See discussions, stats, and author profiles for this publication at:

Generalized TaylorAris moment analysis of the
transport of sorbing solutes through porous
media with spatiallyperiodic retardation factor.
Transp Porous Media 7:163-185

ARTICLE /7 TRANSPORT IN POROUS MEDIA - FEBRUARY 1992

Impact Factor: 1.55 - DOI: 10.1007/BF00647395

CITATIONS DOWNLOADS VIEWS
44 22 64

3 AUTHORS, INCLUDING:

@ Technical University of Crete

143 PUBLICATIONS 1,994 CITATIONS

SEE PROFILE

Available from: Constantinos V. Chrysikopoulos
Retrieved on: 21 September 2015


http://www.researchgate.net/publication/226957160_Generalized_TaylorAris_moment_analysis_of_the_transport_of_sorbing_solutes_through_porous_media_with_spatiallyperiodic_retardation_factor._Transp_Porous_Media_7163-185?enrichId=rgreq-cf3b215a-dd55-414f-8022-c43a72fbe517&enrichSource=Y292ZXJQYWdlOzIyNjk1NzE2MDtBUzoxMDIwMjQyNTk1NzE3MTVAMTQwMTMzNTg4NzIyOQ%3D%3D&el=1_x_2
http://www.researchgate.net/publication/226957160_Generalized_TaylorAris_moment_analysis_of_the_transport_of_sorbing_solutes_through_porous_media_with_spatiallyperiodic_retardation_factor._Transp_Porous_Media_7163-185?enrichId=rgreq-cf3b215a-dd55-414f-8022-c43a72fbe517&enrichSource=Y292ZXJQYWdlOzIyNjk1NzE2MDtBUzoxMDIwMjQyNTk1NzE3MTVAMTQwMTMzNTg4NzIyOQ%3D%3D&el=1_x_3
http://www.researchgate.net/?enrichId=rgreq-cf3b215a-dd55-414f-8022-c43a72fbe517&enrichSource=Y292ZXJQYWdlOzIyNjk1NzE2MDtBUzoxMDIwMjQyNTk1NzE3MTVAMTQwMTMzNTg4NzIyOQ%3D%3D&el=1_x_1
http://www.researchgate.net/profile/Constantinos_Chrysikopoulos?enrichId=rgreq-cf3b215a-dd55-414f-8022-c43a72fbe517&enrichSource=Y292ZXJQYWdlOzIyNjk1NzE2MDtBUzoxMDIwMjQyNTk1NzE3MTVAMTQwMTMzNTg4NzIyOQ%3D%3D&el=1_x_4
http://www.researchgate.net/profile/Constantinos_Chrysikopoulos?enrichId=rgreq-cf3b215a-dd55-414f-8022-c43a72fbe517&enrichSource=Y292ZXJQYWdlOzIyNjk1NzE2MDtBUzoxMDIwMjQyNTk1NzE3MTVAMTQwMTMzNTg4NzIyOQ%3D%3D&el=1_x_5
http://www.researchgate.net/institution/Technical_University_of_Crete?enrichId=rgreq-cf3b215a-dd55-414f-8022-c43a72fbe517&enrichSource=Y292ZXJQYWdlOzIyNjk1NzE2MDtBUzoxMDIwMjQyNTk1NzE3MTVAMTQwMTMzNTg4NzIyOQ%3D%3D&el=1_x_6
http://www.researchgate.net/profile/Constantinos_Chrysikopoulos?enrichId=rgreq-cf3b215a-dd55-414f-8022-c43a72fbe517&enrichSource=Y292ZXJQYWdlOzIyNjk1NzE2MDtBUzoxMDIwMjQyNTk1NzE3MTVAMTQwMTMzNTg4NzIyOQ%3D%3D&el=1_x_7

Transport in Porous Media T: 163185, 1992, 163
i 1992 Khewer Academic Publishers.  Printed in the Netherlands.

Generalized Taylor—-Aris Moment Analysis of the
Transport of Sorbing Solutes Through Porous
Media with Spatially—Periodic Retardation Factor

CONSTANTINOS V. CHRYSIKOPOULOS", PETER K. KITANIDIS, and
PAUL V. ROBERTS
Department of Cioil Enginecring, Stanford University, Stanjord, CA 94305-4020, /5.4,

(Received: 8 February 1990; in final form: 17 April 199])

Abstract, Taylor—Aris dispersion theory, as generalized by Brenner, is employed to investipate the
macrascopic behavior of sorbing solute transport in a thres-dimensional, hydraulically homogeneous
parcus medium under steady, unidirectionat flow. The porous medium is considered to possess spatially
periodic geochemical characteristics in all three directions, where the spatial periods define a rectangular
parallclepiped or a unit-clement. The spatially-variable geochemical parameters of the solid matrix are
incorporated into the transport cquation by a spatially-periodic distribution coefficient and consequently
a spatially-periodic retardation fuctor. Expressions for the effective or large-time coeflicients governing
the macroscopic solute transport arc detived for solute sorbing according to a linear equilibrium isotherm
as well as for the case of a first-order kinetic sorption relationship. The results indicate that for the case
of a chemical equilibrium sorption isotherm the longitudinal macrodispersion incorporates a second term
that accounts for ithe ellect of averaging the distribution ceefficient over the volume of u unit clement.
Furthermore, for the case of a kinetic sorption relution, the longitudinal macrodispersion eXpression
includes a third term that accounts for the effect of the first-order sorption rate. Therefore, increased solute
spreading is expected if the local chemical equilibrium assumption is not valid. The derived expressions
of the apparent parameters governing the macroscopic solute transport under local equilibrium conditions
agreed reasonably with the results of numerical computations using particle tracking techniques,

Key words. Moment analysis, sorbing solute transport, spatially-periodic retardation.

