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Abstract 
 
The objective of this paper is to investigate the efficiency of soft computing 
methods, in particular methodologies based on neural networks, when incorporated 
into the solution of computationally intensive engineering problems. Two types of 
applications have been investigated, namely flaw identification and structural 
reliability analysis. Artificial neural networks (ANNs) based metamodels are used in 
order to replace the time-consuming repeated structural analyses. The back 
propagation algorithm is employed for training the ANN, using data derived from 
selected analyses. The trained ANN is then used to predict the values of the 
necessary data. The numerical tests demonstrate the computational advantages of the 
proposed methodologies. 
 
Keywords: artificial neural networks, simulation, inverse problems, structural 
reliability analysis, structural identification. 
 

1  Introduction 
 
The advances in computational hardware and software resources since the early 90’s 
resulted in the development of new, non-conventional data processing and 
simulation methods. Among these methods soft computing has to be mentioned as 
one of the most eminent approaches to the so-called intelligent methods of 
information processing. Artificial neural networks (ANNs), expert and fuzzy 
systems, evolutionary methods are the most popular soft computing techniques. 
Especially ANNs have been widely used in many fields of science and technology, 
as well as, in an increasing number of problems in structural engineering. From 
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among general problems that can be analyzed by means of ANNs the simulation and 
identification problems can be classified as follows [1]:  

 simulation is related to direct methods of structural analysis, i.e., for known 
inputs (e.g., excitations of mechanical systems (MSs)) and characteristics of 
structures or materials outputs (responses of MSs) are searched; 

 inverse simulation (partial identification, for example, of an unknown 
excitation) takes place if inputs correspond to known responses of MSs and 
excitations are searched as outputs of ANNs; and  

 identification is associated with the inverse analysis of structures and 
materials, i.e., excitations and responses are known and MS characteristics 
are searched. 

Over the last ten years artificial intelligence techniques like ANNs have emerged 
as a powerful tool that could be used to replace time consuming procedures in many 
engineering applications. Some of the fields where ANNs have been successfully 
applied are: (i) pattern recognition, (ii) regression (function approximation/fitting) 
and (iii) optimization. Additionally, ANNs are presented in [2] as an alternative 
approach to nonlinear system modeling. In the past the first field of application of 
ANNs was mostly used for predicting the behavior of a structural system in the 
context of structural optimal design [3-7], structural damage assessment [8,9] or 
structural reliability analysis [10,11]. Function approximation involves 
approximating the underlying relationship from a given finite input-output data set. 
Feedforward ANNs, such as multi-layer perceptrons (MLP) and radial basis function 
networks have been widely used as an alternative approach to function 
approximation since they provide a generic functional representation and have been 
shown to be capable of approximating any continuous function with acceptable 
accuracy [12]. 

In this work the application of ANNs is focused on the simulation, i.e. structural 
reliability analysis, and identification, i.e. flaw detection, problems. Many sources of 
uncertainty (material, geometry, loads etc) are inherent in structural design and 
functioning. Reliability analysis leads to safety measures that a design engineer has 
to take into account due to the aforementioned uncertainties. Reliability analysis 
problems, especially when earthquake loadings are considered, are highly 
computationally intensive tasks since in order to calculate the structural behavior 
under seismic loads a large number of dynamic analyses (such as multi-modal 
response spectrum analyses) are required [13]. Soft computing techniques are used 
in order to reduce the aforementioned computational cost. An ANN is trained 
utilizing available information generated from selected multi-modal response 
spectrum analyses of a typical multi-storey building. The trained ANN is then used 
to predict the maximum inter-storey drift due to different sets of random variables. 
After the maximum inter-storey drift is predicted, the probability of failure is 
calculated by means of Monte Carlo Simulation (MCS). The results of the proposed 
methodology in the test examples show its efficiency and its potential for treating 
large-scale practical problems. 

Another very promising field of soft computing applications in computational 
mechanics is flaw or damage detection, which basically can be considered as an 
inverse problem. For example, material or parameter identification problems, which 



3 

can be formulated as output-error optimization problems, can be solved very 
efficiently with the proposed technique. For the classical formulation and solution 
with classical or less classical (e.g. filter-driven or genetic) optimization algorithms 
and neural networks details can be found in references [14-16] and the review article 
on inverse analysis [1]. In this work the methodology is extended by using a neural 
network technique for the replacement of the mechanical analysis modelling and, 
consequently, the genetic optimization is applied for the solution of the inverse 
crack or defect optimization problem. The effectiveness is compared with the results 
of the previously used single-method techniques in characteristic test examples. 

