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Three-dimensional analytical models of contaminant transport
from nonaqueous phase liquid pool dissolution

in saturated subsurface formations

Constantinos V. Chrysikopoulos

Department of Civil and Environmental Engineering, University of California, [rvine

Abstract.

Closed form analytical solutions are derived for three-dimensional transient

contaminant transport resulting from dissolution of single-component nonaqueous phase
liquid pools in saturated porous media. The solutions are suitable for homogeneous
porous media with unidirectional interstitial velocity. The dissolved solute may undergo
first-order decay or may sorb under local equilibrium conditions. The solutions are
obtained for rectangular and elliptic as well as circular source geometries, assuming that
the dissolution process is mass transfer limited, by applying Laplace and Fourier
transforms. Although the solutions contain integral expressions, these integrals are easily
evaluated numerically. These solutions are useful for verifying the accuracy of numerical
solutions to more comprehensive models and for design and interpretation of experiments
in laboratory-packed beds and possibly some field studies. The results of several
simulations indicate that for short downstream distances, predictions of contaminant
concentrations are sensitive to the source structure and orientation with respect to the

direction of interstitial flow.

Introduction

As a substantial number of aquifers contaminated by non-
aqueous phase liquids (NAPLs) have been identified and char-
acterized, groundwater cleanup has reached significant propor-
tions. Most of the NAPLs are organic solvents and petroleum
hydrocarbons originating from leaking underground storage
tanks, ruptured pipelines, surface spills, hazardous waste land-
fills, and disposal sites. As a NAPL is released into the sub-
surface environment, it infiltrates through the vadose zone,
leaving behind blobs or ganglia which are no longer connected
to the main body of the organic liquid. Upon reaching the
water table, NAPLs lighter than water remain above the water
table in the form of a floating pool; NAPLSs heavier than water
continue to migrate downward until they encounter an imper-
meable layer where a flat pool starts to form (see Figure 1). As
groundwater flows past trapped ganglia or NAPL pools, a
plume of dissolved hydrocarbons is created.

In recent years, numerous theoretical and experimental
studies have focused on NAPL behavior in saturated porous
media [Fried et al., 1979; Schwille, 1988; Powers et al., 1991,
1992; Anderson et al., 1992a, b; Borden and Piwoni, 1992; Con-
rad et al., 1992; Johnson and Pankow, 1992; Thomson et al.,
1992; Geller and Hunt, 1993; Mayer and Miller, 1993], unsatur-
ated porous media [van der Waarden et al., 1977; Corapcioglu
and Baehr, 1987; Baehr, 1987; Zalidis et al., 1991; El-Kadi, 1992;
Ostendorf et al., 1993; Pantazidou and Sitar, 1993], as well as in
saturated/unsaturated multiphase systems [Abriola and Pinder,
1985; Pinder and Abriola, 1986]. However, the literature on
groundwater contamination by pool dissolution of dense or-
ganic solvents is quite limited. Hunt et al. [1988] presented an
analytical solution to the two-dimensional steady state advec-
tion-dispersion equation suitable for NAPL pool dissolution in
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saturated semi-infinite homogeneous porous media, making
the assumption that the pool is of rectangular geometry and
the dissolved solute is conservative. Chrysikopoulos et al.
[1994], making the assumption that the dissolved solute decays
and undergoes sorption governed by a linear equilibrium iso-
therm under local chemical equilibrium conditions, extended
this model to account for transient contaminant transport from
a single-component NAPL pool. Anderson et al. [1992b] pre-
sented a time dependent infinite series solution to a conserva-
tive single-contaminant pool dissolution in a three-dimensional
homogeneous porous medium under steady unidirectional
flow conditions. The models presented by Hunt et al. [1988]
and Chrysikopoulos et al. [1994] assume that the source con-
centrations are equal to the solubility of the solvent. On the
other hand, Anderson et al. [1992b] incorporated in their model
an expression for a constant mass transfer flux (or in their
terminology the surface area—averaged mass transfer rate
[Johnson and Pankow, 1992]).