1. Nomenclature

A amplitude of oscillation of the retardation factor

b vector of wavenumbers: b= (b, b,, b,)7

b normalized vector: b= (b, /I, b, /1, b /)7

C liquid-phase solute concentration (solute mass/liquid volume), M/L>
c* solid-phase or sorbed solute concentration (solute mass/solids mass), M /M
C, total liquid-phase solule mass within the nth unit clement, M

D, hydrodynamic dispersion coefficient, L%/t

D dispcrsion cocfficient lensor

E, constant

F arbitrary global or local function

H, function of local coordinates

i

*Present address: Department of Civil Engincering, University of California, Irvine, CA 92717, U.S.A.
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imaginary number unit: j = \/j]

dimensionless partition or distribution coefficients

forward sorption rate coefficient, 1~

reverse sorption rate coefficient, !

partition of distribution coefficient (liquid volume/solids mass), L3/47
characteristic linear dimension of a unit element, L

basic vectors which define a unit element

liquid-phase local moments

continuous and discrete representation of liquid-phase global moments
outer unil vector normal to 8V,

origin of a local cooerdinate system

order of magnitude, origin of global coordinate system

solid-phase local moments

continuous and discrete representation of solid-phase global moments
local Cartesian coordinates, L

local position vector within a unit clement

interface of a unit element

diffcrential volume within a unit element

global Cartesian coordinates, L

discrete position vector of a general point

discrete position vector locating the origin of the nth unit element
retardation factors defined in Equations (8) and (85), respectively
faces of the unit element

infinitesimal area on &V,

solid-phase or sorbed solute concentration (solute mass/liquid volume),
ML}

total solid-phase solute mass within the n unit element

time, ¢

average interstitial velocity, I/t

velocity vector

domain of a unit element

external surface of a unit element

mass of solute injected, M

function of local coordinates

constant

Dirac delta function

Kronecker delta

porosity (liquid volume/aquifer volume), L%/I.

spectrum coefficient

spectrum coefficients, L

bulk density of the solid matrix (solids mass/aquifer volume), M/L3
summation

function of local coordinates
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0 null vector
an element of
vector operator (del): V, =[8/dq,, 0/0q,, 8/0q.]"

‘<1m

.
i
P

= equals by definition

Y for all

|| magnitude of a vector, Euclidean norm

[‘L J jump in the value of a function across equivalent points on opposite faces
of a unit element

Subscripts

i J direction of principal axes; i, j =x, ¥,z

m,n  integer summation indicies

n ath unit element: {n} = {n,,n,, 7.}

x. 1,z principal directions of a Cartesian coordinate system

Superscripts

T transposc

# indicates the solid-phase

< effective global coefficicnt

=] indicates the value of a function minus its average over the volume of a unit
element

i complex conjugate

® local equilibrium sorption

® @ first-order reversible kinctic sorption
- (overbar) average over the volume of a unit element

2. Introduction

Recent sclute transport laboratory studies (Durant and Roberts, 1986) and a field
experiment (Mackay et al., 1986; Roberts ef afl., 1986) indicale that in modeling
sorbing solute transport through natural subsurface systems the retardation factor
should not be considered as a position-independent constant, but rather as a
spatially-variable parameter. The problem of how to model the impact of spatially-
variable retardation on the iransport and spreading of sorbing solutes through
porous media is increasingly capturing the attention of investigators from various
disciplines. Garabedian (1987) assumed that the log-hydraulic conductivity is
linearly related to the porosity and the distribution coefficient, and employed
spectral small-perturbation techniques to show that a negative correlation between
the log-hydraulic conductivity and the distribution coefficient increases ensemble
solute dispersion, Similar results were obtained by Valocchi {1989), who used the
method moments to study the asymptlotic behavior of sorbing solute (ransport in
perfectly stratified porous media and two-layer aquifers under the assumption that
pore water velocity, dispersion coefficients, distribution coefficients and sorption
rate cocfficients are vertically-distributed. Dagan {1989, p. 344) assumed a linear



166 CONSTANTINGS V. CHRYSIKOPOULOS ET AL,

correlation between log-hydraulic conductivity and retardation factor to derive
some preliminary results for the average velocity and macrodispersion coefficients
of a particle displacement. Van der Zee and van Riemsdijk (1987) ecmployed the
parallel-column model to derive an expression for the field-averaged profile of
solid-phase solute concentration, assuming that each homogenecus column differs
with respect to the fluid velocity, retardation factor, and time period of solute input,
all of which are treated as lognormally distributed. Chrysikopoulos er af. (1990)
derived an analytical small-perturbation solution to the partial difflcrential equation
describing one-dimensional sorbing solute transport through homogeneous porous
media with spatially-variable retardation factor,

