
 CHAPTER 1 .. 2

1. INTRODUCTION .. 3

1.1 MICROARRAY TECHNOLOGY ... 3
1.1.1 DNA and oligonucleotide gene expression microarray platforms: principals and
differences .. 5

1.2 THE IMPORTANCE OF CLINICAL DATA ... 6
1.3 METHODS ... 8
1.4 PROBLEMS DEALING WITH MICROARRAYS DATASETS ... 9
1.5 BREAST CANCER MICROARRAYS DATASETS ... 10

1.5.1 Van Veer’s breast cancer dataset ... 11
1.5.2 West’s breast cancer dataset ... 13

1.6 DATASETS OBTAINED WITH RFE METHOD ... 15
1.7 SOFTWARE PACKAGES .. 15
1.8 AIMS AND GOALS OF THIS WORK .. 16

 CHAPTER 2 .. 17

2. METHODS FOR SUPERVISED CLASSIFICATION .. 18

2.1 NEURAL NETWORK CLASSIFIER ... 18
2.2 SETTING UP THE NEURAL NETWORK ... 19
2.3 INITIALIZING AND TRAINING THE ANN ... 20

2.3.1 Descent gradient back propagation algorithm ... 20
2.3.2 Levenberg-Marquadt algorithm .. 24

2.4 ACCURACY OF THE NEURAL CLASSIFIER VIA LEAVE-ONE-OUT METHOD .. 25
2.5 INTRODUCTION TO HIGH ORDER NEURAL NETWORK (HONN) .. 28
2.6 PRINCIPALS OF THE HONNS ... 29
2.7 GENERALIZATION AND REGULARIZATION, TWO IMPORTANT ISSUES .. 33

2.7.1 Generalization .. 33
2.7.2 Regularization ... 33
2.7.3 Bayesian regularization .. 34

2.8 CONCLUSIONS FOR NEURAL NETWORKS .. 40
2.9 OTHER CLASSIFICATION METHODS .. 41

2.9.1 K-nearest neighbour classifier .. 42
2.9.2 Quadratic classifier ... 43
2.9.3 Support vector classifier ... 46
2.9.4 Bayes Classifier .. 52

 CHAPTER 3 .. 56

3. RESULTS .. 57

3.1 THE LEAVE-ONE-OUT AND V-FOLD CROSS VALIDATION RESULTS .. 57
 3.2 EVALUATION THROUGH ROC CURVES ... 63
3.3 RESULTS OF ROC CURVES .. 65

 CHAPTER 4 .. 68

4. INTRODUCTION TO FUSSION CLASSIFICATION ... 69

4.1 BEYOND SINGULARITY: COMBINING THE ABOVE CLASSIFIERS .. 69
4.2 COMBINING RULES ... 69

 CHAPTER 5 .. 74

5. CONCLUSIONS .. 74

 CHAPTER 6 .. 79

6. RESOURCES ... 79

6.1 SOFTWARE FOR CLASSIFICATION ... 80
6.2 PUBLIC BREAST CANCER MICROARRAY DATASETS .. 81
 6.3 PUBLIC MICROARRAY DATABASE (IN ALPHABETICAL ORDER) .. 82

7. REFERENCES .. 84

1

CHAPTER 1

Introduction to microarray technology

2

1. Introduction

Completion of the Human Genome Project has opened a new era in studies of

functions of cells and organisms. Identification of the thousands of genes forming

genomes brings us to the next frontier: elucidation of the functions of these genes and

their interactions to “functional genomics” An experimental tool that allows surveying

expression of the genetic information on a genome-wide scale at the level of single

genes has been developed just a few years ago thanks to the microarray technology.

Global gene expression profiling using microarrays is emerging as key technology for

understanding fundamental biology of gene function development and for discovering

new classes of diseases such as cancer and for understanding their molecular

pharmacology. Numerous unsupervised and supervised learning methods have been

applied to the task of discovering and learning to recognize classes of co-expressed

genes. Multiple open source software is available for evaluating the significance of

the information given by microarrays. Genes databases and microarrays datasets are

free accessed by the scientists and universities who want to test ,to improve or to

produce new algorithms and methods for better utilization of this big amount of raw

information.

1.1Microarray technology

Microarray or microchip is a chip made of glass or other solid material, with an

array of tiny DNA spots placed on it. Each spot contains fragments of DNA or RNA

molecule whose sequence is predefined and corresponds to portions of a particular

gene. The lengths of these fragments may vary from about 20 nucleotides in

oligonucleotide microarrays to thousands of nucleotides in genome microarrays.

Typical microarray contains several thousand spots on the surface of a quarter square

inch, and a library of thousands of genes is placed on a single chip. To probe the

global gene expression levels of many genes in biological samples such as cell lines,

tissue extracts, or laser micro dissected cells, messenger RNAs are first extracted.

mRNAs are then reverse-transcribed into cDNA. The amount of cDNA produced is

then amplified by polymerase chain reactions (PCR), a standard molecular biology

technique. Under proper experimental conditions the concentrations of the cDNA for

a specific gene reflect the amount of expressed mRNA of this gene in the probe

3

sample (pic 1). The expression levels of individual genes present on the chip can

then measured quantitatively by laser scanning (fluorescent probes) or by

phosphoimaging (radio labelled probes) spots at different predefined locations on the

chip. In another experiment scheme, the extracts from the sample tissue and a control

tissue are marked with different dyes, and are hybridized simultaneously on the same

chip. This approach provides information about the relative concentration of

expressed RNA in sample and control tissues. As probe samples collected at different

well-designed experimental conditions are applied, the relative expression levels of all

genes on the chip can then be analyzed for changes in the expression patterns to

obtain an integrated global picture about the underlying genetic networks [1].

 Pic.1

4

1.1.1 DNA and oligonucleotide gene expression microarray
platforms: principals and differences

Since the inception of DNA microarrays, technological advances have lead to the

development of two main types of arrays, namely clone-based and oligonucleotide

based. Both expression systems, each with different experimental designs, are

routinely used to compile comparative global mRNA expression profiles of tissues or

cell lines.

cDNA microarrays (pic 2) are microscopic array which contain large sets of DNA

sequences immobilized on a solid substrate. In a array experiment, many specific

cDNAs are spotted on a single matrix. The matrix is then simultaneously probed with

fluorescently tagged cDNA representations of total RNA pools from test and

reference cells, allowing one to determine the relative amount of transcript present in

the pool by the type of fluorescent signal generated. Current technology can generate

arrays with over 10. 000 cDNA pre square centimetre. For cDNA arrays, each value is

the logarithm of the ratios of the estimated abundances of mRNA in two tissue

samples. [2].

Oligonucleotide microarrays (pic 2) each spot on the array contains a sort

synthetic ilogonucleotide. The oligos are designed based on the knowledge of the

DNA (or EST) target sequences to ensure high-affinity and specificity of each oligo to

a particular target gene. The advantage of this type or microarrays is that they

improve signal –to-noise ratio and accuracy of RNA quantization and reduce the rate

of false positives and miscalls [2].

 The above microarray platforms have two major differences. The cDNA

microarray is characterized as fluorescent labelled platform and the oligonucloetide

microarray as radioactively labelled platform. Comparisons and test taken on these

two technologies have indicated no clear consensus as to the comparability of

expression profiles from different platforms, using either ratio-transformed or single

channel expression data. Additionally studies have led to the conclusion that

oligonucleotide- based arrays, such as those produced by Affymetrix, and full-length

clone-based arrays may be too different in experimental design to be expected to give

global expression results that can be directly correlated. This suggests that microarray

technologies should not be used as an absolute quantisation method and that pooling

5

of global expression profiles from different microarray platforms for the purposes of

large-scale data mining should be undertaken with caution. [3].

 Pic. 2

1.2The importance of clinical data

A big question that arises from the usage of this technology is whether the

laboratory samples and the methods involved to create the microarray are capable of

giving the right picture of the pathological status of the patient and the expression

profiles of the genes. In other words is there a systematic and analytic approach that

gives trustworthy results? These questions arise from the tension between the relative

ease of producing the results and the objective difficulty of dealing with the results.

Additionally, the diversity of experimental designs and schemes adds to the confusion

6

[4]. The size of experimental groups and the design of the experiments also vary

widely, from timecourse experiments to cross-sectional studies, from single

observations with no repeats to analysis of hundreds of samples. Naturally, these

diverse experimental schemes pose diverse computational requirements—the analysis

of an experiment designed discover a new class of a disease is different from an

experiment designed to test the immediate targets of a known transcriptional activator.

The wealth and complexity of information that characterizes results of microarray

experiments has led to the suggestion that there may not be a single “best” analytic

approach and that indeed the application of several analytical and computational

approaches to a dataset may aid in the exposure of different and complementary

aspects of the data [3]. Additionally the collaboration between clinical and computer

scientists and the usage of multiple tools are actions that will make possible the

accurate analysis of the microarray data.

 Pic. 3

7

1.3Methods

Microarray studies often generate massive amounts of data, which are difficult

to be exhaustively examined by hand (arrays of high dimensionality with 24. 000

genes each)(pic 2). Bioinformatics analysis and interpretation to extract genetic

patterns from these data are therefore essential for gaining biological insights from

experiments. If we would like to group the methods that are being used for the

exploration of the information that it is hidden beneath the huge amount of data of the

microarrays, we would end up with 4 extensive categories:

• Genes selection

• Clustering (supervised or unsupervised)

• Classification

• Marker genes or feature selection

In first category we are trying to identify genes that experience significant changes

in expression under different experimental conditions. For example specific genes are

expressed to a healthy tissue and different genes are expressed in a tumour tissue.

Permutation T-tests, neighbourhood analysis [5], p-values, correlation matrices,

Sebestyen criterion [6] are methods used for identifying genes which are differentially

expressed under different conditions and selecting them for further experimental

validation [7].

With clustering we search for groups of genes that are likely to be co-regulated or

participating in related metabolic and regulatory pathways. Algorithms like self

organizing maps (SOMs) , hierarchical clustering , k-means clustering , bootstraps

resampling methods , principal component analysis (PCA) [5] are widely used for the

discovery of underlying structures in a dataset. A common example is the discovery

of the two phenotypes of leukaemia AML and ALL with the combination of

microarray’s technology and the above clustering methods.

Classification involves predicting and classifying experimental samples whether

they belong to a particular type of tissue, disease or phenotype classes. Particularly

the supervised classifiers seek to function { }: 1,....nf P→΅ that maps the unknown

8

sample i to one of the P classes(assuming that each sample belongs to strictly one of

the P phenotypes) according to the global expression profile n
ix Ξ ΅ [8].

Lastly the identification of candidate marker genes or marker genes clusters

indicative of specific phenotypes is a task very important and significant for the

development of new drugs and therapies. Furthermore the selection of a specific

number of features is important because some methods of supervised learning

perform inaccurately and/or slowly when asked to consider a large number of them.

But even when using classification algorithms that are good at handling many features

(such as the SVM method), there is a more practical concern. The method of typing

cancers must be reliable, inexpensive, rapid, and easily performed for it to be

employed by medical diagnostic laboratories. At the moment, these criteria exclude

expression arrays with thousands of genes, and feature selection is required to reduce

the feature set to a manageable number of genes [7].

1.4Problems dealing with microarrays datasets

Although the advantages and possibilities of this technique in the future are

numerous, there are obviously associated drawbacks. The main disadvantages of this

technique include the following:

The actual size of the array may be a problem, when the sample is being

prepared. This is due to the DNA molecule itself. When working on the kind of scale

necessary for microarrays - micrometers - DNA can actually be very difficult to

handle. It has been described as acting 'almost like concrete coated with superglue'

[9].To reduce these effects, a number of solutions are being developed: the electrical

polarization of the array spots, developed by Nanogen, and the use of 'nonwettable'

blank regions on arrays, created by microscopic surface tension barriers, by

Protogene.

Another critical issue is the technical limitations The microarray technique is

currently limited not by the number of probes on an array, but by the resolution of the

scanner used. A solution to this problem is the GeneArray Scanner, developed by a

partnership between Affymetrix and Hewlett-Packard. This scanner has a greater

resolution of 3mm, and also has the capacity for a minimum of 400,000 probes. The

9

http://www.affymetrix.com/products/system.html

use of this scanner therefore has the potential to resequence 100,000 bases at one

time.

Another problem associated with cDNA chips is the quantization of

expression. Quantization of expression is affected by a non-linear relationship

between the amount of probe present, and the strength of the signal that is generated.