A NAPL spill is a very complicated phenomenon, but the
objective here is to study a small part of this phenomenon,
rather than to develop a comprehensive model for a NAPL
spill. Specifically, this work focuses on the development of
analytical solutions for the transient three-dimensional con-
taminant transport from a single-component NAPL pool in
saturated homogeneous porous media under steady unidirec-
tional flow conditions. Multicomponent NAPL pools raise a lot
of other issues regarding solubility and equilibrium and are not
examined here. The present work improves upon previously
published mathematical models of NAPL pool dissolution, be-
cause the dissolution process is considered mass transfer lim-
ited and a variety of pool geometries (rectangular, elliptic, and
circular) are examined. For mathematical simplicity it is hy-
pothesized that the dissolved solute decays and undergoes
sorption processes which are based on linear equilibrium iso-
therms and that the local chemical equilibrium assumption is
valid. The use of a linear sorption isotherm is reasonable for
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Figure 1. Schematic illustration of the migration in the sub-
surface of organic liquids that are slightly soluble in water,
showing liquids that are heavier than water, such as trichloro-
ethylene (TCE), and lighter than water petroleum products

(oil).

low solute concentration which is frequently the case for many
dissolving NAPLs [Schwille, 1988]. Furthermore, it is assumed
that the aqueous phase concentration of the dissolved solute
adjacent to the source is equal to its solubility limit. This
equilibrium partitioning is based on the assumption that the
characteristic timescale of the mass transfer process is much
smaller than the characteristic timescale of the advective-
dispersive transport. Such conditions have been observed by
van der Waarden et al. [1971], Fried et al. [1979], Schwille [1984],
and Borden and Piwoni [1992]. However, it should be noted
that for some situations involving pools of irregular NAPL
distribution or ganglia of certain blob sizes, equilibrium parti-
tioning and solubility conditions may not be maintained
[Mackay et al., 1985; Powers et al., 1991; Geller and Hunt, 1993).
From a mathematical modeling viewpoint this problem has
similarities to the extensively investigated case of solute trans-
port in multidimensional porous media [e.g., Leij and Dane,
1990]. Although the analytical models developed in this paper
are for denser than water NAPL pools, these models can also
be used for lighter than water NAPL pools by simply reversing
the positive direction of the spatial coordinate z. Assuming
that the NAPL-water interface is flat, complexities associated
with lighter than water NAPL distribution at the capillary
fringe are eliminated.

Development of Models
Rectangular Pool

The transient contaminant transport from a dissolving
NAPL rectangular pool denser than water in a three-di-
mensional homogeneous porous medium under steady state
uniform flow conditions as shown in Figure 2, assuming that
the organic solvent is sorbing under local equilibrium condi-
tions, is governed by

aC(t, x,y, 2) C(t, x, v, z) :C(t, x, v, 2)
R at =Dx ax? + D, ay*
3*C(t, x,y, z) aC(t, x, y, z)
D, 322 ~Us ox
- )\RC(ta x,Y, Z): (1)

where C(¢, x, y, z) is the liquid phase solute concentration; U,
is the average interstitial fluid velocity; x, y, z are the spatial
coordinates in the longitudinal, lateral, and vertical directions,
respectively; ¢ is time; R is the dimensionless retardation factor

TECHNICAL NOTE

for linear, reversible, instantaneous sorption; D,, D,, D, are
the longitudinal, lateral, and vertical hydrodynamic dispersion
coefficients, respectively; and A is a first-order decay constant.
Assuming that the thickness of the pool is insignificant relative
to the thickness of the aquifer and NAPL dissolution is de-
scribed by the following mass transfer relationship, applicable
at the NAPL-water interface,

aC(t, x,y, 0)
o (t, x, ¥

e a9z =k(t, X,Y)[Csfc(l‘, X, Y oo)]’