The majority of the mathematical models currently used to simulate transport of
solutes undetrgoing sorption or ion exchange assume local equilibrium, neglecting
rate limitations in the interest of computational simplicity. However, the validity of
the local cquilibrium assumption has been questioned repeatedly in studies of
sorbing solute transport through laboratory columu (James and Rubin, 1979;
Nkedi-Kizza es ol., 1983; Miller and Weber, 1986) and in field (Pickens ef af., 1981:
Goltz and Roberts, 1986; Roberts er af., 1986; Knapp, 1989) systems. In attempting
to identify conditions for which the assumption of local chemical equilibrium is
applicable, a variety of techniques have been developed. Valocchi (1985) applied the
method of mements to obtain criteria for the use of equilibrium models, Parker and
Valoochi (1986) derived conditions for quantitative evaluation of the equivalence
belween cquilibrium and first-order kinetic solute transport models. Bahr and
Rubin (1987} also presented a procedure for direct comparison between simple
cquilibrium and kinetic transport models. Furthermore, studies in solute transport
have expanded to account for the important case where multiple species arc
transported simultaneously and interact. Such complex multicomponent transport
models usually are formulated ecither by incorporating the chemical reaction equa-
tions directly into the governing transport equalion { Valocchi er al, 1981: Jennings
el al., 1982; Miller and Benson, 1983; Kirkner ef al., 1984; Angelakis er af., 1987
Mansell ¢ al, 1988) or by separating the equations describing the chemical
interactions and solute transport (Cederberg er al, 1985; Liu and Narasimhan,
[989).

The present work focuses on the transport of sorbing but otherwise nonreacting
solutes under either local equilibrium or first-order kinetically sorbing conditions in
a three-dimensional hydraulically homogeneous but geochemically spatially-peri-
odic porons medium. Geochemical periodicity refers to the case where the distribu-
tion coeflicient, and consequently the retardation factor, repeat themselves with a
certain period in each direction. Generalized Taylor—Aris dispersion theory is
employed (o derive expressions for the apparcent or asymptotic coefficients, namely
the mcan velocity vector and dispersion dyadic, governing the macroscopic solute
transport process. Despite the fact that a three-dimensional porous medium is
considered, thc present analysis 1s limited to unidireclional flow, but can be
cxtended to the more gencral cases of two- or three-dimensional flow ficlds
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(Chrysikopoulos et al., 1991). The assumption of a geochemically spatially-periodic
porous medium may be criticized, because the geochemical characteristics of field
formations although recurrent in space are not exactly periodic. It has been
employed for mathematical convenience because it leads to exact expressions. The
periodic model is the simplest way Lo represent spatial repetitiveness and can be
used as an intermediate step to obtain results for the more gencral stationary case,
as illustrated by Kitanidis (1990) for the hydraulic conductivity case.

3. Probiem Formulation

Consider a threc-dimensional porous medium with spatially-periodic geochemical
parameters in all three directions. Assuming that the variability in cach principal
direction of a Cartesian coordinate system has spatial period [, /., and /[,
respectively, the porous medium may be divided into identical rectangular paral-
lelepiped elements with edges defined by the vectors I, |, and 1. (cg,
1,,=(0,1,,007). A vector ol spatial coordinates Q may be written as the sum of an
unbounded global variable Q, and a bounded local variable ¢ (Brenner, 1930b;

Brenner and Adler, 1982). Explicitly,

Q=Q,+4. (h
where
NS 4s
Q.=[nt | q=\4, | (2a,b)
ul. gq.
n,=0,+1, £2, £3,..., (i=x p2), (3a)
0<g, <1,
0<gq, =/, {3b)
0<q <L

and the subscript n denotes the nth unit element which is defined by the triplet of
integers: {n}={n . n,n}. Q, localcs the origin of the mth unit element and q
specifies a local poinl within the nth unit element (see Figure 1).

The transport of a sorbing solute through a three-dimensional homogeneous
porous medium under steady-state uniform flow conditions is governed by the
following partial differential equation

001, Q)  pICHLQ) _ ) PC(LQ) 3L Q)

ar g o Y 8Q2 e
a*C(1, Q) 6C(1. Q)
FDe e Vo )

where C(z, Q), which can also be written as C(f, Q,, q). is the volume-averaged or
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Fig. 1. Geomeltric characteristics of a rectangular paraliclepiped unit-clement (0 and ¢ indicate the
origin of the global and u local coordinate system. respectively),

resident liquid-phase solute concentration, which is defined as the solute mass per
unite volume of interstitial fluid; C*(r, Q) is the solid-phasc or sorbed solute
concentration defined as the sorbed solute mass per aquifer solids mass; D, D..,
and D._ are the principal hydrodynamic dispersion coefficients; U/ is the average
interstitial fluid velocity; (. is the spatial coordinate in the direction of flow; 1 is the
time; p is the bulk density of the solid matrix; and # is the porosity. Notc that U/,
@6, and D (i, j = x, v, £} arc assumed to be scalar, position-independent constants.
For lincar, reversible, instantaneous sorption, the equilibrium relationship between
the solute substance in the aqueous and solid phases is given by

CX1, Q) = K (9)C(2, Q), (5)

where K, (q) is the partition or distribution coefficicnt, defined as the ratio of solute
concentration on the adsorbent to solute aqueous concentration at equilibrium. Tn
the present analysis, the distribution coefficient and the other geochemical proper-
ties of the porous formation possess directional periodicities with spatial periods /.,
l., and [.. Consequently, the distribution cocfficient varies within each element.
Alternatively, the equilibrium relationship (5) can be written as

SHL Q) =k (@)C(1, Q), (6)

where §*(1, Q) = pC*(1, Q)8 is the solid-phase or sorbed solute concentration with
units identical to (¢, Q), and k_(q) = pK,(q)/8 is the dimensionless partition or
distribution coefficient. Note that the total mass (in solution and sorbed) in volume
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V is @V[C + §*]. Combining Equations (4} and (6) leads to

