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1 Introduction  
 

 Data Fusion is one of the active areas of research in many applications such as 

non-destructive testing (NDT), geophysical imaging, medical images, radio 

astronomy, military applications, etc. This technology enables the images from 

different sensors to be combined into a single image that has more information or 

information of a better quality than any of the individual images alone. For example, 

thermal infrared or millimetre-wave radar images can be combined with visual 

spectrum images to create a system that provides clearer pictures in poor visibility 

conditions. 

 Thesis research, with respect to the other fields of image fusion, deals with 

combining different sources of information from modern biomedical systems. 

Technological advances in medical imaging in the past two decades have enabled 

radiologists to create images of the human body and its internal structures with 

unprecedented resolution and realism. State-of-the-art CT, MR images, and other 

imaging devices can quickly acquire 3D images, and these images can further be 

computed to merge into a single volume thus combining the information of all 

modalities. The available computing power and sophisticated display software allow 

for the fused images to be captured on screen with both scientific authenticity and 

aesthetic worth.  

 Who should have Image Fusion? Not everyone needs image fusion. In most 

instances the diagnostic information from each individual study is sufficient. On the 

other hand, the need to register different imaging modalities arises for several reasons. 

Some anatomical details, especially soft tissues, are more easily seen in MR images 

than CT images, but the bony structures are better visualised by CT. Medical image 

fusion from the previous described medical systems has been applied to the diagnosis 

of breast cancer, colon cancer, cardiac studies, wrist and other injuries, inflammatory 

diseases and different neurological disorders including brain tumors, Alzheimer's 

disease and schizophrenia. This method has also been utilized in radiotherapy, mostly 

for brain tumors, and by cranio-facial surgeons to prepare for and simulate complex 

surgical procedures.  

 For that reason, the idea of image fusion processing between the MR and CT 

images is really seductive. Unfortunately, all the optical systems, electronic and 
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photometric sources, and generally all the measurement systems that obtain the 

diagnostic information to the human review, contribute to the degradation. 

Degradation, which includes the blurring as well as the noise consequence, affects 

inefficiently the images and generates problems to the characteristics of the objects 

that are represented in them. Historically, a large-portion of digital image processing 

activity has been devoted to avoid such a problem. Image restoration methods; aim to 

bring the image toward what it would have been if it had been recorded without 

degradation.     

 Interpolating the image restoration method between the raw data from the 

measurement systems and the image fusion application, incurs an efficient way to 

optimize the knowledge of the sources and to prepare the image fusion application 

with better quality images. 

  In Chapter 2, image restoration methods are performed in order to release the raw 

data from the degradation causes. In Chapter 3, the image fusion procedure is 

evolving, trying to combine images from different sensors into a single image. In 

Chapter 4, evaluation and discussion of our approach is attempted along with possible 

future directions. Finally, in Appendix A, we represent all the functions of our code 

that simulated the proposed image restoration and image fusion models.  

 Our work can be seen as an extension of Ali Mohammad-Djafari work, 

referenced in [8], towards probabilistic model based methods for data fusion. 

  In the following flow chart, we represent the steps that this thesis has performed. 

In the first step, the main strategy is to remove the degradation from the MR and CT 

images, given from the two measurement systems, with respect to the image 

restoration methods. Magnetic resonance and computed tomography images are 

restored separately with the independent and the joint restoration models, and the 

resulted images are the input sources for the next step. 

 In the next step the restored MR images are combined into a single image that has 

information of a better quality than any of the individual restored images alone. The 

same approaches occur in the case of the restored CT images. The goal is to have only 

one good quality CT image as well as a MR image. 

 In the final step, the fused magnetic resonance and computed tomography images 

are combined into a single image that contains high quality information about the 

bony structures and the anatomical data of the object corresponded in the images. 
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Figure 1:1 Thesis block diagram algorithm 

 

 Before we continue with the thesis presentation, it is essential to do a report in the 

problems that we have faced up. First, the duration of the thesis application has last 

for approximately one year. Through this year, lots of problems were produced and 

hopefully for us, have solved! The image fusion field is an open area of research 
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where lots of experimentations are possible. For that reason, we have speculated with 

different literature work based on image fusion, trying to upgrade the thesis image 

fusion procedure. Another problem was the design of our code. Note that the thesis 

code, written in C with the powerful tool of Microsoft Visual Studio and 100% by our 

own in the laboratories of the university, had to change a lot during the research in 

order to be reliable and fast.         
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2 Image restoration  
 

2.1 Introduction to image restoration 
 

2.1.1 General description  
 

 Restoration of single channel images is a relatively mature field, started back in 

the early 1970's, when digital computers were first making headway into the research 

laboratories. Since the publication of Digital Image Restoration by Hunt and Andrews 

in 1977 [1], restoration has been widely researched. There are basically two types of 

approaches to image restoration. Both approaches assume a degradation model as 

follows:  

 y h x n= ∗ +  (1) 

 Matrices y, x are the observed and original images, n is the additive random 

noise, and h is the degradation.  

 

2.1.2 Degradation causes 
 

 The degradations may have many causes, but two types of degradations are often 

dominant: blurring and noise.  

  Blurring is a form of bandwidth reduction of the image due to imperfect image 

formation process. It can be caused by relative motion between the camera and the 

original scene, or by optical system, which is out of focus. When aerial photographs 

are produced for remote sensing purposes, blurs are introduced by atmospheric 

turbulence, aberrations in the optical system, and relative motion between the camera 

and the ground. 

  In addition to these blurring effects, the recorded image is also corrupted by 

noises. This may be introduced by the transmission medium (e.g. a noisy channel), 

the recording medium (e.g. film grain noise), measurement errors due to the limited 

accuracy of the recording system and quantization of the data for digital storage. 
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  The field of image restoration (some times referred to as image de-blurring) is 

concerned with the reconstruction or estimation of the uncorrupted image from a 

distorted and noisy one. 

 

2.1.3 Estimation of the degradation 
 

  The problem of image restoration can now be mathematically stated as given y, 

find a best estimate of x, according to some optimality criterion. Restoration 

algorithms differ with respect to the amount of knowledge that is assumed known a 

priori. The simplest algorithms assume h is known exactly, as well as the statistics of 

the noise, n. If the degradation is not known, it can be estimated by a couple of 

different methods.  

 If the image is an astronomical image, then the blur can be calculated very easily 

by pointing the telescope at a point source. The observed image will not be a point, 

due to the degradation. Instead, the point will be blurry, which can then be used to 

mathematically estimate the degradation. In more general cases, different algorithms 

have been proposed in the literature to estimate the degradation (or, Point Spread 

Function, PSF).  

 

2.1.4 Related search for image restoration 
 

 The two general approaches for image restoration are stochastic (random) and 

deterministic (non-random) methods. Stochastic approaches assume that the original 

image is a realization of a random field, usually Gauss-Markov. Bayesian estimation, 

Maximum Entropy (ME), Maximum Likelihood (ML), and Maximum A Posteriori 

(MAP) approaches are specific types of stochastic methods. The other method, 

deterministic approaches, frequently uses constraints to make the restoration problem 

tractable. Popular methods are Projection Onto Convex Sets (POCS) and 

regularization.  
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2.1.5 Evaluation criterion  
 

 In most applications we assume that either a human interpreter or another image 

processing algorithm, such as segmentation or analysis procedure, will be using the 

image restoration result. It would be ideal if we had available an evaluation criterion 

or performance measure that corresponds to either human visual system or the 

requirements of the subsequent processing steps. Unfortunately, such criteria are 

hardly available, and the ones that are known are virtually impossible to use within 

the context of image restoration. Therefore restored images are usually subjectively 

evaluated by man or it could also be done by using signal-to-noise ratio improvement 

measures. 

 

2.1.6 Thesis parameters and input data 
  

 The processing results of the proposed image restoration methods are based on 

the quadratic constrained restoration approaches. Indeed, the degradation in our 

research is known by simulating each time the measurement system that produced the 

observed image from the original one. According to this, the first measurement 

system is assumed to have a 3x3 linear blurring response matrix and the second 

measurement system a 1x5 motion blurred matrix, which are described below. 

Moreover, the images to be restored are biomedical images from magnetic resonance 

imaging (MRI) and computed tomography (CT) systems.  

 Below, we are going to analyze specifically the methods that we have used to 

restore the input images. Thus, a comparison between the effectiveness of each 

restoration model is documented. Any given image can be represented as a two-

dimensional set of pixels. 

 

2.2 Restoration using gradient estimation  
 

2.2.1 General description  
 

 Assume that we are observing an unknown image x through two different 

measurement systems and obtain two sets of data y1 and y2. Both y1 and y2 are 
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correspond to the same source image but are produced from different measurement 

systems with linear response matrices h1 and h2 respectively. The linear response 

matrix h1 corresponds to the 3x3 blurring mask with matrix values shown in equation 

(2), whereas the linear response matrix h2 is the 1x5 motion blurred mask with 

calculated matrix values shown in the below equation (3).  

 

1 1 1
9 9 9
1 1 1_
9 9 9
1 1 1
9 9 9

blurred mask

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (2) 

 1 1 1 1 1_ _
5 5 5 5 5

motion blurred mask ⎡ ⎤= ⎢ ⎥⎣ ⎦
 (3) 

 Indeed, assume that we have linear relations both between y1 and x and between 

y2 and x, and e1 and e2 of the measurement systems are their respective errors 

(modelling, discretization and measurement errors). In order to be quite strict with our 

method, we have decided the measurement system error to be 15db white Gaussian 

noise (WGN).  

 

Figure 2:1 the first measurement system with degradation h1 

 1 1 1y h x e= ∗ +  (4) 

 

Figure 2:2 the second measurement system with degradation h2 

 2 2 2y h x e= ∗ +  (5) 
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2.2.2 Input data from the MR and CT systems 
 

 Our main purpose is to restore the unknown image x by the given images y1 and 

y2. The unknown image x is represented by the original image in Figure 2:3 in the 

case of a magnetic resonance image, and with image in Figure 2:5 in the case of a 

computed tomography (CT) system. Both MR and CT images are 256 grayscale 

bitmap images. Besides the figure of each image, this thesis represents its histogram, 

given by the Adobe Photoshop software tool.  

 

 

Figure 2:3 Original magnetic resonance image 

 

Figure 2:4 Histogram of the original magnetic 

resonance image

 

 

Figure 2:5 Original computed tomography 

image 

 

Figure 2:6 Histogram of the original computed 

tomography image 
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2.2.3 Restoration models 
 

2.2.3.1 General description of the models 
 

 The two general approaches for image restoration, performed in this thesis, are 

the joint and the independent method based on the quadratic constrained restoration 

method. Before the description of the constrained restoration model, a brief 

description of the unconstrained restoration method, referenced in [12], is essential. 

The noise term in the degradation model is: 

 n y h x= − ∗  (6) 

In the absence of any knowledge about n, a meaningful criterion function is to seek a 

x̂  such that ˆh x∗  approximates y in a least squares sense by assuming that the norm 

of the noise term is as small as possible. In other words, we want to find an x̂  such 

that 

 2 2n y h x= − ∗  (7) 

is minimum. Equation (7) allows the equivalent view of this problem as one 

minimizing the criterion in equation (8) with respect to x̂ . 

 ( ) 2ˆ ˆJ x y h x= − ∗  (8) 

Aside from the requirement that it minimizes equation (8), x̂  is not constrained in any 

other way. Minimization of equation (8) is straightforward. We simply find the 

derivative of function ( ).J  with respect to x̂  and set the result equal to the zero 

matrix. 

 ( )ˆ 0
ˆ

J x
x

∂
=

∂
 (9) 

 One way to alleviate sensitivity of the result to errors in h mask, is to base 

optimality of restoration on a measure of smoothness, such as the second derivative of 

the image. We will approximate the second derivative (Laplacian) by a matrix c. 

Indeed, we will first formulate the constrained restoration problem and obtain its 

solution in terms of a general matrix c. In constrained image restoration, we choose x̂  
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to minimize 2ˆc x∗ , subject to the constraint 2 2n y h x= − ∗  from equation (7). The 

augmented objective function ( )ˆJ x is then given in equation (10) 

 ( ) ( )2 2 2ˆ ˆ ˆJ x c x y h x nv= ∗ + − ∗ −⋅  (10) 

where v is a Lagrange multiplier. Minimization of equation (10) is straightforward. 

We simply find the derivative of the augmented function ( ).J  with respect to x̂  and 

set the result equal to the zero matrix. 

 In the following chapters we are going to describe further the quadratic 

constrained restoration method, and how we can approximate the derivative of 

function ( ).J . In the joint restoration application, assume that the original image x is 

restored at the same time by both images y1 and y2 given by the two measurement 

systems. The known images y1 and y2 are participating equally in the same equation. 

After the restoration process, the restored image has information by both images y1 

and y2.  

 On the contrary, in the independent restoration application, assume that the 

original image x is restored separately by the given images y1 and y2. The output 

images from the first and the second measurement system are restored individually. 

Below, we implement the restoration of the magnetic resonance image and the 

computed tomography image. 

 

2.2.3.2 Mathematical models 
 

 In the next sub-chapter, mathematical equations and rules lead to a deeper and 

more analytic view of how the joint and the independent constrained restoration 

models can contribute positively to the restoration issue. 

 

2.2.3.2.1 Mathematical model for joint quadratic constrained restoration 
method  

 

 The model that we have implemented is based on the derivative of the function 

that includes the unknown image, the degradation of the measurement system, and the 

input image that is taken by the measurement system. The equation for this model is 
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given in (11). The equation takes as inputs both outputs of the two measurement 

systems and restores the unknown image from the two input images. 

 Note that y1 is the known noisy blurred image given by the first measurement 

system with the 3x3 mask, y2 is the known noisy motion blurred image given by the 

second measurement system with the 1x5 mask, h1 and h2 represent, respectively, the 

3x3 degradation mask and the 1x5 degradation mask convolved with the unknown 

image, and finally, c mask is the Laplacian mask which de-blurs the image. Note that 

the Laplacian mask functions as a 3x3 high-pass filter.  

 2 2 2
1 1 2 2( )J x y h x y h x c xα α β= ⋅ − ∗ + ⋅ − ∗ + ⋅ ∗  (11) 

 In order to avoid the complex calculations between the degradation matrices, the 

Laplacian mask and the image to be restored, we have transformed our equation from 

time domain to the frequency domain due to the mathematical technique of discrete 

Fourier transform (DFT). The convolution between the matrices is converted into a 

pixel-by-pixel multiplication between the pixels of the two-dimensional matrices. The 

transformed form is shown in equation (12). Indeed, assume that we have worked 

separately with the real and the imaginary parts of the complex numbers.  

 2 2 2
1 1 2 2( ) Y YJ X H X H X C Xα α β= ⋅ − ⋅ + ⋅ − ⋅ + ⋅ ⋅  (12) 

 Our common de-noising and de-blurring technique is to set the derivative of 

equation (12) equal to zero as, ( ) 0X J X∇ = . The restored image x̂  is then: 

 ( ) ( )1

1 1 2 2 1 1 2 2
ˆ t t t t tX H H H H C C H Y H Yα α β α α

−
= ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅  (13) 

or  

 ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1 1 2 2
2 2 2

1 2

, , , ,ˆ ,
, , ,

a H k l Y k l a H k l Y k l
X k l

a H k l a H k l C k lβ

∗ ∗⋅ ⋅ + ⋅ ⋅
=

⋅ + ⋅ + ⋅
 (14) 

 Note that matrices ( )1 ,H k l∗  and ( )2 ,H k l∗  are, respectively, the complex 

conjugate matrices ( )1 ,H k l  and ( )2 ,H k l , and variables k, l are the pointers of the 

Height and the Width of the two-dimensional matrix in the DFT domain. Details 

about the step-by-step calculations for the estimation of matrix x̂ , can be seen in 

Appendix B. Indeed, the weights α and β control the relative importance of the terms. 
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2.2.3.2.2 Mathematical model for independent quadratic constrained 
restoration method 

 

 The equation for the independent constrained restoration model is given in (15). 

Note that the following equation takes as input separately the output of the first and 

the second measurement system and restores the unknown image x. 

 Note that y is the known image given by the measurement system, h represents 

the degradation mask of the measurement system convolved with the unknown image 

x, and finally, c mask is the Laplacian mask which de-blurs the image.   

 2 2( )J x y h x c xβ= − ∗ + ⋅ ∗  (15) 

 According to chapter 2.2.3.2.1, the unknown image x is estimated by setting the 

derivative of function ( )J X  equal to zero. The gradient of function (15) is: 

 ( ) 2 2 2t t t
X J X H Y H H X C C Xβ∇ = − ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅  (16) 

 The restored image is now given by the following equation: 

 ( ) ( )1

1
ˆ t t tX H H C C H Yβ

−
= ⋅ + ⋅ ⋅ ⋅  (17) 

or 

 ( ) ( ) ( )
( ) ( )2 2

, ,ˆ ,
, ,

H k l Y k l
X k l

H k l C k lβ

∗ ⋅
=

+ ⋅
 (18) 

 Note that matrix ( ),H k l∗  is the complex conjugate of matrix ( ),H k l , and 

variables k, l are the pointers of the Height and the Width of the two-dimensional 

matrix in the DFT domain. 

 In the following chapters, we are going to simulate this function and to restore the 

unknown Image x, experimenting with the parameter β. 
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2.2.4  Restoration of the magnetic resonance image  
 

2.2.4.1 Input data images 
 

 Below, we represent the output MR images from the two measurement systems. 

