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ABSTRACT

Given a set of pairwise distance estimates between nodes, it is often of interest

to generate a map of node locations. This is an old nonlinear estimation problem

that has recently drawn interest in the signal processing community, due to the

emergence of wireless sensor networks. Sensor maps are useful for estimating

the spatial distribution of measured phenomena, and for routing purposes. We

propose a two-stage algorithm that combines algebraic initialization and gradient

descent. In particular, we borrow an algebraic solution known as Fastmap from

the database literature and adapt it to the sensor network context, using a spe-

cific choice of anchor/pivot nodes. The resulting estimates are fed to a gradient

descent iteration. The overall algorithm offers very competitive performance at

significantly lower complexity than existing solutions of comparable complexity

order. For a multiplicative normal measurement noise model that is often adopted

in the relevant literature, we also derive the pertinent Cramér-Rao bound (CRB).

Simulations indicate that the performance of our algorithm is close to the CRB

when the network is (close to) fully connected, in the sense that every node can

estimate its distance from all (most) other nodes.



1. INTRODUCTION

The problem of node localization from pairwise distance estimates has recently

attracted interest in the signal processing community, owing to the growing inter-

est in wireless sensor networks [1, 2, 4, 6, 7]. Given a matrix of pairwise distances,

the localization problem aims to determine the (relative) node locations that gen-

erate these distances. In other words, one seeks a map of node locations with a

given (approximate) distance structure. This is a classic problem originating in

psychometrics [8, 9], known as Multi-Dimensional Scaling (MDS) [5]. There are

many MDS flavors and variants; perhaps the single most important one is metric

MDS.

The classical approach to solving MDS is based on computing the principal

components of a double-centered version of the matrix of squared distances. This

works reasonably well (albeit not optimally in the least squares sense, due to

the double centering), but its complexity is cubic in the number of nodes, and

thus does not scale well with network size. A popular alternative to principal

component analysis (PCA) is the use of gradient descent or other numerical

optimization tools that aim to optimize a stress function of the error between

the measured distances and those reproduced by a given configuration of points.
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The drawback of gradient descent and related approaches is that they require

accurate initialization, due to the multi-modal nature of the stress function.

We propose a two-stage MDS algorithm that employs an algebraic initial-

ization procedure followed by gradient descent. The algebraic initialization step

is based on the Fastmap algorithm [3], borrowed from the database literature.

Fastmap is a linear-complexity mapping tool, which is, however, sensitive to mea-

surement errors. This is not particularly relevant in the database context; therein

actual distances are computed from complete representations. Noise sensitivity

is an important issue in wireless ranging applications, due to shadowing, fading,

and the use of approximate path loss models.

Due to the fact that distances are invariant to coordinate frame transforma-

tions (rotation, reflection, shift), there is a need to employ three so-called anchor

nodes, whose position is accurately known (e.g., via GPS) in order to fix a de-

sired coordinate frame. Unfortunately, Fastmap is very sensitive to coordinate

alignment, because the estimated position of every node (and thus anchor nodes

as well) is only based on distances to selected pivot nodes - there is no averaging.

In order to mitigate this problem, we advocate a judicious choice of anchor/pivot

nodes, placed at the outer edges of the network. This placement bypasses the

need for alignment and thus alignment errors, thereby providing a higher-quality

initialization to the gradient descent. The overall algorithm affords better local-

ization accuracy than PCA-based MDS, at substantially lower complexity cost

(quadratic in the number of nodes). Our algorithm is also competitive with re-
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spect to recent solutions of the same complexity order, developed specifically

for node localization in sensor networks [2]. For relatively dense networks, our

algorithm yields comparable estimation performance at a significantly reduced

complexity relative to [2], even when the latter is initialized using our adaptation

of Fastmap. An exception is the case of very sparse networks, wherein [2] with

Fastmap initialization may be preferable when accuracy is more important than

complexity.

We remark that there are other algorithms in the recent literature that assume

a different measurement model (e.g., 0-1 node connectivity information only, as

in [7]), or propose solutions of considerably higher complexity (e.g., as in [1]). We

aim for the low-complexity regime, for simplicity and scalability considerations.

