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Abstract This work deals with the rolling frictional contact problem between an
elastic cylinder and a flat rigid body. A simple approach to solve the quasistatic
case through the results of the static one is presented. The discretization is based
on the boundary element method. The unilateral frictional contact problem (non-
smooth but monotone) is formulated in a compact form as a nonsymmetric linear
complementarity problem which is solved using the Lemke’s algorithm.

Keywords: Inequality problems; Frictional contact problems; Rolling contact;
Boundary Element Method; Complementarity Problems; Mathematical program-
ming.

1 Introduction

There is a considerable interest in contact problems with friction both from the
mathematical point of view and from applied practice. Indeed, the noise charac-
teristics of engineering systems are increasing factors in product marketability. For
instance, in the automotive industry, the custumer’s perception of the car noise is
very important in the purchasing decision. A considerable part of this noise results
from frictional contact effects arising between moving parts.

In this work, we are interested in the noise generated by the contact between a
rolling elastic cylinder and a flat rigid body. The investigation is actually focused
on the vibration of wheels which causes a change of the surrounding air pressure.
Nevertheless, the noise generated by the frictional contact itself could be significant.
This part of the noise is related to the relative slip velocity in the contact area.
The idea is to compute first this velocity in the quasistatic case. Abascal et al.
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Figure 1: Rolling cylinder in contact with a rigid body

[1, 2, 3] used two approaches to solve the quasistatic problem considering directly
the velocity as unknown variable.

Here, we propose another approach that allows to use results concerning the
existence and the uniqueness of the solution. Indeed, we solve the static frictional
contact problem and, afterwards, we compute the velocity using the appropriate
relations. This approach is also motivated by the fact that it can also help modelling
the noise caused by the vibrations of the wheel. Indeed, these vibrations are due
to instabilities and impacts observed in the slip area. A possible measure for their
minimization would be the reduction of area of these sources, namely, of the slip
zone.

Here, the boundary element method (BEM) is used to solve the rolling problem.
This method is not often applied to solve those problems with contact: one can
cite Abascal et al.[1, 2, 3], Wang et al. [4], and Kong et al. [5]. In this paper, the
elastostatic, frictional contact, rolling problem is solved for the first time using BEM
and the compact LCP formulation using Lemke’s algorithm.

2 Rolling problem

Let us consider an elastic rolling cylinder in unilateral contact with a flat rigid body.
The Coulomb’s law is taken to describe the friction phenomenon.

Since the displacements in the direction of cylindrical axis and the spin rotation
about the axes normal to that of the cylinder are excluded, the problem is reduced
to a plane strain state (see, e.g., [1, 2, 3]).

Friction is assumed to follow the dry Coulomb’s law where normal and tangential
tractions on the boundaries of the contact zone are related via a simple coefficient
of friction. Under this assumption, two points belonging to the cylinder A and the
rigid body B can be in three different states relative to each other:
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Figure 2: Contact zone

1. Stick state
rA,B
N ≤ 0, rA

N = rB
N , δn = 0,

rA
T = rB

T , st = 0,
(1)

2. Slip state

rA,B
N ≤ 0, rA

N = rB
N , δn = 0,

|rA,B
T | = µ|rA,B

N |, sgn(st) = −sgn(rA
T ),

(2)

3. Separation state

rA,B
N = 0, rA,B

T = 0, δn ≥ 0. (3)

Here, µ is the constant coefficient of friction, rA,B
N and rA,B

T are the normal
and tangential tractions of cylinder A and rigid body B, respectively, at contacting
points, uN and uT are the cylinder surface displacements, st is the slip velocity and
δn is the normal separation given by:

δn = δn0 − uN (4)

The initial separation, δn0, for a cylinder and a flat body in contact can be
approximated by

δn0 =
x2

2R
(5)

where R is the cylinder radius and x is the Eulerian coordinate along the contact
zone (see, Fig. 2) used to position each pair of points at each time relative to a rigid
body position of the cylinder.

When applying an Eulerian description of particles moving through the contact
area, the relative tangential slip velocity of each cylinder surface point is defined as

st = δ̇t =
dδt(x, τ)

dτ
(6)

τ is the time coordinate, x = x(x, τ) is the Cartesian coordinate of each point
relative to fixed axes and varying time τ , and δt is the tangential separation given
by

δt = (xA − xB) + uA
T + uB

T (7)
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where A and B indicate the cylinder and the flat body, respectively.
Substituting (7) into (6) leads to

st = V A − V B + V AuA
T,x + V BuB

T,x + uA
T,τ + uB

T,τ (8)

where V α is the velocity of a point of the rigid body α in the x-direction.
Under steady-state rolling conditions, the variation with time vanishes, so

st = V A − V B + V AuA
T,x + V BuB

T,x (9)

which is usually approximated [6] by

st = |V | (ξ + sgn(V )(uA
T,x + uB

T,x)
)

