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1 INTRODUCTION  

Uncertainties and approximations are inherent in 
geotechnical earthquake engineering practice. There-
fore, realistically accurate approximation methods 
can be applied very effectively. On the other hand, 
advances in computational hardware and software 
resources since the early 90’s resulted in the devel-
opment of new non-conventional data processing 
and simulation methods. Techniques based on 
Metamodels that belong to Soft Computing (SC) 
methods are gaining popularity very rapidly lately in 
various time-consuming, large-scale applications in 
structural and geotechnical engineering. Among SC 
methods, Artificial Neural Networks (ANNs) has to 
be mentioned as one of the most eminent approaches 
of the so-called intelligent methods of information 
processing. 

From among general problems that can be ana-
lyzed by means of ANNs the simulation and identifi-
cation problems can be classified as follows:  

− simulation is related to direct methods of struc-
tural or geotechnical analysis, i.e., for known in-
puts (e.g., excitations of mechanical systems 
(MS)) and characteristics of structures, geo-
structures, or materials outputs (responses of 
MS) are searched;  

− inverse simulation (partial identification, for ex-
ample, of an unknown excitation) takes place if 
inputs correspond to known responses of MS and 
excitations are searched as outputs of ANNs; and  

− identification is associated with the inverse 
analysis of structures, geo-structures and materi-
als, i.e., excitations and responses are known and 
MS characteristics are searched. 

Over the last decade an increasing number of ar-
ticles presenting ANN applications in geotechnical 
earthquake engineering has been published. Most of 
these studies are focused on liquefaction potential 
under seismic excitations (Chouicha et al. 1994, Goh 
1994, Wang & Rahman 1999, Baziar & Nilipour 
2003), which is an extremely computationally inten-
sive task and therefore suitable for ANNs. Recently, 
some of the studies in this field are examining the 
applicability of ANNs in soil dynamic analysis (Hur-
tado et al. 2001, Garcia et al. 2002, Paolucci et al. 
2002, Garcia & Romo 2004, Kerh & Ting 2005). 

In the present study the application of ANNs is 
focused on the simulation of the seismic response of 
an embankment. The embankments (water dams, 
tailings dams, solid waste landfills, etc.) usually 
constitute important large-scale geo-structures, the 
safety and serviceability of which are directly related 
to environmental and social-economical issues 
(Psarropoulos et al. 2006a). This kind of structures 
became subject of systematic research following the 
Northridge (1994) and Kobe (1995) earthquakes, af-
ter which extended investigations took place to ex-
amine the failures, occurred in embankments due to 
seismic actions.  

Usually, the dynamic nonlinear response of an 
embankment is evaluated utilizing the finite-element 
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method. This strategy has been also used in the pre-
sent study, where nonlinearity of materials is taken 
into account by a time-consuming equivalent-linear 
procedure. Since a large number of dynamic analy-
ses are required in order to simulate the dynamic be-
havior of the embankment under various seismic ex-
citations, in order to reduce the aforementioned 
computational cost, a specially tailored back propa-
gation ANN has been used. Initially, the ANN is 
trained utilizing available information generated 
from selected dynamic analyses of the geo-structure. 
In the sequence, the trained ANN is used to accu-
rately predict the response of the examined geo-
structure to various seismic excitations replacing the 
conventional analysis procedure. The results demon-
strate the efficiency of the proposed methodology 
for treating large-scale problems in geotechnical 
earthquake engineering.  

2 SEISMIC RESPONSE OF EMBANKMENTS 

As most of the failures of embankments are related 
to slope instabilities (either of the embankment mass 
or of the supporting soil), seismic slope stability 
analysis is certainly a critical component of the de-
sign process. Recent practice is based on three main 
families of methods that differ primarily in the accu-
racy with which the earthquake motion and the dy-
namic slope response are represented.  

The most accurate methods are considered to be 
the stress-deformation methods, which are typically 
performed using dynamic finite-element analysis. In 
general, these methods are used to describe the 
nonlinear behavior of the material with the highest 
possible accuracy, but they require sophisticated 
constitutive models involving a large number of pa-
rameters that cannot be easily quantified in the labo-
ratory or in situ. Because of their complexity, these 
methods are usually excluded from the seismic de-
sign of embankments. On the other hand, simplified 
seismic stability procedures are widely used in geo-
technical practice. A crude index of seismic slope 
stability (or instability) is the factor of safety evalu-
ated in a pseudo-static fashion in the realm of con-
ventional limit-equilibrium analysis. Finally, an al-
ternative family of methods utilizes displacement-
based approaches to predict permanent slope dis-
placements induced by earthquake shaking.  