The problem that is being caused is an underestimation of the extent of any large

changes that may have occurred in the gene expression. This particularly occurs for

mRNA molecules that are present in large numbers in the cell.

One of the major problems involved with the technique of DNA micro arrays

is concerned with the amount of data that is produced. In fact the development of

methods that efficiently organize, distribute and of course interpret this data could be

said to be the most formidable task for researchers. Large-scale, high-throughput

experimental methods such as this require a great deal of information processing and

data analysis. Currently in development is a software package known as LIMS -

Laboratory Information Management Systems. This software and the databases

associated with it involves: design microarrays track clones collect, analyze and

interpret data from gene expression studies.

Another last issue someone should address when referring to microarrays

methods is the problem of high dimensionality or else “the curse of dimensionality”

[10]. If we consider the genes as the variables then we would have large n (n>5000)

where n indicates genes and small m (m<100) where m indicates the cases. In order

to overcome the large n small m problem a lot of methods have been proposed and

implied. Principal component analysis[5],partial least squares(PLS),hybrid

univariate/multivariate/conditionally univariate selections,Sebestyen criterion [6] are

processes able to reduce the number of variables (genes) in order to decrease the

computational cost and boost the accuracy of other methods such as classification.

1.5Breast cancer microarrays datasets

Our understanding of signal transduction components and their interactions

regulating growth and arrest of breast cancer cells is still limited. Microarray

technologies provide a powerful method to explore the complexities of transcriptional

10

profiles defined by selected pharmacological mitogens and inhibitors pivotal for

breast cancer cell growth. This highlights the question of how genes contributing to

the tumour subclassification are associated with a particular hormone or growth factor

signal arrest. Human breast tumour cell lines have been used extensively as models

of neoplastic disease, and accordingly, their expression profiles provide a frame of

reference for assessing the biological significance of expression patterns in a specific

tumour [11,cunliffe et al 18]. There have been several studies of gene expression

analysis of breast cancer cells treated with a limited number of growth agonists and

antagonists, producing catalogues of responsive genes. Among the distinctions made

to date, the strongest separation is observed between ER(estrogens receptors)+ and

ER- tumours but also between lymph node(-) and lymph node (+).

Additionally we should mention the existence of many breast cancer datasets

and databases which can be accessed by anyone who wish to deal with this new

promising area of biology and mathematics. Hedenfalk et al. , Perou et al. , Van

Veer et al. are recent studies which are public-accessed and involve the

implementation of many statistical and mathematical principals and the combination

of biological and algorithmic knowledge in order to reveal important information

about breast cancer genes. In the end of this work there is an index with the public

accessed microarray databases. Most of the above works, which demand the co-

operation of doctors and computer engineers, have extensively applied many

classification and clustering methods on clinical data. Another important aspect,

which has not been yet evaluated, is the combination of the above works, such as the

search for common marker genes, which will help to establish a common way in

exploring and treating this huge amount of information obtained from microarray

technology.

1.5.1 Van Veer’s breast cancer dataset

In Van Veer work [11], 98 primary breast cancers have been gathered: 34 from

patients who developed distant metastases within 5 years, 44 from patients who

continued to be disease free after a period of at least 5 years, 18 from patients with

BRCA1 germline mutations and 2 from BRCA carriers. All patients were lymph node

11

negative. From each patient 5μg total RNA was isolated from snap-frozen tumour

material and used to derive complementary RNA (cRNA). A reference pooling was

made by pooling equal amounts of cRNA from each of the sporadic carcinomas. Two

hybridizations were carried out for each tumor using a fluorescent dye reversal

technique on microarrays containing approximately 25. 000 human genes synthesized

by inkjet technology.

An unsupervised hierarchical clustering algorithm allowed to cluster the 98

tumors on the basis of their similarities measured all over 5. 000 significant genes.

Similarly the 5. 000 genes were clustered on the basis of their similarities measured

over these of 98 tumors (pic 4). In the dendrogram in figure 4 the length and the

subdivision of the branches displays the relatedness of the breast tumors (left) and the

expression of the genes (top). Two distinct groups of the tumors are the dominant

feature in this two-dimensional display suggesting that the tumors can be divided into

two types on the basis of this set of ~5000 genes. But still the dimension of the

dataset is too high. It is necessary to be reduced in order to apply classification

algorithms. So a powerful two-step supervised classification method applied on the

dataset in order to reduce its dimensionality. The result was to reduce the number of

genes to 231 from 5000 in the first step. In the second step these 231 genes were

ranked ordered on the basis of the magnitude of the correlation coefficient. In the

third step the number of genes in the prognosis classifier was optimized by

sequentially adding subsets of 5 genes from the top of this rank-ordered list and

evaluating its power for correct classification using the “leave-one out method” for

cross validation. Classification was made on the basis of the correlations of the

expression profile of the “leave-one out” sample with the mean expression levels of

the remaining samples from the good and the poor prognosis patients. The accuracy

improved until the optimal number of marker genes was reached (67 genes). Until

now the dimensionality of the problem have been reduced from 25. 000 to 67. !!Our

aim is to evaluate the accuracy of different algorithms and neural networks when they

are applied as classifiers on this 67-dimensional dataset (pic 4).

12

1.5.2 West’s breast cancer dataset

In this work [12] the collection of samples includes mostly Stage II cancers

and above. All cancer samples have the same histology. The tumour samples were

chosen to include roughly an equal representation of hormone receptor-positive versus

hormone receptor-negative cancers. All tissues were screened for tumour content, and

cases that contained less than 60% tumour cells were excluded. For the creation of the

microarrays Affymetrix Human Gene GENECHIP DNA arrays were used.

 The initial 49 tumours were classified as ER- or ER+ via immunohistochemistry

(IHC) at time of diagnosis and then later via protein immunoblotting assay for ER to

check the IHC results. In five cases, the IHC and blot test conflicted. These five

cases and an additional four of the tumours selected randomly were separated from

the rest to be treated as validation samples to be predicted on the basis of analysis of

the remaining training cases. Of the latter, two were rejected due to failed array

hybridization, leaving 18 ER- and 20 ER+. By using the ER outcomes of only the 38

training arrays, a simple screen was implemented to identify the 100 genes maximally

correlated with outcome. This screen computed sample correlation coefficients

between genes and ER-/ER+ binary outcomes and selected those genes giving the 100

largest absolute values of this correlation. With these 100 “best” genes (fig. 2) we will

examine our classification algorithms in order to analyse their accuracy on predicting

the class of unknown tumour tissues.

 Figure 4 Two-dimensional presentation of transcript ratios for 98 breast tumors.
Each row represents a tumour and each column a single gene. As shown in the colour
bar red indicates upregulation, green downregulation black no change and grey no
data available. The yellow line marks the subdivision into two dominant clusters.

13

Figure 5. Expression levels of top 100 genes providing pure discrimination of ER
status. Expression levels are depicted by colour coding, with black representing the
lowest level, followed by red, orange, yellow, and then white as the highest level of
expression. Each column in the figure represents all 100 genes from an individual
tumor sample, which is grouped according to determined ER status. Each row
represents an individual gene, ordered from top to bottom according to regression
coefficients

 Pic. 4

14

1.6Datasets obtained with RFE method

Except from the above Van Veer’s method in which 67 marker genes had been

selected ,we evaluated the RFE (SVM based) method in order to reduce the number

of these genes and compare the results obtained from the classifiers with the results

of Van Veer’s genes.

RFE method uses the internal workings of a Support Vector Machine (SVM)

to rank features. An SVM is trained on feature vectors derived from examples of

two classes. The apparent importance of each feature is derived from the

orientation of the class-separating hyper plane. The feature(s) with the least

apparent importance are removed. The remaining features are used to retrain the

SVM for the next iteration. Here the stopping criterion for the RFE method is

different each time, that’s why we have 3 different datasets of genes. In 64 genes

,we keep cutting genes in a way that the remaining number of genes is power of 2.

We stopped the elimination when the accuracy of the SVM started falling under

97%. In dataset of 31 genes we started with 5000 genes and continued , cutting in

each irritation 1000 genes, until we reached 1000 genes. Then we cut 500, we reach

immediately the 500 and after that, we changed the cutting number to 50 each time.

Having 50 genes, we changed again the cutting number to 1 each time until we

found that reducing the number to less than 31 genes ,the accuracy of the SVM

started falling.

1.7Software packages

For the accomplishment of the classification tasks ,we use mainly the Matlab

software. Specifically we used to toolbox for neural networks and the prtoolbox for

the rest of the algorithms and their fusion.For the creation of roc curves we used to

Medcalc software which is a statistical toolbox which can be downloaded for

evaluation purposes for 30-days.We wrote scripts where we first choose the

evaluation method ,then we choose the classifier and last we get the accuracy results.

15

In the end of the work there are the internet addresses where these tools can be found

and an example of the way the scripts have been written.

1.8Aims and goals of this work

The purpose of this assignment is the evaluation of 6 supervised classification

algorithms on the above breast cancer datasets. We examine their ability on

identifying unknown samples after their train procedure. The datasets with the

reduced number of genes have been obtain, as we have mention above, with gene

selection methods such as the RFE.As a result we have 5 datasets with marker genes

(4 datasets of 19,31,64,67 marker genes each (Van Veer experiment) and 1 dataset of

100 marker genes (West experiment) . The accuracy of the classifiers is being tested

with use of validation methods such as leave-one-out, v-fold cross validation, roc

curves and combining classifiers(fusion).After getting the above results we examine

their performance and try to find which of them performed better,

16

CHAPTER 2

Supervised classification algorithms

17

2. Methods for supervised classification

2.1Neural network classifier

A neural network consists of units (neurons), arranged in layers, which convert

an input vector into some output. Each unit takes an input, applies a (often nonlinear)

function to it and then passes the output on to the next layer. Generally the networks

are defined to be feed-forward: a unit feeds its output to all the units on the next layer,

but there is no feedback to the previous layer. Weightings are applied to the signals

passing from one unit to another, and it is these weightings which are tuned in the

training phase to adapt a neural network to the particular problem at hand. This is the

learning phase. In our neural network we utilize back propagation algorithm in order

to train our binary model. The inputs were vectors whose columns are the values of

the genes in a specific tissue. The output of the network is a two state signal : 1 if the

tissue belongs to the 1st class or 0 if the tissue belongs to the 2nd class.

There are many ways to initialize a network ,to train it with the appropriate

algorithm ,to update the weights. Each combination has different results so it’s critical

,through setting up with multiple ways the network, to find the appropriate neural

model that will give us the highest fidelity. For that reason we tested different transfer

functions, back propagation algorithms and the way we stopped the training function

e. g. maximum number of epochs, minimum square error, minimum gradient.

Another issue that we should address is the format of the data that we feed the

network. In Van Veer dataset all the expression values of genes were log transformed

and in West dataset all the values were normalized by dividing the columns by the

mean column intensity.

18

2.2Setting up the neural network

We assembled a feed-forward back propagation network as we can see in the

above schematic picture. We constructed one input layer ,one hidden layer and one

output layer. The hidden layer had 5 neurons. As input we feed the layer with the

expression values of all genes presented in a specific tissue. If the tissue belongs e. g

to a healthy sample then the network would classify it as “1” or as “0” if we have a

tumour sample. We let the network to “learn”, to update the weight values in order to

have the desired output for a specific number of epochs. We used 2 different transfer

functions: for Van Veer dataset we applied the log-sigmoid function and the tan-

sigmoid function for West dataset (pic. 6). Additionally, we trained the West’s

network with a gradient descent algorithm with adaptive learning rate and Van Veer’s

network with levenberg-marquardt algorithm and as a performance function we utilize

the mean squared error function for both networks. In the next paragraphs we will

explain in depth the above parameters of our neural network classifier and how we

evaluated its classification performance.

 pic 5

19

 Pic.6

2.3Initializing and training the ANN

Before presenting the inputs to the neurons of the network we initialize the

weights that connect each neuron with the input. A random valued weight matrix

n i΄ ,where n is the number of neurons and i the number of inputs, is created with

each row normalized to 1 [13]. Once the network weights have been initialized, the

network is ready for training. In our first network we utilize a backpropagation

algorithm to train it. Like perceptron learning, back-propagation attempts to reduce

the errors between the output of the network and the desired. The term

backpropagation refers to the manner in which the gradient is computed for nonlinear

multilayer networks.