In Figure 2:7 and Figure 2:9 we represent, respectively, the output image from the 

measurement system with degradation the 3x3 blurring mask, and the 1x5 motion 

blurring mask. The percentage of the deformation that the measurement systems have 

caused to the original image can be estimated through the mean square error (MSE) 

coefficient. The mathematical equation that obtained the mean square error of an 

image, is given in (19). 

 
( )

2

, ,
i=1 j=1

ˆ
Mean Square Error =  

M N

i j i jx x

M N

−

⋅

∑∑
 (19) 

 Note that ,i jx  is the pixel of the original image, ,ˆi jx  is the pixel of the examined 

image, and M, N are respectively the Height and Width of the MXN matrices x  and 

x̂ . The mean square error is not a criterion of decision. This coefficient is a measure 

that obtains the efficiency of each method in the whole procedure and compares the 

resulted images from the following models.  

 The MSE of an image is a criterion that we can not implement in the 

experimental part of this thesis, because we don’t have any knowledge about the 

original image. Hopefully, the image processing literature provides effective methods 

that ensure the correct decision of the parameters. In this case, our attention is to 

perform an effective model for image restoration and even more, a powerful model 

for image fusion.  

 Nevertheless, in the below tables, we can also see an approximate method of 

decision that is based on the difference between the affected matrix y and the restored 

matrix x̂ , convolved with the degradation mask h. The equation that gives this 

coefficient is shown below, where the norm is the energy norm represented in 

equation (21). Variable N is the number of the elements that the vector q  has, and j is 

the pointer of vector q . 
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 2ˆ_approximate difference y h x= − ∗  (20) 

 2 21
j

j

q q
N

= ⋅∑  (21) 

 

 

Figure 2:7 Noisy blurred MR image by the 3x3 

mask 

 

Figure 2:8 Histogram of the noisy blurred MR 

image by the 3x3 mask 

 

 

 The mean square error (σ) of the noisy blurred image in Figure 2:7 is: 

 15.092118σ =  (22) 

 

 

Figure 2:9 Noisy motion blurred MR image by 

the 1x5 mask 

 

Figure 2:10 Histogram of the noisy motion 

blurred MR image by the 1x5 mask
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 The mean square error (σ) of the noisy motion blurred image in Figure 2:9 is: 

 20.097562σ =  (23) 

 

2.2.4.2 Independent method for the noisy blurred MR image 
 

 According to the model that we have described analytically in chapter 2.2.3.2.2, 

the equation that performs the restoration of the original image from the noisy blurred 

magnetic resonance image is the following.  

 2 2( ) 0.117J x y h x c x= − ∗ + ⋅ ∗  (24) 

 Setting the derivative of equation (24) equal to zero, the restored image x̂  is given 

by the following equation: 

 ( ) ( )1ˆ 0.117 t t tX C C H H H Y
−

= ⋅ ⋅ + ⋅ ⋅ ⋅  (25) 

 Experimenting, through the simulations, with the variable (α) that multiplies the 

second term in equation (24), we can select the value that maintain the energy norm 
2ˆy h x− ∗  in the lowest value. The results of the simulations are obtained through the 

following table and chart. Note, that a good range for variable a, is between values 0.1 

and 0.2.   
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Variable α Mean square error Approximate 

difference 

a = 0.01 σ = 6.001026 5,0934 

a = 0.05 σ = 3.924991 5,0912 

a = 0.09 σ = 3.679927 5,1298 

a = 0.1 σ = 3.662833 5,1344 

a = 0.11 σ = 3.654423 5,1357 

a = 0.115 σ = 3.652802 5,1487 

a = 0.117 σ = 3.652579 5,1531 

a = 0.12 σ = 3.652613 5,1736 

a = 0.123 σ = 3.653120 5,2539 

a = 0.125 σ = 3.653697 5,3454 

a = 0.15 σ = 3.673478 5,4521 

a = 0.2 σ = 3.754181 5,4767 

a = 0.3 σ = 3.968198 5,5543 

a = 0.4 σ = 4.188303 5,7676 

a = 0.5 σ = 4.396180 5,8016 

a = 0.6 σ = 4.589385 5,8408 

Table 2:1 Mean square error for noisy blurred magnetic resonance image restoration 
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3,6
3,7
3,8
3,9

4
4,1
4,2
4,3
4,4
4,5
4,6
4,7
4,8
4,9

5
5,1
5,2
5,3
5,4
5,5
5,6
5,7
5,8
5,9

6
6,1

0,01 0,05 0,09 0,13 0,17 0,21 0,25 0,29 0,33 0,37 0,41 0,45 0,49 0,53 0,57

Variable a

Mean Square Error Approximation

 

Table 2:2 Chart of noisy blurred magnetic resonance image restoration 

 

 Performing the independent restoration method, the resulted image as well as its 

histogram are the following: 

 

 

Figure 2:11 Restored MR image by the noisy 

blurred image 

 

Figure 2:12 Histogram of the restored MR 

image by the noisy blurred image
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 A comparison between the output, from the measurement system, affected image 

and the restored image, is obtained through the mean square error (σ). The MSE of 

the noisy blurred image is 15.092118σ = . The mean square error (σ) of the restored 

MR image in Figure 2:11 is: 

 3.652579σ =  (26) 

 Besides the MSE comparison, this thesis presents the image that obtained by the 

pixel-by-pixel difference between the original MR image and the restored MR image. 

Note that, in this thesis all the images that correspond to the pixel-by-pixel differences 

between images are first inverted in order to be visible by the reader. 

 

 

Figure 2:13 difference between the restored MR image by the noisy blurred image and the 

original MR image   

 

2.2.4.3 Independent method for the noisy motion blurred MR image 
 

 The equation that performs the restoration of the original image from the noisy 

motion blurred magnetic resonance image is: 

 2 2( ) 0.665J x y h x c x= − ∗ + ⋅ ∗  (27) 
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 Setting the derivative of equation (27) equal to zero, the restored image x̂  is 

given by the following equation: 

 ( ) ( )1ˆ 0.665 t t tX C C H H H Y
−

= ⋅ ⋅ + ⋅ ⋅ ⋅  (28) 

 The results of the simulations are obtained through the following table and chart. 

Note, that a good range for variable a, is between values 0.6 and 0.75.   

 

Variable α Mean square error Approximate 

difference 

a = 0.1 σ = 40.769902 31.0157 

a = 0.2 σ = 10.288084 7.4190 

a = 0.3 σ = 8.083379 6.8791 

a = 0.4 σ = 7.537364 6.8135 

a = 0.5 σ = 7.350917 6.8348 

a = 0.6 σ = 7.286261 6.8450 

a = 0.65 σ = 7.277273 6.8632 

a = 0.66 σ = 7.276952 6.8876 

a = 0.665 σ = 7.276938 6.8813 

a = 0.67 σ = 7.277057 6.8845 

a = 0.675 σ = 7.277285 6.8958 

a = 0.7 σ = 7.279807 6.9056 

a = 0.75 σ = 7.290672 6.9121 

a = 0.8 σ = 7.308391 6.9628 

a = 0.9 σ = 7.357633 7.0063 

a = 1 σ = 7.419354 7.1293 

Table 2:3 Mean square error for noisy motion blurred magnetic resonance image restoration 
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6,78
6,98
7,18
7,38
7,58
7,78
7,98
8,18
8,38
8,58
8,78
8,98
9,18
9,38
9,58
9,78
9,98

10,18
10,38

0,15 0,25 0,35 0,45 0,55 0,65 0,75 0,85 0,95 1,05

Variable a

Mean Square Error Approximation

 

Table 2:4 chart of noisy motion blurred magnetic resonance image restoration 

 

 Performing the independent restoration method, the resulted image as well as its 

histogram are the following: 

 

 

Figure 2:14 Restored MR image by the noisy 

motion blurred image 

 

Figure 2:15 Histogram of the restored magnetic 

resonance image by the noisy motion blurred 

image
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 The mean square error (σ) of the noisy blurred image is 20.097562σ = . The 

MSE (σ) of the restored magnetic resonance image in Figure 2:14 is: 

 7.276938σ =  (29) 

 The following image corresponds to the pixel-by-pixel difference between the 

original magnetic resonance image and the restored magnetic resonance image. 

 

 

Figure 2:16 difference between the restored MR image by  the noisy motion blurred image and 

the original image   

 

2.2.4.4 Joint method for the degraded MR images 
 

 We have described analytically the joint constrained restoration model above. 

According to this model, the equation that performs the restoration of the original 

image from the noisy blurred magnetic resonance image and the noisy motion blurred 

magnetic resonance image is the following: 

 2 2 2
1 1 2 2( ) 0.5 0.5 0.137J x y h x y h x c x= ⋅ − ∗ + ⋅ − ∗ + ⋅ ∗  (30) 

 Note that y1 is the known noisy blurred image, affected by the 3x3 mask, y2 is the 

known noisy motion blurred image, h1 and h2 represent, respectively, the 3x3 mask 

and the 1x5 mask and finally, c mask is the Laplacian high-pass filter. 
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  Setting the derivative of equation (30) equal to zero, the restored image x̂  is 

given by the following equation: 

 ( ) ( )1

1 1 2 2 1 1 2
ˆ 0.137 0.5 0.5 0.5 0.5t t t t tX C C H H H H H Y H Y

−
= ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅  (31) 

 The results of the simulations are obtained through the following table and chart. 

Note, that a good range for variable a, is between values 0.1 and 0.2.   

 

Variable α Mean square error Approximate 

difference 

a = 0.05 σ = 5.155579 5.5746 

a = 0.1 σ = 4.695298 5.4918 

a = 0.125 σ = 4.651121 5.5241 

a = 0.13 σ = 4.648435 5.5512 

a = 0.134 σ = 4.647346 5.5588 

a = 0.135 σ = 4.647200 5.5618 

a = 0.136 σ = 4.647135 5.5624 

a = 0.137 σ = 4.647109 5.5642 

a = 0.138 σ = 4.647131 5.5664 

a = 0.14 σ = 4.647309 5.5702 

a = 0.145 σ = 4.648571 5.5793 

a = 0.15 σ = 4.650891 5.5892 

a = 0.16 σ = 4.658237 5.6073 

a = 0.17 σ = 4.668531 5.6921 

a = 0.2 σ = 4.711969 5.7213 

a = 0.3 σ = 4.913472 5.8266 

Table 2:5 Mean square error for restored MR image by joint restoration  
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4,63

4,73

4,83

4,93

5,03

5,13

5,23

5,33

5,43

5,53

5,63

5,73

5,83

0,05 0,07 0,09 0,11 0,13 0,15 0,17 0,19 0,21 0,23 0,25 0,27 0,29 0,31

Variable a

Mean Square Error Approximation

 

Table 2:6 chart of joint magnetic resonance image rstoration 

 

 Performing the independent image restoration method, the resulted image as well 

as its histogram are the following: 

 

 

Figure 2:17 Restored magnetic resonance image 

by the joint restoration 

 

Figure 2:18 Histogram of the restored magnetic 

resonance image by the joint restoration
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 The MSE (σ) of the noisy motion blurred image is 20.097562σ = . The MSE of 

the noisy blurred image is 15.092118σ = . Finally, the MSE (σ) of the restored 

magnetic resonance image in Figure 2:17 is:  

 4.647109σ =  (32) 

 The following image corresponds to the pixel-by-pixel difference between the 

original magnetic resonance image and the restored magnetic resonance image. 

 

 

Figure 2:19 difference between the restored MR image by the joint restoration and the original 

image   

 

2.2.5 Restoration of the computed tomography image 
 

2.2.5.1 Input data images 
 

 Below, we represent the two output images from the measurement systems. In 

Figure 2:20 and Figure 2:22 we represent, respectively, the given images by the 

measurement system with degradation the 3x3 blurring mask and the 1x5 motion 

blurring mask. The percentage of the deformation that the measurement systems have 

caused to the original image can be estimated through the MSE and the approximate 

difference between the restored and the affected image. 
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Figure 2:20 Noisy blurred image by the 3x3 

mask 

 

Figure 2:21 Histogram of the noisy blurred 

image by the 3x3 mask

 

 The mean square error (σ) of the noisy blurred image in Figure 2:20 is: 

 14.905295σ =  (33) 

 

 

Figure 2:22 Noisy motion blurred image by the 

1x5 mask 

 

Figure 2:23 Histogram of the noisy motion 

blurred image by the 1x5 mask

 

 The mean square error (σ) of the noisy motion blurred image in Figure 2:22 is: 

 18.884409σ =  (34) 
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2.2.5.2 Independent method for the noisy blurred CT image 
 

 The equation for the independent quadratic constrained restoration method is the 

following. Note that the known matrix y corresponds to the noisy blurred CT image. 

 2 2( ) 0.049J x y h x c x= − ∗ + ⋅ ∗  (35) 

 Setting the derivative of equation (35) equal to zero, the restored Image x̂  is: 

 ( ) ( )1ˆ 0.049 t t tX C C H H H Y
−

= ⋅ ⋅ + ⋅ ⋅ ⋅  (36) 

 The following table and chart obtain the value of the mean square error of the 

restored image and the approximate difference due to the alpha variable. Note, that a 

good range for variable a, is between values 0.03 and 0.1.   

 

Variance α Mean square error Approximate 

difference 

a = 0.01 σ = 5.499821 3.3497 

a = 0.02 σ = 4.994994 3.2893 

a = 0.03 σ = 4.841860 3.2863 

a = 0.04 σ = 4.787582 3.3419 

a = 0.045 σ = 4.777989 3.3819 

a = 0.047 σ = 4.776279 3.3917 

a = 0.048 σ = 4.775833 3.3986 

a = 0.049 σ = 4.775587 3.4018 

a = 0.05 σ = 4.775610 3.4094 

a = 0.051 σ = 4.775809 3.4129 

a = 0.052 σ = 4.776244 3.4205 

a = 0.06 σ = 4.785520 3.5401 

a = 0.1 σ = 4.912756 3.6402 

a = 0.2 σ = 5.349675 4.0030 

a = 0.3 σ = 5.762711 4.3110 

Table 2:7 Mean square error for noisy blurred computed tomography image restoration 
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3,1
3,3
3,5
3,7
3,9
4,1
4,3
4,5
4,7
4,9
5,1
5,3
5,5
5,7

0,01 0,03 0,05 0,07 0,09 0,11 0,13 0,15 0,17 0,19 0,21 0,23 0,25 0,27 0,29 0,31

Variable a

Mean Square Error Approximation

 

Table 2:8 chart of noisy blurred computed tomography image restoration 

 

 Performing the independent image restoration method, the resulted image as well 

as its histogram are the following: 

 

 

Figure 2:24 Restored CT image by the noisy 

blurred image 

 

Figure 2:25 Histogram of the restored CT 

image by the noisy blurred image
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 The MSE (σ) of the noisy blurred image is 14.905295σ = . The MSE (σ) of the 

restored computed tomography image in Figure 2:24 is: 

 4.775588σ =  (37) 

 The image corresponds to the pixel-by-pixel difference between the original 

computed tomography image and the restored CT image is: 

 

 

Figure 2:26 difference between the restored CT by the noisy blurred image and the original 

image   

 

2.2.5.3 Independent method for the noisy motion blurred CT image

   
 The equation for the independent quadratic constrained restoration model, 

applied to the noisy motion blurred CT image is the following: 

 2 2( ) 0.049J x y h x c x= − ∗ + ⋅ ∗  (38) 

 Setting the derivative of equation (38) equal to zero the restored image is given 

by the following equation: 

 ( ) ( )1ˆ 0.049 t t tX C C H H H Y
−

= ⋅ ⋅ + ⋅ ⋅ ⋅  (39) 
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 The following table and chart obtain the value of the mean square error of the 

restored image and the approximate difference due to the alpha variable. Note, that a 

good range for variable a, is between values 0.3 and 0.8.   

 

Variance α Mean square error 
Approximate 

difference 

a = 0.1 σ = 24.138487 17.0564 

a = 0.2 σ = 12.357147 8.6360 

a = 0.3 σ = 10.717384 7.6595 

a = 0.4 σ = 10.501489 7.5892 

a = 0.42 σ = 10.494787 7.5695 

a = 0.425 σ = 10.494207 7.5581 

a = 0.43 σ = 10.494017 7.5782 

a =  0.431 σ = 10.494015 7.5601 

a = 0.435 σ = 10.494162 7.5626 

a = 0.44 σ = 10.494706 7.5671 

a = 0.45 σ = 10.496713 7.5692 

a = 0.46 σ = 10.499882 7.5812 

a = 0.5 σ = 10.522231 7.5994 

a = 0.55 σ = 10.565886 7.6241 

a = 0.6 σ = 10.621195 7.6864 

a = 0.8 σ = 10.888481 7.8990 

Table 2:9 Mean square error for noisy motion blurred computed tomography image restoration 
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7,5
7,75

8
8,25

8,5
8,75

9
9,25

9,5
9,75

10
10,25

10,5
10,75

11
11,25

11,5
11,75

12
12,25

0,18 0,23 0,28 0,33 0,38 0,43 0,48 0,53 0,58 0,63 0,68 0,73 0,78

Variable a

Mean Square Error Approximation

 

Table 2:10 Chart of noisy motion blurred computed tomography image restoration 

 

 Performing the independent image restoration method, the resulted image as well 

as its histogram are the following: 

 

 

Figure 2:27 Restored CT image by the noisy 

motion blurred 

 

Figure 2:28 Histogram of the restored CT 

image by the noisy motion blurred image
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 The MSE (σ) of the noisy motion blurred image is 18.884409σ = . The mean 

square error (σ) of the restored computed tomography image in Figure 2:27 is: 

 10.494015σ =  (40) 

 The image corresponds to the pixel-by-pixel difference between the original 

computed tomography image and the restored computed tomography image is: 

 

 

Figure 2:29 difference between the restored CT by the noisy motion blurred and the original 

image   

 

2.2.5.4 Joint method for the degraded CT images 
 

 The joint model, performed to restore the original image from the noisy blurred 

CT image and the noisy motion blurred CT image is represented in equation (41).  

