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Introduction

Abstract

In the resent years DNA microarray analysis has become a widely used tool for gene
expression profiling and data analysis. This technology can be useful in the classification
of complex diseases such as bipolar disorder, providing useful information for its genetic
background. Bipolar disorder is a common, heritable mental illness characterized by
recurrent episodes of mania and depression that manifests from multiple genetic and
environmental factors. There are four basic types of bipolar disorder; bipolar | disorder,
dipolar Il disorder, Bipolar Disorder Not Otherwise Specified (BP-NOS) and Cyclothymic.
The ability to classify dipolar disorders may have a major impact on our understanding
of disease pathophysiology and may provide important opportunities to investigate the
interaction between genetic and environmental factors involved in pathogenesis. Also
this ability may be essential to guide appropriate therapy and determine prognosis for
successful treatment. The aim of this diploma thesis is to extract a significant genomic
signature for which biological knowledge already exists or discover novel genomic
information, which might stand as the motivation for further analysis. Under this
genomic signature we classify the bipolar disorders using gene expressions from two
different populations.

Microarray analysis normally leads to datasets which contain a small number of
samples which have a large number of gene expression levels as features. In order to
extract useful informative sets of genes that can reduce dimensionality and maximize
the performance of classifiers, feature selection algorithms were used. Another aim of
this study is to achieve stable performance assessment of feature selection and
classification methods. In that manner, the genetic evaluation framework named “Stable
Bootstrap Validation” (SBV), introduced be Nick Chlis, is presented. The SBV utilizes
bootstrap resampling of the original dataset and an explicit criterion that determines the
stability of the observed classification accuracy and the biological interpretation of
genes, also called genomic signature. Moreover, methodologies for evaluating the
discrimination, consistency and generalization ability of the observed results are also
introduced. In this diploma thesis a unified “32 common gene signature” was extracted,
which is closely associated with several aspect of bipolar disorders.
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lepAnyn

Ta tedevtaio ypovia n avaduon uikpoouotolxelwv DNA Exel yivel éva EUPEWS
XPNOUUOTTOLOUUEVO EPYAAELD YL UETPNON TWV TIUWV EKPPAONC XIALadwV yovidlwv Kal ylo
™mv avaAvon deboucgvwy. H teyvodoyio autn umopei va pavei xpnowun yla tnv katatoén
TTOAUTTAOKWV aoPevelwy, Ontwc n SUToAlkn dlatapayr, TOPEYOVTAC XPHOLUEG TTANPOPOPIES
Yl TO YEVETIKO TOoUG UrtoBadpo. H dutoAikn Statapaxn eival pta kAnpovoulkn Stavontiki
voooc¢ n omola yapaktnpiletal amno ermavalauBavousva encloddia paviag kot katadAwnc
Ta omola mnyalouv amo TOAAOUG YeVETIKOUG Kot TepLBaAAovtodoyilkoUc mapdayovTec.
Yriapyouv téooepic Baoikoi tumot dutoAiknc Siatapaync: SutoAikn Sditatapoxn I, SutoAikn
Statapaxn 1, dutoAikn Siatapaxn mou b umopei va kadopiotel kat kukAoBuuia. H
katataén twv OSutoAikwv Statapaywv, UMOpel va €EMOPACEL OTNV KATAVONON TNC
ntadodoyiac tn¢ ao¥evelag. Me Tov TPOMO QUTO TTOPEXOVTAL ONUAVTIKEC SUVATOTNTEC OTNV
Epeuva ¢ aAAnAentibpaonc UeTtaéU yeEVETIKWVY Kol TTEPLBAAAOVTOAOYIKWYVY TOPAYOVTWY, TTOU
oxetifovratl ue tnv nadoyévela. Ertionc, avtn n duvatotnta UTOPEL va pavel anapaitntn
yta tv kadodbnynon tn¢ owotnc mnpoyvwong kol UVepameiac yia THV TETUXNUEVN
QVTIUETWITLON TNC VOoou. 2tnv gpyaocia auth npoornadnoaus va eEdyoule uta yovidlakn
urtoypapn yla tnv onoia urtapxel nén BloAoyikn yvwaon ylo ThV CHUAVTIKOTNTA TOUG N Vol
TTPOUCLACOUUE UL VEX yovidlakn umoypapn, n omoio umopel va xpnowuormotndel yla
nepaltépw avaAuvon . Baon tng yovidiakn vmoypa@n npoonaGoUUE Vo KATATAEOUUE TIG
OUTOALIKEG OLATAPAXEC XPNOLUOTIOLWVTAG TIC EKPPACELC yovidiwv O6U0 OLapOopETIKWY
nAnBuouwv.

H avaAvon uikpoouotolyelwv ouvndwe odnyei o ouvola dedouevwy mou MEPLEYOUV Eva
ULKPO aPLOUO SELYUATWY UE EVaY TTOAU UEYAAO aptduo yovidiwv. ApxiKka, yLa va Tpokuyouv
xpnowa mAnpo@optka ouvoda yovidiwv, Ta Omolx Eival KAVA VO UELWOOUV TNV
SLoTATIKOTNTA TWV OUVOAWV O€OOUEVWY KAl va UEYLOTONOLNOOUV TNV anodoon Twv
taélvountwvy, xpnowuornoleitol pa ueGodog @IATpaploUATOG. 2TN OUVEXELQ, ONUOVTLKOG
oTox0¢ NG napovoac epyaociac givat n eéaywyn otadepwv amoteAeouatwy twv Uedodbwv
pUAtpapiouartoc kat twv taétvountwv. MNa to Adyo auto, xpnowuomoleital éva nmAaioto mou
ovoualetat “Stable Bootstrap Validation” (SBV), to onoio €xetL napouvataotei ano tov Niko
XAn otn SutAwuatikin tou epyacia. To nAaicto SBV  xpnowomotiel bootstrap
avadelyuatoAnyia touv apyxtkou ouvodou mapdaAAnda ue éva kpLtrplo to omoio kadopilet
v otadepotnta TG MaPATNPOUUEVNG arodoone tou taétvountn kat tn BloAoyikn
epunveia twv yovidiwv, yvwotn otn BiBAoypapio w¢ ‘yovidiakn umoypapn’. Emionc,
napouatalovral pedodoloyiec mou agpopouv tnv dlawoporoinon, tn cuvoxn kadwc KoL TNV
LKvVoTNTA YEViKEUONG TNC yovidlaknc umoypapng. TéAdog, otnv moapovoa SUTAWUATIKA
epyaoia éayetal uta yoviditakn vmoypapn 32 kowvwyv yovidiwv, n omoia CUVOEETAL OTEVA
UE TOAAEC TTUXEG TNC SumoAlkn¢ dtatapaxng.
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Introduction

1.1 Introduction to Genome Analysis

Bipolar disorder [1] is a common, heritable mental illness characterized by recurrent
episodes of mania and depression. Genetic studies have suggested that bipolar disorder
has a genetic component, meaning the disorder can run in families. In that manner, the
need arises for measurement of different genes expression levels in order to provide
useful information for the genetic background of the disease. Genomic analysis is the
technique needed to determine and compare the genetic sequence. One genome
technique is DNA microarrays which can measure the expression of thousands of genes
to identify changes in expression between different biological states. Through genome
analysis using DNA microarrays, scientists can observe patterns in the data that can lead
to different expression profiles among distinct classes of interest. Thus, the need arises
for identification of sets of genes that strongly differentiate their expression levels
among classes of interest. Moreover, scientists have the opportunity to use these sets of
genes along with the observed patterns in order to design classification methodologies
that assign class labels to an independent dataset. Finally, the classification of dipolar
disorders may be essential to guide appropriate therapy and determine prognosis for
successful treatment.

However, the genome analysis usually leads to datasets that normally contain a small
number of samples which have a large number of gene expression levels as features.
That leads to the problem known as “curse of dimensionality”, which implies significant
decrease in classification performance as well as in statistical significance. In this study,
which constitutes a preliminary study, the original dataset consists of 53 samples related
to bipolar disorder, 25 of which correspond to patients with bipolar disorder who had
previously received medication, 3 patients with bipolar disorder who were experiencing
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their first episode and had not previously received medication and 25 matched control
samples. For each sample, there are measurements of 54675 genes. We must note that
the dataset composes from a small number of samples, thus we propose that in the
future more power calculation can be performed in order to assess the significance of
the specimen. In order to extract useful informative sets of genes that can reduce
dimensionality and maximize the performance of classifiers, feature selection methods
were used. The aim of FFS is to reduce the number of genes by keeping the most
relevant set, which are also called “significant set”. Feature selection methods can be
separated into three categories: filter methods, which follow a univariate approach that
examine one feature at a time, wrapper methods and embedded methods, which are
multivariate approaches that simultaneously examine different sets of features.
Uninvariate methods ignore the interaction with the classifier and each feature is
considered separately, since they select features which differentiate their behavior
between the classes of interest. On the other hand, multivariate methods aim at the
incorporation of feature dependencies to some degree, selecting a set which maximizes
the classification performance. In this study, the original dataset has undergone feature
subset selection using a filter univariate method which is called “Significance Analysis of
Microarrays” (SAM) [2],[3]. SAM uses a modified t-statistic and permutations of the
repeated measurements of the data in order to decide if the gene expression is strongly
related to the class label.

Another important aspect of microarray analysis is the problem of classification of new
samples, which can lead to new prognosis methodologies. While, the feature selection
methods are used in order to counterfeit the curse of dimensionality by keeping a
relatively small set of significant features, the classification approaches are used in order
to classify new data into known class of interest. Various classification approaches have
been proposed for this purpose. In this study, the methods we considered were; Least
Absolute Shrinkage and Selection Operator (LASSO), Support Vector Machine (SVM) and
Relevance Vector Machines. Through classification approaches a small set of significant
features, which achieves high classification accuracy, arises. These lists of significant
genes are often called “genomic signatures” in literature.

Moreover, another aim of this study is to achieve stable performance assessment of
feature selection and classification methods. As already mentioned, a wide variety of
machine learning methods have been proposed for classification tasks related to
microarrays, including support vector machines (SVM), relevance vector machines
(RVM), K-Fold Cross Validation and many others. However, the use of an arbitrarily fixed
combination of FSS method and classifier can lead to significant variations not only in
the training or testing dataset but also in the set of features selected as well as

14
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classification accuracy. Thus, may sacrifice performance that could have been achieved
with another model. In that manner, the generic evaluation framework named “Stable
Bootstrap Validation” (SBV), introduced be Nick Chlis [4], is presented. The SBV utilizes
resampling of the original dataset and an explicit criterion that determines the stability
of the observed classification accuracy and the biological interpretation of genes, also
called genomic signature.

Another fundamental aspect of microarray analysis is the evaluation of the results

extracted from feature selection as well as classification methods. The results that are
stable and reflect the biological model should also be consistent across different
executions of the feature selection and classification methodologies. This aspect is
achieved through cross validation methodology, which splits the dataset in fold, in order
to estimate how accurately the predictive model will perform in practice. Finally,
another aspect of evaluation is the generalization ability of the observed results. This
aspect is also addressed in our methodological framework through cross validation,
determining how the results of a statistical analysis will generalize to an independent
data set. The overview of the proposed framework is presented as a block diagram in

Processing
dataset

!

Stable Bootstrap
Validation

I

Evaluation

figure 1.1.
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Figure 1.1: Overview of the proposed framework

1.2 Bipolar disorder

Bipolar disorder [1],[14], also known as manic-depressive
illness, is a complex genetic disorder in which the core
feature is pathological disturbance in mood ranging from
extreme elation, or mania, to severe depression usually
accompanied by disturbances in thinking and behavior.
Symptoms of bipolar disorder are severe. They are
different from the normal ups and downs that everyone
goes through from time to time. Bipolar disorder symptoms can result in damaged
relationships, poor job or school performance, and even suicide. But bipolar disorder
can be treated, and people with this illness can lead full and productive lives. About 3%
of people in the United States have bipolar disorder at some point in their life. Lower
rates of around 1% are found in other countries. The most common age at which
symptoms begin is 25. Rates appear to be similar in males as females.

Types
There are four basic types of bipolar disorder:

1. Bipolar | Disorder: defined by manic or mixed episodes that last at least seven
days, or by manic symptoms that are so severe that the person needs immediate
hospital care. Usually, depressive episodes occur as well, typically lasting at least 2
weeks .

2. Bipolar Il Disorder: defined by a pattern of depressive episodes and hypomanic
episodes, but no full-blown manic or mixed episodes.

3. Bipolar Disorder Not Otherwise Specified (BP-NQOS): diagnosed when symptoms of
the illness exist but do not meet diagnostic criteria for either bipolar | or II.
However, the symptoms are clearly out of the person's normal range of behavior.

4. Cyclothymic Disorder, or Cyclothymia: a mild form of bipolar disorder. People with
cyclothymia have episodes of hypomania as well as mild depression for at least 2
years. However, the symptoms do not meet the diagnostic requirements for any
other type of bipolar disorder.

A severe form of the disorder is called Rapid-cycling Bipolar Disorder. Rapid cycling
occurs when a person has four or more episodes of major depression, mania,
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hypomania, or mixed states, all within a year. Rapid cycling seems to be more
common in people who have their first bipolar episode at a younger age.

Causes

The causes of bipolar disorder [15],[16] likely vary between individuals and the exact
mechanism underlying the disorder remains unclear. Genetic influences are believed to
account for 60—80% of the risk of developing the disorder indicating a strong hereditary
component.

Genetic

Genetic studies have suggested that many chromosomal regions and candidate
genes are related to bipolar disorder susceptibility with each gene exerting a mild to
moderate effect. The risk of bipolar disorder is nearly ten-fold higher in first degree-
relatives of those affected with bipolar disorder when compared to the general
population; similarly, the risk of major depressive disorderis three times higher in
relatives of those with bipolar disorder when compared to the general population.