 

2  Multi-layer perceptrons 
 
ANNs metamodels have the ability of learning and accumulating expertise and have 
found their way into applications in many scientific areas. There is an increasing 
number of publications that cover a wide range of computational structures 
technology applications, where most of them are heavily dependent on extensive 
computer resources that have been investigated or are under development. This trend 
demonstrates the great potential of ANNs.     

2.1 The Back Propagation learning algorithm 

A multi-layer perceptron (MLP) is a feed-forward ANN, consisting of a number of 
units (neurons) linked together and attempts to create a desired relation in an 
input/output set of learning patterns. A neural network consists of an input layer, one 
or more hidden layers and an output layer. Each layer has its corresponding neurons 
or nodes and weight connections. A single training pattern is an I/O vector of pairs 
of input-output values in the entire matrix of I/O training set. 

The inputs xi, i=1, 2,...,n which are received by the input layer are analogous to 
the electrochemical signals received by neurons in human brain. In the simplest 
model these input signals are multiplied by connection weights wp,ij and the effective 
input netp,j to neurons is the weighted sum of the inputs 

 
∑
=

=
n

1i
i,qij,pj,p net wnet
 

(1)
 

where wp,ij is the connecting weight of the layer p from the i neuron in the q (source) 
layer to the j neuron in the p (target) layer, netq,i is the output produced at the i 
neuron of the layer q and netp,j is the output produced at the j neuron in the layer p. 
Inputs xi correspond to netq,i for the input layer. 

In the biological system, a typical neuron may only produce an output signal if 
the incoming signal builds up to a certain level. This output is expressed in ANNs by  

 )net(Fout j,pj,p =  (2) 

where F is an activation function which produce the output at the j neuron in the p 
layer. The type of activation function that has been used in the present study is the 
sigmoid function. 
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At the output layer the computed output(s), otherwise known as the observed 
output(s), are subtracted from the desired or target output(s) to give the error signal 
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where m is the number of training pairs, tark,i and outk,i are the target and the 
observed output(s) for the node i in the output layer k, respectively. This is called 
supervised learning. 

A learning algorithm tries to determine the weights, in order to achieve the right 
response for each input vector applied to the network. The numerical minimization 
algorithms used for the training generate a sequence of weight matrices through an 
iterative procedure. To apply an algorithmic operator A, a starting value of the 
weight matrix w(0) is needed, while the iteration formula can be written as follows 

 (t+1) (t) (t) (t)w = (w )=w +ΔwA  (5) 

All numerical methods applied in ANNs are based on the above formula. The 
changing part of the algorithm Δw(t) is further decomposed into two parts as 

 
(t) (t)

tΔw =a d  (6) 
where d(t) is a desired search direction of the move and at the step size in that 
direction.  

The training methods can be divided into two categories. Algorithms that use 
global knowledge of the state of the entire network, such as the direction of the 
overall weight update vector, which are referred to as global techniques. In contrast 
local adaptation strategies are based on weight specific information only such as the 
temporal behavior of the partial derivative of this weight. The local approach is 
more closely related to the ANN concept of distributed processing in which 
computations can be made independent to each other. Furthermore, it appears that 
for many applications local strategies achieve faster and reliable prediction than 
global techniques despite the fact that they use less information [17]. 

2.2 Global Adaptive Techniques 

The algorithms most frequently used in the ANN training are the steepest descent, 
the conjugate gradient and the Newton’s methods with the following direction 
vectors: 

 Steepest descent method: (t) (t)d (w )= −∇E  

 Conjugate gradient method: ( t ) ( t ) ( t 1)
t 1d (w ) d −
−= −∇ +βE  where βt is defined as 

  t 1 t t t 1 t 1/  (Fletcher-Reeves)− − −β = ⋅ ⋅∇ ∇ ∇ ∇E E E E  

 Newton’s method: 
1( t ) (t ) (t )d H(w ) (w )

−
⎡ ⎤= − ∇⎣ ⎦ E  
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The convergence properties of optimization algorithms for differentiable 
functions depend on properties of the first and/or second derivatives of the function 
to be optimized. When optimization algorithms converge slowly for NN problems, 
this suggests that the corresponding derivative matrices are numerically ill-
conditioned. It has been shown that these algorithms converge slowly when rank-
deficiencies appear in the Jacobian matrix of a NN, making the problem numerically 
ill-conditioned [18]. Furthermore, like in all local minimization algorithms, training 
of ΑΝΝ will be interrupted without success at local minima of the error function if 
the latter, due to the complexity of the problem at hand, happens to be non-convex. 
The introduction of momentum terms in the local step may help the algorithm to 
avoid premature stop at local minima. 

