
Interoperability of XML Schema Applications with OWL
Domain Knowledge and Semantic Web Tools

Chrisa Tsinaraki1 and Stavros Christodoulakis1

1TUC/MUSIC, Technical University of Crete Campus, 73100 Kounoupidiana, Crete, Greece
{chrisa, stavros}@ced.tuc.gr

Abstract. Several standards are expressed using XML Schema syntax, since the
XML is the default standard for data exchange in the Internet. However, several
applications need semantic support offered by domain ontologies and semantic
Web tools like logic-based reasoners. Thus, there is a strong need for interop-
erability between XML Schema and OWL. This can be achieved if the XML
schema constructs are expressed in OWL, where the enrichment with OWL
domain ontologies and further semantic processing are possible. After semantic
processing, the derived OWL constructs should be converted back to instances
of the original schema. We present in this paper XS2OWL, a model and a sys-
tem that allow the transformation of XML Schemas to OWL-DL constructs.
These constructs can be used to drive the automatic creation of OWL domain
ontologies and individuals. The XS2OWL transformation model allows the cor-
rect conversion of the derived knowledge from OWL-DL back to XML con-
structs valid according to the original XML Schemas, in order to be used trans-
parently by the applications that follow XML Schema syntax of the standards.

Keywords: Interoperability, Standards, XML Schema, OWL, Ontologies.

1. Introduction

The development of the Web and the emergence of advanced network infrastructures
that allow the fast and efficient information delivery allow the end-users to access
Web documents and Web applications. In such an open environment, the applications
developed by different vendors interoperate on the basis of the emergent standards.
The default standard for data exchange in the Internet today is the eXtensible Markup
Language (XML) [3], which allows the representation of structured Web documents.
The classes of the Web documents are described using the XML Schema Language
[6], which uses XML syntax and supports very rich structures and datatypes for XML
documents. Due to its structural capabilities and the central role in the data exchange
in the Internet, many standards in different application areas are directly specified in
XML Schema. Examples include several important standards in multimedia, like
MPEG-7 [5] and MPEG-21 [15], in e-learning, like IEEE LOM [11] and SCORM [1],
in Digital Libraries, like METS [10], and many others.

However, several Web applications that utilize XML-based standards would bene-
fit from advanced semantic support. These applications typically need to integrate
domain ontologies and do further semantic processing including reasoning within the
constructs that the standards provide. For example, consider the MPEG-7 applica-

tions. MPEG-7, which is described using XML Schema syntax, provides rich lan-
guage constructs for describing the structure and the content of multimedia data such
as video. Retrieval, browsing, personalization and delivery applications in MPEG-7
would benefit from the use of domain knowledge, and MPEG-7 includes general-
purpose constructs that could be used for describing domain knowledge, albeit in a
rather cumbersome way [18]. Programmers that are going to introduce domain knowl-
edge in MPEG-7 are much more likely to be familiar with the ontology description
mechanisms of the Web Ontology Language (OWL) [14] than those of MPEG-7. In
addition, some MPEG-7 applications, like, for example, knowledge acquisition from
video streams, may significantly benefit from the use of logic-based reasoners such as
the ones available for OWL. There is then a strong motivation for some MPEG-7
applications to be able to work with the semantics of MPEG-7 expressed in OWL and
integrated with OWL domain ontologies. This way, additional acquired knowledge
expressed in OWL such as metadata acquired during knowledge acquisition from
video streams can be encoded using the semantics of the standard. The resulting
knowledge should be converted back to standard MPEG-7/XML constructs in order to
be used transparently by applications that follow the standard.

We present in this paper XS2OWL, a model and system software that allow appli-
cations using XML Schema based standards to use the Semantic Web methodologies
and tools while maintaining the compatibility with the XML schema versions of the
standards. With XS2OWL we express each XML Schema based standard in OWL-
DL as a Main Ontology so that the constructs of the standard become Semantic Web
objects. The main ontology allows integrating the constructs of the standard with
domain knowledge expressed in the form of OWL domain ontologies. It also allows
all the OWL-based Semantic Web tools, including reasoners, to be used with the
standard-based descriptions. The integration of the domain ontologies and the utiliza-
tion of the OWL-based Semantic Web tools may result in deriving additional knowl-
edge useful to the applications, expressed as OWL individuals. The XS2OWL trans-
formation model also supports the conversion of the OWL constructs back to the
XML Schema based constructs of the standard for use by all the applications that are
compatible with the original XML Schemas. This is achieved through a Mapping
Ontology that systematically captures the semantics of the XML Schema constructs
that cannot be directly captured in the main ontology.

Very limited research has been reported in the literature in this area. We had first
observed the need for such methodology and software in conjunction with MPEG-7
[16, 17, 18]. For the use of some MPEG-7 applications we developed a manual meth-
odology for expressing the MPEG-7 semantics in OWL. An Upper OWL-DL ontol-
ogy capturing the MPEG-7 Multimedia Description Schemes (MDS) [13] and the
MPEG-21 Digital Item Adaptation (DIA) Architecture [12] was defined [16]. This
ontology could then be extended with domain ontologies. A soccer ontology and a
Formula 1 ontology have been developed as extensions of the Upper ontology [17] for
capturing knowledge from video streams in these two domains. We also defined and
implemented a set of transformation rules [17] that allow the transformation of the
OWL metadata (individuals) that describe the multimedia content defined using the
Upper ontology and the domain ontologies into the original MPEG-7/21 constructs.
The transformation rules relied on a mapping ontology that systematically captured
the information of the MPEG-7/21 schemas that cannot be captured in the Upper

ontology. Although this work is an important motivating example for the need of the
general-purpose mechanism described in this paper, it is only a special case applicable
to MPEG-7/21 and to the applications that use them. In addition, the conversion of the
XML Schema constructs describing the MPEG-7/21 to OWL-DL was done manually
and the transformation back to XML Schema based syntax was focusing on the needs
of MPEG-7/21.

A methodology and a tool have been developed in the context of the MapOnto pro-
ject [2] for the heuristic definition of complex semantic mappings between the attrib-
utes of an XML Schema and the datatype properties of an OWL ontology. The tool
input consists of the XML Schema, the OWL ontology and a set of correspondences
between the attributes of the former and the datatype properties of the later.

