
Semantic Based Access over XML Data *

Nikos Bikakis, Nektarios Gioldasis, Chrisa Tsinaraki,
Stavros Christodoulakis

Technical University of Crete, Department of Electronic and Computer Engineering

Laboratory of Distributed Multimedia Information Systems & Applications (TUC/MUSIC)
University Campus, 73100, Kounoupidiana Chania, Greece

{nbikakis, nektarios, chrisa, stavros}@ced.tuc.gr

Abstract. The need for semantic processing of information and services has
lead to the introduction of tools for the description and management of knowl-
edge within organizations, such as RDF, OWL, and SPARQL. However, se-
mantic applications may have to access data from diverse sources across the
network. Thus, SPARQL queries may have to be submitted and evaluated
against existing XML or relational databases, and the results transferred back to
be assembled for further processing. In this paper we describe the
SPARQL2XQuery framework, which translates the SPARQL queries to seman-
tically equivalent XQuery queries for accessing XML databases from the Se-
mantic Web environment.

Keywords: Semantic Web, XML Data, Information Integration, Interoperabil-
ity, Query Translation, SPARQL, XQuery, SPARQL2XQuery.

1 Introduction

XML has been extremely successful for information exchange in the Web. Over the
years XML was established as a tool for describing the content of diverse structured
or unstructured resources in a flexible manner. The information transferred with XML
documents across the internet lead to needs of systematic management of the XML
documents in organizations. XML Schema and XQuery [7] were developed to give
the users database management functionality analogous to the Relational Model and
SQL. In the Web application environment the XML Schema acts also as a wrapper to
relational content that may coexist in the databases.

The need for semantic information processing in the Web on the other hand has
lead to the development of a different set of standards including OWL, RDF and
SPARQL[5]. Semantic Web application developers expect to utilize SPARQL for
accessing RDF data. However, information across the network may be managed by
databases that are based on other data models such as XML Schema or the Relational
model. Converting all the data that exist in the XML databases into Semantic Web
data is unrealistic due to the different data models used (and enforced by different
standardization bodies), the management requirements (including updates), the diffi-

* An extended version of this paper is available at [20].

culties in enforcing the original data semantics, ownership issues, and the large vol-
umes of data involved

In this paper we propose an environment where Semantic Web users write their
queries in SPARQL, and appropriate interoperability software undertakes the respon-
sibility to translate the SPARQL queries into semantically equivalent XQuery queries
in order to access XML databases across the net. The results come back as RDF (N3
or XML/RDF) or XML [1] data. This environment accepts as input a set of mappings
between an OWL ontology and an XML Schema. We support a set of language level
correspondences (rules) for mappings between RDFS/OWL and XML Schema. Based
on these mappings our framework is able to translate SPARQL queries into semanti-
cally equivalent XQuery expressions as well as to convert XML Data in the RDF
format. Our approach provides an important component of any Semantic Web mid-
dleware, which enables transparent access to existing XML databases.

The framework has been smoothly integrated with the XS2OWL framework [15],
thus achieving not only the automatic generation of mappings between XML Schemas
and OWL ontologies, but also the transformation of XML documents in RDF format.

The design objectives for the development of the SPARQL2XQuery framework
have been the following: a) Capability of translating every query compliant to the
SPARQL grammar b) Strict compliance with the SPARQL semantics, c) Independ-
ence from query engines and working environments for XQuery, d) Production of the
simplest possible XQuery expressions, e) Construction of XQuery expressions so that
their correspondence to SPARQL can be easily understood, f) Construction of
XQuery expressions that produce results that do not need any further processing, and
g) In combination with the previous objectives, construction of the most efficient
XQuery expressions possible.

The rest of the paper is organized as follows: In Section 2 the related work is pre-
sented. The mappings used for the translation as well as their encoding are described
in Section 3. Section 4 describes the query translation process. An example presented
at Section 5. The transformation of the query results described at Section 6. The paper
concludes in section 7.