2.3 Local Adaptive Techniques 

In order to improve the performance of weight updating, two completely different 
approaches have been proposed, namely Quickprop [19] and Rprop [20]. 

The Quickprop method 

This method is based on a heuristic learning algorithm for a multi-layer perceptron, 
developed by Fahlman [19], which is partially based on the Newton’s method. 
Quickprop is one of most frequently used adaptive learning paradigms. The weight 
updates are based on estimates of the position of the minimum for each weight, 
obtained by solving the following equation for the two following partial derivatives 

 

t-1 t

ij ij

 and 
w w

∂ ∂
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E E

 
(7)

 
and the weight update is implemented as follows 

 

t

ij(t) (t-1)
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(8)

 
The learning time can be remarkably improved compared to the global adaptive 
techniques. 

The Rprop method 

Another heuristic learning algorithm with locally adaptive learning rates based on an 
adaptive version of the Manhattan-learning rule and developed by Riedmiller and 
Braun [20] is the Resilient backpropagation abbreviated as Rprop. The weight 
updates can be written 

 

(t) (t) t
ij ij

ij

w η sgn  
w

⎛ ⎞∂
Δ = − ⎜ ⎟⎜ ⎟∂⎝ ⎠

E

 
(9)

 
where 
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(10)

 
where α=1.2, b= 0.5, ηmax=50 and ηmin=0.1 [21]. The learning rates are bounded by 
upper and lower limits in order to avoid oscillations and arithmetic underflow. It is 
interesting to note that, in contrast to other algorithms, Rprop employs information 
about the sign and not the magnitude of the gradient components. 

 

3  Structural identification 
 
Inverse analysis concerns the determination of material or other data (in general, 
parameter identification) of a structure from measurements of its mechanical 
response caused by a given loading. Dynamic loadings give the most promising 
results and are used in many non-destructive evaluation procedures in industry 
(ultrasonic evaluation, ambient vibration or modal testing). Another ‘ambitious’ goal 
of identifying when the status of a structure has been changed beyond a critical limit 
or not, is structural health monitoring which has great practical importance.  

The inverse crack or damage identification problem has the following general 
formulation as an output error minimization problem: (a) the unknown quantities 
like number and type of defects, their position and other geometric parameters are 
expressed with the help of certain variables, (b) a number of mechanical tests are 
considered, (c) for each value of the unknown defect parameters the corresponding 
responses of the structure are considered and compared with the target (measured) 
responses. Let z be the vector of unknown parameters involved in the mechanical 
problem, u0 be the measured response of the mechanical system and u(z) be the 
response of the mechanical system for a fixed value of z. The minimization problem 
reads 

 0 0

1
min  z : { ( ( ) ) ( ( ) )}

2
− ⋅ ⋅ −Tu z u M u z u  (11) 

where M is an appropriate symmetric and positive semi-definite weight matrix. The 
implicit nonlinear dependence of the structural response u on the unknown 
parameters z, i.e. u(z), makes the above-mentioned least square minimization 
problem complicated. The error function may become non-convex, with local 
minima, in the case of difficult and complicated inverse problems where no 
sufficient estimate of the solution is available. 

Several methods have been presented for the effective numerical solution of this 
problem (among others, numerical optimization, genetic algorithms, soft 
computing). A comparison on crack identification problems in elasticity has been 
discussed in [15]. Summarizing the results one could state that a method based on 
genetic optimization, a method of global optimization, which is able to avoid local 
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minima, will solve the problem in almost all cases [15]. The usage of more than one 
loading cases may be necessary and certainly makes the solution easier (compare the 
three-dimensional defect identification using static data presented in [22]). On the 
other hand, the computer resources needed for the use of genetic algorithms are 
almost prohibitive for a regular use in an industrial environment. A cheaper 
approach, computationally, is based on the artificial neural network methodology or 
on filter-based optimization techniques (for recent results see [23,24]).  

ANNs (usually feedforward multilayer networks trained with various 
backpropagation techniques) are used for the direct approximation of the mapping 
between measurements and unknown parameters (the so-called inverse mapping). 
They have been used with great efficiency for the post-processing of impact-echo 
data in two-dimensional elastic structures [15]. Other practical applications of this 
method include the crack-depth determination of a vertical crack emanating from the 
hidden surface of a plate from ultrasonic back-scattering data [25] and the depth 
determination of surface-breaking cracks [26]. 