In a recent work [7], almost automatic one-way transformation of XML Schema
constructs to OWL constructs has been proposed. The transformations produce OWL-
Full ontologies that partially capture the XML Schema semantics. The methodology
proposed in [7] looses information during the transformation process from XML
Schema to OWL, and it can not be used to transform OWL individuals which may be
produced later back to the original XML Schema constructs. This is however needed
in all the applications mentioned above. In addition, human intervention is needed in
order to preserve the validity of the ontologies produced when homonym top-level
XML Schema constructs exist in the source XML Schema (i.e. elements, attributes,
types or groups with the same name). Finally, some transformations in [7] do not
follow closely the semantics of the XML Schema.

In contrast to the work reported in [7], the XS2OWL model presented in this paper
encapsulates methodology and rules that allow automatically transforming the XML
Schema constructs to OWL-DL constructs (not OWL-Full). Thus, it guarantees com-
putational completeness and decidability of reasoning in the OWL ontologies pro-
duced. In addition, the XS2OWL model allows the representation of all the knowl-
edge needed to transform the individuals generated or added later on to the OWL
ontologies back to the original XML Schema based constructs. This way, they can be
used by the standard-compatible applications. Finally, we have implemented and
extensively tested the XS2OWL model with very large standards based on XML, and
verified manually and automatically the correctness of the model and software.

The rest of the paper is structured as follows: In section 2 we provide background
information. The XS2OWL transformation model and system are outlined in section 3
and the XS2OWL model is detailed in section 4. In section 5 we present the
XS2OWL model evaluation. The paper conclusions and our future research directions
are presented in section 6.

2. Background

In this section we present some background information needed in the rest of the
paper, including the XML Schema Language and the Web Ontology Language (OWL).

The XML Schema Language. The XML Schema Language [6] allows the defini-
tion of classes of XML documents using XML syntax and provides datatypes and rich
structuring capabilities. An XML document is composed of elements, with the root
element delimiting the beginning and the end of the document. The XML Schema

elements belong to XML Schema types, specified in their “type” attribute, and are
distinguished into complex and simple elements, depending on the kind (simple or
complex) of the types they belong to. Reuse of element definitions is supported by the
substitutionGroup attribute, which states that the current element is a specialization of
another element. The elements may either have a predefined order (forming XML
Schema sequences) or be unordered (forming XML Schema choices). The main dif-
ference between sequences and choices is that all the sequence items must appear
within the containing sequence in their specified order, while the choice items may
appear at any order. Both sequences and choices may be nested. The minimum and
maximum number of occurrences of the elements, choices and sequences are speci-
fied, respectively, in the “minOccurs” and “maxOccurs” attributes (absent “minOc-
curs” and/or “maxOccurs” correspond to values of 1). Reusable complex structures,
combining sequences and choices, may be defined as model groups.

The simple XML Schema types are usually defined as restrictions of the basic
datatypes provided by XML Schema (i.e. strings, integers, floats, tokens etc.). Simple
types can neither contain elements nor carry attributes. The complex XML Schema
types represent classes of XML constructs that have common features, represented by
their elements and attributes. The attributes describe features with values of simple
type and may form attribute groups comprised of attributes that should be used simul-
taneously. The elements represent features of the complex XML Schema types with
values of any type. Default and fixed values may be specified for both attributes and
simple type elements, in the default and fixed attributes respectively. Inheritance is
supported for both simple and complex types, and the base types are referenced in the
“base” attribute of the type definitions.

All the XML Schema constructs may have textual annotations, specified in their
“annotation” element. The top-level XML Schema constructs (attributes, elements,
simple and complex types, attribute and model groups) have unique names (specified
in their “name” attribute). The nested elements and attributes have unique names in
the context of the complex types in which they are defined, while the nested (complex
and simple) types are unnamed. All the XML Schema constructs may have unique
identifiers (specified in their “id” attribute). The top-level constructs may be refer-
enced by other constructs using the “ref” attribute.

The Web Ontology Language (OWL). The Web Ontology Language (OWL) [14]
is the dominant standard in ontology definition. OWL has been developed according
to the description logics paradigm and uses RDF (Resource Description Frame-
work)/RDFS (Resource Description Framework Schema) [9, 4] syntax. Three OWL
species of increasing descriptive power have been specified: (a) OWL-Lite, which is
intended for lightweight reasoning but has limited expressive power; (b) OWL-DL,
which provides the description logics expressivity and guarantees computational
completeness and decidability of reasoning; and (c) OWL-Full, which has more flexi-
ble syntax than OWL-DL, but does not guarantee computational completeness and
decidability of reasoning.

The basic functionality provided by OWL is: (a) Import of XML Schema Datatypes
that extend or restrict the basic datatypes (e.g. ranges etc.). The imported datatypes
have to be declared (using the rdfs:Datatype construct), as RDFS datatypes, in the
ontologies they are used; (b) Definition of OWL Classes (using the owl:Class con-
struct), organized in subclass hierarchies (using the rdfs:subClassOf construct), for the

representation of sets of individuals sharing some properties. Complex OWL classes
can be defined via set operators (using the owl:intersectionOf, owl:unionOf and
owl:complementOf constructs) or via direct enumeration of their members (using the
owl:oneOf construct); (c) Definition of OWL Individuals, essentially instances of the
OWL classes, following the restrictions imposed on the class in which they belong;
and (d) Definition of OWL Properties, which may form property hierarchies (using
the rdfs:subPropertyOf construct), for the representation of the features of the OWL
class individuals. Two kinds of properties are provided by OWL: (i) Object Proper-
ties, defined using the owl:ObjectProperty construct, which relate individuals of one
OWL class (the property domain, defined using the rdfs:domain construct) with indi-
viduals of another OWL class (the property range, defined using the rdfs:range con-
struct); and (ii) Datatype Properties, defined using the owl:DatatypeProperty con-
struct, which relate individuals belonging to one OWL class (the property domain)
with values of a given datatype (the property range). Restrictions may be defined on
OWL class properties (using the owl:Restriction construct), including type (using the
owl:allValuesFrom construct), cardinality (using the owl:minCardinality,
owl:maxCardinality and owl:cardinality constructs), and value (using the
owl:hasValue construct) restrictions. OWL classes, (object and datatype) properties
and individuals are identified by unique identifiers, that are specified in the “rdf:ID”
attribute. They may also have labels, defined using the rdfs:label construct, and tex-
tual descriptions, defined using the rdfs:comment construct.

