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From Biology to Systems Biology 

Understand every detail and 
principle of Biological Systems 

Ultimate Goal of Biology 

Molecular Biology was born almost 50 years ago. 
Watson and Crick identified DNA structure. They grounded 
biological phenomena on molecular basis. 

Today, large number of genes have 
been identified. 
DNA sequences have been fully 
identified for various organisms (E. coli, 
C. elegans, homo sapiens, e.t.c.). 

Understanding at the 
molecular-level, 
mechanisms of biological 
systems. 



From Biology to Systems Biology 

BUT 

Such knowledge does not provide scientists with an 
understanding of biological systems as Systems. 
 
Scientists understand characteristics and behaviors of the 
components of the System. 
 
This kind of information is necessary for understanding the 
system, but not sufficient. 



Systems Biology 

Systems Biology is a new field of Biology aiming to develop a System-
Level understanding of biological systems. 

In order to understand Biological systems as Systems: 

 System Structure Identification 
 
 System Behavior Analysis 
 
 System Control (control system’s state. Transform 
malfunctioning cells to healthy cells) 



Systems Biology 

Functions of a cell do not reside in molecules themselves but in their 
interactions.  

Systems Biology investigates the functioning and function of 
inter- and intra- cellular dynamic networks, using signal and 
systems oriented approaches. 

How do components within a cell interact to bring about its 
structure/function? (intracellular dynamics) 
 
How do cells interact to bring about coherent cell populations? 
(intercellular dynamics) 



Systems Biology 

Term “Systems” in Systems Biology refers to dynamic 
system theory. 
 
System Biology focuses on dynamics and transient changes 
occurring within cells. 
 
These changes in most cases are molecule concentrations. 
 
They carry information and are the root of cellular functions 
that sustain and develop an organism. 



Cell, a system oriented approach 

Intercellular Signalling 
 
It is necessary for cells to 
communicate and exchange 
information, in order to 
realize higher levels of 
organization (tissues, organs, 
organisms). 
 
Basis of intercellular 
signalling are the receptors in 
the cell membrane. 



Cell, a system oriented approach 

Intracellular Signalling 
 

Transmission of extracellular 
information to the genome. 
 
Transmission of information inside the 
cell is realized by chemical reaction 
networks, called pathways. 
 
These networks process environmental 
signals, induce appropriate cellular 
responses and sequence internal events, 
thus allowing cells to perform their basic 
functions. 

 Cell death 
 
 Cell growth 
 
 Specialization 
 
 Stress response 
 
 Cell cycle control 



Cell, a system oriented approach 

Receive external information 
through inputs that may be: 
 
Produce measurable outputs 
including chemical signals to 
other cells, movement of 
pseudopods, e.t.c. 

Physical (radiation, 
temperature, mechanical, 
e.t.c.) 
 
Chemical (drugs, nutrients, 
hormones, e.t.c.) 

Cells 

Each cell can be thought as composed of a large number of 
subsystems involving in various processes (growth, death, …) 



Intracellular Signaling Networks 

Wiring diagram of the growth signaling circuitry of the mammalian cell 



Mathematical Modeling of Signal 
Transduction Pathways 

Several methods of modeling intracellular signal 
transduction pathways have proposed, including: 
 
 Chemical Reaction Schemes using Ordinary Differential 
Equations 
 
 Stochastic Models 
 
 Petri-Nets 
 
 Rule based Systems 
 
 Boolean Networks 



Mathematical Modeling of Signal 
Transduction Pathways 

Dominant concept: Chemical Kinetic Models (transduction 
pathways i.e. networks of chemical reactions). 

Pathway is an abstraction, a model, of an observed reality. 
 
In most of the cases these chemical reactions are represented 
mathematically as differential equations. 
 
Changes in the concentrations of reactants and post reaction 
products are recorded based on reaction rates. 

Modeling: Process of abstraction, form of generalization → 
Simplification of the Physical System . 



