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ABSTRACT 

 

The present work focuses on the long term prediction of temperature data employing neural network models. 

Primarily, a benchmarking auto regressive model is developed. Then, different neural networks are developed 

regarding the network type, the training function and the training intervals. Temperature predictions are 

calculated for ten and for five year intervals. Each model’s results are compared with the corresponding real 

temperature data, in terms of mean, maximum and minimum temperature values, cooling degree days and 

frequency distribution. The best predicted temperature data are used as outdoor temperature for the heating 

and cooling loads calculations of a typical office building. The building simulation model which is used for the 

energy demand calculations is the open source ESP-r model. The results indicate a relative accurate potential 

of the neural networks for the simulation of the mean temperature data and prediction of the cooling degree 

days. Regarding the high temperature values and the maximum peaks, the neural network models are unable 

to reach precise values, due to the lack of similar training data. As a result, the cooling loads calculated from 

neural network predictions are underestimated, while the heating loads prediction is more accurate.  
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1. Introduction 

1.1 The aim of this study 

During the Earth’s history climate has varied amongst ages of relative warmth and relative cold. Though, it is 

evident that the temperature of the earth’s surface and lower atmosphere has increased on average by about 

0.6 oC over the past 100 years. Climate is the long-term statistical expression of short-term weather. According 

to NASA’s climate research agency, earth has warmed since 1880. The temperature increase has deteriorated 

since the 1970s, while the 20 warmest years followed in 1981 with all 10 of the warmest years occurring in the 

past 12 years. Throughout these years, the energy consumption associated with the changes in the outdoor 

temperature has altered in terms of heating and cooling loads as well as the extent of greenhouse gases in the 

atmosphere, as a result of the burning of fossil fuels for energy and transportation. These changes have drag 

with them wider changes in the ecological balances such as land use changes, changes in water resources etc. 

Recent studies, concerns have grown that the amount of GHG and the temperature increase are partially 

related. As a result, global warming is nowadays considered most probably to be due to the increases in 

greenhouse gas emissions.   

Regarding those temperature changes occurred in the past, the question arises whether this phenomena will 

continue to grow in the coming years and if yes, to what extent. This request exists not only because of the 

curiosity or the fascination of predicting the future. Numerous people work on predictions such as, 

meteorologists, engineers, business analysts. Long term weather predictions are mainly useful to prevent 

possible harms or to limit the damages. In the present study long-term prediction of temperature data are 

examined with the help of neural networks and used for the calculation of the thermal and cooling loads of a 

typical office building in Crete.   

 

1.2 Methodology  

In order to proceed with a long term temperature prediction, real temperature data have been collected from a 

meteorological station located in Greece, so the data are representative for the Greek-Mediterranean climate. 

For the purposes of this study, the temperature data are acquired by the Laboratory of Climatology and 

Atmospheric Environment (LACAE) of NKUA, from the city of Heraklion in Crete. The temperature data have a 

sampling rate from three to one hour step. The reference period of the temperature data are from year 1970 to 

year 2010. Firstly, the data are analyzed in daily and yearly means, winter and summer periods, in order to 

derive a representative overview of the temperature variations of the past forty years. Furthermore, a 

benchmark simulation model was developed using a seasonal autoregressive model (ARMA). Then, different 

types of neural networks (NN) have been developed with different training functions and training periods. The 

NN developed is of one layer type because, as has been observed, increase of the networks complexity 



2 

 

resulted in less accurate data. Predictions are calculated for ten and for five year intervals. The model results 

are compared in terms of mean, maximum and minimum temperature values, in the cooling degree days and in 

the frequency distribution (histograms). Subsequently, the predicted outdoor temperature data that are 

considered as the best results, are used as input to the heating and cooling loads model of a typical office 

building. The building simulation model used for the building energy demand calculations is the open source 

ESP-r model. The results revealed a relative potential of the neural networks to accurately simulate the mean 

temperature data and predict the cooling degree days. Regarding, the high temperatures and the maximum 

peaks, the neural network models are unable to reach those values, due to the lack of similar training data. This 

was also reflected in the cooling loads calculations. The results and discussion are presented in Chapter 5.  

  

2. Solar radiation in the atmospheric boundary layer - Temperature  

The present work focuses on processes and effects of physical phenomena which occur in the lower boundary 

of the atmosphere, near the surface of the earth. It is that part of the troposphere that is instantly affected by the 

surface of the earth and reacts to its forcings within about an hour or less. The lowest part of the atmosphere is 

where surface effects are most evident. This region is known as the atmospheric boundary layer (ABL) of the 

earth, and extends from the surface to ca 1 to 2 km high (in mid-latitudes can vary from 100 m to 3 km). 

The surface of the earth has many intense effects on the atmosphere that impact our ability to understand and 

predict its manner of acting. The surface layer of the earth consists of several types and combinations of 

landscapes and constructions such as mountains, hills, lakes and seas, plants, and manmade structures. Each 

of the surfaces types differs in how it interacts with the atmosphere. The different interactions between surface 

and boundary layer are called surface and boundary layer processes. Surface and boundary layer processes 

define the amount of heat, water, gases; particles are exchanged between the surface and the boundary layer 

and between the boundary layer and the free atmosphere. In the definitions of fluid mechanics, a boundary 

layer is the layer of fluid in the immediate vicinity of a bounding surface where the effects of viscosity are 

significant. In the Earth's atmosphere, the atmospheric boundary layer is the air layer near the ground affected 

by diurnal heat, moisture or momentum transfer to or from the surface. 

For example, more water will typically evaporate from a lake than from a pasture of the same size, and dark 

barren soil will absorb much more solar radiation than a bright snow surface. Also of interest is how the winds 

and temperatures within the lower part of the ABL are affected. The temperatures in the ABL reveal diurnal 

variations unlike the atmosphere above. The earth’s surface influences the ABL by friction and by heat fluxes at 

the ground. The air flow in the ABL is characterized by turbulence, which is generated by wind shear (wind is 

approximately geostrophic at the top of the ABL but zero at the surface). Temperature gradients can either 

generate or suppress turbulence. [1] 
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Table 1. Comparison between Boundary layer and free atmosphere 

Property Boundary Layer Free Atmosphere 

Turbulence Almost continuously turbulent over its whole depth 
Turbulence in convective 
clouds 

Friction Strong drag against earth’s surface. Large energy dissipation Small viscous dissipation 

Dispersion Rapid turbulent mixing in the vertical and horizontal 
Small molecular diffusion. 
Often rapid horizontal 
transport by mean wind. 

Winds 
Near logarithmic wind speed profile in the surface layer and 
subgeostrophic above. 

Nearly geostrophic 

Vertical 
transport 

Turbulence dominates 
Mean wind and cumulus-
scale dominate 

Thickness 
Varies between 100 m to 3 km in time and space. Diurnal 
oscillations over land 

Less variable. 8-18 km. Slow 
time variations 

 

It is the layer where nature springs, humans live and all our activities occur and the pollutants disperse affecting 

the rest of the atmosphere. Furthermore, all meteorological conditions prevail considered for the study or 

forecasting of the climate changes, and the temperature variations.  

During a clear day the boundary layer can be divided into several sublayers, as shown in Figure 1: 

1. The roughness sublayer this is the layer of air in which air flows around individual roughness elements 

(such as grass, plants, trees or buildings). It is the part in which the present work focuses.  

2. The surface layer (formerly known as the constant flux layer) in this layer, typically 100 m thick (or 10% 

of the depth of the ABL), the winds, temperature and humidity vary rapidly with altitude, and  the characteristics 

of turbulence are affected by the surface. Vertical fluxes of heat and momentum are approximately constant. 

3. The well-mixed layer rising buoyant plumes from the surface layer, and associated turbulence, cause 

potential temperature and other quantities to be relatively constant with altitude. The earth s rotation becomes 

important in this layer, and the wind direction veers with height. 

4. The capping inversion on a summer s day the convective boundary layer is often capped by a temperature 

inversion, which inhibits mixing, and confines air and pollution below it to within the boundary layer. 

At night a new stable nocturnal boundary layer grows as air is cooled from the surface. The daytime mixed-layer 

remains as a residual layer while the capping inversion is eroded. Sometimes the ABL is difficult to define; in 

the vicinity of fronts there is no obvious capping inversion and the ABL structure is more a response to synoptic 

forcing. 



4 

 

 

Figure 1. Boundary layer sublayers 

 

 

 

Figure 2. Velocity and temperature boundary layer similarity [2] 

 

The flow of air and the thermal structure of the atmospheric boundary layer is defined by the Earth’s surface. In 

particular, the surface energy balance, the separation of energy at the surface into diverse kinds, and the 

roughness of surface establish the temperature and the vertical profiles of wind and temperature in the 

boundary layer. Urban areas alter the material and aerodynamic character of the surface, greatly affecting the 

surface energy balance as well as the dynamic and thermodynamic nature of the boundary layer. These 

modifications to the local climate are the core topics of urban meteorology and urban climatology. [3] 

The surface energy balance drives the diurnal variation in the ABL. For an infinitely thin surface layer of the 

ground, we have the following balance (with all terms in W/m2): 

 nR G H E     
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where nR  is the net irradiance ( net radiation ) into the surface. 

G  is the ground heat flux density by conduction from the surface layer of the ground into the ground beneath.  

H  is the sensible heat flux density: the heating of the atmosphere by loss of energy from the surface. 

E is the latent heat flux density: the loss of energy by evaporation (the units of evaporation rate E is  

kg∙𝑚−2 ∙ 𝑠−1and the specific latent heat of evaporation equals 2.5 106 J kg-1).  

The net radiation is the available energy at the earth’s surface as it is converted into heat. The relocation of this 

energy crosswise the surface occurs primarily through three processes. Firstly is the process where heat is 

transferred from the Earth’s surface to the atmosphere by conduction and convection sensible heat flux, Qh  

Secondly, latent heat flux, Qe, moves energy when solid and liquid water are converted into vapour. Finally 

ground heat flux, Qg, is the transfer of sensible heat in the soil towards the surface or away from the surface. 

The following equation describes the partitioning of heat energy at the earth’s surface. [4] 

 
n h e gR Q Q Q     

The nature of the ABL is determined by the balance between H and E (or Qh and Qe), which depends on 

surface moisture availability. A convenient parameter is the Bowen ratio, defined as /B H E or 

 h

e

Q
B

Q e



 


   with  
p

v

PC

L



  

where γ is called the psychrometric constant, P is the atmospheric pressure, Cp is the specific heat of air at 

constant pressure, Lv is the latent heat of vaporization of water, ε is the ratio of the molecular weight of water 

vapor (Mw) to the molecular weight of air (Ma), T is the temperature, and e is the vapor pressure. The 

temperature is proportional to the sensible heat flux density Qh. Hence, ΔT and Δe are the temperature and 

vapor pressure gradients respectively between the two heights of measurement.  

The Bowen ratio is measured as the ratio of the gradients of temperature and vapor pressure across two fixed 

heights above the surface. All fluxes are positive downward. The Bowen ratio system is applied under the 

assumption that the turbulent transfer coefficients for sensible heat and water vapor are equal. [5] 

Different surfaces are vegetated surfaces, oceans, urban areas, deserts, etc.  

The boundary layer over an urban area is of particular interest as it is in this layer of the atmosphere that the 

majority of routine observations in urban areas are taken. It is therefore important to know what these 

observations represent. As air flows from one surface to another an internal boundary layer forms. The internal 

boundary layer is influenced by, but not fully adjusted to, the new surface and deepens with fetch. The internal 

boundary layer formed over urban areas is the urban boundary layer. The urban boundary layer is however a 

collection of successive internal boundary layers rather than one internal boundary layer due to the continual 

changing of building formations and densities across the urban area. 
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Figure 3. Schematic of the volumetric averaging approach to urban energy balance (after Oke, 1987). 

The base of the averaging volume is determined as the level across which there is negligible energy 

transfer on time scales of less than a day. Note the different notation: Q_ is the net radiation; QH the 

sensible heat flux; QE the latent heat flux; _QS storage; _QA the advective flux; and QF the 

anthropogenic heat flux. 