2 Related Work

Various attempts have been made in the literature to address the issue of accessing
XML data from within Semantic Web Environments [2, 3, 6, 8, 9, 10, 11, 15, 16, 17,
18]. More relevant to our work are those that use SPARQL as a manipulation lan-
guage. To this end, the SAWSDL Working Group [8] uses XSLT to convert XML data
into RDF and a combination of SPARQL and XSLT for the inverse. Other approaches
[9, 10, 11] combine Semantic Web and XML technologies to provide a bridge be-
tween XML and RDF environments. XSPARQL [11] combines SPARQL and XQuery
in order to achieve Lifting and Lowering. In the Lifting scenario (which is relevant to
our work), XSPARQL uses XQuery expressions to access XML data and SPARQL
Construct queries for converting the accessed data into RDF. The main drawback of
these approaches is that there is no automatic way to express an XML retrieval query
in SPARQL. Instead, the user must be aware of the XML Schema and create his/her
information retrieval query accordingly (XQuery or XSLT). In our work, the user is

not expected to know the underlying XML Schema; (s)he expresses his/her query
only in SPARQL in terms of the knowledge that (s)he is aware of, and (s)he is able to
retrieve data that exist in XML databases. The aforementioned attempts, as well as
others [12, 13, 14] that try to bridge relational databases with the Semantic Web using
SPARQL, show that the issue of accessing legacy data sources from within Semantic
Web environments is a valuable and challenging one.

3 Mapping OWL to XML Schema

The framework described here allows XML encoded data to be accessed from Seman-
tic Web applications that are aware of some ontology encoded in OWL. To do that,
appropriate mappings between the OWL ontology (O) and the XML Schema (XS)
should exist. These mappings may be produced either automatically, based on our
previous work in the XS2OWL framework [15], or manually through some mapping
process carried out by a domain expert. However, the definition of mappings between
OWL ontologies and XML Schemas is not the subject of this paper. Thus, we do not
focus on the semantic correctness of the defined mappings. We neither consider what
the mapping process is, nor how these mappings have been produced

Such a mapping process has to be guided from language level correspondences.
That is, the valid correspondences between the OWL and XML Schema language
constructs have to be defined in advance. The language level correspondences that
have been adopted in this paper are well-accepted in a wide range of data integration
approaches [2, 3, 6, 15, 16, 17]. In particular, we support mappings that obey the
following language level correspondence rules: O Class corresponds to XS Complex
Type, O DataType Property corresponds to XS Simple Element or Attribute, and O
Object Property corresponds to XS Complex Element.

Then, at the schema level, mappings between concrete domain conceptualizations
have to be defined (e.g. the employee class is mapped to the worker complex type)
either manually, or automatically, following the correspondences established at the
language level.

At the schema level mappings a mapping relationship between O and an XS is a bi-
nary association representing a semantic association among them. It is possible that
for a single ontology construct more than one mapping relationships are defined. That
is, a single source ontology construct can be mapped to more than one target XML
Schema elements (1:n mapping) and vice versa, while more complex mapping rela-
tionships can be supported.

3.1 Encoding of the Schema Level Mappings

Since we want to translate SPARQL queries into semantically equivalent XQuery
expressions that can be evaluated over XML data following a given (mapped)
schema, we are interested in XML data representations. As a consequence, based on
schema level mappings for each mapped ontology class or property, we store a set of
XPath expressions (“XPath set” for the rest of this paper) that address all the corre-

sponding instances (XML nodes) in the XML data level. In particular, based on the
schema level mappings, we construct:

� A Class XPath Set XC for each mapped class C, containing all the possible

XPaths of the complex types to which the class C has been mapped to.

� A Property XPath Set XPr for each mapped property Pr, containing all the possi-
ble XPaths of the elements or/and attributes to which Pr has been mapped.

Example 1: Encodings of Mappings

Fig. 1 shows the mappings between an OWL Ontology and an XML Schema.

Fig. 1. Mappings Between OWL & XML

To better explain the defined mappings, Fig. 1 shows the structure that the XML
documents (which follow this schema) will have. The encoding of these mappings in
our framework is shown in Fig. 2.

Fig. 2. Mappings Encoding

4 Query Translation Process

In this section we present in brief the entire translation process using a UML activity
diagram Fig. 3 shows the entire process which starts taking as input the given
SPARQL query and the defined mappings between the ontology and the XML Sche-

ma (encoded as described in the previous sections). The query translation process
comprises the activities outlined in the following paragraphs.