The key issue in limit-equilibrium methods is the 
selection of a proper seismic coefficient, as the later 
controls the pseudo-static forces in the soil masses, 
whereas in the displacement-based methods perma-
nent displacements are calculated using either accel-
eration time histories (Newmark 1965) or seismic 
coefficients (Makdisi & Seed 1978). Thus, it be-
comes evident that slope stability methods require an 
accurate estimation of the acceleration levels in-
duced on the embankment under examination. 

Therefore, pertinent response analyses incorporating 
the “local site conditions” should precede any kind 
of seismic slope stability analysis. The term “local 
site conditions” is used here to describe not only soil 
conditions (stratigraphy, geomorphology, topogra-
phy) of the site, but the geometric and mechanical 
properties of the embankment as well. 

Records and analyses of valleys and hills have 
shown that local site conditions of a site, either in 
two or in three dimensions, may alter substantially 
the ground motion (Gazetas et al. 2002) by: a) am-
plifying the ground motion, b) elongating its dura-
tion, and c) generating differential motions, phe-
nomena which will be referred hereafter to as 
“aggravation”. Recent analyses have shown that 
geomorphic and topographic conditions may pro-
foundly aggravate the surface ground motion in the 
presence of low levels of material damping, while 
material nonlinearity may substantially suppress ag-
gravation by diminishing scattered body waves, es-
pecially horizontally propagating surface waves 
(Psarropoulos et al. 2006b). Therefore, in most cases 
aggravation depends not only on the geometrical and 
mechanical properties of a surface formation, but 
also on the amplitude of the excitation. 

The aim of the present study is to examine in 
more detail the aggravation of horizontal accelera-
tion and to investigate the relationship between this 
aggravation and the potential nonlinear behavior of 
soil. To accomplish this goal, two-dimensional (2–D) 
finite element equivalent-linear numerical simula-
tions have been performed utilizing specially tai-
lored ANNs to examine the nonlinear dynamic re-
sponse of a typical embankment. The main 
parameters examined are the characteristics of the 
seismic excitation. Results indicate that local site 
conditions may play a significant role in the seismic 
response of an embankment, depending on the cir-
cumstances. However, as the material behavior of 
the geo-structure is directly related to the character-
istics of the seismic excitation, this role cannot be 
judged a priori as beneficial or detrimental for the 
overall response of the geo-structure. 

3 ARTIFICIAL NEURAL NETWORKS  

An ANN is an information processing paradigm that 
is inspired by the biological nervous systems, such 
as the brain process information network. It is com-
posed of a large number of highly interconnected 
processing elements (neurons) working in unison to 
solve specific problems. As in biological systems, 
learning involves adjustments to the synaptic con-
nections that exist between the neurons. ANNs, with 
their remarkable ability to derive meaning from 
complicated or imprecise data, can be used to extract 
patterns and detect trends that are too complex to be 



noticed by either humans or conventional computa-
tional techniques. 

An ANN is configured for a specific application, 
such as pattern recognition or data classification, 
through a learning process. ANNs, like human be-
ings, learn by example. A trained ANN provides a 
rapid mapping of a given input into the desired out-
put quantities, thereby enhancing the efficiency of 
the analysis process. This major advantage of a 
trained ANN over a conventional procedure, under 
the provision that the predicted results fall within 
acceptable tolerances, is that it leads to results that 
can be produced in a few clock cycles, representing 
orders of magnitude less computational effort than 
the conventional procedure.  

In this work a fully connected network with one 
hidden layer is used. The learning algorithm, which 
was employed in this study for the ANN training, is 
the well-known Back Propagation (BP) algorithm. 
The BP algorithm progresses iteratively, through a 
number of epochs. On each epoch the training cases 
are submitted in turn to the network and target and 
actual outputs are compared and the error is calcu-
lated. This error, together with the error surface gra-
dient, is used to adjust the weights, and then the 
process is repeated. Training stops when a given 
number of epochs elapses, or when the error reaches 
an acceptable level, or when the error ceases to de-
crease (user-defined convergence criteria). The ANN 
training comprises the following tasks: (i) select the 
proper training set, (ii) find a suitable network archi-
tecture and (iii) determine the appropriate values of 
characteristic parameters such as the learning rate 
and momentum term; two user defined BP parame-
ters that effect the learning procedure. 