 

Figure 4. Average diurnal courses of turbulent heat flux densities (QH, QE) at an urban and suburban site 

in Oberhausen, Germany (source: Goldbach & Kuttler, 2012) [6] 

2.1 Temperature at low altitudes in an urban environment – The Urban Heat Island  

The climatic conditions prevailing in large built up areas differ from the climate of its rural surroundings. Unlike 

rural areas, built up areas denote higher air and surface temperatures, which happen mainly during climate 

conditions characterized by low winds and limited cloud cover. Urban climates differ in air temperature, 

humidity, wind speed and direction, as well as in the amount of precipitation. These differences result in large 

part from the alteration of the natural terrain through the construction of artificial structures and surfaces. Tall 

buildings, paved surfaces, and parking areas affect wind flow, precipitation runoff, and the energy balance of a 
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locale. Among other factors (Table 2), high daytime radiation, a negative radiation balance (Q*) in the evening 

and at night as well as a limited atmospheric exchange guarantee the development of a positive horizontal 

temperature difference between urban and rural, non-built-up surroundings. This phenomenon is called the 

urban heat island (UHI).[6] Urban heat islands are caused by development and the changes in radiative and 

thermal properties of urban infrastructure as well as the impacts buildings can have on the local micro-climate—

for example tall buildings can slow the rate at which cities cool off at night. Heat islands are influenced by a 

city’s geographic location and by local weather patterns, and their intensity changes on a daily and seasonal 

basis. [7] 

 

 

Table 2. Meteorological and structural factors influencing the UHI (source: Kuttler 2009) 

Influencing factor (IF) Sign of correlation coefficient between UHI and IF 

Cloud cover - 

Wind Speed - 

Anthropogenic heat emission + 

Bowen ratio B (B=QH/QE) + 

Population + 

Sky view factor (degree to which the sky is obscured 
by the surroundings at a given location) 

- 

Ratio building height/street width (H/W) + 

Surface sealing + 

Green and water surface area/total area - 

Latitude + 

 

Temperature changes resulting by the built-up setting affect people’s health and comfort in addition to energy 

consumption and air quality. For that reason it is significant for the urban planners to learn about air 

temperature variations between different land use categories for both extreme situations and during average 

conditions. [8]. Furthermore is also of great importance to be able to provide accurate predictions in the longer 

term for the future situation for the study of climatic conditions, when designing a city.  

In a built environment, solar energy is absorbed into infrastructure paving, roofs and facades of different 

materials, causing the increase of the surface temperature of urban structures to become 10 - 20 °C higher 

than the ambient air temperatures [9]. The albedo is a measure of the quantity of solar energy reflected by a 

surface In Figure 5 albedo values for different city surfaces can be seen. Low albedo implies higher surface 

temperatures since the larger amounts of energy are absorbed.  

As surfaces throughout an entire community or city become hotter, overall ambient air temperature increases. 

[10] Buildings and urban constructions have different thermal properties from their natural surroundings. This 

results to a temperature excess in the build-up areas near-surface air layer. In addition to the UHI, many kinds 
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of UHIs can be defined. They include those defined according to the target medium, the location and the type of 

sensor. These UHIs do not appear inevitably in an “island” structure. Therefore in these cases it is more 

appropriate to talk about the urban temperature field or pattern. The determination of the surface temperature in 

cities is difficult because of the complex structure of the urban-atmosphere interface [11]. 

 

 

Figure 5. Albedo values for various urban surfaces [10] 

Land surface temperature (LST) and its diurnal variation are crucial for the evaluation of the interactions 

between the urban land surfaces and the atmosphere. Land surface temperature (LST) is one of the key 

parameters of land-atmosphere energy exchange, climate change, and the global hydrological cycle. The 

diurnal variations of LST are strongly correlated with solar insolation, wind, and land surface characteristics, e.g. 

vegetation type, soil moisture, and surface structure [12], [13]. In greater built up areas the surface temperature 

is generally measured indirectly with the help of distant sense equipment although the sensors or cameras don’t 

capture the total active surface because of the obstructions present on the 3D surface [14]. This study focuses 

on the air temperature in an urban environment. There are surface and atmospheric urban heat islands. These 

two types of heat island differ in their formulation, the techniques used to recognize and measure them, their 

impacts, and to some degree, the methods available to mitigate them. Table 3 summarizes the basic 

characteristics of each type of heat island [7].  

 

Table 3. Surface and atmospheric UHI basic characteristics 

Feature Surface UHI Atmospheric UHI 

Temporal Development 

Present at all times of the day and 
night 
Most intense during the day in the 
summer 

May be small or non-existent 
during the day 
Most intense at night or predawn 
and in the winter 



9 

 

Peak intensity 
(Most intense UHI conditions) 

More spatial and temporal variation 
Day: 10 – 15 oC 
Night: 5 – 0 oC 

Less variation 
Day: -1 – 3 oC 
Night: 7 – 12 oC 

Typical Identification Method 
Indirect measurement: 
Remote sensing 

Direct measurement: 
Fixed weather stations 
Mobile traverses 

Typical Depiction Thermal Image 
Isotherm map 
Temperature graph 

 

 The air temperature between the city buildings in a city web is affected by the temperatures of both horizontal 

and vertical surfaces. This compound impact and the individual effects of factors are complicated to be 

determined. Voogt and Oke (1997) introduced the concept of complete surface temperature which cannot be 

measured directly, but it can be calculated or estimated as a result of the radiation originating from all of the 

horizontal and vertical surfaces. [15]  

The present study focuses on the field of impact which has an influence on the temperature of the near-surface 

air temperature. 

 

2.2 Air temperature variations over the last 100 years  

People are observing the world's average temperature from the late 19th century where weather stations began 

to record measurements more steadily. On January 1923 “A period of warm winters in Europe “ was published 

by C. E.P. Brook, stating an abnormal winter warmth in central Europe, during the decade 1911-1920. [16] By 

the 1930s, observers had accumulated millions of numbers for temperatures at stations around the world and 

realized there had been a obvious warming trend, at least in eastern North America and western Europe, the 

only parts of the world where reliable measurements went back so far, while the press began to call awareness 

to several anecdotes of above-normal temperatures. Experts considered this was simply one phase of a cycle 

of increasing and decreasing temperatures that probably fluctuated over centuries. Scientists stated, when they 

referred to a contemporary "climate change" this was not an everlasting alter, but a long-term cyclical change 

“like all other climate fluctuations”. Temperature data were such disorderly that with adequate manipulation 

someone could obtain several forged trends.  An English engineer, named Guy Stewart Callendar sorted out 

data by his  effort assessing  the average global temperature, and was the first who he announced in 1938 that 

the mean global temperature between 1890 and 1935 had beyond doubt risen, by close to 0.5°C. Furthermore, 

reviving an old theory that human emissions of carbon dioxide gas (CO2) from burning fuel could cause a 

"greenhouse effect," Callendar said this was the cause of the warming. The climatologist Helmut Landsberg, 

found also in 1958 a considerable warming in the first half of the century, especially in the northern latitudes at 

an average 0.8°C. 
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This fact was amplified by the climate historian Hubert H. Lamb in 1959 who wrote "Our attitude to climatic 

'normals' must clearly change". During the next decade 1960s and into the 1970s, the average global 

temperature remained cool while Western Europe in particular suffered some of the coldest winters on record. 

This observation led many scientists to believe that the global warming reported for the decades before 1940 

had been an illusion. To this concept counted the argument that most temperature measurements came from 

built-up areas. The expansion of the urban limits, led to local temperature increase (a preliminary conception of 

the UHI idea), which might have given a fake sense of global warming.   

Moreover few experts expressed the opinion that human sources pollution, was starting to shade and cool the 

earths’ surface although the more adequate explanation was again that the earth was responding to long-term 

fluctuations in the Sun's output of energy.  

J. Murray Mitchell, an American climatologist published in 1975 a study about atmospheric pollution (carbon 

dioxide and particulate loading) of long-term changes, and the impact of such changes on the equilibrium 

temperature of the Earth, where it was assumed that there was really a natural cycle responsible for the cooling 

in the past decade, only temporarily preventing the greenhouse warming. 

Many experts saw at that time no concrete evidence that warming would continue in the future. Trustworthy 

records covered hardly a century and showed large variations in particular between 1940 and 1970. Most of 

them expected that evidence would come into sight clearly around the end of the century, but not earlier.  

By the late 1990s, numerous kinds of proof indicated a general warming at surface level such as that the spring 

in the Northern Hemisphere was coming on average a week earlier than in the 1970s. This was confirmed by 

much more diverse measures as in the earlier years as well measured in satellite pictures. A more essential 

indicator became the temperature of the upper ocean layers where most of the heat entering the climate system 

was stored and a serious rise was found in recent decades. By this time, the 1990s were indubitably the 

warmest decade since thermometers came into common use, and the trend was accelerating. [17] 

 

 

Figure 6. Global temperature 1880-2014 - Average annual surface air temperatures, based on 
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measurements by meteorological stations, ships and satellites, as analyzed using independent 

methods by four different groups. (Source: NASA Earth Observatory.) 

 

Through the last decade, research on the earths’ mean surface air temperature has shown that its increase 

relies partially on differential changes in daily maximum and minimum temperatures, leading to a reduction of 

the diurnal temperature range (DTR). Diurnal temperature range (DTR) is a meteorological indicator 

independent of internal climate variation and therefore, considered as a signature of observed climate change. 

It has been observed that global averaged DTR has decreased significantly in the last fifty years. However, the 

change in DTR has regional and seasonal characteristics.[18] In general, the amplitude of the diurnal air 

temperature variation is reduced by the presence of vegetation, cloud cover, smoke, haze, and strong winds. If 

the vegetation is dense or tall, it reduces the incoming radiation by absorption and reflection, and acts as the 

primary source of radiation during the night. The general effect is that the vegetative surface is subject to much 

less temperature variations than bare soil. They reveal that there is a seasonal dependence of the diurnal 

variation of the air temperature amplitude on season and height. These average temperature variations are 

mainly a consequence of the daily and seasonal change of short-wave radiation, while the diurnal variation for 

particular cases is also strongly influenced by cloudiness, wind speed, atmospheric stability, etc. [19] 

Temperature analysis, using modern weather stations and with a wider coverage of the Southern Hemisphere, 

show that the DTR is continuing to decrease in most parts of the world, that urban effects on globally and 

hemispherically averaged time series are insignificant, and that circulation variations in parts of the Northern 

Hemisphere appear to be related to the DTR. [20] According the Union of Concerned Scientists Global 

Warming Effects Around the World [21] the last decade 2001-2010 was the warmest since 1880. Moreover 

during the last 50 years a decline of cold days and low temperature records is observed in combination to a rise 

of hot days and heat waves worldwide. The best projections demonstrate that average global temperatures are 

likely to increase 1.8-4.0° C by the end of the century depending on the quantity of carbon emissions.  

Regarding the Mediterranean area the occurrence of increased temperatures is very strong in South East 

Mediterranean where recent studies have shown unusual temperature anomalies due to climate change. 

In parallel, recent analysis has shown that the heat island phenomenon is present in the major cities of the 

specific area, while presenting a noteworthy increase in its intensity. [22] 

 

2.3 Temperature and Thermal Energy 

So far, measurements of the temperature in the lower surface layer are described as an extent of how hot or 

cold the air is or as the heat intensity present in the air and expressed according to the scale of Celsius 

degrees.  Microscopically, Kelvin temperature is a measure of the average kinetic energy of the atoms or 

http://earthobservatory.nasa.gov/NaturalHazards/view.php?id=85083
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molecules in a substance. Temperature is something like a level of agitation that is low when the atoms and 

molecules are gently oscillating and rotating. It is high when atomic motion becomes hectic and turbulent. The 

temperature in a body can be compared to the strength of winds in the atmosphere with low values when the 

leaves rustle, but higher ones when the branches start swinging. Just as high winds can break whole trees, high 

temperatures can cause atoms to tear away from their bonds. Thermal energy is the total internal energy of the 

atoms or molecules of a substance. As thermal energy is added to a substance, the motions of the molecules 

increase, and we say the substance is hotter, i.e. its temperature increases. Temperature is not the same as 

heat. Heat is energy in transfer. Heat is thermal energy that is being transferred between two places and is 

measured in the same units as energy. Heat is the kinetic energy of molecules being transferred.  

The usual unit of thermal energy is the calorie (𝑐) or the joule (𝑗) or the British thermal unit BTU. The energy 𝐸 

in joules (𝐽) is equal to the power 𝑃 in watts (𝑊), times the time period t in seconds (𝑠): 

𝐸(𝐽) =  𝑃(𝑊) ×  𝑡(𝑠)       𝑜𝑟      𝐽 =  𝑊 ×  𝑠 

In Table 4, the equivalences of the thermal energy units are depicted. 

 

Table 4. Thermal energy units 

Thermal Energy Units Calorie (c) Joule (J) BTU Watt-hour (Wh) 

Calorie (c) 1.00 4.18400 0.00396566683 0.00116222222 

Joule (J) 0.239005736 1.00 0.00094781712 0.000277778 

BTU 252.164401 1 055.05585 1.00 0.29307107 

Watthour (Wh) 860.42065 3600 3.41214163 1.00 

The transfer of thermal energy as heat requires a difference in temperature between the two points of transfer.  