 2 2 2
1 1 2 2( ) 0.5 0.5 0.048J x y h x y h x c x= ⋅ − ∗ + ⋅ − ∗ + ⋅ ∗  (41) 

 Note that y1 is the noisy blurred image affected by the 3x3 mask, y2 is the known 

noisy motion blurred image affected by the 1x5 mask, h1 and h2 represent, 

respectively, the 3x3 mask and the 1x5 mask and finally, c mask is the Laplacian 3x3 

high pass filter. 
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 Setting the derivative of equation (41) equal to zero the restored image is given 

by the following equation: 

 ( ) ( )1

1 1 2 2 1 1 2
ˆ 0.048 0.5 0.5 0.5 0.5t t t t tX C C H H H H H Y H Y

−
= ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅  (42) 

 The MSE of the restored image and the approximate difference are given in the 

following table. Note, that a good range for variable a, is between values 0.04 and 

0.06.   

 

Variance α Mean square error 
Approximation 

difference 

a = 0.01 σ = 6.793724 3.6823 

a = 0.02 σ = 5.833908 3.6774 

a = 0.04 σ = 5.460186 3.6897 

a = 0.045 σ = 5.445394 3.7190 

a = 0.047 σ = 5.443341 3.7347 

a = 0.048 σ = 5.443016 3.7406 

a = 0.049 σ = 5.443098 3.7479 

a = 0.05 σ = 5.443573 3.7652 

a = 0.053 σ = 5.447111 3.7734 

a = 0.055 σ = 5.451060 3.7889 

a = 0.057 σ = 5.456123 3.7987 

a = 0.06 σ = 5.463487 3.9231 

a = 0.1 σ = 5.691504 4.0522 

a = 0.2 σ = 6.353106 4.5395 

a = 0.3 σ = 6.901653 4.9237 

Table 2:11 Mean square error for restored CT image by joint restoration 
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3,65
3,85
4,05
4,25
4,45
4,65
4,85
5,05
5,25
5,45
5,65
5,85
6,05
6,25
6,45
6,65
6,85

0,01 0,03 0,05 0,07 0,09 0,11 0,13 0,15 0,17 0,19 0,21 0,23 0,25 0,27 0,29 0,31

Variable a

Mean Square Error Approximation

 

Table 2:12 chart of joint computed tomography image restoration 

 

 Performing the independent image restoration method, the resulted image and its 

histogram are the following: 

 

 

Figure 2:30 Restored computed tomography 

image by the joint restoration 

 

Figure 2:31 Histogram of the restored CT 

image by the joint restoration 
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 The mean square error (σ) of the noisy motion blurred image is 18.884409σ =  

and the noisy blurred image is 14.905295σ = . The mean square error (σ) of the 

restored CT image in Figure 2:30 is:  

 5.443016σ =  (43) 

 The image corresponds to the pixel-by-pixel difference between the original CT 

image and the restored CT image is: 

 

 

Figure 2:32 difference between the restored CT by the joint restoration and the original image   

 

2.3 Conclusion of image restoration 
 

 We have seen in chapter 2.2 how we can perform the restoration of a magnetic 

resonance and computed tomography image with the joint and independent quadratic 

constrained models. As a criterion of knowledge, about the effect that the restoration 

methods have caused to the restored images, we count on the mean square error 

(MSE), the approximate difference given in equation (20), and the pixel-by-pixel 

subtraction between the restored and the original image.  
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 The joint quadratic constrained restoration method has given very good results in 

both magnetic resonance and computed tomography images. The joint method, 

functions positively in the restoration of the images without changing the position of 

the pixels. Moreover, the model removes, as far as possible, the noise and the blurring 

from the degraded image. 

 According to the joint restoration method, the independent restoration model 

performed to the measurement system with degradation, the 3x3 blurring mask has 

also been effective. The MSE of the restored image is reduced through the restoration 

process, and the deformation from the degradation model has disappeared.  

 On the contrary, the independent model, performed to the measurement system 

with degradation the 1x5 blurring mask has given a good quality restored image but 

with deformations in some regions of the image. Specifically, the deformation that 

incurs in the edges of these regions is visible.  

        

 

Figure 2:33 Ringing phenomenon  

 

 The goal from the previous quadratic constrained restoration models and 

specifically from the joint restoration model, is an additional restored image with 

lower MSE, in comparison with the MSE of the restored images by the 1x5 

measurement systems.  Instead of having a good quality restored image and a quite 

inefficient image, our knowledge was enhanced with an additional restored image by 

the joint restoration model with low MSE.  

 Below we represent all the results obtained by the proposed restoration methods. 

The joint model decreases the MSE of the restored images, in comparison with the 

MSE of the restored images by the 1x5 motion blurred mask. Although the 
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improvement of the joint model, the independent model applied to the system with 

degradation the 3x3 mask remains the most effective restoration model in this thesis. 

  

Restoration 

method 
Original image 

Mean square 

error (MSE) of 

input image 

Mean square 

error (MSE) of 

restored image 

15.092118 
MRI 

20.097562 
4.647109 

14.905295 
Joint restoration 

CT 
18.884409 

5.443016 

MRI 15.092118 3.652579 Independent 

restoration with 

3x3 degradation CT 14.905295 4.775588 

MRI 20.097562 7.276938 Independent 

restoration with 

1x5 degradation CT 18.884409 10.494015 
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3 Information fusion 
 

3.1 Introduction to information fusion 
 

 Nowadays, information fusion constitutes an important challenging research 

topic. In “complex” systems, we generally dispose of several sources of knowledge 

(i.e. data, a priori knowledge, etc.) and the major question we have to deal with is how 

to relate all these sources in order to achieve a well predefined objective [3]. 

 Information fusion is, relatively, an old research topic that finds its roots while 

researchers tried to imitate the human “intelligence” or capacities when dealing with a 

decision-making problem. Two mains approaches have been conducted in order to 

fulfil this objective [4-7]. The first approach is issued from researches dealing with 

particular physical problems where information fusion methods corresponding to the 

considered problem “needs” are developed. On the other hand, the second approach is 

issued from researches in the area of artificial intelligence where the information 

fusion problem is considered “conceptually” and several solution frameworks are 

developed. 

 

3.2 Information fusion concepts 
 

 In the following subsections, we propose to categorize the information fusion 

approaches as a function of the conceptual level of the information to be merged by 

such systems. Three conceptual levels can thus be considered: data, decision and 

model. 

 

3.2.1 Data fusion [3] 
 

3.2.1.1 Introduction to data fusion 
 

 Data fusion is an approach to processing data that has had some notable 

successes, primarily in the defense sector. Most previous applications of data fusion 

have concentrated on refining the value produced by data processing. 
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 The general definition of a data fusion system, Figure 3:1, is as follows: “A data 

fusion system is defined as a system performing information fusion at the data 

conceptual level, where the data to be merged is assumed to represent all types of 

information describing an object from the real world scene”. The output of this system 

is either a decision (a higher conceptual level) or a new data information element. 

Notice that this definition makes a total abstraction of the data nature 

(numeric/symbolic, elementary/intermediate, coupled or not, etc.) as well as of the 

data “origin” (mono/multi sensor) [3]. 

 

 

Figure 3:1 Data fusion system [3] 

 

 In order to gain an appreciation of data fusion, we have broken down the 

definition” of data fusion into two parts. We first describe the attributes of a data 

fusion problem; and then enumerate some of the solution-techniques that data fusion 

puts at our disposal. 

 

3.2.1.2 The problem 
 

 It has been said that data fusion is not a particular algorithm for solving all 

“fusion” problems, nor is it even a suite of such techniques; it is more an approach to 

solving problems. However, the problem arises of deciding, which mathematical 

domain is the correct one in which to work for a complex problem, and which 

techniques and algorithms in a given domain are suitable for achieving a solution. 

 Data fusion is the technology whereby often large amounts of diverse data may 

be combined into a consistent, accurate, and intelligible whole. There are several 

distinct flavors of data fusion: in some scenarios, for example, the data corresponds to 
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different attributes of the same object; in others, the data is effectively repeated 

measurements of the same attribute. 

 In order to make the definition of data fusion more intuitive, it is useful to 

enumerate some of the measurement aims for which data fusion is deployed: 

 

 Reliability - to obtain better results than the best individual data source is 

capable of providing 

 Completeness - no direct way of measuring required property 

 Improvement - the need to take more factors, or influencing quantities, into 

account 

 Comprehension - the need to reduce information overload 

 

3.2.1.3 The solutions 
 

 Having given, above, some indication of how one might recognize a data fusion 

problem as such, we now go on to describe some of the areas and techniques of 

mathematics that have been used to tackle problems. In the initial stages of a survey 

carried out by NPL, we have the following, not necessarily comprehensive, list of 

areas: 

 

3.2.1.3.1 Physical modelling 
 

 In this group are the techniques that exploit a prior understanding of the 

behaviour of the system being measured, and of the relationships between the 

attributes being measured. In such circumstances it is difficult to see where data 

fusion can play a defining role. However, if the prior understanding is not certain or 

comprehensive, then this physical modelling will have to be supplemented with other 

mathematical techniques, and the data fusion then becomes less trivial. 

 

3.2.1.3.2 Empirical modelling / curve fitting 
 

 In this situation, we have less or no direct physical knowledge of the behaviour of 

the system. We then must make generic assumptions about the measurements, and fit 
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the observed data to these assumptions. Typically, these intuitive, it is useful to 

enumerate some of the assumptions might be that the relationship between 

measurements is polynomial (up to a certain degree), and different types of curve 

fitting algorithm are then suitable. 

 

3.2.1.3.3 Probability 
 

 Probabilistic methods for data fusion mainly center on a Bayesian approach to 

probability, and deal with the delicate matter of reconciling prior probabilities with 

observed measurements. Typically, these involve the use of Bayesian networks, 

which it might be convenient to think of as a fault-tree analysis of measurement 

systems; the known, or suspected, modes of failure of the system can be described, 

and the measurement results are then diagnosed in relation to this known pattern of 

failure. 

 

Bayesian inference [9] 

 

 Bayesian Inference can be used to determine the probability that a diagnosis is 

correct, given a piece of a priori information. Analytically this process is described as 

follows: 
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Where: 

 ( )1 | nP f O = The probability of fault (f) given a diagnostic output (O), 

( )1|nP O f = the probability that a diagnostic output (O) is associated with a fault (f), 

and ( )1P f = the probability of the fault (f) occurring.   

 Bayes’ theorem is only able to analyze discrete values of confidence from a 

diagnostic classifier (i.e. it observes it or it doesn’t). Hence, a modified method has 

been implemented that uses three different sources of information. A-priori 

probability of failure at time t, ( )( )FO tP , the probability of failure as determined from 
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the diagnostic classifier ( )( ),D i tC  data, and feature reliability which is independent of 

time ( )( )D iR . Care must be taken to prevent division by zero. 
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3.2.1.3.4 Statistics 
 

 Statistical techniques will typically be applicable when there is much more data 

than knowledge. When this is the case, then we can start to draw conclusions about 

relations in the data without too many prior assumptions or physical intuition of the 

system.  

 We may use traditional statistical techniques for a variety of tasks subsidiary to 

fusion. For instance, we may use x2 tests and analysis of variance to help us determine 

the presence of a faulty sensor within an array of other sensors, or we can use analysis 

of covariance to help us decide which measurements are interrelated, and which are 

directly linked to the measurand. This information can then be taken into account 

when deciding which measurements (or measurement devices) are significant. 

 

3.2.1.3.5 Soft computing 
 

 These techniques traditionally used to achieve artificial intelligence. They cover 

the areas of artificial neural networks (ANN), genetic algorithms, and fuzzy logic, 

amongst others. ANN’s might be used to learn how a series of past inputs to a system 

related to its outputs, and then use this “knowledge” accurately to fuse present inputs 

in order to predict an output. Fuzzy logic can be used as a way of representing 

knowledge of a system that is more qualitative than would be the case in a physical 

modelling situation. 
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Fuzzy logic inference [9] 

 

 Fuzzy logic inference is a fusion technique that utilizes the membership function 

approach to scale and combine specific input quantities to yield a fused output. The 

basis for the combined output comes from scaling the developed membership 

functions based on a set of rules developed in a rule base. Once this scaling is 

accomplished, the scaled membership functions are combined by one of various 

methodologies such as summation, maximum or “Finally, the scaled and combined 

membership functions are used to calculate the fused output by either taking the 

centroid, max height or midpoint of the combined function. 

 

Neural network fusion [9] 

 

 A well-accepted application of artificial neural networks (ANNs) is data and 

feature fusion. For the purposes of fusion, a networks ability to combine information 

in real-time with the added capability of autonomous re-learning (if necessary) makes 

it very attractive for many fusion applications. 

 Artificial neural networks (ANN) utilize a network of simple processing units, 

each having a small amount of local memory. These units are connected by 

“communication” links, which carry numerical data. The units operate only on their 

local data, which is received as input to the units via the connections. Most ANN’s 

have some sort of training rule by which the weights of connections are adjusted 

based on some optimization criterion. 

 Hence, ANN’s learn from examples and exhibit certain capability for 

generalization beyond the training data (examples). ANN’s represent a branch of the 

artificial intelligence techniques that have been increasingly accepted for data fusion 

and automated diagnostics in a wide range of aerospace applications. Their abilities to 

fuse features, recognize patterns and to learn from samples have made ANN’s 

attractive for fusing large data sets from complex systems. 

 The ANN structure is called its architecture, which is an expression of the 

number of processing units and of the connections among these units. Most 

processing units are arranged in layers (a layer is a collection of the units aligned for 

the same computational sequence), and the ANN is often referenced by the number of 

layers and the number of units in each layer. 
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Figure 3:2 Simple neural network fusion architecture [9] 

 

 Each solid connection line in Figure 3:2 represents a numerical value called the 

weight, representing the connecting strength between the two inter-connected units. 

Each circle is a unit and it performs three sequential computations: the first is to 

multiply the weight by the output of the unit on the other end of the connection; the 

second is to sum the weighted outputs from all connections; and the third is to apply 

the weighted sum to a function (usually nonlinear and bounded) called an activation 

function. One of the most common activation functions is called the sigmoid function 

and the binary ( )f x (0 to 1 input) and bipolar ( )g x  (-1 to 1 input) versions are given 

below. They are useful because the simple form of the derivative reduces the 

computational burden during training. 
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 The functional value of the weighted sum is called the output of the unit. This 

sequence of computation is carried out for each unit and for each layer until the 

outputs layer of the ANN is reached.  

 Training a neural network for a fusion application involves the process of 

adjusting the weights and evaluating the activations of the numerous interconnections 

between the input and output layers. There are two fundamental types of learning 

methods used for feature fusion applications: unsupervised and supervised. In the 
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unsupervised method, learning is autonomous; networks discover properties of the 

data set and learn to reflect these properties in its output, i.e., it is used to group 

similar input patterns to facilitate processing of a large number of training patterns. In 

the supervised method, a “teacher” is present during the training phase who tells the 

network how well it is performing or what the correct behavior should be, i.e., it is 

used for specifying what target outputs should result from an input pattern. 

 

3.2.1.3.6 Signal processing  
 

 Signal processing could be thought of as a subset of physical or empirical 

modelling. However, the problems posed by fusing many real-time data streams, such 

as their synchronization, taken with the fact that these techniques are often not 

familiar to those outside the signal processing fraternity, has encouraged us to give the 

subject its own heading. The Kalman filter is one of the best-known signal processing 

ideas within data fusion. This technique allows us to reconcile many measurements of 

the state of a dynamic system with predictions of the subsequent state (predicted by 

some physical model of state evolution), each being weighted by some indication of 

the source’s reliability, in order to achieve the best predictor of the state.  

 

3.2.1.3.7 Novel techniques 
 

 Here we place techniques that are difficult to place elsewhere. Over time, it is 

likely that similarities will be seen, either amongst these techniques, or between these 

and those in the above categories. An example of a novel technique is Dempster-

Shafer theory. This is in many ways an alternative to the usual probabilistic 

description of uncertainty. Sensors have a prior level of confidence, and provide a 

measurement result with this confidence.  

 Multiple sensors can have very different confidence characteristics (for example, 

sensor X is reliable in the x-coordinate of a two-dimensional measurement but not in 

the y-coordinate, sensor Y is the converse). These characteristics are taken into 

account when the measurements are being fused according to the Shafer rule of 

combination. One of the primary advantages of the possibilistic approach (as it is 

called) is that it can deal consistently with a sensor that claims to be ignorant of a 
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component of the measurand, and is useful in diagnosing, and potentially dealing 

with, conflicting data sources. 

 

Dempster-Shafer method [9] 

 

 The Dempster-Shafer method specifically tackles the a priori probability issue by 

keeping track of an explicit probabilistic measure of the lack of information. The 

disadvantage of this method is that the process can become impractical for time 

critical operations in large fusion problems. Hence, the proper choice of method 

should be based on the specific diagnostic/prognostic issues that are to be addressed.  