Environmental

Evidence suggests that environmental factors play a significant role in the development
and course of bipolar disorder and those individual psychosocial variables may interact
with genetic dispositions. There is fairly consistent evidence from prospective studies
that recent life events and interpersonal relationships contribute to the likelihood of
onsets and recurrences of bipolar mood episodes, as they do for onsets and recurrences
of unipolar depression. There have been repeated findings that 30-50% of adults
diagnosed with bipolar disorder report traumatic/abusive experiences in childhood,
which is associated on average with earlier onset, a higher rate of suicide attempts, and
more co-occurring disorders such as PTSD.

Physiological

Abnormalities in the structure and/or function of certain brain circuits could underlie
bipolar. Functional magnetic resonance imaging findings suggest that abnormal
modulation between ventral prefrontal and limbic regions, especially the amygdala, are
likely contribute to poor emotional regulation and mood symptomes.

Neurological
Less commonly bipolar disorder or a bipolar-like disorder may occur as a result of or in
association with a neurological condition or injury.

Evolutionary
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Because bipolar disorder affects an individual’s ability to function in society and has a
high morbidity rate, evolutionary theory would suggest that the genes responsible
would have been naturally selected against, effectively culling the disorder. Yet there
continue to be high rates of bipolar disorder in many populations, suggesting the genes
responsible may have an evolutionary benefit.

There are currently no biological tests that differentiate patients with bipolar disorder

(BPD) from healthy controls. While there is evidence that peripheral gene expression
differences between patients and controls can be utilized as biomarkers for psychiatric
illness, it is unclear whether current use or residual effects of antipsychotic and mood
stabilizer medication drives much of the differential transcription. We therefore tested
whether expression changes in first-episode, never-medicated bipolar patients, can
contribute to a biological classifier that is less influenced by medication and could
potentially form a practicable biomarker assay for bipolar disorder.
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1.3 The Human Genome

The human genome refers to the complete set of human genetic information, the study,
analysis and mapping of which, has been the subject of international scientific research
project the “Human Genome Project”[5]. The project was proposed and funded by the
US government; planning started in 1984, got underway in 1990, and was declared
complete in 2003. The human genomeis the complete set of nucleic acid
sequence for humans , encoded as DNA within the 23 chromosome pairs in the nucleus
of human cellsand in a small DNA molecule found within individual mitochondria.
Human cells have 23 pairs of chromosome, 22 pairs of autosomes and one pair of sex
chromosomes, giving a total of 46 per cell. Each chromosome can be thought as a string
of thousands of genes, which are in turn made of DNA. There are an estimated 20,000-
25,000 human genes, most of them located in the nucleus, while only 37 refer to
mitochondrial genes. The DNA which makes up the genes is called coding DNA, while
the DNA “string” between each gene is called non-coding DNA. Coding DNA, which
occupies only a small fraction of the genome (<2%), is defined as those sequences that
can be transcribed into mRNA and translated into proteins during the human life cycle.
On the other hand non-coding DNA is made up of all of those sequences (~ 98% of the
genome) that are not used to encode proteins. The study of the human genome lead to
the genomic revolution since the notification of the first draft sequence of the genome
had a huge impact on human disease research.

DNA

As we already mentioned, each gene is made of DNA [6]. Deoxyribonucleic acid (DNA) is
a molecule that carries most of the geneticinstructions used in the development,
functioning and reproduction of all known living organisms as well as many viruses. DNA
is made of chemical building blocks called nucleotides and consists of two long
complementary strands of nucleotides that take the form of a double stranded helix.
This shape gives DNA the power to pass along biological instructions with great
precision. The nucleotides are made of three parts: a phosphate group, a sugar group
and one of four types of nitrogen bases. To form a strand of DNA, nucleotides are linked
into chains, with the phosphate and sugar groups alternating. The four types of nitrogen
bases found in nucleotides are: adenine (A), thymine (T), guanine (G) and cytosine (C).
The sequence of these bases determines what biological instructions are contained in a
strand of DNA. Each nucleotide of a strand is made up of two nitrogen bases, paired
together by hydrogen bonds. Because of the highly specific nature of this type of
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chemical pairing, base A always pairs with base T, and likewise C with G. So if the
sequence of the bases on one strand of a DNA double helix is known, it is a simple
matter to figure out the sequence of bases on the other strand. DNA's unique structure
enables the molecule to copy itself during cell division. The discovery that DNA contains
the code for life, gave impetus to a global effort to understand how the genome
sequences of many organisms associated with their health.

Nucleus

Cell
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Nucleosomes

Figure 1.2: lllustration of a cell, its nucleus, a chromosome and the double-helix DNA.
Source: 2011, the university of Waikato, www.sciencelearn.org.z

RNA

RNA stands for ribonucleic acid. It is an important molecule with long chains of
nucleotides. As already mentioned DNA is defined as a nucleic acid that contains the
genetic instructions used in the development and functioning of all known living
organisms. RNA molecules are involved in protein synthesis and sometimes in the
transmission of genetic information. Like DNA, RNA is assembled as a chain
of nucleotides, but contrary to DNA is found not as a double-strand but as a single-
strand folded on to itself. There are different types of RNA named according to the
biological process in which they participate. First a type of RNA called messenger RNA
(mRNA) carries information from DNA to structures called ribosomes. These ribosomes
are made from proteins and ribosomal RNAs (rRNAs). The coding sequence of the mRNA
determines the amino acid sequence in the protein that is produced. However, many
RNAs do not code for protein. The most prominent examples of these non-coding RNAs
are transfer RNA (tRNA) and ribosomal RNA (rRNA), both of which are involved in the
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process of translation. Also RNA can act as enzymes (called ribozymes) to speed
chemical reactions.

Genes

Genes are subunits of DNA, the information database of a cell that is contained inside
the cell nucleus. This DNA carries the genetic blueprint that is used to make all the
proteins the cell needs. Every gene contains a particular set of instructions that code for
a specific protein.

Gene Expression —=DNA Transcription — DNA Translation

Gene expression [7] is the process by which the genetic code, the nucleotide sequence,
of a gene is used to direct protein synthesis and produce the structures of the cell.
Genes that code for amino acid sequences are known as “structural genes”. The process
of gene expression involves two main stages; transcription and translation. Transcription
is the first step of gene expression and refers to the production of messenger RNA
(mRNA) by the enzyme RNA polymerase, and the processing of the resulting mRNA
molecule. On the other hand, translation is the use of mMRNA to direct protein synthesis,
and the subsequent post-translational processing of the protein molecule. Some genes
are responsible for the production of other forms of RNA that play a role in translation,
including transfer RNA (tRNA) and ribosomal RNA (rRNA).

DNA Microarray Analysis

As already mentioned, the human genome contains approximately 21,000 genes. DNA
Microarray technology [8] enables the researchers to investigate and address issues
which were once thought to be non traceable. One can analyze the expression of
thousand of genes in a single reaction quickly and in an efficient manner. DNA
Microarray technology has empowered the scientific community to understand the
fundamental aspects underlining the growth and development of life as well as to
explore the genetic causes of anomalies occurring in the functioning of the human body.
It is common knowledge that a mutation, or alteration, in a particular gene's DNA may
contribute to a certain disease; there was an eager need for the development of a test
that can trace these mutations. DNA Microarrays are tools that allow the measurement
of the expression levels of different genes. A gene is considered to be expressed if it's
DNA has been transcribed to RNA and gene expression refers to the level of
transcription of the gene's DNA. Thousands of spotted samples known as probes are
immobilized on a solid surfuse. The spots can be DNA, cDNA, or oligonucleotides. DNA
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microarrays measure the levels of mRNA. DNA microarrays measure gene expression
assessing the levels of mMRNA present in the samples of interest indirectly. The
assessment is indirect since DNA microarrays in reality measure the levels of cDNA,
which derived from mRNA using a process called Reverse Transcription (RT). The sample
has genes from both the normal as well as the diseased tissues. Spots with more
intensity are obtained for diseased tissue gene if the gene is over expressed in the
diseased condition. This expression pattern is then compared to the expression pattern
of a gene responsible for a disease. Different types of microarray are in current use;
they can be categorized by how the DNA probes are immobilized on the slide: the in
situ synthesized Affymetrix GeneChips which utilizes photo-lithography for embedding
cDNA probes on silicon chips, and the spotted cDNA (or oligonucleotide) microarrays
developed at Stanford University which utilizes robotic spotting of aliquots of purified
cDNA clones. In the recent past, microarray technology has been extensively used by the
scientific community. Consequently, over the years, there has been a lot of generation
of data related to gene expression. This data is scattered and is not easily available for
public use. For easing the accessibility to this data, the National Center for
Biotechnology Information (NCBI) has formulated the Gene Expression Omnibus or GEO.
It is a data repository facility which includes data on gene expression from varied
sources.
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Figure 1.3: Overview of gene expression profiling. Messenger RNA is isolated from tissues or cells and
copied, labeled, and hybridized onto microarrays, which are subsequently scanned by a confocal

microscope. Computational methods are subsequently used to interpret the resulting image.
Source: Albert Hsiao et al., “High-throughput Biology in the Postgenomic Era”, J Vasc Interv Radiol 2006; 17:1077-1085
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1.4 Related Work

In the field of Bioinformatics, several studies focus on the genetic data analysis for the
classification of complex diseases, such as bipolar disorder, based on their gene
expression signatures, in order to provide useful information for the genetic
background. Concerning the genetic analysis of bipolar disorder Nick Craddock et al. in
[40] uses molecular genetic positional and candidate gene approaches for the genetic
dissection of bipolar disorder. Moreover, Peter Holmans et all in [41] has proposed a
methodology for testing overrepresentation of biological pathways, indexed by gene-
ontology terms, in lists of significant SNPs from genome-wide association studies. The
method was applied to a meta-analysis of bipolar disorder, and it implicated the
modulation of transcription and cellular activity, including that occurs via hormonal
action, as an important player in pathogenesis.

Concerning the classification of the data, several classification approaches are used and
mixed with feature selection algorithms in order to extract reliable sets of genes that
can maximize the performance of classifiers. Georges Natsoulis et al.in [9] has proposed
a methodology that aims to derive useful biological knowledge and readily interpretable
drug signatures with high classification performance from a large database, using a
variety of supervised classification algorithms, such as Support Vector Machines (SVMs)
and Logistic Regression. Also, this approach proves that the combination of the results
of these algorithms with feature selection techniques further reduce the length of the
drug signatures. Osareh et al. in [10] have proposed a methodology that aims to develop
an automated system for robust and reliable cancer diagnoses based on gene
microarray data. They have presented a classification model which utilizes a subset of
features chosen via information gain feature ranking for support vector machine
classifier. Michael P. S. Brown et al. in [11] introduce a new method of functionally
classifying genes using gene expression data from DNA microarray hybridization
experiments. The method is based on the theory of support vector machines (SVMs).
Moreover, several approaches have been proposed to evaluate the stability and
reliability of results from feature selection and classification approach. Many studies
focus on random sampling or splitting of the original dataset in order to infer stable
performance estimates. Davis et al. in [12] notice that after a sufficiently large number
of datasets have been generated by random splitting of the original dataset and are
used to extract performance estimates, the average value of the classification accuracy
tends to stabilize. The framework introduced by Armapanzas et al. in [13] requires and
arbitrary number of 1000 bootstrap iterations followed by univariate filtering and
training a k Dependence Bayesian classifier, in order to result in a stable set of genes
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selected in the model. Finally, Nick Chlis et al. in [4] have proposed a methodology that
utilizes a formal criterion in order to extract robust estimates for the size of genomic
signature as well as the classification accuracy and no further iterations are required.
The stable estimates can be reproduced resulting in minimal variations during
independent executions of the evaluation method. Our study is based on Nick Chlis [4]
diploma thesis.
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1.5 Thesis Outline and Innovation

The biological background concerning the human genome and biological concepts
regarding the DNA microarrays is covered in chapter 1. While, the theoretical
background concerning methodologies for the analysis of DNA microarray data in the
field of bioinformatics is covered in chapter 2. This chapter includes feature selection
and classification methods, while evaluation methods and the statistics theorem known
as the “law of large numbers” are also presented. The proposed methodology for
performing reliable feature selection and stable classification accuracy is presented in
chapter 3. This chapter also includes the methodology for evaluating the discrimination,
consistency and generalization ability of the observed results. Finally, in chapter 4 the
results of the proposed methodology are presented, followed by a biological evaluation
of the extracted signatures.

The innovative concept of this thesis involves the combination of the univariate filter
method “Significance Analysis of Microarray” and a variety of supervised classification
algorithms, such as Support Vector Machines (SVMs) and Relevance Vector Machines
(RVMs) in order to derive useful biological knowledge for the bipolar disorder.
Moreover, unlike similar studies, this thesis aims at testing whether expression changes
in first — episode, never medicated bipolar patients, can contribute to a genomic
signature that is less influenced by medication.
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Theoretical Background

In this chapter an introduction to the machine learning and pattern recognition as well
as the implementations of pattern recognition are described in section 2.1, followed by
a general presentation of the dataset in section 2.2. Then, feature subset selection
methods are presented in section 2.3 including filter, wrapper and embedded methods.
Moreover, the classification analysis and an introduction of classifiers are converted in
section 2.4, including linear and non linear classifiers. In section 2.5 classification
methods are examined in detail including regularized least squares, support vector
machines as well as relevance vector machines. Finally different evaluation methods are
described in section 2.6, such as holdout validation, k-fold cross validation, leave one
out cross validation, repeated random sub-sampling validation and bootstrap
resampling.