WEQ _, P ) Q) ) Q) Q)
&t =

R(g)

00r U a0 TUET a2 a0,
(N

where the dimensionless variable R(q) is the retardation factor defined as

R(q) =1 +k,(q). (8)

For an unbounded porous medium in which an amount of solule mass W is
instantaneously injected at ¢ =0 at the point Q® = Q.4+ ¢°, the appropriale initial
and boundary conditions that lead to correct evaluation of resident liquid-phasc
concentrations are (Kreft and Zuber, 1978)

(0, Q) = WS(Q — Q) = Wood(q—1°), (9)
lim C(,Q)= lim C(r,Q) =0, (10)
Q- QY- [Qn Q|+

where 8,0 is the Kronecker delta for unit elements n and n° (5,0 = 5”\”95"‘_‘”)0:5,,_7,,0);
and d{q—q") is a Dirac delta function. Note that C*(0,Q)=0 and
d,.00(q — ¢") = 3(Q — Q). The first equality in condition (10) holds, because
q— q°[ = O(};) (Brenner, 1980b). Furthermore, we impose that the solute concen-
tration and the dispersive flux are continuous on cach interface, dq;, of a unit
clement (Brenner, 1980b; Shapiro and Brenner, 1988)

C(t! Qn’ q) = C(tw Qn - li» q + l,), (q € aqi.)! (I 1)
V. C Q@) =V, C(1, Q, — Ly + L), (qedq,), (12)

where V, =[d/dq,, /0q,, 0/q.] T is the vecter differential operator. The retardation
factor 1s modelled as periodic, which means that for any q in the interior or the
boundary of the unit element

R(g) = R(q+1,). (13)

R(q) as well as its derivatives are also continuous at any point on the six faces of
each parallelepiped unit element

R(Qn’ q)=‘R(Qn_ll"q+!l)a (qeaqi):' (14)
Vo R(Qu. @) =V, R(Q, -1, q+ 1), (qelq,). (15)

Note that in Equations (11), (12), (14), and (15), the vector q is on an interface of
two consecutive unit elements. For vectorial representation of the conditions (11)
through (15) refer to the definition-sketch in Figure 1.

The solute concentration can also be interpreted as a probability density function
by setting W = 1: C(t, Q,. q|Q0. q°) equals to the probability density function of
the location of a particle at time 7 given that at time ¢ =0 il was located at point
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{Quw.q") (Brenner, 1980a, b). Hereafter, for notational convenience it is assumed
that Qe =0 and ¢" =0, where 0 is the null vector and wndicates the origin of the
unit element defined by {n®} = {0, 0, 0},

4, Methed of Moments

In order to obtain the expressions for the asymplotic coefficicnts governing the
macroscopic solute transport, the generalized approach (Brenner, 1980a, 1982, b;
Dill and Brenner, 19824, b; Frankel and Brenner, 1989) to the original method of
moments (Taylor, 1953, 1954: Aris, 1956} is employed. In the context of the
generalized Taylor—Aris—Brenner dispersion theory, the local spatial moments of
the liquid-phasc solute concentration or probability density function are defined as

m, (1 q) =Y QrC(r. Qu, @), (m=0,1,2, .. ), (16)

where

Ye oy oy - (17)

n = dM T = A L= —

n=Qu Q, (m-times) ts an m-adic. Thus: Q¢ = i Q. =Q,:QZ is the second-
order tensor (dyadic) whosc / jth element is the product of the / and j element of
Q.:; and so on. The global moments of the liquid-phasc solute concentration are

defined as

M, (1) = f m,(La)d'g=Y QrCy(n. (m=0,1,2, . . ), (18)
V“ n
where

def
Col0) =J: C{1. Qu. q)d’q, (19)
V, is the domain of a unit element: d’q is a differential volume within a unit
element; and €, (1) is the liquid-phase solute mass present within the nth wunit
elemeni,

The zeroth global moment (M,) is a scalar and represents the total mass in
solution; the first moment (M, ) is a vector and M, /M, indicatcs the position of the
center of mass; the second moment (M) 18 a dyadic and M, /M, measures the mean
square displacement of the plume, after averaging the solute coneentration within
cach element, about the origin of the n°th unit element where solute was introduced
instantaneously as a point source.

Similarly, the local moments for the solid-phase or sorbed solute concentration
are defined as

Pl ) =Y QS*1, Q,.q). (m=0,1,2,.. ), (20)

n
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and the global moments are defined as

P, (1) = j P.(6 Odq =3 QVSH@). (m=0.1.2....), (21)
v, n
where
- def
SHn = f S*(1t, Q. q)d'q (22)
VIJ

is the mass of the solute sorbed within the nth unit element.

The rate of change of the local moments of the liquid-phase solute concentration
is obtained by rewriting the parabolic partial differential cquation (7) in terms of
local coordinates, multiplying the resulting equation by Q) and then summing over
all umt elements. Explicitly,

i, Q. 9 0*C(t, Qn. @) 8*C(t, Qu- @)
m R —_ — ) —
;Qn{ (@ =5 =D S I D s

3*C(, Q. 9) aC(, qu)}_e_

—D.. + L,
24, )

E
Since U, as well as Dy, (i, j = x, y, z) are constants, and R(q) is independent of n,
Equation (23) may be written as

ém 8%m &'m &*m dm
R om =D\.,‘ 7 l)l.r m +D-,4,:'E _ U\.—m,
@ * g3 e g3 T g " dq, (24)
or in matrix/vector nolation as
am.‘l?
R(q)—a—‘-[f:Vq'{D -V,m,, —Um,, |, {24b)
where
D, 0 0 U,
p=[0 D, 0] U=|0} (25a,b)
00 D 0

are the dispersion coefficient fensor and velocity vector, respectively.

