
Supporting SPARQL Update Queries

in RDF-XML Integration *

Nikos Bikakis1 † Chrisa Tsinaraki2 Ioannis Stavrakantonakis3

Stavros Christodoulakis4

1 NTU Athens & R.C. ATHENA, Greece

 2 EU Joint Research Center, Italy

3 STI, University of Innsbruck, Austria
4 Technical University of Crete, Greece

Abstract. The Web of Data encourages organizations and companies to publish

their data according to the Linked Data practices and offer SPARQL endpoints.

On the other hand, the dominant standard for information exchange is XML. The

SPARQL2XQuery Framework focuses on the automatic translation of SPARQL

queries in XQuery expressions in order to access XML data across the Web. In

this paper, we outline our ongoing work on supporting update queries in the

RDF–XML integration scenario.

Keywords: SPARQL2XQuery, SPARQL to XQuery, XML Schema to OWL,

SPARQL update, XQuery Update, SPARQL 1.1.

1 Introduction

The SPARQL2XQuery Framework, that we have previously developed [6], aims to

bridge the heterogeneity issues that arise in the consumption of XML-based sources

within Semantic Web. In our working scenario, mappings between RDF/S–OWL and

XML sources are automatically derived or manually specified. Using these mappings,

the SPARQL queries are translated on the fly into XQuery expressions, which access

the XML data. Therefore, the current version of SPARQL2XQuery provides read-only

access to XML data. In this paper, we outline our ongoing work on extending the

SPARQL2XQuery Framework towards supporting SPARQL update queries.

Both SPARQL and XQuery have recently standardized their update operation seman-

tics in the SPARQL 1.1 and XQuery Update Facility, respectively. We have studied the

correspondences between the update operations of these query languages, and we de-

scribe the extension of our mapping model and the SPARQL-to-XQuery translation

algorithm towards supporting SPARQL update queries.

Similarly to the motivation of our work, in the RDB–RDF interoperability scenario,

D2R/Update [1] (a D2R extension) and OntoAccess [2] enable SPARQL update queries

over relational databases. Regarding the XML–RDB–RDF interoperability scenario

[5], the work presented in [3] extends the XSPARQL language [4] in order to support

update queries.

* This paper appears in 13th International Semantic Web Conference (ISWC '14).
† This work is partially supported by the EU/Greece funded KRIPIS: MEDA Project

2 Translating SPARQL Update Queries to XQuery

This section describes the translation of SPARQL update operations into XQuery ex-

pressions using the XQuery Update Facility. We present how similar methods and al-

gorithms previously developed in the SPARQL2XQuery Framework can be adopted

for the update operation translation. For instance, graph pattern and triple pattern trans-

lation are also used in the update operation translation. Note that, due to space limita-

tions, some issues are presented in a simplified way in the rest of this section and several

details are omitted.

Table 1 presents the SPARQL update operations and summarizes their translation in

XQuery. In particular, there are three main categories of SPARQL update operations a)

Delete Data; b) Insert Data; and c) Delete/Insert. For each update operation, a simplified

SPARQL syntax template is presented, as well as the corresponding XQuery expres-

sions. In SPARQL context, we assume the following sets, let tr be an RDF triple set, tp

a triple pattern set, trp a set of triples and/or triple patterns, and gp a graph pattern.

Additionally, in XQuery, we denote as xEW, xEI and xED the sets of XQuery expressions

(i.e., FLOWR expressions) that have resulted from the translation of the graph pattern

included in the Where, Insert and Delete SPARQL clauses, respectively. Let xE be a set

of XQuery expressions, xE($v1, $v2,… $vn) denote that xE are using (as input) the values

assigned to XQuery variables $v1, $v2,… $vn. Finally, xn denotes an XML fragment,

i.e., a set of XML nodes, and xp denotes an XPath expression.