The rest of this paper is structured as follows. Section 2 summarizes the

standard MDS algorithms: PCA-based, and gradient descent. Section 3 con-

tains a brief review of the Fastmap algorithm. Section 4 presents the proposed

two-stage algorithm, and section 5 summarizes Costa’s algorithm [2]. Section

6 presents the CRB for a multiplicative normal measurement noise model that

is often adopted in the literature on node localization in sensor networks [1, 7].

Section 7 contains extensive simulation results illustrating the performance of the

above algorithms and the CRB, under various scenarios and measurement noise

models. Conclusions are drawn in section 8.



2. MULTIDIMENSIONAL SCALING

MDS [8, 9, 5] has its origins in psychometrics and psychophysics. MDS postu-

lates that perceptual or objective “dissimilarities” or “distances” between pairs

of abstract “objects” can be be generated by points in m-dimensional space. Any

set of distances obeying the triangle inequality can be reproduced (or closely ap-

proximated) by choosing m to be sufficiently large; but usually m = 2 or m = 3

is chosen to retain the systematic variation, and also for ease of visualization.

Thus, MDS aims to find a geometric configuration of points in 2-D or 3-D space,

such that the distances between these points fit as well as possible the given

dissimilarity information.

We denote the dissimilarity measure (the estimated distances in our case),

between objects i and j as dij. The set of dissimilarities yields a measured distance

matrix D. We also let d̂ij denote the Euclidean distance between (generated by)

two points Xi = (xi1, xi2, ..., xim) and Xj = (xj1, xj2, ..., xjm), i.e.

d̂ij =

√√√√
m∑

k=1

(xik − xjk)2. (2.1)

In classical metric MDS, we estimate the node coordinates X by comput-

ing the m principal components of an element-wise squared and double-centered



8

version of the matrix D, denoted by B:

B = −1

2
JPJ, (2.2)

where P = D¯D is the matrix of squared distances (¯ denotes the element-wise

matrix product), and J is the centering operator,

J = I− eeT /N, (2.3)

with N denoting the number of objects (sensors / nodes), and e denoting the

N × 1 vector of all 1’s . For an N ×N matrix D and for m dimensions, it can be

shown that

−1

2
(d2

ij −
1

N

N∑
j=1

d2
ij −

1

N

N∑
i=1

d2
ij +

1

N2

N∑
j=1

N∑
i=1

d2
ij) =

m∑

k=1

xikxjk, (2.4)

thus the node coordinates can be estimated from the m principal eigenvectors of

the matrix B, scaled by the square roots of the corresponding eigenvalues. That

is, with Ur containing the m principal eigenvectors and Vr diagonal containing

the corresponding eigenvalues, Br = UrVrU
T
r is an optimal least squares approx-

imation of B, and Xr = UrV
1/2
r is an approximation of the node coordinates in

m-dimensional space, up to a common coordinate rotation, reflection, and shift.

An alignment procedure is necessary to transform the estimated node locations

to a desired frame of reference.

It is important to note that, due to the preprocessing steps prior to PCA, this

approach is not equivalent to nonlinear least-squares parameter fitting using the

original measurements.
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Direct minimization of a suitable stress function is an alternative to PCA-

based MDS [8]. A common1 stress function is

stress2 =
∑
i,j

wij(d̂ij − dij)
2. (2.5)

Where [wij] is the weight matrix, whose elements are equal to 1 if node j is in

the measurement range of node i and 0 otherwise. Minimization starts with an

initial guess of the node positions (often random), followed by gradient descent

iterations. Initialization matters a lot in this context, because the stress function

is multi-modal. Furthermore, the number of iterations required for convergence

depends on the quality of the initialization.

1 The negative log-likelihood of the observed data under a suitable measurement noise model

would seem to be the natural choice of stress function. This is not fortuitus in our context,

however, because the resulting function is not only multi-modal, but also leads to numerical

difficulties. For this reason, a least squares criterion is preferred. While still multi-modal, the

adopted least squares criterion is much more benign from a numerical optimization viewpoint,

and it often yields performance close to the pertinent CRB, as will be seen in the simulations.