2.1 Machine Learning and Pattern Recognition

In machine learning, pattern recognition [17],[18],[19] is the process of discovering
patterns and regularities in large amounts of data. There are three different approaches
to pattern recognition, depending on machine learning: supervised learning,
unsupervised learning and reinforcement learning.

= Supervised learning

The goal of supervised learning is to build a concise model of labeled samples.
This set of labeled samples is called the training set. The resulting model is then
used to assign class labels to the testing data where the value of the class label is
unknown. Cases, in which the desired output is a continuous variable, are called
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regression algorithms, while if the output falls within discrete values the task is
called classification.

= Unsupervised learning

The aim of unsupervised learning is to discover groups in unlabeled data with
similar attributes. This differentiates unsupervised learning from supervised
learning and reinforcement learning.

= Reinforcement learning

Finally, reinforcement learning is learning by interacting with an environment
through a process of trial and error. The reinforcement learning agent receives a
reinforcement signal, which constitutes a measure of how well the system
operates, and tries to select actions that maximize the cumulative reward over
time.

2.1.1 Patterns -Classes - Features

DNA  microarray analysis falls  within  supervised learning. In machine
learning and pattern recognition [20], patterns are “physical” representation of the
objects and we usually refer to them as objects, cases or samples. Class or class label is a
set of patterns sharing common attributes and usually originated from the same source.
Features are measurements or attributes derive from the patterns, which may be useful
for their characterization. Features are numeric and usually the initial set of raw
features is too large to be handled.

Pattern recognition can be also characterized as an information mapping process. There
is a set of class C in which can be found a certain studied entity. Correspond to each
class is a certain set of representation P, the patterns. Each class can be illustrated by a
subset in the set of patterns. These subsets may overlap each other, allowing patterns
of different classes to share same characteristics. Moreover, each pattern can be
illustrated in the set of features F. Thus, each feature can be a member not only of
different patterns but also different classes, as outlined in figure.
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Figure 2.1: Pattern recognition process.
(a) Set of class C, (b) set of pattern/samples P, (c) set of set of features/genes F

2.1.2 Implementation of pattern recognition

As we mentioned above in machine learning, pattern recognition is the assignment of a
label to a given input value. An example of pattern recognition is classification.
However, it is a more general problem which encompasses other types of output as
well. Other example is recognition, which assigns a real — valued output to each input
and is presented in detail in section 2.4.

A classification [21] problem exists when an observation needs to be assigned into a
class based on a number of features related to that sample. During classification given
samples are assigns to prescribed categories. The algorithm that implements
classification is known as a classifier and maps input data to class which performs
classification. Particularly, a classifier is experienced on training data, adjusting his
parameter to them and learns to recognize specific patterns. The result of classification
process is based on the most significant characteristic of the classifier which is the ability
of generalization. Generalization is the ability of a classifier to perform accurately on
new, unseen data after having experienced a training data set. The classifier is designed
effectively when he is able to correctly combine the characteristics of a sample in order
to determine in which class it belongs. The best way to measure the generalization
ability of a full trained classifier is to use a test data set which contains data that does
not belong to the training set. Classification methods are also presented in detail in
sections 2.4 and 2.5.
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2.2 Dataset (general)

In this study, the data is composed of a set of N samples/patterns, where each sample
contains the expression value of K genes/features. The dataset is expressed in array
form as x €R™, while the class labels of all samples are represented by a vector y €R".

Also, in the dataset, each sample N can be expressed as a vector x; eRwherei=1,....,
N, while a class label y is assigned to each of the samples. Particular, in the case of

bipolar disorder/control binary classification y € {-1,+1}.

2.3 Feature Subset Selection (FSS)

Feature subset selection method (FSS) [22],[23],[24] is usually the crucial first step in
microarray data analysis. DNA microarray data normally contains a small number of
samples which have a large number of gene expression levels as features. The aim of
FFS is to reduce the number of genes by keeping the most relevant set, which are also
called ”significant set”, in order to extract useful information and reduce dimensionality.
Then, this set of features is presented as input to the classification algorithm. Depending
on how feature selection methods combine the feature selection search with the
construction of the classification model can be separated into three categories: filter
methods, wrapper methods and embedded methods.

2.3.1 Filter methods

Filter methods [22],[23],[24] evaluate the relevant set of features by looking only at the
essential properties of the data. They calculate a feature relevance score and low-
scoring features are removed. This subset of “significant” features is then used for
classification. The advantages of these methods are that they are independent of the
classification algorithm and they are computationally efficient. However, they are often
uninvariate which means that they ignore the interaction with the classifier and each
feature is considered separately. Thus, a number of multivariate methods are used,
aiming at the incorporation of feature dependencies to some degree. Uninvariate filter
techniques can be divided into two categories: parametric and model-free methods. In
parametric methods the data is drawn from a given probability distribution while in
model-free methods (or non parametric) the data may not follow a normal distribution.
In microarray studies the most widely used techniques are t-test and ANOVA.
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Figure 2.2: Filter Subset Selection Methods
Source: [23]

2.3.1.1 Significance Analysis of Microarrays (SAM)

Significance Analysis of Microarrays (SAM) [2], [3] is a filter (univariate) method. It was
proposed by Tusher, Tibshirani and Chu and the software was written by
Balasubramanian Narasimhan and Robert Tibshirani. Particularly, SAM is a statistical
technique, which identifies significant genes by assimilating a set of gene-specific t tests.
Each gene is assigned a score on the basis of its change in gene expression relative to
the standard deviation of repeated measurements for that gene. This analysis uses non-
parametric statistics, since the data is drawn on the bases of some unknown
distribution. Genes with scores greater than a threshold are potentially significant. SAM
uses analyzing permutations of the repeated measurements to estimate the percentage
of such genes identified by chance, the false discovery rate (FDR), which is calculated for
each set. The threshold can be determined by a tuning parameter delta, chosen by the
user based on the false positive rate. One can also choose a fold change parameter, to
ensure that called genes change at least a pre-specified amount.

2.3.2 Wrapper methods

In comparison with filter methods, wrappers [22],[23],[24] have the ability to take into
account feature dependencies, which means that they fall within multivariate approach.
In wrapper methods, the feature subset selection algorithm exists as a wrapper around
the classification models. They use the classifier itself as part of the function, evaluating
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feature subsets according to their predictive power. The classifier is utilized as a black
box. The feature subset with the highest evaluation is chosen as the final set on which to
run the classifier. However, a common drawback of these techniques is that they have a
risk of over fitting to the model and are very computationally intensive, since they need
to evaluate different combinations of features.

2.3.3 Embedded methods

Embedded methods [22],[23],[24] are also a case of multivariate approach and use the
classifier, evaluating feature subsets according to their predictive power. However,
there are differences between embedded and wrapper methods. Particularly,
embedded methods include the interaction with the classifier, while in wrappers the
feature selection algorithm is independent of the classification model. Finally,
embedded techniques are more computationally efficient than wrapper methods.

2.3.3.1 Recursive Feature Elimination (RFE)

Recursive Feature Elimination [25] is an embedded feature selection approach. The goal
of RFE is to select features by recursively preserving smaller and smaller sets of features,
maximizing the classification accuracy of a given classification method. The RFE
eliminates a fixed number of least significant features and then reassessing the
classification performance. That procedure is recursively repeated on the above set until
the desired number of features to select is eventually reached. Then, the set of features
across all iterations which maximizes the classification accuracy is chosen as the optimal
feature set. The least significant feature is determined through a feature weighting
scheme which can be the weight given to each feature by a linear classifier or by non-
linear feature weighting methods.

Feature Subset Selection Methods

Uninvariate Multivariate
) Wrapper Embedded
AlimrbifEiness methods methods

Table 2.1: Feature Subset Selection Methods
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2.4 Classification

2.4.1 Classification Analysis

Classification analysis [26] is one of the most crucial steps in machine learning and
computer science. As we already mentioned the aim of classification is to find a rule,
which, based on external observations, assigns a sample to one of several classes. Binary
classification is the simplest case where the classifier categorizes the samples of given
set into two different classes based on the aforementioned rule.

2.4.2 Classifiers

The algorithm that implements classification is known as a classifier. The main division of
classifiers is to linear and nonlinear.

2.4.2.1 Linear Classifiers

A linear classifier [27] can split two classes only when they are linearly separable. This
means that there is a hyperplane which separates the data in both classes. The
classification rule of a linear classifier is to assign a label § to an unknown sample X
based on the formula ¥ = f(X -w), wherewis a real vector of weights and is
produced during training process of the classifier. In this study, the linear classifiers
that are examined are RLS methods like RR and the LASSO, linear SVM as well as
RVM.

2.4.2.2 Non - Linear Classifiers

While linear classifiers are simple and computationally efficient, for nonlinearly
separable features, they might lead to very inaccurate decisions. Then simplicity and
efficiency for accuracy are calculated through a nonlinear classifier [27]. An example
of a nonlinear classifier is K Nearest Neighbor (K-NN) Classifier which classifies new
samples depending on a set of samples closest to them, which are called their
“nearest neighbors”.
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Figure 2.3: (a) Linear classifier, (b) Non linear classifier
Source: [27]

2.5 Classification Methods

Linear Regression

Regression analysis is a statistical method for modeling the relationship between the
observed and response variable of a system. The basic idea of linear regression [28], [29]
is that, if there is a linear relationship between two variables, you can then use one
variable to predict values on the other variable. Thus, given data set D of N samples of
the form:

D = {(Xi,yi)lxi € RK,yi € {—1,+1}} ,i= 1, ,N

, the linear regression model assumes that the relationship between the response
variables y; and the observed variables x; is linear. The aforementioned problem can be
written in vector form as

y=X-w+e&
In DNA microarray the observed variables are the expression values of K genes per
sample represented as in matrix form X € RNVK | while the response variable y € RN

is expressed as a vector of class labels of all samples (bipolar/control). The variable g; is
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an error unobserved variable which adds random noise to the above linear relationship.
Finally, the weight vector w € RK s a vector of regression coefficients.
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Figure 2.4: (a) Random data points, (b) Their linear regression,
(c) Error for the pair (xi, yi): ei = yi — wxi
Source: [27]

2.5.1 Regularized Least Squares Classifiers

2.5.1.1 Ordinary Least Squares (OLS)

We already mentioned that the aim of regression is to describe the relationship
between two variables with a line. Ordinary Least Squares (OLS) [30] (also known as
“Least squares linear regression” or often just “least squares”) is a statistical method for
finding the function which most closely approximates the data. Particular, it addresses
to find the line which minimizes the total distance between the observed responses and
the responses predicted by the linear approximation of the data. Given a training set X
of N samples of the form:

X={(x;,y)|x; € R¥,y; e {-1,+13}},i=1,..,N
, the goal of the ordinary least squares technique is to deduce a function that evaluate
the labels ¥ of a new set of test samples X . OLS regression assumes that there is a

linear relationship between the two variables = X - w. According to the OLS formula,
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the weight vector w is the one that minimizes the function and can be described by the
equations:

w = argmin F(w)

N N
F(W):Zyn_ Vn = Z(yn - xn'W)z
n=1 n=1

2.5.1.2 Regularized Least Squares (RLS)

While Ordinary Least Squares [29] is one of the most basic prediction techniques which
are able to give optimal estimates to the classification of new samples, is also known for
often not performing well with respect to both prediction accuracy and model
complexity. Particular, OLS can perform very badly when the number of variables in the
linear system exceeds the number of observations, achieving low prediction accuracy. In
such settings, Regularized Least Squares intends to use regularizationto further
constrain the resulting solution, improving the performance of the OLS approach. The
aforementioned can be achieved by further restraining the weight vector w.

2.5.1.3 Ridge Regression (RR)

The Ridge Regression [29] is a continuous process which is a slight modification on the
Ordinary Least Squares method and replaces the function F(w) by

N K
F(w) = z(yn — x, " W)?, subject to Z wgl<T
n=1 k=1

Here T = 0 is a tuning parameter, which controls the strength of the penalty term and
can be expressed as t = a-Z’,ﬁzlwg, a € [0,1]. Thus, instead of t, a needs to be
estimated through cross-validation. By this limitation, RR shrinks the estimated
coefficients towards zero, preserving the most important features. Hence is more stable
in comparison with the case of OLS.

2.5.1.4 Least Absolute Shrinkage and Selection Operator (LASSO)

LASSO [31],[32], developed in 1996 by Tibshirani, is an alternative regularized version of
least squares, which aims to improve model interpretability as well as prediction
accuracy by combining the important features of Ridge Regression and subset selection.
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In particular, while RR is able to minimize the variability and improve the accuracy of
linear regression models, it cannot perform variable selection in the linear model since it
will never sets features to zero exactly. In such settings, Lasso not only reduces the
variability of the estimates by shrinking the features but also produces interpretable
models by setting a considerable amount of them at exactly zero. Thus, LASSO
technique is a slight modification on the Ridge Regression method replaces F(w) with

N K
F(w) = Z(yn — x, - W)?%, subject to Z|WK| <7
n=1 k=1

Here T = 0 is a tuning parameter, which is estimated with the same manner as RR.
Since feature weights are small numbers the LASSO constraint is more limiting than the
one of RR. Particularly, in the case of RR while the constraint is increased the distinct
weight of each feature is reduced but still remaining non-zero. However, in LASSO
process while the constrained is increased a large number of less important features
being assigned weights that are exactly zero. As such, Lasso automatically selects more
significant features and discards the others in comparison with RR which never fully
discards any features.