2.3.1 Descent gradient back propagation algorithm

There are a number of variations on the basic algorithm that are based on other

standard optimization techniques, such as conjugate gradient and Newton methods.

More precisely we used a variation of a descent gradient backpropagation algorithm

with adaptive learning rate. As a gradient descent algorithm the network weights are

20

moved along the negative of the gradient of the performance function which in our

case is the mean square error .

Let jix be the input vector i for the j neuron, jiw the weight matrix of j

neuron , t the target vector . The output of each neuron is ()j jy uφ= where

1

j

j ji ij
i

u w x
=

= ε and φ is the transfer function. The error of the network when

we compare the desire output with the real output is j j je t y= − for the j

neuron or
2

1

1 ()
m

i i
i

MSE y t
m =

= −ε if we are using the mean square error. We

want to “propagate” this error backwards to all the neuron’s output and input

weights so as to fix them and minimize the error output. For this purpose we use the

above delta rule for the change to the weight jiw from node i to node j .

i. Output weight modification

 Delta rule: ji j jiw xη δ∆ = Χ Χ

jiw∆ : the weight change between hidden layer and output neuron

 η : learning rate

 jδ : local gradient

 jix : input signal to output neuron

21

The local gradient jδ is the product of ()ji ijw xφ Ά ε and the error je . In our

network 1j = because we have 1 neuron. More precisely the jδ comes from the

above equation.

2

1

1 () ()
() () 2 ()

() () ()
() ()

()(1)

()

j
j j j j j

j j j

j j j j j j
j j

j j j j

j j

ji ij
i

yE t y t y
u u u

t y y t y u
u u

t y y y
E

w x

δ

φ

δ

=

∂∂ ∂= = − = − −Χ
∂ ∂ ∂

∂ ∂= − − = − −
∂ ∂

= − − −

∂=
∂ ε

ii. Hidden layer weight modification

When we have to update the weights of the hidden layer meaning the weights

that connect the input layer with the layer before the output layer we use the above

type with a little modification. For the neuron j the gradient jδ is the same for all

the weights jiw which are connected with the neuron. Also we use the output

gradient jδ which we have computed previously. For each hidden unit j ,we

calculate:

()

(1)j j j kj j
k downstream j

y y wδ δ
Ξ

= − ε
Update each network weight jiw as follows:

22

 ji ji jiw w w← + ∆

 where ji j jiw xη δ∆ = Χ Χ

Let’s now see now what “adaptive” learning rate means. With standard

steepest descent, the learning rate is held constant throughout training. The

performance of the algorithm is very sensitive to the proper setting of the learning

rate. If the learning rate is set too high, the algorithm may oscillate and become

unstable. If the learning rate is too small, the algorithm will take too long to converge.

For this reason we use three constants ,the learning increase and learning decrease

and max ratio. First we let the network give an output and to compute the error with

the initial learning rate. At the second epoch we calculate again the output error. We

compare the new and the old error. If the ratio is more that the max ratio (~1. 04) then

we decrease the learning rate, multiplying it with learn_decrease (0. 85). If the new

error is less than the old error, the learning rate is multiplied by a learning increase

factor (=1. 3).

Having decided to use the above methods for initializing the weights and

training the network we started to configuring it. We tried different number of

neurons, epochs and we changed a lot of times the values of learning parameters so as

to find the combination that would give us the optimum results. For the West et al.

dataset of 100 genes we used one hidden layer with 15 neurons, the tan-sigmoid

function and the gradient descent training algorithm. We trained the network for 400

epochs. For Van Veer et al. dataset we set up the neural network with different

parameters each time due to the fact we had three different datasets of significant

genes. But first we will explain the training algorithm for this network.

23

2.3.2 Levenberg-Marquadt algorithm

As we have mentioned before our performance function is the mean square

error:

The Levenberg-Marquardt method which belongs to the batch training

techniques tries to minimize this function. The method is based on the calculation of

two Jacobian matrices: Jacobian error matrix Je and
2J which in our situation

obtain constants due to the fact that the data are linear. The weight change is

calculated from the next equation

In our network ,where we have one output each time, the error vector is

1[,....]me e e= , m=number of samples. The weights are being updated in the same

way with the previous learning algorithm. The scalar m controls the learning rate

and the learning method of the algorithm. Let’s see how it succeeds (the scalar m) in

combining gradient descent algorithm and Gauss-Newton method. If the errors

decreases ,that means that the weight’s update is good ,then the scalar m is decreased

in order to reduce the influence of the gradient descent. On the other hand if the error

increases we increase m so as to follow the gradient more with small learning rate

and we keep the previous values of the weights [14]. The LM method is very fast and

in a small number of epochs the network is trained. But due to the fact that we have to

compute inverse matrices the cost of the update becomes prohibitive after the model

24

1
1 ()T

i iw w J J m diagJ Je−
+ = − +Χ Χ

2 2

1 1

1 1() ()
m m

i i i
i i

MSE y t v
m m= =

= − =ε ε

size increases to a few thousand parameters. For moderately sized models (of a few

hundred parameters) however, this method is much faster than gradient descent.

2.4Accuracy of the neural classifier via leave-one-out method

We chose to validate the accuracy of the neural classifier with the leave-one-

out method. The leave-one-out method is an important statistical estimator of the

performance of a learning algorithm. It works as follows: We divide the input data

into two sets. The one set will be used to train the classifier and we call it training

set and the other set will be used to test the accuracy of the trained classifier and we

call it test set. The formal expression of the leave one out method is:

1

1() (,)
m

i
d i

i
R f l f z

m =

= ε

where iz is the training set , if is the test set and ()dR f is the leave-one-out error.

Leave-one-out technique is supposed to be an “almost” unbiased estimate of the

generalization error of df . A common belief is that the leave-one-out estimate has a

large variance: when different training sets are sampled from the same distribution,

the variance of the leave-one-out error computed over these samplings is generally

larger than 10-fold cross validation. Also there are examples where leave-one-out

error fails completely due to the instability of the learning algorithm. Despite all

these handicaps, the leave-one-out estimate is used by many practitioners. It is

generally believed as to be a fairly good estimator albeit not the best and it has been

used successfully for model selection[15]. There are a lot of works ,theoretical and

practical which point out that the performance of the above algorithm depends a lot on

the kind of the classifier. In many cases where the classifier is stable, its leave-one-out

error is close to its generalization[16]. In our neural network leave-one-out validation

produces results where the performance varies each time we run the algorithm by a

factor of 2%, which is a good result and it occures due to the fact that we use mean

25

square error, a continues error function which have been proved that helps the

algorithm to perfome well. But still ,even for classifiers such as neural networks ,there

are questions such as if the difference between leave-one-out error and network error

give us a good “estimator” for the stability of the classifier [15].

At next pages we see the performance of the classifier using the

aforementioned algorithm. In West et al. dataset we have 49 tissue samples of which

25 belong to ER+ (estrogens receptor) and 24 ER- and a neural network of 1 hidden

layer with 15 nodes, an output layer of 1 node with two : `1` or `0` and an input

vector of 100 genes. We trained the network for 400 epochs with the descent gradient

algorithm. In Van Veer et al. dataset we have 78 tissue samples , 44 of them belong

to D + (diseased) and 34 belong to D- (not diseased). The network is the same with

the previous with the difference that we use 6 neurons and we train it with LM

algorithm for 100 epochs. The first table presents the accuracy of the classifier at

each dataset. If the equation gives a result more than 0. 5 then the tumor belongs to

class “1”, else it belongs to class “0”. The other tables display the arithmetic results of

the network when we applied the leave-one-out method. On the x-axis is the tissue

samples and in the y-axis is the output of the neural each time we feed it with the test

sample. The more close the graph to zero means that the sample belongs to class A

and the more closer to one means that the sample belongs to class B.

Table of results:

Each percentage

represents the

generalization

ability of the

network.

 Classifier

Marker genes

Feed forward Neural Network
trained with backpropagation
method

19 genes
97. 4% accuracy, 2 errors

31 genes
100% accuracy

64 genes
97. 4 % accuracy, 2 errors

67 genes (Van Veer)
98,7% accuracy, 1 error

100 genes (West) 83% accuracy, 8 errors

26

Table2

Leave-one-out results of the network
using the test dataset of 19 genes. Each
column represents the possibility of
tumor belonging to a certain class.

Table 3

 Leave-one-out results of the network
using the test dataset of 31 genes.

Table 4

Leave-one-out results of the network
using the test dataset of 64 genes

 Table 5

 Leave-one-out results of the network
using the test dataset of 67 (Van Veer)
genes

Table 6

Leave-one-out results of the network
using the test dataset of 100 genes
(West dataset).

 Table 1

27

The x-axis represents the tissue samples and the y-axis the output of the neural each
time we test it with the unclassified sample.

2.5Introduction to high order neural network (Honn)

High order neural networks are fully interconnected nets, containing high

order connections of sigmoid functions in their neurons .They have been shown to

have impressive computational, storage, and learning capabilities. This performance

is because the order or structure of a high-order neural network can be tailored to the

order or structure of a problem. For the above reason a neural network designed for a

specific class of problems becomes specialized and very efficient in solving these

problems.

Before starting explaining the above method we will give some information about

the relationship between i i iw w ax= ± n non linear data and TLU’s. It is known that

nonlinearly separable subsets of pattern space can be dichotomized by nonlinear

discriminate functions. Attempts to adaptively generate useful discriminate functions

led to the study of threshold logic units (TLUs). Most famous is the perceptron [16]

which in its original form was constructed from randomly generated functions of

arbitrarily high order. Minsky and Papert studied TLUs of all orders, and came to the

conclusions that high-order TLUs were impractical due to the combinatorial explosion

of high-order terms, and that first-order TLUs were too limited to be of much interest.

They also notice that single feed-forward slabs of first-order TLUs can implement

only linearly separable mappings. So which is the solution to the above problems?

There are two suggestions: first we can cascade slabs of first order TLUs. But this will

result in training problems because either there in no simple way in providing the

hidden units with a training signal or multislab learning rules require thousand of

iterations to converge which often don’t give the correct results due to the local

minimum problem . Second suggestion is the use of single slabs of high order TLUs.

The high order terms are equivalent to hidden units and since there are no hidden

units to be trained the single slab learning rules can be used. This methods has been

used in this work and will be presented in the next chapter.

28

2.6Principals of the Honns

If we define x , y its input and output respectively, with nx Ξ ΅ and qy Ξ ΅

the input-output representation of a HONN is given by

 ()Ty W S x=

where Ŵ : L - dimensional vector of adjustable synaptic weights and

 ()S x : L - dimensional vector with elements ()iS x , 1,2,...i L= of the form

()() [()] j

i

d i
i j

j I
S x s x

Ξ
= Υ

where iI , 1,2,....i m= is a collection of non-order subsets of {1,2…. . n} and

()js x is a monotonically increasing, smooth function which is usually represented

by sigmoid of the form:

 ()
1 lxs x

e
µ λ−= +

+

where the parameters μ , l represent the bound and maximum slope of sigmoid’s

curvature while λ is the vertical shift. [17]. In our experiment we created a second

order neural network without hidden layers. That means that we feed the network with

combinations of i jx x where ix , jx are values random selected from the input

vector x . So the input vector to the k neuron is

29

()iab i i a bw t y x xη∆ = −

 We trained the above network using the simple perceptron rule.

where M is the set of misclassified input patterns, and d is the desired output of the

TLU. This is the perceptron error criterion. If all input vectors are correctly classified

the error E=0. The contribution of a misclassified input pattern to the error is its

absolute distance from the decision boundary. The perceptron learning procedure

minimizes this error function. The learning procedure is as follows:

1. train the perceptron with the test set until E=0

2. present the test set to the network (batch or single mode)

3. compare d and and output y and we update the weights as following

We used only 1 neuron in order the network to compute the function that

minimizes the mean error and approximates the input data. Also we trained it for 500

epochs so the time spent on training was long enough. But as we know we must

search for a combinations of i jx x which give the optimum classifying result and

give the parameters λ ,μ the As we see in the results below when the data have low

dimensionality the classifier results does not fall below 90 percent. In Van Veer and

West dataset the dimensionality is reduced not only because the significant genes are

30

1

2

1

2

.

()
()

.