 In the Dempster-Shafer approach, uncertainty in the conditional probability is 

considered. The Dempster-Shafer methodology hinges on the construction of a set, 

called the frame of discernment, which contains every possible hypothesis. Every 

hypothesis has a belief denoted by a mass probability (m). Beliefs are combined in the 

following manner. 
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3.2.2 Decision fusion [3] 
 

 A decision fusion system, Figure 3:3, is defined as “a system realizing the fusion 

of complementary decisions concerning the same object observed in the real world 

scene”. Notice that this definition means that the decisions to be merged are of the 

same nature and all concern the same object.  

 



 56

 

Figure 3:3 Decision fusion system [3] 

 

 The reason of stressing this point is that an intuitive question can be raised about 

the difference between the two concepts of the data and the elements of decision 

information. The frontier between these two concepts is extremely small. In several 

applications, an information element given as a decision can be considered as an input 

data information to another data fusion system. Therefore, and in order to make a 

clear distinction between the data and the decision fusion systems we assume that in 

the case of decision fusion systems, all the decisions to be merged are of the same 

nature in terms of representing the same object.  

 These decisions are obtained through different information processing systems. 

Some of these decisions can be obtained through the use of a “previous” data or a 

decision information fusion system. Several approaches can be used in order to 

implement such fusion systems. For instance, the multi-expert majority, the 

probabilistic reasoning approaches, etc. 

  

3.2.3 Model fusion [3] 
 

 A model fusion system, Figure 3:4, is simply defined as “any system integrating 

several complementary technical components (i.e. models) and aims at computing a 

new information element (a decision or a data)”. By complementary we mean that 

each technical component contributes partially in the construction of the global 

solution permitting to obtain the output that we are searching for. 
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Figure 3:4 Model fusion system [3] 

 

3.3 Information fusion system architectures 
 

 This subsection intends to summarize the two major fusion system architectures. 

In fact, two main architectures of information fusion systems can be distinguished.  

 

3.3.1 Mono-sensor architecture 
 

 The mono-sensor architecture, Figure 3:5, is based on the use of a single sensor 

and by applying different sources of a priori information in order to obtain a new set 

of information data. Each component of this new set is strongly related to one or 

several a priori information sources. The use of the probability set theory or the fuzzy 

set theory is generally performed through this step.  
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Figure 3:5 Mono-sensor architecture [3] 

 

3.3.2 Multi-sensor architecture 
 

 The second system architecture, Figure 3:6, corresponds to the intuitive multi-

sensor situation where the “analysed” object is observed through different physical 

sensors (or the same sensor but with different geometric observation positions as is 

the case in stereovision). 

 

 

Figure 3:6 Multi-sensor architecture [3] 

 

 Multi-sensor is the main architecture used in several applications where the use 

of different sensors remains an obstacle and where an important amount of knowledge 
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can be formulated as a priori knowledge sources of information. This is the case, for 

instance, in medical applications where the processing system can use a huge amount 

of a priori anatomical and expert-based sources of knowledge while analysing 

medical Images.  

 

3.4 Information fusion in this thesis 
 

 In this chapter, we focus on the image fusion model, applied to the medical 

images from the restoration models. The multi-sensor architecture system is the 

system that provides the set of the output data from the two measurement systems. 

The first, second and the third “sensor”, obtain respectively the output image from the 

joint restoration, the restored image from the independent restoration applied to the 

measurement system with degradation the 1x5 mask, and finally the image from the 

independent method applied to the measurement system with degradation the 3x3 

mask. 

 The proposed image fusion procedure is separated in two parts. In the first part, 

the image fusion with the pointwise spatial frequency combines separately the 

restored magnetic resonance and computed tomography sets of images. In the second 

part, the proposed image fusion model performs the combination of the anatomical 

data from the restored MR image and the bony structures of the restored CT image 

into a single image. The image fusion procedure is given in Figure 3:7.  
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Figure 3:7 Image fusion procedure 

 

3.4.1 Image fusion with multiple images of the same form   
 

 In this chapter, the first part of the image fusion model is represented. Note that 

all the images from both MR and CT sets of input sources, are participating equally in 

the image fusion procedure. 

  

3.4.1.1 Introduction to image fusion with spatial frequency 
 

 The first part of image fusion, is represented in Figure 3:8. In the following text, 

we represent analytically the original image fusion with the PSF [10] and the 

advanced, by this thesis model, applied to the MR and CT sets of images. 
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Figure 3:8 Image fusion with pointwise spatial frequency 

  

3.4.1.2 Methodology of the original image fusion with PSF [10] 
 

 The criterion for the image fusion application is based on the pointwise spatial 

frequency (PSF) coefficient. The images of the same form are fused at each output 

pixel location by comparing the PSF values at that location in all images and selecting 

the pixel with the highest such value. We define the pointwise spatial frequency (PSF) 

at a pixel by summing the magnitudes of differences from the center pixel and each 

other pixel in a 3x3 neighborhood (nbhd).      
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 For finer granularity, this thesis has modified the calculation of the PSF of a 

pixel, when the examined pixel has less than 8 neighborly pixels in its region. The 

magnitude of difference exists only when there is a neighbor in the pixel, without 

filling with zero values the outline of the two-dimensional matrix corresponds to the 

image. 
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 The algorithm that this method develops, selects the pixel with the highest PSF 

value among to a set of pixels that correspond to the same location of the image. The 

comparison among the set of pixels of the same location, and the selection of the pixel 

according to the PSF coefficient, is effective in non-homogenous, or in bordered, 

regions. The magnitude of difference from the center pixel and each other pixel in its 

3x3 neighborhood in such a region, is really high despite the noise that might 

participate in the intensity of the pixel. Thus, the probability of a succeed selection is 

possible.  

 On the contrary, in homogenous regions, the PSF of a pixel has generally a low 

value and we should be very careful during the time of selection because the noise 

intensity is playing an important role in the procedure. For that reason, removing the 

noise deformation from the image, through the restoration methods, is essential. 

 In the following figures we represent the PSF values of the MR and CT images, 

normalized first in region[ ]0, , 255K . 

 

 

Figure 3:9 Original MR image 

 

Figure 3:10 PSF of the original MR image
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Figure 3:11Original CT image 

 

Figure 3:12 PSF of the Original CT image

 

 The general law of this method is to fuse the R images at each pixel location by 

comparing the PSF values of the R corresponding pixels. For all R pixels xr at the 

same location we put xout = x r* where r* is determined by the following equation. 

 ( ) ( ){ }max : 1, ,r rr
psf x psf x r R∗ = = K  (50) 

 

3.4.1.3 Improvements on the methodology of image fusion with the 
PSF  

 

 Keeping quite the same methodology that the original image fusion with the PSF 

proposes, this thesis has simulated a more complicated method for image fusion. We 

have seen in the previous method that the image fusion procedure fuses the input 

images at each pixel location by comparing the PSF values of the corresponding 

pixels, and finally selects the pixel with the highest value. With this method, the 

intensity of a pixel in the fused image is given by only one input source. This decision 

sometimes might be quite inefficient in a variety of data where measurement systems 

with different degradations affect the original data. 

 The measurement systems described in this thesis, affect the original MR and CT 

images. The degrading elements of noise and blurring affect all the pixels of the 

original image, changing their intensity and their original position. Besides this, we 

have seen before that the restoration methods we have applied to the degraded images 
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cannot totally restore the original image, specifically in the case of the 1x5 motion-

blurred mask where the deformation in some regions is visible.  

 This deformation is quite often in image restoration, specifically when the image 

is affected by measurement systems with motion blurred degradation. For that reason, 

selecting the information of the fused pixel from only one source might cause troubles 

and inaccuracies in the resulted data. Consider the circumstance, where the intensity 

of the fused pixel is selected to be the intensity in which the deformation exists. The 

pixel of the restored input image fulfils the terms of the algorithm but unfortunately 

the pixel does not correspond to the real location of the image. 

 According to the previous assumptions, we have performed an intermediate step 

between the restored input images and the fused image as it is shown in Figure 3:13. 

The restored image by the 1x5 motion blurred image is being updated through this 

step with the main purpose to eliminate the ringing deformation of the image.     

 

 

Figure 3:13 Graph of the proposed image fusion with the pointwise spatial frequency 
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 The image fusion model with the PSF is separated in two parts. Note that, in both 

parts the definition of the pointwise spatial frequency (PSF) at a pixel is the same as 

in the original image fusion with the PSF. The PSF of a pixel is given in equation (51)

.  
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 The image fusion method in the first part, performed to eliminate the deformation 

of the restored image given by the measurement system with degradation the 1x5 

mask, is based on the selection of the pixel with the minimum pointwise spatial 

frequency. We have documented before, that the intensity of the SPF is based on the 

magnitude difference between the examined pixel and its neighbors in a 3x3 region. 

In other words, when the PSF coefficient is high the discontinuities of the 3x3 

neighborhood of the pixel are large. 

 Thus, if we select the highest PSF among a set of pixels, we automatically select 

the pixel that belongs in a rough region. Alternatively, if we select the pixel with the 

minimum PSF value, we prefer to select a smoothing area rather than an area with a 

visible edge. Applying this feature in regions where we want to eliminate the ringing 

deformation, smoothing areas with a low value of intensity or background areas with 

zero intensity are selected to replace the region with the deformation.  

 According to the previous assumptions, our common reaction is to replace the 

intensity of the degraded pixels with the optimized pixels adopted by the image fusion 

procedure in equation(52). The input data are, respectively, the restored MR and CT 

sets of images and the resulted image is the optimized restored image by the 1x5 

degradation mask. In the following step of the proposed image fusion with the PSF, 

the optimized restored image replaces the restored image by the noisy motion blurred 

mask. 
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Figure 3:14 Minimum PSF selection 

 

 The general law of this method is to fuse the R images at each pixel location by 

comparing the pointwise spatial frequency (PSF) values of the R corresponding 

pixels. For all R pixels xr at the same location we put xout = x r* where r* is determined 

by the following equation. 

 ( ) ( ){ }min : 1, ,r rr
psf x psf x r R∗ = = K  (52) 

 In the second part, the resulted image from the first part and the rest images given 

by the restoration models are participating in the proposed image fusion with the 

pointwise spatial frequency. Analytically, depending on the value of the pointwise 

spatial frequency (PSF), each pixel participates proportionately in the fused image. 

The equation for this model is, 
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where R are the multiple images to be fused, xr is the pixel of each image in the 

examined location, and finally ( )rpsf x is the pointwise spatial frequency of the pixel 

xr.  
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3.4.1.4 Results of the image fusion with the PSF 
 

 In the first sub-chapter we represent the results obtained by the original image 

fusion with the pointwise spatial frequency [10]. In the second sub-chapter, the 

proposed image fusion method is applied to the restored magnetic resonance and 

computed tomography images. Finally, a comparison between the two methods is 

documented.  

 

3.4.1.4.1 Results from the original image fusion with PSF 
 

 The resulted, from the original image fusion model, magnetic resonance image 

and its histogram are obtained, respectively, in Figure 3:15 and Figure 3:16. 

 

 

Figure 3:15 Fused MR image by the original 

image fusion with PSF 

 

Figure 3:16 Histogram of fused MR image by 

the original image fusion with PSF

 

 The mean square error (σ) of the fused MR image in Figure 3:15 is: 

 5.869003σ =  (54) 

 In Figure 3:17 we represent the pixel-by-pixel difference between the original 

MR image and the fused MR image. Unfortunately, the ringing deformation of the 

fused image is preserved.    
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Figure 3:17 difference between the fused MR image by the original image fusion with PSF and 

the original MR image   

 

 The resulted, by the original image fusion model, computed tomography image 

and its histogram are obtained, respectively, in Figure 3:18 and Figure 3:19. 

 

 

Figure 3:18 fused CT image by the original 

image fusion with PSF 

 

Figure 3:19 Histogram of fused CT image by 

the original image fusion with PSF
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 The mean square error (σ) of the fused CT image in Figure 3:18 is: 

 8.618378σ =  (55) 

 Below, we represent the pixel-by-pixel difference between the original CT image 

and the fused CT image. The ringing deformation of the fused CT image is visible in 

Figure 3:20.     

 

 

Figure 3:20 difference between the fused CT image by the original image fusion with PSF and the 

original MR image   

 

3.4.1.4.2  Results from the proposed image fusion with the PSF 
 

 In the following text, we represent the results obtained by the first and the second 

part of the proposed image fusion with the PSF, applied to the MR and CT sets of 

images. 

  

3.4.1.4.2.1 Elimination of deformation of the restored image by the noisy motion 

blurred degradation mask. 

 

 Note that, the optimized magnetic resonance image has updated its pixels 

according to equation (52). The benefits of this intermediate step of image fusion are 
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the following. First, the MSE of the updated restored MR image is lower than the 

MSE of the original restored image. Moreover, the deformations of the original 

restored image are eliminated through the first part of the proposed image fusion 

process. The restored image, affected by the 1x5 motion blur mask, and the optimized 

restored image are given, respectively, in Figure 3:21 and Figure 3:22.  

 Note that the mean square error of the MR image, given by the independent 

restoration method, is 7.276938σ = . The MSE of the restored MR image after the 

intermediate step of image fusion is: 

 5.729223σ =  (56) 

 The percentage of pixels that the optimized MR image has taken from each input 

restored image is given below. Note that the pixels in the 256x256 images are 65536. 

 

 Restored image by the joint restoration model: 9336 pixels or 14.24%. 

 Restored image by the independent restoration model, applied to the 

measurement system with the 1x5 degradation mask (image with 

deformation): 33551 pixels or 51.19%. 

 Restored image by the independent restoration model, applied to the 

measurement system with the 3x3 degradation mask: 22649 pixels or 34.56%. 

 

 

Figure 3:21 Restored MRI Image with 

deformation 

 

Figure 3:22 Optimized MRI Image
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 The pixel-by-pixel difference between the restored MR image and the optimized 

MR image is given in the following figure. It is essential to present this figure in order 

to see the positive effect that the fusion procedure has caused to the restored image. 

 

 

Figure 3:23 Pixel-by-pixel difference between the restored and the optimized MR image 

 

 Applying the same optimization process to the restored CT image, the benefits of 

the optimization method are the lower MSE in the optimized restored CT image and 

the elimination of the deformations. The restored CT image, affected by the 1x5 

motion blur mask, and the optimized restored CT image are given, respectively, in 

Figure 3:24 and Figure 3:25. 

 Note that the MSE of the restored CT image is 10.494015σ = . The MSE of the 

restored CT Image after the intermediate step of image fusion is: 

 7.121319σ =  (57) 

 Moreover, we present the percentage of pixels that the optimized CT image has 

taken from each restored CT image.  

 

 Restored image by the joint restoration model: 7987 pixels or 12.18%. 
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 Restored image by the independent restoration model, applied to the 

measurement system with the 1x5 degradation mask (image with 

deformation): 32771 pixels or 50.00%. 

 Restored image by the independent restoration model, applied to the 

measurement system with the 3x3 degradation mask: 24778 pixels or 37.80%. 

 

 

Figure 3:24 Restored CT image with 

deformation 

 

Figure 3:25 Optimized CT image

 

 The pixel-by-pixel difference between the restored CT image and the optimized 

CT image is given in Figure 3:26. Note that the application of the proposed image 

fusion to the restored CT image functions positively. The ringing at the edges of the 

restored image has almost disappeared.  
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Figure 3:26 Pixel-by-pixel difference between the restored and the optimized CT image 

 

3.4.1.4.2.2 MR and CT image fusion results from the proposed method 

 

 The resulted, from the proposed image fusion model, magnetic resonance image 

and its histogram are obtained, respectively, in Figure 3:27 and Figure 3:28. 

 

 

Figure 3:27 Fused MR image by the proposed 

image fusion with PSF 

 

Figure 3:28 Histogram of fused MR image by 

the proposed image fusion with PSF



 

 74

 

 The Mean Square Error (σ) of the fused MR image in Figure 3:27 is: 

 4.463830σ =  (58) 

 In Figure 3:29 we represent the pixel-by-pixel difference between the original 

MR image and the fused MR image. It is obvious that the ringing phenomenon, a 

problem that we couldn’t avoid in the previous method, has eliminated.  

 

 

Figure 3:29 difference between the fused MR image by the proposed image fusion with PSF and 

the original MR image 

 

 The resulted, from the proposed image fusion model, computed tomography 

image and its histogram are obtained, respectively, in Figure 3:30 and Figure 3:31. 
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Figure 3:30 Fused CT image by the proposed 

image fusion with PSF 

 

Figure 3:31 Histogram of fused CT image by 

the proposed image fusion with PSF

 

 The mean square error (σ) of the fused CT Image in Figure 3:30 is: 

 5.172473σ =  (59) 

 In Figure 3:32 we represent the pixel-by-pixel difference between the original CT 

image and the fused CT image. It is obvious that the ringing phenomenon, a problem 

that we couldn’t overcome in the original image fusion with PSF, has eliminated. The 

selection of the pixel with the minimum pointwise spatial frequency, performed to the 

restored image by the measurement system with degradation the 1x5 motion blurred 

mask, has acted decisively and has “cleaned” the fused image from the ringing 

deformations.   
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Figure 3:32 difference between the fused CT image by the proposed image fusion with PSF and 

the original CT image 

 

 In the following table, we represent all the results from the image fusion methods. 

