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α υ τ ο κ ι ν η τ ο δ ρ ό � ω ν  � ε γ ά λ η ς  κ λ ί � α κ α ς . Έ χ ο υ ν  ̟ ρ ο τ α θ ε ί  κ α ι  ε φ α ρ � ό ζ ο ν τ α ι  δ ι ά φ ο ρ ε ς  σ τ ρ α τ η γ ι κ έ ς  κ α ι  � έ θ ο δ ο ι  ε λ έ γ χ ο υ  τ η ς  κ υ κ λ ο φ ο ρ ί α ς  τ έ τ ο ι ω ν  δ ι κ τ ύ ω ν . 

Α ̟ ό  τ ι ς  ̟ ι ο  δ η � ο φ ι λ ε ί ς  κ α ι  α ̟ ο τ ε λ ε σ � α τ ι κ έ ς  � ε θ ό δ ο υ ς  κ ρ ί ν ε τ α ι  ο  έ λ ε γ χ ο ς  τ ω ν  ρ α � ̟ ώ ν  ε ι σ ό δ ο υ  σ τ ο υ ς  
α υ τ ο κ ι ν η τ ό δ ρ ο � ο υ ς . 

Ο ι  σ τ ρ α τ η γ ι κ έ ς  ε λ έ γ χ ο υ  τ ω ν  ρ α � ̟ ώ ν  ε ι σ ό δ ο υ  
α ̟ ο σ κ ο ̟ ο ύ ν  σ τ ο ν  ̟ ρ ο σ δ ι ο ρ ι σ � ό  τ η ς  ρ ο ή ς  ο χ η � ά τ ω ν  ̟ ο υ  θ α

 ε ̟ ι τ ρ α ̟ ε ί  ν α
 ε ι σ έ λ θ ε ι  α ̟ ό  τ η ν  κ ά θ ε  ρ ά � ̟ α

 ε ι σ ό δ ο υ  σ τ ο ν  α υ τ ο κ ι ν η τ ό δ ρ ο � ο  σ τ η  δ ι ά ρ κ ε ι α
 ε ν ό ς  δ ι α κ ρ ι τ ο ύ  β ή � α τ ο ς  ε λ έ γ χ ο υ . Η  α ̟ ο τ ε λ ε σ � α τ ι κ ό τ η τ ά  τ ο υ ς  � ̟ ο ρ ε ί  ν α
 

α ̟ ο δ ε ι χ θ ε ί  � α θ η � α τ ι κ ά  κ α ι  α ν α λ ύ ε τ α ι  σ τ ο  1ο  κ ε φ ά λ α ι ο . 
Α υ τ ή  ο φ ε ί λ ε τ α ι  κ υ ρ ί ω ς  σ τ η  δ υ ν α τ ό τ η τ α

 ̟ ο υ  έ χ ο υ ν  ν α
 ρ υ θ � ί ζ ο υ ν  τ ο ν  α ρ ι θ � ό  τ ω ν  ο χ η � ά τ ω ν  ̟ ο υ  � ̟ ο ρ ε ί  ν α

 ε ι σ έ λ θ ε ι  σ τ ο ν  
α υ τ ο κ ι ν η τ ό δ ρ ο � ο . Ρ υ θ � ί ζ ο ν τ α ς  τ η ν  ε ι σ ρ ο ή  υ ̟ ά ρ χ ε ι  η  δ υ ν α τ ό τ η τ α

 ν α
 

α ̟ ο φ ε υ χ θ ε ί  � ι α
 ̟ ι θ α ν ή  σ υ � φ ό ρ η σ η  � ε  

α ̟ ο τ έ λ ε σ � α
 ν α

 υ ̟ ά ρ χ ε ι  κ α λ ύ τ ε ρ η  ρ ο ή  κ α ι  � ι κ ρ ό τ ε ρ η  κ α θ υ σ τ έ ρ η σ η  σ υ ν ο λ ι κ ά  ̟ α ρ ά  τ ο  χ ρ ό ν ο  ̟ ο υ  θ α
 ̟ ε ρ ι � έ ν ο υ ν  � ε ρ ι κ ο ί  ο δ η γ ο ί  σ τ η ν  ρ ά � ̟ α

 ε ι σ ό δ ο υ . Ε ̟ ί σ η ς , ε ̟ ε ι δ ή  � ι α
 ̟ ι θ α ν ή  σ υ � φ ό ρ η σ η  � ̟ ο ρ ε ί  ν α

 � ε τ α δ ο θ ε ί  α ρ κ ε τ ά  ̟ ρ ο ς  τ α
 ̟ ί σ ω  κ α ι  ν α

 φ ρ ά ξ ε ι  κ α ι  κ ά ̟ ο ι α
 ρ ά � ̟ α

 ε ξ ό δ ο υ  ε � ̟ ο δ ί ζ ο ν τ α ς  έ τ σ ι  τ η ν  έ ξ ο δ ο  κ ά ̟ ο ι ω ν  



 xx 

ο χ η � ά τ ω ν , η  
α ̟ ο φ υ γ ή  τ η ς  σ υ � φ ό ρ η σ η ς  � έ σ ω  τ ο υ  ε λ έ γ χ ο υ  τ η ς  ε ι σ ό δ ο υ  τ ω ν  ο χ η � ά τ ω ν  

α ̟ ό  τ ι ς  ρ ά � ̟ ε ς  ε ι σ ό δ ο υ , δ ύ ν α τ α ι  ν α
 

α ̟ ο φ ύ γ ε ι  κ α ι  α υ τ ή  τ η ν  κ α τ ά σ τ α σ η . Ο ι  σ τ ρ α τ η γ ι κ έ ς  ε λ έ γ χ ο υ  τ ω ν  ρ α � ̟ ώ ν  ε ι σ ό δ ο υ  σ ε  
α υ τ ο κ ι ν η τ ο δ ρ ό � ο υ ς  ε ί ν α ι  α ρ κ ε τ ά  δ ι α δ ε δ ο � έ ν ε ς  κ α ι  ̟ ο λ λ έ ς  έ χ ο υ ν  

α ν α ̟ τ υ χ θ ε ί  κ α ι  ε φ α ρ � ο σ τ ε ί  σ ε  δ ι ά φ ο ρ α
 � έ ρ η  τ ο υ  κ ό σ � ο υ . 

Ο ι  σ τ ρ α τ η γ ι κ έ ς  
α υ τ έ ς  � ̟ ο ρ ο ύ ν  ν α

 κ α τ η γ ο ρ ι ο ̟ ο ι η θ ο ύ ν  ε ί τ ε  σ ε  σ τ α θ ε ρ ο ύ  χ ρ ό ν ο υ  ε ί τ ε  σ ε  σ τ ρ α τ η γ ι κ έ ς  ̟ ο υ  χ ρ η σ ι � ο ̟ ο ι ο ύ ν  � ε τ ρ ή σ ε ι ς  σ ε  ̟ ρ α γ � α τ ι κ ό  χ ρ ό ν ο . 
Α υ τ έ ς  � ̟ ο ρ ο ύ ν  ν α

 χ ω ρ ι σ τ ο ύ ν  σ ε  τ ο ̟ ι κ έ ς  σ τ ρ α τ η γ ι κ έ ς  κ α ι  σ ε  σ τ ρ α τ η γ ι κ έ ς  σ υ ν τ ο ν ι σ � έ ν ο υ  ε λ έ γ χ ο υ . Σ τ ο  2ο  κ ε φ ά λ α ι ο  ̟ α ρ ο υ σ ι ά ζ ο ν τ α ι  κ ά ̟ ο ι ε ς  α ̟ ό  τ ι ς  δ ι α θ έ σ ι � ε ς  σ τ ρ α τ η γ ι κ έ ς  ε λ έ γ χ ο υ  ρ α � ̟ ώ ν  ε ι σ ό δ ο υ . 
Ο ι  σ τ ρ α τ η γ ι κ έ ς  σ τ α θ ε ρ ο ύ  χ ρ ό ν ο υ  χ ρ η σ ι � ο ̟ ο ι ο ύ ν  ι σ τ ο ρ ι κ ά  δ ε δ ο � έ ν α

 κ α ι  υ ̟ ο λ ο γ ί ζ ο υ ν  τ η ν  σ τ ρ α τ η γ ι κ ή  ε κ  τ ω ν  ̟ ρ ο τ έ ρ ω ν . 
Ο ι  ̟ ι ο  σ υ ν η θ ι σ � έ ν ε ς  σ τ ρ α τ η γ ι κ έ ς  τ ο ̟ ι κ ο ύ  ε λ έ γ χ ο υ  ̟ ο υ  χ ρ η σ ι � ο ̟ ο ι ο ύ ν  � ε τ ρ ή σ ε ι ς  σ ε  ̟ ρ α γ � α τ ι κ ό  χ ρ ό ν ο  ε ί ν α ι  η  σ τ ρ α τ η γ ι κ ή  ζ ή τ η σ η ς  – ι κ α ν ό τ η τ α ς  (demand – capacity), η  σ τ ρ α τ η γ ι κ ή  ̟ ο σ ο σ τ ο ύ  κ α τ ά λ η ψ η ς  (occupancy) ̟ ο υ  ε ί ν α ι  ο υ σ ι α σ τ ι κ ά  σ τ ρ α τ η γ ι κ έ ς  ε λ έ γ χ ο υ  

α ν ο ι χ τ ο ύ  β ρ ό χ ο υ  
α ̟ ό ρ ρ ι ψ η ς  δ ι α τ α ρ α χ ή ς  κ α θ ώ ς  κ α ι  η  ALINEA ̟ ο υ  ε ί ν α ι  � ι α

 τ ο ̟ ι κ ή  σ τ ρ α τ η γ ι κ ή  β α σ ι σ � έ ν η  σ ε  ι σ χ υ ρ έ ς  κ α ι  ε ύ ρ ω σ τ ε ς  � ε θ ό δ ο υ ς  
α υ τ ο � ά τ ο υ  ε λ έ γ χ ο υ  � ε  

α ν α τ ρ ο φ ο δ ό τ η σ η . Σ τ ρ α τ η γ ι κ έ ς  σ υ ν τ ο ν ι σ � έ ν ο υ  ε λ έ γ χ ο υ  ε ί ν α ι  η  ̟ ο λ υ � ε τ α β λ η τ ή  σ τ ρ α τ η γ ι κ ή  ρ ύ θ � ι σ η ς  METALINE, ο  
α λ γ ό ρ ι θ � ο ς  Bottleneck, ο ι  α λ γ ό ρ ι θ � ο ι  Zone κ α ι  Stratified 

Zone Metering, ο ι  α λ γ ό ρ ι θ � ο ι  Helper Ramp κ α ι  Linked Ramp κ α ι  ά λ λ ο ι . Ε ̟ ί σ η ς  ε ν ώ  ο ι  ̟ ρ ο η γ ο ύ � ε ν ε ς  σ τ ρ α τ η γ ι κ έ ς  ̟ ρ ο σ ̟ α θ ο ύ ν  ν α
 

α ν τ ι δ ρ ά σ ο υ ν  σ ε  � ι α
 ή δ η  δ ι α � ο ρ φ ω � έ ν η  κ α τ ά σ τ α σ η  υ ̟ ά ρ χ ο υ ν  κ α ι  σ τ ρ α τ η γ ι κ έ ς  ̟ ο υ  ε ί ν α ι  σ χ ε δ ι α σ � έ ν ε ς  � ε  β ά σ η  τ η  θ ε ω ρ ί α

 β έ λ τ ι σ τ ο υ  ε λ έ γ χ ο υ  κ α ι  α ν ι χ ν ε ύ ο υ ν  τ α
 

α ί τ ι α
 � ι α ς  σ υ � φ ό ρ η σ η ς  ̟ ρ ι ν  λ ά β ε ι  χ ώ ρ α

 κ α ι  ε ν  σ υ ν ε χ ε ί α
 ̟ ρ ο σ δ ι ο ρ ί ζ ο υ ν  τ ο ν  β έ λ τ ι σ τ ο  τ ρ ό ̟ ο  

α ν τ ί δ ρ α σ η ς . Μ ι α
 τ έ τ ο ι α

 σ τ ρ α τ η γ ι κ ή  ε ί ν α ι  τ ο  AMOC, � ι α
 σ τ ρ α τ η γ ι κ ή  � η - γ ρ α � � ι κ ο ύ  β έ λ τ ι σ τ ο υ  ε λ έ γ χ ο υ  ̟ ο υ  β α σ ί ζ ε τ α ι  σ ε  έ ν α

 ρ ε α λ ι σ τ ι κ ό  � ο ν τ έ λ ο  τ η ς  κ υ κ λ ο φ ο ρ ι α κ ή ς  ρ ο ή ς . Η  σ τ ρ α τ η γ ι κ ή  AMOC ̟ ε ρ ι γ ρ ά φ ε τ α ι  ̟ α ρ α κ ά τ ω  κ α θ ώ ς  κ α ι  σ τ ο  4ο  κ ε φ ά λ α ι ο . Γ ι α
 τ η ν  � ε λ έ τ η  ε ν ό ς  φ υ σ ι κ ο ύ  φ α ι ν ο � έ ν ο υ  ό ̟ ω ς  η  κ υ κ λ ο φ ο ρ ι α κ ή  ρ ο ή  χ ρ ε ι ά ζ ε τ α ι  ν α

 χ ρ η σ ι � ο ̟ ο ι η θ ε ί  κ ά ̟ ο ι ο  � ο ν τ έ λ ο . Σ τ η ν  ̟ ε ρ ί ̟ τ ω σ η  τ ο υ  φ α ι ν ο � έ ν ο υ  τ η ς  κ υ κ λ ο φ ο ρ ι α κ ή ς  ρ ο ή ς  σ ε  δ ί κ τ υ α
 

α υ τ ο κ ι ν η τ ο δ ρ ό � ω ν  ε υ ρ ε ί α ς  κ λ ί � α κ α ς , τ α
 � α θ η � α τ ι κ ά  ̟ ρ ό τ υ ̟ α

 ̟ ο υ  τ η ν  ̟ ε ρ ι γ ρ ά φ ο υ ν  � ̟ ο ρ ο ύ ν  ν α
 τ α ξ ι ν ο � η θ ο ύ ν  σ ε  τ ρ ε ι ς  κ α τ η γ ο ρ ί ε ς  

α ν ά λ ο γ α
 � ε  τ ο  β α θ � ό  

α κ ρ ί β ε ι α ς  τ η ς  ̟ ε ρ ι γ ρ α φ ή ς . Σ τ η ν  ̟ ρ ώ τ η  κ α τ η γ ο ρ ί α
 

α ν ή κ ο υ ν  τ α
 � ι κ ρ ο σ κ ο ̟ ι κ ά  � ο ν τ έ λ α

 τ α
 ο ̟ ο ί α

 ̟ α ρ α κ ο λ ο υ θ ο ύ ν  τ η ν  α τ ο � ι κ ή  κ ί ν η σ η  κ α θ ε ν ό ς  ο χ ή � α τ ο ς  ξ ε χ ω ρ ι σ τ ά  κ α θ ώ ς  τ α ξ ι δ ε ύ ε ι  � έ σ α
 σ τ ο  δ ί κ τ υ ο . Σ τ η  δ ε ύ τ ε ρ η  κ α τ η γ ο ρ ί α

 κ α τ α τ ά σ σ ο ν τ α ι  τ α
 � ε σ ο σ κ ο ̟ ι κ ά  � ο ν τ έ λ α

 τ α
 ο ̟ ο ί α

 ̟ α ρ α κ ο λ ο υ θ ο ύ ν  κ α ι  ε ̟ ι β λ έ ̟ ο υ ν  τ η ν  κ ί ν η σ η  ο � ά δ ω ν  ο χ η � ά τ ω ν  ̟ ο υ  έ χ ο υ ν  κ ά ̟ ο ι α
 κ ο ι ν ά  χ α ρ α κ τ η ρ ι σ τ ι κ ά . Η  τ ρ ί τ η  κ α τ η γ ο ρ ί α

, τ α
 � α κ ρ ο σ κ ο ̟ ι κ ά  � ο ν τ έ λ α

, ̟ ε ρ ι γ ρ ά φ ο υ ν  τ η ν  κ υ κ λ ο φ ο ρ ι α κ ή  ρ ο ή  σ α ν  έ ν α
 ρ ε υ σ τ ό  ̟ ο υ  χ α ρ α κ τ η ρ ί ζ ε τ α ι  α ̟ ό  � α κ ρ ο σ κ ο ̟ ι κ έ ς  � ε τ α β λ η τ έ ς , ό ̟ ω ς  η  κ υ κ λ ο φ ο ρ ι α κ ή  ρ ο ή , η  ̟ υ κ ν ό τ η τ α

 κ α ι  η  � έ σ η  τ α χ ύ τ η τ α
 τ ω ν  ο χ η � ά τ ω ν . Σ τ η ν  ̟ α ρ ο ύ σ α

 � ε λ έ τ η , γ ι α
 τ η ν  � ο ν τ ε λ ο ̟ ο ί η σ η  τ η ς  κ υ κ λ ο φ ο ρ ί α ς  χ ρ η σ ι � ο ̟ ο ι ε ί τ α ι  τ ο  λ ο γ ι σ � ι κ ό  � α κ ρ ο σ κ ο ̟ ι κ ή ς  ̟ ρ ο σ ο � ο ί ω σ η ς  
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METANET. Η  ̟ ρ ο σ ο � ο ί ω σ η  τ η ς  κ υ κ λ ο φ ο ρ ι α κ ή ς  ρ ο ή ς  β α σ ί ζ ε τ α ι  σ ε  έ ν α
 � ο ν τ έ λ ο  

2
η ς

 τ ά ξ η ς . Τ ο  δ ί κ τ υ ο  
α ν α ̟ α ρ ί σ τ α τ α ι  σ α ν  ̟ ρ ο σ α ν α τ ο λ ι σ � έ ν ο ς  γ ρ ά φ ο ς  ό ̟ ο υ  ο ι  σ ύ ν δ ε σ � ο ι  α ν τ ι ̟ ρ ο σ ω ̟ ε ύ ο υ ν  � έ ρ η  

α υ τ ο κ ι ν η τ ο δ ρ ό � ω ν . 
Ο ι  κ ό � β ο ι  τ ο ̟ ο θ ε τ ο ύ ν τ α ι  σ ε  σ η � ε ί α

 
α λ λ α γ ή ς  τ η ς  γ ε ω � ε τ ρ ί α ς , δ ι α σ τ α ύ ρ ω σ η  ή  έ ν ω σ η  δ ύ ο  

α υ τ ο κ ι ν η τ ο δ ρ ό � ω ν  ή  έ ν ω σ η  
α υ τ ο κ ι ν η τ ο δ ρ ό � ω ν  � ε  ρ ά � ̟ α

 ε ι σ ό δ ο υ  ή  ε ξ ό δ ο υ . 
Υ ̟ ά ρ χ ο υ ν  4 τ ύ ̟ ο ι  σ υ ν δ έ σ � ω ν : σ ύ ν δ ε σ � ο ι  α υ τ ο κ ι ν η τ ο δ ρ ό � ω ν , σ ύ ν δ ε σ � ο ι  ρ α � ̟ ώ ν  ε ι σ ό δ ο υ , σ ύ ν δ ε σ � ο ι  ρ α � ̟ ώ ν  ε ξ ό δ ο υ  κ α ι  σ ύ ν δ ε σ � ο ι  α ̟ ο θ ή κ ε υ σ η ς  κ α ι  ̟ ρ ο ώ θ η σ η ς . Σ τ ο υ ς  κ ό � β ο υ ς  � ο ν τ ε λ ο ̟ ο ι ε ί τ α ι  η  κ α τ α ν ο � ή  τ η ς  ρ ο ή ς , η  

α ν ά ν τ η  ε ̟ ί δ ρ α σ η  τ η ς  ̟ υ κ ν ό τ η τ α ς  κ α ι  η  κ α τ ά ν τ η  ε ̟ ί δ ρ α σ η  τ η ς  τ α χ ύ τ η τ α ς . Τ α
 κ ρ ι τ ή ρ ι α

 ̟ ο υ  χ ρ η σ ι � ο ̟ ο ι ο ύ ν τ α ι  γ ι α
 τ ο ν  υ ̟ ο λ ο γ ι σ � ό  τ η ς  

α ̟ ό δ ο σ η ς  κ ά θ ε  σ τ ρ α τ η γ ι κ ή ς  κ α ι  υ ̟ ο λ ο γ ί ζ ο ν τ α ι  α ̟ ό  τ ο  METANET, ε ί ν α ι  ο  Σ υ ν ο λ ι κ ό ς  Χ ρ ό ν ο ς  Τ α ξ ι δ ι ο ύ  ( Σ Χ Τ ), ο  Σ υ ν ο λ ι κ ό ς  Χ ρ ό ν ο ς  
Α ν α � ο ν ή ς  Ε ι σ ό δ ο υ  (Σ Χ Α Ε ), ο  Σ υ ν ο λ ι κ ό ς  Χ ρ ό ν ο ς  

Α ν α � ο ν ή ς  σ τ ι ς  ο υ ρ έ ς  τ ω ν  σ υ ν δ έ σ � ω ν  
Α ̟ ο θ ή κ ε υ σ η ς  κ α ι  Π ρ ο ώ θ η σ η ς  ( Σ Χ Α Α Π

), ο  Σ υ ν ο λ ι κ ό ς  Χ ρ ό ν ο ς  ( Σ Χ ), η  Σ υ ν ο λ ι κ ή  � ι α ν υ θ ε ί σ α
 

Α ̟ ό σ τ α σ η  ( Σ � Α
) κ α ι  η  Σ υ ν ο λ ι κ ή  

Π ο σ ό τ η τ α
 Κ α υ σ ί � ω ν  ( Σ Π Κ ). 