2.5.2 Support Vector Machine (SVM)

Support Vector Machines (SVMs) [33],[34] are supervised learning algorithm that
discover informative patterns and analyze data, applicable for both regression analysis
and classification. In the case of binary classification, the SVMs aim at finding the
optimal hyperplane that separates all samples between the two classes. The optimal
hyperplane for an SVM is the one which maximizes the margin between the classes’
closest samples. In general, the goal of maximizing the margin is to minimize the
generalization error of the classifier. The samples which lie on the boundaries are called
support vectors, and the middle of the margin is our optimal separating hyperplane.
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Figure 2.5: Binary classification. Samples on the margin are called the support vectors
Source: OpenCV documentation, Willow Garage

The derivation of the SVM as presented so far assumed that the data is linearly
separable. However, SVM algorithm can efficiently handle non — linearly separable data
using a kernel function. In that case, the data are mapped into a higher dimension
space, making the separation easier since the data become linearly separable. However,
in most cases the data cannot be separated without error. Thus, a modified SVM
algorithm, also known as “soft margin” is currently used, minimizing the mis-
classification rate. The “soft margin” ensures convergence even when the data is non-
linearly separable. It creates a hyperplane that separate the samples as correctly as
possible, while still maximizing the distance to the nearest classified samples of the two
classes.

Linear SVM

In this part of section we further explain the case of the simple linear SVM algorithm
[22],[23] in order to be more clearly the concept of support vectors. Linear SVMs are
particular linear discriminant classifiers.

Given a training set X of N samples of the form:

X={(x;y)|x; € R™,y; € {-1,+1}},i=1,..,N

where x; the samples and y; the class labels, the support vector method approach aims
at constructing the maximum - margin hyperplane of dimension R™Y that separate the
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samples having y; = +1 from those having y; = —1. Any hyperplane can be expressed
as the set of samples x satisfying:
H:w-x—b=0

,where b a real constant and w the normal vector to the hyperplane. The offset of the
hyperplane from the origin along the normal vector w can be expressed by the

parameter If the data are linearly separable, there are two hyperlplanes which can

b
lwll’
be described by the equations :
Hl: w:*X — b == 1
Hz: w:*X — b == _1
that fully separate the two classeses without any samples between of them. The region

bounded by these hyperplanes is called “the margin” and is equal to ||v2v_|| The aim is to

maximize the margin, so ||w|| need to be minimized. Given the fact that ||w]| is
minimized, samples of either class may fall into the margin, so in order to avoid it, extra
constraints need to be applied:

w:-x; —b > 1,forsamplesofclassy; = +1
w:-x; —b < —1,forsamples of class y; = —1
The above equations can be expressed in one as:
yiw-x;—b)= 1,fori=1,..,N

Moreover, the previous constrained equation can be expressed as an optimization
problem:

Minimize inw, b

lwl

Subject to

y;(w-x; —b) = 1,for i=1,..,N

This optimization problem is difficult to solve because it is necessary to calculate the
norm of w, which involve a square root. Without changing the solution it is possible to

. 1 o
substitute [|w|| with E |lw]|?. So the optimization problem can be also expressed as:

Minimize inw, b
1
2
—|lw
~lwl
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Subject to
yiw-x;—b)= 1,fori=1,..,N

By using the Lagrange multipliers a , the aforementioned problem can be expressed as

a problem of quadratic programming:
n

1
arg min max{— lwl|? — Z a;[y; w-x; — b) — 1]
w,b a=0 (2

i=1

Then, conforming to the stationary Katush — Kuhn — Turkey condition, the solution can
be expressed as a linear combination of the training input vectors:

N
W= z a; YiXi
i=1
Only a few of the Lagrange multipliers a will be greater than zero. These corresponding
x; are the support vectors and lie on the margin, satisfying :
yiw-x;—b) =1
Solving the above equation for b can derive that the support vectors also satisfy:
1
w'x;-b=— = b=w-x;-Yy;
Vi
The b depends on x;, y;, so it will vary among the samples. In that manner, a more
stable approach for b is to average over all supports vectors:

1
NSV £ l l

The optimization problem can also be expressed in its dual form, using the fact that

Iwll2=w-wand w= YN, a;yx; .In dual form the classification task takes into
account only a function of the supports vectors, which are a small subset of the set of
the training samples that lie on the margin. Thus, the problem expressed in dual form is
computationally efficient.

Maximize in q;
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N

. 1
L(a) = Z a; - EZ a;a;y.y; X % =
L,j

i=1
N

1
Z a; — Ez aiajyiyj k(xl,x])

i=1 iL,j

,subjectto a; =0, ¥ ja;y; =0
and the kernel function is defined by K(xl-,xj) = X Xj
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Figure 2.6: Maximum - margin hyperplane and margins of a linear SVM.
Source: Yifan Peng, “Tikz example — SVM trained with samples from two classes”,P.Guru, September 2013

2.5.3 Relevance Vector Machine (RVM)

The relevance vector machine [19],[35] is a sparse kernel technique for both regression
and classification. It has an identical functional form to the state-of-art Support Vector
Machine (SVM), but it is a special case of Bayesian Logistic Regression that utilizes a
specific type of prior probabilities on the feature weights, called Automatic Relevance
Determination (ARD) priors that automatically eliminate irrelevant features from the
model. RVM is formed as a linear combination of data-centered basis functions, which
are called relevance vectors. Compare to SVMs, RVMs are often found to be
advantageous on several aspects including generalization ability and sparseness of the
model. In particular, while the SVMs represent decisions, RVMs are based on a Bayesian
formulation of a linear model with an applicable prior which is introduced over the
weights governed by a set of hyperparameters and bring about a sparse performance.
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As a consequence, they can generalize well and provide assumptions at low
computational cost, since it typically uses dramatically fewer kernel functions.

RVM is a predictive model that directly models the posterior probability of a class Cy, ,
given a sample p(Cy| x). The RVM requires class labels of the form t € {0,1}, where in
the case of binary classification t; =1 - x; € C;,t; =2 — x; € (C,. It computes a
model which has the form y(w,x) = o(w” - ¢(x)), where ¢(x) a basis function and
o(*) the logistic sigmoid function. Thus according to the RVM procedure, each basis
function @(x) = k(x, x;,) is given by the kennel and each kernel is associated with one
data point. The ARD priors have the form p(w|a) = [[; N(w;|0,a; 1) . Many of the q;
are led to infinity and the corresponding features are removed from the model, during
the ARD process.

2.6 Evaluation methods

Evaluation methods [36] are techniques for assessing how the results
of statistical analysis will generalize to an independent data set. The main idea behind
the evaluation methods is to split data, once or several times, for estimating
how accurately a predictive model will perform in practice: Part of data, the training set,
is used for training each model, and the remaining part, the test set, is used for
estimating the accuracy of the model.

2.6.1 Holdout Validation

The holdout method [36],[37] is the simplest validation method. It partitions the data
into two exclusive subsets called a training set and a test set, or holdout test. The
training set consists of the majority of available samples and is used for training the
model, while the test set conforms to a smaller percentage of the available samples and
is used in order to assess the model's generalization ability. However, the holdout
method has two basic drawbacks. Particularly, in problems where there is a sparse
dataset we may not be able to afford the cost of setting aside a portion of the dataset
for testing. Moreover, since it is a single train and test sample, the holdout estimate of
error rate will be misleading if we happen to get an unfortunate split. These limitations
of the simple holdout method can be overcome with other validation methods at the
expense of higher computational cost.
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Figure 2.7: Holdout validation method

2.6.2 K-Fold Cross Validation (K-Fold CV)

In K-Fold cross-validation [36],[37] the dataset is randomly partitioned into k subsets of
approximately the same size, which are called folds. Of the k subsets, a single subset is
retained as the validation data for testing the model, and the remaining (k — 1) subsets
are used as training data. This process is then repeated k times, with each of
the k subset used exactly once as the validation data. Then the k results from the folds
are averaged to produce a single estimation. In general, k remains an unfixed parameter
but there are typical values used for it such as 3, 5 or 10. The advantage of this method
is that all observations are used for both training and testing, and each observation is
used for validation exactly once. Moreover, as the number of folds increases, the bias of
the estimate reduces, so the estimation of performance is representative of the actual
performance of the method. On the other hand, due to the large number of iterations,
the discrimination of the estimation as well as the computational cost increase.

Total number of samples

Iteration 1/1:

Iteration 1/2:

Iteration 1/3: ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

Iteration 1/4: ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

Iteration 1/9: ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ Test Set

y
lteration 1/10:

Figure 2.8: K-Fold Cross Validation method
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2.6.3 Leave One Out Cross Validation (LOOCYV)

Leave one out cross validation [36],[37] is the degenerate case of K-Fold cross
validation, where K is chosen as the total number of samples in the dataset N. For each
fold use N-1 samples for training and the remaining sample for testing. When the
number of samples is large, the bias of the true error rate estimator will be small
because the estimator will be very accurate, but the discrimination of the true error rate
estimator as well as the computational time will be large.

Total number of samples

fef—————————————————————————————
Iteration 1/N: Training Set
Iteration 2/N: Training Set
Iteration 3/N: Training Set
..... Test Set
y
Iteration N/N: Training Set U

Figure 2.9: Leave One Out validation method

2.6.4 Repeated Random Sub-Sampling Validation

Repeated random sub-sampling validation [36],[37] performs K data splits of the
dataset. Each data split randomly selects a fixed number of samples without
replacement. For each such iteration, the model is fit to the training data, and predictive
accuracy is assessed using the validation data. The results are then averaged over all
iterations. The advantage of this method (over k-fold cross validation) is that the
proportion of the training split is not dependent on the number of folds. While the
drawback is that some observations may never be selected in the validation subsample,
whereas others may be selected more than once.
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Figure 2.10: Repeated random sub-sampling validation method

2.6.5 Bootstrap Resampling Validation

The bootstrap resampling validation method [36],[37] which also called bootstrapping,
is @ random sampling technique with replacement. In particular, from a dataset with N
samples randomly select with replacement a number of B bootstrap datasets of fixed
size, usually the same number of N samples. Then, using the holdout method, each
bootstrap dataset can be divided into training and test sets. At the end of the procedure
in order to get a stable estimation, the statistics are calculated for each bootstrap

dataset and are averaged over all bootstrap datasets.

Training Set

Test Set

Training Set

Test Set

dataset )  Resampling

:Bootstrap dataset 1/B

:Bootstrap dataset 2/B

‘ Training Set ‘Test Set‘:Bootstrap dataset B/B

Figure 2.11: Bootstrap resampling validation
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2.7 Weak Law of Large Number (LLN)

The weak law of large number [38], in probability theory is an approach which describes
the result of executing a random experiment a sufficiently large number of times.
Particularly, according to the aforementioned law the mean value of the obtained
results from a large number of iterations will be closed to the expected value and will
tend to become closer as more experiments are performed.

Let X; Xy be a sequence of independent and identically distributed random variables,

each having a mean X, = u and standard deviation o.

X1+ ....+Xn

Define a new variable = "

Then as the number of experiments m — ¢ the sample mean X equals the
population mean u of each variable:

— X1 + . +Xn Xl + . +X7’l n - ‘Ll
X = = = = ‘Ll
n n n

In addition,

X;+ ... +X X X o2 o2
var(X) = var( L n) = var (—1) + ...+ var (—n) = (—2> + ..+ <—2>
n n n n n

o2 a2
=n-'|— [—
n2 n

Moreover, by the Chebyshev inequality, forall € > 0,

PUX -z &) =var B =
Uz &) =var—= ——j
andasn — eco:lim,,  P(| X —ul= &)=0

The weak law of large numbers can be used in order to assess the stability of results in
genomic datasets. In particular, bootstrap resampling can be utilized in order to
generate a sufficiently large number of dataset. Then, under the perception that the
observed results are independent and identically distributed random variables,
according to LLN the average estimates for the classification accuracy and the size of the
genomic signature will be stable.
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The goal of this section is to suggest a methodology for performing reliable feature
selection and stable classification accuracy as well as for evaluating the consistency and
generalization ability of the results.

A number of feature subset selection (FSS) methods have been developed for gene
selection in microarray data. The first step of this methodology is proposed in section
3.1 and it has to do with the processing of the dataset. In this section, the data has
undergone feature subset selection (FSS) using a filter univariate method (SAM). Several
justifications for the use of filters for subset selection in DNA microanalysis have been
put forward in this thesis.

Another significant aspect of microarrays analysis is the stability of performance
assessments. A wide variety of machine learning methods have been proposed for
classification tasks related to microarrays, including support vector machines
(SVM), relevance vector machines (RVM), K-Fold Cross Validation and many others.
However, the use of an arbitrarily fixed combination of FSS method and classifier can
lead to significant variations not only in the training or testing dataset but also in the set
of features selected as well as classification accuracy. Thus, may sacrifice performance
that could have been achieved with another model. Hence, in order to extract robust
performance estimates, a methodology that utilizes repeated resampling or splitting of
the original dataset has been suggested. The Stable Bootstrap Validation methodology
of Nikolaos-Kosmas Chlis in [4] is applied in section 3.2. This approach utilizes a formal
criterion in order to extract robust estimates for the size of genomic signature as well as
the classification accuracy and no further iterations are required. The stable estimates
can be reproduced resulting in minimal variations during independent executions of the
evaluation method.

The third step of our methodology is purposed in section 3.3 and includes the evaluation
of the observed results which constitutes a fundamental aspect of microarray analysis.



Methodology

The methodology of accessing the discrimination of genomic signature between the
class labels is applied in section 3.3.1. Meanwhile, section 3.3.2 introduces a
methodology concerning the assessment of consistency regarding the observed
classification performance of a genomic signature. If a classification method is
consistent, it is should lead to considerable repeatability of results. Finally in section
3.3.3 the evaluation of generalization ability of genomic signature is proposed. This field
examines how the results of the statistical analysis will generalize to an independent
data set. The overview of the proposed methodology is presented as a block diagram in

figure 3.1.