- (2)
where @, = @/7* is the effective molecular diffusion coeffi-
cient, 9 is the molecular diffusion coefficient, 7* is the tortu-
osity coefficient (7* = 1), k(¢, x, y) is the local mass transfer
coefficient dependent on time and location on the NAPL-water
interface (readers familiar with the study of heat transfer will
realize that the local mass transfer coefficient is analogous to
the time/space dependent local heat transfer coefficient), C, is
the aqueous concentration at the interface and for a pure
organic liquid equals the liquid’s aqueous saturation (solubil-
ity) concentration [Fried et al., 1979; Geller and Hunt, 1993;
Seagren et al., 1994], and C(¢, x, y, ) = 0 corresponds to the
contaminant concentration outside the boundary layer, the
appropriate initial and boundary conditions for this system are

C(O, X, y: Z) = 0’ (3)
C(t, iOO, y’ Z) = O’ (4)
C(l, X, oo z) = 0, (5)
aC(t, x,y,0
D, —(:Z—yl: —k(t, x, y)C;
(6a)
€x0<x<€x0+ gx: eyn<y<€y0+€y
(a)
y
“f botly
Uy —» 6’1
- 7 o
" -
L (b)
- C(t,%,Y,2) ~
Uy — Cq a
— -
L

Lot

Figure 2. (a) Plan view of the conceptual model showing the
unidirectional groundwater velocity U,, the location of a
denser than water NAPL pool with aqueous saturation con-
centration C, and dimensions €, X £,. (b) Profile view of the
NAPL pool and the dissolved concentration C(t, x, y, z).
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aC(t, x,y, 0
o (£, x,y,0)

. 0z =0 otherwise, (6b)
Ct,x,y, ) =0, (7N
where £, £, indicate the x, y Cartesian coordinates of the

xo, y - . .
pool origin, respectively, and €, £, are the pool dimensions in

x, y directions, respectively. The concentration boundary layer
implies that the dissolved concentration changes from the sol-
ubility concentration at the NAPL-water interface to the free-
stream concentration in the interstitial fluid [Bennett and My-
ers, 1982, p. 551]. It should be noted that the decay term ARC
in the governing equation (1) indicates that the total concen-
tration (aqueous plus sorbed solute mass) disappears due to
possible decay or biological/chemical degradation. A first-
order decay term has also been used to determine many abiotic
reactions and biological reactions at low concentrations [e.g.,
van Genuchten, 1981]. The aqueous saturation concentration
(C,) is kept constant at z = 0 because of the presence of
NAPL phase in equilibrium with water at the interface. For a
single-component NAPL, where no mass transfer limitations
from within the NAPL occur, this is a reasonable boundary
condition. If there is a decay, it is expected that the concen-
tration profile with vertical distance from the NAPL would be
different from that without decay, but both profiles would have
C=C,atz=0.

Taking Laplace transforms with respect to the variable ¢ of
(1), (6), and (7), applying initial condition (3), and taking
double Fourier transforms of the resulting equations with re-
spect to variables x, y yields

d’C**(s, v, o, z) B <y

D, + ’D, + iyU, + Rs + RA
dz?

D,

: Co.(s, Ys W, Z) - 0’ (8)

45, v, 0, 0) .
Y " J f ks, vy —a, 0 — B)
- ®°*(a, B) dB da, )]
C*(s, v, , ©) =0, (10)
where
oY _ g iRt [pivby _ pio(6ut6)
Py, ) = [ iv(2mY? ][ iw(2mY? ]’ (11)

and the following definitions were employed for the Laplace
and Fourier transformations [Kreyszig, 1993, p. 621]

C(s,x,9,2) = J C(t,x,y, 2)e " dt, (12)
0
- 1 L »
C(s, v, y,2) = an Cls, x,y, z)e " dx, (13)
Ve 1 ” 710 —iw)
C*(s, v, 0, 2) = oz C°(s, v, y, z)e”" dy, (14)