4 NUMERICAL STUDY 

In order to examine more thoroughly the effective-
ness of ANNs in computationally expensive dynamic 

finite-elements problems, the 2–D numerical model, 
shown in Figure 1, was investigated. The discretiza-
tion of the finite element model is presented in Fig-
ure 2. The embankment is founded on stiff rock.  
Shear-wave velocity of the embankment soil mate-
rial at small strain levels was set equal to 250m/s 
and unit weight of the soil was considered to be 
10kN/m3. While the geometry and the properties of 
the model remained constant, the seismic excitations 
varied during the analyses.  

The simple embankment examined herein can be 
regarded as a relatively small-scale earth embank-
ment, the dynamic behavior of which has thoroughly 
been examined in the past by other researchers (Ga-
zetas 1987). Assuming plane-strain conditions, the 
seismic response of the embankment examined was 
evaluated using QUAD4M code (Hudson et al. 
1994), which is capable of performing 2–D equiva-
lent-linear finite-element analyses. As shown in Fig-
ure 2, the model was discretized with three-noded 
triangular finite elements. The size of the finite ele-
ments was tailored to the wavelengths of interest. 
Material nonlinearity for soil was taken into account 
approximately by an iterative procedure, according 
to which the values of material stiffness and material 
damping are consistent with the level of maximum 
shear strain. Stiffness degradation and damping in-
crease for the soil were based on the curves pro-
posed by Idriss & Sun (1992).  

A suite of characteristic accelerograms has been 
used as seismic excitations: namely 43 recorded 
earthquake motions (presented in Table 3) and 3 
idealized pulses. The three pulse excitations were 
simple Ricker pulses with a varying central fre-
quency: fo = 2, 3, 4 Hz, respectively. Furthermore, in 
order to cover a sufficient range of nonlinear behav-
ior (strains) of the soil, all input motions were scaled 
to peak ground acceleration (PGA) ranging from 
0.01g to 0.5g. Thus, five cases were examined: 

 

VS=250m/s 
γ=10kN/m3

Figure 1. Geometry and material properties of the examined embankment. Bullets represent the position of the “receivers”.  

 
 

Figure 2. Discretization of the embankment into three-noded triangular finite elements. 
 



▪ Case I  (essentially linear behavior):  0.01g 
▪ Case II  (almost linear behavior):    0.05g 
▪ Case III (low level of nonlinearity):     0.1g 
▪ Case IV (medium level of nonlinearity):   0.2g 
▪ Case V  (high level of nonlinearity):     0.5g 
 
The use of ANN in this study was motivated by 

the fact that the finite-element models are time-
consuming: approximately 30 minutes for a “sim-
ple” run (linear run (Case I) with a short duration 
Ricker pulse) of the examined 2-D model of Figure 2 
(with 850 nodes and 1540 elements) at a Pentium IV 
PC with 2.53GHz CPU processor and 1GB RAM. 
While, for a more “complex” run (a real record with 
larger duration and/or for a higher level of 
nonlinearity) the computing time increased 
significantly, up to 60 minutes. On the other hand, 
the computational cost for the calculation of an ANN 
prediction in all cases was only a few seconds. 

Therefore, the need for an efficient computational 
tool for the simulation of the seismic response of 
large-scale geo-structures is indisputable. The ANN 
software used in this study has been developed by 
one of the authors (Lagaros & Papadrakakis 2004). 
For the needs of the present paper, the ANN-based 
simulation has been compared with the results of 
non-linear finite element models obtained using 
QUAD4M. The ANN has been used for the prediction 
of the seismic response in terms of peak ground 
horizontal accelerations at the embankment’s sur-
face, as well as in the embankment’s body. For this 
reason the embankment has been separated into 
zones, as it is presented in Figure 1, where the “re-
ceivers” for recording the local seismic response had 
been placed. The total number of the receivers was 
138, placed at the left half of the embankment, be-
cause of the symmetric shape of the geo-structure. 