Α ν α λ υ τ ι κ ή  ̟ ε ρ ι γ ρ α φ ή  τ ο υ  � ο ν τ έ λ ο υ  κ α ι  τ ω ν  κ ρ ι τ η ρ ί ω ν  γ ί ν ε τ α ι  σ τ ο  3ο  κ ε φ ά λ α ι ο . Η  σ τ ρ α τ η γ ι κ ή  ε λ έ γ χ ο υ  AMOC ε φ α ρ � ό ζ ε ι  σ υ ν τ ο ν ι σ � έ ν ο  έ λ ε γ χ ο  σ τ ι ς  ρ ά � ̟ ε ς  ε ι σ ό δ ο υ . Τ ο  ̟ ρ ό β λ η � α
 ε λ έ γ χ ο υ  τ ο υ  δ ι κ τ ύ ο υ  

α υ τ ο κ ι ν η τ ο δ ρ ό � ω ν  � ο ρ φ ο ̟ ο ι ε ί τ α ι  σ α ν  έ ν α
 � η - γ ρ α � � ι κ ό  ̟ ρ ό β λ η � α

 β έ λ τ ι σ τ ο υ  ε λ έ γ χ ο υ  δ ι α κ ρ ι τ ο ύ  χ ρ ό ν ο υ  � ε  ̟ ε ρ ι ο ρ ι σ � ο ύ ς . Η  κ υ κ λ ο φ ο ρ ι α κ ή  ρ ο ή  θ ε ω ρ ε ί τ α ι  σ α ν  � ι α
 δ ι α δ ι κ α σ ί α

 ̟ ο υ  ε λ έ γ χ ε τ α ι  � έ σ ω  τ η ς  ρ ο ή ς  σ ε  κ ά θ ε  ρ ά � ̟ α
 ε ι σ ό δ ο υ  τ ο υ  δ ι κ τ ύ ο υ  χ ρ η σ ι � ο ̟ ο ι ώ ν τ α ς  κ α τ ά λ λ η λ α

 σ υ σ τ ή � α τ α
 φ ω τ ε ι ν ή ς  σ η � α τ ο δ ό τ η σ η ς  ̟ ο υ  ε ί ν α ι  ε γ κ α τ ε σ τ η � έ ν α

 σ ε  
α υ τ έ ς . Λ α � β ά ν ο ν τ α ς  υ ̟ ό ψ η  τ η ν  τ ρ έ χ ο υ σ α

 κ α τ ά σ τ α σ η  τ ο υ  σ υ σ τ ή � α τ ο ς  κ α ι  τ ι ς  ̟ ρ ο β λ έ ψ ε ι ς  τ ω ν  δ ι α τ α ρ α χ ώ ν , β ε λ τ ι σ τ ο ̟ ο ι ε ί  έ ν α
 κ α τ ά λ λ η λ ο  κ ρ ι τ ή ρ ι ο  κ ό σ τ ο υ ς  κ α ι  υ ̟ ο λ ο γ ί ζ ε ι  τ ι ς  β έ λ τ ι σ τ ε ς  τ ρ ο χ ι έ ς  ε λ έ γ χ ο υ  � ε  β ά σ η  τ ο  � η - γ ρ α � � ι κ ό  � ο ν τ έ λ ο  τ η ς  κ υ κ λ ο φ ο ρ ι α κ ή ς  ρ ο ή ς  τ ο υ  δ ι κ τ ύ ο υ . Κ α θ ο ρ ί ζ ε ι , δ η λ α δ ή , ̟ ο ι ε ς  ε ί ν α ι  ο ι  ε ̟ ι τ ρ ε ̟ τ έ ς  ρ ο έ ς  γ ι α

 τ ι ς  ρ ά � ̟ ε ς  ε ι σ ό δ ο υ  σ ε  ό λ ο  τ ο  δ ί κ τ υ ο . Π α ρ ό λ ο  ̟ ο υ  ο ι  τ ρ ο χ ι έ ς  ε λ έ γ χ ο υ  ̟ ο υ  ̟ ρ ο σ δ ι ο ρ ί ζ ο ν τ α ι  α ̟ ό  τ ο  AMOC ε ί ν α ι  β έ λ τ ι σ τ ε ς , η  υ λ ο ̟ ο ί η σ η  τ ο υ ς  δ ε ν  δ ι α τ η ρ ε ί  α υ τ ή  τ η ν  ι δ ι ό τ η τ α
. 

Ο ι  λ ό γ ο ι  γ ι α
 τ ο υ ς  ο ̟ ο ί ο υ ς  

α υ τ ό  σ υ � β α ί ν ε ι  ε ί ν α ι : i) η  ε κ τ ί � η σ η  τ η ς  
α ρ χ ι κ ή ς  κ α τ ά σ τ α σ η ς  τ ο υ  σ υ σ τ ή � α τ ο ς  δ ε ν  ε ί ν α ι  α κ ρ ι β ή ς  ε ί τ ε  ε λ λ ε ί ψ ε ι  α ρ κ ε τ ώ ν  δ ε δ ο � έ ν ω ν  ε ί τ ε  λ ό γ ω  ̟ ε ρ ι ο ρ ι σ � έ ν η ς  

α κ ρ ί β ε ι α ς  τ ω ν  
α λ γ ο ρ ί θ � ω ν  ε κ τ ί � η σ η ς , ii) η  ̟ ρ ό β λ ε ψ η  τ ω ν  δ ι α τ α ρ α χ ώ ν  έ χ ε ι  ̟ ε ̟ ε ρ α σ � έ ν η  

α κ ρ ί β ε ι α
 

α φ ο ύ  έ χ ο υ ν  σ τ ο χ α σ τ ι κ ό  χ α ρ α κ τ ή ρ α
 κ α ι  ά ρ α

 η  ̟ ρ ό β λ ε ψ η  τ ο υ ς  
α ν α ̟ ό φ ε υ κ τ α

 ̟ ε ρ ι λ α � β ά ν ε ι  λ ά θ η  ̟ ο υ  � ε τ α δ ί δ ο ν τ α ι  σ τ ο  � ο ν τ έ λ ο  τ η ς  κ υ κ λ ο φ ο ρ ι α κ ή ς  ρ ο ή ς  κ α ι  ά ρ α
 τ ο  ̟ ρ ό β λ η � α

 β ε λ τ ι σ τ ο ̟ ο ί η σ η ς  ̟ ο υ  ε ̟ ι λ ύ ε ι  τ ο  AMOC δ ε ν  
α ν τ α ̟ ο κ ρ ί ν ε τ α ι  σ τ ο  ̟ ρ α γ � α τ ι κ ό  ̟ ρ ό β λ η � α

 
α λ λ ά  σ ε  � ι α

 ̟ ρ ο σ έ γ γ ι σ η  
α υ τ ο ύ , iii) η  ̟ ε ̟ ε ρ α σ � έ ν η  

α κ ρ ί β ε ι α
 ε κ τ ί � η σ η ς  τ ω ν  ̟ α ρ α � έ τ ρ ω ν  τ ο υ  � ο ν τ έ λ ο υ  τ η ς  κ υ κ λ ο φ ο ρ ι α κ ή ς  ρ ο ή ς  ή  

α λ λ α γ ή  τ ω ν  ̟ α ρ α � έ τ ρ ω ν  κ α τ ά  τ η  δ ι ά ρ κ ε ι α
 ε φ α ρ � ο γ ή ς  τ ο υ  ε λ έ γ χ ο υ , κ α ι  iv) κ ά ̟ ο ι ο  

α ̟ ρ ό β λ ε ̟ τ ο  σ υ � β ά ν  ό ̟ ω ς  κ ά ̟ ο ι ο  α τ ύ χ η � α
. Γ ι α

 τ η ν  
α ν τ ι � ε τ ώ ̟ ι σ η  

α υ τ ώ ν  τ ω ν  ̟ ρ ο β λ η � ά τ ω ν  ε φ α ρ � ό ζ ε τ α ι  η  τ ε χ ν ι κ ή  τ ο υ  κ υ λ ι ό � ε ν ο υ  ο ρ ί ζ ο ν τ α ι  κ α ι  ε ι σ ά γ ε τ ε  � ι α
 ι ε ρ α ρ χ ι κ ή  δ ο � ή  ε λ έ γ χ ο υ . Σ τ η ν  
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̟ ε ρ ί ̟ τ ω σ η  ι ε ρ α ρ χ ι κ ο ύ  σ υ ν τ ο ν ι σ � έ ν ο υ  ε λ έ γ χ ο υ  η  ι ε ρ α ρ χ ι κ ή  δ ο � ή  
α ̟ ο τ ε λ ε ί τ α ι  α ̟ ό  τ ρ ί α

 ε ̟ ί ̟ ε δ α
: τ ο  ε ̟ ί ̟ ε δ ο  ε κ τ ί � η σ η ς /̟ ρ ό β λ ε ψ η ς , τ ο  ε ̟ ί ̟ ε δ ο  β ε λ τ ι σ τ ο ̟ ο ί η σ η ς  κ α ι  τ ο  ε ̟ ί ̟ ε δ ο  ε λ έ γ χ ο υ . Τ ο  ̟ ρ ώ τ ο  ε ̟ ί ̟ ε δ ο  έ χ ε ι  ω ς  σ τ ό χ ο  τ ο ν  κ α θ ο ρ ι σ � ό  σ ε  ̟ ρ α γ � α τ ι κ ό  χ ρ ό ν ο  τ ω ν  

α ρ χ ι κ ώ ν  σ υ ν θ η κ ώ ν  τ ο υ  σ υ σ τ ή � α τ ο ς  κ α ι  τ ω ν  ̟ α ρ α � έ τ ρ ω ν  τ ο υ  � ο ν τ έ λ ο υ . 
Π ρ α γ � α τ ο ̟ ο ι ε ί  α κ ό � η  � ι α

 ̟ ρ ό β λ ε ψ η  τ ω ν  δ ι α τ α ρ α χ ώ ν  ̟ ο υ  ̟ ρ ό κ ε ι τ α ι  ν α
 ε ̟ ε ν ε ρ γ ή σ ο υ ν  σ τ η  δ ι ά ρ κ ε ι α

 τ η ς  ̟ ε ρ ι ό δ ο υ  ̟ ρ ό β λ ε ψ η ς . Σ τ ο  δ ε ύ τ ε ρ ο  ε ̟ ί ̟ ε δ ο  χ ρ η σ ι � ο ̟ ο ι ε ί τ α ι  η  σ τ ρ α τ η γ ι κ ή  ε λ έ γ χ ο υ  AMOC. Σ α ν  ε ί σ ο δ ο  δ έ χ ε τ α ι  τ η ν  τ ρ έ χ ο υ σ α
 κ υ κ λ ο φ ο ρ ι α κ ή  κ α τ ά σ τ α σ η  τ ο υ  δ ι κ τ ύ ο υ , τ ι ς  ̟ α ρ α � έ τ ρ ο υ ς  τ ο υ  � ο ν τ έ λ ο υ  κ α ι  τ ι ς  ̟ ρ ο β λ έ ψ ε ι ς  τ ω ν  δ ι α τ α ρ α χ ώ ν  γ ι α

 τ ο ν  χ ρ ο ν ι κ ό  ο ρ ί ζ ο ν τ α
 τ η ς  β ε λ τ ι σ τ ο ̟ ο ί η σ η ς . To AMOC, ε ̟ ι λ ύ ο ν τ α ς  τ ο  � η -γ ρ α � � ι κ ό  ̟ ρ ό β λ η � α

 β έ λ τ ι σ τ ο υ  ε λ έ γ χ ο υ  δ ι α κ ρ ι τ ο ύ  χ ρ ό ν ο υ , ̟ ρ ο σ δ ι ο ρ ί ζ ε ι  τ ι ς  β έ λ τ ι σ τ ε ς  τ ρ ο χ ι έ ς  ε λ έ γ χ ο υ  κ α ι  τ ι ς  α ν τ ί σ τ ο ι χ ε ς  β έ λ τ ι σ τ ε ς  τ ρ ο χ ι έ ς  τ η ς  κ α τ ά σ τ α σ η ς  τ ο υ  δ ι κ τ ύ ο υ . Τ α
 

α ̟ ο τ ε λ έ σ � α τ α
 ̟ ε ρ ν ά ν ε  ω ς  ε ί σ ο δ ο ς  σ τ ο  ε ̟ ό � ε ν ο  ε ̟ ί ̟ ε δ ο , ό ̟ ο υ  δ ύ ν α τ α ι  ε ί τ ε  ν α

 ε φ α ρ � ο σ τ ο ύ ν  α ̟ ε υ θ ε ί α ς  σ τ ι ς  ε λ ε γ χ ό � ε ν ε ς  ρ ά � ̟ ε ς  ε ί τ ε  ν α
 χ ρ η σ ι � ο ̟ ο ι η θ ο ύ ν  ω ς  σ τ ό χ ο ι  ̟ ο υ  ̟ ρ έ ̟ ε ι  ν α

 ̟ ε τ ύ χ ε ι  η  � έ θ ο δ ο ς  τ ο ̟ ι κ ο ύ  ε λ έ γ χ ο υ  ALINEA γ ι α
 � ι α

 σ υ γ κ ε κ ρ ι � έ ν η  ̟ ε ρ ί ο δ ο  ε φ α ρ � ο γ ή ς . 
Α υ τ ό  γ ί ν ε τ α ι  γ ι α τ ί  ο  τ ο ̟ ι κ ό ς  ε λ ε γ κ τ ή ς  έ χ ε ι  τ η  δ υ ν α τ ό τ η τ α

 ν α
 α ν τ ι δ ρ ά σ ε ι  ̟ ι ο  ά � ε σ α

 σ ε  ̟ ε ρ ί ̟ τ ω σ η  ̟ ο υ  λ ό γ ω  κ ά ̟ ο ι ο υ  σ υ � β ά ν τ ο ς  ο ι  κ υ κ λ ο φ ο ρ ι α κ έ ς  σ υ ν θ ή κ ε ς  
α λ λ ά ξ ο υ ν  ̟ ρ ι ν  η  σ τ ρ α τ η γ ι κ ή  ε λ έ γ χ ο υ  ε ν η � ε ρ ω θ ε ί  ή  ν α

 ε ξ ι σ ο ρ ρ ο ̟ ή σ ε ι  τ υ χ ό ν  σ φ ά λ � α τ α
 σ τ ο υ ς  υ ̟ ο λ ο γ ι σ � ο ύ ς  τ η ς  σ τ ρ α τ η γ ι κ ή ς  ̟ ο υ  � ̟ ο ρ ε ί  ν α

 ο φ ε ί λ ο ν τ α ι  σ τ η  σ τ ο χ α σ τ ι κ ή  φ ύ σ η  τ η ς  ̟ ρ ό β λ ε ψ η ς  τ η ς  ζ ή τ η σ η ς  ή  σ τ η ν  ̟ ε ̟ ε ρ α σ � έ ν η  
α κ ρ ί β ε ι α

 ε κ τ ί � η σ η ς  τ ω ν  ̟ α ρ α � έ τ ρ ω ν  τ ο υ  � ο ν τ έ λ ο υ . � ς  β α σ ι κ ό  δ ί κ τ υ ο  γ ι α
 τ η  � ε λ έ τ η  τ η ς  κ υ κ λ ο φ ο ρ ί α ς  κ α ι  τ η ν  ε ̟ ί δ ρ α σ η  τ ο υ  ε λ έ γ χ ο υ  σ ε  

α υ τ ή ν  χ ρ η σ ι � ο ̟ ο ι ε ί τ α ι  τ ο  ̟ ε ρ ι α σ τ ι κ ό  δ ί κ τ υ ο  
α υ τ ο κ ι ν η τ ο δ ρ ό � ω ν  τ ο υ  Ά � σ τ ε ρ ν τ α � . Τ ο  κ ύ ρ ι ο  � έ ρ ο ς  τ ο υ  δ ι κ τ ύ ο υ  

α ̟ ο τ ε λ ε ί  ο  ̟ ε ρ ι φ ε ρ ε ι α κ ό ς  δ α κ τ ύ λ ι ο ς  Α
10. 

Ο
 

Α
10 ̟ ε ρ ι λ α � β ά ν ε ι  δ ύ ο  σ ή ρ α γ γ ε ς , τ η  σ ή ρ α γ γ α

 Coen κ α ι  τ η  σ ή ρ α γ γ α
 

Zeeburg. Ε ̟ ί σ η ς  σ τ α
 β ό ρ ε ι α

 σ υ ν δ έ ε τ α ι  � ε  τ ο ν  
α υ τ ο κ ι ν η τ ό δ ρ ο � ο  

Α
8, σ τ α

 ν ο τ ι ο δ υ τ ι κ ά  � ε  τ ο ν  
Α

4, σ τ α
 ν ό τ ι α

 � ε  τ ο ν  
Α

2 κ α ι  ν ο τ ι ο α ν α τ ο λ ι κ ά  � ε  τ ο ν  
Α

1. Τ ο  δ ί κ τ υ ο  υ ̟ ό κ ε ι τ α ι  κ α θ η � ε ρ ι ν ά  σ ε  σ υ � φ ό ρ η σ η  η  ο ̟ ο ί α
 ε ί ν α ι  ι δ ι α ί τ ε ρ α

 � ε γ ά λ η  σ τ ο  β ο ρ ε ι ο δ υ τ ι κ ό  τ � ή � α
 τ ο υ  

Α
10 ε ν ώ  ε ί ν α ι  λ ι γ ό τ ε ρ η  σ τ ο  

α ν α τ ο λ ι κ ό  τ � ή � α
. Τ ο  δ ί κ τ υ ο  � ο ν τ ε λ ο ̟ ο ι ή θ η κ ε  κ α ι  γ ι α

 τ ι ς  δ ύ ο  κ α τ ε υ θ ύ ν σ ε ι ς  ̟ ο υ  σ η � α ί ν ε ι  ό τ ι  143 km χ ω ρ ί σ τ η κ α ν  σ ε  654 σ υ ν δ έ σ � ο υ ς  (249 σ ύ ν δ ε σ � ο ι  α υ τ ο κ ι ν η τ ο δ ρ ό � ω ν , 231 σ ύ ν δ ε σ � ο ι  α ̟ ο θ ή κ ε υ σ η ς  κ α ι  ̟ ρ ο ώ θ η σ η ς  κ α ι  174 ε ι κ ο ν ι κ ο ί  σ ύ ν δ ε σ � ο ι ). Ο ι  σ ύ ν δ ε σ � ο ι  τ ω ν  
α υ τ ο κ ι ν η τ ο δ ρ ό � ω ν  

α ̟ ο τ ε λ ο ύ ν τ α ι  α ̟ ό  291 τ � ή � α τ α
 � ε  τ ο  � ή κ ο ς  τ ο υ ς  ν α

 κ υ � α ί ν ε τ α ι  α ̟ ό  400 έ ω ς  800 � έ τ ρ α
 ( � έ σ ο  � ή κ ο ς  491,4m). Γ ι α

 τ ο  � ο ν τ έ λ ο  τ ο υ  δ ι κ τ ύ ο υ  έ γ ι ν ε  
α ρ χ ι κ ά  ̟ ο σ ο τ ι κ ή  ε ̟ ι κ ύ ρ ω σ η  τ ω ν  ̟ α ρ α � έ τ ρ ω ν  ό ̟ ο υ  � ι α

 ο � ά δ α
 ̟ α ρ α � έ τ ρ ω ν  

α ρ χ ι κ ά  ε κ τ ι � ή θ η κ ε  κ α ι  σ τ η  σ υ ν έ χ ε ι α
 ε ̟ ι κ υ ρ ώ θ η κ ε . Σ τ η  σ υ ν έ χ ε ι α

 έ γ ι ν ε  ̟ ο ι ο τ ι κ ή  ε ̟ ι κ ύ ρ ω σ η  τ ο υ  � ο ν τ έ λ ο υ  � ε  σ κ ο ̟ ό  ν α
 � ̟ ο ρ έ σ ε ι  ν α

 
α ν α ̟ α ρ α σ τ ή σ ε ι  ̟ ε ι σ τ ι κ ά  τ η ν  ̟ ρ α γ � α τ ι κ ή  δ υ ν α � ι κ ή  τ ο υ  σ υ σ τ ή � α τ ο ς . Γ ι α

 τ η ν  ̟ α ρ ο ύ σ α
 � ε λ έ τ η  χ ρ η σ ι � ο ̟ ο ι ή θ η κ ε  � ό ν ο  τ ο  κ ο � � ά τ ι  τ ο υ  δ α κ τ υ λ ί ο υ  τ ο υ  

Α
10 ̟ ο υ  έ χ ε ι  α ρ ι σ τ ε ρ ό σ τ ρ ο φ η  φ ο ρ ά . Τ ο  σ υ γ κ ε κ ρ ι � έ ν ο  κ ο � � ά τ ι  έ χ ε ι  � ή κ ο ς  ̟ ε ρ ί ̟ ο υ  32 km κ α ι  ̟ ε ρ ι λ α � β ά ν ε ι  21 ρ ά � ̟ ε ς  ε ι σ ό δ ο υ  κ α ι  20 ρ ά � ̟ ε ς  ε ξ ό δ ο υ  σ τ ι ς  ο ̟ ο ί ε ς  
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σ υ � ̟ ε ρ ι λ α � β ά ν ο ν τ α ι  κ α ι  ο ι  σ υ ν δ έ σ ε ι ς  � ε  τ ο υ ς  
α υ τ ο κ ι ν η τ ο δ ρ ό � ο υ ς  

Α
8, 

Α
4, 

Α
3 κ α ι  Α

1. 
Ο

 δ α κ τ ύ λ ι ο ς  χ ω ρ ί ζ ε τ α ι  σ ε  76 δ ι α κ ρ ι τ ά  τ � ή � α τ α
 � ε  � έ σ ο  � ή κ ο ς  421 m. 

Α υ τ ό  σ η � α ί ν ε ι  ό τ ι  τ ο  δ ι ά ν υ σ � α
 κ α τ ά σ τ α σ η ς  έ χ ε ι  δ ι ά σ τ α σ η  173. 