.
()

n

i

x
x

x
input S x

S x

S x

ι ω
κ ϊ
κ ϊ
κ ϊ
κ ϊ
κ ϊ
κ ϊ= κ ϊ
κ ϊ
κ ϊ
κ ϊ
κ ϊ
κ ϊ
λ ϋ

x
x M

E d w x
→ →

∋

= − ε

more but also because we add the second order values to the input vector. For that

reason we notice that the performance of the algorithm falls to 80.

Table 7

Results of the

HONN classifier

for five different

breast cancer

datasets

 Classifie
r

Genes

High order Neural
Network
with Perceptron rule

19 genes 98,7 % 1 error

31 genes 96,1% 3 errors

64 genes 97,4% 2 errors

67 genes 82% 11 errors

100 genes 79,5% 10 errors

31

Table 8

Honn result on 19 genes dataset

Table 9

Honn result on 31 genes dataset

Table 10

Honn result on 64 genes dataset

Table 12

Honn result on 100 genes dataset

 Table 7

Graphical results of the HONN classifier for five different breast cancer
datasets. The x-axis represent the tissues samples and the y-axis the output of the
network at each of the previous samples.

32

2.7Generalization and regularization, two important issues

2.7.1 Generalization

Very often in literature about neural networks we meet the term generalization

meaning the performance on unseen input patterns, i. e. input patterns which were not

among the patterns on which the network was trained. If we train for too long, you

can often get the total sum-squared error very low, by over-fitting the training data -

we get a network which performs very well on the training data, but not as well as it

could on unseen data. Also by stopping training earlier, we hope that the network will

have learned the broad rules of the problem, but not bent itself into the shape of some

of the more idiosyncratic (perhaps even noisy) training patterns. In our network we

meet two situations. With LM algorithm the square error reached its minimum value

too early so we stopped the training of the network after 20 epochs. With the gradient

descent algorithm we let the network to be trained for more than 1000 epochs. How

we can find the number of epochs where our network will maintain its ability to

generalize to unseen data? We perform the above algorithm to find the right stopping

point: we divide the dataset into two groups, the first will be the train set and the

second the test set. We partitioned with ratio 80/20. We train the network we the train

set and we test it with the other set for a specific number o epochs. We write down the

mean error. Next we change the number of epochs and we train and simulate the

network again. Repeating the previous steps we notice that while error on the training

set falls monotonically with the number of epochs, error on the test set falls and then

rises. We estimate the number of epochs where this happens and we use it as criterion

as our network to have a good generalization ability.

2.7.2 Regularization

Regularization is another way of improving performance. This involves

modifying the performance function, which is normally chosen to be the sum of

squares of the network errors on the training set. How we do that? In the performance

33

function we add a term that consists of the mean of the sum of squares of the network

weights and bias:

 (|) (| ,)w DM E w A E D w Aα β= +

where wE is the familiar performance function , α and β are parameters which will

be explained later and (| ,)DE D w A is the term which is computed from the next

equation:

2

1

1(|)
n

w j
j

E w A w
n =

= ε

Using this performance function will cause the network to have smaller weights

and biases, and this will force the network response to be smoother and less likely to

overfit. Again there is a trouble maker. The parameters α ,β are very essential in order

to improve the generalization ability of the network. If we choose big we might

overfit the network. If we set it too small, the network will not adequately fit the

training data. One solution, which we have adapted, is the Bayesian regularization.

2.7.3 Bayesian regularization

Although Bayesian analysis has been in use since Laplace,the Bayesian

method of model-comparison has only recently been developed in depth[18]. What

Bayesian regularization do, through the computation of several parameters and

comparing several solutions, is objectively setting these settings in order to find the

best architecture A which gives optimal results. The main idea is to force a

probabilistic interpretation onto the neural network technique so as to be able to make

objective statements. Lets suppose we have a network with a specified architecture A

and connections w which is viewed as making predictions about the target outputs as

a function x in accordance with the probability distribution :

34

(| , ,)e(| , , ,)

()

m mE t x w A
m m

m

P t x w A
Z

β

β
β

−

=

where () E
mZ e dtββ −= ς is the error for a single datum and β is a measure

of the presumed noise included in t. Because in our situation the targets are binary

outputs we will not use the parameter β but the matrix G that we will see later what it

refers to. For the weights w, a prior probability is assigned in the form:

(|)

(| , ,)
()

wE w A

w

eP w A R
Z a

α

α
−

=

where () wEk
wZ a d we α−= ς and α is a measure of the characteristic expected

connection magnitude. Now for the posterior probability of the network connections

w is then:

()

(| , , , ,)
(,)

w DE E

M

eP w D A R
Z

α β

α β
α β

− +

=

where ()(,) w DE Ek
MZ d w e α βα β − += Χς

So under this framework, minimisation of w DM E Eα β= + is identical to

finding the maximum a posteriori parameters MPw ;minimization of DE by

backpropagation is identical to finding the maximum likelihood parameters MLw .

Thus an interpretation has been given to back propagations functions DE and

35

wE and to the parameters ,α β . But in our case there is a difference: our targets are

binary and not probabilities estimates. This means that the parameter β will not be

used as we will see in the next paragraph.

2.7.3.1 A framework for our classifier: determination of α and G

A classification model H consists of a specification of its architecture A and

the regularizer R for its parameters w [19]. When a classification model’s parameters

are set to a particular value, the model produces an output (: ,)y x w A between 0

and 1, which is viewed as the probability (1| , ,)P t x w A= . The likehood i. e the

probability of the data as a function of w is then:

1(| ,) (1)m mt t

m
P D w A y y −= −Υ

 exp (| ,)G D w A=

where

 (| ,) log (1) log(1)m m
m

G D w A t y t y= + − −ε

Now is we assign a prior over alternative parameter vector w,

()exp()
(| , ,)

()

c
c w

c
c

w

a E
P w a A R

Z a

−
=

ε

where () wEk
wZ a d we α−= ς and α is a measure of the characteristic expected

connection magnitude. Now for the posterior probability of the network connections

w is then:

36

()()

(| , , ,)

c
c w

c
E G

c
M

eP w D a A R
Z

α− +ε
=

where ()() c w
E Gk

M
Z d w e αα − += Χς . Both wZ and MZ are normalizing constants. The

calculation of the gradient and Hessian of G is as easy as for a quadratic DE (is case

we had the regression model) if the outputs units activation function is the traditional

logistic () 1/(1)af a e−= + . In our case we compute the Hessian matrix through

the levenberg-marquat Jacobian algorithm.

The gradient of G with respect to the parameters w and for a function

() ()() (())m my x f a x= is:

 () ()m
m

G t y g m= −Ρ ε
where ()mg = ∂a/∂w| ()mx x= .

Now lets see how the training process gives the appropriate set of MPw

(training) and how the network responds to test sample (classification). Lets assume a

locally Gaussian posterior probability distribution over MPw w w= + ∆ ,

1(|) () exp ()
2

T
MPP w D P w w A w− ∆ ∆; and if we assume that the activation (;)x wα is

a locally linear function of w with ∂α/∂w=g, then for any given x ,the activation α is

approximately Gaussian distributed :

2

2
22

1 ()(() |) (,) exp(
22

MP
MP a aP a x D normal a s

ssπ
−= = −

where 2 ()
MP

MP
W

a
E w

γ= and 2 1Ts g A g−= . The parameter γ is

12 ()MP MPN a tr Hγ −= − and it is called the effective number of parameters and it is a

37

measure of how many parameters in the neural network are effectively used in

reducing the error function. It can range from zero to N.

So the moderate output is:

 2 2(1| ,) (,) () (,)MP MPP t x D a s f a normal a sψ= = = ς

The above results give the moderate outputs which the same with the most

probable networks outputs are since in our case the targets output are binary numbers

and not possibilities.

Let’s now see the steps made in order to compute the parameter α and the

optimal MPw [20].

1. Initialize the α and the weights giving them random values. After the first

training step, the objective function parameters will recover from the initial state.

2. We take one step from the Levenberg-Marquard algorithm to minimize the

objective function M

3. Compute the effective number of 12 ()MP MPN a tr Hγ −= − where H is found

with the Gauss-Newton approximation using the Levenberg-Marquard training

algorithm 2 () 2T
NH F w J J aI= = +Ρ where J is the jacobian error matrix of the

trainig set errors.

4. We compute the new estimate for 2 ()
MP

MP
W

a
E w

γ=

5. We repeat steps from 1-4 until coverage

Each re-estimate of the objective function parameters, the objective function is

changing; therefore, the minimum point is moving. If traversing the performance

surface generally moves toward the next minimum point, then the new estimates for

the objective function parameters will be more precise. Eventually, the precision will

be good enough that the objective function will not significantly change in subsequent

iterations. Thus, we will obtain convergence.

38

The Bayesian regularization method does not stop here. The next step that

utilizes is the model comparison which is not evaluated in this work. In our neural

network ,as we mention before ,we use the Bayesian regularization in order to

minimize a combination of squared errors and weights, and then to determine

the correct combination so as to produce a network that generalizes well. In the next

table we can see the result of the above method.

 Table 8

 Comparing bayesian regularized neural network with simple neural network

Classifier

Marker genes

Feedforward Neural Network
trained with
backpropagation method and
regularized by Bayesian rule

Feedforward Neural
Network
trained with
backpropagation
method

19 genes 100% accuracy 0 errors 97. 4% accuracy,
 2 errors

31 genes 100% accuracy 0 errors 100% accuracy

64 genes 98,7% accuracy 1 error 97. 4 % accuracy,
2 errors

67 genes
(Van Veer) 98,7% accuracy 1 error 98,7% accuracy,

 1 error

100 genes
(West) 92,3% accuracy 5 errors 83% accuracy,

 8 errors

39

2.8Conclusions for neural networks

As we can clearly see the accuracy is very high. Even when the dimensionality

is increased, the classifier has good performance although with HONN we notice a

small decrease. One aspect that we should point out is this: if we tried to train the

West’s network with the LM algorithm and test its accuracy the results wouldn’t be of

the same quality. Additionally, if we would try to test the dataset of 67 genes in the

neural classifier of the 32 gene’s dataset the results would be totally different in a

negative way. This occurrence is due to the fact that the two datasets have been

obtained from different experiments and for different purposes. Moreover the

clustering methods with which we have chosen the most significant genes each time

result in datasets with different genes. With this example we want to specify the

importance of the experiment and how it affects the results of the above algorithms

when they appied on different datasets. So far there has not been established a unified

way of treating a specific kind of dataset e. g. breast cancer or even to assent to a

specific type of genes that should be examined when we set up microarrays to

examine e. g brain cancer tissues.

Another issue is the results we got using regularization rule. As we easily notice

the performance of the neural classifier is increased when we use this method to

improve the generalization ability of the network. But we must agree that the results

we get without the above method are very good and give small error rate and high

generalization of the network.

 LAURA FERGUSON

40

‘neural network 1’, painting

2.9Other Classification methods

We start this section by formally defining the structure of each classification

algorithm. We will describe the mathematical and statistical principals they are based

on,the correlation and distance measure they adapt and in the end how they perform

with our datasets. The main aim of the algorithms is to find a hyperplane which

separates best the two classes. Though our data is linear, meaning that they can be

segregated by a simple line, we apply and non linear classifiers such as

SVM,quadratic and k-nearest classifier in order to qualify their performance on linear

data.

2.9.1 K-nearest neighbour classifier

One of the simplest classification procedures is the k- nearest neighbour

classifier. To classify a query x , we find the most similar example in train set and the

plurality class among the nearest neighbours is the class label of the new sample. To

carry out this procedure we need to define a similarity measure on expression

patterns. In our experiments, we use the Pearson correlation as a measure of

similarity. Pearson's correlation reflects the degree of linear relationship between two

variables. It ranges from +1 to -1. A correlation of +1 means that there is a perfect

positive linear relationship between variables. A correlation of -1 means that there is

a perfect negative linear relationship between variables. [21]. The computational form

is:

 2 2
2 2

(,)

()()

x y
xy

Nr x y
x y

x y
N N

Χ
−

=

− −

ε εε
ε εε ε

41

where x is the input vector , y is a vector from the train set. The vector i
y with

high (,)ir x y has high similarity with the test vector. At the end the algorithm

returns the class of the x .

Lets see now how the algorithm works with our data. To determine the class

of a new example x :

• calculate the distance (,)r x y between x and all examples in the

training set.