In addition to Equation (24), the local moments satisfy certain boundary
conditions imposed at the unit-element surfaces. These conditions are derived from
Equations (11}, (12), and {16) and are expressed in terms of ‘local jumps’ as follows
(Brenner, 1980b; Brenner and Adler, 1982; Dill and Brenner, 1982, 1983; Shapiro
and Brenner, 1988);

[mg]=0.  [Vgme]=0; (26a.b)
[m]=—[am,].  [Vem,]=—[V,(qm)]: (27a.b)

_jmym, _ m;m, )
[[nlzﬂ—ﬂ: " ]‘ [Vym,] —|[Vq( m, ﬂl (284.,b)
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The local-jump term [F] indicates the difference between the values of the function
F at equivalent points on opposite faces of a unit clement, ie.,

[Fl=F(a+1) - F(q), (qeaq,), (%)

where F is an arbitrary function of local coordinates.

The local moments for the solid-phase solute concentration are obtained in a
similar fashion by rewriting the equilibrium relationship (6) in terms of local
coordinates, muitiplying the resulting equation by Q and then summing over all
unit elements. Explicitly,

Py = kd(q) mm (30)

is the lincar relationship between the local moments {or the liquid- and solid-phase
solute concentration.

Iniecgrating both sides of Equation (24h) over the domain of a unit element and
applying the divergence theorem leads to

amm 3
R(q) “‘T’!— d q= {D . qum - Um,,,} ' n,\‘ds, (31)
Va v av,

where AV, is the external surface area of a unit element, n, is the outward unit
vector normal to 8V, and ds is an infinitesimal surfiace area on J V,. Since each
rectangular paraliclepiped unit-clement consists of six faces,

def .
V=3 (5., ®s5_), (i=x. ¥, o), (32)

where 5 ., denotes the faces of the unit element, while the plus or minus Sign permits
identification of equivalent but opposite faces. For example, » +x 15 the downstream
face of a unit element on the 4y — g plane, and 5 __is the opposite face. Because the
unit ¢clement is a parallelepiped, s, =5_,. A surface Integral over the area of 3 unit
element can also be written in terms of local jumps as (Brenner, 1980b)

J Fonds=}% [Ff -n ds (i=x,y, z). (33)

LEW]

Substitution of the preceding identity into Equation (31) yields

a ]
J: R(q)%aﬁq =Z f | {D-[V,m,,]| —Ulm, I} - nds (34)

5. Asymptotic Behavior
51. ZERO-ORDER MOMENTS

For m = the steady-state solution to Equation (24) subject to jump boundary
conditions (26a, b) is by inspection deduced to be

11, = consl. {35)

The conservation of mass law requires that the sum of the zero-order global



TAYLOR-ARIS MOMENT ANALYSIS 173

moments for liquid-phase and sorbed solute concentration is at ali time equal to the
mass injected

My+ Py=W. (36)
Employing the definitions of the global moments and Equation (30), the conserva-
tion of mass relationship may be rewritten as

J [ 4+ mode (@l *q = W. (3D

Since at large-time m, is a position-independent constant (see Equation (35)), in
view of Equation (8) the zero-order local moment for the liquid-phase solute
concentration is given by

__w IR
EILLR (38)
where the dimensionless variable
_ det
R = R(q)d*q = const., (39)
), P

is the retardation factor averaged over the volume of a unit element. Substitution
of {38) into (18) yields the liquid-phase zero-order global moment

w
M,= 7 (40)

5.2, FIRST-ORDER MOMENTS

For m =1, Equation {34) can he written as

dm .
J R(q)[Ttl dq=3 f Ulgm, | - m.ds :J Vv, {Ugm,}d’q, (4D
Vea ] Ny P

»

where the local boundary conditions (27a.b), Equation (33) and the divergence
theorem have been employed.

Let us now determine the first local moment. Since the velocily vector U has
only one nonzero entry {(element), it is evident that m, ., m., ultimately
become independent of time. One can verify that my, =[—g, + ® Jm, and
My =1 —g, +®,]m,, where ®, and ®. are constants and m, is given from
Equation (38), are the solutions. Note that the subscripts in parentheses, (1),
indicate the appropriate elements of the corresponding vector m,. Inspection of
boundary conditions (27a, b) suggests for large times a trial solution for the e
element of the first local moment vector of the form

W
My = [Tt =g, +®A—(Q)]m, (42)
where I' is a constant and @.(q) is a function of the local coordinates with
symmetric values on the boundary of the unit ctement. That is,

P (g =2(q+L), (qedq), (43)
Vo) = V@ (g +1)), (qedq,) (44)
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Note that the Equation (42) satisfies the conditions (27a, b). For the M|,y element,
Equation (41) can be written as follows

NI u.w
J;a R(‘]) T_ d‘q - U\'niﬂl,\'{yls = _R_ . (45)
Substituting (42) into (45) yields
U,
r=%- (46)

Combining Equations (46) and (42), the general trial solution [or any element
.y IS given by

(/=x,yp 2) (47)

Ut _ W
My, = [f—_ -, +(Di(q}—l., l.!._ﬁ :

R

Employing Equations (18) and (47) yields the expression for the clements of the
first global moment