Α ν  υ ̟ ο θ έ σ ο υ � ε  ό τ ι  ε λ έ γ χ ο ν τ α ι  ό λ ε ς  ο ι  ρ ά � ̟ ε ς  ε ι σ ό δ ο υ  τ ό τ ε  τ ο  δ ι ά ν υ σ � α
 ε λ έ γ χ ο υ  έ χ ε ι  δ ι ά σ τ α σ η  21 κ α ι  τ ο  δ ι ά ν υ σ � α

 τ ω ν  δ ι α τ α ρ α χ ώ ν  έ χ ε ι  δ ι ά σ τ α σ η  41. 
Π α ρ α τ η ρ ε ί τ α ι  ό τ ι  τ ο  � ο ν τ έ λ ο  ̟ ρ ο σ ο � ο ι ώ ν ε ι  ι κ α ν ο ̟ ο ι η τ ι κ ά  τ ο  φ α ι ν ό � ε ν ο  τ η ς  κ υ κ λ ο φ ο ρ ι α κ ή ς  ρ ο ή ς  σ τ ο  δ ί κ τ υ ο  α υ τ ό  κ α ι  � ̟ ο ρ ε ί  ν α

 χ ρ η σ ι � ο ̟ ο ι η θ ε ί  γ ι α
 τ ο  σ χ ε δ ι α σ � ό  � ι α ς  σ τ ρ α τ η γ ι κ ή ς  ε λ έ γ χ ο υ  α λ λ ά  κ α ι  γ ι α

 τ η ν  � ε τ έ ̟ ε ι τ α
 

α ξ ι ο λ ό γ η σ η  
α υ τ ή ς . Σ τ η ν  ε ρ γ α σ ί α

 ε φ α ρ � ό σ τ η κ ε  η  � έ θ ο δ ο ς  τ ο ̟ ι κ ο ύ  ε λ έ γ χ ο υ  ALINEA, η  σ τ ρ α τ η γ ι κ ή  AMOC κ α ι  ο  ι ε ρ α ρ χ ι κ ό ς  έ λ ε γ χ ο ς  σ τ ο  δ ί κ τ υ ο  τ ο υ  Amsterdam κ α ι  τ α
 α ̟ ο τ ε λ έ σ � α τ ά  τ ο υ ς  σ υ γ κ ρ ί θ η κ α ν  � ε τ α ξ ύ  τ ο υ ς  

α λ λ ά  κ α ι  � ε  τ η ν  ̟ ε ρ ί ̟ τ ω σ η  ό ̟ ο υ  δ ε ν  ε φ α ρ � ό ζ ε τ α ι  κ α ν έ ν α ς  έ λ ε γ χ ο ς . 
Ο ι  ̟ ρ ο σ ο � ο ι ώ σ ε ι ς  έ γ ι ν α ν  � ε  τ η  χ ρ ή σ η  ̟ ρ α γ � α τ ι κ ώ ν  δ ε δ ο � έ ν ω ν  γ ι α

 τ η  ζ ή τ η σ η  κ α ι  τ ι ς  ρ ο έ ς  σ τ ι ς  ε ξ ό δ ο υ ς . Τ α
 δ ε δ ο � έ ν α

 α φ ο ρ ο ύ σ α ν  έ ν α ν  χ ρ ο ν ι κ ό  ο ρ ί ζ ο ν τ α
 4 ω ρ ώ ν . Χ ρ η σ ι � ο ̟ ο ι ώ ν τ α ς  έ ν α

 δ ι α κ ρ ι τ ό  β ή � α
 τ ο υ  � ο ν τ έ λ ο υ  ί σ ο  � ε  10 sec ̟ ρ ο κ ύ ̟ τ ο υ ν  1440 β ή � α τ α

 ω ς  χ ρ ο ν ι κ ό ς  ο ρ ί ζ ο ν τ α ς  τ η ς  ̟ ρ ο σ ο � ο ί ω σ η ς . Σ τ η  ̟ ε ρ ί ̟ τ ω σ η  ό ̟ ο υ  δ ε ν  ε φ α ρ � ό ζ ε τ α ι  κ α ν έ ν α ς  έ λ ε γ χ ο ς  ο  Σ Χ Τ  ̟ ρ ο κ ύ ̟ τ ε ι  ί σ ο ς  � ε  14268 ο χ ή � α τ α
* ώ ρ ε ς . Σ τ ο  δ ί κ τ υ ο  έ χ ε ι  α ν α ̟ τ υ χ θ ε ί  σ υ � φ ό ρ η σ η  σ ε  ̟ ο λ λ ά  σ η � ε ί α

 ̟ ο υ  � ̟ λ ο κ ά ρ ε ι  α ρ κ ε τ έ ς  ρ ά � ̟ ε ς  ε ι σ ό δ ο υ  ό ̟ ο υ  κ α ι  σ χ η � α τ ί ζ ο ν τ α ι  � ε γ ά λ ε ς  ο υ ρ έ ς  ̟ ο υ  
α ρ γ ο ύ ν  ν α

 δ ι α λ υ θ ο ύ ν . Σ τ η  σ υ ν έ χ ε ι α
 έ γ ι ν ε  η  ̟ ρ ο σ ο � ο ί ω σ η  � ε  τ ι ς  ̟ α ρ α ̟ ά ν ω  � ε θ ό δ ο υ ς  γ ι α

 10 δ ι α φ ο ρ ε τ ι κ ά  σ ε ν ά ρ ι α
 τ α

 ο ̟ ο ί α
 ε ί τ ε  θ ε ω ρ ο ύ ν  ό τ ι  ε λ έ γ χ ο ν τ α ι  � ό ν ο  ο ι  α σ τ ι κ έ ς  ρ ά � ̟ ε ς  ε ι σ ό δ ο υ  σ τ ο ν  

α υ τ ο κ ι ν η τ ό δ ρ ο � ο  ε ί τ ε  ο ι  σ ύ ν δ ε σ � ο ι  � ε τ α ξ ύ  τ ω ν  
α υ τ ο κ ι ν η τ ο δ ρ ό � ω ν  ε ί τ ε  ό λ ε ς  

α ν ε ξ α ι ρ έ τ ω ς  ο ι  ρ ά � ̟ ε ς . Τ α
 σ ε ν ά ρ ι α

 δ ι α φ ο ρ ο ̟ ο ι ο ύ ν τ α ι  σ τ ο  � ή κ ο ς  τ ω ν  ο υ ρ ώ ν  ̟ ο υ  ε ̟ ι τ ρ έ ̟ ε τ α ι  ν α
 α ν α ̟ τ υ χ θ ο ύ ν  σ τ ο υ ς  σ υ ν δ έ σ � ο υ ς  � ε τ α ξ ύ  τ ω ν  

α υ τ ο κ ι ν η τ ο δ ρ ό � ω ν . Η  ALINEA κ α τ α φ έ ρ ν ε ι  ν α
 β ε λ τ ι ώ σ ε ι  σ τ α

 ̟ ε ρ ι σ σ ό τ ε ρ α
 

α ̟ ό  τ α
 σ ε ν ά ρ ι α

 τ ι ς  κ υ κ λ ο φ ο ρ ι α κ έ ς  σ υ ν θ ή κ ε ς  
α ρ κ ε τ ά . Ό σ ο  

α υ ξ ά ν ε τ α ι  η  δ υ ν α τ ό τ η τ α
 γ ι α

 δ η � ι ο υ ρ γ ί α
 ο υ ρ ώ ν  σ τ ο υ ς  σ υ ν δ έ σ � ο υ ς  � ε τ α ξ ύ  τ ω ν  

α υ τ ο κ ι ν η τ ο δ ρ ό � ω ν  τ α
 

α ̟ ο τ ε λ έ σ � α τ α
 β ε λ τ ι ώ ν ο ν τ α ι . Τ α

 κ α λ ύ τ ε ρ α
 

α ̟ ο τ ε λ έ σ � α τ α
 ̟ ρ ο έ κ υ ψ α ν  γ ι α

 τ α
 σ ε ν ά ρ ι α

 � ε  τ ο  � έ γ ι σ τ ο  ε ̟ ι τ ρ ε ̟ ό � ε ν ο  � ή κ ο ς  ο υ ρ ά ς  ό ̟ ο υ  ̟ α ρ α τ η ρ ή θ η κ ε  β ε λ τ ί ω σ η  σ τ ο ν  Σ Χ Τ  � έ χ ρ ι  κ α ι  46%. Γ ι α
 έ ν α

 � έ σ ο  ε ̟ ι τ ρ ε ̟ ό � ε ν ο  � ή κ ο ς  ο υ ρ ά ς  ̟ ο υ  ε ί ν α ι  κ α ι  έ ν α
 ̟ ι ο  ̟ ι θ α ν ό  σ ε ν ά ρ ι ο  η  β ε λ τ ί ω σ η  ε ί ν α ι  ̟ ε ρ ί ̟ ο υ  19%. 

Π α ρ ό λ α
 

α υ τ ά , 
α κ ό � α

 κ ι  έ τ σ ι  σ χ η � α τ ί ζ ε τ α ι  σ υ � φ ό ρ η σ η  κ α ι  έ χ ο υ � ε  κ α ι  ο υ ρ έ ς  ̟ ο υ  σ τ ο ν  
Α

4 φ τ ά ν ο υ ν  � έ χ ρ ι  κ α ι  1200 ο χ ή � α τ α
. Ό σ ο ν  

α φ ο ρ ά  τ η ν  ι σ ο τ ι � ί α
 ̟ ο υ  ε ̟ ι τ υ γ χ ά ν ε τ α ι  σ τ η ν  

α ν τ ι � ε τ ώ ̟ ι σ η  τ ω ν  ο δ η γ ώ ν  ̟ ο υ  ε ι σ έ ρ χ ο ν τ α ι  σ τ ο ν  α υ τ ο κ ι ν η τ ό δ ρ ο � ο , ̟ ι ο  δ ί κ α ι η  κ α τ α ν ο � ή  τ ω ν  ο υ ρ ώ ν  κ α ι  τ ω ν  κ α θ υ σ τ ε ρ ή σ ε ω ν  ̟ ρ α γ � α τ ο ̟ ο ι ε ί τ α ι  σ τ α
 σ ε ν ά ρ ι α

 ̟ ο υ  έ χ ο υ ν  έ ν α
 � έ σ ο  ε ̟ ι τ ρ ε ̟ ό � ε ν ο  � ή κ ο ς  ο υ ρ ώ ν . Η  ε φ α ρ � ο γ ή  τ ο υ  AMOC δ ί ν ε ι  θ ε α � α τ ι κ ά  

α ̟ ο τ ε λ έ σ � α τ α
. Η  β ε λ τ ί ω σ η  σ ε  ό λ α

 τ α
 σ ε ν ά ρ ι α

 κ υ � α ί ν ε τ α ι  α ̟ ό  22% έ ω ς  κ α ι  50% � ε  τ η  � ε γ α λ ύ τ ε ρ η  β ε λ τ ί ω σ η  σ τ ο  Σ Χ Τ  ν α
 ε � φ α ν ί ζ ε τ α ι  ό τ α ν  ε ̟ ι τ ρ έ ̟ ε τ α ι  η  δ η � ι ο υ ρ γ ί α

 � ε γ ά λ ω ν  ο υ ρ ώ ν  σ τ ο υ ς  σ υ ν δ έ σ � ο υ ς  � ε τ α ξ ύ  τ ω ν  
α υ τ ο κ ι ν η τ ο δ ρ ό � ω ν . 

� σ τ ό σ ο  η  λ ύ σ η  
α υ τ ή  ε ί ν α ι  α ν ο ι χ τ ο ύ  β ρ ό χ ο υ  κ α ι  δ ε ν  θ α

 � ̟ ο ρ ο ύ σ ε  ν α
 ̟ α ρ α τ η ρ η θ ε ί  σ ε  � ι α

 ε φ α ρ � ο γ ή  σ τ η ν  ̟ ρ α γ � α τ ι κ ό τ η τ α
. Τ α

 α ̟ ο τ ε λ έ σ � α τ α
 ό � ω ς  ε ξ α κ ο λ ο υ θ ο ύ ν  ν α

 ε ί ν α ι  χ ρ ή σ ι � α
 κ α ι  � ̟ ο ρ ο ύ ν  ν α
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χ ρ η σ ι � ο ̟ ο ι η θ ο ύ ν  ω ς  έ ν α
 ά ν ω  ό ρ ι ο  γ ι α

 τ η ν  
α ̟ ο τ ε λ ε σ � α τ ι κ ό τ η τ α

 ο ̟ ο ι α σ δ ή ̟ ο τ ε  σ τ ρ α τ η γ ι κ ή ς  ε λ έ γ χ ο υ . Σ τ η ν  ε φ α ρ � ο γ ή  τ ο υ  ι ε ρ α ρ χ ι κ ο ύ  ε λ έ γ χ ο υ  � ε  τ η  � έ θ ο δ ο  τ ο υ  κ υ λ ι ό � ε ν ο υ  ο ρ ί ζ ο ν τ α
 

α ρ χ ι κ ά  ο ρ ί σ τ η κ ε  ο  χ ρ ό ν ο ς  τ ο υ  ο ρ ί ζ ο ν τ α
 ε φ α ρ � ο γ ή ς  κ α ι  τ ο υ  ο ρ ί ζ ο ν τ α

 ̟ ρ ό β λ ε ψ η ς . 
Ο ι  τ ι � έ ς  ̟ ο υ  χ ρ η σ ι � ο ̟ ο ι ή θ η κ α ν  ε ί ν α ι  10 λ ε ̟ τ ά  ( ή  60 β ή � α τ α

 τ η ς  ̟ ρ ο σ ο � ο ί ω σ η ς ) κ α ι  60 λ ε ̟ τ ά  (ή  360 β ή � α τ α
 τ η ς  ̟ ρ ο σ ο � ο ί ω σ η ς ) α ν τ ί σ τ ο ι χ α

. Σ τ η  σ υ ν έ χ ε ι α
 έ γ ι ν ε  ε φ α ρ � ο γ ή  τ ο υ  ι ε ρ α ρ χ ι κ ο ύ  ε λ έ γ χ ο υ  � ε  τ ι ς  β έ λ τ ι σ τ ε ς  τ ρ ο χ ι έ ς  ε λ έ γ χ ο υ  ̟ ο υ  ̟ ρ ο έ κ υ ψ α ν  

α ̟ ό  τ ο  ε ̟ ί ̟ ε δ ο  β ε λ τ ι σ τ ο ̟ ο ί η σ η ς  ν α
 ε φ α ρ � ό ζ ο ν τ α ι  α ̟ ό  τ ο  ε ̟ ί ̟ ε δ ο  

α ν ά θ ε σ η ς  κ α θ η κ ό ν τ ω ν  
α ̟ ε υ θ ε ί α ς  σ τ ι ς  ε λ ε γ χ ό � ε ν ε ς  ρ ά � ̟ ε ς  ε ι σ ό δ ο υ  κ α ι  σ υ γ κ ρ ί θ η κ ε  � ε  τ η ν  ̟ ε ρ ί ̟ τ ω σ η  ό ̟ ο υ  γ ί ν ε τ α ι  χ ρ ή σ η  τ η ς  τ ο ̟ ι κ ή ς  σ τ ρ α τ η γ ι κ ή ς  ALINEA � ε  χ ρ ή σ η  τ ω ν  β έ λ τ ι σ τ ω ν  τ ρ ο χ ι ώ ν  ε λ έ γ χ ο υ  ω ς  σ τ ό χ ο υ ς  ̟ ο υ  ̟ ρ έ ̟ ε ι  ν α

 ι κ α ν ο ̟ ο ι η θ ο ύ ν  
α ̟ ό  

α υ τ ή . Τ α
 

α ̟ ο τ ε λ έ σ � α τ α
 � ε  τ η  χ ρ ή σ η  τ η ς  ALINEA σ τ ο  ε ̟ ί ̟ ε δ ο  

α ν ά θ ε σ η ς  κ α θ η κ ό ν τ ω ν  υ ̟ ε ρ τ ε ρ ο ύ σ α ν  ό τ α ν  έ γ ι ν ε  ε φ α ρ � ο γ ή  � ε  υ ̟ ο ε κ τ ί � η σ η  ή  υ ̟ ε ρ ε κ τ ί � η σ η  τ η ς  ζ ή τ η σ η ς  σ τ ο  ε ̟ ί ̟ ε δ ο  ̟ ρ ό β λ ε ψ η ς . Α υ τ ό  ο φ ε ί λ ε τ α ι  σ τ ο  γ ε γ ο ν ό ς  ό τ ι  � ε  τ η  β ο ή θ ε ι α
 τ ο υ  τ ο ̟ ι κ ο ύ  ε λ ε γ κ τ ή  η  � έ θ ο δ ο ς  έ χ ε ι  τ η  δ υ ν α τ ό τ η τ α

 ν α
 

α ν τ α ̟ ο κ ρ ι θ ε ί  κ α λ ύ τ ε ρ α
 σ ε  ̟ ι θ α ν ά  σ φ ά λ � α τ α

 σ τ η  ̟ ρ ό β λ ε ψ η  τ η ς  ζ ή τ η σ η ς  ή  τ η ς  κ α τ ά σ τ α σ η ς  τ ο υ  δ ι κ τ ύ ο υ . Σ τ η  σ υ ν έ χ ε ι α
 ό λ ε ς  ο ι  ̟ ρ ο σ ο � ο ι ώ σ ε ι ς  έ γ ι ν α ν  � ε  χ ρ ή σ η  τ η ς  ALINEA σ τ ο  ε ̟ ί ̟ ε δ ο  

α ν ά θ ε σ η ς  κ α θ η κ ό ν τ ω ν . Τ α
 α ̟ ο τ ε λ έ σ � α τ α

 ̟ ο υ  ̟ ρ ο έ κ υ ψ α ν  ή τ α ν  ̟ ο λ ύ  κ α λ ά . Σ τ α
 σ ε ν ά ρ ι α

 ό ̟ ο υ  υ ̟ ή ρ ξ ε  η  δ υ ν α τ ό τ η τ α
 ε ξ υ ̟ η ρ έ τ η σ η ς  � ε γ ά λ ω ν  ο υ ρ ώ ν  σ τ ι ς  ρ ά � ̟ ε ς  ε ι σ ό δ ο υ , τ α

 
α ̟ ο τ ε λ έ σ � α τ α

 ̟ λ η σ ί α σ α ν  
α υ τ ά  τ η ς  λ ύ σ η ς  

α ν ο ι χ τ ο ύ  β ρ ό χ ο υ . Η  β ε λ τ ί ω σ η  ̟ ο υ  ε ̟ ι τ ε ύ χ θ η κ ε  κ υ � ά ν θ η κ ε  
α ̟ ό  ̟ ε ρ ί ̟ ο υ  10% έ ω ς  κ α ι  50% σ ε  σ χ έ σ η  � ε  τ η ν  ̟ ε ρ ί ̟ τ ω σ η  ό ̟ ο υ  δ ε ν  ε φ α ρ � ό ζ ε τ α ι  κ α ν έ ν α ς  έ λ ε γ χ ο ς . Τ α

 
α ̟ ο τ ε λ έ σ � α τ α

 
α ν  σ υ γ κ ρ ι θ ο ύ ν  � ε  

α υ τ ά  τ ο υ  ε λ έ γ χ ο υ  
α ν ο ι χ τ ο ύ  β ρ ό χ ο υ  � ε  τ ο  AMOC ε ί ν α ι  χ ε ι ρ ό τ ε ρ α

, ό ̟ ω ς  ε ί ν α ι  λ ο γ ι κ ό . � σ τ ό σ ο  ό σ ο  � ε γ α λ ύ τ ε ρ ε ς  ε ί ν α ι  ο ι  ε ̟ ι τ ρ ε ̟ ό � ε ν ε ς  ο υ ρ έ ς  η  δ ι α φ ο ρ ά  ε λ α χ ι σ τ ο ̟ ο ι ε ί τ α ι  � έ χ ρ ι  ̟ ο υ  γ ι α
 τ α

 σ ε ν ά ρ ι α
 � ε  τ ι ς  � έ γ ι σ τ ε ς  δ υ ν α τ έ ς  ε ̟ ι τ ρ ε ̟ ό � ε ν ε ς  ο υ ρ έ ς  τ α

 
α ̟ ο τ ε λ έ σ � α τ α

 σ χ ε δ ό ν  τ α υ τ ί ζ ο ν τ α ι  � ε  
α υ τ ά  τ ο υ  ε λ έ γ χ ο υ  

α ν ο ι χ τ ο ύ  β ρ ό χ ο υ . Τ α
 σ ε ν ά ρ ι α

 � ε  έ ν α
 � έ σ ο  � ή κ ο ς  ε ̟ ι τ ρ ε ̟ ό � ε ν ω ν  ο υ ρ ώ ν  

α ̟ ο δ ε ί χ τ η κ ε  ν α
 ε ί ν α ι  α ρ κ ε τ ά  ̟ ι ο  δ ί κ α ι α

 σ ε  σ χ έ σ η  � ε  τ α
 υ ̟ ό λ ο ι ̟ α

. 
Π α ρ α τ η ρ ή θ η κ ε  ό τ ι  η  ε ̟ ι β ο λ ή  ̟ ε ρ ι ο ρ ι σ � ώ ν  � έ γ ι σ τ η ς  ο υ ρ ά ς  � ̟ ο ρ ε ί  ν α

 θ ε ω ρ η θ ε ί  σ α ν  έ ν α ς  τ ρ ό ̟ ο ς  ν α
 γ ί ν ε ι  ̟ ι ο  ι σ ό τ ι � η  η  σ τ ρ α τ η γ ι κ ή  

α ̟ έ ν α ν τ ι  σ τ ο υ ς  ο δ η γ ο ύ ς  ̟ ο υ  ε ι σ έ ρ χ ο ν τ α ι  σ τ ο ν  α υ τ ο κ ι ν η τ ό δ ρ ο � ο  
α ̟ ό  δ ι α φ ο ρ ε τ ι κ έ ς  ρ ά � ̟ ε ς  κ α τ α ν έ � ο ν τ α ς  τ ι ς  κ α θ υ σ τ ε ρ ή σ ε ι ς . Ε ̟ ί σ η ς  φ ά ν η κ ε  ό τ ι  η  ι σ ο τ ι � ί α

 κ α ι  η  
α ̟ ο τ ε λ ε σ � α τ ι κ ό τ η τ α

 � ι α ς  σ τ ρ α τ η γ ι κ ή ς  ε ί ν α ι  � ε ρ ι κ ώ ς  
α ν τ α γ ω ν ι σ τ ι κ ά  κ ρ ι τ ή ρ ι α

. Σ ε  σ χ έ σ η  � ε  τ η ν  ε φ α ρ � ο γ ή  
α ̟ λ ή ς  ALINEA, η  ε φ α ρ � ο γ ή  τ ο υ  ι ε ρ α ρ χ ι κ ο ύ  ε λ έ γ χ ο υ  ε ί ν α ι  σ α φ ώ ς  κ α λ ύ τ ε ρ η . 