• select k-nearest examples to x in the training set

• assign x to the most common class among its k-nearest neighbors

The advantages of the classifier is that it is robust to noisy data by averaging

k-nearest neighbors, easy to implement ,use and explain its prediction. In our tests we

used a 7-neightborhood analysis and the accuracy were around 85% with both

bootstrap methods.

2.9.2 Quadratic classifier

Before we start explaining the classifier we will introduce two main theories

on which the classifier is based. We will begin presenting a simple parametric

modelling for describing microarray data, the normal distribution. The normal

distribution is a convenient model for studying a wide variety of physical processes.

The probability density function of a multivariate normal distribution has the

following form :

1

1d/2 2

1 1p(x)=N(x| ,Σ)= exp(() ())
2(2) | |

Tx xµ µ µ
π

−− − Σ −
Σ

dχ Ξ ΅

42

 where
1

1 N

n
n

x
N

µ
=

= ε mean value

1

1 ()()
1

N
T

n
x x

N
µ µ

=

= − −ε
− ε covariance matrix

Another issue is the rule that we use to choose the right class for the unknown

sample in a classification problem. The discriminant function ()ig x ,where i is the

class, it is based on the Bayesian rule and has the next form:

1
1d/2 2

(|) () 1 1 1() (|) exp(() ()) ()
() 2 ()(2) | |

Ti i
i i i

P x Pg x P x x x P
P x P x
ω ωω µ µ ω

π
−= = = − − Σ −

Σ

We eliminate the constant terms and we have:

1/ 2 1
i

1() exp(() ()) ()
2

T
i ig x x x Pµ µ ω− −= − − Σ −ε

Additionally we take the natural logs:

11 1() () () log log(())
2 2

T
i i ig x x x Pµ µ ω−= − − Σ − − +ε

The above expression is called quadratic discriminant function. To see it in a more

“quadratic” form we can reorganize the equation:

 () T
i i i iog x x W x w x w= + +

43

Where

1

1

1
0

1
2

1 1 log log(())
2 2

i i

i i

T
i i i

W

w

w P

µ

µ µ ω

−

−

−

= −

=

= − Σ − +ε

ε
ε

The covariance matrix iε is the one that defines if the discriminant function is

linear or quadratic and the decision boundaries are hyper-planes or parabolic.

There are five cases for iε :

1. 2
i Iσ=ε

2. i =ε ε diagonal

3. i =ε ε no diagonal

4. i j=ε ε general case

5. 2
i i Iσ=ε

 In our case we choose the 4th case which is more general case. We computed two

different covariance matrices and when we presented the test sample to the trained

classifier, it would choose the class according to the next rule (MAP):

 decision rule → choose iω if () ()i jg x g x>

 where () (|)i ig x P xω=

The construction of the quadratic classifier involves estimating mean vectors iµ nd

covariance matrices iε altogether n 1
i

−ε (n + 3)/2 parameters. Estimating these

parameters with high accuracy is necessary for constructing a good discriminant rule,

because the calculation of the inverse matrices 1
i

−ε are often ill-conditioned.

Estimating the high-dimensional covariance matrices requires a large amount of data.

In our case the estimation did not take long due to the use of computer with lot of ram

memory and processor with high speed.

44

2.9.3 Support vector classifier

Support vector machines (SVMs) have been successfully applied to a wide

range of pattern recognition problems, including handwriting recognition, object

recognition, speaker identification, face detection and text categorization. SVMs are

attractive because they boast an extremely well developed theory. A support vector

machine finds an optimal separating hyperplane between members and non-members

of a given class in an abstract space. But many classifiers do the same thing. So what

is the difference that makes the SVM so good classifiers? There are two major

classification problems that SVM succeeds in bypassing them.

The two problems have to do with the non-linearity and the high

dimensionality of the train data. As we know the real-world problems involve non-

separable data for which there does not exist a hyperplane that successfully separates

the class members from non-class members in the training set. One solution to the

inseparability problem is to map the data into a higher-dimensional space and define a

separating hyperplane there. This higher-dimensional space is called the feature

space, as opposed to the input space occupied by the training examples. With an

appropriately chosen feature space of sufficient dimensionality, any consistent

training set can be made separable. However, translating the training set into a

higher-dimensional space incurs both computational and learning-theoretic costs.

Representing the feature vectors corresponding to the training set can be extremely

expensive in terms of memory and time. Furthermore, artificially separating the data

in this way exposes the learning system to the risk of finding trivial solutions that

overfit the data.

Support vector machines elegantly sidestep both difficulties [22]. SVMs

avoid overfitting by choosing a specific hyperplane among the many that can separate

45

the data in the featurespace. SVMs find the maximum margin hyperplane, the

hyperplane that maximizes the minimum distance from the hyperplane to the closest

training point (see figure 4). The maximum margin hyperplane can be represented as

a linear combination of training points. Consequently, the decision function for

classifying points with respect to the hyperplane only involves dot products between

points. Furthermore, the algorithm that finds a separating hyperplane in the feature

space can be stated entirely in terms of vectors in the input space and dot products in

the feature space. Thus, a support vector machine can locate a separating hyperplane

in the feature space and classify points in that space without ever representing the

space explicitly, simply by defining a function, called a kernel function that plays the

role of the dot product in the feature space. This technique avoids the computational

burden of explicitly representing the feature vectors.

The selection of an appropriate kernel function is important, since the kernel

function defines the feature space in which the training set examples will be

classified. The kernel function acts as a similarity metric between examples in the

training set. As long as the kernel function is legitimate, an SVM will operate

correctly even if the designer does not know exactly what features of the training data

are being used in the kernel-induced feature space. Human experts often find it easier

to specify a kernel function than to specify explicitly the training set features that

should be used by the classifier. The kernel expresses prior knowledge about the

phenomenon being modeled, encoded as a similarity measure

between two vectors.

Another appealing feature of SVM classification is the sparseness of its

representation of the decision boundary. The location of the separating hyperplane in

the feature space is specified via real-valued weights on the training set examples.

Those training examples that lie far away from the hyperplane do not participate in its

specification and therefore receive weights of zero. Only the training examples that

lie close to the decision boundary between the two classes receive nonzero weights.

These training examples are called the support vectors, since removing them would

change the location of the separating hyperplane.

46

2.9.3.1 The theory of SVM

We have the labeled training data { , }i ix y , 1,....i l= , { 1,1}iy −Ξ and

d
ix Ξ ΅ . Suppose we have some hyperplane which separates the positive from the

negative results. The points x which lie on the hyperplane satisfy 0w x b+ =Χ

where w is normal to hyperplane , /b w is the perpendicular distance from the

hyperplane to the origin and w is the Euclidean norm of w . Let d+ (d−) be the

shortest distance from the separating hyperplane to the closest positive (negative)

example. Define the “margin” of the separating hyperplane to be d d− ++ . For the

linearly separable case the support vector algorithm simply looks for the separating

hyperplane with largest margin. This can be formulated as follows: suposse that all

the training data satisfy the following constraints:

 1ix w b+ ≥ +Χ for 1iy =

 1ix w b+ ≤ −Χ for 1iy = −

This can be combined into one set of inequalities:

Also the distance between the two parallel lines that separate the two classes is
2

w

. So we can find the pair of the hyperplanes which gives the maximum margin by

minimizing the
2w

 with the above inequality as a constrain. Thus we have the

minimization problem:

 Minimize 2w

 subject to () 1 0i iy x w b+ − ≥Χ

47

() 1 0i iy x w b+ − ≥Χ

,

1()
2i i j i j i j

i i j
W a a a a y y x x= −ε ε

We will now switch to a Lagrangian formulation of the problem for two

reasons. The constraints will be replaced by the lagrange multipliers and with the

reformulation of the problem tha training data will only appear in the form of dot

products between vectors. This is a crucial property that will allow us to generalize

the procedure to the non linear case. The lagrangian of the above inequation is:

2

1 1

1 ()
2

l l

p i i i i
i i

L w a y x w b a
= =

= − + +Χε ε

We must now minimize pL with respect to w , b and simultaneously require

that the derivatives of pL with respect to all the ia vanish ,all subject to the

constraints 0ia ≥ . This is convex quadratic programming problem

By setting the derivative of the Lagrangian to be zero the optimization

problem can be written in terms of ia

 max

 subject to 0ia ≥ , 0i ia y =ε

Solving the above quadratic problem or else the “dual problem” we use the

ia in order to find the
1

n

i i i
i

w a y x
=

= ε which will give us the best parallel lines

that separate the different classes. Many of the ia are zeros. The ix with the non zero

ia are called the support vectors and determine the decision boundary. So if jt ,

(1......)j s= is the indices of the s support vectors we can write

1 j j j

s
t t tj

w a y x
=

= ε so as when we test unseen data z we compute

48

1
()

j j j

s
t t tj

Tw w a y xz b z b
=

=+ = +ε and classify z as class 1 if the result is

positive and class2 otherwise.

So far we have consider only large margin classifier with linear decision

boundary. Lets see what happens when our data is non-linear. In this case we use the

kernel trick. Before that, we will explain the idea of treating non-linear data. For this

reason we introduce two terms, input space and feature space. The input space is

where our data appear (which in our non-linear case are not separable by a straight

line) and where the data in the training algorithm are in the form of dot products .

Now suppose we first mapped our data to some other (maybe infinite)

Euclidean space H ,which we call it feature space, using a mapping : dR HΦ → .

In this space the data are linear separable. Then of course the algorithm would

depend on the data through dot products () ()i jx xΦ ΦΧ as usual and the

computation would be easy. But still we don’t know the function Φ . For this reason

we use the kernel trick and we work in the feature space. We choose an appropriate

function K such that (, () ())
i ji jK x x x xΦ ΦΧ= so as to use K in the training

algorithm even though the function Φ is unknown. So in one hand we succeed in

working in a linear way by increasing the dimensionality of the data and in the other

hand we can compute the inner product of () ()
i j

x xΦ ΦΧ with the help of kernel

function K . But which kernel functions are appropriate each time? First we will

mention the types of kernels that are being used more.

49

0i ia y =ε

• Polynomial kernel with degree d

1 j j j

s
t t tj

w a y x
=

= ε (,) (1) pK x y x y= +Χ

• Radial basis function kernel with width s

2 2(,) / 2x yK x y e σ− −=

• Sigmoid with parameter k and q

 (,) tanh()K x y kx y δ= −Χ

So if we rewrite the dual problem using the kernel function K we will have:

 max
,

1() (). ()
2i i j i j i j

i i j
W a a a a y y K x K x= −ε ε

 subject to

Accordingly if we want to test an unknown sample z we will use the modified

test function:

1

, () (,)
j j j

s
t t tj

f w z w a y xb K z bφ
=

= =+ = +εp f

All above the kernels functions must obey the Mercer’s condition which states

that there is a mapping Φ and an expansion (, () ())
i ji jK x x x xΦ ΦΧ= if and only

if, for any ()g x such :

 2() dxg xς is finite

 then (,) () () 0K x y g x g y dxdy ≥ς

50

0ia ≥

In other words the function must be positive definite in order to describe an

inner product [23], [24]. Note that for specific cases, it may not be easy to check

whether Mercer’s condition is satisfied. However we can easily prove that the

condition is satisfied for positive integral powers of dot product (,) () pK x y x y= Χ
.

Another issue that we should address is the uniqueness and the global solution

that the classifier offers. It turns out that every local solution is also global. This is a

property of every convex programming problem [Fletcher 1987]. Furthermore the

solution is guaranteed to be unique if the objective function is strictly convex, which

in our case means that the Hessian matrix is positive definite. However, even if the

Hessian is semi positive definite the solution can still be unique.

By global we mean that there exists no other point in the feasible region at

which the objective function takes a lower function. There are two cases where

uniqueness may not hold: solutions for which { , }w b are themselves unique but for

which the expansion of w in 1 j j j

s
t t tj

w a y x
=

= ε is not; and solutions whose { , }w b

differ. For this case there is a simple theorem that shows if a non unique solution

occur,then the solution at one optimal point is continuously deformable into the

solution at the other optimal point ,in such a way that all intermediate points are also

solutions.

2.9.4 Bayes Classifier

The Naive Bayes Classifier technique is based on the so-called Bayesian

theorem and is particularly suited when the dimensionality of the inputs is high.