3. XS2OWL Overview

We present in this section the XS2OWL model for transforming XML Schema con-
structs in OWL-DL and its realization in the XS2OWL system. The XS2OWL system
transforms every XML Schema it takes as input, through the implementation of the
XS2OWL transformation model (outlined in Fig. 1), into: (a) A main OWL-DL on-
tology that directly captures the XML Schema semantics in OWL-DL; (b) A mapping
OWL-DL ontology that keeps the mapping of the rdf:IDs of the OWL constructs of
the main ontology with the names of the XML Schema constructs and systematically
captures the semantics of the XML Schema constructs that cannot be directly cap-
tured in the main ontology, since they cannot be represented by corresponding OWL
constructs; and (c) A datatypes XML Schema that contains the simple XML Schema
datatypes defined in the source XML Schema that are imported in the main ontology.

XS2OWL
Transformation Model Original XML

Schema Mapping
Ontology

Simple XML
Schema Datatypes

Upper OWL-DL
Ontology

Fig. 1. Outline of the XS2OWL Transformation Model

The main OWL ontology essentially contains the OWL constructs to which the
corresponding XML Schema constructs are transformed. As already mentioned, some
of the XML Schema construct semantics cannot be expressed in OWL. The semantics
of these constructs do not affect the domain ontologies that may extend the main
ontology and they are not used by the OWL reasoners; however, they are important
when individuals extending the main ontology have to be transformed back to valid

XML descriptions compliant with the source XML Schema. For example, the ele-
ments of an XML Schema sequence should appear in a predefined order, while the
OWL properties that are the constructs corresponding to the elements are always
organized in unordered sets. As a consequence, the ordering information cannot be
directly captured in the main ontology.

In order to support this functionality, we have defined a model that allows trans-
forming the OWL constructs back to XML Schema constructs. This model captures
the semantics of any arbitrary XML schema that cannot be represented in OWL and is
expressed as an OWL-DL ontology, the OWL2XMLRules Ontology (available at
http://www.music.tuc.gr/ontologies/OWL2XMLRules/OWL2XMLRules). For a
particular XML Schema that is being transformed to OWL-DL, XS2OWL generates a
mapping ontology, which extends the OWL2XMLRules ontology with individuals,
keeps the mapping of the rdf:IDs of the OWL constructs of the main ontology with
the names of the XML Schema constructs and represents the constructs of the original
schema that cannot be directly represented in OWL.

The classes of the OWL2XMLRules ontology that represent the semantics of the
XML Schema constructs that cannot be directly mapped to OWL constructs during
the XML Schema to OWL transformation are the following:
� The DatatypePropertyInfoType class, which captures information about the

datatype properties that cannot be directly expressed in OWL.
� The ElementInfoType class, which captures information about the XML Schema

elements that cannot be directly expressed in OWL.
� The ComplexTypeInfoType class, which captures information about the complex

XML Schema types that cannot be directly expressed in OWL.
� The ChoiceInfoType and SequenceInfoType classes, which capture, respectively,

information about the XML Schema choices and sequences that cannot be directly
expressed in OWL.

This way, there is no information loss during the XS2OWL transformations of the
XML Schema constructs to OWL-DL constructs. As a consequence, all the semantics
of the XML Schemas can be utilized by OWL-based tools and applications. For ex-
ample, consider the transformation of individuals formed according to the main on-
tologies to XML documents obeying the original XML Schemas. Since the semantics
of the XML Schema constructs that cannot be directly expressed in OWL are captured
in the mapping ontologies, such information (e.g. the sequence element order) will be
used in order to guarantee that the produced documents will be valid.

The XS2OWL transformation model has been implemented using the XML
Stylesheet Transformation Language (XSLT) [8].

4. The XS2OWL Transformation Model

We present in this section the XS2OWL model, which allows the transformation of
the XML Schema constructs to OWL-DL constructs. An overview of the XS2OWL
Transformation Model is provided in Table 1, while the transformations of the indi-
vidual constructs are formally presented in the following paragraphs.

The XML Schema constructs are provided in the first column of Table 1, while the
OWL constructs that represent them in the main ontology are provided in the second

column. As shown in Table 1, the complex XML Schema types are mapped to OWL
classes, since they both represent sets of entities with common features. The simple
XML Schema datatypes are mapped to datatype declarations, since OWL does not
directly support the definition of simple datatypes, but only allows using simple XML
Schema datatypes that have been declared in the OWL ontologies. The attributes are
mapped to datatype properties, since they both represent simple type features, while
the (simple and complex type) elements are mapped to (datatype and object) proper-
ties. The sequences and the choices are represented by OWL unnamed classes formed
using set operators and cardinality restrictions on the sequence/choice items. Finally,
the annotations of the XML Schema constructs are mapped to OWL comments.

The mapping ontology constructs representing the semantics of the XML Schema
constructs that cannot be expressed directly in OWL are presented in the third column
and in the fourth column are shown the contents of the datatypes XML Schema.

Table 1. Overview of the XS2OWL Transformation Model.

OWL-DL Representation XML Schema
Construct Main Ontology Mapping Ontology Datatypes

Complex Type Class ComplexTypeInfoType individual
Simple Datatype Datatype Declaration Simple Type
Element (Datatype or Object) Property ElementInfoType individual
Attribute Datatype Property DatatypePropertyInfoType indi-

vidual

Sequence Unnamed Class - Intersection SequenceInfoType individual
Choice Unnamed Class - Union ChoiceInfoType individual
Annotation Comment

Complex XML Schema Type Transformation. Let the complex XML Schema
type ct, which is formally described in (1), where: (a) name is the name of ct; (b) cid
is the (optional) identifier of ct; (c) base is the (simple or complex) type extended by
ct; (d) attributes is the list of the attributes of ct; (e) sequences is the list of the se-
quences of ct; and (f) choices is the list of the choices of ct.

ct(name, cid, base, attributes, sequences, choices) (1)
The XS2OWL transformation of ct is different, depending on the type extended by

ct (if it is simple or complex). The attributes and the elements that are defined or
referenced in ct are transformed, in both cases, into properties.

If ct extends a complex type, it is represented in the main ontology by the OWL
class c, formally described in (2), where:

c(id, super_class, label, value_restrictions, cardinality_restrictions) (2)
� id is the unique rdf:ID of c and has name as value if ct is a top-level complex type.