Mathematical Modeling of Signal 
Transduction Pathways 

Enzymatic reaction scheme 

First step: Enzyme E binds reversibly with substrate A. 
 
Second step: The enzyme releases (irreversibly) the modified 
substrate P. 

Such enzymatic reaction schemes are, in most of the cases, 
the fundamental building blocks of large intracellular signaling 
pathways 



Mathematical Modeling of Signal 
Transduction Pathways 

Reaction rates 

System’s ODEs 

Initial Conditions 



Mathematical Modeling of Signal 
Transduction Pathways 

Pressing need for powerful mathematical tools to help understand, 
quantify and conceptualize signaling networks. 
 
Dominant mathematical tool → chemical kinetic models & ODEs 

 It is impossible to experimentally validate the form of 
nonlinearities, used in reaction terms. 
 Accurate estimation of parameters in vivo is extremely hard. 
 Huge number of simulations required in order to explore state-
spaces of large dimension. 
 Numerical algorithms cannot guaranteed to produce accurate 
results. 
 Explicit knowledge of pathway’s internal structure is essential. 
 Errors and omissions due to simplification of the physical system. 



Approximation of Dynamic Behavior in 
Signal Transduction Pathways 

However 
 
 Modern non-linear systems theory 
equips engineers with necessary 
theoretical tools in order to identify and 
approximate a large class of complex 
dynamic systems. 
 
 The I/O behavior of a non-linear model 
could approximate that of an arbitrary 
dynamic system under certain 
circumstances. 
 
 The knowledge of biological system’s 
internal structure is no longer 
prerequisite. 

Neural Networks 
(RHONN) employed to 
approximate the 
dynamic behavior of 
proteins in transduction 
pathways. 
 
The only requirement is 
the availability of 
experimental data 
which describe 
biological system’s I/O 
behavior. 



Systems Biology and Experimental Data 

High-throughput technologies has created an enormous 
amount of biological relevant information, effectively 
turning biology into an information-rich science. 

 
However (Intracellular signaling pathways) 
 
 Molecular biology experiments are expensive, time consuming and 

often deliver datasets which fall sort of the expectations of 
engineers or mathematicians. 

 
  There is only a small amount of quality experimental data 

available. 
  Only a few of the mathematical models proposed are in vivo 

validated 



Mitogen Activated Protein Kinase 
(MAPK) cascade 

Mathematical model of MAPK pathway proposed by Huang & 
Ferrell used for data extraction. 

Three molecule module, present in all eucaryotes. 
 
Composed of three kinases: MAPK kinase kinase (MAPKKK), 
MAPK kinase (MAPKK) and MAPK. 
 
One of the best characterized modules, many reaction 
parameters estimated. 
 
Significant role in RAS pathway, which has high influence on 
cell growth and survival. 



MAPK cascade 

A small GTP-binding protein or another 
kinase (PKC) serves as input for the cascade 
and activates MAPKKK. 



Mathematical Models of MAPK cascade 

Huang & Ferrell model for MAPK cascade 
in Xenopus Oocytes. 
 
Focused on the role of MAPK cascade in 
all-or-none decisions. 
 
Their model shows amplification from the 
stimulus to the response. 



Mathematical Models of MAPK cascade 

Bhalla & Iyengar model for 
MAPK cascade in mammalian 
neurons. 
 
They studied a large model of 
second messenger cascades. 
Focused on properties of whole 
network, rather than on feature 
of small modules. 

Negative Feedback loop via 
double phosphorylation of 
MAPKKK. 



Hill coefficient as ultrasensitivity 
measure 

Steady-state stimulus/response curve is ultrasensitive if it is sigmoidal. 

Relative changes in stimulus cause 

Small relative changes in response 
at low stimuli 
 
High relative changes in response at 
higher stimuli 

 Hill-coefficient is a measure of 
ultrasensitivity 
 
 If Hill-coefficient is 1, a 81-fold 
increase of the stimulus needed to get 
from 10% activation to 90% activation 



Ultrasensitivity and switch-like behavior 
of MAPK cascade 

Stimulus/response function of the system → steady-state of double 

phosphorylated MAPK-PP as a function of input enzyme. 