Α κ ό � α
 κ α ι  σ τ η  χ ε ι ρ ό τ ε ρ η  ̟ ε ρ ί ̟ τ ω σ η  ο  ι ε ρ α ρ χ ι κ ό ς  έ λ ε γ χ ο ς  κ υ � ά ν θ η κ ε  σ τ α

 ί δ ι α
 ε ̟ ί ̟ ε δ α

 � ε  τ η ν  

ALINEA. Β ε β α ί ω ς  ό τ α ν  υ ̟ ά ρ χ ε ι  δ ι α θ έ σ ι � ο ς  χ ώ ρ ο ς  γ ι α
 τ η ν  δ η � ι ο υ ρ γ ί α

 ο υ ρ ώ ν  σ τ ι ς  ρ ά � ̟ ε ς  ε ι σ ό δ ο υ  ο  ι ε ρ α ρ χ ι κ ό ς  έ λ ε γ χ ο ς  κ α τ α φ έ ρ ν ε ι  ν α
 β ε λ τ ι ώ σ ε ι  τ ι ς  κ υ κ λ ο φ ο ρ ι α κ έ ς  σ υ ν θ ή κ ε ς  ̟ ά ρ α

 ̟ ο λ ύ  κ α ι  σ ε  
α ρ κ ε τ έ ς  ̟ ε ρ ι ̟ τ ώ σ ε ι ς  

α ̟ ο φ ε ύ γ ε τ α ι  η  δ η � ι ο υ ρ γ ί α
 σ υ � φ ό ρ η σ η ς . Ε ̟ ί σ η ς  ο  ι ε ρ α ρ χ ι κ ό ς  έ λ ε γ χ ο ς  

α ̟ ο δ ε ι κ ν ύ ε τ α ι  ν α
 ε ί ν α ι  κ α ι  ̟ ι ο  δ ί κ α ι ο ς  ̟ ρ ο ς  τ η ν  κ α τ α ν ο � ή  τ ω ν  κ α θ υ σ τ ε ρ ή σ ε ω ν  σ τ ο υ ς  ο δ η γ ο ύ ς  

α ̟ ό  τ ι ς  υ ̟ ό λ ο ι ̟ ε ς  σ τ ρ α τ η γ ι κ έ ς . 
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Σ υ � ̟ ε ρ α σ � α τ ι κ ά  � ̟ ο ρ ε ί  ν α
 ε ι ̟ ω θ ε ί  ό τ ι  η  χ ρ ή σ η  τ η ς  τ ο ̟ ι κ ή ς  σ τ ρ α τ η γ ι κ ή ς  α ν ά δ ρ α σ η ς  ALINEA ή τ α ν  ε ̟ ι τ υ χ ή ς  κ α ι  κ α τ ά φ ε ρ ε  ν α

 � ε ι ώ σ ε ι  α ι σ θ η τ ά  τ ο ν  Σ Χ Τ , κ α τ α φ έ ρ ν ο ν τ α ς  ν α
 δ ι α λ ύ σ ε ι  τ η ν  σ υ � φ ό ρ η σ η  � έ χ ρ ι  ε ν ό ς  σ η � ε ί ο υ  ̟ ο υ  σ τ ι ς  ̟ ε ρ ι σ σ ό τ ε ρ ε ς  ̟ ε ρ ι ̟ τ ώ σ ε ι ς  ε ξ α ρ τ ά τ α ι  κ α ι  α ̟ ό  τ η ν  δ υ ν α τ ό τ η τ α

 δ η � ι ο υ ρ γ ί α ς  ο υ ρ ώ ν . Τ ο  κ ύ ρ ι ο  ό � ω ς  ̟ ρ ό β λ η � α
 τ η ς  δ η � ι ο υ ρ γ ί α ς  � ε γ ά λ η ς  ο υ ρ ά ς  σ τ ο ν  

Α
4 δ ε ν  ή τ α ν  δ υ ν α τ ό ν  ν α

 
α ̟ ο φ ε υ χ θ ε ί . Τ α

 
α ̟ ο τ ε λ έ σ � α τ α

 τ ο υ  AMOC ε ί ν α ι  θ ε α � α τ ι κ ά  
α λ λ ά  α ν τ ι ̟ ρ ο σ ω ̟ ε ύ ο υ ν  � ι α

 ι δ α ν ι κ ή  κ α τ ά σ τ α σ η  κ ά τ ι  ̟ ο υ  δ ε ν  ι σ χ ύ ε ι  ̟ ο τ έ  σ ε  ̟ ρ α γ � α τ ι κ έ ς  ε φ α ρ � ο γ έ ς . 
� σ τ ό σ ο  � ̟ ο ρ ο ύ ν  ν α

 χ ρ η σ ι � ο ̟ ο ι η θ ο ύ ν  ω ς  έ ν α
 ά ν ω  ό ρ ι ο  γ ι α

 τ η ν  
α ̟ ό δ ο σ η  κ ά θ ε  σ τ ρ α τ η γ ι κ ή ς  ε λ έ γ χ ο υ . 

Ο
 ι ε ρ α ρ χ ι κ ό ς  έ λ ε γ χ ο ς  � ε  τ ο  AMOC σ τ ο  ε ̟ ί ̟ ε δ ο  β ε λ τ ι σ τ ο ̟ ο ί η σ η ς  κ α ι  τ η ν  ALINEA σ τ ο  ε ̟ ί ̟ ε δ ο  

α ν ά θ ε σ η ς  κ α θ η κ ό ν τ ω ν  α ̟ ο δ ί δ ε ι  κ α λ ύ τ ε ρ α
 

α ̟ ό  ό τ ι  η  � η  σ υ ν τ ο ν ι σ � έ ν η  χ ρ ή σ η  τ η ς  τ ο ̟ ι κ ή ς  σ τ ρ α τ η γ ι κ ή ς  ε λ έ γ χ ο υ . Τ α
 

α ̟ ο τ ε λ έ σ � α τ α
 τ η ς  � ε θ ό δ ο υ  κ ρ ί ν ο ν τ α ι  ̟ ε ρ ι σ σ ό τ ε ρ ο  

α ̟ ό  ι κ α ν ο ̟ ο ι η τ ι κ ά . Σ τ η  χ ε ι ρ ό τ ε ρ η  ̟ ε ρ ί ̟ τ ω σ η , ό ̟ ο υ  δ ε ν  ε ̟ ι τ ρ έ ̟ ε τ α ι  η  δ η � ι ο υ ρ γ ί α
 ο υ ρ ώ ν  σ τ ο υ ς  σ υ ν δ έ σ � ο υ ς  τ ω ν  

α υ τ ο κ ι ν η τ ο δ ρ ό � ω ν , τ α
 

α ̟ ο τ ε λ έ σ � α τ α
 τ η ς  � ε θ ό δ ο υ  ε ί ν α ι  τ ο υ λ ά χ ι σ τ ο ν  ό σ ο  κ α λ ά  κ α ι  τ η ς  ALINEA κ α ι  σ τ η ν  κ α λ ύ τ ε ρ η  ̟ ε ρ ί ̟ τ ω σ η , ό ̟ ο υ  υ ̟ ά ρ χ ε ι  η  δ υ ν α τ ό τ η τ α

 γ ι α
 ε ξ υ ̟ η ρ έ τ η σ η  � ε γ ά λ ω ν  ο υ ρ ώ ν , τ α

 
α ̟ ο τ ε λ έ σ � α τ α

 ε ί ν α ι  σ χ ε δ ό ν  τ ο  ί δ ι ο  κ α λ ά  � ε  τ η ν  λ ύ σ η  
α ν ο ι χ τ ο ύ  β ρ ό χ ο υ  τ ο υ  AMOC. Μ ε  τ η ν  σ υ ν ε χ ή  ̟ ρ ό ο δ ο  τ ω ν  υ ̟ ο λ ο γ ι σ τ ώ ν , η  υ ̟ ο λ ο γ ι σ τ ι κ ή  ι σ χ ύ ς  ̟ ο υ  α ̟ α ι τ ε ί τ α ι  γ ι α

 τ η ν  ε φ α ρ � ο γ ή  τ η ς  � ε θ ό δ ο υ  ε ί ν α ι  ό λ ο  κ α ι  λ ι γ ό τ ε ρ ο  σ η � α ν τ ι κ ή . 
Α ̟ ό  τ η ν  ̟ α ρ ο ύ σ α

 � ε λ έ τ η  
α ν α δ ύ θ η κ ε  η  

α ν ά γ κ η  γ ι α
 τ η ν  ε ι σ α γ ω γ ή  ε λ έ γ χ ο υ  κ α ι  σ τ ι ς  ρ ά � ̟ ε ς  ̟ ο υ  ε ν ώ ν ο υ ν  

α υ τ ο κ ι ν η τ ό δ ρ ο � ο υ ς . Η  χ ρ ή σ η  ε λ έ γ χ ο υ  σ τ ι ς  ρ ά � ̟ ε ς  ε ι σ ό δ ο υ  α ̟ ό  τ α
 

α σ τ ι κ ά  δ ί κ τ υ α
 β ε λ τ ί ω σ α ν  κ ά ̟ ω ς  τ η ν  κ α τ ά σ τ α σ η  

α λ λ ά  τ ο  � ε γ α λ ύ τ ε ρ ο  ρ ό λ ο  έ ̟ α ι ξ ε  η  χ ρ ή σ η  τ ω ν  ρ α � ̟ ώ ν  ̟ ο υ  ε ν ώ ν ο υ ν  
α υ τ ο κ ι ν η τ ό δ ρ ο � ο υ ς . Μ ε  τ η  δ υ ν α τ ό τ η τ α

 δ η � ι ο υ ρ γ ί α ς  ο υ ρ ώ ν  έ ω ς  κ α ι  200 ο χ η � ά τ ω ν  σ τ ι ς  ρ ά � ̟ ε ς  ̟ ο υ  ε ν ώ ν ο υ ν  α υ τ ο κ ι ν η τ ό δ ρ ο � ο υ ς  ο  ι ε ρ α ρ χ ι κ ό ς  έ λ ε γ χ ο ς  κ α τ ά φ ε ρ ε  ν α
 β ε λ τ ι ώ σ ε ι  τ ι ς  σ υ ν θ ή κ ε ς  κ α τ ά  48%. 

Ο ι  τ ο ̟ ι κ έ ς  
α ρ χ έ ς  δ ι σ τ ά ζ ο υ ν  σ υ χ ν ά  ν α

 ε ̟ ι β ά λ λ ο υ ν  έ λ ε γ χ ο  σ ε  
α υ τ έ ς  τ ι ς  ρ ά � ̟ ε ς  

α λ λ ά  κ α ι  χ ω ρ ί ς  έ λ ε γ χ ο  σ χ η � α τ ί ζ ο ν τ α ι  ο υ ρ έ ς  σ ε  
α υ τ έ ς  κ α ι  � ά λ ι σ τ α

 � ε γ α λ ύ τ ε ρ ε ς . Η  β ε λ τ ί ω σ η  ̟ ο υ  � ̟ ο ρ ε ί  ν α
 ε ̟ ι φ έ ρ ε ι  η  ε ι σ α γ ω γ ή  ε ν ό ς  τ έ τ ο ι ο υ  � έ τ ρ ο υ  � ̟ ο ρ ε ί  ν α

 � ε τ ρ ι ά σ ε ι  κ α ι  τ ι ς  
α ν α � ε ν ό � ε ν ε ς  

α ν τ ι δ ρ ά σ ε ι ς  τ ο υ  κ ο ι ν ο ύ  σ τ ο ν  έ λ ε γ χ ο  τ ω ν  ρ α � ̟ ώ ν  ̟ ο υ  ε ν ώ ν ο υ ν  
α υ τ ο κ ι ν η τ ό δ ρ ο � ο υ ς . Σ α ν  ε ̟ ό � ε ν ο  β ή � α

 θ α
 � ̟ ο ρ ο ύ σ ε  ν α

 
α ν α ̟ τ υ χ θ ε ί  � ι α

 σ τ ρ α τ η γ ι κ ή  ̟ ο υ  θ α
 � ι � ε ί τ α ι  τ η ν  σ υ � ̟ ε ρ ι φ ο ρ ά  τ ο υ  ι ε ρ α ρ χ ι κ ο ύ  ε λ έ γ χ ο υ  χ ω ρ ί ς  ό � ω ς  ν α

 ε ί ν α ι  α ̟ α ρ α ί τ η τ η  η  ̟ ρ ό β λ ε ψ η  τ η ς  ζ ή τ η σ η ς  κ α ι  τ ω ν  ̟ ο σ ο σ τ ώ ν  σ τ ρ ο φ ή ς  σ τ ι ς  ρ ά � ̟ ε ς  ε ξ ό δ ο υ . 

 
 





Motorway networks around the world have to deal with increasing 

problems because the movement of persons and goods is constantly growing. As 

a result congestion appears even on motorways with high capacity, which leads 

to delays, reduced safety, increase in fuel consumption and severe environmental 

pollution. The constant expansion of the existing infrastructure is not able to 

address the problem and its negative consequences; the reasons are economic, 

environmental or just lack of space. An alternative and feasible approach to the 

traffic problems is the rational and full exploitation and use of the existing 

infrastructure through the development and implementation of modern control 

and management methods. 

This study is concerned with the coordinated control of large-scale 

motorway networks through ramp metering. Ramp metering strategies aim to 

determine the vehicle flow, which should be allowed to enter the mainstream of a 

motorway from every on-ramp in a period of time.  

A nonlinear model-predictive hierarchical control approach is presented for 

coordinated ramp metering of motorway networks. The utilized hierarchical 

structure consists of three layers: the estimation/prediction layer, the 

optimization layer and the direct control layer. The previously design optimal 

control tool AMOC is incorporated in the second layer while the local feedback 

control strategy ALINEA is used in the third layer. 

For the modelling and simulation of the traffic process the macroscopic 

simulation program METANET is used. Simulation results are presented for the 

Amsterdam ring-road. ALINEA, a well-known and widely used local ramp 

metering control method based on powerful and robust automatic control 

methods, AMOC, an optimal control strategy employing a non-linear traffic flow 

model to calculate the optimal control trajectories by minimizing a suitable cost 

criterion, and the proposed Hierarchical Control approach are compared to the 

no-control case. Hierarchical Control outperforms uncoordinated local ramp 

metering with ALINEA and its efficiency converges to the one obtained by the 

optimal open-loop solution of AMOC. Hierarchical Control is also able to 
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produce good results even in situations where the available predictions are not 

accurate. It is shown that metering of all on-ramps, including motorway-to-

motorway intersections, leads to the optimal utilization of the available 

infrastructure. 

 
 



 

 

Motorways originally were conceived and designed with the aim of 

providing virtually unlimited mobility to the users. With the constant increase in 

cars new motorways had to be built or the old ones had to be expanded. However 

the cost, both economical and environmental, is very high and it is not allowing 

the motorways capacity to grow quick enough. The lack of available space is also 

a problem. Except that, it has become obvious that the existing infrastructure in 

most cases is actually more than sufficient and is able to accommodate the 

demand except for special occasions resulting in congestions. These exceptions 

can be either non-recurrent, like an accident that shrinks the motorway’s capacity, 

or recurrent like morning or evening peak hours. 

It has become apparent that it is possible to ameliorate the traffic conditions 

by implementing some kind of control on the motorways. Various solutions have 

been proposed like the use of speed limits, variable message signs (VMS), 

introduction of tolls, ramp metering or other approaches that integrate two or 

more methods. Ramp metering is probably the most efficient mean to this end. 

Several control strategies that implement ramp metering have been developed 

(see chapter 2) and manage to improve traffic conditions in exchange for short 

delays usually at the on-ramps. 

Ramp metering aims at improving the traffic conditions by appropriately 

regulating the inflow from the on-ramps to the motorway mainstream and is 

deemed as one of the most effective control measures for motorway network 

traffic. In Kotsialos and Papageorgiou (2005b) and Papageorgiou (2006) the 

reasons why ramp metering is effective in ameliorating traffic conditions is 

thoroughly analysed. In the following sections these reasons will be presented. 
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Let’s consider a traffic network (Figure 1-1). It is obvious that if a time 

interval of a day, for example, is taken, any vehicle that enters the network will 

also leave. In other words the demand over a certain time is equal with the exit 

flows as no vehicle disappears or appears out of nothing in the network. If a time 

interval T  is introduced with a discrete time index 1,2,...,k K=  and the total 

demand (independent of control actions) is represented as ( )d k , the exit flows as 

( )s k  and the total number of vehicles in the network at time k  with ( )N k  then 

the time spent in the network is represented by 

 ( ) ( )
1 1

1 0 0

(0)
K k k

s
k

T T N T d k T s k
κ κ

− −

= = =

 
= + − 

 
∑ ∑ ∑ . (1.1) 

The aim is to minimize the time spent in the network. Since the first two 

terms of the outer sum are independent of the control measures, minimization of 

sT  is equivalent of the maximization of 

 ( ) ( ) ( )
1 1

2 2

1 0 0

K k K

k k

S T s k T K k s k
κ

− −

= = =

= = −∑∑ ∑ . (1.2) 

This means that the time-weighted outflows have to be maximized in order 

to minimize the time spent in the network. The time-weighted outflows are 

maximized if the vehicles are able to leave the network as early as possible. It is 

clear that congestion is not helping and any control measure should aim to 

achieve the early exit of the vehicles. 

 
 

 

Figure 1-1: A general traffic network. 
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 1 . 3 . 1
 F i r s t A n s w e r

In Figure 1-2 two cases for an on-ramp are considered. In the first case no 

control measures are used, in the second case ramp metering is implemented. It is 

known that in case of congestion the motorway outflow is 5-10% lower than the 

motorway’s capacity. By applying a ramp metering strategy to maintain capacity 

flow on the mainstream a queue is formed on the on-ramp but nevertheless an 

amelioration of the total time spent, including the ramp waiting time, is achieved. 

The amelioration sT∆  (in %) is given by equation (1.3), where inq  is the upstream 

flow, d  the ramp demand, conq  the mainstream outflow in presence of congestion 

and capq  the motorway capacity. 

 100cap con
s

in con

q q
T

q d q

−
∆ =

+ −
 (1.3) 

For example, if the total demand exceeds the motorway capacity by 20% 

( 1.2in capq d q+ = ) and the capacity drop due to congestion is 5% ( 0.95con capq q= ) 

then from equation (1.3) 20%sT∆ = , an improvement of 20%. This is a good 

demonstration of the importance of ramp metering. 

 

Figure 1-2: Two cases of an on-ramp: (a) without ramp metering, (b) with 
ramp metering. The grey areas represent congestion zones. 
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1 . 3 . 2
 S e c o n d A n s w e r

In Figure 1-3 two cases for a motorway stretch are considered. The 

motorway stretch includes an on-ramp and an off-ramp. In the first case no 

control measures are used, in the second case ramp metering is implemented. An 

assumption is made that con capq q=  in order to concentrate on the effect of ramp 

metering in this case and clearly separate with the previous case. A portion of 

vehicles are exiting the mainstream at the off-ramp with a rate γ  ( 0 1γ< < ).  

Since the off-ramp is blocked by congestion in the first case the exit flow will be 

given by equation (1.4) while equation (1.5) holds for the second case where the 

off ramp is not blocked. 

 ( )
1

nc
caps q d

γ
γ

= −
−

 (1.4) 

 rm
ins qγ=  (1.5) 

 

Figure 1-3: Two cases of a motorway stretch: (a) without ramp metering, (b) 
with ramp metering. The grey areas represent congestion zones. 

When a congestion has been formed it is implied that ( )1 in capq d qγ− + > . 

This leads to 

 ( )
( ) ( )

1
1 1
cap rm nc

in cap in in cap

q d
q q d q q q d s s

γ
γ γ

γ γ

−
− > − ⇒ > ⇒ > − ⇒ >

− −
. 
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Hence, ramp metering increases the outflow, thus, decreasing the total time 

spent in the system. The amelioration in this case has been shown to be given by : 

 100sT γ∆ = . (1.6) 

This means that with an exit rate of 0.05γ =  the improvement is 5%sT∆ = . 

If more than one off-ramp is blocked by the congestion it is obvious that the 

amelioration from the introduction of ramp metering can be even higher. 1 . 3 . 3
 F u r t h e r i m p a c t s

If the results of both section 1.3.1 and 1.3.2 are examined, it is intelligible 

that the improvement of the traffic conditions can be even better. 

Other impacts of ramp metering can be the better utilisation of the reserve 

capacity on parallel arterials. The users of the road infrastructure choose their 

respective routes in a way that minimizes their individual travel times. 

Introduction of ramp metering may change the travel times of some routes and in 

response some drivers may change their routes to take advantage (or to avoid a 

disadvantage) of the new situation Figure 1-4. As their behaviour can be 

predicted, the introduction of ramp metering may be used to impose a desired 

distribution of the traffic flow in the overall network. 

 

 

 

Figure 1-4: Two cases of a motorway stretch: (a) without ramp metering, (b) 
with ramp metering. The grey areas represent congestion zones. 

Also, several studies have shown that introduction of ramp metering leads 

to an increase of traffic safety. The merging behaviour at intersections is safer and 

(a) 

(b) 
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because of less congestion fewer lane changes are performed and driver stress is 

less, which means reduced accidents. Furthermore the efficiency of the network 

increases leading to reduced pollutant emissions and to economic benefits due to 

smaller delays in the transportation of persons and various goods. 1 . 3 . 4
 W h e n n o t t o u s e R a m p M e t e r i n g

Ramp metering is able to improve traffic conditions when introduced in a 

traffic network but there are some cases were it is not able to help the current 

situation and may even have negative impact. 

A condition where ramp metering is not certain to improve traffic 

conditions is when a congestion forms due to a bottleneck usually caused by a 

lane drop or an incident. In such a case, if the congestion spills back in the 

network, to impose ramp metering on an on-ramp that is further upstream has no 

effect on the cause of the congestion and may even hold back vehicles that would 

have exited the motorway from an off-ramp before the bottleneck. 

A similar case is when congestion propagates upstream from an off-ramp 

that is not able to accommodate all the vehicles exiting the mainstream. In this 

case the metering of an upstream on-ramp, as in the previous case, may not be 

useful as it will hold back vehicles without having any effect on the congestion. 

 
 
 



 

 

Motorways around the world are not able to fulfil their original purpose of 

providing an efficient and reliable way of transportation of goods and persons 

because of congestion. The problem of congestion occurs when traffic demand is 

higher than the one that the infrastructure is able to cope with and can be 

recurrent or non-recurrent. Congestion results in delays, reduced safety, 

increased pollution and reduced utilization of the motorways’ capacity at the 

moment where it is most needed. 

The solution to the problem of congestion can not simply be the expansion 

of the existing infrastructure or the construction of new; economic cost, 

environmental implications and lack of space are some of the reasons. The 

constantly increasing number of vehicles is bound to bring any new or expanded 

motorway soon to its limits. 

Taken under consideration the fact that the consequence of congestion is the 

reduced capacity of the motorway, which means the infrastructure is not fully 

taken advantage of, it becomes obvious that there is the need to have a control 

method in order the whole capacity of a motorway. Ramp metering is the most 

efficient means to this end (Papageorgiou and Kotsialos 2002). 

This review aims at presenting the available ramp metering strategies, how 

they operate, how and where they are implemented. 

 

Ramp metering strategies can be classified in a number of ways. In Jin and 

Zhang (2001) the algorithms are categorized as isolated (local) or coordinated. 
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Local ramp metering methods decide the metering rate of a ramp based on the 

local conditions. Depending on the strategy, measurements of flow, density and 

occupancy - among others – upstream, downstream or on the ramp, are taken 

under consideration. The second category, coordinated strategies, is divided in 

three subcategories, cooperative, competitive and integral. Cooperative 

algorithms try to address the problem of congestion by computing the metering 

rate for each on-ramp based on local information and making further adjustments 

based on information coming from other ramps; competitive algorithms compute 

more than one metering rate for each ramp based on both local and global 

conditions and select the most restrictive one; integral algorithms aim at 

optimizing an objective function that is either explicitly or implicitly affecting the 

control action. 

From the control systems point of view, we have either fixed-time strategies 

or traffic responsive strategies. In the first case, metering rates are computed off-

line based mostly on historical data and are fixed for particular times-of-day; in 

the second case the rates are subject to constant change and are computed in real 

time based on the motorways’ current state. The strategies can either be local or 

coordinated. 

It is not the intention of this review to classify the available ramp metering 

strategies. Their classification is used merely for organizational reasons. 

 

Ramp metering strategies have been developed and used on various 

locations, mainly in North America and Europe, for many years. Other strategies 

proved to be efficient and others not. During the years most of the strategies have 

evolved as has the infrastructure of motorway networks and also ramp meters. 

The information about the ramp metering strategies that are presented next 

originates mostly from previous reviews (Bogenberger and May 1999; Jin and 

Zhang 2001; Papageorgiou and Kotsialos 2002; Kotsialos and Papageorgiou 2004a; 

Hadi 2005; Kotsialos et al. 2005;). 2 . 3 . 1
 F i x e d � T i m e S t r a t e g i e s

Fixed-time ramp metering strategies, as mentioned before, are simple static 

models that are computed off-line using only historical data. Fixed-time strategies 

are fixed to clock time. 
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Various approaches to derive a fixed-time ramp metering strategy have 

been suggested.  Most of the formulations proposed lead to linear-programming 

or quadratic-programming problems.  These problems can easily be solved via 

various computer programs available. 