In the case that the aforementioned optimization problem has local minima the 
ANN approach alone may be ineffective, while the genetic optimization algorithm 
may still be effective. From the discussion of training algorithms in the previous 
sections, this result could be expected; since an optimization problem is hidden 
within the training phase of the ANN and this (distributed and parallel optimization) 
technique is able to overcome only moderate nonconvexity and may stop at local 
minima. In this paper a hybrid strategy made of two components is proposed. First a 
neural network is used for the replacement of the direct mechanical model. This part 
has already been used in the community of structural optimization, it is known as 
response surface method and it is especially beneficial for demanding modelling 
tasks like dynamical or computational fluid mechanics simulations. The 
approximation of the response mapping is, in general, easier than the approximation 
of the inverse mapping. The resulting model of the mechanical system is used in 
connection with the genetic algorithm for the solution of the inverse problem. At this 
point the efficiency of the genetic algorithm is enhanced, since the neural network 
approximator of the structural response is usually far less demanding in terms of 
computational cost than evaluating the actual mechanical model. 

 

4  Seismic reliability analysis  
 
In the design of structural systems, limiting uncertainties and increasing safety is an 
important issue to be considered. Structural reliability, which is defined as the 
probability that the system meets some specified demands for a specified time 
period under specified environmental conditions, is used as a probabilistic measure 
to evaluate the reliability of structural systems. The performance function of a 
structural system must be determined to describe the system's behavior and to 
identify the relationship between the basic parameters in the system. It should be 
noted that in the earthquake loading environment the uncertainties related to seismic 
demand and structure’s capacity are strongly coupled. 

The probability of failure pf can be determined using a time invariant reliability 
analysis procedure with the following expression 
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dt)t(f )t(F1dt)t(f )t(F]SR[pp RsSRf ∫∫
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∞
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(12)

 
where R denotes the structure’s bearing capacity and S the external loads. The 
randomness of R and S can be described by known probability density functions fR(t) 
and fS(t), with FR(t) = p[R<t], FS(t) = p[S<t] being the cumulative probability 
density functions of R and S, respectively. 

Most often a limit state function is defined as G(R,S) = S-R and the probability 
of structural failure is given by 

 f R S

G 0

p p[G(R,S) 0] f (R) f (S)dRdS
≥

= ≥ = ∫  (13) 

It is practically impossible to evaluate pf analytically for complex and/or large-scale 
structures, especially in the case of structural problems under seismic loads that are 
considered in the present study. In such cases the integral of Eq. (13) can be 
calculated only approximately using either simulation methods, such as the Monte 
Carlo Simulation (MCS), or approximation methods like the first order reliability 
method (FORM) and the second order reliability method (SORM), or response 
surface methods (RSM). Despite its high computational cost, MCS is considered as 
an efficient method and is commonly used for the evaluation of the probability of 
failure in computational mechanics, either for comparison with other methods or as 
a standalone reliability analysis tool. 

4.1 Monte Carlo simulation 

In reliability analysis the MCS method is often employed when the analytical 
solution is not attainable and the failure domain can not be expressed or 
approximated by an analytical form. This is mainly the case in problems of complex 
nature with a large number of basic variables where all other reliability analysis 
methods are not applicable. Expressing the limit state function as G(x)<0, where 
x=(x1,x2,...,xM) is the vector of the random variables, Eq. (13) can be written as 

 f x

G(x ) 0

p f (x)dx
≥

= ∫  (14) 

where fx(x) denotes the joint probability of failure for all random variables. Since 
MCS is based on the theory of large numbers (N∞) an unbiased estimator of the 
probability of failure is given by  

 
N

f j
j 1

1
p I(x )

N

∞

=∞

= ∑  (15) 

in which I(xj) is a binary indicator for failure and successful simulations defined as  

 j
j

j

1    if   G(x ) 0
I(x )

0    if   G(x ) 0

≥⎧
= ⎨ <⎩

 (16) 
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It is important in structural reliability using simulation methods, to efficiently 
and accurately evaluate the probability of failure for a given performance function. 
In order to estimate pf an adequate number of Nsim independent random samples is 
produced using a specific, usually uniform, probability density function of the vector 
x. The value of the failure function is computed for each random sample xj and the 
Monte Carlo estimation of pf is given in terms of sample mean by 

 H
f

sim

N
p

N
≅  (17) 

where NH is the number of failure simulations. In order to reduce the number of 
simulations and the computational cost of the standard MCS many efficient 
sampling reduction techniques have been used [11,27]. In the present study there is 
no need of implementing such techniques, since ANNs replace the computationally 
expensive structural response evaluations and the sample size has trivial importance. 