If ct is a complex type nested within the definition of an element e, id is a unique,
automatically generated name of the form concatenate(ct_name, '_', name,
'_UNType'), where ct_name is the name of the complex type containing e. If e is a
top-level element, ct_name has the ‘NS’ string as value. The concatenate(…) algo-
rithm takes as input an arbitrary number of strings and returns their concatenation;

� super_class states which class is extended by ct and has base as value;
� label is the label of ct and has name as value;
� value_restrictions is the set of the value restrictions that represent the fixed values

that may exist for some ct attributes and ct sequence/choice elements. The value of

the restrictions is the value of the “fixed” attribute of the ct attributes and the ct se-
quence/choice elements;

� cardinality_restrictions is the set of the cardinality restrictions assigned to the
properties representing the ct attributes and the ct sequence/choice elements. The
cardinality restrictions are generated as follows:
- According to the value of the “use” attribute of the XML Schema attributes: (a)

If “use” has the “required” value, a cardinality restriction of value 1 is generated;
(b) If “use” has the “prohibited” value, a cardinality restriction of value 0 is gen-
erated; and (c) If “use” is absent or has the “optional” value, a maximum cardi-
nality restriction of value 1 is generated;

- Cardinality, minimum and maximum cardinality restrictions are generated for
the elements of the complex type, according to the “minOccurs” and “maxOc-
curs” attribute values of the elements and/or the sequences, choices and model
groups the elements are organized in.

The semantics of ct that cannot be represented in OWL are represented in the map-
ping ontology by the ComplexTypeInfoType individual ct that is formally described in
(3), where: (a) id is the unique rdf:ID of ct and has name as value; (b) type_id repre-
sents the identifier of the OWL class c that represents ct in the main ontology. type_id
is represented as the “typeID” datatype property of ct; (c) dpi_list is the list of the
representations of the datatype properties of c; and (d) container_list is the list of the
representations of the ct containers (sequences and/or choices).

ct(id, type_id, dpi_list, container_list) (3)
If ct extends a simple type, it is represented in the main ontology by the OWL class

c, formally described in (4).
c(id, label, value_restrictions, cardinality_restrictions) (4)

The fact that ct extends the simple type base is represented in the main ontology by
the datatype property ep that is formally described in (5), where: (a) eid is the unique
rdf:ID of ep and has concatenate(base, ‘_content’) as value; (b) range is the range of
ep and has base as value; and (c) domain is the domain of ep and has the id of c as
value.

ep(eid, erange, edomain) (5)
The semantics of ct that cannot be represented in OWL are represented in the map-

ping ontology by the ComplexTypeInfoType individual ct that corresponds to c and is
formally described in (3), and the DatatypePropertyInfoType individual dpi that cor-
responds to ep and is formally described in (6). dpi states that the ep represents the
fact that ct extends the simple type base through the ‘Extension’ value of the
dpi_type, represented by the “datatypePropertyType” datatype property.

dpi(id, did, dpi_type) (6)
As an example, consider the complex type “ct” that extends the string datatype and

is shown in Fig. 2. The “ct” complex type is represented in the main ontology by the
“ct” OWL class, shown in Fig. 3, together with the “content__xs_string” datatype
property, which states that “ct” is an extension of xs:string. The information about
“ct” in the mapping ontology is shown in Fig. 4.
<xs:complexType name="ct">
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="a">
<xs:simpleType>

<xs:restriction base="xs:integer"/>
</xs:simpleType>

</xs:attribute>
</xs:extension>

</xs:simpleContent>
</xs:complexType>
Fig. 2. Definition of the “ct” XML Schema simple datatype. “ct” extends the string datatype
with the “a” attribute. “a” is of a simple anonymous type that is a restriction of integer.

<owl:Class rdf:ID="ct">
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#a__ct_a_UNType"/>
<owl:maxCardinality rdf:datatype="&xsd;integer">1</owl:maxCardinality>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#content__xs_string"/>
<owl:cardinality rdf:datatype= "&xsd;integer">1</owl:cardinality>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:label>ct</rdfs:label>

</owl:Class>
<owl:DatatypeProperty rdf:ID="content__xs_string">
<rdfs:domain rdf:resource="#ct"/>
<rdfs:range rdf:resource="&xs;string"/>

</owl:DatatypeProperty>
Fig. 3. Class representing the “ct” complex type of Fig. 2 in the main ontology

<ox:ComplexTypeInfoType rdf:ID="ct">
<ox:typeID>ct</ox:typeID>
<ox:DatatypePropertyInfo>
<ox:DatatypePropertyInfoType rdf:ID="ct_a__ct_a_UNType">
<ox:datatypePropertyID>a__ct_a_UNType</ox:datatypePropertyID>
<ox:XMLConstructID>a</ox:XMLConstructID>
<ox:datatypePropertyType>Attribute</ox:datatypePropertyType>

</ox:DatatypePropertyInfoType>
</ox:DatatypePropertyInfo>
<ox:DatatypePropertyInfo>
<ox:DatatypePropertyInfoType rdf:ID="ct_content__xs_string">
<ox:datatypePropertyID>content__xs_string</ox:datatypePropertyID>
<ox:datatypePropertyType>Extension</ox:datatypePropertyType>

</ox:DatatypePropertyInfoType>
</ox:DatatypePropertyInfo>

</ox:ComplexTypeInfoType>
Fig. 4. The ComplexTypeInfoType and DatatypePropertyInfoType individuals generated in the
mapping ontology for the complex type “ct”, shown in Fig. 2

Simple XML Schema Datatype Transformation. Let the simple XML Schema
type st, formally described in (7), where body is the body of the definition of st, id is
the identifier of st and name is the name of st.

st(name, id, body) (7)
XS2OWL transforms st into the simple datatype st’ in the datatypes XML Schema,

formally described in (8), and the dd datatype declaration in the main ontology, for-
mally described in (9).

st'(name', id, body) (8)
dd(about, is_defined_by, label) (9)

The st' simple datatype has the same body and id with st, while name' is formed as
follows: If st is a top-level simple type, name' is the value of its “name” attribute. If st
is a simple type nested in the ae XML Schema construct (that may be an attribute or
an element), name' has the value id if the identifier of st is not null. If the identifier of
st is null, name' has as value the result of concatenate(ct_name, '_', ae_name,
'_UNType'), where ae_name is the name of the property that represents ae and
ct_name is the name of the complex type containing ae. If ae is a top-level attribute or
element, ct_name has the ‘NS’ string as value;

The dd datatype declaration carries the following semantics: (a) about is the URI
of st' referenced by the datatype declaration and is of the form concatenate(uri,
name'), where uri is the URI of the datatypes XML Schema; (b) is_defined_by speci-
fies where the datatype definition is located and has the url value; and (c) label is the
label of dd and has name' as value.