It is visible that the proposed image fusion with pointwise spatial frequency has given 

better results than the original image fusion method. 
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Image fusion 

method 
Original image 

Mean square 

error (MSE) of 

input image 

Mean square 

error (MSE) of 

fused image 

4.647109 

3.652579 MR 

7.276938 

5.869003 

5.443016 

4.775588 

Original image 

fusion with PSF 

CT 

10.494015 

8.618378 

4.647109 

3.652579 MR 

5.729223 

4.463830 

5.443016 

4.775588 

Proposed image 

fusion with PSF 

CT 

7.121319 

5.172473 

  

 

3.4.2 Image fusion between computed tomography and 
magnetic resonance Images 

 

 In the second part of image fusion we represent the fusion model between the 

restored CT and MR images.  

 

3.4.2.1 Image fusion procedure between MR and CT images 
 

 In this chapter, we illustrate an application of the proposed method for the special 

case of CT and MR images, where we want to include some geographic information 

of the fused object. The main function of this model is given in equation (71).  

 We have seen in Chapter 2 the effective usage of the quadratic constrained 

restoration methods in the degradation problem. The goal was to minimize the norm 

of the noise term, given in equation (60).  



 

 78

 2 2n y h x= − ∗  (60) 

 In other words, we wanted to find a vector x̂  such that the difference between the 

known image y and the convolved image h x∗  is minimized. The examined matrix 

( ),x m n  can be computed directly, through a mathematic model with inverse matrices 

etc, or iteratively through gradient descent methods. The restored image is estimated 

analytically by setting the derivative of the norm equal to zero. Afterwards, all the 

restored images by the MR and the CT images are fused with the method of the 

pointwise spatial frequency into a single MR and CT image.  

 With almost the same process, our main purpose in this chapter is to combine the 

fused MR and the fused CT images into a single image that contains the anatomical 

data and the bony structures of the input sources. Our main idea is to design an 

algorithm that takes a blank image as an input, and through a number of iterations it 

updates its elements from the MR and CT images. One of the most effective ways to 

perform this process is by minimizing the pixel-by-pixel differences between the 

blank image and the known MR and CT images.  

 Assume now that, the fused MR and CT images from the image fusion with the 

PSF model are given, respectively, from the two-dimensional signals ( )1 ,y m n  and 

( )2 ,y m n , and the unknown combined image from matrix ( ),x m n . According to the 

criterion, the estimation of vector x̂  can be performed through the following 

equation: 

 ( ){ }ˆ arg min
x

x J x=  (61) 

with 

 ( ) ( ) ( )( )2

,

, ,
m n

J x y m n x m n= −∑  (62) 

or in a vector form 

 ( ) ( )2

j j
j

J x y x= −∑  (63) 

 Our aim is to find a mixed model that contains the fused MR image and the fused 

CT image. Receiving the knowledge from both MR and CT images, this model can 
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update the elements of the unknown matrix ( ),x m n from both images, as it is shown 

in equation (64). 

 ( ){ }ˆ arg min
x

x J x=  (64) 

with 

 ( ) ( ) ( )( ) ( ) ( )( )2 2
1 1 2 2

, ,

, , , ,
m n m n

J x a y m n x m n a y m n x m n= − + −∑ ∑  (65) 

or in a vector form 

 ( ) ( ) ( )2 2

1 1, 2 2,j j j j
j j

J x a y x a y x= − + −∑ ∑  (66) 

 Variables 1a  and 2a  are equal to 0.5 in order the fused MR and CT images to 

have a parity participation in the equation. Note that the elements that correspond to 

the anatomical data of the MR image and the bony structures of the CT image, are 

participating equally with elements of the background, in the combination of matrix 

( ),x m n . This feature might be inefficient, because the goal of this algorithm is the 

final combined image to obtain only the anatomical data from the MR image and the 

bony structures from the CT image, without deformations from the background of the 

images. 

 The image segmentation method, a powerful method for identifying or 

classifying objects into different groups, is the pre-processing model in our image 

fusion process. According to this method, we can separate the background regions of 

the image and the regions correspond to the anatomical data of the MR image or the 

bony structures of the CT image. Assume that the region-segmented images by the 

MR image and the CT image are represented by matrices ( )1 ,S m n  and ( )2 ,S m n . The 

elements of the matrices ( )1 ,S m n  and ( )2 ,S m n  that belong to regions where we have 

knowledge about the anatomical data or the bony structures of the image, are equal to 

‘1’. On the contrary, elements that belong to the background area have zero value. 

Applying the region-segmented image in equation (65), the updated equation is taking 

the following form: 
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 ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )2 2
1 1 1 2 2 2

, ,
, , , , , ,

m n m n
J x a S m n y m n x m n a S m n y m n x m n= ⋅ − + ⋅ −∑ ∑

 (67) 

  The scope of equation (67) is that we can select the interest regions from each 

image to participate 100% to the restoration of matrix ( ),x m n , cutting the regions of 

the image that obtain no knowledge, or the knowledge of them isn’t necessary for the 

final fused image. When an element of the segmented image is equal to zero, the 

algorithm blocks the affect of the term ( ) ( )( )2
1 , ,y m n x m n− , in the current position 

of the segmented element, in the final combined image. Whereas, when an element of 

the segmented image is equal to one, the algorithm permits the participation of the 

term ( ) ( )( )2
1 , ,y m n x m n−  in the restoration of matrix ( ),x m n .  

 An extended version of the proposed algorithm is to compute the percentage of 

each element that participates in the computation of the unknown matrix ( ),x m n , 

relatively to the intensity of this element. This approach uses the real matrices 

( )1 ,S m n  and ( )2 ,S m n  in the region [ ]0, ,1K  instead of just binary values. To 

perform such a concept, the proposed algorithm performs a pixel-by-pixel 

multiplication between the binary-segmented image and the input image, before 

applying the segmented image in equation (67). Performing such a calculation, the 

result, is an image that contains pixels with zero values in the background regions, 

and with intensities up to 255 in the interested areas. Moreover, we have seen that 

matrices ( )1 ,S m n  and ( )2 ,S m n  function as coefficients in equation (67), with 

elements that have binary values.  

 Maintaining this rule, the elements that correspond to the anatomical data of the 

MR image or the bony structures of the CT image must be normalized their values in 

region[ ]0, ,1K . The above normalization can be done easily in the matrix, by dividing 

each element with the highest value of the examined matrix. The goal succeed by this 

scheme is filtering of the knowledge that we receive from the fused MR image and 

the CT image, together with the computation of the percentage that each element of 

the fused images is participating in the combined matrix ( ),x m n . 
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 Finally, the whole procedure can be rewritten in the following form, where 

function ( )J x  can estimate the combined image through the model that it will be 

discussed above. It is important to emphasize that all the matrices in equation (67) are 

transformed to vectors, with variable j to be the pointer of each element of them.  

 ( ) ( ) ( )2 2

1 1 1 2 2 2j j j j j j
j j

J x S y x S y xα α= ⋅ − + ⋅ −∑ ∑  (68) 

 In the above determination, we have seen the utility of the image segmentation 

method where background regions are filtered, and the knowledge of the anatomical 

data and the bony structures is participating without deformations in the combined 

image. The idea of using anatomical information in computed tomography is not new. 

Many works on the subject has been done before [17-20]. But, combining both region 

and border information from anatomic data is new. The separation of the background 

regions from the data regions in both MR and CT images is accomplished through the 

image segmentation model. 

 The objective function ( )J x , can be expanded with an extra term that preserves 

uniform information on matrix ( ),x m n  in homogenous region. This can be achieved 

through the following equation. 

 ( ) ( )1 j j j
j

x x xλ ϕ⋅ − ⋅ −∑ )  (69) 

 The binary matrix ( ),x m n) , reflects the borders (edges) of important regions in 

the image. This real matrix ( ),x m n) , can be considered as a geometrical (borders) 

data. The computation of this matrix is based on concepts of edge detection. First, all 

the elements of the binary matrix ( ),x m n)  have zero values. Applying the edge 

detection algorithm to the blank image the result would be a blank image with no 

edges or borders. While the algorithm is updating the knowledge of the unknown 

matrix ( ),x m n , the elements of matrix ( ),x m n)  remain equal to zero everywhere, 

expected in areas of object borders where ( ), 1x m n =) . The φ  function, is a convex 

function and the parameter λ  controls the percentage of the term that participates in 

the whole procedure. The proposed edge detection method is described analytically in 

the following chapters. 
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 Note that, when φ  is chosen to be convex, and when the parameter 0λ >  is fixed 

and the rest data are given, this criterion is a convex function of x. A simple choice of 

φ  is a quadratic ( ) 2x xφ =  or power form ( )x xβφ = . This convex function in this 

thesis has the following form: 

 ( ) 21x xφ = +  (70) 

 Finally, jx  is the mean value of pixels jx  in the 3x3 neighborhood of the pixel j. 

Based on these assumptions, the final procedure has the following form. 

 ( ) ( ) ( ) ( ) ( )2 2

1 1 1 2 2 2 1j j j j j j j j j
j j j

J X S g x S g x x x xα α λ ϕ= ⋅ − + ⋅ − + ⋅ − ⋅ −∑ ∑ ∑ )

 (71) 

 The computation of the unknown matrix ( ),x m n  in equation (71) can not be 

performed analytically, as in the quadratic constrained restoration models in Chapter 

2. The convex function φ , includes the matrix ( ),x m n  inside the square root and the 

analytical estimation of  ( ),x m n  is impossible. Moreover, the power of the pixel-by-

pixel subtractions in equation (71) sometimes might be a float value than a square 

power. For that reasons, an iterative method of combination is essential.  

 There is a variety of restoration methods, and one of them is the iterative 

detection of the unknown matrix ( ),x m n  through the gradient descent optimization 

model. Then, the optimization of the objective function can be done by any gradient 

based algorithm. The whole reconstruction procedure is the following: 

 

1. Initialize ( )0 0x x= = . 

2. Compute x by optimizing the equation (71), with respect to the gradient based 

algorithm. 

3. Compute the edge detected and the mean valued matrices of x, from x. 

4.  Return to 2 until convergence. 

 

 The graph correspond to the previous steps of reconstruction is shown below.  
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Figure 3:33 Gradient descent algorithm 

 

 In the next Chapters, the gradient descent optimization model is represented 

analytically. Applying the gradient descent model to the fused MR and CT images, 

with no knowledge about the final combined image, the result is given in Figure 3:34. 
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Figure 3:34 Final combined image from MR and CT images 

  

3.4.2.2 Edge detection 
 

 For the detection of edges in images, various detection operators are used. Most 

of these are applied with convolution masks based on differential operations. 

Differentials for edge detection are used to define color or brightness changes of 

pixels and their change directions. If there is an abrupt change of brightness in a short 

interval in an image, it means that in that interval there is an edge with great 

probability. 

 Many of the edge operators are negatively affected by noise in the images. Thus, 

before edge detection, noise should be filtered as much as possible. Instead of this, 

Frequency domain filters may also be used for edge detection. Only spatial domain 

methods are being considered in this thesis. 

 The basic idea of edge detection operators is based on comparison of the 

brightness values of pixels with their neighbors. For example, if a pixel’s value is the 

same as its neighbors or too close, then with a great probability this pixel will not lie 

on an edge. If there is difference between pixel and its neighbors then it may be 

thought that this pixel may lie on an edge. An ideal edge appears with an abrupt gray-



 

 85

level change. But in practice, instead of such abrupt change, smooth changes occur. In 

Figure 3:35, an ideal and corresponding practical situation of gray-level changes of an 

edge has shown. 

 

 

Figure 3:35 Ideal and real edge in an image 

 

 In the following sections some edge detection operators have been explained. The 

method that this thesis has performed is the edge detection with four dimensional 

Kirsch masks. Note that the description of each edge detection method is according to 

reference [21]. 

 

3.4.2.2.1 Sobel Operators 
 

 Sobel edge detection masks detect vertical and horizontal edges separately. And 

these directional edges are combined finally. Coefficients of 3x3 Sobel masks are: 

 
1 2 1

Horizontal Mask = 0 0 0
1 2 1

− − −⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (72) 

 
1 0 1

Vertical Mask = 2 0 2
1 0 1

−⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟−⎝ ⎠

 (73) 

 These two masks are convoluted with image separately. The magnitude and 

direction of an edge is calculated by using convolution results of two masks. These 

are: 
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 2 2 -1 1
1 2

2

 and a=tan SS S S
S
⎡ ⎤

= + ⎢ ⎥
⎣ ⎦

 (74) 

 

3.4.2.2.2 Prewitt Operators 
 

 Prewitt operators are similar to Sobel, but the mask coefficients are different. 

 
1 1 1

Horizontal Mask = 0 0 0
1 1 1

− − −⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (75) 

 
1 0 1

Vertical Mask = 1 0 1
1 0 1

−⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟−⎝ ⎠

 (76) 

 Magnitude and direction of an edge is found by: 

 2 2 -1 1
1 2

2

 and a=tan PS P P
P
⎡ ⎤

= + ⎢ ⎥
⎣ ⎦

 (77) 

 

3.4.2.2.3 Laplace Operators 
 

 Laplace operators are used as the ones described above. Laplace operators are 

symmetric; all changes in all directions affect the result. Sign of the result defines the 

direction of gray level change. Below Laplacian masks has shown. 

 
0 1 0 1 2 1
1 5 1  and 2 5 2

0 1 0 1 2 1

− −⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟− − − −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

 (78) 

 

3.4.2.2.4 Kirsch Operators 
 

 The Kirsch edge detector masks can be used to detect edges along different 

directions. Such masks of size 3x3 are: 
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1 0 1

1 1 0 1  for " " horizontal edge detection
1 0 1

mask
−⎛ ⎞
⎜ ⎟= − ↔⎜ ⎟
⎜ ⎟−⎝ ⎠

 (79) 

 
1 1 1

2 0 0 0  for " " vertical edge detection
1 1 1

mask
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟− − −⎝ ⎠

b  (80) 

 
0 1 1

3 1 0 1  for " " diagonal edge detection
1 1 0

mask
⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟− −⎝ ⎠

\  (81) 

 
1 1 0

4 1 0 1  for " " diagonal edge detection
0 1 1

mask
⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟− −⎝ ⎠

_  (82) 

 Edge detection can be performed in the following way. All the Kirsch edge 

detector masks are applied to each image pixel. The mask that produces the maximal 

output value is the one that gives the information about each pixel of the image. A 

schematic and the steps that the algorithm is following are shown below. 

 

 

Figure 3:36 Edge detection method 
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3.4.2.2.5 Results of the edge detection method 
 

 After simulating the above methods with the input MR and CT images, we have 

made the decision to perform the Kirsch edge detection and we present the results of 

it. 

 

3.4.2.2.5.1 Results from edge detection applied to magnetic resonance image 

 

 

Figure 3:37 Horizontal edge detection of MR 

image 

 

Figure 3:38 Vertical edge detection of MR 

image

      

 

Figure 3:39 Diagonal ‘/’ edge detection of MR 

image 

 

Figure 3:40 Diagonal ‘\’ edge detection of MR 

image
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Figure 3:41 Complete edge detection of the MR image   

 

3.4.2.2.5.2 Results from edge detection applied to computed tomography image 

 

 

Figure 3:42 Horizontal edge detection of CT 

image 

 

Figure 3:43 Vertical edge detection of CT image
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Figure 3:44 Diagonal ‘/’ edge detection of CT 

image 

 

Figure 3:45 Diagonal ‘\’ edge detection of CT 

image

 

 

Figure 3:46 Complete edge detection of CT image   
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3.4.2.3 Image segmentation with thresholding 
 

3.4.2.3.1 Introduction to image segmentation with thresholding 
 

 Image segmentation refers to the partition of a digital image into disjoint 

connected sets of pixels, each of which corresponds to an object or region. Image 

segmentation can be approached from three different philosophical perspectives [13]. 

In the region approach, one assigns each pixel to a particular object or region. In the 

boundary approach, one attempts only to locate the boundaries that exist between the 

regions. In the edge approach, one seeks to identify edge pixels and then link them 

together to form the required boundaries. 

 In this thesis, the region approach is the one that we are interesting in and the 

method that we have performed for region segmentation is the segmentation by 

thresholding.  

 Thresholding is a particularly useful region-approach technique for scenes 

containing solid objects upon a contrasting background. Specifically, in the case of 

the CT image the contrast between the background and the object is visible. When 

using a threshold rule for image segmentation, one assigns all pixels at or above the 

threshold grey level to the object. All pixels with grey level below the threshold fall 

outside the object. The boundary is then that set of interior points, each of which has 

at least one neighbour outside the object. The implementations of image segmentation 

by thresholding are separated in the following applications. 

 

3.4.2.3.1.1 Global thresholding 

 

 In the simplest implementation of boundary location by thresholding, the value of 

the threshold grey level value is held constant throughout the image. If the 

background grey level is reasonably constant throughout, and if the objects all have 

approximately equal contrast above the background, then a fixed global threshold will 

usually work well. The general rule of image segmentation with global thresholding is 

based on equation(83). Segmentation is accomplished by scanning the image pixel-

by-pixel and labelling each pixel as object or background, depending on whether the 
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grey level of that pixel is greater or less than the value of threshold. Note that, for 

every pixel ( ),i j  with ( ),f i j the input image and ( ),g i j the output image: 

 
( ) ( )

( ) ( )

, 1 ,for ,

, 0 ,for ,

g i j f i j Threshold
or

g i j f i j Threshold

= ≥

= <

 (83) 

 The success of this method depends entirely on how well the histogram of the 

image can be partitioned. 