4.1 SPARQL Graph Pattern Normalization

The SPARQL Graph Pattern Normalization activity re-writes the Graph-Pattern (GP)
of the SPARQL query in an equivalent normal form based on equivalence rules. The
SPARQL GP normalization is based on the GP expression equivalences proved in [4]
and re-writing techniques. In particular, each GP can be transformed in a sequence P1
UNION P2 UNION P3 UNION…UNION Pn, where Pi (1≤i≤n) is a Union-Free GP
(i.e. GPs that do not contain Union operators) [4]. This makes the GP translation
process simpler and more efficient, since it decomposes the entire query pattern into
sub-patterns that can be processed independently of each other.

act SPARQL2?QUERY

Mappings SPARQL GraphPattern
Normalization

SPARQL
Query

Solution Sequence
Modifiers Translation

Query Form Based
Translation

Union-Free GraphPattern Processing

Determination of
Variable Types

Processing
Onto-Triples

UF-GP2XQuery

Variables
Binding

BGP2XQuery

Union Operator
Translation

[Else]

[SSMs Exist][Else]

[Else]

[Type Conflicts]
[Onto-Triples
Exist]

[Else] [More GPs]
[More U-F GPs]

[More BGPs]

Fig. 3 Overview of the SPARQL Translation Process

4.2 Union-Free Graph Pattern (UF-GP) Processing

The UF-GP Processing translates the constituent UF-GPs into semantically equiva-
lent XQuery expressions. The UF-GP Processing activity is a composite one, with
various sub-activities. This is actually the step that most of the “real work” is done
since at this step most of the translation process takes place. The UF-GP Processing
activity is decomposed in the following sub-activities:

Determination of Variable Types. This activity examines the type of each variable
referenced in each UF-GP in order to determine the form of the results and, conse-

quently, the syntax of the Return clause in XQuery. Moreover, variable types are used
by the “Processing Onto-Triples” and “Variables Bindings” activities. Finally, this
activity performs consistency checking in variable usage in order to detect any possi-
ble conflict (e.g. the same variable name is used in the definitions of variables of
different types in the same UF-GP). In such a case, the UF-GP is not going to be
translated, because it is not possible to be matched with any RDF dataset.

We define the following variable types: The Class Instance Variable Type (CIVT),
The Literal Variable Type (LVT), The Unknown Variable Type (UVT), The Data Type
Predicate Variable Type (DTPVT), The Object Predicate Variable Type (OPVT), The
Unknown Predicate Variable Type (UPVT).

The form of the results depends on the variable types and they are structured in
such a way that allows their transformation to RDF syntax. The transformation can be
done by processing the information regarding the form of the results and the input
mappings. In order to allow the construction of result forms, appropriate XQuery
functions (using standard XQuery expressions) have been implemented (like
func:CIVT, etc.).

Processing Onto-Triples. Onto-Triples actually refer to the ontology structure and/or
semantics. The main objective of this activity is to process onto-triples against the
ontology (using SPARQL) and based on this analysis to bind (i.e. assigning the rele-
vant XPaths to variables) the correct XPaths to variables contained in the onto-triples.
These bindings are going to be used in the next steps as input Variable Binding activ-
ity. This activity processes Onto-Triples using standard SPARQL in order to perform
any required inference so that any schema-level query semantics to be analyzed and
taken into account later on in the translation process. Since we are using SPARQL for
Onto-Triple processing against the ontology, we can process any given Onto-Triple
regardless the complexity of its matching against the ontology graph.

UF-GP2XQuery. This activity translates the UF-GP into semantically equivalent
XQuery expressions. The concept of a GP, and thus the concept of UF-GF, is defined
recursively. The BGP2XQuery activity translates the basic components of a GP (i.e.
Basic Graph Patterns-BGPs which are sequences of triple patterns and filters) into
semantically equivalent XQuery expressions. To do that a variables binding step is
needed. Finally, BGPs in the context of a GP have to be properly associated. That is,
to apply the SPARQL operators among them using XQuery expressions and func-
tions. These operators are: OPT, AND, and FILTER and are implemented using stan-
dard XQuery expressions without any ad hoc processing.