Ui 4 1w
My, :[_R “5+q>,]ﬁ (i =x, 1), (48)
where
el ]
=i f @, (q)d’q = const. (49)
RV el l/n

To complete the description of the first-order local moments, O, (q) must be
determined. Substituting (47) (for i =x) into (24a) and (27a,b) leads (o the
following set of partial dilferential equation and local jump conditions

2 D (q: i
PO, P, PR, s

. & U

(R(‘I) - R) f - D.\'\' aq 2 ARY C‘lq% T qu U\' P . s (50)
[®(q)] =0, (51a)
[Vo® (@)] =0 (Sb)

since R(q) is periodic in all three directions, it can be expanded in a Fourier serics

R(q) =R + ; A(b} exp(j2nq - b], (52)
b0
where A(b) are known coefficients (the discrete spectrum of R(g), b is a threc
dimensional vector of wavenumbers, f):(5‘,E_,,,ii__.)"’“:(b\./l_\.,b_,,//_l,b:/'!:)"" and
J= NF:T The solution of (50) which satisfies (51a, b) is a series of the form

Q@) =D, + 3 u(b)explj2nq - b]. (33}
haléll
where u(h) is a specirum to be obtained by introducing (52) and (53) mto the



TAYLOR - ARIS MOMENT ANALYSIS 175
partial differential equation (50). Hence it follows that

U, A(b)
R [4n*(b D, + 62D, + 52D, +j2nb, U]

() = , (b0). (54)
5.3. SECOND-ORDER MOMENTS

For m =2, Equation (34) can be written as

ﬁ k() a;_‘:? Pq=Y j {D : [Vq(%)] - UJ['"?;?—T‘]'} n,ds, (55)

where the local unit-clement jump boundary conditions (28a, b) have been used.
For the element my, ,,. where the double subscripts in parentheses, (i ), indicate the
corresponding element of the dyadic m,, Equation (55) can be written as

ST 1 (" ami,
f R(q) 5 d'q = — J f [[D ’;’(;‘-“AUvm%u-,]]dq,.dq-. (56)
F g 0 JO

L Y

o

Substitution of (8) and (47) {for i = x} into (56) followed by integral evaluations
yields

Pt v Ul 2W
j [l+kd(q)]”gt“"d3q=<f% — 5“+U_,,CD\.—|—D‘._\>—=—_ (57)
¥,

R

Similar expressions can be derived for ail other diagonal elements of m,, In view of
(18), (21), and (30) Equation (57) can be written as
dMoo APy Ulir U, = 2W
HRn 1L V.01 N L U P D. —_—
i d R 2 TP R (58)
To determine the second global moment of the liquid-phase sohite concentration,
adopt a trial solution for the m, ., entry of the dyadic m, of the form (Brenner,
19804, b)

n“'?(.\.\) = [E‘\'.\""‘2 -{h Z\’((q)r + H\\(q)] (59)

LR’
where E, . is a constant and Z..(q), H..(q) are functions of the local coordinates.
As will be shown in the next section, evaluation of the lerm H_ (q) is not necessary
for the determination of the dispersion dyadic that governs the macroscopic solute
transport process. Also, combining (30) and (39) yields the second local moment of
the solid-phase solute concentration for the local equilibrium sorption model

. %
[)2(.\\') = kd(q)[Ev.\ 4+ ‘Z.\'.\ (q)f + H\\(q)] m' . (60)

Integrating Equations (59) and (60) over the volume of 4 unit ¢lement, the trial
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second global moments of the liquid- and solid-phase solute concentrations are

. W

M.-?(x,\') :(En'tw-}-z\‘xt-*-H\'r)E: (61)
L, —  — W

PZ(,M') = (E\xkdf- + Z\'\'knir + IMI\',)(A—(.’) ﬁ . (62)

Substitution of {61) and (62) into (58) followed by some manipulations yields
Us

E.,= Fik (63)
Substitution of (38) and (47) (for / = x) into the local unit-element jump boundary

condition (28a) leads to

Uit 2U . w
Hlap oy | = . -‘Tl[q) — 4.l (D\. —\.2*—_.
(1120 ] [[Rg T (0@ —g {0 (g q}}lf\ll-’:R (64)
Comparison of (59) and (64) suggests that
, 20U, LW W
Zol@) =5 [0 ~ ¢, + ="+ = [g, — D _(q)] "R(q) " (65)

R R Rr?

where the term F~ indicates the value of the function F minus its average over the
volume of a unit element (F? = F — F), and the expression for the volume-averaged
term is derived in the Appendix. Since all the necessary terms of the second global
moment for the liquid-phase solute concentration are evaluated, Equation (61) can
be written as

USe? Uda 2080 2Dt 2.
My = _]?‘T _"R?—'*-T-l- RQ-X
e— - W
xlg. —O(Q) "Ry "+ A, 7 {66a)

In a similar fashion are derived the expressions for the other two diagonal elements
of the dyadic M,

, DO\ W
My, = 2(7) e (66b)
D\ w
Ml(:;) = 2(_}%;) E . (66‘;)

6. Effective Macroscopic Coeflicients

The mean or effective macroscopic velocity vector U® and the mean macroscopic
dispersion dyadic D° of a Brownian particle are defined by (Brenner, 1980a, b)
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- 1 d(Q,— QW )