Switch-like behavior in cascade 
2nd and 3rd level in Huang & Ferrell 
 
only in 3rd level in Bhalla & Iyengar 



Amplification and Oscillations in MAPK 
cascade 

 Amplification: the absolute change in response divided by 
absolute change in stimulus. 
 
 Amplification exhibited as the cascade is descended → reason 
is the existence of three levels in cascade. 
 
 In MAPK model of Bhalla & Iyengar the strength of feedback 
loop is weak. Increasing the feedback strength → damped 
oscillations in dynamic behavior of proteins. 



MAPK cascade in Xenopus Oocytes 

 Mathematical Model used → MAPK cascade in Xenopus 

Oocytes proposed by Huang and Ferrell. 
 
 The cascade plays significant role in the maturation of oocytes 
in response to the steroid hormone progesterone. 
 
 At oocytes’ population level → response is graded (the 
highest the progesterone’s concentration, the larger the 
fraction of oocytes will mature). 
 
 At individual oocyte’s  level → response is all-or-none. Signal 
transducers that trigger maturation convert a graded stimulus 
into an all-or-none cell fate decision. 



MAPK model of Huang & Ferrell 

Equations of MAPK cascade chemical reactions 

ai denotes association, di disassociation, ki product formation. 



MAPK model of Huang & Ferrell 

Rate equations of MAPK mathematical model  

Derived as described before. i.e. 
rate equation for MAPKKK is: 

With reaction rates: 

Rate constants calculated 
according: 



MAPK model of Huang & Ferrell 

 Rate equations solved numerically using Simulink of Matlab. 
 
 Cascade’s model is built by the whole set of the ODEs working 
in parallel.  



MAPK model of Huang & Ferrell 
 MAPK mathematical model is experimentally validated. 
 Independent experiments for different levels of cascade. 
 
 Cascade filters out noise, switch-like behavior. 
 Signaling system that mediates processes like mitogenesis, cell fate 
induction and oocyte maturation. Cells switch rapidly between discrete 
states. 



Neural Networks 

 ANNs are statistical models of real world systems, which are 
built by tuning a set of parameters (weights). 
 

 Weights describe a model which forms a mapping from a set 
of given values (inputs) to an associated set of values 
(outputs). 
 

 Tuning the weights to the correct values (training) → passing 
a set of examples of I/O pairs through the network models 
and adjusting weights to minimize the error between model’s 
answer and desired output. 
 

 Once training process is complete  the network is able to 
produce answers for input values not included in the training 
dataset. 



Neural Networks 

 ANNs can perform: non-linear function approximation, data 
classification, clustering, non-parametric regression e.t.c. 
 

 Mathematical model that a NN builds is made up of a set of 
simple functions linked together by the weights. 
 

 Weights describe the effect that each simple function 
(neuron) will have on the overall model. 
 

 ANN has a set of input units. 
 A set of output units which report network’s answer. 
 A set of processing hidden units which link input data to 
output. 
 NN arranged in layers. An input layer, an output layer, one or 
more hidden layers. 



Neural Networks Architecture  

NN with 2 hidden layers of neurons and one output layer 



Neural Networks Training 

A NN with one hidden layer (sigmoid) and one output layer (linear) 
can be trained to approximate any static function, with finite number 
of discontinuities, arbitrarily well. 

Neural Network has to be trained to perform a desired function 
 
 
 Supervised Learning: network is trained by providing it with 
input and corresponding output patterns. 
 
 Unsupervised Learning (Self Organization): an output unit is 
trained to respond to clusters of pattern within the input. 



Neural Networks Learning Rules 

j k wjk 

yj 

yk NN learning  adjustment of the weights 
according to some modification rule. 

 Widrow-Hoff or delta Learning Rule 
 

      ΔWjk = γ ∙ yj ∙ (δk - yk) 
 

Where γ is the learning rate, yj is the output of unit j, δk is the desired 
output and yk the actual output of the output unit k. 