Heat may be transferred by means of conduction, convection, or radiation.  

Conduction is the transfer of thermal energy (heat in transfer) due to collisions between the molecules in the 

object. Collisions between adjacent atoms and molecules transfer kinetic energy from the warmer to the cooler 

object. The objects must be in physical contact. How rapidly an object transports thermal energy by conduction 

depends, in part, on what material the object is made of. This property is known as thermal conductivity (k), a 

constant indicating how easily heat is transferred through a substance.  

𝐻𝑒𝑎𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑄 =  
𝑒𝑛𝑒𝑟𝑔𝑦 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

𝑡𝑖𝑚𝑒
=

𝐾 ∙ 𝐴 ∙ (𝑇ℎ𝑜𝑡 − 𝑇𝑐𝑜𝑙𝑑)

𝐿
 

Where 

 𝐾= the thermal conductivity (
𝐽

𝑠∙𝑚∙ 𝐶𝑜  𝑜𝑟
𝐵𝑇𝑈

𝑖𝑛𝑐ℎ∙ℎ𝑜𝑢𝑟∙𝑓𝑜𝑜𝑡2∙ 𝐹𝑜  ) 

 𝐴 = the cross sectional area (𝑚2 𝑜𝑟 𝑓2) 

 𝑇 = temperature ( 𝐶𝑜  𝑜𝑟 𝑜 𝐹𝑜 ) 
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 𝐿 = thickness (𝑚 𝑜𝑟 𝑖𝑛) 

 

Convection is thermal energy transferred by the flow of matter. It is the transfer of thermal energy due to the 

motion of the substance that contains the thermal energy. Although the conduction process can occur in liquids 

and gases as well as solids, convection may have a much larger effect in liquids and gases where the 

molecules are free to migrate. 

Radiation is the transfer of energy by electromagnetic radiation. Radiation can travel in a vacuum. In conduction 

and radiation, an energy transfer occurs without the transfer of mass. It is found that energy  can be transferred 

by radiation from one  location to another. No medium, such as air or water, is needed for the radiation to travel 

and transfer energy. It can pass through a perfect vacuum, as energy from the sun does in reaching earth. If 

you stand near an open fire such as a campfire, you notice that the side of you facing the fire becomes much 

warmer than the other side even if no wind is blowing. The explanation is that energy is transferred from the 

burning material to you via electromagnetic radiation. Of course, a small amount of energy is also transferred as 

heat via conduction and convection. For a campfire most of the radiant energy is infrared radiation.  Thermal 

resistance (𝑅) is a heat property and a measurement of a temperature difference by which an object or material 

resists a heat flow. In terms of insulation, the thermal resistance is measured by the 𝑅 −value. The 𝑅-value is a 

measure of thermal resistance  used in the building and construction industry. Under uniform conditions it is the 

ratio of the temperature difference across an insulator and the heat flux (heat transfer per unit area per unit 

time,𝑄̇𝐴 ). Thermal resistance varies with temperature but it is common practice in construction to treat it as a 

constant value. An 𝑅-value is a unit thermal resistance for a particular material or assembly of materials (such 

as an insulation panel). The 𝑅-value depends on a solid material's resistance to conductive heat transfer. For 

loose or porous material, the 𝑅-value accounts for convective and radiative heat transfer through the material. 

However it does not account for the radiative or convective properties of the material's surface, which may be 

an important factor for some applications. 𝑅 is expressed as the thickness of the material normalized to the 

thermal conductivity. The unit thermal conductance of a material is the reciprocal of the unit thermal resistance. 

This can also be called the unit surface conductance. The higher the value of 𝑅, the better the building 

insulation's theoretical effectiveness. 𝑅-value is the reciprocal of 𝑈-factor. The overall heat transfer coefficient 

is employed in calculating the rate of heat transfer 𝑄̇ from one fluid at an average bulk temperature T1 through 

a solid surface to a second fluid at an average bulk temperature T2 (where T1 > T2). The defining equation is 

generally only applicable to an incremental element of heat transfer surface dA for which the heat transfer rate 

is  𝑄̇ , and the equation is strictly valid only at steady state conditions and negligible lateral heat transfer in the 

solid surface, conditions generally true enough in most practical applications. The defining equation is: 

𝑑𝑄̇ = 𝑈(𝑇1 − 𝑇2)𝑑𝐴 

http://en.wikipedia.org/wiki/Heat_flow
http://en.wikipedia.org/wiki/Thermal_resistance
http://en.wikipedia.org/wiki/Heat_flux
http://en.wikipedia.org/wiki/Thermal_conductivity
http://en.wikipedia.org/wiki/Building_insulation
http://en.wikipedia.org/wiki/Building_insulation
http://en.wikipedia.org/wiki/Multiplicative_inverse
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where 𝑈 is referenced to a specific surface (see below).  

In the particular situation of heat transfer across a plane wall of uniform thickness, U is related to the individual 

film heat transfer coefficients, α1 and α2, of the two fluids by the equation: 

𝑈 =
1

1
𝑎1

+
𝛿𝑤

𝜆𝑤
+

1
𝑎2

 

where 𝛿𝑤 is the thickness of the wall and 𝜆𝑤 is the thermal conductivity of the wall.  

If there are fouling deposits on the wall, they have a resistance to heat transfer, R1 and R2, in units of m2 K/W, 

and these resistances must be added in: 

𝑈 =
1

1
𝑎1

+ 𝑅1 +
𝛿𝑤

𝜆𝑤
+ 𝑅2 +

1
𝑎2

 

For the special but very important case of heat transfer through the wall of a plain round tube, the different heat 

transfer areas on the inside and outside surfaces of the tube need to be considered. Let dAi be the inside 

incremental area and 𝑑𝐴0 be the outside. Then (including fouling resistances 𝑅𝑓𝑖 and  𝑅𝑓0 inside and out):  

𝑈0 =
1

1
𝑎𝑖

+ 𝑅𝑓𝑖 +
𝑟𝑖ln (

𝑟𝑜

𝑟𝑖
)

𝜆𝑤
+ 𝑅𝑓0 +

𝑟𝑖

𝑟0
+

𝑟𝑖

𝑎0𝑟0

 

where  𝑈0 is termed the "overall heat transfer coefficient referenced to (or based on) the inside tube heat 

transfer area", and  𝑟𝑖   and  𝑟0 the inside and outside radii of the tube. Alternatively, the overall coefficient may 

be based on the outside heat transfer area, giving: 

𝑈0 =
1

𝑟𝑜

𝑎𝑖𝑟𝑖
+ 𝑅𝑓𝑖

𝑟0

𝑟𝑖
+

𝑟0ln (
𝑟𝑜

𝑟𝑖
)

𝜆𝑤
+ 𝑅𝑓0 +

1
𝑎0

 

where 𝑈0  is termed the "overall heat transfer coefficient based on the outside tube heat transfer area." Note 

that: 

𝑑𝑄̇ = 𝑈𝑖(𝑇1 − 𝑇2)𝑑𝐴𝑖 = 𝑈0(𝑇1 − 𝑇2)𝑑𝐴0 
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These ideas may be extended to more complicated surfaces such as finned or composite tubes, but it is then 

necessary to add further resistance terms (and the area ratio corrections) for the fins or imperfect metal-to-

metal contact. Generally, in order to use these equations in heat transfer applications, the basic equation must 

be integrated:  

𝐴𝑇 = ∫
𝑑𝑄̇

𝑈 (𝑇1 − 𝑇2)′

𝑄𝑇

0

 

Where 𝐴𝑇  is the total area required to transfer 𝑄̇𝑇 and 𝑇1, 𝑇2 and sometimes 𝑈 must be expressed as 

functions of the heat already transferred from one end up to a given point in the heat transfer device. This is the 

basic design equation for most heat exchangers. The thermal energy that must be supplied to or removed from 

the interior of a building in order to maintain the desired comfort conditions is described as heating or cooling 

load. 

 

Figure 7. Schematic representation of the heating and cooling needs of a building 

Heating and cooling degree days are measures that reflect the amount of energy needed to heat or cool a 

building to a comfortable temperature, given how cold or hot it is outside. A “degree day” indicates that the daily 

average outdoor temperature is one degree higher or lower than some comfortable baseline temperature (in our 

case 18.6 oC for heating or 26 oC for cooling) on a particular day. The sum of the number of heating or cooling 

degree days over a year is approximately related to the annual amount of energy that would be needed to heat 

or cool a building in that location.  
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2.4 Theoretical background investigations linking fluctuations of temperature data with the 

heating and cooling loads  

Nowadays it is evident that the increase of urban temperatures has a serious impact on the energy demand of 

buildings by increasing significantly the energy consumption for cooling, while decreasing to some extent the 

energy consumption for heating.  Moreover the urban landscape creates a climate which affects, human 

comfort, air quality and energy consumption. Though, regardless of these facts, climate issues often have low 

impact on the urban planning process in practice. [23] Investigation on the subtropical climates such as the 

Mediterranean region have  shown  an increasing trend of temperature and summer discomfort over the past 

decades while studies converged on the outcome that temperature increase leads to  higher building cooling 

demand. Higher air conditioning requires more electricity use and thus more carbon emissions which 

consecutively would deteriorate global warming. Regarding the northern climates where higher temperatures 

could lower the heating energy, the consequences of climate change on the total requirements on primary 

energy are doubtful. That is because heating is less ordinary provided by electricity and more likely by oil- or 

gas-fired boiler plants opposed to electricity-driven air conditioners. Heating and cooling energy requirements 

as well as their trends and changes are of importance taking into account the national o worldwide energy and 

environmental perspective. In general these estimations are approached either by calculating the degree days 

with the appropriate temperature set points (usually for Greece they are 18.6-20oC for heating and 26oC for 

cooling) or through building energy simulation models. 

Moreover, considering buildings with large internal heat gains and non-domestic use, with many visitors, 

electrical equipment and lighting, the annual energy is larger for cooling than for heating. As a result, regardless 

the climate zone, the total required building energy would increase mostly in a hot or warmer summer and as 

well as warm winter periods where building energy use is dominated by cooling requirements. 

 Most of the climatic information currently used for building design and energy analysis is historical and there is 

a need for regular revision and updating taking the prospects of future climate change into consideration, 

especially the impact of temperature extremes on the selection of outdoor design conditions. More work on a 

continuing, regular basis is required. [24] 

According to Christenson et al. [25] weather data currently used for building design would increasingly lead to 

an overestimation of heating and underestimation of cooling demand in buildings and, therefore, require 

periodic adaptation. Greater attention should be paid in future to the summer thermal behavior of buildings. 

During 1901–2003, the HDD were found to have decreased by 11–18%, depending on the threshold 

temperature (8, 10 or 12 °C) and location. For the period 1975–2085, the scenario calculations suggested a 

further decrease between 13% and 87%. For CDD, accelerating positive trends were found during the 20th and 

21st centuries.   
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Pilli-Sihvola et al. [26] examined the impact on the increasing temperatures in five European countries in 

alongside a south–north contour with different climates, namely Spain, France, Netherland, Germany and 

Finland. The results show clear increasing temperature impacts on electricity demand and costs, with a 

decrease in the required heating energy in the central and northern European regions and an increase in the 

cooling energy demand in the southern Europe.  

Day et al. [27] investigated  the CDDs in London  stating that by 2030, without control, the increase in active 

cooling systems in London could lead to a doubling of CO2 emissions. The emissions raise relies on the 

increase in building stock, in the cooling systems market share and on climate change. The last of these is 

difficult to predict, but by itself could add 260,000–360,000 tones of CO2 emissions by 2030. This increase can 

be strongly mitigated, or even offset, by improvements in system efficiency. The difference between no 

efficiency improvements and an assumed 1–3% annual efficiency improvement is around 340,000 tonnes by 

2030. 

Regarding our Mediterranean region, Cartalis et al. [28] analyzed  the HDD and CDD alterations, finding a 

decline in heating and increase in cooling energy requirements. Furthermore, Mirasgedis et al. [29] investigated 

the HDDs and CDDs for the mid-term prediction  of electricity demand in Greece, estimating an increase of 3.6-

5.5% in the annual electricity demand because of  the climate change in the 21st century. Santamouris et al. 

[30], [31]  calculated the spatial distribution of the cooling needs of different typical buildings for different urban 

zones in the city of Athens. Because of the heat island effect, the cooling needs as well as the peak electricity 

demand for cooling in the affected areas, increased up to 100% compared to the corresponding load in the 

suburban areas around the city.  