Processing
dataset

:

Stable Bootstrap
Validation

!

Evaluation

Figure 3.1: Overview of the proposed methodology
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3.1 Processing the dataset: SAM

We have already mentioned in section 2.3 that the feature gene selection is one of the
crucial steps in DNA microanalysis. Our original data is composed of a small number of
samples (53 samples) which have a large number of gene expression (54675 genes)
levels as features. Thus, our first step is to reduce the number of genes by keeping the
most relevant set. That being the case, the original dataset it has undergone feature
subset selection using a filter univariate method which is called “Significance Analysis of
Microarrays” (SAM) [2], [3]. SAM uses a modified t-statistic and permutations of the
repeated measurements of the data in order to decide if the gene expression is strongly
related to the response. The theoretical background of SAM has been analyzed in detail
in section 2.3.1.1 but the SAM procedure proceeds as follows.

The data should be put in an Excel spreadsheet and have a specific format. Particularly,
the first row has information about the response measurement; all remaining rows have
gene expression data, one row per gene. The columns represent the different
experimental samples.

The input to SAM is gene expression measurements from a set of microarray

experiments, as well as a response variable from each experiment. There are many
different types of response such as quantitative, one class, two class (unpaired, paired),
multiclass, survival data, time course and pattern discovery. In our case, gene expression
measurements are separated into two class (unpaired) groups. These groups are two
sets of measurements, in which the experiment units are all different. Particularly, we
have two groups: healthy controls and medicated bipolar disorder patients (which also
contains bipolar disorder patients in first episode in), with samples from different
patients. Thus the response variable is grouped using numbers 1 (healthy control) — 2
(bipolar disorder patient).

Group 1 Group 2
Expl Exp2 Exp3 Exp3 Exp4 Exp6

Expl Exp2 Exp3 Exp4 Exp5 Expo6

Gene 1 Genel
Gene 2
Gene 3
Gene 4
Gene 5

Gene 6

Gene 2
Gene3
Gene 4
Gene 3

Gene 6

Figure 3.2: Assign experiments to two groups (1,2)
Source: [2]
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The procedure of repeated permutations of the data which determine if the expression

of any genes is significantly related to the response proceeds as follows:

1.

For each gene, compute a statistic d-value, which is the observed d-value for that
gene.
Order the genes according to their d- values.

. Randomly shuffle the values of the genes between groups 1 and 2, such that the

reshuffled groups 1 and 2 respectively have the same number of elements as the
original groups 1 and 2. Compute the d-value for each randomized gene.

Group 1 Group2 Group1 Group 2
Expl Exp2 Exp3 Exp3 Exp4 Expb Exp3 Exp2 Expé6 Exp4Exp> Expl

—’
cme: | [N [ ] T O N [ N
(a) (b)

Figure 3.3: (a) original grouping, (b) randomized grouping
Source: [2]

4. Order the genes according to their permuted d- values.

. Repeat steps 3 and 4 many times. Thus, each gene has many randomized d-values

corresponding to its rank from the observed (unpermuted) d-value (100 or 200
permutations are descent for initial exploratory analysis). Then, take the average
of the randomized d-values for each gene which is the expected d-value of that
gene.

Plot the observed d-values versus the expected d-values

For each permutation of the data, compute the number of positive and negative
significant genes for a delta parameter, which is the cutoff for significance, chosen
by the user based on the false positive rate. The median number of significant
genes from these permutations is the median False Discovery Rate (FDR). Thus,
any genes designated as significant from the randomized data are being picked up
purely by chance. Therefore, the median number picked up over many
randomizations is a descent estimate of FDR.
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The procedure of running the SAM proceeds as follow: first, the area that represents the
data should be highlighted. Then the SAM button in the toolbar must be selected and a
dialog rises. The dialog box gives the opportunity to the user to select the type of
response variable and to change any of values of the default parameters. Moreover the
user should specify if the data are from (micro)array or a sequencing experiments and
for two class and paired data, one has to specify if the data is in the logged (base 2) scale
or not.
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Figure 3.5: The SAM Dialog Box. Source [3]
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While running the SAM, if there is any missing data in your spreadsheet, a new
worksheet named SAM Imputed dataset containing the imputed dataset is added to the
workbook, unless this worksheet is not added. Therefore, the software adds two more
worksheets to the workbook. There is one which is hidden called SAM Plot data which
contains the plot of the observed d-values versus the expected d-values and the user
can interact with. Particular, a block dialog which is called Sam Plot Controller, shown in
figure 3.6, gives the chance to the user to change the delta parameter and examine the
effect on the false positive rate. If user wants a more stringent criterion, there is also a
fold change parameter that he can select. Positive significant genes are labeled in red on
the SAM plot, while negative significant genes are green. The List Delta Table button
lists the number of significant genes and the false positive rate for a number of values of
delta. The List All Genes prints out all genes in the dataset. After choosing the delta
parameter a sheet named SAM Output is showed, including any output.

Sienificant: 1393 SAM Plotsheet Tail streneth (%1:2.3
Median number of false positives: 1187.1238 sel%l: 1.3

False Discovery Rate (%] 85,221

SAM Plot Controller @
Fold Change
L List Significant Genes
" Delta Slider & Mar

List All Genes

Delta Value | 43

List Delta Table

Qutput local FORs (may take a while)?
™ Yes * No

Obsenred Score
(5]
i~
I~
wn

Hypothesized mean
difference in
expression{numerator r of

Assess sample sizes Sample size factors- four 1,2,3,5
/ comma separated values

oot

c
Expected Score

Figure 3.6: The SAM Plot Controller on the front side,

The SAM Plot sheet on the second side
Source: [3]
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The output for list of significant genes has a specific format [14]. Particularly, it contains
the row number, which is the row in the selected data rectangle, the gene name as well
as the gene Id. It also contains the SAM score (d), which is the t-statistic value with the
numerator and the denominator(s + s0) of it. Moreover, the g-value, which is the lowest
False Discovery Rate at which the gene is called significant as well as the local FDR,
which is the false discovery rate for genes with scores d that fall in a window around the
score for the given gene are also printed . Finally, in any testing problem, false positive
rate (for example FDRs) are calculated, but is also important to consider false negative
rates. Thus, a miss rate table is printed which gives the estimated false negative rate for
genes that do not make the list of significant genes.

Microarray —\ | Input Expression |
Experiments | '/ Value [ y FUI=AL

Processing
Dataset

Figure 3.7: Flowchart for Preprocessing the Dataset - SAM

3.2 Stable Bootstrap Validation

As we mentioned above during the step of preprocessing, the dataset has undergone
feature subset selection using a filter univariate method (SAM). Nevertheless, during
the step of Stable Bootstrap Validation [4], which constitutes the second one of our
methodology, the embedded multivariate feature subset selection approach of
recursive feature elimination is applied. Since this approach uses both univariate and
multivariate methods the observed results are expected to get the benefits of both
schemes.
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Multivariate FSS &
Classification
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Figure 3.8: Overview of Stable Bootstrap Validation approach

The goal of the Stable Bootstrap Validation approach is to perform robust estimates for
the classification accuracy and the size of the genomic signature. Thus, given a pair of
feature selection subset and classification methods, SBV focus at utilizing a large
number of datasets generated from bootstrap resampling of the observed dataset.
These datasets will be used for the evaluation of feature selection as well as
classification approaches. Thus, first of all a fix number of bootstraps datasets called
“bootstrap window” B is defined. Then, a number of 3B bootstrap datasets are
generated from the original dataset by random sampling with replacement. . The
feature subset selection as well as classification approach are then executed 3B times,
resulting in values A, ... Az for the classification accuracy and G; ... Gzgfor the number
of features selected. Next, assuming that A; and G;are sets of independent identically
distributed random variables according to the LLN the average estimates over all
samples A and G should converge towards the expected value of classification accuracy
and the size of the genomic signature, respectively. That is, the average estimates can
be used as a measure of stability. In order to determine when the sample size is large
enough and no more bootstrap datasets are generated than necessary, SVM uses an
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explicit dual criterion determining whether the stability of results have been reached
for both signature size and average classification accuracy. Through batches of
subsequent B trials, the above criterion determines the stability of observed results and
assesses if the necessary level of stability has been reached. Otherwise, another set of B
datasets is generated and the stability assessment is performed again for the 3
windows, which now extend to cover the additional datasets. The above steps are
repeated until stability for the classification accuracy as well as the signature size is
reached. In comparison to similar approaches, which utilize an unnecessary large
number of evaluation iterations, SBV is a computationally efficient methodology since is
only executed until the desired level of stability is reached. Therefore, as we already
mentioned the majority of similar approaches on the one hand tend to extract stable
estimates for the classification accuracy but on the other hand select an arbitrary
number of genes. To address this issue, after the SBV procedure has been completed, A
is considered to be the stable assessment of classification performance, while G is the
stable assessment of the genomic signature extracted by the FSS method. The
classification accuracy estimate A is considered stable according to acc;p,esy, Which is a
fixed threshold. While the corresponding threshold for the signature size is normalized
by the largest signature size, which is called gen;p,esn, - When both A and G are found
stable the SVM procedure terminates. Finally, the G genes with the highest selection
frequency over all iterations of the method are selected as the genomic signature of the
specific combination of FSS & classification methods. The SBV procedure proceeds in
detail in the diploma thesis of Nikolaos-Kosmas Chlis in [].

3.3 Evaluation of the Results

3.3.1 Evaluation of Discrimination of Genomic Signature

Another aspect of evaluation is the one of discrimination of genomic signature between
the class labels. In particular, the expression value of each gene should be examined in
order to access the dispersion between the class labels. In that manner, the mean as
well as the variance and the standard deviation of each gene are performed. In
Statistics, the mean gives a very good idea about the central tendency of the data being
collected, while the variance and the closely-related standard deviation are measures of
how spread out a distribution is. In other words, they are measures of variability.
Variance describes how much a random variable differs from its expected value.

First the mean as well as the variance and the standard deviation of the each significant
gene are calculated. The mean is known as a measure of location; that is, it tells us

54


http://davidmlane.com/hyperstat/A84400.html
https://simple.wikipedia.org/wiki/Random_variable
https://simple.wikipedia.org/wiki/Expected_value

Methodology

where the data are. To calculate the mean we add up the observed values and divide by
the number of them. The variance is defined as the average of the squares of the
differences between the individual (observed) and the expected value, while standard
deviation is calculated as the square root of variance. Then the standard deviation is
added as well as reduced to the mean in order to evaluate the dispersion of the
expression values of each significant gene between the class labels. Specifically, a
standard deviation close to null indicates that the expression value of each gene tend to
be very close to the mean, which also called the expected value of the set, while a high
standard deviation indicates that the samples are extended over a wider range of
values.

3.3.2 Consistency Evaluation of gene selection in the signature

The evaluation of consistency of gene selection in the signature [39] is another
significant aspect of microarray analysis and refers to the reliability of genomic
signature. Particularly, the one refers to the ability of the genomic signature to yield
similar performance when applied on a single test set multiple times, while using
different training sets. There are many model validation techniques, which have been
analyzed in section 2.6. In this thesis, the k — fold cross validation, specifically 10 fold CV
is implemented, using the genomic signature. The main idea behind the 10 — fold cross
validation is to divide the data into 9 training sets and 1 testing set, then train on the
training set and use the testing set for estimating how accurately a predictive model will
perform in practice.

The procedure of k — fold cross validation proceeds as follow. First an integer k, which
constitutes the parts that the dataset is divided, is chosen; specifically ten parts. Then,
the original dataset is randomly partitioned into 10 subsets of approximately the same
size. Of the 10 subsets, a single subset is retained as the testing set in order to access
the strength as well as utility of the predictive relationship, and the remaining 9 subsets
are used as training data. This process is then repeated 10 rounds. In each round, one of
the folds is used for validation, and the remaining folds for training. Then, after training
the classifier, its accuracy on the testing data is calculated. Finally, the k results from the
folds are averaged to produce the final cross-validation accuracy as well as the
corresponding variance, shown in figure 3.9. The above procedure is repeated a total of
200 iterations and the results are averaged to produce a more stable evaluation.
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Figure 3.9: Flowchart corresponding to one iteration of the 10 - fold Cross Validation methodology.

3.3.3 Evaluation of Generalization Ability of Genomic Signature

Another significant aspect of microarray analysis is the evaluation of generalization
ability of genomic signature. A good generalization performance is achieved when a
genomic signature is able to predict the label of unseen samples correctly. Cross-
validation is a widespread strategy because of its simplicity and its universality. Thus,
the k — fold cross validation approach can also be used to assess how the results of
a statistical analysis will generalize to an independent data set. In that manner, a new
independent dataset is used and the aforementioned procedure of 10 — fold cross
validation is repeated.
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Results

In this chapter the original dataset is introduced in section 4.1, followed by the results of
feature subset selection methods in section 4.2. Moreover, the performance metrics of
classification methods, including LASSO, SVM and RVM, extracted by SBV are presented
in section 4.3. The statistical significance as well as the observed genomic signature
significance of the above SBV results is then assessed in section 4.4.

4.1 Original dataset

The original dataset results from measurements of global leukocyte gene expression.
Peripheral blood leukocytes from whole blood were collected from 25 patients with
bipolar disorder who had previously received medication, 3 patients with bipolar
disorder who were experiencing their first episode and had not previously received
medication, and 25 matched control subjects. Thus the original dataset (GEO access
number: GSE46449) consists of 53 samples related to bipolar disorder, 25 of which
correspond to healthy control and 28 to bipolar samples. For each sample, there are
measurements of 54675 genes.
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53 Samples
54675 Genes

l l

28 Samples
Bipolar Disorder

| !