Table 1. Translation of the SPARQL Update Operations in XQuery

SPARQL

Translated XQuery Expressions SPARQL Update

Operation
Syntax Template 1

DELETE DATA

Delete data{

 tr

}

delete nodes collection("http://dataset...")/xp1

...

delete nodes collection("http://dataset...")/xpn

INSERT DATA

Insert data{

 tr

}

let $n1 := xn1
…
let $nn := xnn
let $data1 := ($nk, $nm,…) // k, m,… ∈ [1,n]
…
let $datap := ($nj, $nv,…) // j, y,… ∈ [1,n]
let $insert_location1 := collection("http://xmldataset...")/xp1
…
let $insert_locationp := collection("http://xmldataset...")/xpp
return(
 insert nodes $data1 into $insert_location1 ,
 …
 insert nodes $datap into $insert_locationp

)

DELETE /

INSERT

 (a) Delete{
 trp
 }Where{
 gp
 }

 (b) Insert{
 trp
 }Where{

 gp
 }

(c) Delete{
 trp
 }Insert{
 trp
 }Where{
 gp
 }

(a)

 let $where_gp := xEW

 let $delete_gp:= xED ($where_gp)

 return delete nodes $delete_gp

(c)

Translate Delete Where same as (a),

then translate Insert Where same as (b)

(b) let $where_gp := xEW

 let $insert_location1 := xp1

 for $it1 in $insert_location1

 xEI ($where_gp, $it1)

 return insert nodes into $it1

 …

 let $where_gp := xEW

 let $insert_ location n := xpn

 for $itn in $insert_locationn

 xEI ($where_gp, $itn)

 return insert nodes into $itn
1 For simplicity, the WITH, GRAPH and USING clauses are omitted.

In the following examples, we assume that an RDF source has been mapped to an XML

source. In particular, we assume the example presented in [6], where an RDF and an

XML source describing persons and students have been mapped. Here, due to space

limitation, we just outline the RDF and XML concepts, as well as the mappings that are

involved in the following examples. In RDF, we have a class Student having several

datatype properties, i.e., FName, E-mail, Department, GivenName, etc. In XML, we have

an XML complex type Student_type, having an attribute SSN and several simple ele-

ments, i.e., FirstName, Email, Dept, GivenName etc. Based on the XML structure, the stu-

dents’ elements appear in the \Persons\Student path. We assume that the Student class

has been mapped to the Student_type and the RDF datatype properties to the similar

XML elements.

Delete Data. The Delete Data SPARQL operation removes a set of triples from RDF

graphs. This SPARQL operation can be translated in XQuery using the Delete Nodes

XQuery operation. Specifically, using the predefined mappings, the set of triples tr de-

fined in the SPARQL Delete Data clause is transformed (using a similar approach such

as the BGP2XQuery algorithm [6]) in a set of XPath expressions XP. For each xpi ∊ XP

an XQuery Delete Nodes operation is defined.

 In this example, two RDF triples are deleted from an RDF graph. In

addition to the mappings described above, we assume that the person

"http://rdf.gr/person1209" in RDF data has been mapped to the person

"/Persons/Student[.@SSN=1209]" in XML data.

Insert Data. The Insert Data SPARQL operation, adds a set of new triples in RDF

graphs. This SPARQL operation can be translated in XQuery using the Insert Nodes

XQuery operation. In the Insert Data translation, the set of triples tr defined in SPARQL

are transformed into XML node sets xni, using the predefined mappings. In particular,

a set of Let XQuery clauses is used to build the XML nodes and define the appropriate

node nesting and grouping. Then, the location of the XML node insertion can be easily

determined considering the triples and the mappings. Finally, the constructed nodes are

inserted in their location of insertion using the XQuery Insert nodes clause.

 In this example, the RDF triples deleted in the previous example are re-

inserted in the RDF graph.
SPARQL Insert Data query  Translated XQuery query

Insert data{

 <http://rdf.gr/person1209> ns:FName "John" .

 <http://rdf.gr/person1209> ns:E-mail "john@smith.com".

}

let $n1 := <FirstName>John</FirstName>

let $n2 := <Email>john@smith.com</Email>

let $data1 := ($n1, $n2)

let $insert_location1 := collection("http://xml.gr")/Per-

sons/Student[.@SSN=1209]

return insert nodes $data1 into $insert_location1

Insert / Delete. The Delete/Insert SPARQL operations are used to remove and/or add a

set of triples from/to RDF graphs, using the bindings that resulted from the evaluation

SPARQL Delete Data query  Translated XQuery query

Delete data{

 <http://rdf.gr/person1209> ns: FName "John" .