1
F{f1(x) fo(x)} = Wff’(v) * f2(y)

TECHNICAL NOTE 1139

1 o
= (2,”-)1/2J' fily — o) f7(a) da, (15)

the tilde signifies Laplace transform and s is the transformed
time variable, the open and solid degree signs signify Fourier
transforms with respect to space variables x and y with corre-
sponding transformed spatial variables v, o, respectively, the
asterisk indicates convolution, % is the Fourier operator, and
i = (_ 1 ) 1/ 2'

The solution to the ordinary differential equation (8) is

C°(s, v, , z) = M(s, v, w)e¥ + N(s, v, w)e ¥ (16)

where

-3

and M(s, v, »), N(s, v, w) are Laplace/Fourier functions
which must be evaluated from boundary conditions. Applying
boundary condition (10) in (16) yields

D, + wZDy +iyU,
R

V2
+ A+ s) , 17)

M(s, v, w) = 0. (18)

In view of (9), (16), and (18) the unknown N(s, v, w) is
evaluated to be

C, O B
N(S,%w)me J ks, vy —a, @ — B)

- ®°*(a, B) dB da.
Substituting (18) and (19) into (16) leads to

C’o.(s’ Y, W, Z) 271_4@ J f ko.(s Yo, W — B)

- P°*(a, B) dB da.

(19)

(20)

Following the procedure outlined by Chrysikopoulos et al.
[1994] the inverse Laplace transformation with respect to s and
the inverse Fourier transformation with respect to y of the
preceding equation can be obtained as

_Cs t K2 © D
C(t, x, 0, 2) = 3i2,g (
¢ 0 K1 —

Rar

e —iBly, _ e _iﬁ(eyu"'ey):'

‘k.(t — T, U, o — B)[W

oD Rz’
- exp [— ANV W] exp [—n?] dB dn dr,
(21)
where
k1 =[x — &, — (U;7/R)I(R/4AD,T)"?, (22)
Ky =[x — €y — €, — (Us/R)|(R/4D,1)V?, (23)
n =[x — (Us7/R) — ul(R/4D,7)"2. (24)

To determine the inverse Fourier transformation of (21)
with respect to , define the functions f(y) and g(y) as fol-
lows:
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ZD R 1/2 R 2
-l 2] () 5]

(25)

00k'(t—q-,u,co—B)

-

1
g(y) = @’1[(2#—)1/2]

[ ¢ iBt . o iBE+E)

W} dﬁ} =k(t—T1,u,y) (26a)

£, <y <L, + ¢,

g(y) =10 otherwise. (26b)

Direct application of the convolution theorem and substitution
of f(y) and g(y) leads to

1 o0
F U (w)g(w)} = (277)”2J fly — v)g(v) dv

1 bt/ R\ V2
=Wf () k= mw
£

Yo

_ 2
R(y v)}dv,

4Dy7 27

exp [ _

where v is a dummy integration variable. Substituting the fol-
lowing expression

p = (y — v)(R/4D,7)""?, (28)

into (27) yields

-1 &
FHf(0)g'(w)} = 7T1/2J k(t — 7, u, v) exp [-p*] dp,
&1

(29)

where
&= (y — ¢)(R/4D,D)V?, (30)
&= (y — €, — 4,)(R/AD,7)"2. (31)

In view of (21), (25), (26), and (29), the desired expression for
C(t, x,y,z) is

Cx t K2 & Dz 1/2
0 Y« &
2

Rz ) ,
- exp —)vr—m exp[—n*lexp[—p?ldu dndr,

(32)

where u and v are obtained from (24) and (28), respectively, as
u=x— (Us/R) — n(4D,7/R)'?, (33)

v=y — u(4D,7/R)V*. (34)

For the special case where the local mass transfer coefficient
can be replaced by an average (or overall) mass transfer coef-