 

3.4.2.3.1.2 Adaptive thresholding 

 

 In many cases, the background grey level is not constant, and the contrast of 

objects varies within the image. In such cases, a threshold that works well in one area 

of the image might work poorly in other areas. In these cases, it is convenient to use a 

threshold grey level that is a slowly varying function of position in the image.                       

 

3.4.2.3.1.3 Optimal threshold selection 

 

 Unless the object in the image has extremely steep sides, the exact value of the 

threshold grey level can have considerable effect on the boundary position and overall 

size of the extracted object. This means that subsequent size measurements-

particularly area-are sensitive to the threshold grey level. For this reason, we need an 

optimal, or at least consistent, method to establish the threshold. The Histogram 

techniques for image segmentation by thresholding, is the method that this thesis 

implement.  

 Suppose that the gray-level histogram corresponds to an image, ( )f x , composed 

of light objects in a dark background, in such a way that object and background pixels 

have gray levels grouped into two dominant modes. One obvious way to extract the 

objects from the background is to select a threshold T that separates these modes. 

Then any point ( ),x y  for which ( ),f x y T> is called an object point, otherwise, the 

point is called a background point. Otsu, in 1979 proposed an algorithm for automatic 

threshold selection from the histogram of an image [16]. 
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 The processing results, applying the previous image segmentation method with 

histogram thresholding to the MR and CT images, are represented in the following 

sub-chapter.  

 

3.4.2.3.2 Results from the image segmentation 
 

 In the following sub-chapters, we represent the output images given by the image 

segmentation procedure. Note that we have experimented a lot with the decision of 

the threshold of each image, selecting the most effective threshold value for the CT 

and the MR image. 

 

3.4.2.3.2.1 Results from image segmentation applied to MR image 

 

 In Figure 3:47, we can see the processing results of the image segmentation 

process, applied to the MR image. Note again that the choice of the threshold is based 

on the histogram of the MR image. 

 

 

Figure 3:47 Segmentation of the MR image 

 

 In Figure 3:48, the segmented binary image is applied to the original image with 

a pixel-by-pixel multiplication between the pixels of the binary image and the pixel of 
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the original MR image. Performing such a processing in the original image, we 

automatically cut the regions that we don’t want to receive any kind of information 

from them in later image processing procedures. 

        

 

Figure 3:48 Segmentation applied to the MR image 

 

3.4.2.3.2.2 Results from image segmentation applied to CT image 

 

 With the same steps as in the MR image, the processing results of the image 

segmentation algorithm applied to the CT image are the following.  
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Figure 3:49 Segmentation of the CT image 

 

 

Figure 3:50 Segmentation applied to the CT image 
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3.4.2.4 Gradient descent method 
 

 The general optimization method in the second part of image fusion is the 

gradient descent algorithm. In the following sub-chapters we present the methodology 

of gradient descent method and the accuracy of the method in this thesis.  

 

3.4.2.4.1 Methodology of gradient descent method 
 

 Gradient descent is a function optimization method, which uses the derivative of 

the function and the idea of steepest descent [11]. The derivative of a function is 

simply the slope. The slope is just y
x

∆
∆

in the diagram.  

 

 

Figure 3:51 slope of the function f(x) 

 

 So if we know the slope of a function, then we can move in the negative direction 

of the slope, and reduce the value of the function. Gradient descent is an iterative 

method, so the main idea is as follows: 

 

 Compute the derivative of the function with respect to its independent 

variables. We can denote this derivative as ( )f x∇ , where ( ).f  is the function 

to be minimized, and x is the vector of independent variables. 
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 Change the value of x as follows, ( )n+1 nx x a f x= − ⋅∇ , where the subscript n 

refers to the iteration number, and α is a step size which must be chosen so 

that we don't take too big or too small of a step. Too big of a step will 

overshoot the function minimum, and too small of a step will result in a long 

convergence time. 

 Repeat the above two steps until we converge to a local minimum of the 

function ( )f x . 

 

 Gradient descent is an attractive optimization method in that it is conceptually 

straightforward and often converges quickly. Its drawbacks include the fact that the 

derivative of the function must be available, and it converges to a local minimum 

rather than a global minimum.  

 The convergence criterion for the gradient descent method in this thesis is based 

on the changes of the estimated matrix. Specifically, the iterative algorithm stops 

when the change between the xn+1 and the xn two-dimensional matrix is lower than a 

definite value. The equation for the above criterion is: 

 1 0.001 , 1, ,  stepsn n

n

x x
n N

x
+ −

≥ = K  (84) 

 Note that the norm of a two-dimensional matrix is given by the following 

equation: 

 2
,

1 1

N M

i j
i j

x x
= =

= ∑∑  (85) 

 

3.4.2.4.2 Accuracy of the gradient descent method 
 

 The main goal of the gradient descent method is to minimize each 

function ( ).f by updating its variable (or variables) x with respect to the equation: 

 ( )n+1 nx x a f x= − ⋅∇  (86) 
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 Assume that we are simulating function (87). Note again that the fused MR and 

CT images are represented by the two-dimensional matrices 1 jy  and 2 jy , 1 jS  and 2 jS  

are the extended segmented matrices, and matrix x corresponds to the unknown 

estimate matrix. 

 ( ) ( ) ( )2 2

1 1 1 2 2 2j j j j j j
j j

J x S y x S y xα α= ⋅ − + ⋅ −∑ ∑  (87) 

 Following the steps of the gradient descent algorithm, and initializing the 

unknown pixel values of matrix x to be equal to zero (blank Image), it is visible that 

the value of ( )J x  is decreasing while the number of the iterations is increasing. The 

next graph has been taken while gradient descent method was evolving. According to 

the simulation, i.e. graph in Figure 3:52, the gradient descent method we simulated is 

reliable and convergent. Note that the study of the algorithm has been performed 

many times, with different input data.   
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Figure 3:52 Graph of the gradient descent simulation 
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3.5 Conclusion of information fusion 
 
 In this chapter we have proposed the image fusion method between the MR and 

the CT images. In the first part, image fusion with the pointwise spatial frequency has 

positively acted on the MR and CT images, so that the deformation that affects the 

images diminishes. The processing results prove how successful our approach is. The 

proposed image fusion with the spatial prequency, and specifically the intermediate 

step we have implemented, has improved the intensity of the edges and the local 

characteristics of the object.  

 The first part of the thesis procedure has prepared the field of the joint processing 

of the two restored MR and CT images. The main objective of this thesis is to focus 

on how classical probabilistic methods such as Bayesian (BAYES) approaches can be 

used for data fusion.  In the second part of image fusion, we have implemented 

several versions of this fusion process. The image segmentation method has proved to 

be a powerful tool in order to select the interesting regions of each input image. 

 The edge detection method applied to the fused image provides good results on 

the borders of different regions. The final combined image contains information about 

the anatomical data and the bony structures of the object, corresponded in the fused 

image.  
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4 Discussion and further work 
 

4.1 Discussion 
 

In the second chapter we focus on how restoration methods can function 

positively in order to overcome the effect of degradation in the raw data. We present 

an introduction of the problem and a review of related search in order to get a grasp of 

current trends in image restoration. Different measurement systems with known 

degradation masks and unknown white Gaussian noise have degraded the magnetic 

resonance and computed tomography images.  

Afterwards, we apply the joint and independent quadratic constrained restoration 

methods to the images, producing a set of restored data ready for the next part, the 

image fusion procedure. 

In the next chapter, we focus on the image fusion method applied to the restored 

images. In the first level, the image fusion with the pointwise spatial frequency fuses 

separately the MR and CT sets of images obtained from the multi-sensor architecture 

information system. The processing results of the proposed method indicate good 

success of our approach. 

In the next level, the restored magnetic resonance image is processed jointly with 

the restored computed tomography, providing a new source of knowledge containing 

information from both images. Despite the fact that the input sources didn’t allow us 

to have a quality database to experiment, the combination of edge detection, image 

segmentation and the gradient descent method offers a fast and reliable method of 

image fusion.  

In this concluding chapter, we give an evaluation of our ideas and attempt to 

extend them in order to serve as a starting point for future search. 

  

4.2 Further work 
 

 Although good results are obtained, some open issues remain. These are outlined 

below with possible indications on how they might be solved. 

 Starting with the image restoration algorithm, it is possible to extend our research 

into different high-pass filters in order to study how they affect the process. 
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Moreover, we have seen in this thesis that the independent restoration method applied 

to noisy motion blurred image has caused a lot of deformations to the restored image. 

Changing the general method that this thesis ensued is not proposed. The constrained 

restoration method is a fast and reliable method for image restoration and it should not 

be changed. Keeping the general form of the constrained method as it is, and 

enhancing it with extended terms in order to avoid the ringing phenomenon might be 

really productive.   

 One possible approach worth of further investigation is the optimization of the 

image segmentation algorithm. Although the current algorithm works well and the 

processing results from the MR and CT images prove this fact, an improved image 

segmentation method would divide the image into small sectors and work separately 

on them. In the first pass, the boundaries of the image can be defined using a gray-

level threshold that is constant within sectors, or might change for the various sectors. 

The objects so defined are not extracted from the image, but the interior mean gray 

level of each object is computed. On a second pass, each object defines its own 

threshold in between its interior gray level and the background gray level of its 

principal sector. 

 This thesis has designed and simulated in C code, the Laplacian Pyramid, 

referenced in [14]. The advantage of this code is that it is well suited for many image 

analysis methods, where the image is expanded in many levels. A future optimization 

of this thesis is to absorb this technique and to perform the image fusion procedure in 

many levels of the examined images. 

 An additional natural extension of our method would be to include functional 

types of images like single-photon emission computerized tomography (SPECT) to 

the image fusion procedure. SPECT antibody images can enhance the information 

provided by either single modality by providing precise anatomical-functional 

correlation. 

 Finally, another possible approach should be to extend our research in the 3-D 

where slices of magnetic resonance images are fused with computed tomography 

images of the same scene. This kind of research needs a lot of discussion and should 

be checked separately.   
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Appendix A  
 

Add_noise.h 
 

 In this header file we have created and compiled the following function:  

 

 function wgn (long x_dimension, long y_dimension, float power) which 

generates a two-dimensional MxN matrix of white Gaussian noise. Variable 

“power” specifies the power of the output noise in dB. The function calls 

function “randn” which generates arrays of random numbers whose elements 

are normally distributed with mean 0, variance σ2=1 and standard deviation 

σ=1. 

 

Alloc_mem.h 
 

 This header file includes the following function: 

 

 function alloc_2D_matrix (long x_dimension, long y_dimension) which 

allocates memory for a two-dimensional matrix. If the system fails to allocate 

the memory, a warning appears in the screen and the program terminates. 

 

Bmp1.h 
 

 This header file includes structs with all the necessary information about the 

RGB of an image, its size and its type. Note that the specific program works with 256 

grayscale bmp images. 
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Struct.h 
 

struct st  

{ 

 float **real_part; float **imaginary_part; long x_dimension; long y_dimension; 

}; 

 

 In our project, we have worked with complex numbers which are produced by the 

discrete Fourier transform (DFT), applied in an image. In order not to lose any 

information and to have well organized our data, we have created a struct that splits 

the complex number and store the imaginary and the real part of it into two two-

dimensional matrices. Besides the two-dimensional matrices, variables x_dimension 

and y_dimension corresponds to the Height and Width of the matrix.  

 

Fft.h 
 

 Fourier analysis is extremely useful for data analysis, as it breaks down a signal 

into constituent sinusoids of different frequencies. For sampled vector data, Fourier 

analysis is performed using the discrete Fourier transformation (DFT). 

 The fast Fourier transformation (FFT) is an efficient algorithm for computing the 

DFT of a sequence; it is not a separate transform. It is particularly useful in image 

processing, where its uses range from convolution as we have seen and in our work.                  

 As it concerns, in this header file we have created and compiled the following 

functions: 

 

 function DFT (int direction, long x_dimension, long y_dimension, float 

**real_part, float **imaginary_part) returns the discrete Fourier transform 

(DFT) or the inverse discrete Fourier transform (DFT) of matrix X, computed 

with a fast Fourier transform (FFT) algorithm. The two-dimensional M-by-N 

DFT and inverse M-by-N DFT relationships are given by the following 

equations. Note that M and N are the Height and Width of the two-

dimensional matrix and X the result discrete Fourier transform (DFT) of 

matrix x. The function DFT() returns the discrete Fourier transform (DFT) or 
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the inverse discrete Fourier transform (DFT), depends on the value that the 

variable “int direction” has. If the “direction”=1, the function returns the 

discrete Fourier transform (DFT) of the matrix. If “direction”=-1, the function 

returns the inverse discrete Fourier transform (DFT) of the matrix. The 

“real_part” and the “imaginary_part ”matrix returns the real part and the 

imaginary part of the complex result number. 

 ( )
2 21 1

0 0
( , ) ,

M N j p m j q n
M N

m n
X p q x m n e e

π π⋅ ⋅⎛ ⎞ ⎛ ⎞− − − ⋅ ⋅ − ⋅ ⋅ ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= =

= ⋅ ⋅∑∑  (88) 

 ( ) ( )
2 21 1

0 0

1, ,
M N j p m j q n

M N

p q
x m n X p q e e

M N

π π⋅ ⋅⎛ ⎞ ⎛ ⎞− − ⋅ ⋅ ⋅ ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= =

⎛ ⎞= ⋅ ⋅⎜ ⎟⋅⎝ ⎠
∑∑  (89) 

 

 function dft2 (int direction, long  x_dimension, long y_dimension, float 

**real_part, float **imaginary_part) gets as input the output of the previous 

function DFT() and finally returns the two-dimensional discrete Fourier 

transform (DFT) or the inverse two-dimensional discrete Fourier transform 

(DFT)of the matrix, Computed with a fast Fourier transform (FFT) algorithm. 

The result has the same size as the input matrix. As in the previous function, 

the variable “direction” works as a flag.   

 

Filters.h 
 

 This header file includes the following functions: 

 

 function filter1 (long x_dimension, long y_dimension) returns the 3x3 blurring 

mask of the system. Note that the function takes as inputs the Width and the 

Height of the image to be convolved, and fill the 3x3 mask with zero values so 

as to have the same Height and Width with the image to be convolved. Below 

is the 3x3 mask that we have taken after the simulation of the system that has 

given the noisy blurred image. 
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1 1 1
9 9 9
1 1 1_
9 9 9
1 1 1
9 9 9

blurred mask

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (90) 

 

 function filter2 (long x_dimension, long y_dimension) returns the 1x5 motion 

blurred mask of the system. Note that the function takes as inputs the Width 

and the Height of the image to be convolved, and fill the 1x5 mask with zero 

values so as to have the same dimensions with the image to be convolved. 

Below is the 1x5 mask that we have taken after the simulation of the system 

that has given us the noisy motion-blurred image. 

 1 1 1 1 1_ _
5 5 5 5 5

motion blurred mask ⎡ ⎤= ⎢ ⎥⎣ ⎦
 (91) 

 

 function filter3 (long x_dimension, long y_dimension) returns the 3x3 

Laplacian mask. Note that the function takes as inputs the Width and the 

Height of the image to be convolved, and fill the 3x3 mask with zero values so 

as to have the same dimensions with the image to be convolved. Below is the 

3x3 mask that we have used to do our restoration of the original image. 

 
0 1 0

_ 1 4 1
0 1 0

Laplacian mask
⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

 (92) 

 

Rw.h 
 

 This header file includes the following functions: 

 

 function read_bmp (char* filename, long *Height, long *Width) takes as input 

the filename of a bmp image and returns the intensity of each pixel in the 
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current image in a two-dimensional matrix. The Height and Width of the 

matrix are equal with the Height and Width of the image. 

 

 function write_bmp (char *filename, unsigned char** pic, long Height, long 

Width) takes as inputs the filename where we want to store the bmp image, a 

two-dimensional matrix corresponds to the intensity of the specific image, and 

the Height and Width of the matrix. 

 

Math_func.h 
 

 This header file includes the following functions: 

 

 function zero_vect (long x_dimension, long y_dimension) which calls the 

function to allocate memory for a two-dimensional matrix and finally returns a 

matrix, with Height and Width given by the program, filled with zero values. 

This function is very useful and practical because we can empty a matrix 

safety, without causing troubles to any stored values in the next steps of the 

program. 