25 Samples
Healthy Control

25 Bipolar

3 First Episode . .
Patient Disorder
aten Patients

Figure 4.1: Structure of the Original Dataset

4.2 Processing the Dataset Results

As mentioned in section 3.1, the aim of the step of processing the dataset is to reduce
the number of genes by keeping the most significant. In this diploma this, the original
dataset it has undergone feature subset selection using the filter univariate method,
Significance Analysis of Microarrays (SAM). SAM uses a modified t-statistic and
permutations of the repeated measurements of the data in order to decide if the gene
expression is strongly related to the response. After the SAM method is run for a
sufficient number of times and the relevant set is estimated according to the parameter
delta the procedure terminates and returns the most significant set of genes.

4.2.1 SAM Parameters

As already mentioned gene expression measurements are separated into two class
(unpaired) groups, healthy controls (25 samples) and medicated bipolar disorder
patients(25 samples), which also contains bipolar disorder patients in first episode (3
samples). Thus the response variable is grouped using numbers 1 (healthy control) — 2
(bipolar disorder patient). So, in the dialog box the two class unvariate response is

chosen, while the data is specified as (micro) array experiments in logged (base 2) scale.
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In this diploma thesis, because of the small number of first episode bipolar patients the
SAM procedure is run multiple times for different combinations of samples, in order to
access the impact of medication in patients. The first group is composed of healthy
controls and medicated bipolar disorder patients. The second one consisted of healthy
controls and all bipolar disorder patients. The third one is composed of healthy controls
and only the first episode bipolar disorder patients. In the Sam Plot Controller box the
delta parameter, which is the cutoff of significance, was set to default values and the

follow plots are appeared, figure 4.2, 4.3, 4.4,

Delta Parameter \ FDR (%) \ Genomic Signature Size
Healthy control (25 samples) - 0.043 85.2 1393

Medicated Bipolar disorder (25 samples)
Table 4.1: SAM results from Healthy Control — Medicated Bipolar Disorder patients

Sienificant: 1393 SAM Plotsheet Tailstrensth (%1:2 3
Median number of false positives: 1187.128 sei%l 13

False Discoverv Rate (%):85.221

Obserred Score
“e
i
&
[
i
=
8]
w
-
n

5
Expected Score

Figure 4.2: The SAM Plot sheet of 1393 significant genes
(Healthy controls — All bipolar disorder patients)
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Delta Parameter FDR (%) \ Genomic Signature Size

Response Data
Healthy control (25 samples) — 0.049

BD all (28 samples)
Table 4.2: SAM results from Healthy Control — All Bipolar Disorder patients

81.65 360

Sienificant: 360 SAM Plotsheet Tail streneth (%): 1.5
sel%l 1

Median number of false positives: 28395
False Discoverv Rate (%] 81,65

o

Observed Score

5
Expected Score

Figure 4.3: The SAM Plot sheet of 360 significant genes
(Healthy controls — All bipolar disorder patients)

Delta Parameter FDR (%) \ Genomic Signature Size

0.15 52.9 223

Healthy control (25 samples) -
First Episode Bipolar disorder

patients (3 samples)
Table 4.3: SAM results from Healthy Control — First Episode Bipolar Disorder patients
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Sienificant: 223 SAM Plotsheet Tail streneth (%1:7.2
Median number of false positives: 118.089 sel%l: 2
a5

False Discovery Rate (%] 52,555

Observed Score

5
-10 5 / 5 10 15 20

%

Expected Score

Figure 4.4: The SAM Plot sheet of 223 significant genes
(Healthy controls — First episode bipolar disorder patients)

Given the fact that the population of first episode bipolar patients is small enough in
comparison with the population of healthy controls we cannot come to efficient
inferences concerning the disease. Thus, the SAM procedure is repeated three more
times. Particularly, from the second group with all patients the first episode patients is
removed one by one, shown in Table 4.4.

Response Data Delta FDR (%) Significant Genes

Parameter

Healthy control (25 samples) - 0.049 81.65 360
Bipolar patient (25 samples)+
First Episode patient (3 samples)
Healthy control (25 samples) — 0.049 80.48 459
Bipolar patient (25 samples)+
First Episode patients (2 samples)
Healthy control (25 samples) — 0.049 82.58 598
Bipolar patient (25 samples)+
First Episode patient (1 samples)
Healthy control (25 samples) - 0.049 84.51 969
Bipolar patient (25 samples)

Table 4.4: SAM results from Healthy Control — All Bipolar Disorder patients removing one by one First

Episode patient

62



Results

In this study is observed that removing one by one the first episode patients from the
group of all bipolar disorder patients, the number of significant genes tended to
increase and the results of medication mitigated. Particularly, the set of 360 significant
genes provides confidence due to the fact that it tends to represent highly diverse as

well as variance.

[ 53Samples '\
k54675 Genesj

25 HC - 25 MBP 25 HC-28 BP 25 HC-3 FBP

1393 Genes 360 Genes 223 Genes

Figure 4.5: Structure of group 1: significant genes from healthy controls and medicated bipolar patient,
group 2: significant genes from healthy controls and all bipolar patients and group 3: significant genes
from healthy controls and first episode bipolar patients.

Furthermore, because of the fact that the margin between set of significant genes which
emerged from the first group (1393 genes) and the second group (360 genes) is large
enough, the fold change parameter in the Sam Plot Controller of first group was set to

1.06, which is shown in figure 4.6.
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53 Samples
54675 Genes

25 HC - 25 MBP 25 HC-28 BP

SAM
1393 Genes
SAM
Fold change =
673 Genes 360 Genes

Figure 4.6: Left: Structure of significant genes from healthy controls and medicated bipolar patient
(fold change=1.06). Right: Structure of genomic signature from healthy controls and all bipolar patients

Finally, from the original dataset, which is composed of a small number of samples (53
samples) and a large number of gene expression (54675 genes) , through Significance
Analysis of Microarrays procedure the number of genes is reduced to a great scale by
keeping the most relevant set, also called “significant genes”. Specifically, there are two
significant sets which emerged from different combination of samples. The first
relevant set consisted of 673 significant genes from 25 healthy controls and 25
medicated bipolar patients and the second one is composed of 360 significant genes
from 25 healthy controls and 28 bipolar patients (including the 3 first episode bipolar
disorder patients).
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4.3 SBV Results

The SBV [4] approach performs robust estimates for the classification accuracy and the
size of the genomic signature, extracted from a pair of feature selection subset and
classification methods, on batches of bootstrap datasets, which has the same size, called
“bootstrap window” B. After the SVM approach is run for a sufficient number of
bootstrap windows, stabilizing the classification accuracy and genomic signature the
procedure terminates and returns the stable performance estimates.

SBV parameters

First of all, the bootstrap window B of SBV was set to 50 (B) bootstrap datasets, the
accuracy threshold was set to 0.02 ( accipresn ) @and the signature size threshold was set
to 0.1 ( gen;presn)- As already mentioned, each bootstrap dataset have the same size as
the original dataset and is divided into a training (90%) and a test set (10%). The SBV
method was set to pause if no convergence had taken place at 1000 bootstrap datasets,
a scenario that never took place as all methods converged at most 200 bootstrap
datasets. In that manner, the results of the aforementioned procedure for the two
different genomic signatures are shown in figure 4.7 and 4.8, respectively.

50 Samples
(25 HC—25 MBP)
673 Genes

A 4 A 4

Training Set Testing Set
90% 10%
45 samples 5 samples
A \ 4 v v
22 Controls Samples 23 Bipolar Samples 2 Controls Samples 3 Bipolar Samples

Figure 4.7: Structure of the bootstrap datasets used in the first significant set (673genes).
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53 Samples (all)
360 Genes

A 4

Training Set Testing Set
90% 10%
47 samples 6 samples
A \ 4 h 4 v
22 Controls Samples 25 Bipolar Samples 2 Controls Samples 4 Bipolar Samples

Figure 4.8: Structure of the bootstrap datasets used in the second significant set (360genes).

4.3.1 RFE and LASSO parameters

LASSO and SAM

The observed 673 - gene signature has been constructed using the SAM, which is a
univariated selection method. The aim is to strengthen the SAM thesis, producing a
reliable set of significant genes, which is easily to be assessed biologically. The solution
is to combine subset feature selection and classification. Thus, LASSO regression is
selected to improve model discrimination performance. As already mentioned, an
advantage of this approach is that it produces interpretable models by setting a
considerable amount of features at exactly zero. These represent genes that have no
discriminatory power between the two classes, while those with nonzero coefficients
represent genes that can separate classes of bipolar disorders successfully. LASSO tends
to keep a large number of features, resulting in a genomic signature of large size, while
accomplishes good classification accuracy. It also achieves similar discrimination
performance to SAM, having a large number of common genes, specifically 531
common genes. Finally it requires a reasonable amount of running time and recursive
feature elimination (RFE) was implemented in association with the embedded feature
selection of the LASSO.
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As mentioned in the section 2.1.5.3 the tuning parameter t was expressed as

K
t=a-2w§’ a €[0,1]
k=1

and estimated using 3 different executions 10-Fold CV on the original dataset. The value
of a=0.3 proved to be best for classification performance of LASSO methods.

\ Classification Accuracy (%) Genomic Signature Size Time per bootstrap dataset (sec)

89.9 824 170.93
Table 4.5: SBV results of LASSO.
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Figure 4.9: Left: Stabilization of LASSO mean accuracy over all bootstrap datasets
Right: Stabilization of LASSO mean signature size over all bootstrap datasets
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50 Samples
(25 HC—25 MBD)
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old change=1.06
673 Genes 839 Genes

Y

1 531 Common Genes’

Figure 4.10: Structure of the SAM as well as LASSO results

4.3.2 Classifier Results

As mentioned in the section 4.2, the SAM method results in two sets of significant genes
from two different populations (25 HC — 25 MBD and 25 HC - 28 BD). The two
populations have a large number of samples in common, as shown in section 5.3.2.2.
Thus, instead of assessing the genomic signature of each population separately, the aim
is to implement a unifying approach, comparing the observed results.

4.3.2.1 RFE and SVM results

The classification accuracy of the deterministic SVM algorithm is good enough, while
resulting in considerable small genomic signatures size. Particularly, for the first group
(25 Healthy Controls — 25 Medicated Bipolar Patients) the SVM method achieves
accuracy of approximately 87% while the genomic signatures consist of a considerably
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small number of genes, specifically 6 genes, shown in table 4.6. For the second group
(25 Healthy Controls — 28 Bipolar Patients) the SVM classifier reaches accuracy of 89%
for 8 genes selected, shown in table 4.7. Moreover, the two groups have 6 genes in
common, shown in figure 4.11. The percentages mentioned above show that the
statistical performance of the SVM classifier, although uses a very small number of
significant genes, is good enough. But our main goal is to combine the statistical with
the biological significance of the observed genomic signatures in order to extract a
model which reflects the underlying biological system of the disease. That leads to the
idea of using the RVM classifier, which is a probabilistic algorithm which stands for an
improved prediction performance, shown in section 4.3.2.2. Moreover, SVM method
requires a moderate amount of running time, while the RFE was implemented in
association with the embedded feature selection of the SVM classifier. The results of the
SVM procedure for the two different populations are shown in figure 4.11.

25 HC—-28 BP

A

53 Samples
54675 Genes

l

25 HC — 25 MBP

o>

1393 Genes

SAM
Fold change =
1.06

673 Genes 360 Genes
6 Genes 8 Genes

6 common
genes

Figure 4.11: Structure of the SVM results
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Classification Accuracy (%) Genomic Signature Size Time per bootstrap dataset (sec)

89.5 6 405.99
Table 4.6: SBV results of SVM classifier for 673 significant genes.
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Figure 4.12: Left: Stabilization of SVM mean accuracy of 6 significant genes over all bootstrap datasets
Right: Stabilization of SVM mean signature size of 6 significant genes over all bootstrap datasets

\ Classification Accuracy (%) Genomic Signature Size Time per bootstrap dataset (sec)

87 8 323.08
Table 4.7: SBV results of SVM classifier for 360 significant genes.
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Figure 4.13: Left: Stabilization of SVM mean accuracy of 8 significant genes over all bootstrap datasets
Right: Stabilization of SVM mean signature size of 8 significant genes over all bootstrap datasets
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4.3.2.2 RFE and RVM results

RVM method achieves similar classification accuracy to SVM approach, while the
resulting genomic signatures as well as running time are considerably larger in size.
Particularly, compared to SVM, for the first group (25 Healthy Controls — 25 Medicated
Bipolar Patients) RVM reached accuracy of 91.4% for 78 genes selected, shown in table
4.8, while for the second group (25 Healthy Controls — 28 Bipolar Patients) achieves
accuracy of 90% for 73 genes selected, shown in table 4.9. In that manner, it leads to a
more easily interpretable model, but it requires an excessive amount of running time.
RFE was also implemented in association with the embedded feature selection of the
RVM classifier. The RVM procedure is repeated 100 times for each different set of
significant genes and the overall results are averaged. The observed results of two
different groups have 23 common genes, which are shown in figure 4.14.
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Figure 4.14 Structure of the RVM results - 23 common genes
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Classification Accuracy (%) Genomic Signature Size Time per bootstrap dataset (sec)

91.4 78 5609.22
Table 4.8: SBV results of RVM classifier from 673 significant genes.
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Figure 4.15: Left: Stabilization of SVM mean accuracy of 78 significant genes over all bootstrap datasets
Right: Stabilization of SVM mean signature size of 78 significant genes over all bootstrap datasets

Classification Accuracy (%) Genomic Signature Size Time per bootstrap dataset (sec)