4.2 Design under seismic loading 

The equations of equilibrium for a finite element system in motion can be written in 
the usual form 

 Mu(t) Cu(t) Ku(t) R(t)+ + =  (18) 

where M, C, and K are the mass, damping and stiffness matrices; Rt is the external 
load vector, while t t tu ,u  and u  are the displacement, velocity, and acceleration 
vectors of the finite element assemblage, respectively. Design approach based on the 
multi-modal Response Spectrum (mMRS) analysis, which is based on the mode 
superposition approach, has been used in the present study [27]. 

The mMRS method is based on a simplification of the mode superposition 
approach with the aim to avoid time history analyses which are required by both, the 
direct integration and mode superposition approaches. In the case of the multi-modal 
response spectrum analysis Eq. (18) is modified according to the modal 
superposition approach to a system of independent equations 

 i i i i i i iM y (t) C y (t) K y (t) R (t)+ + =  (19) 

where 

 T T T T
i i i i i i i i i iM M ,  C C ,  K K  and R(t) R(t)= Φ Φ = Φ Φ = Φ Φ = Φ  (20) 

are the generalized values of the corresponding matrices and the loading vector, 
while Φi is the i-th eigenmode shape matrix. According to the modal superposition 
approach the system of Ν differential equations, which are coupled with the off-
diagonal terms in the mass, damping and stiffness matrices, is transformed to a set of 
N independent normal-coordinate equations. The dynamic response can therefore be 
obtained by solving separately for the response of each normal (modal) coordinate 
and by superposing the response in the original coordinates. 

In the mMRS analysis a number of different formulas have been proposed to 
obtain reasonable estimates of the maximum response based on the spectral values 
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without performing time history analyses for a considerable number of transformed 
dynamic equations. The simplest and most popular one is the Square Root of Sum of 
Squares (SRSS) of the modal responses. According to this estimate the maximum 
total displacement is approximated by: 

 

1/ 2N
2

max i,max
i 1

i,max i i,max

u u

u y
=

⎛ ⎞
= ⎜ ⎟
⎝ ⎠
= Φ

∑  (21) 

where ui,max corresponds to the maximum displacement vector corresponding to the 
i-th eigenmode. 

4.3 The ANN training for seismic reliability analysis 

In the present implementation the main objective is to investigate the ability of the 
ANNs to predict the structural performance in terms of maximum inter-storey drift. 
These objectives comprise the following tasks: (i) Select the proper training set. (ii) 
Find suitable network architecture. (iii) Determine the appropriate values of 
characteristic parameters of ANN. For the back propagation algorithm to provide 
good results the training set must include data over the entire range of the output 
space. The appropriate selection of I/O training data is one of the important factors 
in ANN training. Although the number of training patterns may not be the only 
concern, the distribution of samples is of greater importance. The selection of the 
I/O training pairs is based on the requirement that the full range of possible results 
should be represented in the training procedure [11]. In the present study the sample 
space for each random variable is divided into equally spaced distances for the 
application of the ANN simulation and for the selection of the suitable training pairs. 
After the selection of the suitable ANN architecture and the performance of the 
training procedure, the network is then used to produce predictions of structural 
failure corresponding to different values of the input random variables. The results 
are then processed by means of MCS to calculate the probability of failure pf using 
Eq. (15). 

The modulus of elasticity, the dimensions b and h of the I-shape cross-section and 
the earthquake loading have been considered as random variables. In this study three 
test cases have been taken into account depending on the random variables 
considered. In the first test case the modulus of elasticity and the earthquake loading 
are considered to be random variables. In the second test case the dimensions b and 
h of the I-shape cross section and earthquake loading are taken as random variables, 
while in the third test case all three groups of random variables are considered. For 
the implementation of the ANN-based metamodel in all three test cases a two level 
approximation is employed using two different ANNs. The first ANN predicts the 
values of the significant eigen-periods, the inputs of the ANN are the random 
variables while the outputs are the values of the significant eigen-periods. The 
second ANN is used to predict the maximum inter-storey drift, which is used to 
define the failure or not of each simulation required by MCS (Eq. (15)), the spectral 
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acceleration values both in X and Y directions are the inputs of the ANN while the 
maximum inter-storey drift is the output. 