Problem: A 2-layer feed-forward NN can not adjust the weights 
from input to hidden units. 



Back-Propagation Learning Rule 

Solution: errors for units of the hidden layers determined by back 
propagating the errors of the units of the output layer. 

 Back-propagation is actually a generalization of delta rule for 
non-linear activation functions and multilayer networks. 
 
 Back-propagation is a gradient descent algorithm. During 
training the weights move along the negative of the gradient of 
the performance function. 



Back-Propagation Learning Rule 

Problem of local minima: Algorithm designed to always reduce 
the error will not be able to climb out of a local dip in the error 
surface. 

Momentum term: The weight changes affected by the size of the 
previous weight changes. 
Learning Rate: Tells Network how slowly to progress in the 
calculation of weight changes. 

     ΔWjk (t+1) = γ ∙ yj ∙ δ
k + α ∙ ΔWjk (t)  

 

Where α is the momentum term which defines the effect of 

previous weight changes 



Back-Propagation NN for 
approximation of steady-state behavior 
in MAPK cascade 

Goal: Approximation of the steady-state stimulus/response 
behavior of MAPKKK-P, MAPKK-PP and MAPK-PP proteins in 
MAPK cascade. 

Classical function approximation 
problem → static back-propagation 

neural network. 



Back-Propagation NN for 
approximation of steady-state behavior 
in MAPK cascade 

 MAPK cascade  an autonomous system.  
 
 It has an instant external input stimulus in the form of E1 
enzyme. 
 
 The variance of E1 initial concentration affects the steady-
state behavior of proteins in the cascade. 
 
 E1 initial concentration is varied over the range of 10-6 μM 
to 10-1 μM. 
 
 For this range of E1 values we wish to forecast the steady-
state activity of MAPKKK-P, MAPKK-PP and MAPK-PP, using a 
2-layer back-propagation NN. 



Back-Propagation NN for 
approximation of steady-state behavior 
in MAPK cascade 

The whole process included 4 steps: 
 
 
1.  Assembly of the training data 

 
2.  Creation of the network object 

 
3.  Train the network 

 
4. Simulate Network to unknown inputs 



Assembly of the training data 

 Mathematical model of MAPK cascade built in Simulink of 
Matlab used for training data extraction. 
 
 Our Goal  train the network with the least amount of data, 
since these data correspond to experimental data which is hard 
to get extracted and limited in number. 
 
Six training data sets created: First had 455 training pairs, 
second had 155 t.p., third had 95 t.p., fourth had 50 t.p., fifth 
had 25 t.p., sixth had 15 t.p. 



Creation of the Network Object 

NN for the first four (455, 155, 95, 50) training datasets has: 
 1 input unit  for E1 initial concentration 
 1 hidden layer with 15 neurons implementing tan-sigmoid function 
 1 output layer with 3 linear neurons 
 
NN for the fifth (25) training dataset has: 
 1 input unit 
 1 hidden layer with 10 neurons (tan-sigmoid) 
 1 output layer with 3 neurons (linear) 
 
NN for the sixth (15) training dataset has: 
 1 input unit 
 1 hidden layer with 8 neurons (tan-sigmoid) 
 1 output layer with 3 neurons (linear) 
 

 



Preprocessing & Post-processing data 

In training and validation datasets → concentration values of 

proteins were greatly varied making the training process 
difficult. 
 
NN training → more efficient if preprocessing of training 

input/targets is performed. 
 
Normalization of the mean and standard deviation of training 
input/targets → zero mean and unity standard deviation. 



NN training algorithm 

 Weight adjustment → minimize network’s performance function mse. 

 
 Standard back-propagation training algorithm converges too slow → 

we wish to employee a faster algorithm. 
 
 Quasi–Newton algorithms approach second order training speed. 
 