CHRYSIKOPOULOS: TECHNICAL NOTE

Figure 3. Plan view of a denser than water elliptic pool with
origin atx = ¢, ,y = {, , having major semiaxis @ and minor
semiaxis b. For the special case where a = b = r the elliptic
pool becomes a circular pool with radius r.

ficient k(t, x, y) = k*, the general solution (32) is simplified
to the following expression:

CSk* t Dz 12 Rzz
C(I, )C,y,Z) ngbef (R—W—’;) €xXp [—AT_4DZT]
0

s[erf (kq) — erf (xy)][erf (&) — erf (&,)] d,

where the definition and fundamental properties of the error
function have been employed for the evaluation of the inte-
grals [Gautschi, 1972], in conjunction with (22), (23), (30), and
(31). For a rectangular pool of infinite lateral extent (€, =
—o andy = %), (35) reduces to the two-dimensional model
presented by Chrysikopoulos et al. [1994].

(35)

Elliptic Pool

For a NAPL pool of elliptic shape, as shown in Figure 3, the
appropriate source boundary condition is

aC(t, x,y, 0
@27( x, 5, 0)

7z = —k(t, x, y)C;
(= Pl + (y — LB =1,  (36a)
aC(t,x,y,0
@eiazy—) —0 (- 6+ (- 6> 1, (36b)

where a, b are the major and minor semiaxes of the elliptic
pool, respectively. Taking Laplace transforms with respect to
the variable ¢ and Fourier transforms with respect to space
variables x and y of the preceding equation yields

5 dC>(s, v, »,0)  C, (= [~ o
ET__E (Sa'Y @, o B)

- Q°(a, B) dB da, 37)
where O°°(vy, w) is the double Fourier transform of
Ux,y) =1  (x=&)%a’+ (y— €,)/b?=1,  (38a)
Q(x,y)=0 (x — € )%a” + (y — £,)b2> 1. (38b)

Although an explicit expression for (°*(, ») can be obtained,
for mathematical convenience it is considered as an unknown
function.
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The solution to the ordinary differential equation (8) subject to
(37) followed by inverse Laplace transform with respect to s is

Cs t 3 ® Dz 1/2
C°'<f’%°”z)=mff f <Rm)
0 -0 ¥ —

'ko.(t - T, YT o, 0 B)Qo'(a, B)

[ (v*D, + szy +iyU)r
cexp | ~ R _

cdBdadr.

RZ?
T 4D
(39)

Using the convolution theorem, the inverse Fourier transfor-
mation with respect to y of the preceding equation is deter-

mined as
Cs t © 0
ZW@eJ f
0 Y —x ¥ —»

D 1/2

: (277Dx72> k (t T, U, W B)Q (u7 B)
w’D,T RZ?

P T TR T T 4D

R U, 2
- exp T 4D X= R Tu dB dudr,

where the following shifting property has been employed [Krey-
szig, 1993, p. 618]

CFH (e = flx - d),

C(t,x, w,2) =

(40)

(41a)
with
d=U.-/R. (41b)

The inverse Fourier transformation of (40) with respect to w is
obtained also by application of the convolution theorem to
yield

¢, (> (=( DR \"V
€5y 2 = 3am, (W)
0 —oo —c0

Q Rz?
ck(t— 1, u, v)Qu, v) exp | —AT— W

R U 2
* exp —‘m X — R —Uu

R(y — »)*
* EXp [_W dvdu d’r,

(42)

where v is a dummy integration variable.
In view of (24), (28), and (38), equation (42) can be written

as
t n2 mz Dz 1/2
J' f <7TR’T> k(t — 7, u, v)

Cs
Ct, x,y,2) =5
¢ 0 ni mg

2

Rz
" exp [—M - ID_T] exp[—nexp [-p’ldpdndr,  (43)
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where
my = (y = £y, + b)(R/4D,m)"?, (44)
my=(y — £, — b)(R/4Dy’T)l/2, (45)
Ux — ¢ \ 2 1/2
n1:|:x——Rl—€x0+{[1———(v bzy)]az} ]
R\ 12
' <4Dﬂ> ’ (46)
U, — 0, 12
O R L | e T
R\
' (41);) ’ (47)

and u and v are defined in (33) and (34), respectively.