The ANN configurations used were properly 
trained in order to predict the acceleration for new 
earthquake records. The records used were identified 
using a set of Intensity Measures (IMs). The term In-
tensity Measure is used to denote a number of com-
monly used ground motion parameters, which repre-
sent the amplitude, the frequency content, the 
duration or any other important ground motion pa-
rameter. In addition, IMs can be classified as only 
record dependent, or as both structure and record 
dependent.  

A significant number of different IMs can be 
found in the literature. In the present investigation, 
in addition to the IMs available in Kramer (1996), 
the A95 parameter (Sarma & Yang 1987) was used. 
This parameter defines the acceleration level of a re-
cord below which 95% of the total Arias Intensity 
(Ia) is contained. For instance, if the entire accelero-
gram yields a value of Ia equal to 100 then the A95 
parameter is the threshold of acceleration such that 

integrating all the values of the accelerogram below 
it one gets Ia=95. The most significant IMs were 
used in this study, after examining various combina-
tions of them for each “load-case”, in order to pro-
vide the best possible training to ANN metamodels. 

4.1 Ricker Pulse Excitations 
Initially, the embankment was excited with the three 
Ricker pulses and the five different maximum accel-
eration levels, resulting to 15 models in total. The 
input data for the ANN metamodel were the coordi-
nates of the receivers, which are positioned in an ax-
ial distance 2m at x-axis and at y-axis (at the surface 
and inside the body of the embankment) and several 
IMs that described efficiently the Ricker pulse. The 
output was the seismic response of each receiver for 
the specific Ricker pulse. 

The ANN that has been used for the prediction of 
the embankment’s response excited by the Ricker 
pulses consisted of three layers: the input layer with 
seventeen nodes (receiver’s coordinates –x, y–, PGA, 
PGV, PGD, PGV/PGA, ARMS, VRMS, DRMS, characteris-
tic intensity, specific energy density, cumulative ab-
solute velocity, acceleration spectrum intensity, ve-
locity spectrum intensity, effective design 
acceleration, A95 parameter and predominant pe-
riod), the hidden layer and the output layer with one 
node (response). After an initial investigation about 
the number of the hidden layer’s nodes, the ANN 
configuration resulted in a [17-50-1] architecture.  

The ANN model trained with the Ricker input 
data was used to evaluate embankment’s response 
for a Ricker pulse with 2.5 Hz predominant fre-
quency and its performance was very satisfactory. 
The maximum tolerance between the computed by 
QUAD4M  and the predicted through the ANN (for 
all Cases I to V) are presented in the diagram of Fig-
ure 3. The results shown in Figure 3 can also be pre-
sented in a table form, according to the percentage 
of the absolute value of the tolerance between the 
computed and the predicted value of the seismic re-
sponse, as it is depicted in Table 1. 

Furthermore, in order to evaluate more efficiently 
the performance of ANN metamodel, a coefficient of 
correlation was used, which was defined as follows: 
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where xi and x  are the recorded and the averaged 
response values; yi and y  are the ones estimated by 
ANN and their averaged value; and m denotes the 
number of ANN training data sets. This coefficient 
may have a positive or negative value, therefore, its 
square value r2 can be used instead in order to repre-



sent the degree of correlation of the recorded data 
and their approximation by the ANN metamodel. In 
Figures 3 to 5 the mean value (for all receivers and 
Cases) of the correlation parameter is depicted. 
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Figure 3. Computed versus Predicted seismic response for the 
entire embankment (Ricker Pulse). 
 
Table 1. Percentage of receivers that exceeds different levels of 
tolerance for the entire embankment (Ricker Pulse). 

Tolerance (%) No of 
receivers 

Receivers 
(%) 

Total  
Receivers (%) 

0 to 5 216 31.3 31.3 
5 to 10 139 20.1 51.4 
10 to 20 156 22.6 74.0 
20 to 30 46 6.6 80.7 
30 to 40 31 4.4 85.2 
40 to 50 23 3.3 88.5 
50 to 60 7 1.0 89.5 
60 to 70 11 1.5 91.1 
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Figure 4. Computed versus Predicted seismic response for the 
upper boundary of the embankment (Ricker Pulse). 
 