3. FASTMAP

The basic element of Fastmap [3] is the projection of the nodes on a properly

selected line. This is achieved by selecting two objects Oa, Ob, called pivots, and

projecting all other objects on the line that passes through them. A pair of pivots

is chosen for each of the m dimensions. The coordinates, (i.e., projections on the

pivot line) of the objects are found by employing the cosine law [3]. Thus, the

first coordinate for object Oi is given by:

xi =
d2

ai + d2
ab − d2

bi

2dab

, (3.1)

where dij is the measured distance between nodes i and j and a, b are the pivot

objects. After computing these coordinates for each object Oi, we consider a

hyperplane which is orthogonal to the pivot line. We then project the objects on

this hyperplane, and repeat the process, this time using

d̃2
ij = d2

ij − (xi − xj)
2, i, j = 1, ..., N. (3.2)

A heuristic method is proposed in [3] for choosing the pivots as far as possible

from one another.

In database applications there is no “natural” or preferred coordinate frame of

reference, thus the final alignment step is not used, and anchors are not needed.
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In the context of sensor networks, however, obtaining absolute position estimates

is important. Unfortunately, Fastmap is very sensitive to coordinate alignment,

because the estimated position of every node (and thus anchor nodes as well) is

only based on distances to the chosen pivot nodes - there is no averaging. In

order to mitigate this problem, we advocate a particular choice of anchor nodes

that double as pivots, placed at the outer edges of the network. In particular,

we assume that the sensor nodes are spread over a square, and place the anchor

nodes, which will also serve as pivots, at three vertices (see Fig. 3.1). This

placement bypasses the need for alignment and thus alignment errors, thereby

providing a high-quality initialization to the gradient descent. Anchors #1 and

#2 also serve as pivots for determining the coordinates in the first dimension,

while anchors #2 and #3 double as pivots for the second dimension.

We assume that the anchor/pivot nodes which are used by Fastmap can take

distance measurements from all the sensor nodes, (even if we don’t have full

connectivity for the rest of the nodes). This is reasonable if the anchor/pivot

nodes are airborne, in higher ground, or on a mast.
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Fig. 3.1: Anchor/pivot node placement



4. PROPOSED TWO-STAGE APPROACH

Fastmap is a fast algebraic mapping method that is rather sensitive to measure-

ment errors, particularly so in the final alignment step. In our context, this

sensitivity can be mitigated by the proposed choice of anchor/pivot nodes. The

resulting estimates can be used as initialization for gradient descent. Each step

of gradient descent costs O(N2). Assuming good-enough initialization, only a

few gradient descent steps will be needed. This suggests that a substantial com-

plexity reduction relative to PCA and other techniques is possible. Interestingly,

estimation accuracy can be improved as well, as we will see.

The basic steps of the two-stage algorithm are shown in Table 4.1. Denoting

by (xi, yi) the estimated position of node i, the partial derivative of the stress

function in (5) is given by

∂stress

∂xi

=
∑

j 6=i

wij

(
√

(xi − xj)2 + (yi − yj)2 − dij)(xi − xj)√
(xi − xj)2 + (yi − yj)2

. (4.1)

with a similar expression for the partial derivative with respect to yi. For sim-

plicity, but also to bound complexity, a fixed small number of gradient descent

steps (denoted by p) is used in our simulations.
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Tab. 4.1: Two-stage Fastmap+SD Algorithm
Input: D

1. Run Fastmap using as pivots three an-

chor nodes, judiciously placed on the

three vertices of the square distribution

area. Let X be the vector containing the

resulting estimated node coordinates.

2. For i = 1 to p

begin

• evaluate ∇stress at the point X

• X = X − λ∇stress

end



5. COSTA’S ALGORITHM

An iterative distributed estimation algorithm for MDS has been recently pro-

posed in [2], using the principle of majorization. The idea behind majorization

is simple. Instead of directly minimizing a complicated cost/stress function, ma-

jorization uses a simpler (usually quadratic) majorizing function that lies over

the said cost/stress function and is equal to it at the current parameter estimate.

Minimizing the majorizing function thus yields a new parameter estimate whose

cost/stress is lower than or equal to that of the previous one. Continuing in this

fashion yields a sequence of parameter estimates of decreasing cost/stress values.

The particular cost function proposed in [2] is

S =
N−M∑
i=1

Si, (5.1)

where the local cost functions Si are given by:

Si =
N−M∑

j=1,j 6=i

wij(dij − d̂ij)
2 +

N∑
j=N−M+1

2wij(dij − d̂ij)
2, (5.2)

and the last M nodes are the anchors (M = 3 in the 2-D case), by convention.