For the special case of an average mass transfer coefficient
k(t, x, y) = k*, we can simplify the general solution (43) to
the following expression:

Ck* [t [ (D\Y? RZ
Cexy. D=5, f f (F) exp[”“‘m}
mi

0

* €Xp [—wu?Nerf [n,] — erf [ny]) du dr,

where the integration with respect to n has been eliminated by
employing the definition of the error function.

(48)

Circular Pool

A circular pool with radius r, as shown in Figure 3, is equiv-
alent to an elliptic pool when ¢ = b = r. Since the circular
pool geometry is a special case of an elliptic pool, the appro-
priate source boundary condition for a circular pool is obtained
by settinga = b = r in (36). Furthermore, the general solution
to the circular pool problem as well as the corresponding
solution to the case where k(¢, x, y) = k*, can be obtained
directly from (43) and (48), respectively, by substituting a =
b=r.

Discussion

The problem of contaminant transport from single-
component NAPL pool dissolution in homogeneous porous
media is examined for the general case of a local mass transfer
coefficient dependent on time and location on the NAPL-water
interface. The closed form analytical solutions derived for rect-
angular and elliptic/circular pool geometries are given by (32)
and (43), respectively. The time and space dependence of the
local mass transfer coefficient can only be determined experi-
mentally; however, such information is not currently available
in the published literature. For computational purposes, k(t, x,
y) is replaced by an average (or overall) mass transfer coeffi-
cient k*, which can be considered as a curve-fitting parameter,
and the analytical solutions for rectangular and elliptic/circular
pool geometries are further simplified to (35) and (48), respec-
tively. All simulations presented in this section are based on
the analytical solutions derived for the case of an average mass
transfer coefficient. The model parameters used for the simu-
lations are listed in Table 1. These parameters, with the ex-
ception of U, and D, represent the conditions of a laboratory
experiment of 1,1,2-trichloroethane (TCA) transport resulting
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Table 1. Model Parameters for Simulations

Parameter Value

%P, 2.04 X 10~°m?h
D, 1.14 X 10™°m?%h
D, =D, 2.04 X 10"°m?%h
Kk* 9.78 X 107> m/h
R 1.1

U, 0.035 m/h

A 0.0h™!

from dissolution of a two-dimensional pool [Chrysikopoulos et
al., 1994]. All integrals are evaluated numerically by the ex-
tended Simpson’s rule [Press et al., 1992].

For the case of a rectangular NAPL pool, the analytical
solution (35) is employed to simulate contaminant concentra-
tion distributions in a hypothetical three-dimensional homoge-
neous porous formation for two different points in time. For
presentation purposes the concentrations presented in the fig-
ures are normalized by the solvent’s aqueous saturation con-
centration. Figure 4 illustrates concentration contours in the xy
plane at a vertical height of 0.02 m above the rectangular
NAPL pool for 100 and 500 hours from the initiation of the
dissolution process. Similarly, Figure 5 illustrates concentra-
tion contours in the xz plane along the centerline of the pool
in the downstream direction (y = 3.5) for the same model
parameters and the corresponding times given in Figure 4. The
concentration contour plots illustrate the evolution of the con-
taminant plume and show, as intuitively expected, that concen-
tration levels decline with increasing longitudinal and vertical
distance from the rectangular pool.