The downside to fixed-time strategies is that their results are based on 

historical data. Historical data are valuable and can give a notion of what to 

expect but are not always accurate as demands can change within a time-of-day 

or vary from day to day. Demands also may change in the long term causing the 

optimized settings to ‘age’. Another weak point is that the drivers’ response to the 

strategy is difficult to foresee and can not be taken under consideration in 

advance. If the drivers behave differently then the strategy implemented will not 

be efficient. Incidents and other disturbances may render a fixed-time strategy 

useless because they are not taken into account. All that can cause either 

underutilization or overload to the motorway and stress the need for strategies 

that consider and react to real-time traffic conditions. 2 . 3 . 2
 R e a c t i v e S t r a t e g i e s2 . 3 . 2 . 1

 L o c a l S t r a t e g i e s
Demand – Capacity Strategy 

The Demand-Capacity (DC) strategy (Masher et al. 1975) uses mainstream 

measurements of flow and occupancy upstream of the on-ramp. The goal is to 

add as much ramp flow as necessary to the upstream flow to match the known 

downstream capacity, as long as the measured upstream occupancy is 

undercritical. In case the upstream occupancy becomes overcritical the ramp flow 

is reduced to a minimum flow, which is also the minimum flow allowed to avoid 

ramp closure. 

The strategy reads: 

 ( )
( ) ( )

( )min

1 , 1

, 1
cap in in cr

in cr

q q k o k o
r k

r o k o

− − − ≤
= 

− >
 (2.1) 

where ( )r k  is the allowed ramp flow at time k , ( )1inq k −  is the last measured 

upstream motorway flow, ( )1ino k −  is the last measured upstream motorway 

occupancy, capq  is the downstream motorway capacity, minr  is the minimum 

admissible ramp flow and cro  is the downstream critical occupancy. 
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It is clear from the formulation of the DC strategy that it is a feed-forward 

(Figure 2-1) disturbance-rejection scheme, which is generally known to be 

sensitive to various disturbances. 

 

 

Figure 2-1: Demand-Capacity (DC) strategy 

Occupancy Strategy 

The Occupancy (OCC) strategy (Masher et al. 1975) approximates the left-

hand side of the fundamental diagram (Figure 2-2) via a straight line. It uses 

measurements of the ramp’s upstream occupancy. The upstream flow is 

calculated as 
f in

in

v o
q

g

⋅
=  where fv  is the free speed and g  is known as the g-

factor. 

By replacing inq  in the DC strategy equation we get the OCC strategy: 

 ( )
( ) ( )

( )
1 2

min

1 , 1

, 1
in in cr

in cr

K K o k o k o
r k

r o k o

− ⋅ − − ≤
= 

− >
 (2.2) 

where 1 capK q= , 2
fv

K
g

=  and ( )r k  is between minr  and maxr , where maxr  is the 

ramp’s estimated flow capacity. 

It is clear that the OCC strategy is, like the DC strategy, a feed-forward 

scheme based on occupancy. Because of the linearity assumption of the 

fundamental diagram and the estimated values of fv  and g , this strategy is even 

more inaccurate than the DC strategy. 
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Figure 2-2: Fundamental diagram. 

ALINEA 

ALINEA (Papageorgiou et al. 1991) stands for Asservissement Linéaire 

d’Entrée Auotroutière and is a local feedback ramp metering strategy (Figure 2-3) 

based on powerful and robust automatic control methods. The control law is 

 ( ) ( ) ( )ˆ1 1R outr k r k K o o k= − + − −    (2.3) 

where ( )r k  is the metering rate at time k , 0RK >  is a regulator parameter, ô  is 

the set (desired) value for the downstream occupancy (typically ˆ cro o= ) and outo  

is the measured downstream occupancy. 

ALINEA has been implemented at various sites with very good results. 

Comparative field evaluations demonstrated the clear superiority of ALINEA 

compared to the DC (Demand – Capacity) and OCC (Occupancy) strategies 

(Papageorgiou et al. 1997). 

 

 

Figure 2-3: ALINEA strategy 
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Apart from its basic form, there have been a number of modifications and 

extensions of ALINEA suggested by Smaragdis and Papageorgiou (2003). These 

include Flow-Based ALINEA (FL-ALINEA), Upstream-Occupancy Based 

ALINEA (UP-ALINEA), Upstream-Flow Based ALINEA (UF-ALINEA) and 

Ramp-Queue Control (X-ALINEA/Q), where X can be any of the aforementioned 

ALINEAs. Another development is Adaptive ALINEA (AD-ALINEA) presented 

by Smaragdis et al. (2004). 

Fuzzy Logic Algorithm 

Fuzzy logic ramp metering control has been implemented in both Seattle 

and Zoetermeer with good results. According to Bogenberger and May (1999) in 

the case of Seattle it showed improved results in comparison to the existing 

bottleneck algorithm that lead to the conversion of the existing control strategy 

(bottleneck algorithm) to fuzzy logic control. 

The algorithm as it is implemented in Seattle uses 7 inputs, 5 measurements 

of occupancy and 2 of speed at locations on the ramp, at the merging point and 

also upstream and downstream of it. Then the classic fuzzy logic process is 

realized, that means the measured values undergo fuzzification, are run through 

a rule base and after defuzzification a metering rate is produced. 2 . 3 . 2 . 2
 C o o r d i n a t e d S t r a t e g i e s

METALINE 

METALINE is a multivariable regulator control strategy and may be viewed 

as a generalization and extension to ALINEA. It is developed on the basis of 

linear quadratic (LQ) optimization theory (Papageorgiou et al. 1990b). Although a 

motorway traffic system is a nonlinear system, LQ control can be applied after 

linearization around a steady-state of the nonlinear system. 

METALINE has been implemented and tested either by simulation or at the 

field at various sites such as the Boulevard Peripherique in Paris, in Milwaukee. 

The results showed METALINE to be successful in improving traffic conditions. 

Two alternative types of METALINE have been considered, a classical LQ-

control law (equation (2.4)) and a linear quadratic integral (LQI) control law 

(equation (2.5)), with the latter being the one recommended due to easier 

implementation (Papageorgiou et al. 1990b). 

 ( ) ( ) ( ) ( )11 1k k k k= − − − −  r r K o o  (2.4) 
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 ( ) ( ) ( ) ( ) ( )1 2
ˆ1 1k k k k k = − − − − + −    r r K o o K O O  (2.5) 

where r  is the vector of controllable on-ramp volumes, o  is the vector of the 

measured occupancies on the motorway stretch, O  is a subset of o  that includes 

occupancy locations for which pre-specified set values Ô  may be given and 1K , 

2K  are the constant gain matrices of the regulators and must be suitably 

designed. 

METALINE applies LQ and LQI control on a nonlinear system that 

undergoes linearization, as mentioned before. This means that the gain matrices 

may be optimal for the approximated linear system but will be suboptimal for the 

nonlinear system. The results of METALINE’s application depend on how well 

the nonlinear system is approximated by the linear system. The gain matrices 

require careful tuning that is specific to the location. An example of a study for 

the application of METALINE at a stretch on the A10-West in Amsterdam can be 

found in Diakaki and Papageorgiou (1994). 

Bottleneck Algorithm 

The bottleneck algorithm was developed by the Washington Department of 

Transportation (WDOT) and is implemented at the Seattle area. The results of the 

use of the algorithm showed a decrease in travel time and accident rates without 

causing big delays at each metered ramp. 

The algorithm is of competitive manner. It uses a two-level structure, the 

local and the global level. At the local level, metering rates are calculated so that 

the measured upstream demand plus the ramp flow equals the downstream 

capacity, in other words the DC strategy is used. At the global level, when a 

bottleneck is identified, a volume reduction for the area is calculated based on 

flow conservation and is distributed to upstream ramps that are in the bottleneck 

area of influence according to predetermined weights. The most restrictive of the 

two calculated rates is then chosen. 

After the ramp metering rate is specified, further adjustments are made for 

high occupancy vehicles (HOV) and also to avoid queue spillback on the arterial 

street network. 

Minnesota’s Zone & Stratified Zone Metering Algorithm 

The zone algorithm was implemented at the Twin Cities area in Minnesota. 

Periodical evaluations of the metering system have shown improvements in 

traffic conditions. Nevertheless, after a study ordered by the Minessota’s 
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Department of Transportation (Mn/DOT) in 2000, it was decided to develop a 

new algorithm that is now used and is known as stratified zone metering. 

The original zone algorithm segments a motorway into zones with variable 

lengths. Each zone has usually an upstream free-flow area and ends downstream 

in a bottleneck area. The goal of the algorithm is to have the traffic volume that 

enters the zone to be no more than the volume that can leave the zone. The 

metering rate for each ramp is selected from six distinct predefined rates varying 

from no metering rate to a full cycle length. To account for localized congestion a 

second metering rate is calculated based on local detector data. The most 

restrictive rate is then chosen. 

One of the downsides of the zone algorithm is that it does not take under 

consideration on-ramp queues resulting in long waiting times and spillback to 

local streets. The new, modified, algorithm is accounting for long queues and 

delays and even tries to share the delays across corridor ramps. 

Helper Ramp Algorithm 

The helper ramp algorithm was introduced in 1981 in the Denver area. In 

1988 and 1999 evaluations of the strategy were conducted and the results showed 

that centralized control was effective only in the case when speeds were less than 

90 km/h. During the years of its implementation there have been minor 

adjustments to the strategy. 

The algorithm consists of a local traffic responsive algorithm combined with 

a centralized algorithm that is able to override local control in the case that 

specific congestion thresholds are reached. The controlled ramps are divided into 

groups, with each group having 1 to 7 ramps. 

The local strategy selects for each ramp one of 6 available predefined 

metering rates based on measurements of the upstream occupancy. In case of 

excessive queue build-up on the ramps, it is detected and the metering rate is 

changed one level per time interval to clear them. A smoothing function makes 

sure there are no wide swings in metering rates. 

The centralized strategy monitors each ramp. When a ramp’s metering rate 

is at the most restricting level or the queue on it exceeds a certain threshold, local 

control is overridden. If the ramps state does not change for three consecutive 

time intervals the metering rate of the next upstream ramp is then reduced by one 

level. As long as the problem exists this process is repeated and moves upstream 

one ramp each time interval until all ramps in the group are overridden. In that 

case if the problem still consists the process is continued in the next upstream 

group. The coordinated control state stops and is changed back to the local 

control strategy when all ramps return to a normal state. 
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Linked Ramp Algorithm 

The linked ramp algorithm operates in the area of San Diego since 1968. 

Until 1994 the San Diego Ramp Metering System (SDRMS) was partially 

coordinated but that changed and the meters operate as local traffic responsive 

control. 

The base of the SDRMS is the demand-capacity theory. Historical ramp flow 

and origin-destination information is used to assign the capacity of each roadway 

segment to the mainline and to all the influencing upstream ramps. A target flow 

rate is then determined for each segment based on historical data and the 

minimum ramp metering rates. A 16-level metering rate system with linearly 

distributed rates between the minimum and maximum values is used. The rate to 

be implemented is decided locally according to the upstream measured flow. If 

the measured flow exceeds the target flow rate then the lowest metering rate is 

used. A second rate is calculated based on occupancy measurements to 

compensate for the case of low flow due to congestion. The most restricting rate is 

used. 

When a ramp’s metering rate is one of its lowest three possible rates the 

next upstream ramp is signalled to begin metering at the same rate or less. The 

situation is constantly re-evaluated and it is possible to move to next ramp if 

necessary. It is even possible to move on to the next area of influence. 

Sperry Algorithm 

The Sperry ramp metering algorithm is implemented in northern Virginia 

and was developed by the Virginia Department of Transportation. The first ramp 

meters were installed in 1985. Since then no expansion of the system has taken 

place. 

The algorithm has two modes, non-restrictive metering and restrictive 

metering. The latter case, restrictive metering, is the default state and is 

implemented when traffic conditions require it. It uses a demand-capacity 

equation, which tries to keep centralized demand below capacity nevertheless 

trying to have fair-play between the ramps. The motorway is divided in control 

sections with several on and off ramps and up to ten meters. The algorithm starts 

at the furthest downstream ramp calculating its rate and moving upstream, one 

ramp at a time. Non-restrictive metering is implemented when spillback of the 

ramp queue to the arterial network occurs. The metering rate is then increased 

until the spillback is contained. 
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Compass Algorithm 

The compass algorithm is implemented in Toronto since 1975. The 

algorithm can be operated both manually and in automatic mode. 

In the manual mode the metering rate can be selected from 17 different rates 

for each ramp. The automatic mode consists of both a local and a global strategy. 

The strategy’s main characteristics are the control section, control period, control 

algorithm and queue override. A control section consists of motorway segments 

that have an influence of a downstream point. A control period defines when the 

system should activate and deactivate the automatic metering control. The control 

algorithm can either be local or global. The local strategy chooses the metering 

rate from a look-up table based on local mainline occupancy, downstream 

mainline occupancy, upstream mainline volume and other predefined 

parameters. The global strategy computes the metering rates off-line. The most 

restrictive of the two rates is selected. In the case of queue spillback the metering 

rates are overridden and are increased by one level until occupancy falls under a 

predefined threshold level. 

System Wide Adaptive Ramp Metering 

The System Wide Adaptive Ramp Metering (SWARM) algorithm is in 

development since 1996. It also uses a 2 level structure, of local and global control. 

The main difference to other algorithms is that the metering rates are decided 

based on predictions made with use of Kalman filtering on detector data. 

SWARM1 is the algorithm responsible for the forecasting of a density trend 

at each detector location for the next time interval. To achieve this, a process of 

linear regression and Kalman filtering is used on data collected in previous time 

intervals. The predicted density is then compared to the saturation density to 

calculate an excess density that is used to prevent congestion. After a few 

calculations the algorithm returns either volume reduction or volume excess 

values for each detector location. These values are then distributed to upstream 

ramps within a predefined area of influence according to weighting factors and a 

metering rate is produced. 

SWARM2 is a local algorithm, which assigns metering rates to each ramp 

based on each ramp’s upstream density. 

The most restricting rate of the two is selected for implementation as long as 

it is between predefined minimum and maximum values. 
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2 . 3 . 2 . 3
 N o n l i n e a r O p t i m a l R a m p M e t e r i n g S t r a t e g i e s

Advanced Motorway Optimal Control 

Advanced Motorway Optimal Control (AMOC) formulates the coordinated 

ramp metering problem as a discrete-time dynamic optimal control problem with 

constrained control variables which can be solved numerically over a given 

optimization horizon pK . Motorway traffic flow is considered to be the process 

controlled via the various ramp meters installed at on-ramps. 

AMOC is described in great detail in chapter 4. 2 . 3 . 2 . 4
 O t h e r S t r a t e g i e s

Other ramp metering algorithms already in use or under development 

include dynamic metering control algorithm, linear programming algorithms, 

BALL Aerospace/FHWA corridor control algorithm, advanced real-time 

metering system (ARMS), coordinated and/or local metering using artificial 

neural networks (ANN), metering model of non-recurrent congestion and others. 

 
 
 





 

 

The study of natural phenomena, like traffic flow, is made easier by the 

existence of mathematical models that describe them. There can exist more than 

one model that describes a phenomenon. Each one can be more or less accurate 

and detailed and covers different needs. 

The mathematical models for traffic flow can most of the times be classified 

in three categories based on their level of accuracy; microscopic models, 

mesoscopic models and macroscopic models. Microscopic traffic flow models 

keep track of every individual car movement in the network, which accounts for 

great complexity. Mesoscopic models observe groups of vehicles with similar 

characteristics. Macroscopic traffic flow models have a different approach. They 

consider traffic flow as a fluid that can be described with variables like flow, 

density and speed. 

Modelling of traffic flow on motorway networks is a useful tool for several 

traffic engineering tasks. It can be used for the development and evaluation of 

traffic control strategies, for the evaluation of the impact of new constructions and 

the comparison of alternatives, for the evaluation of the impact of capacity 

reducing events (e.g. road works, accidents) or increased demand, for the 

prediction and surveillance of the traffic state in complex networks. 

When a model is chosen for the simulation of a phenomenon, there are 

various aspects to consider. Speed and accuracy are usually competitive, available 

data and needed results are other factors. Microscopic and mesoscopic models are 

more detailed but therefore need more computational power; macroscopic 

models are simpler and much faster to compute. Macroscopic models are 

probably better suited for the simulation of traffic flow on motorway networks. 

Their lack of detail has not a negative effect on results and they are much faster, 

which is more important in case of real time applications. 
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The first macroscopic modelling theory for traffic flow on a highway stretch 

is usually called the LW model because of a paper by Lighthill and Whitham 

(1955) that laid the foundations of the kinematic wave theory. A more accurate 

second-order model was proposed by Payne (1971) and was later extended by 

Papageorgiou et al. (1990a) to improve some aspects of the model particular in 

merging areas such as on-ramps or lane-drops. 

The importance of traffic flow modelling and the relationship with traffic 

control is studied by Kotsialos and Papageorgiou (2001b). In the present research 

the macroscopic model METANET (Messmer and Papageorgiou 1990; DSSL and 

Messmer 2000) is used for the simulation of traffic flow on motorway networks 

and the development of control strategies. 

 

The METANET model for motorway network simulation is based on a 

purely macroscopic modelling approach. The motorway network is described as a 

graph with the use of network links and network nodes. The network links 

represent motorway stretches and the nodes are placed at places where a change 

in the geometry occurs, for example at junctions or lane drops. 3 . 2 . 1
 M o d e l l i n g o f n e t w o r k l i n k s

The simulation of traffic behaviour in the network links uses an approach 

that is based on Payne’s (1971) model with the extensions introduced later by 

Papageorgiou et al. (1990a). The model's variables are the traffic density ρ  

(veh/km/lane), the mean speed v  (km/h), and the traffic volume (or flow) q  

(veh/h). 

The time and space arguments are discretized. The discrete time step is 

denoted by T . Motorway links are denoted by m and are divided into mN  

segments of equal length mL . Each segment i  of link m  at discrete time t kT= , 

0,...,k K= , where K  is the time horizon, is then macroscopically characterized 

via the following variables: the traffic density ( ),m i kρ  (veh/lane/km) is the 

number of vehicles in segment i  of link m  at time t kT=  divided by mL  and by 

the number of lanes mΛ ; the mean speed ( ),m i kυ  (km/h) is the mean speed of the 

vehicles included in segment i  of link m  at time t kT= ; and the traffic volume or 
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flow ( ),m iq k  (veh/h) is the number of vehicles leaving segment i  of link m  

during the time period ( ), 1kT k T+   , divided by T . 

There are 4 types of network links: motorway links, on-ramp links, off-ramp 

links and store and forward links. 

As stated before, each link m has to be divided into mN  segments of equal 

length mL . The following relationship has to hold true: 

 ,m f mL v T> ⋅ , (3.1) 

where ,f mv  is the free speed and T  the simulation time step. This relation ensures 

that a vehicle travelling with free speed through the segment will not pass it 

during the simulation time step. Typical segment length is between 300 and 800 

meters for a simulation time step of 10 seconds and free speed around 100 km/h. 3 . 2 . 1 . 1
 M o t o r w a y l i n k s

For every segment i  the following equations are used: 

 

Continuity Equation: 

 ( ) ( ) ( ) ( ), , , 1 ,1m i m i m i m i
m m

T
k k q k q k

L
ρ ρ

λ − + = + − ⋅
, (3.2) 

 ( ) ( ) ( ), , ,m i m i m i mq k k v kρ λ= ⋅ ⋅ . (3.3) 

Speed Equation: 

 

( ) ( ) ( )( ) ( )

( ) ( ) ( )
( ) ( )

( )

, , , ,

, 1 ,

, , 1 ,

,

1m i m i m i m i

m i m i

m i m i m i
m m m i

T
v k v k V k v k

vT k kT
v k v k v k

L L k

ρ
τ

ρ ρ

τ ρ κ
+

−

 + = + − 

 −  + ⋅ − −   + 
.

 

  (3.4) 
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Fundamental Diagram (Figure 3-1): 

 ( )( ) ( ),
, ,

,

1
exp

ma

m i
m i f m

m cr m

k
V k v

a

ρ
ρ

ρ

  
 = ⋅ −      

. (3.5) 

τ , ν  and κ are parameters that have the same value for all network links. 

mλ  represents the number of lanes of link m . The values for free flow speed ,f mv , 

for the critical density ,cr mρ  and for the exponent ma  are specific for the 

fundamental diagram of each link m . While free speed and critical density are 

required as a user input, the parameter ma  is internally computed using one of 

the following equations depending on the data available: 
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, (3.6) 
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, (3.7) 

 60, ,

, ,
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f m m cr m

q v

v a eρ

    
 = −           

. (3.8) 

When two or more links merge at a network node and the leaving links 

have less or equal lanes than the incoming, the merging phenomenon occurs and 

has to be considered. In this case the following term is added to equation (3.4): 

 
( ) ( )

( )
,

,

m l

m m m l

q k v kT

L k
µδ

λ ρ κ
−

+
 (3.9) 

where δ  is a global parameter. 

In case the leaving lanes are more than the incoming, dedicated lanes exist. 

If the inflow is below the capacity of the leaving link or links, equation (3.9) is not 

applied else the exceeding flow is used as qµ . 
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Lane drops are other phenomena that have to be considered. In this case the 

speed is reduced and has to be accounted for in equation (3.4). The following 

term, where λ∆  is the number of lanes being dropped, is added to equation (3.4): 

 
( )

( )2,
,

,

m

m

m l
m l

m m cr m

kT
v k

L

λ ρφ
λ ρ

∆ ⋅
− . (3.10) 

Incidents have also to be considered. To define an incident, the time, 

duration and location have to be specified as well as the severity (capacity 

reduction). Equation (3.3) is modified as follows 

 ( ) ,1acc cap m mq u q λ= − , (3.11) 

 ( ) ( ) ( ){ }, , ,min ,m i m i m i m accq k k v k qρ λ= , (3.12) 

with u  representing the severity of the incident, 0u =  means in fact no blocking 

and 1u =  means complete blocking. 

 

 

Figure 3-1: Fundamental diagram. 3 . 2 . 1 . 2
 S t o r e a n d F o r w a r d l i n k s

Store and forward links (SAF) do not describe traffic flow as accurate as 

motorway links. The traffic that enters a SAF link is added at the end of a link 

queue safw  after a time delay ,lag safT  
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 ( ) ( ) ( ) ( )inflow,1saf saf saf safw k w k T q k q k + = + −  . (3.13) 

The outflow safq  of a SAF link is modelled with the following equations 

 
max,

inflow,
max, ,min ,

saf saf saf

saf saf
saf poss saf

q r q

q w
q q

T

=

+ 
=  

 

 (3.14) 

where inflow,safq  is the delayed by time ,lag safT  flow that enters the SAF link, safw  is 

the length of the existing waiting queue, max,safq  is the current maximum outflow 

from the link, ,poss safq  is the current outflow capacity of the link and [ ]0,1safr ∈  is 

the metering rate. 