(10)

where V is given by (V A +V B)/2, and ξ is the normalized relative rigid slip velocity

(creepage), defined as ξ =
V A − V B

|V | . In fact, we compute only the dimensionless

part s∗t of st [3]:

s∗t = ξ + sgn(V )(uA
T,x + uB

T,x) (11)

When the displacement derivatives are approximated using a finite difference
scheme, the tangential slip velocity for a point located at the coordinate xi is, under
steady-state rolling conditions, expressed as

s∗t (xi) = ξ + sgn(V )
(

uT (xi+1)− uT (xi)
hi

)
(12)

where hi denotes the distance between two adjacent boundary points xi+1 and
xi.

To analyse coupled 2D rolling contact between two cylinders, Abascal et al. have
formulated the problem considering the slip velocity as unknown variable. Indeed, in
[3], they used the NORM-TANG iteration to solve two complementarity problems.
In [1], the problem is analysed by minimizing a function representing the equilibrium
equation and the contact restrictions.

In our case, the static contact-friction problem between an elastic cylinder and
a flat rigid body is first solved and, subsequently, the slip velocity is computed
explicitly using the above formula.

3 Discretization and Condensation

The model is formulated by means of the boundary element method. This formula-
tion is more suitable for this class of problem where the nonlinearity is confined to
the boundary of the body. The application of mathematical programming techniques
for unilateral contact problems together with a boundary element discretization has
been considered, among others, in [7], [8], [9], [10]. The here adopted formulation
follows the lines of [11], [12], [13], [14], [15], [16] and [17].
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One starts from the matrix formulation of displacement boundary element in
elastostatics [18]:

Hu = Gt (13)

Here, u is the vector of the nodal boundary displacements, t is the vector of
element boundary tractions, and H, G are the appropriate influence matrices.

The number of equations in (13) depends on the number of nodes on the dis-
cretized boundary. Let us note that the number of boundary element tractions (i.e.,
the dimension of t) depends on the nature of the boundary elements used.

The classical approach for the solution of the bilaterally constrained structures
goes through the specification of appropriate, known boundary displacements or
tractions, the rearrangement of the system (13), and finally, the formulation of a
nonsymmetric system of equations, after reordering:

Ay = b (14)

The 2n-dimensional vector y contains all the unknown boundary displacements
or tractions of the problem. In the contact area, both displacements and tractions are
unknown. They must be kept in the formulation and connected with the inequality
and complementarity relations of the unilateral contact mechanism. After solving
the arising LCP, one knows which of these variables vanishes. Thus, we proceed
with condensation and, then, formulate the linear complementarity problem.

Let us consider uc and tc as being the boundary nodal displacements and trac-
tions, respectively, at the frictional unilateral contact boudary of the cylinder. After
partitioning the boundary of the cylinder, the equation (14) gives:

[
Hff Hfc

Hcf Hcc

] [
x
uc

]
=

[
ff

fc

]
+

[
Gfc

Gcc

] [
tc

]
(15)

When nc is the number of the nodes at the unilateral contact boundary, then
uc and tc have 2nc elements, Hcc and Gcc have 2nc × 2nc elements, Hff has 2(n −
nc)× 2(n− nc) elements, Gfc, Hfc and Hcf have 2(n− nc)× 2nc elements.

The next step is to perform a local coordinate transformation so that normal and
tangential to the unilateral boundary quantities appear in the formulation. There-
fore, let us consider w and r as the natural local coordinates (normal and tangential
coordinates) of the displacements and the tractions in the contact boundary, respec-
tively:

ui
c =

[
ui

cx

ui
cy

]
, tic =

[
ticx
ticy

]
, wi =

[
ui

N

ui
T

]
, ri =

[
ri
N

ri
T

]
(16)

The transformation for a single unilateral boundary node i reads:

Ciu
i
c = wi, −Cit

i
c = ri (17)

with

Ci =
[

cosφi sinφi

−sinφi cosφi

]
(18)
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Since C−1
i = CT

i , relations (17) can be inverted:

ui
c = CT

i w, tic = −CT
i r (19)

Taking into acount these transformations, one has

[
Hff HfcC

T

Hcf HccC
T

] [
x
w

]
=

[
ff

fc

]
−

[
GfcC

T

GccC
T

] [
tc

]
(20)

Then, the problem will be condensed, i.e., in order to get the flexibility matrix,
the unknown variable x will be reduced by considering the relation (20):

x = H−1
ff ff −H−1

ff GfcC
T r −H−1

ff HfcC
T w (21)