Despite its simplicity, Naive Bayes can often outperform more sophisticated

classification methods. They can handle an arbitrary number of independent variables

whether continuous or categorical. Bayesian classifiers assign the most likely class to

a given example described by its future vector. Learning such classifiers can be

51

greatly simplified by assuming that features are independent given class, that is,

1
(|) (|)n

ii
P X C P X C

=
= Υ where 1(.....)nX X X= a feature vector and C is

the class. Despite this unrealistic assumption, the resulting classifier is remarkably

successful in practice, often competing with much more sophisticated techniques [25].

Naive Bayes has proven effective in many practical applications, including text

classification, medical diagnosis, and systems performance management [26].

 The success of naive Bayes in the presence of feature dependencies can be

explained as follows: optimality in terms of zero-one loss (classification error) is not

necessarily related to the quality of the fit to a probability distribution. (i. e. , the

appropriateness of the independence assumption). Rather, an optimal classifier is

obtained as long as both the actual and estimated distributions agree on the most-

probable class [25]. For example [25] prove naive Bayes optimality for some

problems classes that have a high degree of feature dependencies, such as disjunctive

and conjunctive concepts.

2.9.4.1 Definitions and background

Let 1(.....)nX X X= be a vector of observed random variables called

features where its feature takes value from its domain iD . The set of all feature

vectors (example or states) is denoted 1 nD DΩ = ΄ ΄ . Let C be an unobserved

random variable denoting the class of an example where in our case takes two values

1 or 0. The Bayes classifier ()h x uses as dicriminant functions the class posterior

probabilities given a feature vector i. e () (|)if x P C i X x= = = . Applying Byes

rule gives :

(|) ()(|)

()
P X x C i P C iP C i X x

P X x
= = == = =

=

52

1
() (|) ()nNB

i j
f x P X x C i P C i

=
= = = =Υ

() (() ())
(() ()) () { (() ()}x

R h P h X g X
P h X g X P X x E P h x g x

= =Ή
= =Ή Ήε

where ()P X x= is identical for all classes and therefore it can be ignored. This

yields Bayes discriminant functions:

 () (|) ()if x P X x C i P C i= = = =

where (|)P X x C i= = is called the class conditional probability distribution

(CPD).

Thus the Bayes Classifier

 () arg max (|) ()
i

h x P X x C i P C i= = = =

finds the maximum a posteriori probability (MAP) hypothesis given example x.

However direct estimation of the (|)P X x C i= = from a given set of training

examples is hard when feature space is high-dimensional. Therefore approximations

are commonly used, such as using the simplifying assumption that features are

independent given the class. This yields the naïve Bayes classifier ()NB x :

Therefore the rule that we use for the classification task is:

 1
 if (|) max((|) ())n

k k j
x C P C x P X x C i P C i

=
= = = =Υ:

The probability of a classification error or risk of a classifier h is defined as

53

where xE is the expectation error over x. We say that classifier h is optimal on a

given problem if its risk coincides with the Bayes risk.

2.9.4.2 Limitations and optimality of the Bayes classifier

Some limitations of naive Bayes are well-known: in case of binary features (

ik =2 for all 1,.....,i n=) it can only learn linear discriminant functions [27] and

thus is always suboptimal for non-linear separable concepts. When 2ik > for some

features naïve Bayes is able to learn (some) polynomial discrimintant functions.

Thus, polynomial separability is a necessary, although not sufficient, condition of

naive Bayes optimality for concepts with finite-domain features.

Despite its limitations, naive Bayes was shown to be optimal for some

important classes of concepts that have a high degree of feature dependencies, such as

disjunctive and conjunctive concepts [27]. These results can be generalized to

concepts with any nominal features:

Theorem: The naive Bayes classifier is optimal for any two-class concept with

nominal features that assigns class 0 to exactly one example, and class 1 to the other

examples, with probability 1.

Surprisingly, the accuracy of naive Bayes is not directly correlated with the

degree of feature dependencies measured as the class-conditional mutual information

between the features. Instead, a better predictor of accuracy is the loss of information

that features contain about the class when assuming naive Bayes model. However,

further empirical and theoretical study is required to better understand the relation

between those information-theoretic metrics and the behaviour of naive Bayes.

Further directions also include analysis of naïve Bayes on practical application that

have almost-deterministic dependencies, characterizing other regions of naive Bayes

optimality and studying the effect of various data parameters on the naive Bayes error.

54

Finally, a better understanding of the impact of independence assumption on

classification can be used to devise better approximation techniques for learning

efficient Bayesian net classifiers, and for probabilistic inference, e. g. , for finding

maximum-likelihood assignments.

CHAPTER 3

Results of the supervised classifiers

55

3. Results

3.1 The leave-one-out and v-fold cross validation results

In this section we will analyze ,compare and try to evaluate the results we get

after applying the four classifiers on the Van Veer’s and West’s datasets. For testing

the accuracy of the classifiers we experimented with two methods, the leave-one-out

and the v-fold cross validation. The first method has been analyzed previously so we

will say a few words about the second. In v-fold cross validation we randomly create

test-subsets of size v from the samples. We train the classifier with the (v-1) samples

and the we test it with the test-subset. We repeat the process for n times(in our case

we repeated it 200 times) ,each time creating new subsets. In each repetition we

calculate the percentage of the correct classified samples, we sum up all the results

after the end of the process in order to find the mean value which shows the accuracy

of the classifier.

Before starting the evaluation of the classifiers we took the two datasets and log

transformed all the numerical values. We set up each classifier ,trying different

parameters each time, in order to succeed in getting the best results. At next table

there are the results of the classifiers with both the leave one out and v-fold cross

validation methods.

56

57

 Table 9

 Classification results via leave-one out method

 C
lassifiers

Datasets

QDC

Quadratic
Classifier

SVM

Support Vector
Machine

NAIVEbc

Naive Bayes
classifier

K-MEANS

K-nearest
neighborhood

classifier

19 genes
87%

10 errors 100% 80.5%
15 errors

85.7%
11 errors

31 genes
88.3%
9 errors 100% 79. 2%

16 errors
81.8%

14 errors

64 genes
84.4%

12 errors
97.4%
2 errors

79.2%
16 errors

84.4%
12 errors

67 genes
Van Veer et al.

77.9%
17 errors

80. 5%
15 errors

80. 5%
15 errors

83.1%
13 errors

100 genes
West et al.

83%
8 errors

83%
8 errors

89. 7%
5 errors

85. 7%
7 errors

58

 Table 10

 Classification results via 3-fold cross validation out method

 Classifiers

Datasets

QDC

Quadratic
Classifier

SVM

Support
Vector
Machine

NAIVEbc

Naive Bayes
classifier

K-MEANS

K-nearest
neighborhood
classifier

 19 genes
74% 99. 6% 85,6% 88. 3%

 31 genes
92% 100% 85. 3% 88. 6%

 64 genes

91%
99% 91,2% 91%

 100 genes
West et al.

89% 91% 90% 89. 6%

 67 genes
Van Veer et al.

86. 6% 88% 80. 36% 84%

59

In the leave-one-out method ,we notice that the SVM classifier has the best

performance ,specially with 19 and 30 gene’s dataset where the accuracy is 100%. As

the number of genes is increased ,the performance of classifier falls to 80%. One

explanation would be the fact that the dimensionality of the input space is decreased

so it’s easier for the classifier to compute the correct discriminant function and

classify unseen sample with more accuracy. But as we can notice all the classifiers

,except from the k-means, give better results with the 100 genes of West instead of the

67 genes of Van Veer, which are fewer. This phenomenon has to do with the quality

of the selected marker genes. When the genes are informative, meaning that they help

the classifier to correct find the hyperplane to separate the two classes, then the

accuracy of the classifier is better than having less genes with poor ‘quality’.

Continuing the analysis of the results we see that the quadratic classifier gives

good results, which are around 80%-86% with all datasets. The k-nearest

neighborhood has very good performance with 19 and 30 gene’s datasets (81-85%

accuracy) and it maintain its accuracy close to 83% with the rest. The naïve Bayes

classifier gives results which are stable. The accuracy at West’s dataset is 89.7%, it

performs poor on 64 gene’s dataset (79,2%) and performs almost the same on the

dataset of 19 and 30 genes (~ 80%). As a conclusion we must admit that most of the

classifiers gave very good results with a few classification mistakes. The SVM

classifier performed well when dealing with a small number of genes, the k-nearest

classifier has a mean accuracy value of 83% which is similar to the performance of

the quadratic classifier and last, the naïve Bayes classifier performed at a stable

manner (~80%).

Now we will evaluate and compare the results of the v-fold cross validation

with the one we got through the leave-one-out process. A first notice we can make is

that the performance of the classifiers is close to the previous results. Again, SVM

classifier has a very good performance, giving accuracy results around 90%, k-means

and naïve Bayes classifiers gave a high level of performance (their mean score is 82%

and 84%) and quadratic classifier performed a little worst comparing with the leave-

one-out results.

60

3.2 Evaluation through ROC curves

Roc curves is a very important method which can improve the accuracy of

two class or multiclass classifiers. The usage only of the results of the classifiers

cannot give as a right picture of their performance. In fact we can have two

classifiers with the same numerical value of accuracy which act totally different!

The Receiver Operating Characteristics (ROC) (pic. 7) of a classifier shows its

performance as a trade off between selectivity and sensitivity. What these two terms

mean? A more precise definition of the roc curves will help in understanding what

they represent. A ROC curve is a provides a graphical representation of the

relationship between the true-positive (specificity) and false-positive (sensitivity)

prediction rate of a model. The y-axis corresponds to the sensitivity of the model, it

shows the True positive rate and it is calculated as:

number of positive instances correctly classifiedPr

total number of positive instances
T =

The x-axis corresponds to the specificity of the classifier ,it represents the

False positive rate and it is calculated as:

number of negative instances misclassifiedPr

total number of negative instances
F =

The greater the sensitivity at high specificity values (i. e. high y-axis values at

low X-axis values) the better the model.

 Pic. 7

61

Confusion matrix Positive Negative

 True positive TPF (true positive
fraction)

FPF(false positive
fraction)

True negative FNF(false negative
fraction)

TNF (true negative
fraction)

 Table 11

 Confusion matrix

Before going on, we should mention the creation of a confusion matrix that

help up to gather and have more accurate view of the data gathered for the creation of

the Roc curve.

The most important information that we get from this matrix is the TPF and

TNF which is identical with the TRr and FPr that we have explained above. With the

help of Matlab we compute the TP and FP samples each time we run the classifier in

order to find the pairs (FPr,TPr).

Another interesting aspect of the Roc curve is the “area under the curve”. A

numerical measure of the accuracy of the model can be obtained from this ,where an

area of 1. 0 signifies near perfect accuracy, while an area of less than 0. 5 indicates

that the model is worse than just random. In other words the quantitative-qualitative

relationship between area and accuracy follows a fairly linear pattern. Also the area

under the ROC is a convenient way of comparing classifiers which in our case is very

useful. A random classifier has an area of 0. 5, while and ideal one has an area of 1.

In practice to use a classifier one normally has to chose an operating point, a

threshold. This fixes a point on the ROC. In some cases the area may be misleading.

That is, when comparing classifiers, the one with the larger area may not be the one

with the better performance at the chosen threshold (or limited range). For this reason

we introduce the terms classification cost and error rate in order to obtain more

information from the roc curve about the performance of the classifier.

There is a last and important point that we should address about the creation of

a roc curve. That is the existence of a threshold parameter in the classifier that will

help us to increase TP at the cost of an increased FP or decrease FP at the cost of a

62

decrease in TP. Each parameter setting provides a (FP, TP) pair and a series of such

pairs can be used to plot an ROC curve.

3.3 Results of Roc curves

For the creation of the roc curves we took the above classifiers and thought the

use of Matlab we created the next Roc curves. We took our datasets ,we split them

into two groups, one for training and one for testing. In one graph we represent the 4

classifiers in order to compare them more easily:

Roc curve for 19 genes

Roc curve for 31 genes

63

Roc curve for 64 genes

Roc curve for 67 genes

Roc curve for 100 genes

 Table 12

 Graphs of the roc curves

Observing the above Roc curves we notice two things. First we notice the

differences that two classifiers can have even if they give the same results at leave-

one-out method.In the dataset of 67 genes of Van Veer the svm and naïve-bayes

64

classifiers give the same classification results (80% accuracy).But if we examine the

roc curve of each classifier we observe that naïve-bayes succeeds better in classifying

the healthy samples (class 1) in contrast with svm who performs better on tumor

tissues (class 2).Another issue is that comparing the roc curves results and the results

of the previous validation techniques we see no differences. On the contrary the roc

curves confirm the results we get with the others methods. Also in the above matrix

we have the area under the curve which is a numerical value for the performance of

the classifier:

Area under
the curve

SVM QDC K-NEAREST NAÏVEBAYES

19 genes 1,000 0,863 0,806 0,795

31 genes 1,000 0,907 0,788 0,828

64 genes 0,971 0,827 0,874 0,803

67 genes 0,788 0,752 0,826 0,809

100 genes 0,837 0,836 0,877 0,856

 Area under the roc curve

As we can notice the performance of all classifiers decreases when the

dimension of dataset increases. The area of most the classifiers is between 0.8 -0.9

which is a good performance value. Another aspect is that in some datasets, for

example in 67 genes dataset, k-nearest and naïve bayes performed better than svm and

qdc which give better results in the smaller datasets.