D =— lim —- n n 68
2w dl (€8)

where for this study Q, is the ensemble average of the displacement vector Q,

normalized with respecl to the zeroth global moment, and it is given by

] 3
Q.= i, Z Q, o), (69)

and (Q, — Qn)2 is the dyadic ensemble mean-square macroscopic displacement Q,
from Q, at time ¢ normalized with respect to the zeroth global moment, and it is
given by

(Q—-Q.)°= Y, Z (Q. — QG0 (70)
Combining Equations (18) (for m = 1) and (6Y) yields
5, M
Q,= M, (71)
Furthcrmore, Equations (18) (for m = 1), (70) and (71) lead to
s, ~ o I _Mz_“M,Mi
n Qn) M(] ~ [( Qn Qn QnQn Qn Qn + QnQn)én (t]] - Mﬂ M% E (72)

It should be noted that the normalization with respect to M, could be avoided if
injection of a conservative solute having unit mass (M, = 1, ¥1 2 0) or equivalently
if a single Brownian particle, is considered. Using Equations (71} and (72), the
definitions of U® and D¥ can be rewritten as follows

. d /M,
— 1 d /M, M M,
D° =— lim :
2f—~ o d, ( MO ) (74)

The effective parameters governing the macroscopic solute transport under local
equilibrium conditions and the prescribed flow ficld can now be obtained formally.
in view of (40), {48), and (73) the effective velocity vector is

l U,
U®==1{ 0 (75)
R

0

Also, from (40}, (48), (66), and (74) it follows that the macrodispersion dyadic is

0 0
0 D, 0] (76)
0 0 D

— 1
DO:*:
R
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where

Uiprme— e —
DY =D 454 — 0] "R 7. (77)
The second term on the right hand side of the preceding equation is the effecvt of
averaging the spatially-periodic distribution coeflicient over the volume of a unit
element. This contribution to the longitudinal macrodispersion coefficient is com-
monly referred to as the Taylor dispersion coefficient (Horn, 1971; Valocchi, 1989).

7. Rate-Limited Sorbing Solute Transport

In this scction the cifective velocity vecior and macrodispersion dyadic are derived
for the case where sorbing solute transport 1s no longer under local chemical
equilibrium conditions but it is governed by the following first-order reversible
sorption kinetic relationship (Valocchi, 1989)

08*(1, Q) . :
LD b e @) ks . )
=k (k@) Q) — 5*(2, Q) (78)
where k,(q) and &,(q) arc the forward and reverse sorption rate cocfficients, and
k(@)
kY =L 79
i(q) k(q) (79)
is the dimensionless partition or distribution cocflicient. The sorption rate co-

efficients and consequently k%(q) are assumed to possess directional periodicities

with spatial periods /., /. and L.
Employing the previously described Taylor-Aris- Brenner method of moments
in Equation (4) and (78), lcads to

.
dm,, ép,

- f'r + at - V"l ' {D ' qum - Umm}’ (80)
E‘j‘pm 0
-217 =k,.(q)[ku'(q)mm _pm]* (8[)

where the latter equation is a first-order linear relationship between the local
moments for the liquid- and solid-phase concentration.

Following the procedurc outlined in Sections 5 and 6, the large-time velocity
vector and macrodispersion dyadic become

US=—| 0| (87)
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p*®* 0 0

p°=_( 0 b, 0 (83)
ﬁ A
0 0 D,
where
U, . — U2 (kO

D¥* =D, *Rz'u[q\- - O (q)] 'R (q) " +E—§(kd> (84)
R%q) =1+ k(q). (85)

The first (wo terms on the right had side of the preceding equation are the
longitudinal hydrodynamic and Faylor dispersion coeflicients. However, the third
term which is not present in the case of local equilibrium sorption (Equation 773,
represents the cffect of the first-order reversible kinetic sorption.

It should be noted that, at the limit &, — co which represents local equilibrium
conditions at fixed &% (Jennings and Kirkner, 1984; Valocchi, 1989), the contribu-
tion to longitudinal dispersion from the first-order sorption rate vanishes. There-
fore, the kinetic sorption relationship becomes identical to the chemical reversible
sorption isotherm, and D®® =D®.

Equation (84} is similar to the resull for a perfectly stratified aquifer derived by
Valocchi (1989). However, Valocchi’s Taylor dispersion and reversible kinetic
sorption terms of the longitudinal effective macrodispersion coetficient are averaged
over the aguifer depth, while the terms in (84) arc averaged over the volume of a
unit ¢lement. The effective macroscopic cocflicients derived in this work are more
general, since three-dimensional spatially-periodic sorption is considered.

8. Simulation by Particle Tracking

In order to verify the analytical expressions for the effective or large-time co-
eflicients governing macroscopic solute transport under local equilibrium condi-
tions, the random walk method 1s employed. The random walk technique has been
applied in numerous solutc transport studies {e.g., Ahlstrom ¢t @i, 1977; Smith and
Schwartz, 1980; Kinzclbach, 1988; Black, 1988). The method is as follows. A large
group of particles representing solute mass is displaced by superimposing on the
advective movement a random dispersive shift. The magnitude and direction of the
dispersive displacements for each individual time siep are generated independently
from an appropriate probability distribution. According to the central limit theo-
rem. the cumulative outcome of a large number of consecutive runs with an
arbilrary probability distribution approximates a Gaussian distribution. Therefore,
the precise form of the probability distribution is not important, as long as it yiclds
equivalent variance and mean. For computational simplicity, the uniform distribu-
tion is most frequently cmployed. In the limit of infinitely many particles, their
spatial distribution becomes equal to the soluic concentration which satisfies the
advection-dispersion equation.
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We have cmployed the particle tracking technique for the case where the
retardation factor is spatially-periodic only in the x-direction, and can be described
by