Hence, w becomes:
[
HccC

T −HcfH−1
ff HfcC

T
]
w =

[
fc −HcfH−1

ff ff

]

−
[
GccC

T −HcfH−1
ff GfcC

T
]
r

(22)

Thus, w can be written as:

w = w0 + Fr (23)

or:

[
wn

wt

]
=

[
wn0

wt0

]
+

[
Fnn Fnt

Ftn Ftt

] [
rN

rT

]
(24)

4 Problem formulation

ic version of the Coulomb’s frictional contact law is adopted here. Moreover, follow-
ing [19], a direct nonsymmetric LCP formulation of the frictional unilateral contact
problem is used.

We follow the formulation of [14] and [19] for the case of three-dimensional prob-
lems, where the friction cone is linearized by means of a convex polyhedron. Let the
normal forces and the friction forces be assembled in vectors rN = {rN1, . . . , rNn}T

and rT = {rT1, , rT2 . . . , rTn}T , respectively, where, e.g., rTi is the frictional force of
the i-th contact node.

Coulomb’s law of dry friction connects the tangential (frictional) forces with the
normal (contact) forces by the relation

γi = µ|rNi| − |rTi|, i = 1, . . . , n, γi ≥ 0 (25)

Here | ∗ | denotes the absolute value and µ is the friction coefficient (anisotropic
friction may also be considered). The friction mechanism is considered to work in
the following way: If |rTi| < µ|rNi| (i.e., γi > 0), the slipping value γiT must be equal
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Figure 3: Coulomb’s friction law in 2-D

to zero, and if |rT i| = µ|rNi| (i.e., γi = 0), then we have slipping in the opposite
direction of rTi:

if γi > 0, then yTi = 0
if γi = 0, then there exists σ > 0 such that yT i = −σrTi

(26)

By assembling the contributions of all (n) unilateral nodes, relation (26) reads:

γ = TT
NrN + TT

T rT (27)

with the matrices TT and TN

TT = diag
[
T1

T ,T2
T , . . . ,Tn

T

]
, TN = diag

[
T1

N ,T2
N , . . . ,Tn

N

]
. (28)

These matrices are obtained from the linearized friction law considered in 2D
and have the following form (Fig.3) [11, 19].

Tj
T =

[
1 −1
0 0

]
, Tj

N = [µ, µ] . (29)

Finally, the slip value in (25), (26) is written as

yT = TT λ, λ ≥ 0 (30)

where λ is a vector of nonnegative slipping parameters. Then, γ and λ fulfil the
following complementarity condition:

γT λ = 0 (31)

To formulate the linear complementarity problem, two approaches are used: rigid
body displacements and rigid body loading.
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Figure 4: Decomposition of a frictional law

4.1 Rigid body displacement approach

In the rigid body displacement approach, the slipping value λ and the tangential
displacements uT are related by the compatibility relation:

TT λ− uT = dT (32)

where dT denotes the initial tangential distance.
The general decomposition scheme with slack variables can be found in more

details for two-dimensional friction problems in [14] and for three-dimensional ap-
plications in [11] and [19]. In fact, for three-dimensional problems, the submatrices of
(28) are constructed from a linearization of the friction cone. Note also that, in gen-
eral, anisotropic friction effects may be considered as well. For the two-dimensional
case, which is considered in this paper, the previously used decomposition scheme
for one frictional joint is explained in (Fig.3 and Fig.4)

Now, a linear elastic behaviour of the structure is assumed which, on the assump-
tion that everything outside of the frictional contact interfaces has been condensed
out (elimination of d.o.f’s), reads:

ũ = F̃r̃ (33)

where

ũ =
[

uN

uT

]
, F̃ =

[
FNN FNT

FTN FTT

]
, r̃ =

[
rN

rT

]
. (34)

Here, F̃ is the symmetric flexibility matrix where FNN is an n×n nonsingular matrix
with the mechanical meaning of being the normal flexibility matrix, FTT is a 2n×2n
nonsingular matrix (the tangential flexibility) and FNT , FTN are the corresponding
couple flexibility matrices.
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By using the previous relations, the unilateral kinematic conditions normal and
tangential to the interface, take the form:

yN − FNNrN − FNT rT = dN ,

TT λ− FTNrN − FTT rT = dT . (35)

A standard LCP formulation is derived by means of the following change of
variables. First, from the second relation in (35), rT is expressed as follows:

rT = −F−1
TTFTNrN + F−1

TTTT λ− F−1
TTdT (36)