As one can observe, the temperature increase affects the building energy demand by several ways depending 

on the geographical position, the main climate zones as well as on the most established energy use for heating 

and cooling requirements. In national, European but also worldwide viewpoint the energy and environmental 

strategies are formed and influenced by those factors. Heating is mostly managed with oil- or gas-fired boiler 

plants, while cooling systems operate more with electricity. The increasing temperatures, electricity demand and 

carbon emissions can be investigated with different energy sources, conventional fuels or in order to further 

investigate, adapt or mitigate the impact of climate change on the energy use in the built environment. For 

example, in the Mediterranean region, solar-powered cooling is very attractive due to the concurrency of the 

maximum cooling requirements and solar intensity. Furthermore, regarding large non domestic constructions 

advanced building energy management systems taking into account the indoor and outdoor environmental 

parameters and short term predictions can significantly mitigate the building’s energy requirements.  

Nevertheless, additional efforts are required for an adaptive thermal comfort in the current building design 

guidelines and energy codes and in the existing building stock, engaging socio-economic aspects of building 

occupant behavior.   

https://www.google.gr/search?q=significantly&spell=1&sa=X&ei=LHIFVb3zNam67gbG4oGwCw&ved=0CBkQvwUoAA
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2.5 Incentives in long term forecasting  

The 21st century projections of the temperature increase combined with the negative effects of the present 

extreme climate events, results to more investigation on climate adaptation techniques, as well as forecasting in 

urban areas for the next years.[32] The applied environmental engineering science and urban planners need 

decision making techniques on climate change adaptation and mitigation strategies. The historical data can 

become a reliable background however the changing nature of our climate needs a gradual revision taking into 

account the impact of future increase of temperature. Though this regular revision and recalculation of 

temperature trends can be implemented with an adequate time step from one minute to decades ahead, 

depending on the application. For example, a modern building energy management system requires indoor or 

outdoor temperature predictions of a daily time step or less in order to manage the building energy 

requirements. On the other hand, decision making on adaptation and mitigation strategies and policies have a 

time horizon of 5 to 50 years. For example the 2020 Renewable Energy Directive sets regulations for the EU to 

achieve its 20% renewable target by 2020, the EPDB directive sets rules moving towards new and retrofitted 

nearly-zero energy buildings by 2020 or the 2050 roadmap for moving to a low-carbon economy, with the 

suggestion to reduce the emissions around 90% by 2050, when global warming is to be held below 2°C 

compared to the temperature in pre-industrial times. Moreover, when studying new energy efficient building 

constructions, or when suggesting rehabilitation actions, one must consider them through the whole lifespan of 

a building because of the preventive cost of a regular refurbishment or reconstruction. As a result, it is a 

necessity to be aware of the longer term climatic conditions and temperature data. However, long term 

projections of such a stochastic physical quantity as temperature can never be reliable, it will always require 

worldwide monitoring, corrections, forecasting again beyond the time intervals of observation and so forth, and 

so on, from Guy Stewart Callendar in 1938 till the future scientists.  

outdoor temperature prediction can be used as input to indoor conditions predictive algorithms [33] which are 

used for testing genes of an optimization algorithm 

  

2.6 Prediction algorithms, neural networks assets 

Time series analysis and forecasting has been developed to a useful instrument in numerous applications in 

environmental engineering and other scientific areas in order to understand the evolving of environmental 

parameters, like solar radiation, temperature, wind potential, humidity, etc., over time. Atmospheric time series 

data demonstrate often a seasonal behavior yet not indubitable deterministic. As mentioned in Par. 2.5 

understanding the nature and the degree of probable climate changes is of importance to engineers and policy 

makers as it gives them a chance to be prepared for better mitigation and adaptation measures. Time series 

analysis of climatic data is the key for the analysis and for the long term forecasting of the environmental 

parameters affecting the urban climate. Although any individual extreme climate event cannot be attributed 
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unequivocally to climate change, the probability of high temperature events will increase if there is an underlying 

trend of rising mean temperature. In fact, according to data from the reinsurance industry, the number of climate 

related disasters has increased significantly the 1970’s. [34] 

Various types of time series data either it is business - economic or atmospheric and environmental data are 

characterized by a strong, but not necessarily deterministic, seasonal behavior. The seasonal pattern may arise 

simply because observations at the same time point of the year are dynamically related across the years.  

The probability density function gives the probability of specific temperature data to occur. It does not give any 

indication of how the temperature will vary in the future based on how it varied in the past. It does not give any 

information about the ‘memory’ of the time series temperature variables or the degree of their dependence. The 

function that gives us the abovementioned information is called autocorrelation function.   This function results 

by multiplying each value of the time series with values of the same time series shifted in a number of places 

(lags) from the first value. The results added up to a value for each lag and normalized by dividing by the 

variance. The autocorrelation coefficient r of a time series 𝑦1, 𝑦2 … 𝑦𝑛,  for lag 𝑘 is given by the formula: 
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When analyzing the dynamics of climatic variables, these are frequently considered to be a realization of 

stochastic processes associated with deterministic components for trend and seasonality. Time series models, 

such as the auto-regressive (AR) model, are tools for modelling the stochastic processes. 

These models taken into account the dependence of chronologically ordered observations. It is based in an 

analysis which was developed by G.P. Box and M. Jenkins (1970) who introduced univariate models for time 

series which simply made systematic use of the information included in the observed values of time series. This 

offered an easy way to predict the future development of this variable. Today, the procedure is known as Box- 

Jenkins Analysis and is widely applied.[35]  

A first order autoregressive process, an AR(1) process, can be written as an inhomogeneous stochastic first 

order difference equation, 

 1t t tx ax u      

The justification for automatic ARMA modeling is the following:  

 the method for building an ARMA model is somewhat complex and requires a deep knowledge of the 

method;  

 consequently, building an ARMA model is often a difficult task for the user, requiring training in 

statistical analysis, a good knowledge of the field of application, and the availability of an easy to use 

but versatile specialized computer program;  
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 the number of series to be analyzed is often large. It is important to note, that nowadays, the most used 

commercial tools for the time-series forecasting (Stat graphics, SPSS, etc.) required intervention of an 

human expert for the definition of the ARMA model.  

Traditional time series methods relied on the concept of probabilistic statistics, though lately, the idea of neural 

networks has also been integrated into time series forecasting. Following effort to overcome the disadvantages 

of the linear methods, while at the same time the development and expansion of artificial intelligence have 

resulted in the development of nonlinear modeling. In this kind of nonlinear modeling approach belong the 

Neural networks which are able to provide a fairly accurate universal approximation to any function. For that 

reason they can be trained to forecast the potential future values of a dependent variable. While parameters of 

other nonlinear models need to be determined, neural networks are in many cases preferable because there is 

no need of a previous declaration of the models is for the process under consideration. It is important to note 

that in the literature of time series forecasting with artificial neural networks (ANN), the ARMA model is used as 

a benchmark to test the effectiveness of the proposed methodology. [36] A basic tenet of the ARMA modeling 

approach is the assumption of linearity among the variables. However, there are many time series events for 

which the assumption of linearity may not hold. Clearly, ARMA models cannot be effectively used to capture 

and explain nonlinear relationships. When ARMA models are applied to processes that are nonlinear, 

forecasting errors often increase greatly as the forecasting horizon becomes longer. [37] 

 

An Artificial Neural Network (ANN) is an information processing paradigm that is inspired by the way biological 

nervous systems, such as the brain, process information. The key element of this paradigm is the novel 

structure of the information processing system. It is composed of a large number of highly interconnected 

processing elements (neurons) working in unison to solve specific problems. ANNs, like people, learn by 

example. An ANN is configured for a specific application, such as pattern recognition or data classification, 

through a learning process. Learning in biological systems involves adjustments to the synaptic connections 

that exist between the neurons. This is true for ANNs as well.  The first artificial neuron was produced in 1943 

by the neurophysiologist Warren McCulloch and the logician Walter Pits. But the technology available at that 

time did not allow them to do too much.  The neural networks re applied in simulation techniques or to explain 

problems requiring human perceptive approach. The central processing component of a neural network is a 

neuron, which can process a local memory and can carry out localized information. Each neuron computes a 

weighted sum of the inputs it receives and adding it with a bias (𝑏) to form the net input (𝑥). The bias is included 

in the neurons to allow the activation function to be offset from zero,  

 
1,1 1 1,2 2 1,... j jx w p w p w p b          
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The net input (𝑥) is then passed to the subsequent layer through a non-linear sigmoid function to form its own 

output  

1

1
j x

y
e




 

Afterward, the output 𝑦𝑗 was compared with the target output 𝑡𝑗  using an error function of the form  

 ( ) (1 )j j j jt y y y      

For the neuron in the hidden layer, the error term is given by the following equation: 

 (1 )j j j ky y w     

where 𝛿𝜅 is the error term of the output layer, and 𝑤𝜅 is the weight between the hidden layer and output layer. 

The error can also be propagated backward from the output layer to the input layer to update the weight of each 

connection as follows [39]: 

 ( 1) ( ) ( ( ) ( 1))ij ij j j ij ijw t w t y a w t w t         

A neural network consists of an input layer, an output layer and one or more intervening layers also referred to 

as hidden layers. The hidden layers capture the nonlinear relationship among the time series variables. Each 

layer consists of multiple neurons that are connected to neurons in adjacent layers. Since these networks 

contain many interacting nonlinear neurons in multiple layers, the networks can capture relatively complex 

phenomena. 

The training of a neural network is achieved by assessing the features and characteristics of the time series 

using the historical data. The model parameters as the connection weights 𝑤𝑡𝑖 and node biases 𝑏 are adjusted 

iteratively by a process of minimizing the forecast errors. For each training iteration, an input vector, randomly 

selected from the training set, is submitted to the input layer of the network being trained. The output of each 

processing unit (or neuron) was propagated forward through each layer of the network, using the equation 
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Where 𝑁𝐸𝑇𝑡 is an output of unit 𝑡 

 𝑤𝑡𝑖 is the weight on connection from the 𝑖𝑡ℎ to the 𝑡𝑡ℎ unit 

 𝑥𝑖  is an input data from unit 𝑖 (input node) to 𝑡 

𝑏𝑡 denotes a bias on the  𝑡𝑡ℎ  unit; and 

 𝑁 is the total number of input units. A bias or activation threshold of a proper magnitude can affect output 

activation in the same manner as imposing a limit on the network mapping function. 
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Figure 8. Single node in an ANN network 

The procedures for developing the neural network model are as follows [40]: 

(a) Normalize the learning set; 

(b) Decide the architecture and parameters: i.e., learning rate, momentum, and architecture. The selection of 

transfer functions performed by artificial neurons has been so far little explored ways to improve performance of 

neural networks in complex problems.  The simplest approach is to test several networks with different transfer 

functions and select the best one. [41]  

There are no criteria in deciding the parameters except on a trial-and-error basis; 

(c) Initialize all weights randomly; 

(d) Training, where the stopping criterion is either the number of iterations reached or 

when the total sum of squares of error is lower than a pre-determined value; 

(e) Choose the network with the minimum error; 

(f) Forecast future outcome.[38] 

 

 

Figure 9. A multilayer perceptron network with one hidden layer. Here the same activation function g is 

used in both layers. The superscript of n, θ , or w refers to the layer, first or second 

 

During the development of the prediction techniques, it was found that ARIMA models can be linked with neural 

networks to improve the accuracy of the forecasting. Maia et al. have used auto regressive moving average 

models (ARMA) with neural network and Maia et al. present models for interval valued time series forecasting 

based on AR, ARIMA and Artificial Neural Networks.  [42] the hybrid model using ARIMA to model the linear 
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component of the series and artificial neural networks to capture the nonlinearity aspects achieved the best 

average performance concerning the error measures considered.[43] 

Autoregressive integrated moving average (ARIMA) is one of the popular linear models in time series 

forecasting during the past three decades. Recent research activities in forecasting with artificial neural 

networks (ANNs) suggest that ANNs can be a promising alternative to the traditional linear methods. ARIMA 

models and ANNs are often compared with mixed conclusions in terms of the superiority in forecasting 

performance. [44] Many of the hybrid ARIMA–ANN models which exist in the literature apply an ARIMA model 

to given time series data, consider the error between the original and the ARIMA-predicted data as a nonlinear 

component, and model it using an ANN in different ways. Though these models give predictions with higher 

accuracy than the individual models, there is scope for further improvement in the accuracy if the nature of the 

given time series is taken into account before applying the models. [45] 
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3. Calculation Methodology  

3.1 40 years’ time series data  

According to the fourth IPCC report for climate change in 2007 [20], the Mediterranean Basin will be among the 

areas to be most adversely affected in terms of a rise in temperature, a decrease in overall water balance and a 

higher frequency of extreme climatic events. The findings of the analysis of the fifth report in 2013, indicated 

that the mean annual CDD appear maxima in the southeastern Aegean Sea, while minima are found in 

northwestern Greece [21].  