The effects of the model parameters, interstitial velocity,
dispersion coefficients, retardation factor, and first-order decay

7.
st (&)
5.
_—
Ei 0.3/ 0.1 0.01
Sy
2
1
O.
0 2 4 6 8 10 12 14
x(m)
71
st (b)
5
p—
E4 0.4 0.3
iy 3
2
1 0.01
0

0 T2 1 6 8 10 12 14

x(m)

Figure 4. Normalized concentration contours in the xy plane
at (a) t = 100 hours and (b) ¢t = 500 hours. (Here ¢, =
¢, =3m ¢, =¢ =2mz=002m) s
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(a)

x(m)

Figure 5. Normalized concentration contours in the xz plane

at (a) ¢t = 100 hours and (b) + = 500 hours. (Here ¢, =
¢, =3m €, =¢ =2my=35m)

coefficient on the transport of the dissolved contaminant are
not graphically presented here, because they have been inves-
tigated extensively in earlier contaminant transport studies. It
should be noted, however, that at early time, dissolved con-
taminant concentrations decrease with increasing retardation
factor. At large time the magnitude of the retardation factor no
longer affects the concentration distributions for the case
where A = 0, but for A # 0 the dissolved concentrations are
dependent on R. Thus for a decaying solvent the dissolved
concentration distributions are dependent on the retardation
factor at all times.

Figure 6 shows contaminant concentration profiles, simu-
lated with (35), along the rectangular pool centerline in the
downstream direction at z = 0.04 m from three NAPL pool
sources of equal surface area with dimensions £, X €, of 1 X
9m? 3 X 3m? and 9 X 1 m? respectively. It is evident that the
source structure and orientation control the magnitude of the
dissolved contaminant concentration. The longer the pool in
the direction of flow, the higher the solute peak concentration
in the interstitial fluid. The wider the pool perpendicular to the
direction of flow, the larger the immediate downstream area
covered by the dissolved contaminant.

The curves in Figure 7 are constructed with (48) and illus-
trate the effect of Sherwood number and eccentricity of an
elliptic NAPL poo! on dissolved contaminant concentration.
The Sherwood number is defined as

Sho = k*€/D,, (49)

where € is the maximum pool length in the direction of flow
(for an elliptic pool € = 2a is the major axis), whereas the
eccentricity of an elliptic pool is defined as

e=[1- (bla)?]V2 (50)
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Figure 6. Distribution of normalized concentration versus
downstream distance for pools of equal surface area and di-
mensions €, X €, of 1 X 9 m? (curve a), 3 X 3 m? (curve b),
and 9 X 1 m? (curvec) (Here £, = 0 m, £, = 0,3, 4 m for
curves a, b, and c, respectively, y = 4.5 m, 'Y = 0.04 m.)

When & = 0, then @ = b and the elliptic pool becomes circular.
The closer & is to 1, the more elongated the elliptic pool. Figure
7 shows a linear relationship between Sk, and C(t, x, y, z),
and indicates that the dissolved contaminant concentration at
(%, y, z) = (10, 5, 0.04 m) within the three-dimensional
homogeneous porous formation is increasing with increasing
Sh, or e. For a fixed %,, an increase in Sh, suggests an
increase in k* or an increase in €. An increase in & suggests an
increase in ¢ and consequently an increase in €. Therefore an
increase in & also implies an increase in Sh,. The result of
Figure 7 is in agreement with that of Figure 6.

In real situations the geometry of a NAPL pool is seldom
known with any accuracy. To examine the effect of pool geom-
etry on dissolved concentration levels, simulations for rectan-
gular pools using (35) and circular pools using (48) (with a =
b = r) are compared in Figure 8. For the case of NAPL pools
of equal surface area, the dissolved contaminant concentration

She
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0.35 |-
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025