Specializing the principle of majorization to the present context [2] yields the

following update

xk
i = aiX

k−1bk−1
i , (5.3)
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where Xk is a matrix which contains the position estimates for all the sensor

nodes in the kth iteration of the algorithm, ai is given by

a−1
i =

N−M∑

j=1,j 6=i

wij +
N∑

j=N−M+1

2wij, (5.4)

and the entries of the N × 1 vector bi are given by

bi(j) = wij(1− dij/d̂ij), j ≤ N −M, j 6= i,

bi(j) = 2wij(1− dij/d̂ij), j > N −M, j 6= i

bi(i) =
N−M∑
i=1

wijdij/d̂ij +
N∑

j=N−M+1

2wijdij/d̂ij,

(5.5)

where d̂ij is the reproduced distance computed from the coordinate estimates at

iteration k. The algorithm can be executed in a distributed fashion (every node

computes its own position coordinates and the corresponding part of the cost

function). When the difference between the previous and the current cost values

becomes smaller than a threshold ε the algorithm terminates. This is guaranteed

due to the fact that a single iteration can reduce or maintain, but cannot increase

the cost, which is also bounded from below.



6. MEASUREMENT NOISE MODEL AND CRAMÉR-RAO

BOUND

Pairwise distance estimates will inevitably contain measurement errors, which are

typically amplified with increasing distance between nodes. The choice of mea-

surement noise model depends on many factors, and is application-specific. We

shall adopt a certain multiplicative normal noise model from the recent literature

on node localization in wireless sensor networks [1, 7], in which the distance mea-

surement error is proportional to the actual distance between the pair of nodes.

Thus the measured distance dij between nodes i, j is assumed to be drawn from

dij ∼ δij + δijN (0, e2
r), (6.1)

where δij is the actual distance between nodes i, j, and N (0, e2
r) denotes a zero-

mean normal random variable of variance e2
r (henceforth referred to as range error

variance). We also assume that the measurements are reciprocal (or symmetrized

by averaging prior to further processing); i.e., dij = dji.

In this section, we derive the Cramér-Rao Bound (CRB) for node localization

using the above multiplicative normal noise model. Analogous derivations for

different noise models employed in [2], [6] can be found in [6]. An explanation of
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the difference between the received signal strength (RSS) noise model described

therein and our multiplicative noise model can be found in the appendix.

Define the vector of sensor parameters γ = (γ1γ2...γN ). Each γi contains the

location coordinates for node i, i.e., γi = (xi, yi]) in the 2-D case. The unknown

parameter vector for the N − 3 sensors whose locations are unknown1 is defined

as θ = (θx θy), with θx = (x1, x2, ..., xN−3) and θy = (y1, y2, ..., yN−3). This is

the vector we wish to estimate. Sensors i, j perform pairwise observations dij.

We assume that the observations dij are statistically independent for i < j. The

density function of the observations dij given the locations of nodes i, j is denoted

by f(dij|γi, γj). Thus the joint log-likelihood is

l(D,γ) =
N∑

i=1

∑

j∈H(i), j<i

li,j,

li,j = logf(dij|γi, γj),

(6.2)

where H(i) is the set of nodes which are in the range of node i.

The CRB for coordinate θi is cov(θi) ≥ [Fθ
−1]ii, where Fθ is the Fisher Infor-

mation Matrix (FIM), given by

Fθ =




Fxx Fxy

FT
xy Fyy


 . (6.3)

The elements for the sub-matrix Fxx are given by

Fxx(k, l) =

{ −∑
j∈H(k) E[ ∂2

∂x2
k
lk,j], k = l

−IH(k)(l)E[ ∂2

∂xk∂xl
lk,l], k 6= l

, (6.4)

1 In the 2-D case we need 3 anchor nodes.
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where IH(k)(l) is the indicator function (1 if l is in the range of k, 0 otherwise).