It was observed that a higher discrepancy be-
tween the predicted and the calculated values of the 
seismic response occurred for the receivers that were 
located inside the embankment’s body. If the inter-

nal receivers are ignored then the accuracy for the 
external receivers is much better, as it is clearly 
shown in Figure 4 and Table 2. 
 
Table 2. Percentage of receivers that exceeds different levels of 
tolerance for the upper boundary of the embankment. 

Tolerance (%) No of 
receivers 

Receivers 
(%) 

Total  
Receivers (%) 

0 to 5 26 47.2 47.2 
5 to 10 14 25.4 72.7 

10 to 15 15 27.2 100.0 

4.2 Earthquake Excitations 
The next stage was to use, instead of relatively sim-
ple Ricker pulses, records derived from real earth-
quakes. The earthquake data from the 43 records 
used for ANN training are presented in Table 3. For 
each earthquake record the aforementioned five ac-
celeration levels have been used. Following the 
same considerations as for the Ricker pulses case 
and after an extensive investigation a [16-20-1] ar-
chitecture was used for the prediction of the geo-
structure’s response. After considering various pos-
sible IMs combinations, the input layer in this case 
consisted of sixteen nodes (coordinates –x, y–, PGA, 
PGV, PGD, PGV/PGA, characteristic intensity, spe-
cific energy density, cumulative absolute velocity, 
acceleration spectrum intensity, velocity spectrum 
intensity, sustained maximum acceleration, sus-
tained maximum velocity, effective design accelera-
tion, A95 parameter and predominant period) in or-
der to provide the more important input data and 
therefore enhance the predictions of the ANN. 
 
Table 3. Earthquake records for the training of the ANN. 

Earthquake’s name  
(Region) 

Year of 
occurrence 

Number of re-
cords 

Lefkada, Greece 1973 1 
Mexico City, Mexico 1981 4 

Kalamata, Greece 1986 1 
Northridge, USA 1994 14 

Kobe, Japan 1995 9 
Aigio, Greece 1995 1 

Kocaeli, Turkey 1999 7 
Parnitha, Greece 1999 4 
Lefkada, Greece 2003 2 

 
After its training the ANN metamodel was used to 

predict the response for Sepolia record (Parnitha 
earthquake, Greece, 1999). This record was chosen 
due to the fact that its IMs were similar to those of 
the earthquakes used for the ANN training (an ANN 
can interpolate, but not extrapolate). As it can be 
seen in Figure 5 and Table 4 in this case nonlinearity 
affects more the performance of ANN. Nevertheless, 
even in this case, which is more computationally in-
tensive, ANN approximate with a relative high level 
of accuracy the seismic response of the embank-
ment, especially for the external receivers.  
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Figure 5. Computed versus Predicted seismic response for the 
entire embankment (Sepolia record). 

 
Table 4. Percentage of receivers that exceeds different levels of 
tolerance for the entire embankment (Sepolia record). 

Tolerance (%) No of 
receivers 

Receivers 
(%) 

Total  
Receivers (%) 

0 to 5 144 20.8 20.8 
5 to 10 149 21.5 42.4 

10 to 20 157 22.7 65.2 
20 to 30 96 13.9 79.1 
30 to 40 33 4.7 83.9 
40 to 50 33 4.7 88.7 
50 to 60 20 2.9 91.5 
60 to 70 14 2.0 93.6 

5 CONCLUSIONS 

In the present implementation of ANNs the objective 
was to investigate their ability to capture the dy-
namic nonlinear response of an embankment under 
various seismic excitations and reduce the excessive 
computational cost. In general, ANN achieved a 
slightly better approximation of the response for the 
receivers that are positioned at the crest and the up-
per part of the embankment than for the receivers 
that are positioned inside the embankment. Further-
more, comparing the results obtained via ANN for 
the Ricker pulses and the earthquake records it is 
obvious that when the embankment material behaves 
linearly or with a moderate level of nonlinearity then 
the response of the embankment is approximated 
very accurately by the ANN-based metamodel. 
When a severe earthquake occurs, then high nonlin-
earity deteriorates the accuracy of ANN predictions. 
However, they can still be considered very satisfac-
tory, while in this case the computational gains are 
even more than in the linear case. In conclusion, 
ANN presented a very good performance in marginal 
computing cost and their applicability in the field is 
very promising. 
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