As an example, consider the nested simple datatype of Fig. 2, which is defined in
the “a” attribute of the “ct” complex type. It is transformed to the top-level simple
datatype shown in Fig. 5, and the OWL datatype declaration shown in Fig. 6.
<xs:simpleType name="ct_a_UNType">
<xs:restriction base="xs:integer"/>

</xs:simpleType>
Fig. 5. Top-level datatype representing the nested datatype of Fig. 2 in the datatypes XML
Schema

<rdfs:Datatype rdf:about="&datatypes;ct_a_UNType">
<rdfs:isDefinedBy rdf:resource="&datatypes;"/>
<rdfs:label>ct_a_UNType</rdfs:label>

</rdfs:Datatype>
Fig. 6. Declaration of the “ct_a_UNType” simple datatype of Fig. 5 in the main ontology

XML Schema Element Transformation. Let the XML Schema element e, for-
mally described in (10), where name is the name of e, eid is the identifier of e, type is
the type of e, ct_name is the name of the complex XML Schema type c_type in the
context of which e is defined (if e is a top-level attribute, ct_name has the null value),
sub_group is an (optional) element being extended by e, fixed is the (optional) fixed
value of e, default is the (optional) default value of e, min is the minimum number of
occurrences of e, max is the maximum number of occurrences of e and pos is the
position of e if e is a sequence element.

e(name, type, eid, ct_name, sub_group, fixed, default, min, max, pos) (10)
XS2OWL represents e in the main ontology as a (datatype if e is of simple type,

object if e is of complex type) property p, formally described in (11), where: (a) id is
the unique rdf:ID of p and has concatenate(name, ‘__’, type) as value; (b) range is the
range of p and has type as value; (c) domain is the domain of p and takes the value of
ct_name; (d) label is the label of p and has name as value; and (e) super_property is
the specification of the property specialized by p and has sub_group as value.

p(id, range, domain, label, super_property) (11)
In the mapping ontology e is represented by the ElementInfoType individual ei,

formally described in (12), where: (a) id is the unique rdf:ID of ei and has concate-
nate(ct_name, ‘_’, name, ‘__’, type) as value; (b) pid is the rdf:ID of the p property
that represents e in the main ontology. pid is represented by the “propertyID” datatype
property of dpi; (c) xml_name is the name of e and has name as value. xml_name is

represented by the “elementID” datatype property of dpi; (d) def_val represents the
default value of e and has default as value. def_val is represented as the “default-
Value” datatype property of dpi; (e) min_occ represents the minimum number of
occurrences of e and has min as value. min_occ is represented by the “minOccurs”
datatype property of e; (f) max_occ represents the maximum number of occurrences
of e and has max as value. max_occ is represented by the “maxOccurs” datatype
property of e; and (g) position represents the position of e if e is a sequence element.
position is represented by the “elementPosition” datatype property of e.

ei(id, pid, xml_name, def_val, min_occ, max_occ, position) (12)
In addition, if e is of simple type, a DatatypePropertyInfoType individual dpi, for-

mally described in (13), is generated in the mapping ontology, where: (a) id is the
unique rdf:ID of dpi and has concatenate(ct_name, ‘_’, name, ‘__’, type) as value; (b)
did is the rdf:ID of the p datatype property that represents e in the main ontology. did
is represented by the “datatypePropertyID” datatype property of dpi; (c) xml_name is
the name of e and has name as value. xml_name is represented by the “XMLConstruc-
tID” datatype property of dpi; (d) dpi_type represents the construct which has been
mapped to p and has the value ‘Element’; and (e) def_val represents the default value
of e and has default as value.

dpi(id, did, xml_name, dpi_type, def_val) (13)
As an example, consider the “e1” element, shown in Fig. 7, of type “c_type2”,

which is defined in the context of the complex type “c_type1”. The “e1” element is
transformed to the OWL object property “e1__c_type2” of the main ontology (shown
in Fig. 8) and the ElementInfoType individual “c_type1_e1__c_type2__ei” of the
mapping ontology (shown in Fig. 9).
<xs:element name="e1" type="c_type2"/>
Fig. 7. XML Schema definition of the “e1” element, nested in the complex type “c_type1”

<owl:ObjectProperty rdf:ID="e1__c_type2">
<rdfs:domain rdf:resource="#c_type1"/>
<rdfs:range rdf:resource="#c_type2"/>
<rdfs:label>e1</rdfs:label>

</owl:ObjectProperty>
Fig. 8. The object property representing the “e1” element of Fig. 7 in the main ontology

<ox:ElementInfoType rdf:ID="c_type1_e1__c_type2__ei">
<ox:propertyID>e1__c_type2</ox:propertyID>
<ox:elementID>e1</ox:elementID>

</ox:ElementInfoType>
Fig. 9. ElementInfoType individual representing the element of Fig. 7 in the mapping ontology

The XML Schema model groups essentially are sets of elements organized into
(possibly nested) lists and choices. Let the XML Schema model group g, formally
described in (14), which is comprised of n sequences/choices, where g_name is the
model group name, g_id is the model group identifier and li with 1≤i≤n are the group
sequences/choices.

g(g_name, g_id, (l1 , …, ln)) (14)
If li is a sequence/choice of m elements formally described in (15), then for

1≤j≤m, nameij, is the name of eij, eidij, is the identifier of eij, typeij is the value of the
“type” attribute of eij and sub_groupij is an element being extended by eij.

li(lidi, ei1(namei1, eidi1, typei1, sub_groupi1), …, eim(nameim, eidim, typeim,
sub_groupim))

(15)

XS2OWL represents g in the main ontology as the (datatype or object) properties
pij, formally described in (16), where: (a) idij is the unique rdf:ID of pij and has con-
catenate(g_name, ‘__’, nameij) as value; (b) rangeij is the range of pij and has typeij as
value; (c) labelij is the label of pij and has nameij as value; and (d) super_propertyij
represents the property specialized by p and has sub_groupij as value.

pij(idij, rangeij, labelij, super_propertyij) (16)
In the mapping ontology g is represented by an ElementInfoType individual ei for

each element eij, formally described in (12). If eij is represented in the main ontology
by a datatype property, a DatatypePropertyInfoType individual dpi, formally de-
scribed in (13), is also generated in the mapping ontology for the eij.

