period | quantity

| furniture_category | material | year | volume | brand | cc

| artist | size | event_type) #REQUIRED>

Add event XML & DTD

75

Final Year Thesis Appendix C

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE ADD_EVENT SYSTEM

"intellix.intelligence.tuc.gr:8090/dtds/add_event.dtd">

<ADD_EVENT>

<E_TYPE type="paint">

<E_ATTR mandatory="true" unique="true" domid="1"

type="price" />

<E_ATTR mandatory="true" unique="true" domid="2"

type="period" />

<E_ATTR mandatory="true" unique="true" domid="2"

type="artist" />

<E_ATTR mandatory="false" unique="true" domid="1"

type="size" />

</E_TYPE>

</ADD_EVENT>

<!ELEMENT ADD_EVENT (E_TYPE)>

<!ELEMENT E_TYPE (E_ATTR*)>

<!ATTLIST E_TYPE type CDATA #REQUIRED>

<!ELEMENT E_ATTR EMPTY>

<!ATTLIST E_ATTR mandatory (true | false)

#REQUIRED>

<!ATTLIST E_ATTR unique (true | false) #REQUIRED>

<!ATTLIST E_ATTR type (price | period | quantity

| furniture_category | material | year | volume | brand

| cc | artist | size | event_type) #REQUIRED>

76