The outflow capacity ,poss safq  is defined according to the downstream 

density µρ  

 max, ,
,

max, ,

,

,
saf saf cr

poss saf
saf saf cr

Q
q

Q p
µ µ

µ µ

λ ρ ρ
λ ρ ρ

<
=  ≥

 (3.15) 

with max,safQ  being the geometrical capacity and 0 1p≤ ≤  a factor that reduces 

the flow allowed to leave the SAF and is calculated by: 

 ,

max ,

1 cr

cr

p µ µ

µ

ρ ρ

ρ ρ

−
= −

−
 (3.16) 

A traffic density safρ  is calculated for the link, which may affect the traffic 

volume entering the SAF from the upstream node. This density is calculated as 

follows: 

 
( ),

max

saf d saf

saf
saf saf

w n L

l
ρ ρ

λ

+
=  (3.17) 

where maxρ  is a global parameter representing the maximum permissible traffic 

density, ,d safn  is the number of vehicles that have entered the SAF but haven’t 

reached the queue yet due to the internal travel time, safl  is the length of the link, 
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safλ  is the number of lanes and L  is the mean vehicle length that its default value 

is set to 0.006 km. 3 . 2 . 1 . 3
 O r i g i n l i n k s

Origin links are considered the furthest upstream links of a motorway and 

the on-ramps. They act as boundary conditions for the model and are modelled 

with a simple queuing model (Figure 3-2) in conjunction with inflow limitation. 

The queue is built as follows: 

 ( ) ( ) ( ) ( )1o o o ow k w k T d k q k+ = + ⋅ −    (3.18) 

with 

 
max,

max, ,min ,

o o o

o
o o poss o

q r q

w
q d q

T

= ⋅

 = + 
 

 (3.19) 

where od  is the demand flow at origin o , ow  is the length of the existing waiting 

queue, max,oq  is the current maximum outflow from the origin into the network, 

,poss oq  is the current outflow capacity of the origin link and [ ]0,1or ∈  is the 

metering rate. 

The outflow capacity ,poss oq  is defined according to the downstream density 

µρ  

 max, ,
,

max, ,

,

,
o o cr

poss o
o o cr

Q
q

Q p
µ µ

µ µ

λ ρ ρ
λ ρ ρ
⋅ <

=  ⋅ ⋅ ≥
 (3.20) 

with max,oQ  being the geometrical capacity and 0 1p≤ ≤  a factor that reduces the 

flow allowed to leave the origin link and is calculated in the same way as for SAF 

links: 

 ,

max ,

1 cr

cr

p µ µ

µ

ρ ρ

ρ ρ

−
= −

−
. (3.21) 
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Figure 3-2: The origin-link queue model. 

A similar approach applies to motorway-to-motorway (mtm) interchanges. 

The evolution of the origin queue ow  is described by an additional state equation 

(conservation of vehicles). Due to the complex nonlinear and dynamic nature of 

the macroscopic model the critical density of a simulated motorway is not fully 

determined by the considered fundamental diagram. Thus the motorway flow 

,1qµ  in merge segments is maximized if the corresponding density ,1µρ  takes 

values around a factual density ,f cr µρ − , which is determined via simulations, and 

not the critical density ,cr µρ  provided by the fundamental diagram of that link. 3 . 2 . 1 . 4
 D e s t i n a t i o n l i n k s

Destination links are considered the furthest downstream links of a 

motorway and the off-ramps. These accept the traffic volume of the network and 

forward it to the environment. As is the case with origin links, destination links 

act as boundary conditions to the model. It is assumed that the environment has 

infinite capacity. Nevertheless the outflow of the network is limited by the ability 

of the upstream motorway link. 3 . 2 . 2
 M o d e l l i n g o f n e t w o r k n o d e s3 . 2 . 2 . 1

 F l o w D i s t r i b u t i o n
In general, traffic enters a node n  through a number of input links and is 

distributed to a number of output links. The incoming flow is merged in the node 

and then distributed to the leaving links as expressed by equations (3.22) and 

(3.23) respectively. 

 ( ) ( ),

n

n N
I

Q k q k
µµ

µ∈

= ∑  (3.22) 
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 ( ) ( ),0
m

m n n nq k Q k m Oβ= ∀ ∈ . (3.23) 

( )nQ k  is the total traffic volume entering node n  at period k . The turning 

rates m
nβ  specify the portion of ( )nQ k  that leaves the node through link m , nI  is 

the set of links entering node n  and nO  is the set of links leaving. 3 . 2 . 2 . 2
 U p s t r e a m I n f l u e n c e o f D e n s i t y

In each segment, the dynamic evolution of speed is influenced by the 

density of the next downstream segment as is obvious from equation (3.4). In case 

the segment is not the last in the link, the downstream density can easily be 

obtained. But in the case of the last segment ml  in a link m  of ml  segments, a 

density , 1mm lρ +  has to be calculated. 

In the case of only one leaving link from the node the value of the 

downstream density is the value of the density of the adjacent downstream 

segment. But in the case of two or more leaving links this value has to be 

calculated by considering the density value of the adjacent downstream segment 

of all leaving links. This is done by taking an appropriate weighted average of 

these values: 
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O
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µ
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ρ

ρ
∈

+

∈

= ∀ ∈
∑

∑
 (3.24) 

where ,1µρ  is the density of the first segment of a leaving link µ . By use of this 

equation a quadratic weighting of the leaving links densities is performed. This 

way the fact that heavily loaded stretches contribute more than proportionally to 

spillback is taken into account. A congestion of one of the leaving links is often 

sufficient to produce spillback into the input link, as is usually observed in real 

world. 3 . 2 . 2 . 3
 D o w n s t r e a m P r o p a g a t i o n o f S p e e d

In each segment, the dynamic evolution of speed is also influenced by the 

mean speed of the upstream segment as is stated by the speed equation (3.4). 

Again, in case of a segment not being the first in a link the upstream mean speed 
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is easily obtained from the adjacent upstream segment. But in case of the first 

segment in a link m  a speed ,0mv  has to be determined. 

In case of only one input link at a node this value is easily obtained from the 

speed of last segment of the input link. But in case of several input links the value 

of the speed has to be calculated by considering the speed in all incoming links. 

This is done by taking the mean over the speeds vµ  at the end of the incoming 

links µ  weighted by the according incoming flow: 

 ,0
n

n

I
m n

I

v Q

v m O
Q

µ µ
µ

µ
µ

∈

∈

⋅

= ∀ ∈
∑

∑
. (3.25) 

3 . 2 . 3
 P e r f o r m a n c e c r i t e r i a

To assess the performance of traffic control strategies and compare them 

with each other there is the need of introducing some performance criteria. There 

are various such criteria. The most important criteria are described below. The 

macroscopic simulator METANET is able to compute these criteria during 

simulation and present them together with the rest of the results. 3 . 2 . 3 . 1
 T o t a l T r a v e l T i m e

Total travel time (TTT) Gτ  (veh*h) is comprised of the sum of travel time of 

vehicles in the normal links ,G Nτ  and in the SAF links ,G SAFτ . It is calculated as 

follows: 

 ( ), , ,G G N G SAF m m mi d saf
k m i k saf

T L k T nτ τ τ λ ρ= + = +∑∑ ∑ ∑∑ . (3.26) 

where ,d safn  represents the number of vehicles that have entered the SAF link but 

have not exited yet. 3 . 2 . 3 . 2
 T o t a l W a i t i n g T i m e a t n e t w o r k o r i g i n s

The Total Waiting Time (TWTO) ,W Oτ  (veh*h) criterion represents the 

waiting time at all network origins over the simulation horizon. It is calculated by 
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 ( ),W O o
k o

T w kτ = ∑∑  (3.27) 

with O being the total number of network origins. 

The waiting time at the origins is the result of existing queues. The queue 

may be created by congestion spillback from the downstream part of the network 

or due to excessive demand or because of metering control measures. 3 . 2 . 3 . 3
 T o t a l W a i t i n g T i m e a t S A F l i n k s

The Total Waiting Time at SAF links (TWTSAF) ,W SAFτ  (veh*h) criterion 

represents the waiting times at all SAF links in the network over the simulation 

horizon and is calculated by 

 ( ),W SAF saf
k saf

T w kτ = ∑∑ . (3.28) 

As is the case with origins, the waiting time at SAF links is caused by 

queues created for similar reasons as for origin links. 3 . 2 . 3 . 4
 T o t a l T i m e S p e n t

The Total Time Spent (TTS) Sτ  (veh*h) in the network is calculated as the 

sum of TTT, TWTO and TWTSAF: 

 , ,S G W O W SAFτ τ τ τ= + + . (3.29) 3 . 2 . 3 . 5
 T o t a l D i s t a n c e T r a v e l l e d

The Total Distance Travelled (TDT) GL  (veh*km) is the distanced travelled 

by all vehicles during the simulation horizon and is calculated as the sum of the 

distance travelled in the normal links and in the SAF links: 

 ( ) ( ), ,G G N G SAF mi m saf saf
k m i k saf

L L L T q k L T q k L= + = +∑ ∑∑ ∑ ∑  (3.30) 

where safq  is the flow entering the SAF link. 
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3 . 2 . 4
 

T o t a l A m o u n t o f F u e l C o n s u m e d
The Total Amount of Fuel Consumed (TFC) GV  (veh*l) criterion represents 

the amount of fuel that is consumed by the vehicles travelling in the network. It is 

calculated as the sum of the consumption in normal links, SAF links and the 

origin links. 

 , , ,G G N G O G SAFV V V V= + +  (3.31) 

with 
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 ( ), 100G SAF saf saf saf
k saf

T
V b q k L c w= ⋅ ⋅ + ⋅∑ ∑  (3.34) 

where ov  is a virtual speed value calculated as ( ) ( )o
o

queue o

q k
v k

ρ λ
=  where queueρ  is 

considered fixed at 100 veh/km. The coefficients a , b , c  have the following 

meaning: 

 

Consumption term units 

a  Speed-dependent per mileage l/km/veh*(km/h)-2*100 

b  Speed-independent per mileage l/km/veh*100 

c  per time (e.g. when queuing) l/h/veh*100 

 

In the macroscopic simulator METANET the values used for a , b and c  

respectively are 0.0016, 4.49 and 122. 
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METANET is a program for motorway network simulation based on a 

purely macroscopic modelling approach. This leads to relatively low 

computational effort, which is independent of the load (number of vehicles) in the 

simulated network and allows also for a real-time use of the model. The overall 

modelling approach allows for simulation of all kinds of traffic conditions (free, 

dense, and congested) and of capacity-reducing events (incidents) with prescribed 

characteristics (location, intensity, and duration). 

METANET may be applied to existing or hypothetical, multi-origin, multi-

destination, multi-route motorway networks with arbitrary topology and 

geometric characteristics including bifurcations, junctions, on-ramps and off-

ramps. By use of a special modelling option (store-and-forward links), METANET 

provides also the possibility to consider non-motorway links in a simplified way. 

METANET considers the application of traffic control measures (some of 

them were covered in the previous sections), such as collective and/or individual 

route guidance as well as ramp metering and motorway-to-motorway control, at 

arbitrary network locations. Several options are offered for describing or 

prescribing the average route choice behaviour of drivers groups with particular 

destinations. Route guidance and dynamic traffic assignment considerations in 

METANET are based on the notion of splitting rates at bifurcation nodes rather 

than on path assignment. Among other advantages, this approach enables 

consideration of route guidance or traffic assignment for a part of the network 

(rather than the whole network) if so desired by the user. 

Simulation results are provided in terms of macroscopic traffic variables 

such as traffic density, traffic volume, and mean speed at all network locations as 

well as in terms of travel times on selected routes. This is done on a configurable 

output time interval that is chosen usually significantly longer than the 

simulation time step (typically 5 to 20 s). Visualisation of results is provided both 

by time trajectories of selected variables and by graphical representation of the 

whole network. Global evaluation indexes such as total travel time, total travelled 

distance, total fuel consumption, total waiting time at network origins, total 

disbenefit of routed drivers, etc. are also calculated. 

 
 
 





 

 

In this chapter, an approach to the coordinated ramp metering problem is 

presented. The optimal control theory and the corresponding numerical solution 

algorithms are used. An Advanced Motorway Optimal Control (AMOC) 

algorithm has been developed (Kotsialos et al. 2002) with satisfactory results 

(Kotsialos and Papageorgiou 2004b; Kotsialos and Papageorgiou 2004c). The 

AMOC strategy has been cast into a hierarchical control structure and a rolling 

horizon scheme is used further enhancing its efficiency (Kotsialos 2004; Kotsialos 

and Papageorgiou 2005a, Kotsialos et al. 2005). 

 

AMOC formulates the coordinated ramp metering problem as a discrete-

time dynamic optimal control problem with constrained control variables which 

can be solved numerically over a given optimization horizon pK . Motorway 

traffic flow is considered to be the process controlled via the various ramp meters 

positioned at on-ramps. AMOC employs the same equations as METANET to 

model the traffic flow and uses a well known feasible-direction non-linear 

optimization algorithm (Papageorgiou and Marinaki 1995) for the numerical 

solution of the problem. 

In general a process is described by its state vector x , control variables 

u and the uncontrollable external disturbances d . In this case, the state vector x  

(equation (4.1)) is comprised of the densities ,m iρ  and the mean speeds ,m iv  of 

every segment i  of every link m  and the queues ow  of every origin o . The 
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control vector u  consists of the ramp metering rates or  of every on-ramp o  under 

control. The disturbance vector d  consists of the demands od  at every origin of 

the network and all the turning rates m
nβ  at the networks bifurcations. The 

disturbance trajectories are not controllable but are presumed known or at least 

predictable. The prediction can either be based on historical data or on real-time 

estimations (Wang et al. 2003; Wang et al. 2006). 

 ( ) ( ) ( ) ( ) ( ) 01 , , 0k k k k+ = =  x f x u d x x  (4.1) 

The formulation of a dynamic problem requires a suitable cost criterion. The 

cost criterion can be any of the criteria presented in section 3.2.3. Minimization of 

a different cost criterion leads to a different optimal control trajectory. In the case 

of AMOC the goal is to eliminate congestion on the motorway but without having 

major queue build up on the on-ramps. The most relevant criterion thus is the 

TTS (Total Time Spent) (equation (3.29)). In Papageorgiou and Kotsialos (2002) it 

has been shown that minimization of the TTS is equivalent to the maximization of 

the time-weighted total network outflow. The final form of the cost criterion is 

 

( ) ( ) ( ) ( ) ( )
2 2

, 1 1 1m i m m o f o o w o
k m i o

J T k L w k a r k r k a w kρ ψ
  = Λ + + − − +         

∑ ∑∑ ∑
  (4.2) 

with 

 ( ) ( ){ },maxmax 0,o o ow k w k wψ = −    (4.3) 

where fa , wa  are weighting factors. The first two terms of equation (4.2) 

correspond to the TTS, the term with weight fa  is included in the cost criterion to 

suppress high-frequency oscillations of the optimal control trajectories and the 

term with weight wa is included in the cost criterion in order to enable the control 

strategy to limit the queue lengths at the origins to the desired level. To adjust the 

weight factors fa  and wa  trial-and-error method is used. The aim is to strike a 

balance between acceptable time-variations in the optimal control trajectories and 

queue constraint violations on one hand and efficiency and fast convergence to 

the optimum on the other hand. The control sample time 1T  may be different than 
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the model sample time T . As a result if we assume 1T  to be a multiple of T  then 

1 1T z T=  with 1z ∈ℕ . Then 1
1

integer
k

k
z

 
=  

 
. 

The theory of non-linear optimal control that lies behind AMOC is 

described in great detail in Kotsialos et al. (2002b). 

 

The control strategy AMOC accepts as input the current situation on the 

network - which is considered as the initial state - and the predictions of the 

disturbances. Based on the traffic flow model of the network and by optimizing 

the cost criterion the strategy calculates the optimal control trajectories. In other 

words, AMOC defines how the available traffic control actuators have to operate. 

The solution of AMOC is optimal but of an open-loop nature. This means 

that the application of the solution might lead to traffic states different than the 

calculated ones. The reasons are various: 

i. The initial state estimation ( )0x  may be erroneous. A dense network of 

detectors that provide enough information for a reliable state estimation 

diminishes this problem to a minor issue (Wang and Papageorgiou 

2005). In the Amsterdam network that is used for the evaluation of the 

strategy and is presented in chapter 5 it is safe to assume that the system 

state is always known because the distance between loop detectors is 

500m. 

ii. Errors associated with the prediction of the future disturbances. AMOC 

computes the optimal solution assuming that future disturbances are 

known, but errors in the prediction of the on-ramp demands and off-

ramp turning rates are unavoidable. This means that the result of the 

optimization does not correspond entirely to the real problem. 

iii. The model parameters with which AMOC determines the optimal 

solution may not be absolutely correct. Change of weather conditions or 

other reasons can lead to a mismatch between the parameters of the 

model and the real parameters. This means that however good the 

knowledge of future disturbances is, the evolution of the traffic states is 

possible to be different than the one predicted. 

iv. Errors due to unpredictable incidents in the network. Incidents may 

introduce bottlenecks resulting in capacity reduction which would 
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create a mismatch between the real and the anticipated flow at the 

incident area. 

In order to address the likely problem of the actuators not achieving to 

implement the optimal solution as calculated by AMOC a hierarchical control 

scheme is chosen (Figure 4-1) similar to that proposed in Papageorgiou (1984). To 

address any mismatch between the predicted and actual system behaviour due to 

the estimation, prediction and modelling errors, a receding (or rolling) horizon 

approach (model-predictive control) is employed. 

 

 

Figure 4-1: Hierarchical control structure. 

The hierarchical control structure consists of three layers. The 

Estimation/Prediction Layer, the Optimization Layer and the Direct Control 

Layer. 
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4 . 3 . 1
 E s t i m a t i o n / P r e d i c t i o n L a y e r

The Estimation/Prediction Layer’s aim is to decide in real-time the initial 

state of the system, the parameters of the model and make a prediction of the 

disturbances for a period in the future. 

The inputs to the layer are: 

i. Information about incidents. In case of an incident the system is 

informed about where it has taken place and its severity. This data can 

be given to the system by a technician at the control center or by an 

automated incident detection system. Automated incident detection is 

not an easy task; a lot of data from the sensors are required. 

ii. Historical data. They are used by the disturbance prediction algorithms. 

iii. Real-time measurements from any kind of sensors. The measurements 

can be the mean speed, traffic flow and occupancy. 

The output of the layer is the current state estimation, the predicted 

trajectories of the disturbances and the model parameters vector. 

AMOC is based on a macroscopic description of the traffic flow. This means 

the current state is defined by the traffic density ,m iρ  (veh/km/lane) and the 

mean speed ,m iv  (km/h) for segment i  of link m , and queues ow  of the on-ramps 

or SAF links o . Thus the state vector for N  links with mN  segments and W on-

ramps will be 

 
1 11,1 1,1 1, 1, ,1 ,1 , , 1... ... ... ...

N N

T

N N N N N N N N Wv v v v w wρ ρ ρ ρ =  x . (4.4) 

An algorithm that estimates the current system state has to deliver the state 

vector ( )kx  at the present time k  which we consider 0k = . This is a classical 

estimation problem. A lot of effective tools exist in the automated control theory 

field with Kalman filter being the most prominent. In this case the extended 

Kalman filter has to be used as the problem encountered is non linear. In Wang 

and Papageorgiou (2005) an estimation approach using the extended Kalman 

filter is presented. 

The inputs to the traffic flow that cannot be controlled and originate from 

the network environment are called disturbances. The detail in which the 

disturbances are described depends on the nature of the disturbances as well as 

from the model. In the model used, the primary disturbances that are of interest 

are the demand at the networks origins and the turning rates at the networks 

destinations. Other disturbances such as speed at the origins and density at exits 

are not so important and can be omitted. All disturbances can be expressed with 
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the vector 1
1 1... ... B

Tm m
O Bd d β β =  d  with , 1,...,od o O=  being the demand at the 

networks O  origins and m
nβ  the turning rates at the networks B  bifurcations. 

The problem of demand prediction can be addressed by various approaches 

(Okutani and Stephanedes 1984; Lin 2001; Smith et al. 2002). The turning rates can 

be determined based on historical data. 

To estimate the parameters of the model is not an easy task. It is time 

consuming and has to be done for various weather conditions so as to use the 

right set of parameters in each case. The models parameter estimation does not 

need to be in real-time but should be done in regular time steps to adjust to 

changes in the behavior of the users of the network. 

4.3.2 Optimization Layer 

The Optimization Layer is the most important part of the hierarchical 

control structure. It accepts as input the current situation of the network 

expressed by the vector ( )0x , the parameters of the macroscopic network model 

– in this case the parameters of METANET – and the predictions of the 

disturbances d . The inputs span over an application horizon PK  in discrete time 

steps. Based on this input data, the control strategy solves the optimal control 

problem and produces the optimal control trajectory (translated into optimal on-

ramp outflows) and the corresponding optimal state trajectory. These trajectories 

are forwarded as input to the next layer as goals that have to be accomplished by 

the local controllers. 

The optimal control strategy applied at the optimization layer level is, in 

this case, AMOC, that was described in detail in a section 4.2. AMOC’s solution of 

the optimal control problem is a decision on a strategic level and is forwarded to 

the local controllers to implement the decision on a tactical level. 

4.3.3 Direct Control Layer 

The purpose of the Direct Control Layer is to implement the optimal control 

strategy that has been decided in the previous layer. It accepts as input the 

optimal control and state trajectories calculated by AMOC that fully describe the 

traffic condition as it is supposed to develop over the application horizon PK . 

Given these optimal trajectories the decision problem in this layer consists in 

implementing an appropriate control strategy at every local regulator. 



 39 

For each on-ramp o  with merging segment ( ),1µ  (Figure 3-2) a local 

regulator can be applied with control sample time c cT z T= , cz ∈ℕ  (e.g. 

30sec 3cT T= = ) in order to calculate the controlled on-ramp outflow ( )r
o cq k  for 

the next control interval. The purpose of using r  as a superscript in r
oq  is to 

differentiate the on-ramp's o  outflow calculated from the regulator, from the 

outflow calculated from the maximum queue considerations (equation (4.8)); the 

latter is indicated with the use of w  as superscript. The average quantities 

( ) ( )1* *
,1 ,1

ck z

c cz k
k z zµ µρ ρ

+ −

=
=∑ , ( ) ( )1* *

,1 ,1
ck z

c cz k
q k q z zµ µ

+ −

=
=∑  and 

( ) ( )1* *ck z

o c o cz k
q k q z z

+ −

=
=∑ , can be defined, where the *-index denotes optimal 

values delivered by AMOC. 

Two cases can be distinguished for later comparison. The optimal control 

trajectories can be directly applied to the traffic process or the state trajectories 

can be passed on to local regulators as set-points. 