Newton’s algorithm: 

   xk+1 = xk – Ak
-1 ∙ gk  

 
where Ak is the Hessian matrix (second derivatives) of the    
performance index. 
 
 But it is complex and expensive to compute Hessian matrix 



NN training algorithm 

 Quasi-Newton algorithms  faster, compute an approximation of the 
Hessian matrix. 
 
 Levenberg-Marquardt training algorithm computes an approximation 

of  Hessian matrix as:     H = JT ∙ J, where J is the Jacobian matrix (first 

derivatives) of networks errors with respect to the weights. 
 
 Iteration of Levenberg-Marquardt training algorithm: 
    
 
 

xk+1 = xk – [ JT∙J + μI ]-1 ∙ JT ∙ e  
  

μ=0: Newton’s method. 
 
 
μ is large: gradient descent with small 
step size. 



Training process and results 

Each NN has trained with the corresponding dataset 

% Levenberg-Marquardt back-propagation training algorithm 

clear all; pack; clc; 

load data6.mat; %In data6.mat there 455 training pairs 

 

p = x2n; %original network inputs 

t = [x4n; x13n; x21n]; %original network targets 

 

%normalization of the input target and vectors with prestd 

[pn,meanp,stdp,tn,meant,stdt] = prestd(p,t); 

 

%The network object is created. It has a hidden layer with 15 tansig  

net = 

newff([minmax(pn)],[15,3],’tansig’,’purelin’,’trainlm’,’learngdm’,’mse’); 

 

 



Training process and results 

net = initnw(net,1) %Initialization of the first layer weights 

net = initnw(net,2) %initialization of the second layer weights 

net.trainParam.show = 100;  

net.trainParam.epochs = 12000; %Maximum number of iterations 

net.trainParam.goal = 7e-5; %Performance function desirable value 

 

[net,tr] = train(net,pn,tn); %Train the network 

 



Training process and results 

NN1: 2756 epochs – NN2: 2687 epochs – NN3: 3080 epochs – NN4: 4278 
epochs – NN5: 1848 epochs – NN6: 1997 epochs. 



Validation process 

NN1 (455) validation results 



Validation process 

NN2 (155) validation results 



Validation process 

NN3 (95) validation results 



Validation process 

NN4 (50) validation results 



Validation process 

NN5 (25) validation results 



Validation process 

NN6 (15) validation results 



Conclusions 

 Back-propagation Neural Network can predict the steady-state 
stimulus/response behavior of proteins in MAPK cascade. 
 
 Even in the case where it is trained with a small number (15) 
of training patterns. 
 
 Steady-state stimulus/response behavior of proteins is of 
great interest in cases where signaling cascades are responsible 
for all-or-none decisions in the cell. 



Approximation of dynamic behavior in 
MAPK cascade 

A more interesting and challenging problem is the 
approximation of the dynamic behavior of proteins 
in MAPK cascade. 

Approximation of a non-linear dynamic system 
with the use of Neural Networks. 



Recurrent High Order Neural Networks 

In order that a NN architecture be able to approximate the 
behavior of a dynamical system it should contain some form 
of dynamics/feedback connections. 

Recurrent Neural Networks (RNN) 

 Several training methods have proposed for RNNs, relying on the 
gradient methodology → extensions of back-propagation. 

 Although they share fundamental drawbacks: 
 computationally expensive 
 inability to obtain analytical results concerning convergence 
and stability of these schemes. 



Recurrent High Order Neural Networks 

 Design and analysis of learning algorithms based 
on Lyapunov stability theory → providing stability, 

convergence and robustness proofs. 
 
 Recurrent High Order Neural Networks employed 
for prediction of the behavior of unknown non-
linear dynamic system. 



RHONN Model 

j i 

xi 

wij 
RNN model state history: 

xi the state of i-th neuron, ai and bi constants, wij 
weight connecting j-th input to i-th neuron. Each yj is 

either an external input or the state of a neuron 

passed through the sigmoid (yj=s(xj)). 

• In Recurrent second Order NN, input to neuron is not only a 

linear combination of yj, but also of their products yjyk. 