– Variables Binding. In the translation process the term “variable bindings” is
used to describe the assignment of the correct XPaths to the variables referenced
in a given Basic Graph Pattern (BGP), thus enabling the translation of BGP to
XQuery expressions. In this activity, Onto-Triples are not taken into account since
their processing has taken place in the previous step and their bindings are used as
input in this activity. The same holds for Filters, since they don’t affect the bind-
ing process (more details can be found at [19]).

– BGP2XQuery. This activity translates the BGPs to semantically equivalent
XQuery expressions based on the BGP2XQuery algorithm. The algorithm manipu-
lates a sequence of triple patterns and filters (i.e. a BGP) and translates them into
XQuery expressions, thus allowing the evaluation of a BGP on a set of XML data.
The algorithm takes as input the mappings between the ontology and the XML
schema, the BGP, the determined variable types, as well as the variable bindings
and generates XQuery expressions (more details can be found at [19]).

4.3 Union Operator Translation

This activity translates the UNION operator that appears among UF-GPs in a GP, by
using the Let and Return XQuery clauses in order to return the union of the solution
sequence produced by the UF-GPs to which the Union operator applies.

4.4 Solution Sequence Modifiers Translation

This activity translates the SPARQL solution sequence modifiers. Solution Modifiers
are applied on a solution sequence in order to create another, user desired, sequence.
The modifiers supported by SPARQL are Distinct, Order By, Reduced, Limit and
Offset.

For the implementation of the Distinct and Reduced modifiers, our software gener-
ates XQuery functions (in standard XQuery syntax) (func:DISTINCT,
func:REDUCED) according to the number and the names of the variables for which
the duplicate elimination is to be performed. Regarding the rest of the solution se-
quence modifiers, the next table shows the XQuery expressions and built-in functions
that are used for their translation in XQuery (the XQuery variable $Results has been
bound to the solution sequence produced by XQuery expressions, and N, M are posi-
tive integers).

Table 1. Translation of Solutions Sequence Modifiers

4.5 Query Forms Based Translation

SPARQL has four forms of queries (Select, Ask, Construct and Describe). According
to the query form, the structure of the final result is different. The query translation is
heavily dependent on the query form. In particular, after the translation of any solu-
tion modifier is done, the generated XQuery is enhanced with appropriate expressions
in order to achieve the desired structure of the results (e.g. to construct an RDF graph,
or a result set) according to query form.

5 Example

We demonstrate in this example the use of the described framework in order to allow
a SPARQL query to be evaluated in XML Data (based on Example 1). Fig. 4 shows
how a given SPARQL query is translated by our framework into a semantically
equivalent XQuery query.

Fig. 4. SPARQL Query Translation Example

6 Transformation of the Query Results

An important issue in the entire approach is the structure of the returned results. In
our work and for the Ask and Select query forms we encode the returned results ac-
cording to the SPARQL Query Result XML Format [1], which is a W3C recommen-
dation. Moreover the values returned with the results, can be easily transformed into
RDF (N3 or RDF/XML) syntax by processing the information of the results and the
input mappings.

7 Conclusions

We have presented an environment that allows the evaluation of SPARQL queries
over XML data which are stored in XML databases and accessed with the XQuery
language. The environment assumes that a set of mappings between the OWL ontol-
ogy and the XML Schema exists. The mappings obey certain well accepted language
correspondences.

The SPARQL2XQuery framework has been implemented as a prototype software
service using Java related technologies (Java 2SE, Axis2, and Jena) on top of the
Berkeley DB XML. The service can be configured with the appropriate mappings
(between an ontology and an XML Schema) and translates the input SPARQL queries
into XQuery queries that are answered over the XML Database.

This work is part of as more generic framework that we are pursuing which aims to
providing algorithms, proofs and middleware for the transparent access from the
Semantic Web environment to federated heterogeneous databases across the web.

8 References

1. Beckett D. (eds), “SPARQL Query Results XML Format”. W3C Recommendation, 15
January 2008, (http://www.w3.org/TR/rdf-sparql-XMLres/).