In the first case the optimal control trajectories correspond to optimal ramp 

flows and the direct application to the traffic process implies 

 ( ) ( )*r
o c o cq k q k= . (4.5) 

In the second case, the Direct Control Layer is actually introduced. The 

optimal state trajectories are passed on to local regulators as set-points for each 

controlled on-ramp. In this case the local regulators employed are either ALINEA 

or flow-based ALINEA (FL-ALINEA) (Papageorgiou et al. 1991; Smaragdis and 

Papageorgiou 2003) (see also section 2.3.2.1). The ALINEA local regulator with 

set-point ,1µρɶ  reads 

 ( ) ( ) ( ),1 ,11r r
o c o c r cq k q k K kµ µρ ρ = − + − ɶ  (4.6) 

where rK is the feedback gain factor. The flow-based ALINEA with set-point ,1qµɶ  

reads 

 ( ) ( ) ( ),1 ,11r r
o c o c f cq k q k K q q kµ µ = − + − ɶ  (4.7) 

where fK is the feedback gain factor. The calculated r
oq  is bounded by the 

maximum ramp flow oQ  and a minimum admissible ramp flow ,min
r
oq . In order to 
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avoid the wind-up phenomenon, the term ( )1r
o cq k −  used in both equations (4.6) 

and (4.7), is also bounded accordingly. 

Creation of long ramp queues can be avoided with the application of a 

queue control policy (Smaragdis and Papageorgiou 2003) in conjunction with 

every local metering strategy (equations (4.5) - (4.7)). The queue control law takes 

the form 

 ( ) ( ) ( ),max

1
1w

o c o o c o c
c

q k w w k d k
T

 = − − + −   (4.8) 

where ,maxow is the maximum admissible ramp queue. The final on-ramp outflow 

is then 

 ( ) ( ) ( ){ }max ,r w
o c o c o cq k q k q k= . (4.9) 

The flows *
,1qµ  are preferable as set-points for local regulation because they 

are directly measurable without the uncertainty caused by modelling. However, 

flows do not uniquely characterize the traffic state, as the same flow may be 

encountered under non-congested or congested traffic conditions. Moreover, 

whenever AMOC optimal results indicate capacity flow at specific ramp-merge 

areas, the corresponding flow set-point would be equal to AMOC's flow capacity 

value; it is known, however, that the real flow capacity in a merge area may vary 

quite substantially from day to day due to reasons that are not well understood 

while the critical density (or occupancy), at which capacity flow occurs, seems to 

be more stable. For these reasons, a flow set-point ( )*
,1 ,1 cq q kµ µ=ɶ  is used (in 

conjunction with FL-ALINEA), only if ( )*
,1 ,c f crkµ µρ ρ −≤  and ( )*

,1 ,0.9c capq k qµ µ≤ , 

i.e. only if the optimal flows are well below the critical traffic conditions. If 

( )*
,1 ,c f crkµ µρ ρ −≥  and ( )*

,1 ,0.9c capq k qµ µ≤  then the AMOC optimal results tolerate 

an overcritical traffic state and hence ALINEA is applied with set point 

( )*
,1 ,1 ckµ µρ ρ=ɶ ; in all other cases ALINEA with ,1 ,f crµ µρ ρ −=ɶ  is applied in order 

to guarantee maximum flow even in presence of various model-parameter or 

disturbance-prediction mismatches. Additionally, no matter which is the outcome 

of these rules, whenever the on-ramp queue calculated by AMOC is equal to zero, 

ALINEA with ,1 ,f crµ µρ ρ −=ɶ  is applied in order to guarantee that the real demand 

arriving at the ramp will be allowed to enter the motorway; this is done in order 

to avoid cases where an underestimation of the demand in AMOC would lead to 

an on-ramp flow that is lower than the one that the network can accommodate, 
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thus leading to a ramp queue and corresponding driver delays without a real 

reason. In all of the above cases the factual critical density is used which is 

determined via simulations. 

4.3.4 Rolling Horizon Technique 

As mentioned before, the core of the hierarchical strategy is AMOC which 

calculates the optimal solution that minimizes the cost criterion based on the 

estimation of the disturbances over an application horizon PK . The optimal state 

trajectory ( )* kx  is used to adjust the parameters of the local regulators. This 

optimal solution incorporates errors made in the estimation of the initial state 

vector ( )0x , in the estimation of the model’s parameters and in the prediction of 

the disturbances. In order to reduce the influence of the accumulated errors a 

periodical renewal of the initial state ( )0x  and of the prediction of disturbances 

has to be made. This is done for a period A PK K≤ . At any application of AMOC 

the current state estimation is used as the initial condition ( )0x  and with the 

predicted disturbances the optimal control trajectories are calculated over a 

horizon of PK  but are used only for a horizon AK . After the application period 

AK  the optimal control problem is solved again with updated state estimation 

and disturbance predictions. Thus the control loop is closed and AMOC is not 

any more of an open-loop nature but has feedback. This control scheme is 

generally known as rolling or receding horizon optimal control or Model 

Predictive Control (MPC). An issue associated with this kind of control is the 

computation time required for the calculation of the open-loop optimal solution. 

A long optimization horizon PK  has the advantage of taking into consideration 

the system dynamics and the control consequences early in time but having as 

disadvantage the required computation time. Shorter PK  may require less time 

but increases the possibility of myopic control actions. On the other hand the 

update period AK  results in improved feedback for AMOC when shorter but it 

also means more frequent time consuming tasks such as the state estimation, the 

disturbance prediction and the optimization procedure. In conclusion as a general 

rule the control actions have the tendency to be more efficient with increasing PK  

and decreasing AK . 





5 The Amsterdam Network 

5.1 Introduction 

As a test bed for the network-wide ramp metering hierarchical strategy the 

road network around Amsterdam has been chosen (Figure 5-1). 

The main part of the network consists of the A10 ring-road (Figure 5-2). The 

A10 contains two tunnels, the Coen Tunnel at the North-West and the Zeeburg 

Tunnel at the East and has four main connections with other motorways, A1 at 

the South-East, A2 in the South, A4 at South-West and A8 in the North. In the 

south there is also the A9 which forms a bypass for traffic between the North-East 

on the one hand and the centre of the country as well as the region between 

Amsterdam and The Hague including Schipol airport on the other. 

 

 

Figure 5-1: A map of the Amsterdam area 
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Figure 5-2: The motorway network around Amsterdam 

5.2 The Network Model 

The whole network has been modelled for both directions. That means 143 

km divided in 654 links (249 motorway links, 231 SAF links and 174 dummy 

links). The motorway links consist of 291 segments of length between 400 and 800 

meters (average length of 491,4m) (Figure 5-3). 

This network model has been used for an extensive validation of the 

parameters of the traffic flow model against real data. The process of the 

validation had two phases, the quantitative and qualitative phase (Kotsialos 2004; 

Kotsialos et al. 2002). 

In the quantitative approach, a group of parameters that reflect particular 

characteristics of a given motorway stretch were at first estimated and then 

verified. This process was performed for four different motorway stretches. The 

resulting parameters were the same for all stretches except for the critical density 

(Table 5-1) (Kotsialos et al. 1997; Kotsialos 2004; Kotsialos et al. 2002). 
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Figure 5-3: The Amsterdam network model 

Table 5-1: Values of the common parameters 

Parameter Value 

mα  2.34 

,f mv  (km/h) 102 

τ  (seconds) 18 

δ  0.012 

ν  (km2/h) 60 

κ  (veh/km) 40 

minv  (km/h) 7.5 

maxρ  180 

 
In the qualitative model validation the aim was to address traffic conditions 

for the entire network. The model should be able to capture the network-wide 

dynamics of traffic congestion. In other words the goal was for the model to be 

able to predict the location, duration and propagation of congestion as 

encountered in real data. These often meant the manual calibration of parameters 
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via repeated computer simulations and comparison of the results with real data 

(Kotsialos 2004; Kotsialos et al. 2002). 

5.3 The Amsterdam Test Model 

For the simulation and testing of the optimal control strategy only a part of 

the larger network model of the Amsterdam area was used. In particular, for the 

purposes of the study, the counter-clockwise direction of the A10 was used 

(Figure 5-4). This part of the network is approximately 32 km long. It has 21 on-

ramps and 20 off ramps including in both cases the connections with motorways 

A1, A2, A4 and A8. It is assumed that it is possible to implement ramp metering 

at every on-ramp, even at the motorway-to-motorway (mtm) ramps. The ring 

road is divided in 76 segments with an average length of 421m. As a result, the 

state vector has a dimension of 173 (76 segments with variables for density ρ  and 

mean speed v , and 21 ramps with variables for queue w ). When ramp metering 

is applied to all on-ramps and mtm ramps the control vector is 21-dimensional 

and the disturbance vector is 41 dimensional (demands for 21 on-ramps and 

turning rates for 20 off-ramps). 

 

 

Figure 5-4: The counter-clockwise direction of the Amsterdam ring road. 



6 Simulation Results 

6.1 Introduction 

The application of ALINEA as a stand alone local controller, of AMOC and 

of the Hierarchical control structure is presented in chapter. The simulation was 

realized in the METANET simulator for the counter-clockwise direction of the 

Amsterdam ring-road that is described in section 5.3. 

The simulation was performed using real (measured) time-dependent 

demand and turning rate trajectories as input. The simulation spans over a time 

horizon of 4 hours. It spans from 16:00 until 20:00 of an evening in June 1996. This 

time period includes the evening peak hour. With a time step of 10secT = , a 

simulation horizon of 1440K =  steps is considered which results in a large-scale 

optimization problem with 254160 variables for a control sample time of 1 minute 

and all on-ramps, including mtm ramps, metered. 

6.2 The no-control case 

The no-control case will be used as the basic reference against which all 

control scenarios will be compared. In this case no control measures are applied. 

As a result heavy congestion appears in the motorway and large queues build up 

at the on-ramps. The congestion begins shortly after the start of the simulation 

because of the excessive demand and the uncontrolled entrance of vehicles into 

the motorway. This congestion appears at the point where the A1 connects with 

the A10 and is spread upstream blocking the A4 and a large part of A10. At the 

time this congestion tends to dissolve, a new congestion appears and moves 

upstream catching up with the previous congestion that never comes to a 

complete resolution. This way the A4 entrance to the A10 is blocked and the 
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congestion spills back to A4 through the mtm on-ramp of A4. On several on-

ramps long queues are built. The TTS is used as a performance criterion. For the 

no-control case it has a value equal to 14168 veh*h. 

 

 

Figure 6-1: No-control case density profile. 

 

 

Figure 6-2: No-control case ramp queue profile. 
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6.3 Description of the Simulation Scenarios 

On-ramps can act as a buffer for the storage of vehicles. In times where the 

density of the mainstream is near the critical density and congestion may occur, 

holding back some of the vehicles that aim to enter the motorway may prevent 

the creation of congestion. When the density falls back under a predefined level 

the vehicles may enter the motorway. However, holding back vehicles on the on-

ramps leads to queue build-up on the ramps and drivers may become disquiet if 

they are waiting too long. Except that, the geometrical characteristics of the on-

ramps usually do not allow the build-up of long queues. Another issue is that 

long queues may spillback on the urban network and cause congestion. 

For the purpose of this study 10 scenarios were examined. The main 

difference of the scenarios concerns the length of the queue that is allowed on the 

urban on-ramps and mtm ramps. Urban on-ramps usually due to space limitation 

are not able to accommodate a large number of vehicles. On the other hand mtm 

ramps usually have a lot of space available and are able to serve more vehicles 

but authorities are reluctant to the prospect of applying ramp metering to those 

ramps. Scenario 1 is used as a reference scenario and the assumption is made that 

space is not an issue. That means that both the urban on-ramps and the mtm on-

ramps are able to accommodate an infinite number of vehicles. In scenario 2, a 

more pragmatical view is adopted; no mtm ramps are used and urban on-ramps 

can store no more than 30 vehicles. In scenarios 3, 4, 5 and 6 mtm ramps are used 

with a storage capacity of 100, 200, 300 and 400 vehicles respectively with urban 

on-ramps having a capacity of 30 vehicles. Scenarios 7, 8, 9 and 10 use only mtm 

ramps with 100, 200, 300 and 400 vehicles capacity, in order to be able to assess 

the importance of metering mtm ramps in contrast to urban on-ramps. In Table 

6-1 the scenarios are presented. 

Table 6-1: The scenarios examined. 

Scenario 
Allowed queues for 

urban on-ramps when 
controlled (#  veh) 

Allowed queues for 
mtm on-ramps when 

controlled (#  veh) 

1 ∞ ∞ 

2 30 not controlled 

3 30 100 

4 30 200 

5 30 300 

6 30 400 

7 not controlled 100 

8 not controlled 200 

9 not controlled 300 

10 not controlled 400 
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6.4 Application of ALINEA 

6.4.1 Efficiency 

ALINEA may be used at each ramp as a stand-alone strategy without any 

kind of coordination. The set-point for each controlled on-ramp o  is set equal to 

the factual critical density of the corresponding link µ , i.e. ,1 ,f crµ µρ ρ −=ɶ , in order 

to maximize the local motorway throughput. After exhaustive simulation 

checking, this factual critical density is found to be , ,1.1f cr crµ µρ ρ− = . The 

application of ALINEA has lead to an improvement of the TTS for all scenarios 

presented in Table 6-1 compared to the no-control case. 

In particular in scenario 1 ALINEA has a TTS of 7563 veh*h, an 

improvement of almost 47%. The density profile (Figure 6-3) is almost flat which 

means ALINEA manages to prevent congestion. A look at the queue profile 

(Figure 6-4) however, shows the existence of a large queue at the A1 mtm on-

ramp. The result of this queue would be a spillback of the congestion to A1. 

Except that, as a queue is built almost exclusively on the A1 mtm on-ramp it is 

unfair towards those drivers. 

 

 

Figure 6-3: ALINEA scenario 1 density profile. 



 51 

 

Figure 6-4: ALINEA scenario 1 queue profile. 

When scenario 2 is considered, the amelioration of the traffic conditions is 

just around 5.5%. The density profile (Figure 6-5) and the queue profile (Figure 

6-6) reveal that ALINEA is much less efficient in this case. Although a maximum 

queue constraint of 30 vehicles is imposed on the on-ramps it is clear that the 

queues become much bigger.  Especially on the A4 large queues are formed 

reaching 1200 veh although ramp metering is not applied there. The TTS in this 

case is 13402 veh*h. 

 

Figure 6-5: ALINEA scenario 2 density profile. 
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Figure 6-6: ALINEA scenario 2 queue profile. 

In Table 6-2 the results for all the scenarios are presented. It becomes clear 

that by controlling only the urban on-ramps the potential for improving the traffic 

conditions is very small. It is necessary to control the mtm on-ramps as well. By 

increasing the admissible ramp queue for the mtm on-ramps the results are 

getting much better. From Figure 6-7 it becomes apparent how small the impact 

of the urban on-ramps control is on the resulting improvement. The dotted line 

represents the TTS value that would have been achieved if the storage capacity of 

both urban and mtm on-ramps were infinite. 

Table 6-2: Results of the application of ALINEA and 
improvement compared to the no-control case. 

Scenario 
ALINEA TTS 

(veh*h) 

Improvement 
compared to 

the  no-control 
case in % 

1 (∞/∞) 7563 46,6%

2 (30/-) 13402 5,4%

3 (30/100) 12583 11,2%

4 (30/200) 11515 18,7%

5 (30/300) 8526 39,8%

6 (30/400) 7648 46,0%

7 (-/100) 12802 9,6%

8 (-/200) 12050 15,0%

9 (-/300) 8580 39,4%

10 (-/400) 7649 46,0%
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Figure 6-7: TTS values when ALINEA is applied for the different 
scenarios. 

The density and queue profile for scenario 3 can be seen on Figure 6-8 and 

Figure 6-9 respectively. 

 

Figure 6-8: ALINEA scenario 3 density profile. 
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Figure 6-9: ALINEA scenario 3 queue profile. 

Scenario 4 has a maximum admissible queue of 30 vehicles on the urban on-

ramps and 200 vehicles on the mtm on-ramps. In the case of the ALINEA 

application the TTS value for scenario 4 is 11515 veh*h. This corresponds to a 19% 

improvement compared to the no-control case. Compared to scenario 1 though it 

is clear that the maximum queue constraint on both urban and mtm on-ramps has 

its toll on the results. The density profile (Figure 6-10) shows clearly that the 

congestion is not avoided although smaller than the no-control case. 

 

 

Figure 6-10: ALINEA scenario 4 density profile. 
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In Figure 6-11 it can be seen that the queue at A1 reaches its maximum 

admissible value for the entire simulation horizon. This leads to a congestion 

creation that travels upstream and spreads ramp queues in the critical area 

between the junctions of A1 and A4 with A10. The A2 also lies in this critical area 

and it can be seen that it reaches its maximum allowed queue, like A1, for almost 

half the simulation time. The congestion reaches A4 where the queue can not be 

avoided and it even surpasses the allowed maximum and reaches 935 veh. 

In the next pages the density and queue profiles for scenarios 5 through 10 

are presented (Figure 6-12 to Figure 6-23). It becomes obvious when studying the 

figures that with increasing admissible queues on the mtm ramps the congestion 

is decreasing.  

 

 

Figure 6-11: ALINEA scenario 4 queue profile. 

 

 

Figure 6-12: ALINEA scenario 5 density profile. 
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Figure 6-13: ALINEA scenario 5 queue profile. 

 

Figure 6-14: ALINEA scenario 6 density profile. 

 

Figure 6-15: ALINEA scenario 6 queue profile. 
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Figure 6-16: ALINEA scenario 7 density profile. 

 

Figure 6-17: ALINEA scenario 7 queue profile. 

 

Figure 6-18: ALINEA scenario 8 density profile. 
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Figure 6-19: ALINEA scenario 8 queue profile. 

 

Figure 6-20: ALINEA scenario 9 density profile. 

 

Figure 6-21: ALINEA scenario 9 queue profile. 
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Figure 6-22: ALINEA scenario 10 density profile. 

 

Figure 6-23: ALINEA scenario 10 queue profile. 

6.4.2 Equity 

The results presented so far make it clear that it is necessary to hold back 

vehicles and store them on the on-ramps to avoid congestion or at least keep it on 

a lower level. With ramp metering TTS is reduced and the duration of congestion 

is smaller. The cost for this amelioration of the traffic conditions is the queues that 

form on the on-ramps. The formation of queues is acceptable if the result is better 

conditions for the network and the drivers. These results however should benefit 
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all the users of the network. Thus if a portion of the drivers experiences worse 

conditions than the rest of the drivers or worse than the no-control case in order 

to achieve the better conditions then the control strategy is not fair towards them. 

The fairness of the control strategy is called equity. A thorough study on 

how efficiency relates to equity was performed in Kotsialos and Papageorgiou 

(2001a). In this study equity is measured by the average time ot  spent by a vehicle 

in the ramp queue plus travelling 6.5 km downstream on the motorway and is 

calculated according to (6.1). In Figure 6-24 the equity is shown for the no-control 

case and ALINEA application for scenarios 1 and 4. In terms of equity, scenario 4 

seems to be the best. In scenario 1 travel times are low for every on-ramp but for 

A1 where a large peak occurs. In the no-control case, travel times are bigger 

downstream of A2, at the west part of A10, due to the congestion created there. 

This graph shows that the most efficient scenario (scenario 1) is worse when it 

comes to equity to less efficient scenarios which confirms the statement that 

efficiency and equity are two partially competing properties of a control strategy 

(Kotsialos and Papageorgiou 2004b). 

 

Figure 6-24: Equity graph for no-control case, ALINEA scenario 1 and 
ALINEA scenario 4. 

In the following equation (6.1), for each on-ramp o , the average travel time 

ot  is computed, with 1ω  being the link index number of the link downstream of 
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o  and 2ω  the link index number for whose segment 
2

Nωξ ≤  the considered 

mainstream section of 6.5 km ends. 
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6.5 Application of AMOC 

As mentioned before (section 4.3), AMOC is of an open-loop nature. This 

means that the results obtained are under the assumption of a perfect model and 

perfect information with respect to the future disturbances for the entire 

simulation horizon. It is obvious that because of these assumptions the results of 

AMOC would not be observed in a real-world application because the model, the 

measurements and the predictions of the disturbances are not perfect. 

Nevertheless the solution of AMOC is what we would get with ideal conditions 

and therefore it is an upper bound for the efficiency that can be achieved by any 

control strategy. The results of AMOC and the amelioration of the traffic 

conditions compared to the no-control case are depicted for all scenarios in Table 

6-3. These results can act as a goal and as a measurement of efficiency for any 

other control strategy, including the hierarchical control strategy presented in 

section 4.3. 

Table 6-3: Results of the application of AMOC and 
improvement compared to the no-control case. 

Scenario 
AMOC TTS 

(veh*h) 

Improvement 
to the no-

control case in 
% 

1 (∞/∞) 7088 50,0%

2 (30/-) 11005 22,3%

3 (30/100) 7574 46,5%

4 (30/200) 7073 50,1%

5 (30/300) 7066 50,1%

6 (30/400) 7072 50,1%

7 (-/100) 8716 38,5%

8 (-/200) 7720 45,5%

9 (-/300) 7231 49,0%

10 (-/400) 7187 49,3%
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The improvement that AMOC manages to achieve compared to the no-

control case ranges from around 20% in the worst case to 50% in the best case. As 

was expected scenario 2 has the worst performance. Its TTS is 11005 veh*h, an 

improvement of 22%. The density and queue profiles for scenario 2 are depicted 

in Figure 6-25 and Figure 6-26 respectively. 

 

 

Figure 6-25: AMOC scenario 2 density profile. 

 

Figure 6-26: AMOC scenario 2 queue profile. 
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On the other hand, scenario 1 is expected to achieve the best results. By 

studying Table 6-3 it seems this is not the case as scenarios 4, 5 and 6 have better 

values. In reality the difference of the results of these 4 scenarios (1, 4, 5 and 6) is 

minimal and can be attributed to numerical instabilities when solving the optimal 

control problem. The results of these scenarios can actually be considered equal as 

the biggest difference is between scenario 1 and 5 and is only 22 veh*h which is an 

insignificant value. As a conclusion that can be drawn from these results is that 

with scenario 4 that allows for up to 30 vehicles to queue up on the urban on-

ramps and 200 on the mtm on-ramps, enough space is allocated to cope with the 

congestion and it seems there is no need for bigger admissible queues. In the next 

figures (Figure 6-27 to Figure 6-34) the density profiles for scenarios 1, 4, 5 and 6 

are shown. 

 

Figure 6-27: AMOC scenario 1 density profile. 

 

Figure 6-28: AMOC scenario 1 queue profile. 
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Figure 6-29: AMOC scenario 4 density profile. 

 

Figure 6-30: AMOC scenario 4 queue profile. 

 

Figure 6-31: AMOC scenario 5 density profile. 
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Figure 6-32: AMOC scenario 5 queue profile. 

 

Figure 6-33: AMOC scenario 6 density profile. 