90 73 1220.01
Table 4.9: SBV results of RVM classifier from 360 significant genes.
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Figure 4.16: Left: Stabilization of SVM mean accuracy of 73 significant genes over all bootstrap datasets
Right: Stabilization of SVM mean signature size of 73 significant genes over all bootstrap dataset.
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Then, the 23 observed common genes are removed from the initial sets of significant
genes and the RVM procedure is repeated 100 times for each significant set and the
overall results are averaged. The observed results also have 8 common genes, shown in
figure 4.17.
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Figure 4.17: Structure of the RVM results - 8 common genes
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Classification Accuracy (%) Genomic Signature Size Time per bootstrap dataset (sec)

91.2 79 4218.89
Table 4.10: SBV results of RVM classifier from 650 significant genes.
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Figure 4.18: Left: Stabilization of SVM mean accuracy of 79 significant genes over all bootstrap datasets
Right: Stabilization of SVM mean signature size of 79 significant genes over all bootstrap datasets

\ Classification Accuracy (%) Genomic Signature Size Time per bootstrap dataset (sec)

85.2 82 861.92
Table 4.11: SBV results of RVM classifier from 337 significant genes.
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Figure 4.19: Left: Stabilization of SVM mean accuracy of 82 significant genes over all bootstrap datasets
Right: Stabilization of SVM mean signature size of 82 significant genes over all bootstrap dataset
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Consequently, the aforementioned procedure is repeated again, removing the 8
common genes from the rest sets of significant genes. The observed results also have 1
common genes, shown in figure 4.20.
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Figure 4.20: Structure of the RVM results - 1 common gene
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Classification Accuracy (%) Genomic Signature Size Time per bootstrap dataset (sec)

92.1 78 3955.70
Table 4.12: SBV results of RVM classifier from 642 significant genes.
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Figure 4.21: Left: Stabilization of SVM mean accuracy of 78 significant genes over all bootstrap datasets
Right: Stabilization of SVM mean signature size of 78 significant genes over all bootstrap datasets

\ Classification Accuracy (%) Genomic Signature Size Time per bootstrap dataset (sec)
86.2 83 858.21

Table 4.13: SBV results of RVM classifier from 329 significant genes.
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Figure 4.22: Left: Stabilization of SVM mean accuracy of 82 significant genes over all bootstrap datasets
Right: Stabilization of SVM mean signature size of 82 significant genes over all bootstrap dataset.
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4.4 Evaluation Results

4.4.1 Classification Accuracy Comparison

In the case of classification accuracy, the RVM approach outperformed the other
classifiers, reaching accuracies of 90%. Moreover RVM extracted reliable genomic
signatures and lead to models which are easily to access biologically. However, the
execution time of RVM methods is 10 times larger than that of SVM methods and 20 to
40 times larger than that of LASSO. The LASSO classifier was second in terms of
classification accuracy but it lead to an approximately ten times larger genomic
signature than RVM approach. Finally, concerning SVM method achieves good
classification accuracy but it kept a relatively small number of features.

Method Groups Original Classificati Genomic Time/bootstr
Genomic on Signature Size ap
Signature Accuracy

LASSO 25 HC-25 MBD | 1393 89.9 824 170.93

SVM 25 HC-25 MBD | 673 89.5 6 405.99

RVM 25 HC-25 MBD | 673 914 78 5609.22

RVM 25 HC-25 MBD | 650 91.2 79 4218.89

RVM 25 HC-25 MBD | 642 92.1 78 3955.70

Table 4.14a: Synopsis of SBV results from Healthy Control (25 HC) — Medicated Bipolar Disorder (25
MBD) samples.

Groups Original Classificati Genomic Time/bootstr
Genomic on Signature Size
Signature Accuracy
SVM 25 HC-28BD | 360 87 8 323.08
RVM 25 HC-28BD | 360 90 73 1220.01
RVM 25 HC-28BD | 347 85.2 82 861.92
RVM 25HC-28BD | 329 86.2 83 858.21

Table 4.14b: Synopsis of SBV results from Healthy Control (25 HC) —Bipolar Disorder (28 BD) samples.
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4.4.2 Genomic Signature Significance

4.4.2.1 Unifying the Genomic Signatures

After assessing the genomic signature of each method separately, a unifying approach
was implemented. Given the fact that the size of the genomic signature of the SVM
approach is considerable smaller than the one of the RVM method, the SVM method is
made practically unusable. On the other hand, the common genes existing in the
signatures of all RVM procedures were selected as the unified common gene signature.
Since there are 3 difference cases used for the RVM methods, 3 different unified
signatures were extracted, the 23 gene, 8 gene and 1 gene signatures. In that manner,
the final genomic signature is composed of 32 genes.

4.4.2.2 Discrimination of Genomic Signature

Resulting in the final genomic signature, the expression value of each gene should be
examined in order to access the discrimination between the class labels. Thus, the
standard deviation and mean of each gene are extracted, shown in figures 4.23, 4.24,
4.25. Then, we examined the genomic-wide expression variance distributions between
the groups, shown in table 4.15. The variance and the closely-related standard
deviation are measures of how spread out a distribution is. In other words, they are
measures of variability. Particularly, a variance of zero indicates that all the values are
identical. A small variance indicates that the genes expressions tend to be very close to
the mean and hence to each other, while a high variance indicates that the genes
expressions are very spread around the mean and from each other.
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Mean - Standard Deviation (25 CONTROL SAMPLES)

1o} goog g8 8

Genes expression
e o
T

N
T

0 5 10 15 20 25 30 35
Nurnber of genes

Figure 4.23: Mean — Standard Deviation of 25 healthy control samples of 32 genes
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Figure 4.24: Mean — Standard Deviation of 28 bipolar samples of 32 genes
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Figure 4.25: Mean — Standard Deviation of 53 samples of 32 genes
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Gene Name Variance - Control | Variance - BD | Variance - All

1 1553864 _at 0.0154 0.0175 0.0186
2 1557217 a_at 0.0109 0.0318 0.0268
3 1559117 _at 0.0922 0.1511 0.1481
4 1559203 s at 0.0714 0.0834 0.0893
5 201164 _s_at 0.0478 0.0456 0.0550
6 203392 s_at 0.2056 0.1531 0.2280
7 205285 s at 0.3143 0.1989 0.3162
8 206059 at 0.1393 0.1636 0.1675
9 208965 s _at 0.3604 0.1927 0.4060
10 | 211794 at 0.1972 0.3109 0.2376
11 | 212730 _at 0.3420 0.0687 0.3791
12 | 213455 at 0.0783 0.0509 0.0820
13 | 213729 at 0.0645 0.1632 0.0689
14 | 217000 at 0.0313 0.0791 0.0530
15 | 218561 s at 0.1067 0.0828 0.1503
16 | 219805 at 0.0818 0.0570 0.0946
17 | 220761 _s_at 0.0597 0.0465 0.0468
18 |221648 s at 0.1907 0.6010 0.2466
19 | 222409 at 0.1006 0.7800 0.0836
20 | 223135 s at 0.0870 0.1843 0.1016
21 | 224522 s at 0.1313 0.0157 0.1342
22 | 224545 at 0.0253 0.0789 0.0301
23 | 228696 _at 0.0988 0.0531 0.0937
24 | 230185 at 0.0991 0.2890 0.1671
25 | 231716 _at 0.0306 0.0537 0.0464
26 | 231798 at 0.4861 0.1431 0.6473
27 | 234765 at 0.0254 0.0309 0.0274
28 | 235216 _at 0.2371 0.0352 0.4476
29 | 236398 s at 0.2033 0.0323 0.2387
30 | 237145 at 0.0216 0.1833 0.0220
31 | 238682 at 0.0505 0.0255 0.0800
32 | 244326 at 0.0233 0.0967 0.049

Table 4.15: Variance of 32 significant genes.
The first column contains number of each gene. The second one includes the name of each gene. While
the others contain the variance of control samples, bipolar disorder samples and all samples,
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respectively. Bold are the genes with the higher variance. Red are the genes that have the higher
variance among the groups

The standard deviation, in association with mean, can show what is normal and what is
under or over expressed, concerning the mean of expression values of each gene.
According to the plots, we observed that in all cases the average mean is approximately
6.5. Thus, as can been seen, concerning the standard deviation there are significant
difference between the control and BD group and the group of all samples. Particularly,
in the first group the measures are mainly expressed under the mean, while in the group
of all samples the measures are over the mean. This indicates that among each group,
expression values of genes tend to be close to each other, while among the group of all
samples (bipolar disorder and control samples) the expression values tend to spread
below and above the mean.

Moreover, according to the table 4.15 we observed that the group of all samples also
presents the higher variance among the groups. As already mentioned variance
describes how much a random variable differs from its expected value. Thus, concerning
the variance of each gene, we noted that the group of control samples contains low -
variance genes, while the group of all samples contains high — variance genes. The genes
with the higher variance among the groups are; 203392 s at, 205285 s at,
208965 _s_at, 212730_at, 221648 s_at, 231798 at, 235216 _at, 236398 s_at. The
expressions values of these genes are very spread around the mean and from each
other.

According to the above plots and table, we came to the conclusion that the standard
deviation as well as variance of 32 significant genes of all samples are far off null,
indicating that the expression value of each gene tend to be far off the mean and hence
to each other. In that manner, the genes expressions are extended over a wider range of
values, representing high discrimination among the class of bipolar patients and healthy
controls samples and leading to a more easily interpretable model.

4.4.2.3 Consistency of Gene Selection in the Signature

As mentioned in section 3.3.3 the consistency of gene selection in the signature refers
to the reliability of genomic signature. Specifically, it refers to the ability of the genomic
signature to yield similar performance when applied on a single test set multiple times,
while using different training sets. The final genomic signature, which is composed of 32
significant genes, was used. As presented in section 3.3.3, the 10 fold cross validation
approach generates 9 training datasets and only one test set. This process is
repeated 10 rounds. In each round, one of the folds is used for validation, and the other
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9 folds for training. Then the RVM classification method is performed. The process is
repeated 200 times and the overall results are averaged.

Genomic Signature Size Mean Classification Accuracy (%) \ Mean Genes Variance
32 84.67 25 0.0318

Table 4.16: Consistency of Gene Selection in the Signature
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Figure 4.26: Frequencies of 32 significant genes

According to the above observations, when using the RVM classifier the genomic
signature lead to consistent results when applied multi times on one test set.
Particularly, the 32 genomic signature achieves good classification performance of the
RVM method and small variance of the observed classification accuracy, leading to a
good signature consistency.

4.4.2.4 Generalization Ability of Genomic Signature
New Dataset

The new dataset results from measurements of peripheral blood mononuclear cells
(PBMC). Peripheral blood mononuclear cells from whole blood were collected from 8
patients with bipolar and 24 adult healthy control subjects. Thus the original dataset
(GEO access number: GSE39653) consists of 32 samples related to bipolar disorder, 24
of which correspond to healthy control and 8 to bipolar samples. For each sample, there
are measurements of 43117 genes.
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Generalization Ability

As already mentioned in section 3.3.4, the aim of this field is to access the generalization
ability of the genomic signature. A good generalization performance is achieved when a
genomic signature is able to predict the label of unseen samples correctly. The final
genomic signature consists of 32 significant genes. Thus, these genes are selected from
the new dataset in order to be used for accessing the generalization ability of the model
to an independent dataset. However, there are 6 genes which are not detected in the
new dataset, while 7 of them are appeared with more than one code and the other 19
have the same code to the original dataset. In that manner, concerning the 7 genes with
multiply codes, standard deviation of each gene is extracted in order to decide which
code is able to be used. The gene with the higher standard deviation is preferred, since
these genes are extended over a wider range of values.
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Figure 4.27: Standard Deviation of 7multiply genes of the new dataset

Thus, the genomic signature of the new dataset is composed of 26 significant genes and
is used to access the generalization ability of the model. As mentioned in section 3.3.3,
the 10 fold cross validation approach generates 9 training datasets and only one test
set. This process is repeated 10 rounds. In each round, one of the folds is used for
validation, and the other 9 folds for training. Then the RVM classification method is
performed. The process is repeated 200 times and the overall results are averaged.
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Genomic Signature Size Mean Classification Accuracy (%) Mean Genes

(new dataset)
26 74.17 13

Table 4.17: Generalization Ability of Genomic Signature Results

The observed mean classification accuracy is good enough, performing very good
generalization performance when it comes to the classification of unknown samples.

4.5. Biological Evaluation

As presented in the methodology section, for the classification purpose, we used the
dataset GSE46449 [42] obtained from GEO (Gene Expression Omnibus) repository [43],
while the GEO Dataset GSE39653 has been used in order to evaluate the proposed
methodology [44].

As shown in Table 4.18, the probe identifiers from the unified “32 gene signature”
were mapped to unique Gene Symbols and Entrez Gene Ids, upon which pathway
analysis has been performed.