Similar expressions hold for the Fxy,Fyy sub-matrices. For the model in (6.1)

these specialize to

Fxx(k, l) =





−∑
j∈H(k)

2(xk−xj)
2

δ4
kj

− 1
δ2
kj
− e2

r+1
e2
r

(− 1
δ2
kj

+

4
(xk−xj)

2

δ4
kj

)− 1
e2
r
( 1

δ2
kj
− 3

(xk−xj)
2

δ4
kj

), k = l,

−IH(k)(l)(
1

δ2
kl
− 2 (xk−xl)

2

δ4
kl

+ 1+e2
r

e2
r

(4 (xk−xl)
2

δ4
kl

−
1

δ2
kl

)− 1
e2
r
(3 (xk−xl)

2

δ2
kl

− 1
δ2
kl

)), k 6= l,

(6.5)

Fyy(k, l) =





−∑
j∈H(k)

2(yk−yj)
2

δ4
kj

− 1
δ2
kj
− e2

r+1
e2
r

(− 1
δ2
kj

+

4
(yk−yj)

2

δ4
kj

)− 1
e2
r
( 1

δ2
kj
− 3

(yk−yj)
2

δ4
kj

), k = l,

−IH(k)(l)(
1

δ2
kl
− 2 (yk−yl)

2

δ4
kl

+ 1+e2
r

e2
r

(4 (yk−yl)
2

δ4
kl

−
1

δ2
kl

)− 1
e2
r
(3 (yk−yl)

2

δ2
kl

− 1
δ2
kl

)), k 6= l,

(6.6)

Fxy(k, l) =





−∑
j∈H(k) 2(xk − xj)(yk − yj)

1
δ4
kj
−

41+e2
r

e2
r

(xk−xj)(yk−yj)

δ4
kj

+ 3
e2
r

(xk−xj)(yk−yj)

δ4
kj

, k = l,

−IH(k)(l)(−2(xk − xl)(yk − yl)
1

δ4
kl

+ 41+e2
r

e2
r

(xk−xl)(yk−yj)

δ4
kj

− 3
e2
r

(xk−xj)(yk−yj)

δ4
kj

), k 6= l.

(6.7)



7. SIMULATION RESULTS

In this section, we compare the aforementioned algorithms in the context of node

localization in sensor networks. Network nodes are considered to be uniformly

distributed in a square with area equal to 1, i.e., the x and y coordinates of

the sensor nodes are uniformly distributed in [0, 1]. We employ the alignment

procedure described in [4], where necessary, in order to estimate the absolute

coordinates, and adopt root mean squared error (RMSE) as our estimation per-

formance metric:

RMSE :=

∑N
i=1

√
(xri − xei)2 + (yri − yei)2

N
, (7.1)

where xei, yei are the estimated coordinates, and xri, yri are the actual coordinates

of sensor i. The computational complexity orders of the various algorithms under

consideration are listed in Tables 7.1 and 7.2, for the case of full and partial

connectivity, respectively.

The baseline1 MDS algorithm performs PCA of the doubly-centered matrix

of squared distances, and is henceforth referred to as PCA-based MDS. We also

implemented Costa’s iterative majorization algorithm. We tried both random

initialization and the alternative initialization strategy suggested in [2]. The

1 PCA-based MDS is not directly applicable in the case of partial connectivity.



21

Tab. 7.1: Computational complexity orders for full connectivity (N is number of nodes)

Algorithm Complexity

Fastmap O(N)

Fastmap+SD O(pN2), p << N

PCA O(N3)

Costa’s O(kN2), k << N

Tab. 7.2: Computational complexity orders for partial connectivity (s is the average

number of distance measurements collected by a node)

Algorithm Complexity

Fastmap O(N)

Fastmap+SD O(psN), p << N

Costa’s O(ksN), k << N

former yields unsatisfactory results that do not improve with decreasing error

variance; the latter often yields complex coordinates when the triangle inequality

fails due to measurement errors. It is clear that Costa’s algorithm is sensitive

with respect to initialization, and could benefit from a better “warm start”. For

this reason, we also tried using our adaptation of Fastmap to initialize Costa’s

iteration.

Fig. 7.1 shows the RMSE performance of the various algorithms (PCA,
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Fastmap, Fastmap+SD, Fastmap+Costa, and Costa with random initialization)

for a network of 80 sensors, as a function of e2
r. Distance measurements were

drawn from the multiplicative noise model in (6.1). The corresponding Cramér-

Rao Bound (CRB) is also plotted as a benchmark. For the SD step of the

proposed algorithm (Fastmap+SD), a step-size of λ = 0.01 and p = 10 SD it-

erations were used. The convergence threshold in Costa’s algorithm was set to

ε = 0.1. From Fig. 7.1, we observe that stand-alone Fastmap exhibits poor

performance, which quickly degrades with increasing range error variance. When

randomly initialized, Costa’s algorithm also performs poorly in this setup, and its

performance does not improve with decreasing error variance. Fastmap+SD and

Fastmap+Costa are the best options from the viewpoint of RMSE performance,

and remain relatively close to the CRB, especially for low range error variance.