 <http://rdf.gr/person1209> ns:E-mail "john@smith.com".

}

delete nodes collection("http://xml.gr")/Persons/Stu-

dent[.@SSN=1209]/FirstName[.= "John"]

delete nodes collection("http://xml.gr")/Persons/Stu-

dent[.@SSN=1209]/Email[.= "John@smith.com"]

mailto:john@smith.com%3c/Email

of the graph pattern defined in the Where clause. According to the SPARQL 1.1 seman-

tics, the Where clause is the first one that is evaluated. Then, the Delete/Insert clause is

applied over the produced results. Especially, in case, that both Delete and Insert opera-

tions exist, the deletion is performed before the insertion, and the Where clause is eval-

uated once. The Delete and the Insert SPARQL operations can be translated to XQuery

using the Delete Nodes and Insert Nodes operations, respectively. In brief, initially the

graph pattern used in the Where clause is translated to XQuery expressions xEW (simi-

larly as in the GP2XQuery algorithm [6]). Then, the graph pattern used in the Delete/In-
sert clause is translated to XQuery expressions xED/xEI (as it is also in the BGP2XQuery

algorithm [6]) using also the bindings that resulted from the evaluation of xEW.

 In this example, the Where clause selects all the students studying in a

computer science (CS) department. Then, the Delete clause deletes all the triples that

match with its triple patterns, using the ?student bindings determined from the Where

clause. In particular, from all the retrieved students (i.e., CS students), the students

which have as first name the name "John" should be deleted.

 In this example, the Where clause selects all the students studying in a CS

department, as well as their first names. Then, the Insert clause creates new triples

according to its triple patterns, using the ?student and ?name bindings determined

from the Where clause. In particular, a new triple having as predicate “ns:GivenName”

and as object the first name of the ?student, is inserted for each ?student.

References

1. Eisenberg V., Kanza Y.: "D2RQ/update: updating relational data via virtual RDF". In WWW
2012

2. Hert M., Reif G., Gall H. C.: "Updating relational data via SPARQL/update". In EDBT/ICDT
Workshops 2010.

3. Ali M.I., Lopes N., Friel O., Mileo A.: "Update Semantics for Interoperability among XML,
RDF and RDB". In APWeb 2013

4. Bischof S., Decker S., Krennwallner T., Lopes N., Polleres A.: "Mapping between RDF and
XML with XSPARQL". J. Data Semantics 1(3), (2012)

5. Bikakis N., Tsinaraki C., Gioldasis N., Stavrakantonakis I., Christodoulakis S.: "The XML
and Semantic Web Worlds: Technologies, Interoperability and Integration. A survey of the
State of the Art". In Semantic Hyper/Multi-media Adaptation: Schemes and Applications,
Springer 2013

6. Bikakis N., Tsinaraki C., Stavrakantonakis I., Gioldasis N., Christodoulakis S.: "The
SPARQL2XQuery Interoperability Framework". World Wide Web Journal (WWWJ), 2014

SPARQL Delete query  Translated XQuery query
Delete{

 ?student ns:FName "John" .

}Where{

 ?student ns:Department "CS" .

}

let $where_gp := collection("http://xml.gr")/Persons/Student[./Dept="CS"]

let $delete_gp := $where_gp[./FirstName="John"]

return delete nodes $delete_gp

SPARQL Insert query  Translated XQuery query

Insert{

 ?student ns:GivenName ?name .

}Where{

 ?student ns:FName ?name .
 ?student ns:Department "CS" .
}

let $where_gp := collection(“http://xml.gr”)/Persons/Student[./Dept="CS"]

let $insert_location1 := $where_gp

for $it1 in $insert_location1

let $insert_gp1 := <GivenName>{fn:string($it1/FirstName)}</GivenName>

return insert nodes $insert_gp1 into $it1

http://www.dblp.org/pers/hc/e/Eisenberg:Vadim.html
http://www.dblp.org/pers/hc/k/Kanza:Yaron.html