2. Bohring H., Auer S.: “Mapping XML to OWL Ontologies”. Leipziger Informatik-Tage
2005: 147-156

3. Lehti P., Fankhauser P.: “XML Data Integration with OWL: Experiences & Challenges”,
Proceedings of the 2004 International Symposium on Applications and the Internet

4. J. Perez, M. Arenas, C. Gutierrez. Semantics and Complexity of SPARQL. 5th Interna-
tional Semantic Web Conference (ISWC-06), November 2006.

5. Prud'hommeaux E., Seaborne A. (eds), “SPARQL Query Language for RDF”. W3C Rec-
ommendation, 15 January 2008. (http://www.w3.org/TR/rdf-sparql-query/).

6. Rodrigues T., Rosa P, Cardoso J., “Mapping XML to Exiting OWL ontologies”, Interna-
tional Conference WWW/Internet 2006, Murcia, Spain, 5-8 October 2006.

7. Siméon J., Chamberlin D. (eds): XQuery 1.0: an XML Query Language. W3C Recom-
mendation, 23 Jan. 2007. http://www.w3.org/TR/xquery/.

8. Joel Farrell and Holger Lausen. Semantic Annotations for WSDL and XML Schema.
W3C Recommendation, W3C, August 2007. Available at http://www.w3.org/TR/sawsdl/

9. Sven Groppe, Jinghua Groppe, Volker Linnemann, Dirk Kukulenz, Nils Hoeller, Chris-
toph Reinke: Embedding SPARQL into XQuery/XSLT. SAC 2008: 2271-2278

10. Matthias Droop, Markus Flarer, Jinghua Groppe, Sven Groppe, Volker Linnemann, Jakob
Pinggera, Florian Santner, Michael Schier, Felix Schoepf, Hannes Staffler, Stefan Zugal:
“Embedding XPATH Queries into SPARQL Queries” In Proc. of the 10th International
Conference on Enterprise Information Systems(ICEIS 2008)

11. Waseem Akhtar, Jacek Kopecký, Thomas Krennwallner, Axel Polleres : XSPARQL:
Traveling between the XML and RDF Worlds - and Avoiding the XSLT Pilgrimage.
ESWC 2008:432-447

12. Christian Bizer, Richard Cyganiak : D2R Server. http://www4.wiwiss.fu-
berlin.de/bizer/d2r-server/index.html

13. OpenLink Software : Virtuoso Universal Server. http://virtuoso.openlinksw.com/
14. CCNT Lab. Zhejiang Univ. China : Dart Grid. http://ccnt.zju.edu.cn/projects/dartgrid/
15. Tsinaraki C., Christodoulakis S., “Interoperability of XML Schema Applications with

OWL Domain Knowledge and Semantic Web Tools”. In Proc. of the ODBASE 2007.

16. Cruz I.R., Huiyong Xiao Feihong Hsu: “An Ontology-based Framework for XML Se-
mantic Integration”, Database Engineering and Applications Symposium, 2004.

17. V.Christophides, G. Karvounarakis, I. Koffina, G. Kokkinidis, A. Magkanaraki, D.
Plexousakis, G. Serfiotis, V. Tannen: “The ICS-FORTH SWIM: A Powerful Semantic
Web Integration Middleware”. Proceedings of the First International Workshop on Seman-
tic Web and Databases 2003 (SWDB 2003), pages 381-393.

18. Bernd Amann, Catriel Beeri, Irini Fundulaki, Michel Scholl: Querying XML Sources
Using an Ontology-Based Mediator. CoopIS/DOA/ODBASE 2002: 429-448

19. Bikakis N., Gioldasis N., Tsinaraki C., Christodoulakis S.: “Querying XML Data with
SPARQL” In Proceeding. of the 20th International Conference on Database and Expert
Systems Applications (DEXA'09)

20. Bikakis N., Gioldasis N., Tsinaraki C., Christodoulakis S.: “The SPARQL2XQuery
Framework” Technical Report http://www.music.tuc.gr/reports/SPARQL2XQUERY.PDF