 
5  Numerical examples  
 
5.1 Defect identification in a composite beam using static 

measurements 
 
This test example consists of a clamped beam subjected to a distributed loading. The 
beam is equipped with piezoelectric actuators and sensors, which can be used for 
defect identification (see schematic configuration in Figure 1). Measurements of the 
deflections from the piezoelectric sensors are used for the identification of the defect 
 

 

Figure 1: Configuration of a composite plate with a defect 
 

The finite element model has been developed and tested for static and dynamic 
optimal control problems in [28] and [29], respectively, where technical details can 
be found. The beam has been discretized with 30 finite elements. A defect is 
approximately modelled by reduction of the stiffness in the corresponding finite 
element with a smeared-crack-like approach. The first assumption is that the 
complete deformation of the beam can be measured by using the distributed 
piezoelectric sensors or other suitable measurements. The second assumption is that 
only one defect will arise, therefore the two unknown variables of the defect 
identification problem are: (a) the position (number of damaged element) and (b) the 
extent of the defect. For the position it is assumed that this continuous variable takes 
values in the interval [1,30], which indicates the damaged element (after appropriate 
trimming to give the discrete value corresponding to the element number). The 
extent of damage is approximated by a continuous variable, taking values in the 
interval [0,10], which is linearly dependent on the extent of damage (between 0 and 
50 percent of the nominal stiffness, respectively). 

The direct approximation of the inverse mapping (i.e. the relation between 
measurements and damage variables) with neural networks does not lead to useful 
results. The genetic algorithm solves the inverse problem. Although this problem is 
rather small, the mechanical problem can be replaced by a response function 
approach, which is based either on interpolation functions or on neural networks. 
The accuracy of the inverse problem is not influenced by either of the two 
approaches while the required computational time is reduced. For a constant 
population size equal to 15 the solution of the inverse problem is documented in the 
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following Table 1. The fitness variable transforms the error minimization problem to 
a maximization problem and includes a logarithmic scaling. The fitness 
maximization for this example is demonstrated in Figure 2 (where the best value 
within each population is depicted with red, and the mean value with yellow, 
respectively). 

 
Example 

No 
Exact 

position 
of defect 

Calculated 
position of 

defect 

Exact 
extent of 
damage 

(%) 

Calculated 
extent of 
damage 

Fitness 
value 

1 5 4.9860 10 9.9915 42.9395 
2 15 15.1133 10 10.078 41.0051 
3 25 25.2182 10 10.463 42.9711 

 
Table 1: Identification of the position and size of one defect in the composite beam 
using static measurements 
 
 

 
 
Figure 2: Documentation of one genetic optimization solution with best individual 
and mean value for each generation 
 

In this example all vertical displacements of the beam, i.e. 30 measurements, 
have been taken into account for the solution of the inverse problem. By reducing 
the number of measurements (again, equally distributed along the length of the 
cantilever) the solution of the inverse problem is not affected, as it can be shown in 
Table 2. 
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Example 
No. 

Number of 
measurements 

Calculated 
position of 

defect 

Calculated 
extent of 

defect 

Fitness 
value 

1 30 15.0009 25.0035 45.4718 
2 15 14.9783 24.9285 41.8466 
3 7 15.0058 25.0155 46.3440 

 
Table 2: Damage identification of a defect at element no. 15 with extent of damage 
equal to 25 per cent loss of stiffness: effect of reduced number of measurements 
 
5.2 Crack identification problem  
 
In this example an orthogonal plane stress domain rigidly supported at the lower 
boundary and loaded at the upper boundary is considered. From measurements at the 
free boundaries of the plate one can identity cracks and holes in the interior of the 
plate [23]. A schematic description of the problem is shown in Figure 3. 
 

 
 
Figure 3: Configuration of a plate with a defect. Measurements at the external 
boundary can be used for defect identification 
 

At first one example of the neural network based solution of the inverse problem 
is presented. Using a set of 206 measurements of displacements at the boundary of 
the plate in several representative time instances a suitably trained 206-7-2 neural 
network can be trained to reproduce the position of a given crack (horizontal, of 
given length) with acceptable accuracy. Here a boundary element model is used for 
the production of the training and test examples. A set of 81 training and 64 test 
examples has been used. In the following figures (Fig. 4 to Fig. 10) the training 
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procedure, the accuracy of predicting the training data and of the test data are 
demonstrated.  
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Figure 4: Training of the neural network for the defect identification problem 
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Figure 5: Training data: Predicted (+) and real (o) position of the defect for different 
places of the defect 
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Figure 6: Training data: Accuracy of x-coordinate prediction 
 
 

10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

100

T

A

Best Linear Fit:  A = (0.996) T + (0.169)

R = 0.998
Data Points

Best Linear Fit
A = T

 