XML Schema Attribute Transformation. Let the XML Schema attribute a, for-
mally described in (17), where name is the name of a, aid is the identifier of a, type is
the type of a, ct_name is the name of the complex XML Schema type c_type in the
context of which a is defined (if a is a top-level attribute, ct_name has the null value),
fixed is the fixed value of a and default is the default value of a.

a(name, aid, type, ct_name, fixed, default) (17)
XS2OWL represents a in the main ontology as an OWL datatype property dp, for-

mally described in (18), where: (a) id is the unique rdf:ID of dp and has concate-
nate(name, ‘__’, type) as value; (b) range is the range of dp and has type as value; (c)
domain is the domain of dp and takes the value of ct_name; and (d) label is the label
of dp and has name as value.

dp(id, range, domain, label, comment) (18)
In the mapping ontology a is represented as a DatatypePropertyInfoType individ-

ual dpi, formally described in (13), where dpi_type represents the construct which has
been mapped to dp and has the value ‘Attribute’.

As an example, consider the “a” attribute of Fig. 2, which is transformed to the
datatype property of the main ontology shown in Fig. 10 and the DatatypePropertyIn-
foType individual of the mapping ontology shown in Fig. 11.
<owl:DatatypeProperty rdf:ID="a__ct_a_UNType">
<rdfs:domain rdf:resource="#ct"/>
<rdfs:range rdf:resource="&datatypes;ct_a_UNType"/>
<rdfs:label>a</rdfs:label>

</owl:DatatypeProperty>
Fig. 10. The datatype property representing the “a” attribute of Fig. 2 in the main ontology

<ox:DatatypePropertyInfo>
<ox:DatatypePropertyInfoType rdf:ID="ct_a__ct_a_UNType">
<ox:datatypePropertyID>a__ct_a_UNType</ox:datatypePropertyID>
<ox:XMLConstructID>a</ox:XMLConstructID>
<ox:datatypePropertyType>Attribute</ox:datatypePropertyType>

</ox:DatatypePropertyInfoType>
</ox:DatatypePropertyInfo>
Fig. 11. The DatatypePropertyInfoType individual representing the “a” attribute of Fig. 2 in the
mapping ontology

XS2OWL transforms the XML Schema attribute groups into sets of datatype prop-
erties, each of which represents an attribute that belongs to the attribute group. Let ag
be an XML Schema attribute group comprised of n attributes, formally described in

(19), where ag_name is the attribute group name, ag_ id is the attribute group identi-
fier and ai, with 1≤i≤n are the group attributes, formally described in (20). namei is
the name of ai, aidi is the identifier of ai and typei is the type of ai.

ag(ag_name, ag_id, (a1, …, an)) (19)
ai(namei, aidi, typei) (20)

XS2OWL represents ag in the main ontology as a set of datatype properties dpi,
1≤i≤n, formally described in (21), where: (a) idi is the unique rdf:ID of dpi and has
concatenate(ag_name, ‘__’, namei) as value; (b) rangei is the range of dpi and has
typei as value; and (c) labeli is the label of dpi and has namei as value.

dpii(idi, rangei, labeli) (21)
In the mapping ontology ag is represented by a DatatypePropertyInfoType individ-

ual dpi for each attribute, formally described in (13), with dpi_type having the value
‘Attribute’.

XML Schema Sequence and Choice Transformation. XS2OWL transforms both
the sequences and the choices into OWL-DL unnamed classes formed using set op-
erators and cardinality restrictions on the sequence/choice items. The classes that
represent the complex types where the sequences/choices are defined or referenced
are subclasses of the unnamed OWL classes that represent the sequences/choices. The
sequence and the choice item cardinality must always be a multiple of an integer in
the range [i_min_occurs, i_max_occurs], where i_min_occurs and i_max_occurs are
the values of the “minOccurs” and the “maxOccurs” attributes of the item.

The sequences are represented in the main ontology as unnamed classes, formed
from the intersection of the cardinality restrictions of the sequence items. The algo-
rithm that transforms the XML Schema sequences to unnamed OWL classes is shown
in Fig. 12. For the transformation of a sequence s the algorithm is initially called as
sequence_restr(s, 1, 1).
algorithm sequence_restr(sequence, max_p, min_p)
minOc=sequence/@minOccurs
maxOc=sequence/@maxOccurs
temp=’’
if ((minOc*min_p=0) and (maxOc=’unbounded’ or max_p=’unbounded’))
return ’’

else
for each sequence item
if the item is element
if (maxOc=’unbounded’ or max_p=’unbounded’)
temp=seq_element_restr(item, min_p*minOc, ’unbounded’)

else
temp=seq_element_restr(item, min_p*minOc, max_p*maxOc)

end if
else if the item is sequence
if (maxOc=’unbounded’ or max_p=’unbounded’)
temp=sequence_restr(item, min_p*minOc, ’unbounded’)

else
temp=sequence_restr(item, min_p*minOc, max_p*maxOc)

end if
else
if (maxOc=’unbounded’ or max_p=’unbounded’)
temp=choice_restr(item, min_p*minOc, ’unbounded’)

else
temp=choice_restr(item, min_p*minOc, max_p*maxOc)

end if
end if
ret=concatenate(ret, temp)

end for

return intersection(ret)
end if
end algorithm
algorithm seq_element_restr(element, max_p, min_p)
minOc=sequence/@minOccurs
maxOc=sequence/@maxOccurs
if ((minOc*min_p=0) and (maxOc=’unbounded’ or max_p=’unbounded’))
return ’’

else if (maxOc=’unbounded’ or max_p=’unbounded’)
return min_car(item, minOc*min_p)

else if (maxOc*max_p=minOc*min_p)
return cardinality(item, minOc*min_p)

else
return intersection(min_car(item, minOc*min_p), max_car(item, maxOc*max_p))

end if
end algorithm
Fig. 12. Algorithm for the generation of unnamed OWL classes representing XML Schema
Sequences, where: (a) The min_car(item,min) algorithm produces an owl:minCardinality re-
striction on the property that represents “item” with value “min”; (b) The cardinality(item,val)
algorithm produces an owl:cardinality restriction on the property that represents “item” with
value “val”; and (c) The max_car(item,max) algorithm produces an owl:maxCardinality restric-
tion on the property that represents “item” with value “max”.