R(qQ) = R + 4 cos(2my, /1), (86)

where 4 is the amplitude of oscillation of the retardation factor. In view of the
selected functional relation of the retardation factor, it is evident that Equation (77
reduces to

D® =D +Ui AD,, 87
e R S 27 | -

For onc thousand particles distributed mitially uniformly over the volume of a
unit clement with /, =/ =/ = 1m, we have obtained the rate of change of the first
global moment (Figure 2), as well as the ratc of change of second-central global
moment (Figure 3) for the liquid-phase solute concentration. The parameter values
employed in the particle-tracking numerical simulations arc Uw;=5U,=U,=0
mjd; D =006, D, =0.03, D, =002 m?d; R = 29; and 4 =28, Together with
the numerical data we have plotted the theoretical results {solid-lines). The agree-
menl between the numerical and theoretical predictions is good, as scen in Figures
2 and 3. It is apparent that a spatially-variable retardation factor increases the
solulc spreading significantly. This phenomenon has been explored further by
Chrysikopoulos ez al. (1990), and it is also demonstrated through the particle-
tracking simulations shown in Figure 4. For the particular conditions employed in
this simulation, the rate of change of the second-central moment for spatially-

Principal Directions

Distance (m)

“0 20 40 &0 80 100

Time (d)

Fig. 2. Rate of change of the first global moment far the liquid-phase solete concentration as computed
from theory {solid lincs), and from a particle-tracking simulation (symbols).



TAYLOR-ARIS MOMENT ANALYSIS
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Time (d)

80
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181

Fig. 3 Rate of change of the second-central global moment for the liquid-phase solute concentration as

compuled from theory (sofid lines), and from a particle-tracking simulation (symbaols).

Mean-Square Displacement (m?)

08 T

0.0 .

40

60

Time (d)}

80

Fig. 4. Comparison of the rate of change of the second-ceniral global moement in the xr-direc-
tion, obtained by the random walk model, for spatially-periodic (@), and constant (1) retardation

faciors.
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periodic retardation factor is approximately 50% larger than the case of invariant
retardation factor, R.

9. Summary and Conclusions

Expressions for the macroscopic velocity vector and dispersion dyadic were derived
with the generalized method of Taylor—Aris dispersion. A three-dimensional homo-
geneous porous medium under the ideal condition of unidirectional flow was
considered, mainly to improve our conceptual understanding of the effects of spalial
sorption. However, in a similar fashion, the more general problem of spatially-vari-
able flow can be solved without too much additional effort. A chemical equilibrium
isotherm as well as a first-order reversible sorption relationship were employed in
the present analysis. Under the assumption of local equilibrium sorption it was
shown that asymptotically the solute plume is transported with a velocity equal to
the unidircctional Mluid velocity divided by the average retardation factor. The
longitudinal clement of the dispersion dyadic was shown to consist of two terms.
The first term is the hydrodynamic longitudinal dispersion coefficient divided by the
averagte retardation [actor, while the second term is the contribution of averaging
the locally variable partition coefficient. The other {wo elements of the dispersion
dyadic are just the corresponding principal hydrodynamic dispersion coefficients
divided by the average retardation factor. For the case of first-order reversible
kinelic sorption, similar results were derived for both (he effective velocily vector
and dispersion dyadic. However, the longitudinal element of the dispersion dyadic
was shown to have a third term expressing the cflect of the first-order sorption rale.
Thercfore, the asymptotic spreading of a sorbing solute plume is critically affected
by the spatial variability of the sorption coefficient or retardation factor. as well as
by the sorption rate of the solute if local chemical equilibrium conditions are not
applicable. Good agreement was shown between the theoretical predictions ob-
tained for the local chemical equilibrium conditions and the particle tracking
numerical experimentations.

10. Appendix: Derivation of the Volume-averaged Term in the Taylor
Dispersion Coefficient

In this appendix, we develop the expression for the volume-averaged term that
appears in the Taylor dispersion coefficient. By definition

def

- 1
[Q\ - (D\(q)] ‘]R(q) 0= m [[[t - (I).x(q)] qR(q) 'ﬂd-?q, (A I)

where

7:.'=4¢.—-4q,, (A2)
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R(q) ™=} Ab)exp[j2nq b, (A3)
h;héﬂ
« AM(b) expli2nq - b]
D (7= = Z L2 "2 "2 o :
R bgﬂ 4z (b.t-Dxx + bl'DN' +b:Dz:) +.f27'[b\-U‘,

(A4)

Combining Equations (Al} through (A4) and assuming that integrations and
summations are interchangeable leads to

» - 1 ~ i .
[4. - @. (@] "R(g) "' = T {Z(b) J {9, —q.) expli2nq - bld*g +
vivts h?hﬂ) V.
U, A(b)AT(b) .
R ), 402D 52D, +h2D.) —j2mb. 0. U

(AS5)
Note that A(h) and A'(b) are complex conjugates. The integral of the first term on

the right-hand side of Equation (A5) is:

J (g, —¢.) explj2nq - Bld'q = 0. (A6)
K.

Substituting Equation (A6) into (A5) and evaluating the integral of the second term
on the right-hand side of Equation (AS5), yiclds the following expression

U A(b)A(h)
[4n°(b3D, + 1D, +b2D.) - j27b U IR

[g.~ @ (@] 'Rig) "= ¥

o |
b#0

(A7)
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