1 1553864 _at N/A N/A Unknown

2 Fanconi anemia,
1557217 a_at | 2187 FANCB complementation group B

3 1559117 at N/A N/A Unknown

4 v-Ki-ras2 Kirsten rat sarcoma viral
1559203 s at |3845 KRAS oncogene homolog

5 201164 _s_at 9698 PUM1 pumilio homolog 1 (Drosophila)

6 203392 _s_at 1487 CTBP1 C-terminal binding protein 1

7 205285 _s_at 2533 FYB FYN binding protein

8 206059_at 7644 ZNF91 zinc finger protein 91

9 interferon, gamma-inducible
208965_s_at 3428 IFI16 protein 16

10 | 211794 at 2533 FYB FYN binding protein

11 | 212730_at 23336 | SYNM synemin, intermediate filament
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protein
12 family with sequence similarity
213455 _at 92689 | FAM114A1 | 114, member Al
PRP40 pre-mRNA processing
factor 40 homolog A (S.
13 | 213729_at 55660 | PRPF40A cerevisiae)
14 | 217000_at 442236 | KRT18P50 | keratin 18 pseudogene 50
15 | 218561 s at 57128 LYRM4 LYR motif containing 4
16 chromosome X open reading
219805 at 63932 | CXorf56 frame 56
17 | 220761_s_at 51347 | TAOK3 TAO kinase 3
18 | 221648 s_at N/A N/A Unknown
19 222409 at 23603 | CORO1C coronin, actin binding protein, 1C
20 | 223135 s at 56987 | BBX bobby sox homolog (Drosophila)
21 dephospho-CoA kinase domain
224522 s at 79877 DCAKD containing
22 | 224545 at N/A N/A Unknown
23 228696 at 85414 | SLCA5A3 solute carrier family 45, member 3
24 | 230185 at 79725 | THAPS THAP domain containing 9
25 ring finger and CCCH-type
231716 _at 54542 | RC3H2 domains 2
26 |231798_ at 9241 NOG noggin
27 | 234765 _at N/A N/A Unknown
28 establishment of cohesion 1
235216_at 114799 | ESCO1 homolog 1 (S. cerevisiae)
29 | 236398 s at N/A N/A Unknown
eukaryotic translation initiation
30 | 237145 at 440275 | EIF2AK4 factor 2 alpha kinase 4
31 | 238682 at 257236 | CCDC9%6 coiled-coil domain containing 96
32 | 244326 _at N/A N/A Unknown

Table 4.18: Mapping of Probe Set IDs to Gene Symbols and Entrez Gene IDs. Red

highlighted are the eight genes with the highest variance among the groups. Purple

highlighted is the gene NOG known for its association with BPD
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Twenty-five probes - designed to interrogate a given sequence - were successfully
mapped, whereas seven probes were not mapped. The biological significance underlying
the unified “32 gene signature” was explored by enrichment analysis, while a gene-
disease association within the signature was searched in the Database BDgene [45].
Moreover, aiming at a functional enrichment of KEGG pathways and biological
processes in terms of Gene Ontology (GO), we utilized the annotation tool GATHER,
which “integrates various forms of available data to elucidate biological context within
molecular signatures produced from high-throughput post-genomic assays” [46].
GATHER uses the hypergeometric distribution or chi-square test in order to assign a p-
value of >0.05 to genes that are important within the examined gene signature.

Pathways (KEGG IDs) Genes p Value
Ethylbenzene degradation (path:hsa00642) ESCO1 0.001
Alkaloid biosynthesis Il (path:hsa00960) ESCO1 0.001
1- and 2-Methylnaphthalene degradation (path:hsa00624) |ESCO1 0.002
Phenylalanine metabolism (path:hsa00360) ESCO1 0.003
Limonene and pinene degradation (path:hsa00903) ESCO1 0.003
Valine, leucine and isoleucine degradation (path:hsa00280) |ESCO1 0.004
Notch signaling pathway (path:hsa04330) CTBP1 0.004
Histidine metabolism (path:hsa00340) ESCO1 0.005
Butanoate metabolism (path:hsa00650) ESCO1 0.005
Lysine degradation (path:hsa00310) ESCO1 0.005
Tyrosine metabolism (path:hsa00350) ESCO1 0.006
Benzoate degradation via CoA ligation (path:hsa00632) ESCO1 0.006
Glycerophospholipid metabolism (path:hsa00564) ESCO1 0.007
TGF-beta signaling pathway (path:hsa04350) NOG 0.008
Gap junction (path:hsa04540) KRAS 0.008
Tight junction (path:hsa04540) KRAS 0.01
Insulin signaling pathway (path:hsa04910) KRAS 0.01
Wnt signaling pathway (path:hsa04310) CTBP1 0.01

Table 4.19: Enriched pathways by GATHER
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Biological Process (Gene Ontology IDs) Genes p Value
negative regulation of JNK cascade (GO:0046329) TAOK3 0.001
positive regulation of JNK cascade (GO:0046330) TAOK3 0.002
L-serine biosynthesis (GO:0006564) CTBP1 0.004
regulation of JNK cascade (GO:0046328) TAOK3 0.005
negative regulation of cell differentiation (G0:0045596) |NOG 0.006
autophosphorylation (GO:0046777) TAOK3 0.006
NLS-bearing substrate-nucleus import (GO:0006607) FYB 0.006
monocyte differentiation (G0:0030224) IFI16 0.007
regulation of biological process (GO:0050789) BBX CTBP1 IFI16 NOG PUM1 TAOK3 ZNF91 0.007
L-serine metabolism (GO:0006563) CTBP1 0.007
protein amino acid phosphorylation (GO:0006468) CTBP1 FYB TAOK3 0.008
serine family amino acid biosynthesis (G0:0009070) CTBP1 0.008
myeloid blood cell differentiation (GO:0030099) IFI116 0.01
cell differentiation (GO:0030154) IFI16 NOG 0.01
viral genome replication (GO:0019079) CTBP1 0.01
phagocytosis (GO:0006909) CORO1C 0.01
negative regulation of signal transduction (G0O:0009968) | TAOK3 0.01
phosphorylation (GO:0016310) CTBP1 FYB TAOK3 0.01
protein kinase cascade (GO:0007243) FYB TAOK3 0.01
mRNA metabolism (GO:0016071) FNBP3 PUM1 0.01
viral infectious cycle (GO:0019058) CTBP1 0.02
serine family amino acid metabolism (GO:0009069) CTBP1 0.02
negative regulation of development (GO:0051093) NOG 0.02
phosphorus metabolism (GO:0006793) CTBP1 FYB TAOK3 0.02
phosphate metabolism (GO:0006796) CTBP1 FYB TAOK3 0.02
JNK cascade (GO:0007254) TAOK3 0.02
regulation of cellular process (GO:0050794) CTBP1 NOG TAOK3 0.02
response to virus (GO:0009615) IFI16 0.02
viral life cycle (GO:0016032) CTBP1 0.02
regulation of cell differentiation (GO:0045595) NOG 0.02
protein modification (GO:00064640) CTBP1 FYB MNAB TAOK3 0.02
amino acid biosynthesis (GO:0008652) CTBP1 0.03
cellular metabolism (GO:0044237) BBX C6orf149 CTBP1 FNBP3 FYB IFI16 MNAB PUM1 TAOK3 ZNF91 |0.03
nuclear import (GO:0051170) FYB 0.03
protein-nucleus import (GO:0006606) FYB 0.03
intracellular signaling cascade (GO:0007242) FYB KRAS TAOK3 0.03
regulation of translation (GO:0006445) PUM1 0.03

Table 4.20: Enriched biological processes by GATHER

87




Results

As presented in Tables 4.19 and 4.20, the functional enrichment by GATHER assigned
GO and KEGG terms to genes based on the features of their encoded products, that
were statistically over-represented within the unified “32 gene signature”. Table 4.19
presents eighteen enriched pathways and Table 4.20 thirty-seven enriched biological
processes. Interestingly, most of the genes in this signature were involved in four main
GO categories, namely cellular metabolism, regulation of biological process, protein
modification (phosphorylation) and intracellular signaling cascade (Table 4.20), while
three of the eight genes with high variance among the groups (ESCO1, NOG, CTBP1)
were implicated in the enriched KEGG pathways (Table 4.19). Of note, the gene noggin
is involved in the 10-gene predictor set for bipolar disorder reported by Clelland et al
(2013) [47], and the gene CTBP1 has been reported as a putative biomarker gene able to
discriminate between schizophrenia, BPD and control samples [48]. Finally, according to
BDgene database the eukaryotic translation initiation factor 2 alpha kinase 4 (EIF2AK4)
is linked to bipolar disease.

Even with poor knowledge about the directly association of the thirty-two genes with
bipolar disorder, we consider them as potential classifiers of BPD; the majority of their
assigned significant processes and pathways highlighted here, are studied by
researchers regarding to their important role in pathophysiology and
neurodevelopment of bipolar disorder [48],[49],[50],[51],[52],[53],[54].

Our methodology enables the classification of healthy controls from patients with
bipolar disorder, where is less likely to be influenced by medication. We propose that
the thirty-two genes of the “32 unified common gene signature” - validated on the
independent dataset GSE39653 - represent powerful genes and might be considered as
prediction genes for bipolar disorder. As a final point, we notice the usage of the
proposed signature for the characterization of the unmapped/unknown probes
(224545 _at, 221648 s_at, 244326_at, 1553864 _at, 1559117 at, 234765_at,
236398 s_at).

The proposed signature could be easily validated experimentally in peripheral blood

leucocytes.
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Conclusion

Conclusion

The aim of this diploma thesis is to provide a reliable and stable genomic signature that
classifies the bipolar disorders and underlines the genetic background of the disease.
Thus, gene expressions from two different populations are used.

The genome analysis usually leads to datasets that normally contain a small number of
samples which have a large number of gene expression levels as features. In order to
extract useful informative sets of genes that can reduce dimensionality and maximize
the performance of classifiers, feature selection algorithms were used.

While, feature selection methods are used in order to counterfeit the dimensionality of
the data by keeping a relatively small set of significant features, the classification
approaches are used in order to classify new data into known class of interest. Through
classification approaches a small set of significant features, which achieves high
classification accuracy, arised.

Furthermore, an evaluation method called “Stable Bootstrap Validation” (SBV),
introduced be Nick Chlis, is presented so as to achieve stable performance assessment
of feature selection and classification methods. The SBV employs bootstrap resampling
of the original dataset and an explicit stability assessment criterion in order to extract
stable estimates of the classification accuracy as well as the genomic signature size; the
number of genes selected in the signature.

Moreover, the discrimination, consistency and generalization ability of the observed
results are also evaluated. The results that are stable and reflect the biological model
should also be consistent across different executions of the feature selection and
classification methodologies. Also, the ability of how the results of a statistical analysis
will generalize to an independent data set should be evaluated.

The above methodology is performed on a dataset that is composed of two different
populations. Particularly, the original dataset consists of 53 samples related to bipolar
disorder, 28 of which correspond to patients with bipolar disorder, while 3 of them are
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patient in first episode, and 25 matched control samples. The dataset is spited into two
different groups in order to access the impact of medication in patients. The first group
is composed of healthy controls and medicated bipolar disorder patients, while the
second one consisted of healthy controls and all bipolar disorder patients. Each group is
examined separately. Significance Analysis of Microarrays (SAM) is the filter univariate
method used, while several categories of classification methods are implemented; Least
Absolute Shrinkage and Selection Operator (LASSO), Support Vector Machine (SVM) and
Relevance Vector Machines. Since SAM is a filter uinvariate approach, LASSO regression
is selected to improve model discrimination performance, producing interpretable
models by setting a considerable amount of features at exactly zero. LASSO achieves
good classification performance while it tends to keep a large number of features,
resulting in a genomic signature, which has a large number of common genes with SAM
approach. Furthermore, while the SVM classifier leads to good classification
performances, the size of genomic signatures is considerable small in size, leading to the
idea of using the RVM classifier, which stands for an improved performance.
Experimental results proved that SBV reached stable results after a maximum of 200
iterations on a worst case scenario. Moreover, observed estimates for the classification
accuracy and the genomic signature were consistent across different and independent
executions of SBV. According to the SBV results, RVM outperformed all other methods,
reaching accuracies close to 90%. Specifically, concerning the two groups SVM reached
accuracies of 89.5% for 6 genes selected and 87% for 8 genes selected, respectively.
Compared to SVM, RVM reached accuracies of 91.4% for 78 genes selected and 90% for
73 genes selected, respectively. The RVM observed results of two different groups have
23 common genes. These 23 observed common genes are removed from the initial sets
of significant genes and the RVM procedure is repeated 100 times for each significant
set. The observed results also have 8 common genes. Consequently, the
aforementioned procedure is repeated again, removing the 8 common genes from the
rest sets of significant genes. The observed results also have 1 common genes. Since
there are 3 difference cases used for the RVM methods, 3 different unified signatures
were extracted, the 23 gene, 8 gene and 1 gene signatures. In that manner, the final
genomic signature is composed of 32 genes.

Furthermore, in order to access the discrimination of genomic signature between the
class labels the expression value of each gene is examined by estimating the mean as
well as variance and standard deviation. According to the observed results, the standard
deviation as well as variance of 32 significant genes of all samples are far off null,
indicating that the expression value of each gene tend to be far off the mean and hence
to each other. In that manner, the genes expressions are extended over a wider range of

90


https://en.wikipedia.org/wiki/Mean

Conclusion

values, representing high discrimination among the class of bipolar patients and healthy
controls samples and leading to a more easily interpretable model.

Moreover, the consistency of gene selection in the signature is evaluated using the 10 -
fold cross validation method, which generates 9 training datasets and only one test set.
This process is repeated 10 rounds. In each round, one of the folds is used for validation,
and the other 9 folds for training. Then the RVM classification method is performed. The
process is repeated 200 times and the overall results are averaged. The observed
classification accuracy was approximately 84.67% for 26 mean genes selected.

Finally, a good generalization performance is achieved when a genomic signature is able
to predict the label of unseen samples correctly. In that manner, a new independent
dataset is used and the procedure of 10 —fold cross validation is repeated. The observed
mean classification accuracy was approximately 74.17% for 13 mean genes selected,
performing very good generalization performance when it comes to the classification of
unknown samples.

Concerning the biological evaluation, the enriched processes and pathways that
assigned to the thirty-two genes are important with respect to different aspects of
pathophysiology and neurodevelopment of bipolar disorder.

Apart from the two genes, NOG and CTBP1, referred to be putative predictors, we
support the notion that our “32 unified common gene signature” in its entirety can play
a classification role in discriminating healthy controls from patients with BPD, and is a
potent predictor without sound effects of medication.
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