65

CHAPTER 4

Combining classifiers

66

4. Introduction to fussion classification

4.1 Beyond singularity: combining the above classifiers

The main objective of designing many machine learning systems is to achieve

the best classification. This aim led to the development of different classification

schemes for any machine learning problem. It has been observed that in such design

studies, usually, none of the single classifiers, such as the classifiers we evaluated

above, is enough to classify the unseen data optimally [28].

These observations motivated the interests in combining classifiers. Many

single classifiers are used for decision making by combining their individual results to

derive a more accurate decision. The aim is to determine an effective combination

method that makes use of the benefits and avoids the weaknesses of each classifier.

There are different ways of how the single classifiers are combined [29]. In

this work we will test and compare three combining methods: maximum combining,

voting combining and product combining classifier. Let’s now see the principals of

the above combining rules.

4.2 Combining rules

Once the posterior probabilities ()mnp x for i classifiers and j classes have

been computed for our test set, they must be combined into ()ms x which can be

used for the final classification. We will use 3 different methods in computing the

above term:

' () (())m mns x rulem p x=

67

' ()()
() 1

m
m

m
m

s xs x
p x

=
=ε

The final result is obtained from the equation:

 () arg max (())mf x m s x=

The 3 rules that we use is described next:

Maximum combining classifier: The maximum combining classifier selects the

selection of the single classifier giving the highest normalized probability. So

substituting the rule we then have:

arg max(())() , ()
mnm s xs x p n xΆ =

Voting combining classifier: The classification is done by counting the votes for

each class over the input classifiers and selecting the majority class. Again if we

replace in the first equation we have:

mn
m

()= (argmaxm(p (x))=m)ms xΆ ε

Product combining classifier: Each single classifier gives a normalized probability

value for each class. Then all normalized probabilities are multiplied per class. The

class with the highest probability product will be chosen. Again, we have:

() ()m mn
m

s x p xΆ = Υ
Having the above combining rules, we test them on our four classifiers and get

the next results. We should mention that here the test set is small comparing to train

set (a (1/4 ratio) :

68

 Table 13

Quadratic Svm
Naïve-

bayes
K-Nearest

Maximum

Combining

classifier

Product

Combining

classifier

Voting

Combining

classifier

19 genes 87%
10 errors 100% 80.7%

15 errors
85.7%

11 errors 100% 84,4% 84,4%

31 genes 88.3% 100% 79. 2% 81.8% 98,7% 81,8% 80,5%

64 genes 84.4% 97.4% 79.2% 84.4% 96,1% 80,5% 90,9%

67 genes 77.9% 80. 5% 80. 5% 83.1% 79,2% 79,2% 79,2%

100 genes 83% 83% 89. 7% 85. 7% 80,3% 89,7% 85,7%

69

 Results of the combined methods

We can notice that the maximum combining classifier gives almost equal results

with the individual classifier which performs best. The two other methods give results

which are like the mean value of all the classifiers at each dataset. We should mention

that having the roc curves, the two different cross validation techniques and the

combined classifiers results we can have a better view of the performance of the each

classifier individually so as to choose which one to use but also to decrease its error

while we take into account the results of others.

70

CHAPTER 5

 Conclusions

71

5. Conclusions

Microarray technology offers a huge amount of data that with the appropriate

manipulation can reveal a lot of important information regarding the nature of many

of the cancer diseases such a breast cancer. Many techniques have been applied on

datasets in order to find specific genes or group of genes that are responsible for

cancer symptoms. One aspect of this effort is the classification of clinical samples

using algorithms which are widespread used to other areas of science and technology.

We must mention that all the algorithms have a common way of acting: they try

to find a hyper plane which best separates the different classes that in our situation are

two. The philosophy of computing this hyper plane different in each algorithm. In

this work we applied the neural network method in order to predict the class of unseen

samples from datasets obtained from two different microarrays experiments. We used

different architectures of neural networks such as different backpropagation

algorithms in order to test their performance. We got very good results ,most of them

close to 90% of accuracy ,due to the fact of the quality of the genes and the power of

neural networks. We continued our work using different proposed algorithms that

have been used to same works. Again the results are very good with most the

algorithms. To support the robustness of the results we used methods such as roc

curves, two different cross validation techniques and combination of the classifiers so

as to compare all of the results and get a more precise picture of the algorithm’s

performance each time. In the next tables we can examine the results of each classifier

separately.

72

⇒ SVM

19 genes 31 genes 64 genes 67 genes 100 genes

100% 100% 97,4%
2 errors

80.5%
15 errors

83%
8 errors

⇒ Quadratic

19 genes 31 genes 64 genes 67 genes 100 genes

87%
10 errors

88.3%
9 errors

84.4%
12 errors

77.9%
17 errors

83%
8 errors

⇒ Naïve Bayes
\

19 genes 31 genes 64 genes 67 genes 100 genes

80%
15 errors

79.2%
16 errors

79.2%
16 errors

80.5%
15 errors

89.7%
5 errors

73

⇒ K-means

19 genes 31 genes 64 genes 67 genes 100 genes

85.7%
11 errors

81.8%
14 errors

84.4%
12 errors

83. 1%
13 errors

85. 7%
7 errors

⇒ Neural network

19 genes 31 genes 64 genes 67 genes 100 genes

100% 100% 98.7%
1 error

98.7%
1 error

92.3%
5 errors

⇒ High order neural network

19 genes 31 genes 64 genes 67 genes 100 genes

98,7 %
1 error

96,1%
3 errors

97.4%
2 errors

82%
 11 errors

79,5%
 10 errors

As we can observe the classifiers give good results, specially the more

complicated neural (Bayesian regularized) and svm algorithms. But in all classifiers

their performance starts to fall when the dimensionality of the data is increased but it

does not fall under 80%.

74

If we compare the results of the two networks we observe the performance of the

HoNN is lower than the performance of the simple neural network. This happens due

to the fact that the input space in HoNN is increased when we introduce the second

order terms. Increasing the dimensionality of the network we make more difficult for

the algorithm to find the appropriate hyperplane to distinguish the two classes.

In general if we want to point out the results of this work we can discrete them as

follows:

1. The 3-fold cross validation gave better results than the leave-one-out method.

2. The Bayesian regularization improved the performance of the neural network.

3. In small datasets the more complicated algorithms (NN’s and SVM)
performed much better than the simple classifiers.

4. Increase of dimensionality =decrease in the performance of the classifier

5. The combination of the classifiers resulted as a mean valued method from
where the maximum combining classifier performed better than the others.

For the end we should indicate that the classification task performs well only

when the previous clustering and gene selection methods select the most informative

genes which help to the linearity of the data. So it is important the correct utilization

of each task so as to contribute in the discover of genes and group of genes which

need to be treated accordingly in order to fight the different types of cancer.

75

CHAPTER 6

Resources

76

6. Resources

6.1 Software for classification

• Prtoolbox (for the other algorithms) http://www.prtools.org /

• Matlab (for neural networks) http://www.mathworks.com/

• Medcalc (for roc curves) http://www.medcalc.be/

Here is an example of matlab script on how we implemented the methods for

evaluating the classifier. It is an example of leave –one –out method for k-nearest

classifier and for neural network classifier

k-means neighborhood classifier

clear
x=xlsread('G100.xls');
x=mameannorm(x);

 for i=1:1:49;

 X=x.';
 A=dataset(X,genlab([25 24],[1 -1]'));
 Test=A(i,:);
 A(i,:)=[];
 [classifier] = knnc(A,5);
 M=Test*classifier;
 e=M*testc;
 coutnting(i)=e;
 end

sum(coutnting)
accuracy=100-(sum(coutnting)*100)/49

77

http://www.medcalc.be/
http://www.prtools.org/

neural network classifier

clear
y=xlsread('results.xls');

for i=1:1:49;
 x=xlsread('G100.xls');

x=manorm(x);
test=[x(:,i)];
x(:,i)=[];
net=newff(minmax(x),[15 1],{'tansig','tansig'},'traingda');
net.trainParam.lr = 0.05;
net.trainParam.lr_inc = 1.2;
net.trainParam.lr_dec=0.9;
net.trainParam.show=NaN;
net.trainParam.mc = 0.5;
net.trainParam.epochs = 400;
net.trainParam.goal = 0;
net.trainParam.max_perf_inc=1.1;
 [net,tr]=train(net,x,y);
a_test(i)=sim(net,test);

end

6.2 Public breast cancer microarray datasets

1. Van’t Veer et al.
http://www.rii.com/publications/2002/vantveer.html

25.000 genes reduced to 67 genes of two classes: patients who are free-disease after 5
years and patients who have developed metastases with in 5 years.

2. Perou et al.

Available at
http://genome-www.stanford.edu/breastcancer/molecularportraits/download.shtml

No description due to the fact that the paper needs to be bought

78

http://genome-www.stanford.edu/breastcancer/molecularportraits/download.shtml
http://www.rii.com/publications/2002/vantveer.html

3. Huang et al.
Available at http://data.cgt.duke.edu/lancet.php

Gene expression patterns from the major metagenes that predict lymph
node status from current and earlier Duke breast cancer study.(7.129 genes)
496 metagenes, 89 tumor samples in 4 clusters-

4. West et al.
Available at http://data.cgt.duke.edu/west.php

7129 genes per 49 breast tumors reduced to 100 informative genes and clustered to
two pathologic groups: 25 tumors with Estrogen Receptor + (ER+) and 24 tumors
with ER -

5. Martin et al.
Available at http://mbcf.dfci.harvard.edu/labs/pardee/expression patterns.html

No description due to the fact that the paper needs to be bought

6. Hedenfalk et al.
Available at http://research.nhgri.nih.gov/microarray/NEJM Supplement

This article highlights the overall impact at the gene expression level of diverse
regulators of breast cancer growth and links the behavior of breast cancer cells in
culture to important clinical. More precisely Expression profiles from three breast
cancer cell lines, MCF7, T-47D (both ER), and MDA-MB-436 (ER), were compared
at time points (2, 8, and 24 h) after treatment with growth agonists and
antagonists known to affect breast cancer cell proliferation.
13.824 genes reduced to 1023 informative genes

6.3 Public microarray database (in alphabetical order)

• ArrayExpress - A public repository for microarray based gene expression
data maintained by European Bioinformatics Institute.

• ChipDB - A searchable database of gene expression
• ExpressDB - A relational database containing yeast and E. coli RNA

expression data. Reference[PubMed]
• Gene Expression Atlas - A database for gene expression profile from 91

normal human and mouse samples across a diverse array of tissues, organs,
and cell lines. Reference[PubMed][pdf]

• Gene Expression Database (GXD) - A database of Mouse Genome
Informatics at the Jackson laboratory.

79

http://www.jax.org/
http://www.informatics.jax.org/mgihome/
http://www.informatics.jax.org/mgihome/
http://www.informatics.jax.org/mgihome/GXD/aboutGXD.shtml
http://www.pubmedcentral.gov/picrender.fcgi?artid=123671&action=stream&blobtype=pdf
http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11904358&dopt=Abstract
http://expression.gnf.org/cgi-bin/index.cgi
http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10779484&dopt=Abstract
http://twod.med.harvard.edu/ExpressDB/
http://staffa.wi.mit.edu/chipdb/public/
http://www.ebi.ac.uk/
http://www.ebi.ac.uk/arrayexpress/
http://mbcf.dfci.harvard.edu/labs/pardee/expression patterns.html
http://data.cgt.duke.edu/west.php
http://data.cgt.duke.edu/lancet.php

• Gene Expression Omnibus - A database in NCBI for supporting the public
use and disseminating of gene expression data. Reference[PubMed]

• GeneX - National Center for Genome Resources's initative to provide an
Internet-available repository of gene expression data

• GermOnline - GermOnline provides information and microarray expression
data for genes involved in mitosis and meiosis, gamete formation and germ
line development across species. Reference[PubMed]

• Human Gene Expression Index (HuGE Index) - aims to provide a
comprehensive database to understand the expression of human genes in
normal human tissues. Reference[PubMed]

• List Of Lists Annotated (LOLA) - a web driven database allowing
researchers to identify and correlate significant subsets of genes derived from
microarray expression profiling.