Figure 7: Training data: Accuracy of y-coordinate prediction 
 

In order to enhance the accuracy of the results the same problem is solved with 
the genetic algorithm optimization procedure. In fact, in more complicated forms of 
the plate, only the genetic optimization can solve the inverse problem (see [22] for 
relevant investigations). For the technical realization of this concept the genetic 
optimization tool can be combined with the mechanical modeling software, if this is 
possible (for example if the analysis code is open, it is written in a compatible 
computer language, etc). The requirements on computer time and storage may 
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become very large. Alternatively one may use the proposed hybrid strategy. First, a 
number of small neural networks approximate the response of each boundary point 
of interest as a function of the crack position (for all other parameters of the 
mechanical problem, like loading or boundary conditions, fixed). A similar 
performance can be obtained by using classical interpolation functions. The genetic 
optimization uses then the approximators to construct the fitness function and 
proceeds with the solution of the output error minimization problem and, eventually, 
of the inverse problem as in the previous example. 
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Figure 8: Test data: Predicted (+) and real (o) position of the defect for different 
places of the defect 
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Figure 9: Test data: Accuracy of x-coordinate prediction 
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Figure 10: Test data: Accuracy of y-coordinate prediction 
 

5.3 Structural reliability test example  
 

The six storey space frame, shown in Figure 11, has been considered for the purpose 
of the current study in order to assess the proposed metamodel assisted structural 
reliability analysis methodology. The space frame consists of 63 structural elements 
which are divided into five groups having the following cross sections: 1) IPB 650, 
2) IPB 650, 3) IPE 450, 4) IPE 400 and 5) IPB 450. The structure is loaded with a 
permanent action of G = 3 kPa and a variable action of Q = 5 kPa. In addition, in 
order to take into account the non-linear behavior of the structure when the mMRS 
method is used the seismic loads are reduced by the behavior factor q = 4.0 as 
Eurocede 8 (EC8) suggests for steel frames [30]. The three test cases corresponding 
to different combinations of random variables are considered here. 

The most common approach for the definition of the seismic input is the use of 
design code response spectrum. This is a general approach, which is easy to 
implement. However, if higher precision and more realistic simulation of the 
structural seismic response is required, the use of spectra derived from natural 
earthquake records is more appropriate. In order to avoid significant dispersion on 
the structural response, due to the use of different natural records, these spectra must 
be scaled to the same desired earthquake intensity. The most commonly applied 
scaling procedure is based on the peak ground acceleration (PGA).  

In this study a set of nineteen natural accelerograms, shown in Table 3, is used. 
Each record corresponds to different earthquake magnitudes and soil properties. 
These time histories are from different earthquakes. Two are from the 1992 Cape 
Mendocino earthquake, two are from the 1978 Tabas, Iran earthquake and fifteen are 
from the 1999 Chi-chi, Taiwan earthquake. The records are scaled, to the same peak 
ground acceleration of 0.32g in order to ensure compatibility between the records. 
The response spectra for each scaled record, in x and y directions, are shown in 
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Figures 12 and 13, respectively. The type of probability density functions, mean 
values and standard deviations for all variables are presented in Table 4. 

 
 

 
 

Figure 11: The six-storey space frame 
 

It has been observed that the response spectra follow the lognormal distribution 
[31]. Therefore the median spectrum x̂ , also shown in Figures 12 and 13, and the 
standard deviation δ  are calculated from the above set of spectra using the 
following expressions 

 

n

d,ii 1
ln(R (T))

x̂ exp
n

=
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∑
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where Rd,i(T) is the response spectrum value for period equal to T of the ith record 
(i=1,…,n, where n=19 in this study). It has been observed that for the six storey test 
example considered, the number of significant eigen-periods is eight. For a given 
period value, the acceleration Rd is obtained as a random variable following the log-
normal distribution whose mean value is equal to x̂  and standard deviation is equal 
to δ.  
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Earthquake Station Distance Site 
Dayhook 14 rock Tabas 

16 Sept. 1978 Tabas 1.1 rock 
Cape 

Mendocino 
6.9 rock 

Cape Mendocino 
25 April 1992 

Petrolia 8.1 soil 
TCU052 1.4 soil 
TCU065 5.0 soil 
TCU067 2.4 soil 
TCU068 0.2 soil 
TCU071 2.9 soil 
TCU072 5.9 soil 
TCU074 12.2 soil 
TCU075 5.6 soil 
TCU076 5.1 soil 
TCU078 6.9 soil 
TCU079 9.3 soil 
TCU089 7.0 rock 
TCU101 4.9 soil 
TCU102 3.8 soil 