 

 function transpose (long x_dimension, long y_dimension, float **data, int 

choice) gets a two-dimensional matrix and returns it’s transpose matrix. Note 

that we have to convolve every time the images with the masks, described 

above, and we work with complex numbers, as it concerns from the Fourier 

transform. The transpose of the two-dimensional complex matrix relationship 

is given in equation (93). We have split the real and the imaginary part of any 

number and we work individually with them, with respect to the mathematical 

laws. Depends on the choice that we give as input to the function, it returns the 

transpose of the real part of the input vector or the transpose of the imaginary 

part of the input vector. When the “choice”=1, the function performs the 

equation (94) and returns the transpose of the real part of the input two-

dimensional matrix. When the “choice”=-1, the function performs the equation 

(95) and returns the transpose of the imaginary part of the input two-

dimensional matrix. 
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11 11 1 1 11 11 1 1

1 1 1 1

T
n n m m

m m mn mn n n mn mn

a i b a i b a i b a i b

a i b a i b a i b a i b

+ ⋅ + ⋅ − ⋅ − ⋅⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟=⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟+ ⋅ + ⋅ − ⋅ − ⋅⎝ ⎠ ⎝ ⎠

K K
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L L
 (93) 

 
11 1 11 1

1 1

T
n m

m mn n mn

a a a a

a a a a

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟=⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

K K
M O M M O M

L L
 (94) 

 
11 1 11 1

1 1

T
n m

m mn n mn

b b b b

b b b b

− −⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟=⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

K K
M O M M O M

L L
 (95) 

 

 function inverse (float ** output_real_part, float ** output_imag_part, float 

**input_real_part, float **input_imag_part, long x_dimension ,long 

y_dimension) takes as inputs the real and the imaginary part of a two-

dimensional matrix, the Height and the Width of the matrix and returns 

separately the inversed real and imaginary part of each object of the matrix 

into a new two-dimensional matrix. Note that the result of the function is not 

the inverse of the matrix but the inverse of each object of the matrix as we are 

working pixel-by-pixel in the Frequency domain. The relationships for the 

inversed real and imaginary part for a complex number y α ι β= + ⋅  are given 

respectively by the following equations: 

 2 2( _ )inverse real part α
α β

=
+

 (96) 

 2 2( _ )inverse imaginary part β
α β
−

=
+

 (97) 

 

Mean_value.h 
 

 This header file includes the following functions: 

 

 function mean_val (float **data, long x_dimension, long y_dimension) which 

returns the mean value of each pixel in the 3x3 neighborhood, in a two-
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dimensional matrix. The function takes as inputs a two-dimensional matrix 

where we want to find the mean value of its pixels as wells as its Height and 

Length. The function has a distinct characteristic when an object of the matrix 

is belonging to an area where its neighborhood supported by less than 8 

objects (as we are calculating the mean value by a 3x3 neighborhood). Then, 

the equation of the function includes only the neighbor pixels and the result of 

the function is more optimized than the result of a simple mean value function. 

The general equation that the function works with is (98). In the special case 

where the pixel has a 3x3 neighborhood the equation is the following (99). 

 
( ),

,

 pixels 
 every pixel do : 

of neighbor pixels

i j

i j

neighbor x
for

number
µ =

∑
 (98) 

 
1 1

, , , i,j
1 1

1    is the mean value of the pixel x
9i j i k j l i j

k l
x whereµ µ− −

=− =−

= ⋅ ∑∑  (99) 

 

 function subtraction_func (long x_dimension, long y_dimension, float 

**subtrahend_matrix, float **subtracter_matrix) which performs a pixel-by-

pixel subtraction between the two two-dimensional matrices. The result of the 

function is a two-dimensional matrix with the same Height and Width as the 

input matrices have. 

   

Normalization.h 
 

 This header file includes the following functions: 

 

 function normalization (float **data, long x_dimension, long y_dimension) 

which takes as inputs a two-dimensional matrix, its Height and Width and 

normalizes the matrix’s pixels in region 0, ,1K  dividing each pixel with the 

pixel that has the maximum absolute value. Afterwards, it calculates the 

subtraction between each pixel and the variable 1 and returns the result into a 

two-dimensional matrix. 
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( )
,

,
ˆ every pixel do : X

max
i j

i j

X
for

X
=  (100) 

 , ,
ˆ ˆ every pixel do : 1 Xi j i jfor X ′ = −  (101) 

 

Variance.h  
 

 This header file includes the following functions: 

 

 function Create_Histogram(float **Image, long x_dimension, long 

y_dimension) which takes as inputs the two-dimensional matrix corresponds 

to the intensity of each pixel of the image, its Height and Width and returns 

the histogram of the input image in a vector. The gray-level histogram gives 

the number of cells having a particular gray-level.   

 

 function Segmentation(int choice, float **Image, long x_dimension, long 

y_dimension) which performs the histogram-based image segmentation using 

a manually choice of thresholding between the peak values in image’s 

histogram. The function takes as inputs the image where we want to find its 

segmentation, its Height and Width and returns in a two-dimensional matrix 

the segmented image. This function calls the previous function 

“Create_Histogram” and based on the histogram of the image and selecting a 

threshold performs the calculations in equation (102) for each pixel ( ),i j  with 

( ),f i j the input image and ( ),g i j the output image. Afterwards, we apply the 

segmented image to the input image, with pixel-by-pixel multiplication 

between the segmented image and the original. With this procedure, we pay 

attention to parts with semantic meaning in the image, which will lead to 

interpretation in later analysis. Finally, all the pixels of the two-dimensional 

image, corresponds to the pixel-by-pixel multiplication, are divided by the 

intensity of the pixel with the maximum value in order for the intensity of the 

pixels to have a value between 0 and 1. The input variable “choice” is a 

helpful variable for selecting whether the segmentation procedure is applied to 
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the magnetic resonance or to the computed tomography image. It is obvious 

that the MR and the CT input images have different histograms and the choice 

of the threshold should be different. If the variable “choice” is equal to 1 the 

function returns the segmentation of the computed tomography image and 

when variable “choice” is equal to 2, then the function returns the 

segmentation of the magnetic resonance image.   

 

 
( ) ( )

( ) ( )

, 1 ,for ,

, 0 ,for ,

g i j f i j Threshold
or

g i j f i j Threshold

= ≥

= <

 (102) 

 

Min_max_fun.h 
 

 The specific header file includes the following function: 

 

 function max_value (float **input_matrix_1, float **input_matrix_2, long 

x_dimension, long y_dimension) which performs a pixel-by-pixel comparison 

between two input matrices and returns a two-dimensional matrix with values 

the maximum value of the absolute pixel-by-pixel comparison. The simple 

calculation that the function performs is given respectively by the following 

equation:  

 ( ), , ,max _ 1 , _ 2i j i j i jX pixel matrix pixel matrix=  (103) 

 

Writ_fil_2d.h 
 

 The specific header file includes the following function: 

 

 function write_file2 (char *name_of_file, float **data_to_be_stored, long 

x_dimension, long y_dimension), which takes as input the name of the file that 

we want to store the input two-dimensional matrix, as well as its Height and 
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width of the matrix. If the function could not store the matrix, a warning 

appears in the screen. 

 

Edge_detection.h 
 

 This specific header file includes a function that performs edge detection to a 

two-dimensional matrix-image. More details of the function are given below: 

 

 function MyEdgeDetection(float **input_matrix, long x_dimension, long 

y_dimension, int choice) takes as inputs a two-dimensional matrix, its Height 

and Width, and finally the choice for the edge detection that we want to 

perform. The input matrix is convolved each time with a 3x3 mask, depends 

on the direction that we want to examine. When the variable of the function 

“choice” takes the value “1” the function returns the edges of the input Image 

examined only in the horizontal dimension. When variable “choice” is equal to 

“2” the function returns the edges of the input Image examined in the vertical 

dimension etc. In the case where the flag “choice” is equal to “5” then the 

function performs a pixel-by-pixel comparison between the resulted edges in 

the four dimensions and selects the maximum value for the final edge of the 

pixel. Mathematically, equation (108) shows the reported step.   

 
1 0 1

1 1 0 1  for " " horizontal edge detection
1 0 1

mask
−⎛ ⎞
⎜ ⎟= − ↔⎜ ⎟
⎜ ⎟−⎝ ⎠

 (104) 

 
1 1 1

2 0 0 0  for " " vertical edge detection
1 1 1

mask
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟− − −⎝ ⎠

b  (105) 

 
0 1 1

3 1 0 1  for " " diagonal edge detection
1 1 0

mask
⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟− −⎝ ⎠

\  (106) 

 
1 1 0

4 1 0 1  for " " diagonal edge detection
0 1 1

mask
⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟− −⎝ ⎠

_  (107) 
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 ( ), , , , ,_ max 1 , 2 , 3 , 4i j i j i j i j i jfinal edge edge edge edge edge=  (108) 

 

Anadel_1_input.h 
 

 The function of this header file is the one below that returns the unknown image 

X from the gradient of the equation (109), setting it equal to zero. 

 2 2( ) YJ X H X C Xα β= ⋅ − ∗ + ⋅ ∗  (109) 

 function anadel1_input (int filter_choice, float alpha, float beta, float 

**Image_matrix, long x_dimension, long y_dimension) which takes as inputs 

the parameters alpha and beta, the input two-dimensional matrix Y as well as 

its Height and Width. The function calculates the derivative of the function, 

sets the gradient function equal to zero, and returns a two-dimensional matrix 

with the pixels of the unknown matrix X. We have explained analytically in 

the previous chapter how and why we perform such a calculation. Our main 

purpose here is to make our code more friendly to the user, explained the use 

of the functions. The two-dimensional matrix C is the Laplacian mask 

described in Heading 1.1.6, and the H matrix is the blurring mask which might 

be the simple blurring mask (90) if the input value of the function 

“filter_choice” is equal to “1” or the motion blurred mask (91) with 

“filter_choice” equal to “2”. Note also that we have worked in the Fourier 

dimension because of the convolution between the unknown matrix X and the 

blurring mask. The output of the function is given by the following steps of 

calculations: 

 ( ){ }ˆ arg min
X

X J X= ⇔  (110) 

 ( ) 0X J X∇ = ⇔  (111) 

 ( )t t tC C H H X H Yβ α α⋅ ⋅ + ⋅ ⋅ = ⋅ ⋅ ⇔  (112) 

 ( ) ( )1ˆ t t tX C C H H H Yβ α α
−

= ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅  (113) 
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Mul_complex.h 
 

 This header file includes the following functions: 

 

 function mult(float **real_part_output, float **imaginary_part_output, float 

**real_part_vec1, float **imaginary_part_vec1, float **real_part_vec2, float 

**imaginary_part_vec2, long x_dimension, long y_dimension) which 

performs a pixel-by-pixel multiplication between the two input matrices with 

complex numbers as data, and returns the real parts of the pixel-by-pixel 

multiplication in matrix “real_part_output” and the imaginary parts of the 

pixel-by-pixel multiplication in matrix “real_part_output”. The real part as 

well as the imaginary part of the result are given respectively by the following 

equations: 

 
with complex numbers : +  and + i
real_part = 
imaginary_part = +

iα β γ δ
α γ β δ

β γ α δ

⋅ ⋅
⋅ − ⋅

⋅ ⋅
 (114) 

 

Anadel_2_inputs.h 
 

 The function of this header file is the one below that returns the unknown Image 

X from the gradient of the equation (115), setting it equal to zero. 

 2 2 2
1 1 1 2 2 2( ) Y YJ X H X H X C Xα α β= ⋅ − ∗ + ⋅ − ∗ + ⋅ ∗  (115) 

 function anadelta (float alpha_1, float alpha_2, float beta, float 

**Image_matrix1, long x_dimension1, long y_dimension1, float 

**Image_matrix2, long x_dimension2, long y_dimension2) which takes as 

inputs the parameters alpha_1 alpha_2 and beta, the input two-dimensional 

matrices Y1 and Y2 as well as their Heights and Widths. As in the previous 

heading, the function calculates the derivative of the function, sets the gradient 

function equal to zero, and returns a two-dimensional matrix with the pixels of 

the unknown matrix X. The blurring masks H1 and H2 are respectively the 

masks in relations (90) and (91). The main target of this function is two take 
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the two input matrices Y1 and Y2, corresponding to the same unknown matrix 

X, from different systems and to restore the unknown Image X. The output of 

the function is given by the following steps of calculations: 

 ( ){ }ˆ arg min
X

X J X= ⇔  (116) 

 ( ) 0X J X∇ = ⇔  (117) 

 ( ) ( )1 1 1 2 2 2 1 1 1 2 2 2
t t t t tC C H H H H X H Y H Yβ α α α α⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ = ⋅ ⋅ + ⋅ ⋅ ⇔  (118) 

 ( ) ( )1

1 1 1 2 2 2 1 1 1 2 2
ˆ t t t t tX C C H H H H H Y H Yβ α α α α

−
= ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅  (119) 

 

spat_Frequency.h 
 

 This header file includes the following functions: 

 

 function max_3_inputs (float a, float b, float c) which returns the maximum 

input between the three input variables. 

 

 function max_5_inputs (float a, float b, float c, float d, float e) which returns 

the maximum input between the five input variables. 

 

 function max_8_inputs (float a, float b, float c, float d, float e, float f, float g, 

float h) which returns the maximum input between the eight input variables. 

 

 function psf (float **input_matrix, long x_dimension, long y_dimension) 

which takes as inputs a two-dimensional matrix and its Height and Width and 

returns a two-dimensional matrix with same Height and Width as the input 

matrix. The function performs pixel-by-pixel calculation between each pixel 

and its 3x3 neighborhood. Specifically, the function stores in each pixel of the 

resulted matrix, the sum of the magnitudes of differences from the center pixel 

and each other pixel in a 3x3 neighborhood. Thus our pointwise spatial 

frequency (psf) includes all directions and is defined for each pixel rather than 

for a block in which all pixels are treated the same. The general equation that 
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the function works with is (120). In the case where the pixel has a 3x3 

neighborhood the equation is the following (121): 

 ( ), , , every pixel do : psf _ _i j i j i jfor X neighbor of pixel X= −∑  (120) 

 

1 1

, , ,
1 1

, i,j

 

 psf  is the pointwise spatial frequency of pixel x

i j i j i k j l
k l

i j

psf x x

where

− −
=− =−

= −∑∑  (121) 

 

 function spat_freq (int choice, float **Image1, float **Image2, float 

**Image3, long x_dimension, long y_dimension) which takes as input three 

matrices-Images to be fused as well as the their Heights and Widths. When the 

variable “choice”=2 the Images are fused at each output pixel location, by 

comparing the pointwise spatial frequency values at that location in the input 

Images and selecting the pixel with the highest such value. A general 

description is to fuse the R Images at each pixel location by comparing the 

pointwise spatial frequency (psf) values of the R corresponding pixels. For all 

R pixels xr at the same location we put xout = x r* where r* is determined by the 

equation (122). In addition to this way of image fusion, we have performed a 

more complicated calculation of image fusion where all the images are 

participating in the fused image. When the input variable “choice” of the 

equation has the value “1” then the fused Image is the result from the equation 

(123). 

 ( ) ( ){ }max : 1, ,

fused pixel = pixel with the maximum psf
r rr

psf x psf x r R∗ = = ⇒K
 (122) 

 
( )( )

( )
1

1

ˆfor every fused pixel : x  , r = 1, ,

R

r r
r

R

r
r

psf x x
R

psf x

=

=

⋅
=
∑

∑
K  (123) 

 

 function min_spat_freq (int choice, float **Image1, float **Image2, float 

**Image3, long x_dimension, long y_dimension) which takes as input three 
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matrices to be fused as well as the their Heights and Widths. When the 

variable “choice”=2 the images are fused at each output pixel location, by 

comparing the pointwise spatial frequency values at that location in the two 

images and selecting the pixel with the minimum such value. A general 

description is to fuse the R images at each pixel location by comparing the 

pointwise spatial frequency (psf) values of the R corresponding pixels. For all 

R pixels xr at the same location we put xout = x r* where r* is determined by the 

equation (124). In addition to this way of fusion, we have performed a more 

complicated idea of fusion where all the Images are participating in the fused 

Image. When the input variable “choice” of the equation has the value “1” 

then the fused Image is the result from the equation (125). 

 ( ) ( ){ }min : 1, ,

fused pixel = pixel with the minimum psf
r rr

psf x psf x r R∗ = = ⇒K
 (124) 

 
( )( )

( )
1

1

ˆfor every fused pixel : x  , r = 1, ,

R

r r
r

R

r
r

psf x x
R

psf x

=

=

⋅
=
∑

∑
K  (125) 

 

Simple_norm.h 
 

 This header file includes the following function: 

 

 function norm (float **input_matrix, long x_dimension, long y_dimension) 

which takes as input a two-dimensional matrix, as well as its Height and 

Width and returns the norm of the matrix. The norm of the two-dimensional 

matrix is given by the following equation: 

 ( ) 2
,

1 1
,where M,N its Heigth and Width

j Ni M

i j
i j

norm X x
==

= =

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ ∑  (126) 
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Orisma2_anadelta.h 
 

 This header file includes the following function: 

 

 function ret_orisma (float **normaliz_matrix, float **input_matrix, long 

x_dimension, long y_dimension) which performs a mixture of calculations and 

returns a two-dimensional matrix. The general goal, in which the function has 

been programmed, is to return the deviation of equation (127). Note that the 

parameter jx  is the mean value of pixels in the neighbourhood of the pixel j 

and ( ) { }2 2, 1t t tφ = +  or any other convex function. The two-dimensional 

matrix q corresponds to the edge detection of the input matrix variable 

“normaliz_matrix”, normalized first by the function in chapter 1.1.10. Finally, 

the parameter lambda (λ) can take any real number from 0 to 1. The function 

allocates memory for a temporary variable that keeps the result of the pixel-

by-pixel subtraction between the two-dimensional input matrix “input_matrix” 

and its mean value matrix. Besides the above calculation, the function 

allocates memory for a temporary variable that keeps the normalization (as its 

performed in chapter 1.1.10) of the two-dimensional input matrix 

“normaliz_matrix”. The return of the function is given by the equation (128). 

During our simulations, we have tested both convex functions depends every 

time on the input Image-matrix. Our remarks are shown in the previous 

chapters.   