 
• Interactions of higher order → RHONNs 

s(xi) 



RHONN Model 

RHONN with n neurons and m inputs: 

{I1,I2,…,IL} collection of L not-ordered subsets of {1,2,…,m+n}, dj(k) 
real coefficients, 
 
 
 

y is the input vector to each neuron: 

and 



RHONN Model 

Introducing L-dimensional z vector: 

and the adjustable parameter vector: 

The RHONN model becomes: 

where the vectors {wi: i=1,2,…,n} represent the adjustable 

weights of network, while coefficients {ai: i=1,2,…,n} are part 

of underlying network architecture. 



RHONN Model 

The dynamic behavior of the overall 
network is described in vector notation as: 

where x = {x1,x2,…,xn}T є Rn
, W = {w1,w2,…,wn}T є RLxn

 and A = diag{-
a1,-a2,…,-an} is a nxn stability matrix. Vector z is a function of both 

network’s state x and network’s input u. 



RHONN Model – Approximation 
properties  

Problem: approximation of a general non-linear  
 
dynamic system whose I/O behavior: 
 

where χ є Rn
 system state, u є Rm

 system input.    

Question: By allowing enough high order connections there exist 

weights W, such that the RHONN model approximates the I/O 

behavior of an arbitrary dynamical system of the previous form? 

Theorem: Suppose that the real system and the RHONN model are 

initially in the same state x(0)=χ(0); then for any ε>0 and any finite 

T>0, there exists an integer L and a matrix W*єRLxn
 such that the state 

x(t) of the RHONN model, with L high order connections and weight 

values W=W* satisfies 



Filtered Error RHONN Learning 
algorithm 

There exist unknown weight vectors wi
* such that each state χi of  

 
the unknown dynamic system satisfies: 
 
The RHONN model for prediction of the I/O behavior 
 
of unknown system is: 
 

where wi is the estimate of unknown wi
*. The state 

 

error ei = xi – χi satisfies: 

 

where φi = wi – wi
*. The weights wi are adjusted according to  

 
learning law: 
 



RHONN Model Approximation 
Properties for Autonomous Systems 

 MAPK cascade → autonomous dynamic system. 

 Only E1’s initial concentration affects the dynamic behaviors of 
proteins in the cascade. 
 An autonomous can be modeled by a RHONN architecture! 

Lemma: An autonomous  system, with arbitrary initial conditions 
 
described by the differential equation: 
 
can behave dynamically exactly as the dynamical system, with given  
 
initial conditions: 
 
if u is of the form: 
 

(1) 

(2) 

(3) 



RHONN Model Approximation 
Properties for Autonomous Systems 

Proof: Consider the two systems (1) and (2). By integrating these  
 
 
equations, we obtain: 
 
 
We choose the external input u to be (3). But the integral of the dirac  
 
function is:  
 
Then system (5) can be expressed: 
 
 

(4) 

(5) 

(6) 

Thus the input u shifts the systems (1) and (2) to the same initial state. 
So for T>0 their behavior is identical. 



Filtered Error RHONN Model 

 We proved that an autonomous system of the form (1) with 
arbitrary initial conditions can behave identical to a system of 
the form (2) with constant initial conditions, if the external 
input u is chosen as (3). 
 
 We used a Recurrent Second Order NN model to approximate 
system (2) with external input (3). 
 
 RHONN model composed by 22 neurons. 
 
 Each neuron correspond to a specific protein of MAPK 
cascade. 
 Neurons transfer function is the log-sigmoid: 
 



Filtered Error RHONN Model 

 In a Recurrent Second Order NN z vector should include all outputs yj 

and all possible combinations yjyk. 

 But we have information about cascade’s internal structure. 

 A different z vector created for each protein/neuron. 

 For a specific protein xi, zi vector includes 1st and 2nd order terms of 

proteins with which this protein interacts. 

Example: z vector for E1 protein. 