As an example, consider the sequence shown in Fig. 13, which is defined in the
context of a complex type c. The sequence is represented in the main ontology by the
unnamed OWL class shown in Fig. 14, of which the class that represents the complex
type c is a subclass.
<xs:sequence minOccurs="2" maxOccurs="2">
<xs:element name="e1" type="xs:string"/>
<xs:element name="e2" type="xs:string" maxOccurs="3"/>

</xs:sequence>
Fig. 13. XML Schema Sequence defined in the context of the complex type c

<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Restriction>
<owl:onProperty rdf:resource="#e1__xs_string"/>
<owl:cardinality rdf:datatype="&xsd;integer">2</owl:cardinality>

</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#e2__xs_string"/>
<owl:minCardinality rdf:datatype="&xsd;integer">2</owl:minCardinality>

</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#e2__xs_string"/>
<owl:maxCardinality rdf:datatype="&xsd;integer">6</owl:maxCardinality>

</owl:Restriction>
</owl:intersectionOf>

</owl:Class>
Fig. 14. Representation of the sequence of Fig. 13 in the main ontology

The choices are represented in the main ontology as unnamed classes, formed from
the union of the allowed combinations of the choice elements. The algorithm that
transforms the XML Schema choices to unnamed OWL classes is shown in Fig. 15.
algorithm choice_restr(choice, maxOc, minOc)
ret=’’
if (minOc=0 and maxOc=’unbounded’), return ret
else if maxOc=’unbounded’
nz=number of choice items with minOccurs<>0
z=number of choice items with minOccurs=0

nzi=choice items with minOccurs<>0
mat=distribute(nz,0,minOc)
for i=1 to mat rows
for j=1 to nz
min=nzi[j]/@minOccurs
if nzi[j] is element, add min_car(nzi[j], min*mat[i,j]) to ret
else if nzi[j] is sequence, add sequence_restr(nzi[j], min*mat[i,j],

’unbounded’) to ret
else add choice_restr(nzi[j],min*mat[i,j],’unbounded’) to ret
end if

end for
ret=intersection(ret)

end for
if z>0
z_temp=intersection of deep_cardinality(nzi[i],0) (i from 1 to nz)
return union(z_temp, ret)

else return ret
end if

else
nzu=number of choice items with (minOccurs<>0 and maxOccurs<>’unbounded’)
zu=number of choice items with (minOccurs=0 and maxOccurs=’unbounded’)
nzui=choice items with (minOccurs<>0 and maxOccurs<>’unbounded’)
mat=distribute(nz,minOc,maxOc)
for i=1 to mat rows
for j=1 to nz
min=nzui[j]/@minOccurs
max=nzui[j]/@minOccurs
if nzui[j] is element
if (max=’unbounded’ or maxOc=’unbounded’), add min_car(nzui[j],

min*mat[i,j]) to ret
else if (min*minOc=0), add max_car(nzui[j], max*mat[i,j]) to ret
else (if min*minOc=max*maxOc), add cardinality(nzui[j], max*mat[i,j])

to ret
else add intersection(min_car(nzui[j], min*mat[i,j]), max_car(nzui[j],

max*mat[i,j])) to ret
end if

else if nzui[j] is sequence
if (max=’unbounded’), add sequence_restr(nzui[j], min*mat[i,j], ’un-

bounded’) to ret
else add sequence_restr(nzui[j], min*mat[i,j], max*mat[i,j]) to ret
end if

else
if (max=’unbounded’), add choice_restr(nzui[j], min*mat[i,j], ’un-

bounded’) to ret
else add choice_restr(nzui[j], min*mat[i,j], max*mat[i,j]) to ret
end if

end if
end for
intersection(ret)

end for
if zu>0
zu_temp=intersection of cardinality(nzui[i],0) (i from 1 to nzu)
return union(zu_temp, ret)

else return ret
end if

end if
end algorithm
Fig. 15. Algorithm for the generation of unnamed OWL classes representing XML Schema
Choices, where: (a) The deep_cardinality(item,val) algorithm produces an owl:cardinality
restriction with value “val” on each property that represents “item” or a (sequence or choice)
item of “item”; and (b) The distribute(item_num, min_val, max_val) algorithm calculates the
allowed combination of the occurrences of “item_num” items so that the sum of their occur-
rences is between “min_val” and “max_val”.

As an example, consider the choice shown in Fig. 16. The choice is represented in
the main ontology by the unnamed OWL class shown in Fig. 17.
<xs:choice minOccurs="0">
<xs:element name="e2" type="xs:string" minOccurs="2" maxOccurs="2"/>
<xs:element name="e3" type="xs:string" maxOccurs="2"/>

</xs:choice>
Fig. 16. XML Schema choice defined in the context of a complex type

<owl:Class>
<owl:unionOf rdf:parseType="Collection">
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Restriction>
<owl:onProperty rdf:resource="#e2__xs_string"/>
<owl:maxCardinality rdf:datatype="&xsd;integer">0</owl:maxCardinality>

</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#e3__xs_string"/>
<owl:maxCardinality rdf:datatype="&xsd;integer">2</owl:maxCardinality>

</owl:Restriction>
</owl:intersectionOf>

</owl:Class>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Restriction>
<owl:onProperty rdf:resource="#e2__xs_string"/>
<owl:maxCardinality rdf:datatype="&xsd;integer">2</owl:maxCardinality>

</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#e3__xs_string"/>
<owl:maxCardinality rdf:datatype="&xsd;integer">0</owl:maxCardinality>

</owl:Restriction>
</owl:intersectionOf>

</owl:Class>
</owl:unionOf>

</owl:Class>
Fig. 17. Representation of the XML Schema Choice of Fig. 16 in the main ontology

If the maximum number of occurrences of a sequence/choice has a large value (but
is not unbounded), the manual generation of the unnamed classes is tedious and time-
consuming and thus becomes error-prone and practically impossible.

Notice that the exact sequence/choice cardinalities cannot be computed when a
choice item is contained in a sequence/choice with unbounded maximum number of
occurrences. In addition, information regarding the sequence element ordering cannot
be represented in OWL. This information is captured in the mapping ontology. Let sc
be a sequence or choice formally described in (22), where sc_id is the identifier of sc,
c_type is the complex type in which sc is defined or referenced, min is the minimum
number of occurrences of sc, max is the maximum number of occurrences of sc and
elements is the list of the elements of sc.

sc(sc_id, c_type, min, max, elements) (22)
XS2OWL represents sc in the mapping ontology by the (SequenceInfoType if sc is

a sequence, ChoiceInfoType if sc is a choice) individual st formally described in (23),
where: (a) id is the unique rdf:ID of st and has concatenate(ct_name, ‘__’, i) as value,
where ct_name is the name of the class that represents c_type in the main ontology
and i is the index of sc in c_type; (b) min_occ represents the minimum number of
occurrences of sc and has min as value; (c) max_occ represents the maximum number

of occurrences of sc and has max as value; and (d) e_rep is the list of the representa-
tions of the elements of sc.

st(id, min_occ, max_occ, e_rep) (23)

5. Evaluation of the XS2OWL Model

The XS2OWL model and its implementation have been applied to several well-
accepted standards. We present here the results of the XS2OWL evaluation.