• M-CHiPS (Multi-Conditional Hybridization Intensity Processing
System) - M-CHIPS is a data warehousing concept and focuses on providing
a structure suitable for statistical analysis of a microarray database's entire
components including the experiment annotations. Reference [PubMed][web
supplement]

• MUSC DNA Microarray Database - MUSC DNA Microarray Database is
a web-accessible archive of DNA microarray data. Reference[PubMed]

• NASCArrays - a repository for Affymetrix data generated by NASC's
transcriptomics service. Reference[PubMed]

• Oncomine - The goal of this project is to curate publicly available cancer
microarray studies and provide data mining tools to efficiently query genes
and datasets of interest as well as meta-analyze groups of studies. Links to
various bioinformatics resources have been implemented including Unigene,
Swissprot, Biocarta, HPRD, and KEGG, among others.

• Public Expression Profiling Resource (PEPR) - A web oracle data
warehouse of quality control and standard operating procedure (QC/SOP)
Affymetrix data. Reference[PubMed]

• READ (RIKEN cDNA Expression Array Database) - A database
maintained by RIKEN (The institute of Physical and Chemical Research),
Japan. Reference[PubMed]

• Rice Expression Database (RED) - RED holds raw and normalized data
from expression profiles obtained by the Rice Microarray Project and other
research groups. These data are open to the public less than one year after
sending the data to each research group.

• RNA Abundance Database (RAD) - RNA Abundance Database (RAD) is
a public gene expression database designed to hold data from array-based and
nonarray-based (SAGE) experiments. The ultimate goal is to allow
comparative analysis of experiments performed by different laboratories using
different platforms and investigating different biological systems.

• Saccharomyces Genome Database (SGD): Expression Connection -
A gene expression database of Saccharomyces genome database in Stanford
University, provide simultaneous search of several microarray studies result
for gene expression data for a given gene or ORF. Reference[PubMed]

• Soybean Genomics and Microarray Database (SGMD) - The SGMD
attempts to provide an integrated view of the interaction of soybean with the

80

http://psi081.ba.ars.usda.gov/SGMD/default.htm
http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11752257&dopt=Abstract
http://genome-www.stanford.edu/Saccharomyces/
http://genome-www4.Stanford.EDU/cgi-bin/SGD/expression/expressionConnection.pl
http://www.cbil.upenn.edu/RAD2/
http://red.dna.affrc.go.jp/RED/
http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11752296&dopt=Abstract
http://genome.gsc.riken.go.jp/
http://read.gsc.riken.go.jp/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=14681485&dopt=Abstract
http://microarray.cnmcresearch.org/pgagoals.asp
http://141.214.6.13:8080/Array1/index_html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=14681484&dopt=Abstract
http://affymetrix.arabidopsis.info/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=14668234&dopt=Abstract
http://proteogenomics.musc.edu/pss/home.php
http://www.dkfz-heidelberg.de/tbi/services/mchips/supplement_bioinformatics.html
http://www.dkfz-heidelberg.de/tbi/services/mchips/supplement_bioinformatics.html
http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11934741&dopt=Abstract
http://www.dkfz-heidelberg.de/tbi/services/mchips/
http://www.dkfz-heidelberg.de/tbi/services/mchips/
http://www.lola.gwu.edu/
http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11752297&dopt=Abstract
http://www.hugeindex.org/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=14681481&dopt=Abstract
http://www.germonline.org/
http://genomics.biochem.uci.edu/genex/
http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11752295&dopt=Abstract
http://www.ncbi.nlm.nih.gov/geo/

soybean cyst nematode and contains genomic, EST and microarray data with
embedded analytical tools allowing correlation of soybean ESTs with their
gene expression profiles. Reference[PubMed]

• Standford Microarray Database (SMD) - Standford Microarray Database
(SMD) stores raw and normalized data from microarray experiments, as well
as their corresponding image files. In addition, SMD provides interfaces for
data retrieval, analysis and visualization. Data is released to the public at the
researcher's discretion or upon publication. Reference[PubMed]

• Yale Microarray Database
• yeast Microarray Global Viewer (yMGV) - A database for yeast gene

expression data maintained by Laboratoire d

81

http://www.biologie.ens.fr/en/genetiqu/puces/microarrays.html
http://www.transcriptome.ens.fr/ymgv/
http://info.med.yale.edu/microarray/
http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11125075&dopt=Abstract
http://genome-www.stanford.edu/microarray
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=14681442&dopt=Abstract

7. References

[1] Jie Liang*, Seman Kachalo, Computational analysis of microarray gene
expression profiles: clustering, classification, and beyond, Chemometrics and
Intelligent Laboratory Systems 62 (2002) 199– 216

[2] Yong Woo,a Jason Affourtit,Sandra Daigle, Agnes Viale, Kevin Johnson, Jurgen
Naggert, and Gary Churchilla A Comparison of cDNA, Oligonucleotide, and
Affymetrix GeneChip Gene Expression Microarray Platforms, Journal of
Biomolecular Techniques 15:276–284 © 2004 ABRF

[3] Nancy Mah, Anders Thelin, Tim Lu, Susanna Nikolaus, Tanja Kühbacher, Yesim
Gurbuz, Holger Eickhoff, Günther Klöppel, Hans Lehrach, Björn Mellgård,A
comparison of oligonucleotide and cDNA-based microarray systems, Physiol.
Genomics 16:361-370, 2004. First published Nov 25, 2003, doi:10.
1152/physiolgenomics. 00080. 2003

[5] T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek,
J. P. Mesirov, H. Coller, M. L. Loh, J. R. Downing, M. A.
Calgiuri, C. D. Bloomfield, E. S. Lander, Molecular classification
of cancer: class discovery and class prediction by gene
expression monitoring, Science 286 (1999) 531–537.

[6] K. Fujarewicz, Z. Malgorzata ,Selecting diffentially expressed genes for colon
tumor classification, Int. J. Appl. Math. Comput. Sci. , 2003, Vol. 13, No. 3, 327–
335

[7] J. L. DeRisi, V. R. Iyer, P. O. Brown, Exploring the metabolic
and genetic control of gene expression on a genomic scal,
Science 278 (1997) 680–686.

[8] Jie Liang*, Seman Kachalo, Computational analysis of microarray gene
expression profiles: clustering, classification, and beyond, Chemometrics and
Intelligent Laboratory Systems 62 (2002) 199– 216

[9]Marshall, A., Hodgson, J., (1998). DNA chips: an array of possibilities. Nature
Biotechnology 16: 27-31

[10] Griffin Weber, Staal Vinterbo, Lucila Ohno-Machado, Multivariate selection of
genetic markers in diagnostic classification, Artificial Intelligence in Medicine (2004)
31, 155—167

[11]Laura J. van’t Van Veer Gene expression profiling predicts clinical outcome o
breast cancer

82

[12] Mike West*, Carrie Blanchette†, Holly Dressman‡, Erich Huang‡, Seiichi
Ishida‡, Rainer Spang*, Harry Zuzan*,John A. Olson, Jr.†, Jeffrey R. Marks†, and
Joseph R. Nevins‡§ Predicting the clinical status of human breast cancer
by using gene expression profiles.Edited by Peter J. Bickel, University of California,
Berkeley, CA, and approved August 3, 2001 (received for review April 3, 2001)
 [13] A. Pavelka and A. Proch´azka ALGORITHMS FOR INITIALIZATION
OF NEURAL NETWORK WEIGHTS,Institute of Chemical Technology, Department of
Computing and Control Engineering. http://dsp. vscht. Cz

[14] Ananth Ranganathan, “The Levenberg-Marquardt Algorithm” 8th June 2004

[15] Andr´e Elisseeff , Leave-one-out error and stability of learning algorithms with
applications, Max Planck Institute for Biological Cybernetics Spemannstrasse 38,
72076 Tuebingen Germany ,e-mail: andre. elisseeff@tuebingen. mpg. De

[16] F. Rosenblatt, Principles of Neurodynamics (Spartan, New York, 1962).

[17] A Hybrid Neural Network/Genetic Algorithm Approach to
Optimizing Feature Extraction for Signal Classification

[18] David J. C MacKay ,A Practical Bayesian Frmework for BackProp Newtwork
,Computation and Neural Systems ,California Institute Of Technology 139-74

[19] David J. C MacKay . The Evidence Framework applied to Classification
Networks,
,Computation and Neural Systems ,California Institute Of Technology 139-74

[20] F. Dan Foresee* and Martin T. Hagan**,GAUSS-NEWTON
APPROXIMATION TO BAYESIAN LEARNING, email: fdf@lucent. com,
mhagan@master. ceat. okstate. Edu

[21] http://davidmlane. com/hyperstat/A51911. html

[22] Christopher Burges , A tutorial on support vector machines for pattern
recognition

[23] Vapnic, V. (1995) The Nature of Statistical Learning Theory. Springer.

[24] R. Courant and D. Hilbert. Methods of mathematical physics, volume 1.
Interscience Publishers, New York, 1953

[25] P. Domingos and M. Pazzani. On the optimality of the simple
Bayesian classifier under zero-one loss. Machine Learning,
29:103–130, 1997

[26] Tom M. Mitchell. Machine Learning. McGraw-Hill, 1997.

[27]R. O. Duda and P. E. Hart. Pattern classification and scene analysis.
New York: John Wiley and Sons, 1973.

83

http://davidmlane.com/hyperstat/A51911.html

[30] Hüseyin Gökhan Akçay,Experiments on Combining Classifiers,Bilkent
University, Department of Computer Engineering, 06800 Ankara, Turkey
akcay@cs. bilkent. edu. tr

[31] M. van Erp, L. Vuurpijl, and L. Schomaker, An overview and comparison of
voting methods for pattern recognition, in Proc. of the 8th IWFHR. 2002, pp. 195--
200, IEEE

84

mailto:akcay@cs.bilkent.edu.tr

	CHAPTER 1
	1.Introduction
	1.1Microarray technology
	1.1.1DNA and oligonucleotide gene expression microarray platforms: principals and differences

	1.2The importance of clinical data
	1.3Methods
	1.4Problems dealing with microarrays datasets
	1.5Breast cancer microarrays datasets
	1.5.1Van Veer’s breast cancer dataset
	1.5.2West’s breast cancer dataset

	1.6Datasets obtained with RFE method
	1.7Software packages
	1.8Aims and goals of this work

	CHAPTER 2
	2.Methods for supervised classification
	2.1Neural network classifier
	2.2Setting up the neural network
	2.3Initializing and training the ANN
	2.3.1Descent gradient back propagation algorithm
	i. Output weight modification
	ii. Hidden layer weight modification

	2.3.2Levenberg-Marquadt algorithm

	2.4Accuracy of the neural classifier via leave-one-out method
	2.5Introduction to high order neural network (Honn)
	2.6Principals of the Honns
	2.7Generalization and regularization, two important issues
	2.7.1Generalization	
	2.7.2Regularization
	2.7.3Bayesian regularization
	2.7.3.1A framework for our classifier: determination of and

	2.8Conclusions for neural networks
	2.9Other Classification methods
	2.9.1K-nearest neighbour classifier
	2.9.2Quadratic classifier
	2.9.3Support vector classifier
	2.9.3.1The theory of SVM

	2.9.4 Bayes Classifier
	2.9.4.1Definitions and background
	2.9.4.2Limitations and optimality of the Bayes classifier

	CHAPTER 3
	3.Results
	3.1The leave-one-out and v-fold cross validation results
	3.2 Evaluation through ROC curves
	3.3 Results of Roc curves

	CHAPTER 4
	4.Introduction to fussion classification
	4.1Beyond singularity: combining the above classifiers
	4.2Combining rules

	CHAPTER 5
	5.Conclusions
	CHAPTER 6
	6.Resources
	6.1Software for classification
	6.2Public breast cancer microarray datasets
	6.3 Public microarray database (in alphabetical order)

	7. References