Furthermore, WMO’s provisional statement on the Status of the Global Climate in 2014 indicated that the global 

average air temperature over land and sea surface for January to October was about 0.57° Centigrade (1.03 

Fahrenheit) above the average of 14.00°C (57.2 °F) for the 1961-1990 reference period, and 0.09°C (0.16 °F) 

above the average for the past ten years (2004-2013). [46] 

In order to initiate the development of the prediction methodology, hourly environmental parameters covering 

the forty year period 1970–2010 from one meteorological Station of the Hellenic National Meteorological 

Service (HNMS) in Heraklion-Crete was used. E 25° 18' 15"   N 35° 17' 55" [47]. The accuracy of their 

temperature measurement devices (thermometers) and their relative humidity measurement devices is 0.2o C 

and 1% respectively. 

As a first outline, Heraklion has a Subtropical-Mediterranean climate. Summers are warm to hot and dry with 

clear skies. Dry hot days are often relieved by seasonal breezes. Winters are very mild with moderate rain. 

Measurements from the aforementioned meteorological station have already been used in previous studies 

regarding the climate change and the UHI in Mediterranean areas. J. Kapsomenakis et.all (2013) [22] used  the 

data of the Heraklion station together with other measurement points in Greece, in order to understand the 

impact of air temperature and relative humidity trends on the energy consumption of buildings. P.T. Nastos et.all 

(2009) to find out the spatial and temporal variability of the dry and wet spells in Greece, during the period 

1958–2007. 
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3.2 Statistical analysis of existing data  

 

In Figure 10-Figure 20, the temperature data used in our study are presented.  

 

 

Figure 10. Hourly temperature data from the reference station in Heraklion-Crete, for the period 1970 – 2010. The 

green line corresponds to the mean daily temperature.  

 

Figure 11. Mean annual temperature with the linear trend representation for the reference period 1970-2009. 
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Figure 12. Maximum annual temperature with the linear trend representation for the reference period 1970-2009. 

 

Figure 13. Minimum annual temperature with the linear trend representation for the reference period 1970-2009. 
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Figure 14. Mean daily temperature data for the summer 

period (May to September) decade 1970-1979 

 

 

 

Figure 15. Mean daily temperature data for the summer 

period (May to September) decade 1980-1989  

 

 

Figure 16. Mean daily temperature data for the summer 

period (May to September) decade 1990-1999  

 

 

Figure 17. Mean daily temperature data for the summer 

period (May to September) decade 2000-2009 
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Figure 18. Mean temperature data for the whole summer periods (May to September) years 1970-2009 

 

 

Figure 19. Maximum temperature data for the whole summer periods (May to September) years 1970-2009 
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Figure 20. Histogram of daily mean temperature for the periods 1970-79 and 2000-09 

 

 

A small increase in maximum temperature especially in the summer months can be seen.  While the trend lines 

in daily maxima and minima are somewhat weak, the frequency distribution of air temperatures show interesting 

patterns of change: lower temperatures shifted downwards in the histogram chart (less frequent) and an 

increase in the frequency of higher temperatures. Figure 20 shows the frequencies for the first and the last 

decades of the data series, 1970-1979 and 2000-2009.   
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3.3 Simulating the temperature data 

 

As stated in Par. 3.6, starting the temperature data simulation and prediction, an ARMA model is used as a 

benchmark and baseline methodology. The temperature series present a strong yearly seasonality which 

resembles a sinusoid function. The first though on simulating the temperature data is to compose the 

temperature values adding to a sinusoid function the daily deviations from the function values.  As a result, the 

temperature series is modeled as a sum of two components, a deterministic non-linear function that explains 

the seasonal or expected temperature for a given hour in a given year and a stochastic component that explains 

deviations of actual temperature from average values. The deterministic or expected temperature component is 

modeled with a sum of sines model, motivated by the physical nature of temperature and periodicities observed 

in the data (Figure 21).  

 

 

 

Figure 21. Deterministic fit of the air temperature data for the forty years period.  

 

 

The daily min max and mean values are calculated from one-hour time step available data. The autocorrelation 

coefficients of the daily mean temperature data are shown in Figure 22. As we can see, there is an upper and 

lower peak which approximately corresponds to winter and summer periods. One upper peak to the next 
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corresponds to one year period. The autocorrelation coefficient indicates good prediction ability in terms of 

mean daily temperature data.  

 

 

Figure 22. Autocorrelation coefficients of daily mean air temperature data time serie for the reference 

station of Heraklion. Each lag corresponds to one day. 

 

 

The results for ten year prediction are shown in Table 5, with help of Matlabs temperature simulation model. 

This result can be considered as reference basis for our further prediction techniques. As observed, the 

seasonal autoregressive model can produce adequate mean Temperature data, while it indicates weakness in 

simulating the maximum temperature values. In Figure 23, an excess in maximum temperature peaks is 

indicated which exceeds the actual high temperatures of our evaluation data.   
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Table 5.  Main statistical values of actual and simulated temperature data for the period 2000-2009 

 Tmean Tmax Tmin Tvar MSE R squared 

Actual 

Temperature 

(max) 

21.82 42.73 5.45 33.41 - - 

Simulated 

Temperature 

(max) 

21.54 46.96 4.35 34.82 15.6 0.79 

Actual 

Temperature 

(min) 

15.36 28.6 0.03 30.15 - - 

Simulated 

Temperature 

(min) 

15.00 31.50 0.81 30.12 10.74 0.82 

Actual 

Temperature 

(mean) 

18.75 34.75 3.1 31.56 - - 

Simulated 

Temperature 

(mean) 

18.61 32.28 4.41 31.1 9.16 0.85 
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Figure 23. Predicted (red line) and actual (blue line) daily max temperature data for the reference station 

of Heraklion, year 2000-2009 (MSE = 15.6) 

 

Figure 24. Actual daily max temperature versus predicted 
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Figure 25.  Predicted (red line) and actual (blue line) daily min temperature data for the reference station 

of Heraklion, year 2000-2009  (MSE = 10.74)   
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Figure 26. Actual daily min temperature versus predicted 
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Figure 27. Predicted (red line) and actual (blue line) daily mean temperature data for the reference 

station of Heraklion, year 2000-2009  (MSE = 9.16)   

 

 

Figure 28. Actual daily max temperature versus predicted 
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Finally the Cooling Degree Days are calculated for the actual and predicted maximum Temperature data 

considering as reference temperature 26oC. The maximum temperature values are chosen because of the 

difficulty to predict the highest temperatures.  

 

Figure 29. CDD of max daily temperatures for arma predicted (red, CDD=1065) and actual (blue, CDD = 

1006)  data. 
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Figure 30. Histogram of actual (blue) and simulated (red) mean temperature for the years 2000-2009. 

3.4 Forecasting the temperature data with ANN 

 

Several studies have already been made for the meteorological data forecasting, using techniques as ARMA 

models and neural networks. Most of these studies refer to short term predictions.  

The common parameters in designing a neural network are: 

 Selection of the neural network type (i.e. feed forward back propagation algorithm)  

 Selection of input parameters - external parameters (i.e.  temperature, day, hour)  

 Selection of the activation function (i.e. the 1 / (1 + e ^ (-x))  

 Selection of the hidden levels   

 Selection of the training function 

 Development of the model in Matlab 

In order to evaluate if and which type of a neural network model can predict with accuracy air temperature data 

for long terms, the available time series are divided into testing periods.  

Data of the four available decades are selected, more specific our input data include the normalized intervals of 

the following series: 

 

1. Year 

2. Month 

3. Days 

4. Minimum Daily Temperature (C) 



39 

 

5. Mean Daily Temperature 

6. Maximum Daily Temperature 

 

We first proceed with a 10 year training period for three decades 1970 – 1979, 1980 – 1989, 1990 – 1999, and 

use the last decade 2000-2009 for the evaluation of our results.  

Secondly we try a 5-year training period increasing the training assets and using the last five years 2004-2009 

for the evaluation of our results. 

Finally we also trained the neural network using one single training period of 15 years daily data.  

Regarding the neural network type, we choose the feed forward network (FF) and the nonlinear autoregressive 

network with exogenous inputs (NARX). For each different neural network architecture the optimal, hidden 

layers and number of neurons are investigated. It was observed that by increasing the number of hidden layers, 

the results did not correspond to the evaluation temperature data. In contrast, the predicted data resulting from 

multilayer networks, tended to converge in the mean temperature. One possible explanation is that NNs with 

more hidden layers are extremely hard to train, while in our long term prediction case, there exist limited training 

sets.  For that reason, a single layer network has been used in each of the cases.  Regarding the training 

functions, there are two types evaluated, the common Levenberg-Marquardt “trainlm” and the BFGS quasi-

Newton (trainbfg) “trainbfg” function. Apart from the above mentioned network types the elman and cascade 

network were used without proving any significant differences from the feed forward network.  

  

Feed Forward ANN 

 

We first begin with creating a feed forward network using the Levenberg-Marquardt algorithm in a single layer 

(Figure 31). Feed-Forward NN is an artificial neural network where input layer consists of the inputs of the 

neural and connected to an output layer composed of neurons (computational nodes). In this network, the 

information moves in only one direction, forward, from the input nodes, through the hidden nodes (if any) and to 

the output nodes. The main results and statistical values of our prediction and validation mean maximum and 

minimum temperature data, are depicted in Table 6. 

  



40 

 

 

Figure 31. Feed Forward single layer network 

 

Table 6. Main statistical values of actual and simulated temperature data for the period 2000-2009 

trainlm Tmean Tmax Tmin Tvar SME R squared 

Actual 

Temperature 

(max) 

21.82 42.73 5.45 33.41 - - 

Simulated 

Temperature 

(max) 

21.31 38.00 7.79 32.15 12.7655 0.79 

Actual 

Temperature 

(min) 

15.36 28.6 0.03 30.15 - - 

Simulated 

Temperature 

(min) 

15.14 27.49 4.33 28.75 

 

8.6230 

 

0.82 

Actual 

Temperature 

(mean) 

18.75 34.75 3.1 31.56 - - 

Simulated 

Temperature 

(mean) 

18.43 33.94 6.2 31.6 9.0303 0.86 
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Figure 32. Predicted (red line) and actual (blue line) of the daily mean temperature data for the reference 

station of Heraklion, year 2000-2009 (MSE = 9.03)   

 

Figure 33. Actual daily mean temperature versus predicted 
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Figure 34. Histogram of actual (blue) and simulated (red) mean temperature for the years 2000-2009. 

 

 

 

Figure 35. CDD of max daily temperatures for feed forward predicted (red, CDD=1065) and actual (blue, 

CDD = 996) data. 
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Figure 36. HDD of max daily temperatures for feed forward predicted-red and actual - blue data. 

 

 

 

Figure 37. Actual daily max temperature versus predicted 
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Figure 38. Predicted (red line) and actual (blue line) of the daily max temperature data for the reference 

station of Heraklion, year 2000-2009 (MSE = 12.76)   
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Figure 39. Histogram of actual (blue) and simulated (red) max temperature for the years 2000-2009. 

 

Following the 10 year prediction periods and the results presented in Figure 32 to Figure 39, we assume that 

the feed forward neural network predicts adequately the mean values of our temperature data, with an r-

squared error 0.86 and MSE 9.03. Considering the long term prediction of 10 years ahead, the predicted mean 

temperature values follow the frequency distribution in the histogram (Figure 34). The cooling degree days, i.e 

the amount of temperature data exceeding the 26oC, is 6,48% lower than the actual CDD of the period 2000-

2009. Regarding the maximum temperature data prediction, we assume an underestimation of the model, with 

r-square error 0.79 and MSE 12.76 (Figure 37, Figure 38). The maximum predicted temperature reaches the 

38oC, while the actual maximum temperature of the decade 2000-2009 is 42.73oC. This can be explained 

observing Figure 12. Maximum annual temperature with the linear trend representation for the reference period 

1970-2009. The training sets of our feed forward neural network do not contain as high maximum temperature 

information as it appears in the decade 2000-2009 and the value of 42.73 does not exist in the previous years. 

Not being trained, the neural model is unable to predict higher temperatures, while it seems to move around the 

mean maximum temperature of the decades 1970-2000, i.e.  36.43oC.  

 

Following our first feed forward network model, and after assessing further training functions in a single layer 

network without any significant deviations from the trainlm prediction, we proceed with increasing the training 

periods, with 5 year training sets, 1970-1974, 1975-1979,..,1995-1999. Then the network is being used for a ten 

year prediction and evaluated in the prediction of air temperature data for the decade 2000-2009.  
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We create again a feed forward network using the Levenberg-Marquardt algorithm in a single layer with the 

training function ‘trainlm’. The main results and statistical values of our prediction and validation mean 

maximum and minimum temperature data, are depicted in Table 7. 