Chi-Chi 
20 Sept. 1999 

TCU129 3.9 soil 
 

Table 3: List of the natural records 

 
Random 
variable 

Probability density 
function 

Mean value Standard 
deviation 

E N 210  10 (%) 
b N b*  2 (%) 
h N h* 2 (%) 
Seismic load Log-N x̂ (Eq. 22)  δ (Eq. 23) 

* dimensions from the IPE and HEB databases 
 

Table 4: Characteristics of the random variables 
 

In the first test case, where the modulus of elasticity and the earthquake loading 
are considered as random variables, one hundred values of the modulus of elasticity 
are selected in order to train the first ANN and one hundred combinations of the 
spectral values are selected for the training of the second ANN. For each ANN ten 
of these combinations are selected for testing the generalization capabilities of the 
trained ANNs. In the second test case the training-testing set was composed by one 
hundred fifty pairs, while in the case of the third test case the set was composed by 
two hundred pairs. The neural network configurations used are the following: (i) 
NN1: 1-10-8, NN2: 16-20-1, (ii) NN1: 10-20-8, NN2: 16-20-1 and (iii) NN1: 11-10-
8, NN2: 16-20-1, for the three test cases respectively. 
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Figure 12: Natural record response spectra and their median (x axis) 
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Figure 13: Natural record response spectra and their median (y axis) 

  
The influence of the three groups of random variables with respect to the number 

of simulations is show in Figure 14. It can be seen that 20 to 50 thousand 
simulations are required in order to calculate with an adequate accuracy the target 
probability of failure. It is also observed that considering both modulus of elasticity 
and the cross section dimensions as random variables leads to an increase of 7% of 
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the value of the probability of failure (1.37% for the third test case instead of 1.28% 
of the first and 1.24% of the second test case). 
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Figure 14: Influence of the number of MC simulations on the value of pf for the 
three test cases 
   

Once an acceptably trained ANN for predicting the maximum drift is obtained, 
the probability of failure for each test case is estimated by means of ANN based 
MCS. The results for various numbers of simulations are depicted in Table 5 for the 
three test cases examined.  From these results it can be observed that, in the case of 
basic MCS, the error of the predicted probability of failure with respect to the 
“exact” one is rather marginal. On the other hand, the computational cost is 
drastically decreased, approximately 30 times, for all test cases. 

 
6  Conclusions  
 
The paper presents applications of hybrid techniques, involving ANNs, in 
computationally demanding tasks in mechanics. For inverse and parameter 
identification problems there exist, in principle, the possibility to use directly ANNs 
for the approximation of the inverse structural mapping. Nevertheless, this mapping 
becomes complicated for real-life applications and the training of the ANNs may be 
difficult or even impossible. On the other hand, the direct mapping relating unknown 
parameters with structural response is much easier to be approximated. This can be 
done very efficiently with ANNs. The resulting trained ANN can be combined with 
a powerful numerical optimization algorithm, like genetic algorithms, for the 
solution of the inverse problem. This approach has been demonstrated in this paper 
with both static and dynamic applications. 
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 Test case 1 Test case 2 Test case 3 

Number of 

simulations 

“exact” 
pf (%) 

NN 
pf (%) 

“exact” 
pf (%) 

NN 
pf (%) 

“exact” 
pf (%) 

NN 
pf (%) 

000050 0.00 0.00 0.00 0.00 2.00 0.00 
000100 1.00 2.00 1.00 2.00 2.00 1.00 
000200 2.00 1.60 1.00 1.00 1.00 3.00 
000500 1.60 1.26 1.00 1.70 0.40 0.70 
001,000 0.90 0.81 0.90 0.67 1.00 0.86 
002,000 1.15 1.06 1.45 1.41 1.10 0.97 
005,000 1.12 1.04 1.30 1.24 1.32 1.18 
010,000 1.09 1.03 1.21 1.14 1.42 1.29 
  20,000 1.21 1.14 1.25 1.31 1.31 1.19 
050,000 1.26 1.16 1.22 1.31 1.36 1.21 
100,000 1.28 1.16 1.24 1.31 1.37 1.21 

CPU time (sec) 
Pattern 

selection 
- 2 - 3 - 5 

Training - 7 - 9 - 12 
Propagation - 25 - 25 - 25 

Total 1,154 34 1,154 37 1,154 42 
 

Table 5: “Exact” and predicted values of pf and the required CPU time 
 

On the other hand the computational effort involved in the conventional MCS 
becomes excessive in large-scale problems, especially when earthquake loading is 
considered, because of the enormous sample size and the computing time required 
for each Monte Carlo run. The use of ANNs can practically eliminate any limitation 
on the scale of the problem and the sample size used for MCS. 
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