 ( ) ( ) ( )1 j j jj
J X q x xλ φ= ⋅ − ⋅ −∑  (127) 

 

( ) ( ) ( )

( )
( )

( ) ( )

2
, , ,

2
, , ,2

, ,

2 1                           ,if x

11  ,if x 1
1

i j i j i j

i j i j i j

i j i j

q x x x

q x x x
x x

φ

φ

⋅ − ⋅ − =

− ⋅ ⋅ − = +
+ −

 (128)
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Convolution.h 
 

 This header file includes the following function that simulates the output image 

from the measurement system. 

 

 function convolution (int choice, long x_dimension, long y_dimension, float 

**Image,  float power) which performs the convolution between the input 

original Image and the degradation, and finally adds to the blurred two-

dimensional matrix corresponds to the Image, white Gaussian noise with mean 

0, variance σ2=1 and standard deviation σ=1. When the variable “choice” is 

equal to “1” then the input Image is convolved with the 3x3 blurring mask 

described in heading 4.6. On the other hand, when “choice” is equal to “2” the 

input Image is convolved with the 1x5 motion blurred ask described also in 

heading 4.6. Finally, variable “power” specifies the power of the output noise 

in dB. The given output Image y1, created by the convolution between the 

input Image x and the h1 mask is the one in the following system: 

 

 
 

Fusion_gradient.h 
 

 This header file includes the basic functions that perform the image fusion 

between the magnetic resonance image and the computed tomography image. 

 

 function grad_fusion (float **result, float alpha, float power, float 

**segmentation_matrix, float **input_Image, float **unknown, long 

x_dimension, long y_dimension) which returns the derivative of function 

(129). Note that this procedure is a part of the gradient descent algorithm and 

it doesn’t work separately in the code.  The function takes as input the final 

restored magnetic resonance or computed tomography image represented by 
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the two-dimensional matrix “input_imag”, the two-dimensional matrix 

“segmentation_matrix” from function “Segmentation” correspond to the 

segmentation of the input image and the unknown image where we want to 

optimize its values through the iterations of the gradient descent algorithm. 

Moreover, the function takes as inputs the variable “alpha” corresponding to 

the rate of the participation of the current function ( )J x , the Height and the 

Width of the matrices.  

 ( ) ( )2

j j j
j

J x S y xα= ⋅ −∑  (129) 

 

 function gradient_descent (float alph1, float alph2, float lamda, float 

**restored_im1, float **restored_im2, float **unknown_vec, long x_dimen, 

long y_dimen) which returns the final result from the iterative image fusion 

algorithm. Function ( )J x  is the one that updates the values of the unknown 

matrix x is shown in equation (131). Matrices “restored_im1”, “restored_im2” 

and “unknown_vec” are respectively the matrices 1 ,i jy , 2 ,i jy  and ,i jx  in 

equation (131). Note that this specific function of the header file, just updates 

the intensity values of matrix “unknown_vec”, send the matrix to functions 

“grad_fusion” and “ret_orisma” to receive the derivatives of the parts in 

equation (131) and finally perform the Gradient Descent method, described in 

Chapter 3. The optimization of the matrix “unknown_vec” is performed as it is 

shown in equation (132). 

 ( ) ( ) ( ) ( ) ( )2 2

1 1 1 2 2 2 1j j j j j j j j j
j j j

J X S y x S y x x x xα α λ ϕ= ⋅ − + ⋅ − + ⋅ − ⋅ −∑ ∑ ∑ )

 (130) 

 ( )n+1 nx x a f x= − ⋅∇  (131) 
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Appendix B 
 

 Suppose that we want to find the gradient of the objective function (133). Our 

main purpose is to set the derivative of function ( )J x equal to zero, in order to restore 

the unknown matrix-image x.  

 2 2 2
1 1 2 2( )J x y h x y h x c xα α β= ⋅ − ∗ + ⋅ − ∗ + ⋅ ∗  (132) 

 Notice that the matrices ( )1 ,y m n , ( )2 ,y m n , ( ),x m n  as well as the masks 

( )1 ,h m n , ( )2 ,h m n  and ( ),c m n  are two-dimensional matrices with Height equal to 

variable M and Width equal to variable N. In order to have the same Height and 

Width to the matrices and the masks we have filled the 3x3 1h  mask, the 1x5 2h  mask 

and the 3x3 Laplacian mask with zero values. Note that m, n are the pointers for the 

Height and the Width of the matrix. 

 The main problem in equation (132), is the convolution (given with the symbol 

∗ ) between the masks and the two-dimensional matrix x that makes the calculations 

to be quite complicated. The Discrete Fourier Transform is the solution for this 

problem, transforming the calculations of the convolution into pixel-by-pixel 

calculations between the masks and the matrices. Applying the DFT in matrices 

( )1 ,y m n and ( )2 ,y m n , the matrices in the frequency domain take, respectively, the 

form ( )1 ,Y k l  and ( )2 ,Y k l . Note again that the variables k and l are the pointers for 

the Height and the Width of the matrix in the DFT domain. Every element of the 

matrix is a complex number. 

 The DFT implementation of the convolution between each mask and the matrix x 

is presented analytically in the following equations. Let’s take the first part of the 

equation and assume that: 

 ( ) ( ) ( )1, , ,g m n h m n x m n= ∗  (133) 

 Matrix ( ),g m n  with size M N× can be converted into a vector (with size 

1M N⋅ × ) with row ordering form in the elements of it as it is shown in equation 

(135). 
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11

11 1

1

1

n

n

m mn

mn

g
g g

g
g g

g

⎛ ⎞
⎜ ⎟⎛ ⎞ ⎜ ⎟⎜ ⎟ ⎜ ⎟⇒⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎜ ⎟
⎜ ⎟
⎝ ⎠

K M
M O M

L M
 (134) 

 With the same way, matrix ( ),x m n  with size M N× can be converted into a 

vector (with size 1M N⋅ × ) with row ordering form in the elements of it as it is shown 

in equation (136). 

 

11

11 1

1

1

n

n

m mn

mn

x
x x

x
x x

x

⎛ ⎞
⎜ ⎟⎛ ⎞ ⎜ ⎟⎜ ⎟ ⎜ ⎟⇒⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎜ ⎟
⎜ ⎟
⎝ ⎠

K M
M O M

L M
 (135) 

 In order to compute ( ) ( ) ( )1, , ,g m n h m n x m n= ∗ , we are based on the idea of the 

circulant matrix. A circulant matrix is a Toepliz matrix with the additional restriction 

that it must be square and each column is a rotated version of the column to the left of 

it [15].  The obvious generalization is to consider block circulant matrices with 

circulant blocks. Let H is the M N M N⋅ × ⋅  block circulant matrix having M M×  

blocks as it is shown in equation (137), where each block is a N N×  circlant matrix 

H with elements shown in equation (138).  

 

0 1 1

1 0 2

1 2 0

M

M M

H H H
H H H

H H H

H
−

− −

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

=

L
L

M M M
L

 (136) 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

,0 , 1 , 2 ,1

,1 ,0 , 1 ,2

, 1 , 2 , 3 ,0

j j M j M j

j j j M j
j

j M j M j M j

h h h h

h h h h
H

h h h h

− −

−

− − −

⎛ ⎞
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

L

L

M M M O M
L

 (137) 

 Applying the settings in equation (133), the convolution between the mask and 

the matrix can be transformed in the following form (139): 

 



 

 122

 BCg H x= ⋅  (138) 

 It is known from Linear Algebra that a circulant matrix is diagonalized by the 

Fourier matrix F . Since all of the blocks jH  are circulant, they can easily be factored 

into their eigendecomposition which leads to the following factorization of H . Thus, 

the Block Circulant matrix BCH  can be rewritten as: 

 1
BC HH F F−= ⋅Λ ⋅  (139) 

 Matrix HΛ is a diagonal matrix with size M N M N⋅ × ⋅  that contains the 

eigenvalues of H  on its diagonal. These eigenvalues are the DFT coefficients of the 

MxN matrix h in equation (132). 

 

( )

( )

( )

0,0

0,1

0, 1

0 0 0

0 0 0

0 0 0

H

M N

H

H

H ⋅ −

⎛ ⎞
⎜ ⎟
⎜ ⎟

Λ = ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

M M O M
 (140) 

 Summarizing, equation (133) can be rewritten as: 

 1
Hg F F x−= ⋅Λ ⋅ ⋅  (141) 

or  

 HF g F x⋅ = Λ ⋅ ⋅  (142) 

Performing the Discrete Fourier Transform in the previous calculations, we have: 

 HG X= Λ ⋅  (143) 

and finally, 

 ( ) ( ) ( ), , ,G k l H k l X k l= ⋅  (144) 

 The diagonal matrix HΛ  can be represented for now on, with the diagonal matrix 

H . With this simplification, the equation (132) can be rewritten as: 

 2 2 2
1 1 2 2( )J X Y H X Y H X C Xα α β= ⋅ − ⋅ + ⋅ − ⋅ + ⋅ ⋅  (145) 
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 Moreover, for our convenience all the vectors in equation (145) can be rewritten 

in a simplest form, as in equation (147). It is obvious that all the variables, except the 

masks of the equation and the parameters, are vectors. In the Frequency domain, all 

the calculations between the elements of the diagonal masks and the vectors are pixel-

by-pixel calculations. 

 2 2 2
1 1 2 2( )J X Y H X Y H X C Xα α β= ⋅ − ⋅ + ⋅ − ⋅ + ⋅ ⋅  (146) 

 To perform the gradient calculation to the above equation, it is recommended to 

split the equation into two parts and work separately with them. Assume that the first 

and the second order of the equation have the same gradient equation. Then we have: 

 ( ) ( )2 tY H X Y H X Y H X− ⋅ = − ⋅ ⋅ − ⋅  (147) 

And  

 ( ) ( )2 tC X C X C X⋅ = ⋅ ⋅ ⋅  (148) 

 Let’s take the first order and perform the gradient calculation, with respect to the 

mathematical rules. To illustrate this approach more in details, it is known from linear 

algebra that: 

  ( )t t tA B A B− = −  (149) 

  ( )t t tA B B A⋅ = ⋅  (150) 

  t tA B A B⋅ = ⋅  (151) 

 Note that the transpose of each matrix in the frequency domain is the complex 

conjugant matrix of it. Accordingly to the above mathematical rules and making step-

by-step movements the equation is transformed:  

 ( ) ( )2 ttY H X Y H X Y H X⎡ ⎤− ⋅ = − ⋅ ⋅ − ⋅ ⇔⎣ ⎦  (152) 

 ( ) ( ) ( ) ( )2 t tt tY H X Y Y Y H X H X Y H X H X− ⋅ = ⋅ − ⋅ ⋅ − ⋅ ⋅ + ⋅ ⋅ ⋅ ⇔  (153) 

 2 t t t t t tY H X Y Y Y H X X H Y X H H X− ⋅ = ⋅ − ⋅ ⋅ − ⋅ ⋅ + ⋅ ⋅ ⋅  (154) 

 With the same calculations, the equation (148) becomes: 
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 2 t tC X X C C X⋅ = ⋅ ⋅ ⋅  (155) 

 Afterwards, we perform the gradient estimation to the original function. Using 

the gradient estimation approach we can restore the unknown image X by the known 

noisy blurred Images Y1 and Y2. The equation after the gradient application is: 

 ( ) ( )2 2 2
1 1 2 2X XJ X Y H X Y H X C Xα α β∇ = ∇ ⋅ − ⋅ + ⋅ − ⋅ + ⋅ ⋅  (156) 

 ( ) ( ) ( ) ( )2 2 2
1 1 2 2X X X XJ X Y H X Y H X C Xα α β∇ = ∇ ⋅ − ⋅ +∇ ⋅ − ⋅ +∇ ⋅ ⋅

 (157) 

 ( ) ( ) ( ) ( )2 2 2
1 1 2 2X X X XJ X Y H X Y H X C Xα α β∇ = ⋅∇ − ⋅ + ⋅∇ − ⋅ + ⋅∇ ⋅

 (158) 

 Accordingly to the previous simplifications that we have done, the gradient 

estimation of function ( )J X  is: 

 

( ) ( )
( )
( )

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

   

                  

                  

t t t t t t
X X

t t t t t t
X

t t
X

J X Y Y Y H X X H Y X H H X

Y Y Y H X X H Y X H H X

X C C X

α

α

β

∇ = ⋅∇ ⋅ − ⋅ ⋅ − ⋅ ⋅ + ⋅ ⋅ ⋅ +

⋅∇ ⋅ − ⋅ ⋅ − ⋅ ⋅ + ⋅ ⋅ ⋅ +

⋅∇ ⋅ ⋅ ⋅

 (159) 

 With respect to the previous equations, the gradient estimation of the function 

( )J X  takes the following form: 

 

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( )
( )

1 1 1 1 1 1

1 1 2 2 2 2

2 2 2 2

                  

                  

                  

t t t t
X X X X

t t t t
X X X

t t t t
X X

t t
X

J X Y Y Y H X X H Y

X H H X Y Y Y H X

X H Y X H H X

X C C X

α α α

α α α

α α

β

∇ = ⋅∇ ⋅ − ⋅∇ ⋅ ⋅ − ⋅∇ ⋅ ⋅ +

⋅∇ ⋅ ⋅ ⋅ + ⋅∇ ⋅ − ⋅∇ ⋅ ⋅ −

⋅∇ ⋅ ⋅ + ⋅∇ ⋅ ⋅ ⋅ +

⋅∇ ⋅ ⋅ ⋅

 (160) 

 Taking separately all the orders of the equation and finding their derivatives we 

have:  

 ( ) 0t
X Y Y∇ ⋅ =  (161) 

 ( )t t t
X X H Y H Y∇ ⋅ ⋅ = ⋅  (162) 
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 Assume that 1
tJ Y H X= ⋅ ⋅ . This scalar function can also be written as, 

t
kl l k

k l

Y H X H X Y⎛ ⎞⋅ ⋅ = ⋅ ⋅⎜ ⎟
⎝ ⎠

∑ ∑ . The gradient of the equation J1 is now: 

 
( )1

i

 

for every k we meet Y  once

kl l k ki k
k l ki i

J X H X X H Y
X X

⎧ ⎫∂ ∂ ⎛ ⎞= ⋅ ⋅ = ⋅⎨ ⎬⎜ ⎟∂ ∂ ⎝ ⎠⎩ ⎭
∑ ∑ ∑  (163) 

 And finally  

 ( )1
t

X J X H Y∇ = ⋅  (164) 

 With the same method, assume that ( )2  ,with A=t tJ X X A X H H= ⋅ ⋅ ⋅ . The 

function is transformed as, t
kl l k

k l

X A X A X X⎛ ⎞⋅ ⋅ = ⋅ ⋅⎜ ⎟
⎝ ⎠

∑ ∑ . The gradient of the 

equation J2 is now: 

 ( ) ( )2
2 k ki i l il i ii i

k ki i i i
k i l i

J X X A X X A X A X
X X X X

≠ ≠

∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞
= ⋅ ⋅ + ⋅ ⋅ + ⋅ ⇔⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

∑ ∑

 (165) 

 ( )2 2k ki l il ii i ki k il l
k l k li

k i l i

J X X A X A A X A X A X
X

≠ ≠

∂
= ⋅ + ⋅ + ⋅ ⋅ = ⋅ + ⋅

∂ ∑ ∑ ∑ ∑  (166) 

 And finally 

 ( )2
t

X J X A X A X∇ = ⋅ + ⋅  (167) 

 Since tA=H H⋅ and tA A=  the gradient of this order is: 

 ( ) ( )2 2t t t
X XJ X X H H X H H X∇ =∇ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅  (168) 

 Replacing the term tA H H= ⋅ with tA C C= ⋅ , the gradient of the order 
t tX C C X⋅ ⋅ ⋅ is: 

 ( ) 2t t t
X X C C X C C X∇ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅  (169) 
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 After calculating analytically the gradient of all the orders of function ( )J X , the 

gradient of function ( )J X is: 

( ) 1 1 1 1 2 2 2 22 2 2 2 2t t t t t
X J X H Y H H X H Y H H X C C Xα α α α β∇ = − ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅

 (170) 

 Our common de-noising and de-blurring technique is to set the derivative of 

equation (12) equal to zero as, ( ) 0X J X∇ = , in order to restore the unknown Image X. 

The restored Image X is then: 

 ( ) 0X J X∇ = ⇔  (171) 

1 1 1 1 2 2 2 2 0t t t t tH Y H H X H Y H H X C C Xα α α α β− ⋅ ⋅ + ⋅ ⋅ ⋅ − ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ = ⇔  (172) 

 1 1 2 2 1 1 2 2
t t t t tH H X H H X C C X H Y H Yα α β α α⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ = ⋅ ⋅ + ⋅ ⋅ ⇔  (173) 

 ( )1 1 2 2 1 1 2 2
t t t t tH H H H C C X H Y H Yα α β α α⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ ⋅ = ⋅ ⋅ + ⋅ ⋅ ⇔  (174) 

 ( ) ( )1

1 1 2 2 1 1 2 2
ˆ t t t t tX H H H H C C H Y H Yα α β α α

−
= ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅  (175) 

or  

 ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1 1 2 2
2 2 2

1 2

, , , ,ˆ ,
, , ,

a H k l Y k l a H k l Y k l
X k l

a H k l a H k l C k lβ

∗ ∗⋅ ⋅ + ⋅ ⋅
=

⋅ + ⋅ + ⋅
 (176) 

where k, l are the pointers for the Height and Width of each matrix in the frequency 

domain. At last, in order to get back the restored Image in the time domain, we apply 

the inverse Discrete Fourier Transform method in matrix X̂ .  
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