 

 

 

 

 Table 7. Main statistical values of actual and simulated temperature data for the period 2000-2009 

trainlm Tmean Tmax Tmin Tvar SME R squared 

Actual Temperature (max) 21.82 42.73 5.45 33.41 - - 

Simulated Temperature 

(max) 
22.26 37.29 10.12 24.75 11.56 0.70 

Actual Temperature (min) 15.36 28.6 0.03 30.15 - - 

Simulated Temperature 

(min) 
15.75 29.26 4.44 23.00 8.63 0.74 

Actual Temperature (mean) 18.75 34.75 3.1 31.56 - - 

Simulated Temperature 

(mean) 
19.25 34.06 7.23 25.23 8.47 0.77 
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Figure 40. Predicted (red line) and actual (blue line) of the daily mean temperature data for the reference 

station of Heraklion, year 2000-2009  (MSE = 8.47)   
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Figure 41.  Actual daily mean temperature versus predicted. 

 

 

 

 

Figure 42. Actual daily maximum temperature versus predicted. 
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Figure 43. CDD of max daily temperatures for feed forward predicted (red, CDD=1065) and actual (blue, 

CDD = 1084)  data. 

 

Following the 10 year prediction periods and the results presented in Figure 40 to Figure 43 we assume that the 

feed forward neural network with the 5-year training sets predicts the mean values of our temperature data, with 

an r-squared error 0.77 and MSE 8.47, similar to the firstly developed model with 10-year training periods. The 

cooling degree days, are predicted with a better accuracy, exceeding the actual CDD only by 1,78% for the 

period 2000-2009. Regarding the maximum temperature data prediction, the model underestimates again the 

actual maximum values, with r-square error 0.70 and MSE 11.56 (Figure 37, Figure 38). The maximum 

predicted temperature reaches the 37.29oC, while the actual maximum temperature of the decade 2000-2009 is 

42.73oC. The explanation remains the same, namely the lack in such high temperature in our training sets.  

 

The same feed forward network is being evaluated in the prediction of air temperature data for the five year 

period 2004-2009, as shown in Table 8. 
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Table 8. Main statistical values of actual and simulated temperature data for the period 2004-2009 

trainlm Tmean Tmax Tmin Tvar MSE R squared 

Actual Temperature (max) 21.79 37.8 5.45 31.63 - - 

Simulated Temperature 

(max) 
21.05 32.26 5.67 24.38 11.48 0.78 

Actual Temperature (min) 15.13 28.6 1.60 29.90 - - 

Simulated Temperature 

(min) 
14.56 24.52 -0.54 22.86 8.57 0.74 

Actual Temperature (mean) 18.68 34.75 4.04 30.61 - - 

Simulated Temperature 

(mean) 
17.91 29.13 1.97 25.47 8.61 0.71 
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Figure 44. Actual daily mean-maximum and minimum temperature versus predicted temperature & 

frequency distribution of the maximum temperature. 
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Figure 45. CDD of max daily temperatures for feed forward predicted (red, CDD=737) and actual (blue, 

CDD = 519)  data. 

Following the 5 year prediction periods and the results presented in Figure 43, Figure 45 we assume that the 

feed forward neural network with the 5-year training sets predicts the mean values of our temperature data less 

sufficiently with an r-squared error 0.78 and MSE 8.61. The cooling degree days, are predicted less accurate, 

exceeding the actual CDD by 42% for the period 2004-2009. Regarding the maximum temperature data 

prediction, the model underestimates again the actual maximum values, with r-square error 0.71 and MSE 

11.48.The maximum predicted temperature reaches the 32.26oC, while the actual maximum temperature of the 

5-year period 2005-2009 is 37.8oC.  

 

NARX ANN 

Subsequently we create a nonlinear autoregressive network with exogenous inputs. The specific feature of such 

neural networks respect to static feed-forward networks, such as back propagation (BP) ANN or cascade-

forward ANN is their capability to learn dynamic or time series relationships. In particular, in dynamic ANNs, the 

output depends not only on the current input but on the current and previous inputs, outputs or states of the 

network, as well. The NARX network, differently from the focused networks, is a recurrent dynamic network, 

with feedback connections enclosing several layers of the network. The  NARX model is based on the linear 

ARX model, it is well  suited to model nonlinear dynamic systems and is  commonly used in time-series 

modeling thanks to its  adaptive learning process also with small scale  meteorological data, collected, for 

example in less than  one year. [49] 
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Figure 46. Nonlinear autoregressive single layer network 

 

 

Table 9. Main statistical values of actual and simulated temperature data for the period 2005-2009 

trainlm Tmean Tmax Tmin Tvar SME R squared 

Actual Temperature (max) 21.79 37.8 5.45 31.63 - - 

Simulated Temperature 

(max) 
21.50 32.40 5.91 24.13 10.81 0.78 

Actual Temperature (min) 15.13 28.6 1.60 29.90 - - 

Simulated Temperature 

(min) 
14.51 24.54 -0.57 22.39 8.59 0.74 

Actual Temperature (mean) 18.68 34.75 4.04 30.61 - - 

Simulated Temperature 

(mean) 
18.10 29.27 2.08 25.18 8.23 0.71 
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Figure 47. Actual daily mean-maximum and minimum temperature versus predicted temperature & 

frequency distribution of the maximum temperature. 
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Figure 48. CDD of max daily temperatures for feed forward predicted (red, CDD=449) and actual (blue, 

CDD = 519) data. 

Following the 5 year prediction periods and the results presented in Figure 47, Figure 48 we assume that the 

NARX neural network with the 5-year training sets predicts the mean values of our temperature data with an r-

squared error 0.71 and MSE 8.23, which is slightly under the feed forward network. The cooling degree days, 

are predicted more accurate, extending underneath the actual CDD by 13.49% for the period 2004-2009. 

Regarding the maximum temperature data prediction, the model underestimates again the actual maximum 

values, with r-square error 0.70 and MSE 10. 81. The maximum predicted temperature reaches the 32.40 oC, 

while the actual maximum temperature of the 5-year period 2005-2009 is 37.8 oC. 

 

After the better results of the NARX net, considering the better maximum temperature predictions as well the 

frequency distribution, we decide to explore another training function, namely the BFGS quasi-Newton back 

propagation “trainbfg”. The new NARX network is being evaluated in the prediction of air temperature data for 

the same five year period 2004-2009, as shown in Table 10. 

 

 

Table 10. Main statistical values of actual and simulated temperature data for the period 2004-2009 

trainbfg Tmean Tmax Tmin Tvar SME R squared 

Actual Temperature (max) 21.79 37.8 5.45 31.63 - - 

Simulated Temperature 22.14 34.17 5.78 26.99 7.98 0.8 
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(max) 

Actual Temperature (min) 15.13 28.6 1.60 29.90 - - 

Simulated Temperature 

(min) 
15.58 26.54 1.08 23.15 10.9 0.74 

Actual Temperature (mean) 18.68 34.75 4.04 30.61 - - 

Simulated Temperature 

(mean) 
19.18 31.07 3.54 26.14 8.2 0.71 

 

 

 

 

Figure 49. Actual daily mean-maximum and minimum temperature versus predicted temperature & 

frequency distribution of the maximum temperature. 
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Figure 50. CDD of max daily temperatures for feed forward predicted (red, CDD=546) and actual (blue, 

CDD = 519) data. 

Following the 5 year prediction periods and the results presented in Figure 49, Figure 50, we assume that 

the NARX neural network with the 5-year training sets and the BFGS quasi-Newton backpropagation 

training function predicts the mean values of our temperature data with an r-squared error 0.71 and MSE 

8.2, similar to the previous NARX network. The cooling degree days, are predicted more accurate, 

exceeding the actual CDD by 5.2 % for the period 2004-2009. Regarding the maximum temperature data 

prediction, the model underestimates again the actual maximum values, with r-square error 0.80 and the 

MSE has significant decreased to 7.98. The maximum predicted temperature reaches the 34.70 oC, while 

the actual maximum temperature of the 5-year period 2005-2009 is 37.8 oC. Furthermore, the frequency 

distribution (histogram) of the maximum temperature corresponds better to the actual temperature data. 

  

After several trials including also elman and cascade networks, it was decided to proceed our long term 

temperature prediction using the NARX network with BFGS quasi-Newton back propagation. As a result, 

we used the 5-year training periods for the forecast of the years 2010-2014, as shown in Figure 51.  

We used the trained neural network, in order to predict the mean maximum and minimum daily temperature 

for the decade 2010-2014. 
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Figure 51. Five year prediction of mean-minimum and maximum daily temperature data using NARX net. 

 

Continuing, we use the predicted data set as an input, in order to extend the forecasting period till 2019, 

Figure 52. 

  

 

Figure 52. Ten year prediction of mean-minimum and maximum daily temperature data using NARX net. 
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Figure 53. Mean annual temperature with the linear trend representation for the reference & predicted 

period 1970-2019. 

 

We proceed with a training period of 15 years. It was considered that the trend lines of the collected 

temperature data would be better trailed if the training set would include a longer period of the time series with a 

more representative inclination. 

Then the network is being evaluated in the prediction of air temperature data for the decade 2000-2009. We first 

begin with creating the feed forward network using the Levenberg-Marquardt algorithm. 
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Figure 54. Actual daily mean-maximum and minimum temperature versus predicted temperature & 

frequency distribution of the maximum temperature. 
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Figure 55. CDD of max daily temperatures for feed forward predicted (red, CDD=1186) and actual (blue, 

CDD = 1065) data. 

  

Table 11 Main statistical values of actual and simulated temperature data for the period 2000-2009 

trainlm Tmean Tmax Tmin Tvar SME R squared 

Actual 

Temperature 

(max) 

21.82 42.73 5.45 33.41 - - 

Simulated 

Temperature 

(max) 

22.5577    36.5061    10.8649     25.2829    11.1920 0.72 

Actual 

Temperature 

(min) 

15.36 28.6 0.03 30.15 - - 

Simulated 

Temperature 
16.3164 29.0563 5.1495 23.6981 9.2196 0.76 
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(min) 

Actual 

Temperature 

(mean) 

18.75 34.75 3.1 31.56 - - 

Simulated 

Temperature 

(mean) 

19.6813    33.6781    7.8674    26.0031    8.5347 0.79 

 

 

 

      

Following the 10 year prediction periods and the results presented in Figure 54 to Figure 55 we assume that the 

feed forward neural network with one training set of fifteen years, predicts less adequately the mean values of 

our temperature data, with an r-squared error 0.79 and MSE 8.53. The cooling degree days, i.e the amount of 

temperature data exceeding the 26oC, exceeds the actual data by 11.36% for the period 2000-2009. Regarding 

the maximum temperature data prediction, we assume again an underestimation of the model, with r-square 

error 0.72 and MSE 11.19. The maximum predicted temperature reaches the 36.5oC (lower than the one 

resulting from the ten year training sets in Figure 35) , while the actual maximum temperature of the decade 

2000-2009 is 42.73oC.  

For the NARX network trained with a fifteen yearlong daily temperature data set, the results are neither 

improving the networks performance.  
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Figure 56. Actual daily mean-maximum and minimum temperature versus predicted temperature & 

frequency distribution of the maximum temperature. 

Table 12. Main statistical values of actual and simulated temperature data for the period 2000-2009 

trainbfg Tmean Tmax Tmin Tvar SME R squared 

Actual 

Temperature 

(max) 

21.82 42.73 5.45 33.41 - - 

Simulated 

Temperature 

(max) 

22.8869    36.7102    11.2441     25.2441    11.8942 0.79 

Actual 

Temperature 

(min) 

15.36 28.6 0.03 30.15 - - 

Simulated 

Temperature 

(min) 

16.3451 28.8955 5.3169 23.5420 9.2688 0.72 

Actual 

Temperature 

(mean) 

18.75 34.75 3.1 31.56 - - 

Simulated 19.8355    33.6306    8.1288    25.7914 8.8916 0.76 
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Temperature 

(mean) 

       

    

Figure 57. CDD of max daily temperatures for feed forward predicted (red, CDD=1243) and actual (blue, 

CDD = 1065) data. 

 

Using the “trainbfg” function, the results are depicted in Figure 56 and Figure 57. As shown in Table 12, the 

statistical values of the predicted mean maximum and minimum temperature data, do not differ significant from 

the feed forward network, while the cooling degree days are overestimated by 17.71%.  