0.2 ] 1 n | 1
o] 0.2 0.4 0.6 0.8 1
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Figure 7. Sherwood number and eccentricity of an elliptic
pool versus dissolved normalized concentration at a location
with coordinates (x, y, z) = (10, 5, 0.04 m). (Here ¢, =
¢, =5m)
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Figure 8. Distribution of normalized concentration versus
downstream distance for pools of rectangular (solid lines) and
circular (dotted lines) geometry for the cases of (a) equal
surface area: €, 3 m, r = (£,£,/m)"? and (b) equal
longitudinal length € =2r=3m (Here¢, =¢, =
3.5, 5 m for the rectangular and circular pool, respectrvely,
y=5m,z = 0.04 m)

along the centerline of the source in the downstream direction
is higher for the circular pool geometry. This is attributed to
the fact that the diameter of the circular pool is greater than
the side of the rectangular pool of equal surface area. There-
fore the source with the longer length along the flow direction
leads to higher peak concentrations. If the diameter of the
circular pool is equal to the side of the rectangular pool, the
two concentration profiles predicted by the models are identi-
cal (see Figure 8b). Obviously, these results are valid only at
the centerline of the two NAPL pools. It should be noted that
Figures 8a and 8b are constructed assuming that the centers of
the two pools coincide.

Summary and Concluding Remarks

The primary contribution of this work is the development of
analytical solutions for contaminant transport from NAPL
pool dissolution in three-dimensional, homogeneous, satu-
rated porous media. The solutions were obtained by employing
a Laplace transform with respect to ¢ and double Fourier
transforms with respect to x and y, for rectangular and elliptic,
as well as circular NAPL pools. The aqueous phase concen-
tration of the dissolved solute adjacent to the source is con-
sidered to be equal to the solubility limit, and the dissolution
process is mass transfer limited. The analytical solutions are
useful for design and interpretation of experiments in labora-
tory-packed beds and possibly some homogeneous aquifers
and for the verification of complex numerical models. It was
demonstrated through synthetic examples that the more elon-
gated the pool along the direction of the interstitial flow, the
higher the dissolved peak concentration. Furthermore, it was
shown that the dissolved contaminant concentration is propor-
tional to the Sherwood number.
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Notation
a, b major and minor semiaxes of elliptic pool,

respectively, L.
C liquid phase solute concentration (solute mass/
liquid volume), M/L>.
aqueous saturation concentration (solubility),
M/L3,
defined in (41b).
molecular diffusion coefficient, L.7/¢.
effective molecular diffusion coefficient, equal to
Bfr*, L2/t.
longitudinal hydrodynamic dispersion coefficient,
L3¢,
lateral hydrodynamic dispersion coefficient, L ?/z.
hydrodynamic dispersion coefficient in the vertical
direction, L2%/t.
error function, equal to (2/7"/2) [5 e % dz.
defined in (25).
Fourier operator.
Fourier inverse operator.
defined in (26).
local mass transfer coefficient, L/z.
average mass transfer coefficient, L/z.
£ maximum pool length in the direction of flow, L.

O

t

@@&

b ‘<b kw [

8

erf[x

~ 9
*XQ lC@\._,

€, £, pool dimensions in x and y directions, respectively,
L.

Cep 4 o X and y Cartesian coordinates, respectively, of the
origin of a rectangular pool or the center of an
elliptic/circular pool, L.

m,, m, defined in (44) and (45), respectively.

M Laplace/Fourier function defined in (18).
ni, n, defined in (46) and (47), respectively.
N Laplace/Fourier function defined in (19).
r radius of circular pool, L.
R retardation factor.
s Laplace transform variable.
Sh, overall Sherwood number, equal to £*€£/9 .
t time, t.
u defined in (33).
U, average interstitial velocity, L/t.
v defined in (34).
X, y, z spatial coordinates, L.
a, f dummy integration variables.
v Fourier transform variable.
& eccentricity of an elliptic pool, equal to
[1 _ (b/ﬂ)2]1/2.
{ defined in (17).
n defined in (24).
K,, K, defined in (22) and (23), respectively.
A decay coefficient, ¢~ *.
p defined in (28).
£, & defined in (30) and (31), respectively.
7 dummy integration variable.
T* tortuosity factor (=1).
®°° defined in (11).
o Fourier transform variable.
Q) defined in (38).
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