 

Figure 6-34: AMOC scenario 6 queue profile. 
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The scenarios 3 and 7 improve the TTS by 46% and 38% respectively. These 

scenarios both have an admissible ramp queue of 100 vehicles for mtm on-ramps 

but in scenario 3 urban on-ramps have also an admissible ramp queue of 30 

vehicles whereby in scenario 7 they are not controlled. The results of these 

scenarios are good but not as good as scenario 4 for example. This is an indication 

that 100 vehicles admissible ramp queue for the mtm on-ramps is not enough and 

more space is needed. This is made more clear if scenario 3 is compared with 

scenario 7. Scenario 3 has extra space available by controlling the urban on-ramps 

opposed to scenario 7 where this is not the case. The better results of scenario 3 

emphasize the importance of the extra space. The density and queue profiles for 

the two scenarios can be seen in Figure 6-35 to Figure 6-38. 

 

Figure 6-35: AMOC scenario 3 density profile. 

 

Figure 6-36: AMOC scenario 3 queue profile. 



 67 

 

Figure 6-37: AMOC scenario 7 density profile. 

 

Figure 6-38: AMOC scenario 7 queue profile. 

The rest of the scenarios are 8, 9 and 10. In these scenarios only the mtm 

ramps are controlled with an admissible queue of 200, 300 and 400 vehicles 

respectively. The efficiency of these scenarios is worse than the corresponding 

scenarios that implement also ramp metering on the urban on-ramps. Especially if 

scenarios 4 and 8 are compared the difference is quite significant. This means that 

although the admissible queue on urban on-ramps is small it helps solve the 

congestion problem. When the admissible queue on the mtm ramps rises over 200 

the difference between the scenarios that control all the ramps compared to the 

scenarios where only the mtm ramps are controlled fades away. In Figure 6-39 to 

Figure 6-44 the density and queue profiles for the remaining scenarios 8, 9 and 10 

are shown. 
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Figure 6-39: AMOC scenario 8 density profile. 

 

Figure 6-40: AMOC scenario 8 queue profile. 

 

Figure 6-41: AMOC scenario 9 density profile. 
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Figure 6-42: AMOC scenario 9 queue profile. 

 

Figure 6-43: AMOC scenario 10 density profile. 

 

Figure 6-44: AMOC scenario 10 queue profile. 
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As said before, these values are of course an "upper bound" for the 

efficiency of the hierarchical control strategy. It can be observed that the formed 

queues at the mtm on-ramps are within the prescribed bounds of each scenario in 

most cases. In particular, in scenario 4 AMOC is able to anticipate the creation of 

the congestion and it counters its cause by creating queues to the extent, location 

and duration necessary along with the respect of the imposed queue constraints. 

Its anticipatory behaviour, as opposed to the reactive nature of ALINEA, deals 

with the causes of the problem before their consequences are manifested. 

Remarkably, when, e.g., the A4 ramp is metered, then the created ramp queue is 

much shorter than when no metering is applied (as in no-control or in scenario 2). 

In Figure 6-45 TTS values are plotted for different admissible ramp queues 

for the mtm on-ramps. When urban on-ramps are not controlled (no-control case 

and scenarios 7 to 10) TTS values are higher compared to those calculated when 

urban on-ramps are controlled, with an admissible ramp queue equal to 30 veh. 

Again, both trajectories converge towards the (dotted) TTS value that corresponds 

to the value achieved by AMOC open-loop strategy if the storage capacity of mtm 

ramps were infinite (scenario 1). 

 

 

Figure 6-45: TTS values when AMOC is applied for the different scenarios. 
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6.6 Application of Hierarchical Control 

As already mentioned before, because the assumption of exact 

measurements and perfect knowledge of future disturbances cannot hold in 

practice the results obtained by AMOC’s open-loop solution are not realistic. To 

cope with this problem the hierarchical control structure with a rolling horizon 

technique has been proposed.  

To implement the rolling horizon technique, the values for PK  and AK  

have to be defined. The choice of these values influences both the quality and 

speed of the solution as mentioned in section 4.3.4. In Kotsialos and Papageorgiou 

(2004d) a study was performed for different values for PK  and AK  coming to a 

conclusion that the most efficient application horizon is 10 minutes ( 60AK = ) 

with an optimization horizon of 1 hour ( 360PK = ). These are the values that 

were used also in this study of the hierarchical control. The assumption is made 

that when AMOC is applied every 10 minutes the system state is known exactly. 

Also it is assumed that a fairly good predictor is available for the predictions of 

the on-ramps’ demand and the off-ramps’ turning rates so that the smoothed real 

trajectories are used as the predicted ones for the simulation. In Figure 6-46 and 

Figure 6-47 the actual and predicted demand for two different on-ramps are 

shown as an example. Likewise, in Figure 6-48 and Figure 6-49 two examples of 

actual and predicted turning rates for two off-ramps are depicted. 

 

 

Figure 6-46: Real and predicted demand at the A1 mtm on-ramp. 
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Figure 6-47: Real and predicted demand at the A8 mtm on-ramp. 

 

 

Figure 6-48: Real and predicted turning rate at the A2 off-ramp. 
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Figure 6-49: Real and predicted turning rate at the A4 off-ramp. 

In section 4.3.3, where the Direct Control Layer of the hierarchical control 

structure is described, it is mentioned that there are two different methods 

available to apply the optimal trajectories provided by AMOC in the previous 

layer. The optimal trajectories can either be applied directly to the traffic flow 

process or passed on to the local controllers, in this case ALINEA or FL-ALINEA, 

as set points. If scenario 4 is examined, both methods have similar results. In the 

first case the TTS is 7422 veh*h, an improvement of 47,6% compared to the no-

control case and just 4,9% worsening compared to the open-loop results. In the 

second case the TTS is 7399 veh*h, practically the same as in the previous case 

with 47,8% improvement to the no-control-case and 4,6% worsening to the open-

loop control. The results are summarized in Table 6-4. The density and queue 

profiles for both cases can be seen in Figure 6-50 to Figure 6-53.  

Table 6-4: Results for different methods in the Direct Control 
Layer for scenario 4. 

Direct Control 
Layer 

TTS 
(veh*h) 

Improvement 
to the no-

control case 
in % 

Worsening 
compared to 
open-loop 

control in % 

Direct 
Application of 
flows 

7422 47.6% 4.9% 

Use of ALINEA 7399 47.8% 4.6% 
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Figure 6-50: Hierarchical Control with direct application of optimal flows 
density profile for scenario 4. 

 

Figure 6-51: Hierarchical Control with direct application of optimal flows 
queue profile for scenario 4. 

 

Figure 6-52: Hierarchical Control with optimal flows used as set points for 
ALINEA. Density profile for scenario 4. 
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Figure 6-53: Hierarchical Control with optimal flows used as set points for 
ALINEA. Queue profile for scenario 4. 

It seems that there is not any significant difference between the two cases. 

This is due to the use of the smoothed real trajectories of the actual demand as a 

prediction, which is a fairly good prediction. If the assumption that a good 

predictor is available does not hold, the results differentiate. When uniform 

under- or overestimated smoothed trajectories are used as the predicted ones, the 

superiority of the second case where the ALINEA and the FL-ALINEA strategies 

are employed in the Direct Control Layer becomes obvious. The results are 

presented in Table 6-5. A graphical representation is shown in Figure 6-54. In the 

same plot there is a line representing the TTS obtained by ALINEA for the same 

scenario. Of course this TTS value does not depend on the error of the demand 

prediction as the reactive nature of ALINEA needs no prediction at all. 

Table 6-5: TTS (veh*h) values for demand prediction under- or 
overestimation for different methods in the Direct Control 

Layer for scenario 4. 

Direct 
Control 
Layer 

10% 
demand 

prediction 
under-

estimation 

5% 
demand 

prediction 
under-

estimation 

Smoothed 
demand 

5% 
demand 

prediction 
over-

estimation 

10% 
demand 

prediction 
over-

estimation 

Direct 
Application 

of flows 
8397 7584 7422 8591 8920 

Use of 
ALINEA 

7502 7552 7399 7613 7625 
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Figure 6-54: TTS values for demand prediction under- or overestimation 
for different methods in the Direct Control Layer for scenario 4. 

The results presented make clear that the Hierarchical Control structure 

with ALINEA employed in the Direct Control Layer is better suited to reject 

errors introduced into the predictions. The optimal solution of AMOC consists of 

optimal ramp metering rates translated to admissible flows for the on-ramps. 

AMOC calculates these metering rates in order to keep the traffic states of the 

mainstream at certain levels. If the demand that arrives at every on-ramp is not as 

predicted the metering rates computed by AMOC cease to be optimal in contrast 

to the traffic states that are still optimal. The control structure with ALINEA aims 

at achieving these states by calculating its own rates reacting to the current 

situation rather than applying the rates without regard to the situation. 

The hierarchical control structure with ALINEA employed in the Direct 

Control Layer performs better and for this reason all further studies are carried 

out following this method. The results of the TTS values obtained for all scenarios 

are summarised in Table 6-6. It becomes obvious that it is not possible to have 

results similar to the open loop solution if the mtm on-ramps are not controlled ot 

if the admissible ramp queues are lower than 200 veh*h. This is clear because the 

TTS for scenario 4 is just 4,61% worse than the corresponding open-loop solution 
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and scenario 8 is even 2,56% better than the corresponding open-loop solution1, 

while scenarios 3 and 7 are 55,93% and 47,54% worse than the open-loop solution 

respectively. The improvement to the no-control case is 47,78% and 46,91% for 

scenarios 4 and 8 respectively while only 16,64% and 9,23% for scenarios 3 and 7. 

It becomes also apparent that even with infinite admissible queues the 

amelioration achieved is on the same level as with an admissible ramp queue of 

200 veh*h for the mtm ramps. In Figure 6-55 the TTS values are plotted for 

different admissible ramps queues for the mtm on-ramps. When urban on-ramps 

are not controlled (scenarios 1, 7, 8, 9 and 10), TTS values are higher compared to 

those calculated when urban on-ramps are controlled with an admissible ramp 

queue equal to 30 veh. This is true only for low values of the admissible queue for 

the mtm on-ramps. For bigger values of the admissible queue for the mtm on-

ramps the TTS is almost identical. The trajectories converge to each other for an 

admissible queue for the mtm on-ramps equal to 200 veh (scenarios 4 and 8) and 

almost reach the (dotted) TTS value that would have been achieved by the 

hierarchical control strategy if the storage capacity of mtm ramps were infinite 

(scenario 1). 

Table 6-6: Results of the application of the hierarchical control 
structure, improvement compared to the no-control case and 

difference to the open-loop solution. 

Scenario 

Hierarchical Control 
with ALINEA int 
the Direct Control 
Layer TTS (veh*h) 

Improvement 
to the no-

control case 
in % 

Worsening 
to the 

open-loop 
results in 

% 

1 (∞/∞) 7396 47,8% 4,3%

2 (30/-) 13496 4,7% 22,6%

3 (30/100) 11810 16,6% 55,9%

4 (30/200) 7399 47,8% 4,6%

5 (30/300) 7442 47,5% 5,3%

6 (30/400) 7414 47,7% 4,8%

7 (-/100) 12860 9,2% 47,5%

8 (-/200) 7522 46,9% -2,6%

9 (-/300) 7357 48,1% 1,7%

10 (-/400) 7430 47,6% 3,4%

                                                 
1 this is due to numerical instabilities when solving the optimal control problem as 
explained in a similar situation in section 6.5 
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Figure 6-55: TTS values when Hierarchical Control is applied for the 
different scenarios. 

If the results of scenario 4 with the hierarchical control strategy are 

compared with the results of ALINEA the differences of both approaches are 

becoming clear. The density profile in the first case (Figure 6-52) opposed to 

ALINEA (Figure 6-10) has no pronounced peaks. The queues are built early in the 

simulation time in anticipation of the future congestion, contrary to the reactive 

behaviour of ALINEA where queues are built in the second half of the simulation 

horizon as a reaction to the congestion that has formed. In the case of the 

hierarchical control, queues are built in such a manner that the maximum queue 

constraints are taken into consideration and not violated and yet the strategy 

achieves this without serious degradation of the strategy's efficiency. This 

becomes clear when Figure 6-11 is compared to Figure 6-53. 

To have a complete graphical representation of the results, in the next 

figures (Figure 6-56 to Figure 6-73) the density and queue profiles of scenarios 1 to 

3 and 5 to 10 are presented. 
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Figure 6-56: AMOC Hierarchical Control scenario 1 density profile. 

 

Figure 6-57: AMOC Hierarchical Control scenario 1 queue profile. 

 

Figure 6-58: AMOC Hierarchical Control scenario 2 density profile. 



 80 

 

Figure 6-59: AMOC Hierarchical Control scenario 2 queue profile. 

 

Figure 6-60: AMOC Hierarchical Control scenario 3 density profile. 

 

Figure 6-61: AMOC Hierarchical Control scenario 3 queue profile. 
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Figure 6-62: AMOC Hierarchical Control scenario 5 density profile. 

 

Figure 6-63: AMOC Hierarchical Control scenario 5 queue profile. 

 

Figure 6-64: AMOC Hierarchical Control scenario 6 density profile. 
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Figure 6-65: AMOC Hierarchical Control scenario 6 queue profile. 

 

Figure 6-66: AMOC Hierarchical Control scenario 7 density profile. 

 

Figure 6-67: AMOC Hierarchical Control scenario 7 queue profile. 
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Figure 6-68: AMOC Hierarchical Control scenario 8 density profile. 

 

Figure 6-69: AMOC Hierarchical Control scenario 8 queue profile. 

 

Figure 6-70: AMOC Hierarchical Control scenario 9 density profile. 
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Figure 6-71: AMOC Hierarchical Control scenario 9 queue profile. 

 

Figure 6-72: AMOC Hierarchical Control scenario 10 density profile. 

 

Figure 6-73: AMOC Hierarchical Control scenario 10 queue profile. 
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In terms of equity, studied through the average time spent by a vehicle in 

the ramp queue plus travelling 6.5 km downstream on the motorway, the 

hierarchical control structure behaves quite well. The equity results for scenarios 

3, 4, 6 compared to the no-control case are shown in Figure 6-74. The hierarchical 

control manages to keep travel times significantly lower than for the no-control 

case. The efficiency is practically the same for scenarios 4 and 6, as it is clear from 

Table 6-6 and Figure 6-55, however the distribution of delays between the two 

mtm on-ramps of A1 and A2 is performed in a slightly more balanced and 

therefore more equal way for scenario 4. 

 

Figure 6-74: Equity graph for no-control case and hierarchical control 
scenario 3, 4 and 6. 

6.7 Comparison of the examined strategies 

6.7.1 Efficiency 

In this study ALINEA as a standalone strategy, AMOC and Hierarchical 

Control were tested and compared to the no-control case. The test was performed 

by use of the METANET simulator for the counter-clockwise direction of the 

Amsterdam ring-road. 
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Various scenarios were considered which included ramp metering of urban 

and/or mtm on-ramps with different admissible queues. In Figure 6-75 it is 

shown how ALINEA and Hierarchical Control behave for the different admissible 

queues on the mtm ramps and how they compare to the open-loop solution of 

AMOC. In this case the results shown are with urban on-ramps controlled 

(scenarios 2 to 6). It can be observed that when mtm on-ramps are not controlled 

then ALINEA and the hierarchical control strategy perform equally well. 

However, ALINEA is outperformed by the hierarchical control strategy when 

mtm on-ramps are controlled. Additionally, when the admissible ramp queue for 

the mtm on-ramps is equal to 200 veh, then the hierarchical control strategy 

virtually reaches the efficiency of the optimal open-loop solution. Efficiency 

remains the same for even larger values. For the case where urban on-ramps are 

not controlled the results are shown in Figure 6-76. The situation is similar as 

before, when the admissible ramp queue for the mtm on-ramps is equal to 200 

veh, then the hierarchical control strategy virtually reaches the efficiency of the 

optimal open-loop solution. 

 

Figure 6-75: TTS values when urban on-ramps are controlled for different 
admissible ramp queues for the mtm on-ramps. 
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Figure 6-76: : TTS values when urban on-ramps are not controlled for 
different admissible ramp queues for the mtm on-ramps. 

6.7.2 Equity 

Equity is a very important aspect of every control strategy. However well 

any control strategy performs, if the amelioration of the traffic conditions is 

achieved on the expense of a group of vehicles, then the strategy is not very 

successful. The infrastructure is a social commodity and everyone should be able 

to use it and have the same benefits (or disbenefits) as everyone else. 

As first mentioned in section 6.4.2, equity is studied through the average 

time ot  spent by a vehicle in the ramp queue plus travelling 6.5 km downstream 

on the motorway and is calculated by equation (6.1). In Figure 6-77 the equity 

diagrams are presented for the no-control case, ALINEA and the hierarchical 

control both for scenario 4. Scenario 4 was chosen because, as mentioned before, it 

is a scenario that the authorities could implement almost with no change at the 

present infrastructure and has results that are almost the same with scenarios 

which employ longer admissible queues on the mtm on-ramps. It is apparent that 

for the hierarchical control the travel times are significantly lower than for the no-

control case or ALINEA strategy. The high peaks are either reduced (as the one at 

A2) or even not present anymore (as at A4). Clearly, the hierarchical controller's 



 88 

distribution of delays is performed in a more balanced way, which is more 

equitable for the drivers entering the mainstream at different ramps. 

 

Figure 6-77: Equity graph for no-control case, ALINEA and Hierarchical 
Control both for scenario 4. 

 
 



7 Conclusions and Recommendations 

7.1 Conclusions 

In this study the results of the application of local feedback control 

(ALINEA), optimal open-loop control (AMOC) and rolling horizon hierarchical 

coordinated optimal control (Hierarchical Control) to the counter-clockwise 

direction of the Amsterdam ring-road have been presented and compared to the 

no-control case. The strategies were implemented for several scenarios and the 

results were investigated for their efficiency as well as for their equity. 

Uncoordinated local feedback control with ALINEA was quite successful in 

reducing the TTS and resolving congestion up to a certain degree which in most 

cases depends on the imposed queue-length restrictions. However, the main 

problem, the large queues on A4, is unavoidable in the realistically restricted 

cases. 

Optimal open-loop control with AMOC has great results but is representing 

an ideal situation where the traffic state is known exactly at the initial point and 

the predictions of the disturbances are 100% accurate which is not always the case 

in real world applications. However AMOC’s open loop solution can act as an 

upper boundary for the achievable efficiency of any control strategy. 

As expected, the hierarchical control with AMOC in the optimization layer 

and ALINEA in the direct control layer outperforms the uncoordinated local 

ramp metering approach. The results are very promising and in the worst case 

they are at least as good as a standalone ALINEA and in the best case they are 

almost as good as the open loop solution. The only downside of this approach is 

the computation time needed, but there exist certain methodologies to address 

this problem. With computer power increasing constantly this problem becomes 

less significant. 

This study made apparent the need to introduce ramp metering on the mtm 

on-ramps. In the network studied and for the specific disturbance profiles used, 

the introduction of ramp metering at the urban on-ramps reduced some local 
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traffic problems. However, a significant amelioration of the global traffic 

conditions in the network calls for comprehensive control of the mtm on-ramps in 

the aim of optimal utilization of the available infrastructure. By building queues 

that do not exceed 200 veh on the mtm on-ramps, hierarchical control leads to a 

47,8% improvement over the no-control case. The available storage capacity in 

mtm intersections is sufficient to effectively and ultimately combat motorway 

congestion for the network studied. Authorities often hesitate to introduce ramp 

metering on mtm ramps but it is important to mention that without control of the 

mtm ramps much bigger queues are built on them anyway. This means that the 

introduction of ramp metering on mtm on-ramps actually manages to reduce 

both the congestion and the length of the queues that are built. 

By observing ALINEA and both open loop AMOC and Hierarchical 

Control, some remarks were made. Local control with ALINEA as was employed 

with set-values equal to the respective critical densities can be used at each ramp 

as a stand-alone strategy without any kind of coordination. ALINEA maintains 

the downstream traffic density around the set-point. Whenever traffic demand 

received by an on-ramp exceeds the outflow calculated by the regulator, a queue 

is formed at the on-ramp that may also be controlled by a maximum queue 

constraint. When the queue reaches its maximum admissible value, motorway 

congestion is created that travels upstream and activates local ramp metering at 

the next upstream on-ramp as well and so forth, leading to a spreading of ramp 

queues in reaction to the congestion that has formed. Thus, independent 

(uncoordinated) application of ALINEA at each ramp (with limited storage space) 

may ameliorate the traffic conditions (compared to no control) but cannot 

eliminate the congestion forming queues at the on-ramps. 

7.2 Recommendations 

The results obtained by this study have lead to certain realizations and in 

turn to suggestions for the future. 

At first the point must be made that depending on the network and its 

traffic conditions authorities have to take an important decision to implement 

ramp metering on urban on-ramps and probably on mtm on-ramps as well. 

Authorities are reluctant to use ramp metering on mtm on-ramps because it 

usually is against the initial purpose of motorways to allow for free and without 

restrictions flow of vehicles. Also, the users of motorways often do not like to 

have restriction imposed on them. But the increased demand leads to degradation 

of the infrastructure through congestions and long queue build-up which 
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abolishes the initial purpose of the motorways anyway. Thus the implementation 

of ramp metering, even on mtm ramps, actually is a step towards the initial 

purpose of motorways. The public is certain to accept this kind of measures if the 

improvement of the traffic conditions becomes apparent. Equity of the strategy is 

another way to persuade the public to accept new measures. If the delays and the 

deficiencies are the same for all, it will be easier to accept the imposed 

regulations. 

In the hierarchical control case the queues are built early in the simulation 

time in anticipation of the future congestion due to AMOC's predictive control 

nature and they are kept below the maximum admissible value in most cases. 

However, the achievement of good results through the application of hierarchical 

control requires accurate model, state estimates and disturbances prediction. The 

efficiency of AMOC (and hence of the hierarchical control strategy) deteriorates 

moderately but increasingly with increasing disturbance prediction errors or in 

case of model-versus-reality mismatch. Moreover, AMOC (and hence the 

hierarchical control strategy as a whole) is a rather complex code incorporating a 

full macroscopic mathematical model of the traffic flow process as well as a 

numerical solution algorithm for the addressed optimal control problem. Code 

complexity, relatively intensive computations and the "black box" character of the 

optimization procedure may be perceived as obstacles for ready and broad 

application of the method. 

In view of this discussion, it would be desireful to have a ramp metering 

strategy that possesses the following features: 

• It should coordinate local ramp metering actions in a suitable way so 

as to avoid the pitfalls of uncoordinated ALINEA application. 

• It should be simple and transparent, e.g. rule-based. 

• It should be reactive so that no external disturbance prediction is 

needed. 

• It should approach the efficiency of sophisticated optimal control.  

• It should be generic (i.e. directly applicable to any motorway network) 

without a need for cumbersome parameter calibration. 

A control strategy possessing all mentioned features is under development; 

the strategy was given the name HERO (HEuristic Ramp metering co-Ordination) 

and future studies will further develop and test this strategy. 
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