 

 

HYBRID ARMA ANN 

Considering the error between the original and the ARIMA-predicted data as a nonlinear component, we create 

an extra input interval for the feed forward ANN. The results of a ten year prediction for the years 2000-2009 in 

conjunction to our validation data set, are depicted in Figure 58 to Figure 60, and in Table 13. 
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Figure 58. Actual daily mean-maximum and minimum temperature versus predicted temperature & 

frequency distribution of the maximum temperature. 
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Figure 59. CDD of max daily temperatures for feed forward predicted (red, CDD=1192) and actual (blue, 

CDD = 1065) data. 

 

Figure 60. Annual mean temperature of the actual temperature data (blue) and the hybrid ANN (red) 

prediction. 
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Table 13. Main statistical values of actual and simulated temperature data for the period 2000-2009 

trainlm Tmean Tmax Tmin Tvar SME R squared 

Actual 

Temperature 

(max) 

21.82 42.73 5.45 33.41 - - 

Simulated 

Temperature 

(max) 

22.5890    33.1330    11.9204     27.0084    9.5702 0.77 

Actual 

Temperature 

(min) 

15.36 28.6 0.03 30.15 - - 

Simulated 

Temperature 

(min) 

16.0477 26.0144 5.8069 24.9872 7.0095 0.8 

Actual 

Temperature 

(mean) 

18.75 34.75 3.1 31.56 - - 

Simulated 

Temperature 

(mean) 

19.5359    29.9741    9.0694    27.5467    6.4517 0.84 

       

After the 10 year prediction periods using the hybrid ARMA-ANN model and the results presented in Figure 58 

to Figure 60 we assume that the Hybrid ARMA-feed forward neural network, predicts the mean values of our 

temperature data with an r-squared error 0.84 and MSE 6.45. The cooling degree days, i.e the amount of 

temperature data exceeding the 26oC, exceeds the actual data by 11.9% for the period 2000-2009. Regarding 

the maximum temperature data prediction, this model does not reach higher temperature, with r-square error 

0.77 and MSE 9.57. The maximum predicted temperature reaches the 33.13oC (lower than the one resulting 

from the ten year training sets in Figure 35) , while the actual maximum temperature of the decade 2000-2009 

is 42.73oC. Unlike the simple ANN models, we assume in Figure 58 that the histogram of the predicted 

temperatures deviates from the actual temperature distribution.   
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After the observation of the test predictions for the decade 2000-2009, we decide to proceed with the ten year 

ahead temperature predictions for the decade 2010-2019, using as input the last decade of our reference 

temperature data 2000-2009.  

First we begin with the feed forward network as it was developed and trained with ten year temperature data 

sets (Figure 32 to Figure 39). The predicted data are juxtaposed with the temperatures of the decade 2000-

2009 in order to have an icon of the difference, the increase or decrease. The main statistical values of the long 

term ten year prediction for the years 2010 to 2019 are shown in Table 14.  

 

 

Table 14. Main statistical values of actual and simulated temperature data for the period 2010-2019 

trainlm Tmean Tmax Tmin Tvar SME R squared 

2000-2009 

Temperature 

(max) 

21.82 42.73 5.45 33.41 - - 

2010-2019 

Temperature 

(max) 

24.0776    36.7828    7.7073     26.4038      

2000-2009  

Temperature 

(min) 

15.36 28.6 0.03 30.15 - - 

2010-2019 

Temperature 

(min) 

17.0918 28.7122 1.6540 24.0103   

2000-2009 

Temperature 

(mean) 

18.75 34.75 3.1 31.56 - - 

2010-2019  

Temperature 

(mean) 

20.8617 33.5417    4.4356     26.7168      
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Figure 61. Daily mean-maximum and minimum temperature of the years 2000-2009 versus 2010-2020 

predicted temperature & frequency distribution of the maximum temperature. 
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Figure 62. Temperature data of the decade 2000-2009 and predicted temperature data of 2010-2019 

 

Figure 63. CDD of max daily temperatures for feed forward predicted (red, CDD=1324) and 2000-2009 

(blue, CDD = 1065) data. 
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Figure 64. Mean yearly temperature data of the actual data for the years 2000-2009 and the prediction 

(red line) for the decade 2010-2019. 

As it can be seen in Table 14, the mean temperature of the next decade 2010-2019 raises to 20.86, from 18.75, 

2.11 degrees higher than the previous decade. This can also be seen in the mean maximum temperature, were 

it also increases from 21.82 to 24.0776, while the maximum temperature reaches the 36.78 oC. The cooling 

degree days are increased in relation to the last decade, i.e, 24.32%. We assume that the model perceives the 

temperature increase according to the last 40 years data, projecting higher mean temperatures for the future, as 

it is also seen in the histogram in Figure 61.  

 

We proceed with the NARX network as it was developed and trained with ten yearlong temperature data sets. 

The predicted data are juxtaposed with the temperatures of the decade 2000-2009 in order to have an icon of 

the difference, the increase or decrease. The main statistical values of the long term ten year prediction for the 

years 2010 to 2019, are shown in Table 15.  

 

Table 15. Main statistical values of actual and simulated temperature data for the period 2010-2019 

trainbfg Tmean Tmax Tmin Tvar SME R squared 

2000-2009 

Temperature 
21.82 42.73 5.45 33.41 - - 
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(max) 

2010-2019 

Temperature 

(max) 

22.8869 36.7102 11.2441 25.7011   

2000-2009  

Temperature 

(min) 

15.36 28.6 0.03 30.15 - - 

2010-2019 

Temperature 

(min) 

16.3451 28.8955 5.3169 23.9735   

2000-2009 

Temperature 

(mean) 

18.75 34.75 3.1 31.56 - - 

2010-2019  

Temperature 

(mean) 

19.8355 33.6306 8.1288 26.3040   

       

 

 

 

Figure 65. Temperature data of the decade 2000-2009 and predicted temperature data of 2010-2019 
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Figure 66. Actual daily maximum temperature versus predicted temperature frequency distribution. 

 

Figure 67. CDD of max daily temperatures for NARX NET  predicted (red, CDD=1243) and actual (blue, 

CDD = 1065) data. 

 

As it can be seen in Table 15, the mean temperature of the next decade 2010-2019 raises to 19.83, from 18.75, 

1.08 degrees higher than the previous decade. This represents a more rational increase compared to the feed 

forward network results, although it is still a high temperature increase. Furthermore, the mean maximum 

temperature, also increases from 21.82 to 22.88, while the maximum temperature reaches the 36.71 oC. The 

cooling degree days are increased in relation to the last decade, i.e., 16.71%. We assume that the model 
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perceives the temperature increase according to the last 40 years data, projecting higher mean temperatures 

for the future, as it is also seen in the right shift of the maximum temperatures in the histogram in Figure 66.  

 

Finally we use the developed hybrid model for the ten year prediction. The main statistical values of the long 

term ten year prediction for the years 2010 to 2019 are shown in Table 16. 

Table 16.  Main statistical values of actual and simulated temperature data for the period 2010-2019 

trainlm Tmean Tmax Tmin Tvar SME R squared 

2000-2009 

Temperature 

(max) 

21.82 42.73 5.45 33.41 - - 

2010-2019 

Temperature 

(max) 

23.3481 33.9470 11.5955 26.4204   

2000-2009  

Temperature 

(min) 

15.36 28.6 0.03 30.15 - - 

2010-2019 

Temperature 

(min) 

16.5475 26.0695 5.5617 24.6607   

2000-2009 

Temperature 

(mean) 

18.75 34.75 3.1 31.56 - - 

2010-2019  

Temperature 

(mean) 

20.1765 30.5872 8.4889 27.0664   
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Figure 68. Temperature data of the decade 2000-2009 and predicted temperature data of 2010-2019 

 

 

 

Figure 69. CDD of max daily temperatures for feed forward predicted (red, CDD=1307) and actual (blue, 

CDD = 1065) data. 
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Figure 70. Actual daily mean-maximum and minimum temperature versus predicted temperature & 

frequency distribution of the maximum temperature. 

 

As it can be seen in Table 16, the mean temperature of the next decade 2010-2019 raises to 20.17, from 18.75, 

1.42 degrees higher than the previous decade. The mean maximum temperature also increases from 21.82 to 

23.34, while the maximum temperature reaches the 33.94 oC, which is not accepted as an accurate result. The 

cooling degree days are increased exceedingly in relation to the last decade, i.e., 22.72%. We assume that the 

model perceives in an inordinate degree the temperature increase according to the last 40 years data, 

projecting much higher mean temperatures for the future. The maximum temperatures do not track the 

histogram of the previous data in Figure 70Figure 66.  
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4. Application in a typical office building in Crete  

 

The rapidly growing world energy use has already raised concerns over supply difficulties, exhaustion of energy 

resources and heavy environmental impacts (ozone layer depletion, global warming, climate change, etc.). The 

International Energy Agency has gathered frightening data on energy consumption trends. During the last two 

decades (1984– 2004) primary energy has grown by 49% and CO2 emissions by 43%, with an average annual 

increase of 2% and 1.8% respectively. Current predictions show that this growing trend will continue. Energy 

use by nations with emerging economies (Southeast Asia, Middle East, South America and Africa) will grow at 

an average annual rate of 3.2% and will exceed by 2020 that for the developed countries (North America, 

Western Europe, Japan, Australia and New Zealand) at an average growing rate of 1.1%. The case of China is 

striking, taking only 20 years to double its energy consumption at an average growing rate of 3.7%. Interesting 

consequences can be obtained from the analysis of the trend of main world energy indicators between 1973 

and 2004:  

 The rate of population growth is well below the GDP, resulting in a considerable rise of per capita 

personal income and global wealth,  

 primary energy consumption is growing at a higher rate than population, leading to the increase of its 

per capita value on 15.7% over the last 30 years,  

 CO2 emissions have grown at a lower rate than energy consumption showing a 5% increase during this 

period,  

 electrical energy consumption has drastically risen (over two and a half times) leading to a percentage 

increase in final energy consumption, 18% in 2004,  

 efficiency in exploiting energy resources, shown as the relation between final and primary energy, has 

declined by 7% points, especially due to soaring electrical consumption, and  

 final and primary energy intensities have dropped because of the higher rate of growth of the GDP over 

the energy consumption increasing ratio, resulting in an overall improvement of the global energy 

efficiency. [51] 

Densely built urban areas in warmer climates may suffer from the urban heat island (UHI) effect, resulting in, 

among others, higher urban temperatures in the city centers than in the surrounding rural or suburban areas. 

The air temperature in the cities can be as much as 5 oC higher than these other areas. The UHI effect has 

multiple negative effects: increased energy use for cooling and related CO2 emissions, abated air quality, 

human discomfort, physical and psychological health risks, alter local weather patterns. Therefore, UHI has a 
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major impact on the quality of people’s life, environment and infrastructure and can be mitigated by better built 

and operated buildings.[52] 

A building affects its surrounding environment, and conversely its indoor environment is influenced by its 

surroundings. In order to obtain a more accurate prediction of the indoor thermal environment, it is necessary to 

consider the interactions between the indoor and outdoor thermal environments. [53] 
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Approaches for assessing energy use in buildings 

 

Computer programs which are used to generate an energy performance prediction from calculations. 

IES, TAS, Energy Plus, ESPr, eQuest etc.  

 

There exists a dynamic three-way interaction between climate, people and buildings dictates our energy needs 

in buildings: 

                 People 

 

 

 

 

Energy use is influenced by 

Climatic, social, economic and 

Cultural context 

 

  Climate         Buildings 

 

  

In the present case, the energy calculations are based on the predicted external temperature data, assuming 

that the other interactions, such as social behavior, economic conditions etc., remain constant. 

ESP-r simulates building performance in a manner that: 

a) is realistic and adheres closely to actual physical systems, 

b) supports early-through-detailed design stage appraisals, and 

c) enables integrated performance assessments in which no single issue is unduly prominent. 

When hourly values are not available there are algorithms for generating hourly temperature values from daily 

values. These use the daily maximum temperature TMAX, and daily minimum temperature, TMIN [54] 

 

The ESP-r energy modeling tool is ecploited for the building simulation and the calculation of the cooling and 

heating loads of a simple office building. ESP-r is a building simulation program which has been under 

development for more than 25 years. It is available at no cost under an Open Source license. ESP-r can 

simulate any element of the building envelope and the electrical-mechanical equipment for example rooms, 

stairways, doors, windows with different types of glass, internal-external or fixed or movable awnings, external 

http://www.fsfeurope.org/
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or internal walls etc. Users have the option to define the geometric complexity, and operational details of their 

models according to each project’s requirements. The ESP-r operates through the information exchange 

between the sub models of the thermal zones, the air flow analysis between zones and within the area, the 

electricity and air flow systems etc., in order to take into account the interactions between the building’s 

subsystems. At the same time it can cooperate with other modeling and simulation tools. 

 

 

Figure 71. The principal components of the ESP-r system: a central project manager, an integrated 

simulator, support databases, a performance appraisal tool and support utilities for CAD and 

visualization 

The following procedure is followed for a building simulation in ESP-r.   