In order to acquire extensive empirical evidence, we applied XS2OWL to several
very large and well-accepted standards expressed in XML Schema: The MPEG-7
Multimedia Description Schemes (MDS) and the MPEG-21 Digital Item Adaptation
(DIA) Architecture in the multimedia domain, the IEEE LOM and the SCORM in the
e-learning domain and the METS standard for Digital Libraries. The result was the
transformation of the XML Schema constructs to OWL for each one of those stan-
dards. We then enriched the OWL specifications with OWL domain ontologies and
produced individuals following the ontologies. Finally, we converted the individuals
to XML syntax, valid with respect to the original XML Schemas. The transformations
were successful for these standards due to the utilization of the mapping ontologies.
We have also found that in all cases the semantics of the standards were fully cap-
tured in the main and mapping ontologies generated by the XS2OWL system.

 Then we looked closely the formal semantics of the generated OWL ontologies.
Since we had in our previous research efforts [17] manually transformed the MPEG-7
MDS and the MPEG-21 DIA Architecture in OWL-DL, we compared the semantics
captured in the manually defined ontologies with the semantics captured in the auto-
matically generated ones. The comparison has shown that all the semantics captured
during the manual transformations were also captured during the automatic transfor-
mations. Then, we compared the manually produced mapping ontology for the Se-
mantic DS of the MPEG-7 MDS with the corresponding part of the automatically
produced mapping ontology for the MPEG-7 MDS. Again, the comparison has shown
that all the semantics captured in the manually created ontology are also accurately
captured in the automatically produced one.

6. Conclusions – Future Work

We have presented in this paper the XS2OWL model that allows the automatic trans-
formation of XML Schemas into OWL-DL ontologies. This transformation allows
domain ontologies in OWL to be integrated and logic-based reasoners to be used for
various applications, as for example for knowledge extraction from multimedia data.
XS2OWL allows the conversion of the generated OWL information back to XML.
We have presented also a system that implements the XS2OWL model. We have used
the implemented system to validate our approach with a number of well-accepted and
extensive standards expressed in XML Schema. The automatically created ontologies
have been found to accurately capture the semantics of the XML Schemas.

Our future work in this area includes experimentation that will be conducted in or-
der to evaluate the enhancement of the retrieval effectiveness that will be achieved

through the utilization of the products of the XS2OWL model. In particular, we will
pose the same queries on top of XML repositories containing (a) Standard-based
XML descriptions that were created from scratch; and (b) Standard-based XML de-
scriptions that were derived from the transformation of OWL constructs produced
after the semantic processing of OWL individuals defined based on the OWL ontolo-
gies produced from the application of the XS2OWL methodology and software on the
standards. Precision and recall will be calculated in both cases and will be compared.
Acknowledgments. The work presented here was partially funded in the scope of the
DELOS II Network of Excellence in Digital Libraries (IST – Project Record #26059).

7. References

1. ADL Technical Team: Sharable Content Object Reference Model (SCORM), 2004.
2. An, Y., Borgida, A., Mylopoulos, J.: Constructing Complex Semantic Mappings Between

XML Data and Ontologies. International Semantic Web Conference 2005: 6-20.
3. Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., Yergeau, F., Cowan, J. (eds.):

Extensible Markup Language (XML) 1.1. W3C Recommendation, 2006.
(http://www.w3.org/TR/xml11/).

4. Brickley, D., Guha, R. V. (eds.): RDF Vocabulary Description Language 1.0: RDF Schema.
W3C Recommendation, 2004. (http://www.w3.org/TR/rdf-schema).

5. Chang, S.F., Sikora, T., Puri, A.: Overview of the MPEG-7 standard. In IEEE Transactions
on Circuits and Systems for Video Technology 11:688–695, 2001.

6. Fallside, D., Walmsley, P. (eds.): XML Schema Part 0: Primer. W3C Recommendation,
2001. (http://www.w3.org/TR/xmlschema-0/).

7. García, R., Celma, O.: Semantic Integration and Retrieval of Multimedia Metadata. In the
proceedings of the Semannot'05 Workshop, 2005.

8. Kay, M. (ed.) : XSL Transformations (XSLT) Version 2.0. W3C Recommendation, 2007.
(http://www.w3.org/TR/xslt20/).

9. Manola, F., Milles, E. (eds.): RDF Primer. W3C Recommendation, 2004.
(http://www.w3.org/TR/rdf-primer).

10. METS: Metadata Encoding and Transmission Standard (METS) Official Website.
(http://www.loc.gov/standards/mets/).

11. IEEE LTSC 2002: IEEE 1484.12.1-2002 – Learning Object Metadata Standard.
(http://ltsc.ieee.org/wg12/).

12. ISO/IEC: 21000-7:2004 – Information Technology – Multimedia Framework (MPEG-21) –
Part 7: Digital Item Adaptation, 2004.

13. ISO/IEC: 15938-5:2003 – Information Technology –Multimedia content description inter-
face – Part 5: Multimedia description schemes. First Edition, ISO/MPEG N5845, 2003.

14. McGuinness, D. L., van Harmelen, F. (eds.): OWL Web Ontology Language: Overview.
W3C Recommendation, 2004. (http://www.w3.org/TR/owl-features).

15. Pereira, F.: The MPEG-21 standard: Why an open multimedia framework?. In the Proceed-
ings of the 8th IDMS, LNCS 2158, Lancaster, September 2001, pp. 219–220.

16. Tsinaraki C., Polydoros P. and Christodoulakis S.: Interoperability support for Ontology-
based Video Retrieval Applications. In the Proceedings of the CIVR 2004, pp. 582-591.

17. Tsinaraki, C., Polydoros, P. and Christodoulakis, S.: Interoperability support between
MPEG-7/21 and OWL in DS-MIRF. Transactions on Knowledge and Data Engineering
(TKDE), Special Issue on the Semantic Web Era, pp. 219-232, 2007.

18. Tsinaraki, C., Polydoros, P., Kazasis, F., Christodoulakis S.: Ontology-based Semantic
Indexing for MPEG-7 and TV-Anytime Audiovisual Content. In Multimedia Tools and Ap-
plication Journal (MTAP), 26:299-325, 2005.