 
Differential Equation: 
 

Denoting: x1 KKK, x2  E1, x3  E1-KKK, then  

 
 
 



Internal Structure of Simulink Block Calculating z vectors 



RHONN training process 

Training Algorithm: 
 

1.  Initialization of the wi vectors with zero initial values. This step is 

performed only in the first iteration of the training algorithm. 

2.  Initialization of the ai and γi parameters. This step is also performed 

only in the first iteration of the training algorithm. 
3.  Initialization of the RHONN and the real system in the same initial 

condition xi(0) = χi(0). 
4.  Extraction of the training data from MAPK cascade model. 

5.  Training data passed through log-sigmoid function to zi vector 

generator. 
6.  Evaluation of the RHONN state. 

7.  Calculation of error during training ei = xi – χi. 
8.  Calculation of weight vectors wi values. 

 
 

 



RHONN training process 

9.  The final wi values in one iteration of the algorithm are set as initial 

values for wi’s in the next iteration of the training process. 

 
10. The initial conditions of E1 neuron in RHONN and of E1 differential 
equation in training data generator are altered, and a new iteration of 
the algorithm begins. 
 

11. The training algorithm (steps 3-10) continues until the error ei is 

driven to an acceptable low value or a number of maximum epochs 
has reached. 
 



Block Diagram of Simulink Model implementing Filtered Error 
RHONN training algorithm 



RHONN training process 

 In order to reliably train RHONN model, four (4) weight sets 
calculated. 
 Each weight set corresponds to a specific range of E1 initial 
concentration values. 
 This is due to the fact that proteins in cascade require more time to 
reach their steady-state as E1 initial concentration is decreasing. 



RHONN training process 

Code used for training in E1 interval of [10
-2

 μM to 10
-1

 μM]. 

%initialize initial concentrations  

InitConc; 

%initialize learning rates 

InitParam; 

%initialize structure 

for i = 1 : 66 

xFinal.signals(1,i).values = [0] 

end 

 

E1mat = [0.01:0.005:0.1]; 

epoch = 0; 

for j = 1 : 1 : 10 

 for i = 1 : 1 : 19 

 



RHONN training process 

%random selection of E1 initial concentration 

index = randint(1,1,[1,19]) 

E1 = E1mat(index); 

InitConc; 

 

for i = 1 : 1 : 1 

  sim(’rhonn train’) 

    end 

     end 

     epoch = epoch + 1 

end 



RHONN training process 
weight set w1 – E1 = 0.04 μM – epoch 140 



RHONN training process 
weight set w1 – E1 = 0.008 μM - epoch 140 



RHONN training process 
weight set w2 – E1 = 6 ∙ 10

-3
 μM - epoch 271 



RHONN training process 
weight set w3 – E1 = 1.5 ∙ 10

-4
 μM - epoch 205 



RHONN validation process 
 Network should produce answers for unknown input stimuli. 
 
 Model built in Simulink for validation procedure 



RHONN validation process 
E1 1st interval – E1 = 0.088 μM unknown input stimulus 



RHONN validation process 
E1 1st interval – E1 = 0.088 μM unknown input stimulus 



RHONN validation process 
E1 1st interval – E1 = 0.0092 μM unknown input stimulus 



E1 2nd interval – E1 = 0.0058 μM unknown input stimulus 

RHONN validation process 



RHONN validation process 
E1 2nd interval – E1 = 0.00073 μM unknown input stimulus 



RHONN validation process 
E1 3rd interval – E1 = 2.53 ∙ 10

-4
 μM unknown input stimulus 



Conclusions 

 RHONN has effectively learn to approximate the dynamic 
behavior of proteins in MAPK cascade. 
 
 Mathematical tools developed in this work form an 
alternative for modeling and approximating complex biological 
systems. 
 
 There is no longer need for extensive knowledge of system’s 
internal structure. 
 The only prerequisite is the existence of a relatively small 
amount of examples of I/O behavior. 
 
RHONNs are not constrained by system’s complexity or large 
dimension. 