1. Thermal zones. Initially, the building is divided into zones which interact with each other as well as with the 

external environment. A thermal zone may consist of either a single space or a space module that 

operates under the same indoor climate. Each zone has independent heat gains and independent 

equipment and controls heating, cooling and ventilation. Finally, each zone can be linked to its neighboring 

areas through walls or other building elements with different thermal conductivities. The surfaces 

(horizontal and vertical) defined in the thermal zones, form the building model.  

2. Thus, the simulation of the energy performance of a building requires knowledge of its dimensional and 

geometric characteristics of the orientation, thermal properties and radiation characteristics of the materials 

from which it is constructed. 
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3. Furthermore, a climate data record is defined. The selected data must provide hourly values for the 

following key climate parameters: total radiation (diffuse and direct), ambient temperature, wind direction 

and speed, total and diffuse light, relative humidity, air pressure and cloudiness. 

 

ESP-r simulates building performance in a manner that: a) is realistic and adheres closely to actual physical 

systems, b) supports early-through-detailed design stage appraisals, and c) enables integrated performance 

assessments in which no single issue is unduly prominent. 

ESP-r attempts to simulate the real world as rigorously as possible and to a level which is consistent with 

current best practice. By addressing all aspects simultaneously, ESP-r allows the designer to explore the 

complex relationships between a building's form, fabric, air flow, plant and control. ESP-r is based on a finite 

volume, conservation approach in which a problem (specified in terms of geometry, construction, operation, 

leakage distribution, etc.) is transformed into a set of conservation equations (for energy, mass, momentum, 

etc.) which are then integrated at successive time-steps in response to climate, occupant and control system 

influences. ESP-r comprises a central Project Manager around which are arranged support databases, a 

simulator, various performance assessment tools and a variety of third party applications for CAD, visualization 

and report generation.  

In Table 17 the building characteristics are listed for the building model of the present study.  

 

Table 17. Building characteristics  

Type of Building Office building  

Surface Area 80m2  

Walls Three layer brick-insulation-brick Total Uvalue: 0.513W/m2K 

Roof Three layer plaster concrete 
insulation  

Total Uvalue: 0.813W/m2K 

Windows North facing (33.33% coverage) 
double glazing windows 

Uvalue: 0.505 W/m2K 

Heating Ideal load 3kW (set point 18.0oC) 
from8:00 to 16:00 

 

Cooling Ideal load 3kW (set point 26.0oC) 
from8:00 to 16:00 

 

Casual gain  
Occupancy 

0:00-8:00  0 0 

 Time Sensible (W) Latent (W) 

8:00-12:00 225 165 

12:00-14:00 150 110 

14:00-16:00 225 165 

16:00-24:00 0 0 

Small Power 8:00-16:00  258 (W) sensible   

Lights 10:00-14:00  288 (W) sensible   
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from November 1st - April  

Air changes per hour 0.3   

 

 

The ESP-r over other simulation software also offers higher accuracy utilizing methods of Computational Fluid 

Dynamics (CFD). By the use of CFD operating an internal space can be simulated with great precision. All the 

above functions (CFD, energy control systems, etc.) embedded in the program and does not require any use 

other third gear. 

 

The ESP-r and can calculate a large set of different parameters on the building. Some of these are: 

 Air temperature for each zone and surface 

 Mean radiant temperature and dew point for each zone 

 energy flow in the ground area: 

 infiltration 

  transfer air from adjacent zones 

 Internal gains (heat): 

 Presence of people 

 Lighting 

 Device 

 For each surface (whole) but also on all surfaces together 

 Energy flow for any surface because: 

 Education 

 Small, large (the building, sky) Wave Radiation 

 Storage 

 Loads: 

 Sensible heat cooling, heating Load 

 Humidification-dehumidification 

 

The building modeling methodology is divided in the following steps: 

 Developing the building in the ESP-r environment  

 Importing the structural characteristics 

 Setting the presence schedule 

 Importing the weather file 
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 Setting the physical characteristics of the building materials  

 Setting the internal gains from users, lighting and equipment. 

   

 

 

Figure 72. ESP-r model layout with the office building.  

 

A model for prediction of the time temperature curve has been developed for the new forecast method. The 

temperature at each moment of the day is obtained using the prediction of the maximum and minimum daytime 

temperature. This provides various benefits when selecting the training days and in the training and forecasting 

phases, thus improving the relationship between expected consumption and temperatures. [50] 

When hourly values are not available there are algorithms for generating hourly temperature values from daily 

values. These use the daily maximum temperature TMAX, and daily minimum temperature, TMIN [54] 

𝑇(𝑡) = 𝑓1 ∙ 𝑇𝑀𝐼𝑁 + 𝑓2 ∙ 𝑇𝑀𝐴𝑋 

and                   𝑓1 + 𝑓2 = 1 

where 𝑓1and 𝑓2are factors given in a table in the guide and 𝑇𝑀𝐼𝑁 and 𝑇𝑀𝐴𝑋 are the daily minimum and 

maximum temperatures respectively. These are related to sinusoidal interpolations and can be expressed more 

mathematically in the following equations: 

for t<tmin: 

𝑓1 =
cos (

𝜋(𝑡𝑚𝑖𝑛 − 𝑡)
24 + 𝑡𝑚𝑖𝑛 − 𝑡𝑚𝑎𝑥) + 1

2
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Where tmin and tmax indicates the time corresponding to the maximum and minimum temperature of the day.  

for tmin<t< tmax: 

𝑓1 =
cos (

𝜋(𝑡 − 𝑡𝑚𝑖𝑛)
𝑡𝑚𝑎𝑥

− 𝑡𝑚𝑖𝑛) + 1

2
 

 

for tmin<t: 

𝑓1 =
cos (

𝜋(24 + 𝑡𝑚𝑖𝑛 − 𝑡)
24 + 𝑡𝑚𝑖𝑛 − 𝑡𝑚𝑎𝑥) + 1

2
 

 

For a smoother transition between days the following equation was used: 

 

𝑇(𝑡) = (
𝑇𝑒𝑚𝑝𝑛𝑒𝑥𝑡 +  𝑇𝑒𝑚𝑝𝑝𝑟𝑒𝑣

2
) − (

𝑇𝑒𝑚𝑝𝑛𝑒𝑥𝑡 −  𝑇𝑒𝑚𝑝𝑝𝑟𝑒𝑣

2
) ∙ 𝑐𝑜𝑠 (

𝜋 ∙ (𝑡 − 𝑡𝑝𝑟𝑒𝑣)  

(𝑡𝑛𝑒𝑥𝑡 − 𝑡𝑝𝑟𝑒𝑣)
) 

Where Temp(next) is the next known temperature value, Temp(prev) is the previous known temperature value, 

t(next) the time for the next known temperature value, t(prev) the time for the previous known temperature value 

and t is the time.   The hourly temperature data of a day with predicted Tmax = 15.75 oC and Tmin = 9.65 oC 

can be seen in Figure 73.  

 

 

Figure 73. Hourly temperature values calculated according the maximum and minimum predicted 

temperature, in a winter day. 
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An algorithm in Matlab was developed for the calculation of the hourly temperature data taking as input the daily 

minimum and maximum previously predicted temperature data. Following, the weather files in the adequate 

format were created and inserted in the database of the ESP-r model.  

First we begin with the calculation of the heating and cooling loads of the actual temperature data for the 

decade 2000-2009 Figure 74.  

 

Figure 74. Actual heating and cooling loads of the decade 2000-2009 

Then we proceed with the previously predicted temperature data, with the feed forward neural network. The 

internal temperature as it was calculated by the ESP-r model is shown in Figure 75. There exists a strong 

correlation between indoor and predicted outdoor temperature data. The high increase in the mean temperature 

is transferred in the internal building temperature.  

 

 

Figure 75 Outdoor and indoor mean yearly temperature of the decade 2000-2009 according 
to the feed forward network model predicted temperature data. 
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The reflection of the high temperature increase is fully represented in the models heating and cooling load 

calculations (Figure 76). There is an almost proportional increase in the cooling loads with the increase of the 

mean yearly temperature (Figure 75), while the opposite is observed regarding the heating loads which are 

inversely decreased. This cannot be considered as a representative result, ones the high increase in 

temperature and cooling loads is not realistic. As we see, the mean yearly temperature increase by 2oC in a 

decade, could result a full increase in the cooling loads by 30% (from 616kWh/year in 2000 to 916616kWh/year 

in 2009).  

 

 

Figure 76. Heating and cooling loads of the decade 2000-2009 according to the feed forward network 

model predicted temperature data. 

 

In Figure 77, there are the heating and cooling load calculations for the years 2000-2004, taking into account 

the NARX model developed and trained with 5-year training sets. As is can be seen, the heating load 

calculations resulted from the NARX model 5-year temperature prediction is closer to the actual energy 

consumption. Considering the cooling loads, there is an increase in the NARX model followed by a better 

correlation towards the actual ones. Nevertheless, the high cooling energy loads resulting from the actual 

temperature data, cannot be reached. This is due to the fact that there is lack in high temperature data, in our 

predictions, as this was already observed during the long term predictions using several types of neural 

networks. The small amount of higher temperatures in the training data sets, does not allow the accurate daily 

prediction of the upper temperatures, with result the underestimation of the cooling loads.     
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Figure 77. Prediction of Heating and Cooling Energy for the years 2000-2004 

 

We proceed with the ten year calculation of the heating and cooling loads, taking into account the NARX model 

which gave the better results in the temperature prediction (Figure 49 to Figure 53). The ESP-r model results 

are depicted in Figure 78.  

 

 

Figure 78. Heating and cooling loads of the decade 2010-2019 according to the NARX network model 

predicted temperature data. 
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5. Conclusions 

This presented research work leads to the conclusion that outdoor air temperature prediction can be performed 

using neural networks, depending on the required statistical values. The performance of the neural networks 

has been evaluated using measurements collected from a local weather station in Heraklion. The annual 

performance is estimated using the statistical indicators  R2 and MSE, the mean, maximum and minimum 

temperature values of the predicted five or ten years period and the number of cooling degree days. The results 

indicate an acceptable performance of the neural networks to predict mean outdoor air temperature with a 

predictive horizon of 5-10 years.  In terms of mean temperature data, the neural network can successfully 

approximate the temperature values and their seasonal variations. Furthermore, neural networks can fully 

simulate and predict the cooling degree days (set point 26 oC). Neural networks are proven appropriate for the 

forecasting of daily temperature time series based on previous minimum, maximum and mean temperatures. 

Nevertheless, it is, in general, difficult to define the learning rate of the developed neural network, as it is mostly 

acting like a “black box”, with obvious inputs and outputs but with complex calculation procedures and 

intermediate correlations. Yet, neural networks are supreme mainly due to absence of other explanations of the 

perceived time series. Compared to the benchmark ARMA model, it is observed that neural networks can 

achieve better performances (R2 and MSE) in the temperature data simulation.  

The most suitable neural network is proved to be the nonlinear autoregressive network with exogenous inputs 

(NARX net). This is attributed to their dynamic learning capability, where the output is related with the previous 

inputs. The NARX network, as opposed to the feed forward networks, uses feedback connections with the 

previous data.   

The one step long term (10 years) prediction resulted in a high trend followed by unrealistic temperature 

increases, which led subsequently to extreme cooling loads. For that reason, a subsequent prediction of 

temperature data is performed, for two five years periods. The first five years predicted values are used as an 

input for the forecasting of the second half of the decade 2010-2019.  

Considering the building energy simulation model, a typical office building model is developed with good 

insulation characteristics. The ESP-r weather files are developed for the import of the predicted temperature 

data in the developed model.  All results indicate a better correspondence of the model regarding the heating 

loads. The cooling loads did follow the fluctuations of the actual data, but were underrated because of the 

smaller predicted maximum temperature values.  

Regarding further research in the area, the physical properties of the higher temperatures should be 

considered, by the development of an enhanced forecasting model. The forecasting study should either be 

focused on the degree days or on the individual minimum and maximum temperatures. As it is observed, in 

case of the degree days estimation, the neural networks are acceptable, because the study is handling an 
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unspecified set of temperature values above or under a set-point. But, when looking closer to the predicted 

ensemble over this set-point, the neural networks did not accomplish to “understand” the higher temperature 

variations resulting from the physical phenomena occurring in the surface layer and in urban environments. 

More investigation is needed for this prediction, which could be conducted integrating somehow the physical 

properties of temperature variations and probably followed by longer training intervals. Mesoscale modelling 

coupled with neural network models can be a challenging perspective for the combination of the physical 

characteristics of the boundary layer with modern computational techniques. 
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