Interestingly, the proposed algorithm is not only less complex, but also more ac-

curate than PCA. This is partially attributed to the fact that PCA uses double

centering, which colors the noise, whereas the proposed algorithm directly aims

to minimize the stress function.

Fig. 7.2 shows corresponding results for a network of 200 nodes (λ = 0.005;

the remaining setup is the same as in Fig. 7.1). The estimation accuracy of PCA,

Fastmap+SD, and Fastmap+Costa, improves relative to Fig. 7.1, as expected.

Fastmap does not benefit, due to the lack of (implicit or explicit) averaging, while

Costa’s algorithm with random initialization performs slightly worse than in Fig.

7.1.
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Fig. 7.1: RMSE performance vs. measurement range error variance; N=80, fully con-

nected network, multiplicative normal measurement noise, 100 Monte Carlo

runs.

We also tried an additive measurement noise model, i.e., measurements drawn

from

dij ∼ δij +N (0, e2
r), (7.2)

in which case the variance of the measurement error is independent of the distance

between the two nodes. The results are shown in Fig. 7.3 for the case of 80 nodes,

and in Fig. 7.4 for the case of 200 nodes. We observe again that Fastmap+SD and

Fastmap+Costa yield approximately the same RMSE performance, significantly

outperforming stand-alone Fastmap and PCA.

One might also wonder whether the RMSE comparison of the various algo-

rithms is sensitive with respect to the statistics of the multiplicative noise (normal

versus log-normal, see also the appendix). Fig. 7.5 presents simulation results for
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Fig. 7.2: RMSE performance vs. measurement range error variance; N=200, fully con-

nected network, multiplicative normal measurement noise, 100 Monte Carlo

runs.

the multiplicative log-normal noise model employed in [2]. We observe that the

relative performance ordering of the different algorithms is the same as in Fig.

7.1.

Fig. 7.6 shows the average computational cost in floating point operations

(FLOPS) of Fastmap+SD and Fastmap+Costa, as a function of the number of

nodes, N . We observe that Fastmap+SD exhibits significantly lower complexity

(up to five times lower) than Fastmap+Costa. The values of the step-size λ used

for the different values of N are listed in Table 7.3.

In all simulation results presented so far, the network was assumed to be fully

connected, i.e., distance measurements were available for each pair of nodes in the

network. We now switch to partially connected scenarios. We assume that nodes
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Fig. 7.3: RMSE performance vs. measurement range error variance; N=80, fully con-

nected network, additive normal measurement noise, 100 Monte Carlo runs.

which are further apart than a certain threshold (radio range) cannot hear each

other, the corresponding distance measurement is marked as unavailable, and the

associated weight in the stress function is set to zero. An exception is that every

node is assumed to be within range from each of the three anchor/pivot nodes.

We adopt the multiplicative normal noise model in (6.1), and consider two cases:

in the first the measurement range is 0.14 and in the second it is 0.3. Fig. 7.7

and Fig. 7.8 show the RMSE performance of Fastmap+SD, Fastmap+Costa, and

the CRB (which accounts for the missing data) for the two cases, as a function

of range error variance, for N = 80 nodes.

Table 7.4 lists the values of λ used in the SD iteration for the three different

connectivity scenarios (fully connected, partially connected with measurement

range equal to 0.3, or 0.14) and N = 80. For Fastmap+SD, we tried two dif-
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Fig. 7.4: RMSE performance vs. measurement range error variance; N=200, fully con-

nected network, additive normal measurement noise, 100 Monte Carlo runs.

ferent values for the number of SD iterations: p = 10 and p = 30. From Fig.

7.7 and Fig. 7.8, we observe that the RMSE performance of Fastmap+Costa

is better than that of Fastmap+SD with p = 10 iterations, and comparable to

Fastmap+SD with p = 30 iterations. The corresponding FLOP counts in Fig.

7.9 and Fig. 7.10 show that Fastmap+SD with p = 10 maintains its computa-

tional complexity advantage compared to Fastmap+Costa, although the gap is

somewhat smaller than in the case of full-connectivity. Increasing p improves the

RMSE performance of Fastmap+SD, but at the cost of computational complex-

ity. For very sparse networks, it appears that Fastmap+Costa is preferable to

Fastmap+SD if accuracy is the prime consideration.
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Fig. 7.5: RMSE performance vs. power noise variance (see appendix); N=80, fully

connected network, multiplicative log-normal measurement noise, 100 Monte

Carlo runs.

80 100 120 140 160 180 200
0

5

10

15
x 10

6

number of nodes

F
LO

P
S

Fastmap+Costa

Fastmap+SD, p=10

Fig. 7.6: Average computational cost in FLOPS vs. number of nodes; fully connected

network, range error variance=0.1, 50 Monte Carlo runs. For Costa’s algo-

rithm, threshold=0.1.
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Tab. 7.3: Choice of step-size as a function of the number of nodes

N λ

80 0.01

110 0.0075

140 0.007

170 0.006

200 0.005

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

range error variance

R
M

S
E

Fastmap+SD, p=10

Fastmap+SD, p=30

Fastmap+Costa

CRB

Fig. 7.7: RMSE performance and CRB for limited measurement range = 0.14 (weights

corresponding to actual distances greater than this limit are set to zero);

N=80, 100 Monte Carlo runs. For Costa’s algorithm, threshold=0.1.
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Fig. 7.8: RMSE performance and CRB for limited measurement range =0.3; N=80,

100 Monte Carlo runs. For Costa’s algorithm, threshold=0.1.

Tab. 7.4: Choice of step-size as a function of measurement range. 80 sensor nodes

Measurement Range λ

Infinite 0.01

0.3 0.013

0.14 0.015
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Fig. 7.9: Average computational cost in FLOPS vs. number of nodes for limited

measurement range =0.14 (measurements corresponding to actual distances

greater than 0.14 are missing); multiplicative normal measurement noise,

range error variance=0.1, 50 Monte Carlo runs.
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measurement range =0.3; multiplicative normal measurement noise, range

error variance=0.1 , 50 Monte Carlo runs.



8. CONCLUSIONS

We have proposed a hybrid two-stage (Fastmap+SD) node localization algorithm

that offers a better performance - complexity trade-off than existing alternatives

of comparable complexity order. The new algorithm employs Fastmap, coupled

with judicious selection of anchor nodes that double as pivots, to generate a com-

putationally cheap yet sufficiently accurate initialization for gradient descent.

We also proposed using our adaptation of Fastmap as initialization for Costa’s

algorithm. Extensive simulations indicate that, in the context of our present ap-

plication: i) Fastmap+SD uniformly outperforms the classical PCA-based MDS,

both in terms of complexity and in terms of estimation accuracy; ii) our adapta-

tion of Fastmap is an effective initialization for Costa’s algorithm, leading to a

substantial reduction in RMSE; and iii) Fastmap+SD and Fastmap+Costa yield

comparable RMSE performance, but Fastmap+SD affords considerable reduction

in computational complexity, especially for dense networks. For very sparse net-

works, it appears that Fastmap+Costa is preferable to Fastmap+SD if accuracy

is the prime consideration. We have also derived the pertinent CRB for the mul-

tiplicative noise model in [1, 7], which was adopted for most of our simulations.

Fastmap+SD and Fastmap+Costa operate close to the CRB for dense networks,
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but there is a measurable performance gap for sparse networks.



APPENDIX

Normal vs. log-normal multiplicative noise modelling: In [2, 6], the

power received at node i from node j, measured in decibel (dB), is modelled

as Pij = P̄ij + v, where P̄ij is the mean power, and v is a zero-mean Gaussian

random variable of standard deviation σ. The mean power is modelled as P̄ij =

P0 − 10nplog10
δij

δ0
, where P0 is the mean power for a reference distance, δ0, and

np is the path loss exponent. It follows that

P0 − Pij = P0 − P̄ij − v = 10nplog10
δij

δ0

− v, (8.1)

and the associated distance estimate is given by [2]

di,j = δ010(P0−Pij)/10np . (8.2)

Substituting Pij = P̄ij + v and P̄ij = P0 − 10nplog10
δij

δ0
yields

dij = δi,j10−v/10np . (8.3)

Notice that the noise factor is log-normal, whereas in the model of [1, 7] (also

adopted herein) the noise factor is normally distributed.
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