Then, by eliminating rT from equations (35), we obtain

yN − (
FNN − FNTF−1

TTFTN

)
rN − FNTF−1

TTTT λ = dN − FNTF−1
TTdT

γ +
(
TT

TF−1
TTFTN −TT

N

)
rN −TT

TF−1
TTTT λ = −TT

TF−1
TTdT (37)

Finally, a standard LCP is obtained from equations (37):

w −Mz = b

w ≥ 0, z ≥ 0, wTz = 0 (38)

with

w =
[

yN

γ

]
, z =

[
rN

λ

]
, b =

[
dN − FNTF−1

TTdT

−TT
TF−1

TTdT

]
,

M =
[

(FNN − FNTF−1
TTFTN ) FNTF−1

TTTT

−(TT
TF−1

TTFTN −TT
N ) TT

TF−1
TTTT

]

4.2 Rigid body loading approach

In this approch, we follow the ideas of [11] but a two-dimensional model is adopted.
First, the global equilibrium equations are written as

GNrN + GT rT = L (39)

where GN and GT are the the equilibrium matrices corresponding to the normal
and the tangential contact reactions, respectively. L = {P,Q, M}T is the vector of
the external loadings P and Q, and the moment M (Fig.2).

The slipping value λ and the tangential displacements uT are related by the
compatibility relation:

TT λ− uT +
◦
uT = dT (40)

◦
uT is the vector of the tangential displacements of the adjacent points in the

contact area due to the rigid body motion. The linear elastic behaviour (13) is here
available and the flexibility matrices are the same.

By means of the principle of virtual work one can find that :

◦
uN = −GT

N

◦
u (41)
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◦
uT = −GT

T

◦
u (42)

where
◦
u is the vector of the rigid body displacements and rotations with respect

to coordinate system. For two-dimensional problems,
◦
u reads as

◦
u =

{◦
ux,

◦
uy,

◦
ϕ
}T

(43)

where
◦
ux and

◦
uy are the rigid body displacements along the directions OX and

OY , respectively, and
◦
ϕ denotes the rigid body rotation. By means of the relations

(41), (42), (33), (24) and (40), we obtain

yN − FNNrN − FNT rT −GT
N

◦
u = dN ,

TT λ− FTNrN − FTT rT −GT
T

◦
u = dT . (44)

Let us now express the rigid body displacements as a difference of two nonneg-
ative values [20],

◦
u =

◦
u

+ − ◦
u
−

(45)

where
◦
u

+
=

◦
u + | ◦u|

2
≥ 0 and

◦
u
−

=
− ◦

u + | ◦u|
2

≥ 0

Substituting (45) in (44), we have

yN − FNNrN − FNT rT −GT
N

◦
u

+
+ GT

N

◦
u
−

= dN ,

TT λ− FTNrN − FTT rT −GT
T

◦
u + GT

T

◦
u
−

= dT . (46)

Let us now introduce the nonnegative slack variables vectors v+ ≥ 0 and v− ≥ 0
in the equation (39), which can be put in the form

v+ + GNrN + GT rT = L,v− −GNrN −GT rT = −L (47)

From equations (39) and (47), we note that at the equilibrium state the nonneg-
ative slack variables vectors v+ ≥ 0 and v− ≥ 0 must be equal to zero and thus the
following orthogonalities hold:

v+ ◦
u

+
= 0, v−

◦
u
−

= 0 (48)

Following the same way as in the previous section, a Linear Complementarity
Problem (LCP) is obtained:

w −Mz = b

w ≥ 0, z ≥ 0, wTz = 0 (49)
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with

w =




yN

v+

v−

γ


 , z =




rN
◦
u

+

◦
u
−

λ


 , b =




dN − FNTF−1
TTdT

L + GTF−1
TTdT

−L−GTF−1
TTdT

−TT
TF−1

TTdT


 ,

M =




(FNN − FNTF−1
TTFTN ) (GN − FNTF−1

TTGT
T ) −(GN − FNTF−1

TTGT ) FNTF−1
TTTT

−(GN −GTF−1
TTFTN ) GTF−1

TTGT
T −GTF−1

TTGT
T −GTF−1

TTTT

(GN −GTF−1
TTFTN ) −GTF−1

TTGT
T GTF−1

TTGT
T GTF−1

TTTT

−(TT
TF−1

TTFTN −TT
N ) −TT

TF−1
TTGT

T TT
TF−1

TTGT
T TT

TF−1
TTTT




The LCP (38) is defined on IRn+m where n is the number of discrete unilateral
joints, m = n× l and l is the number of faces in the polyhedral approximation of the
friction cone. Note that, here, we get a nonsymmetric LCP due to the nonsymmetric
(but positive semidefinite) matrix M in (38) (a well-known fact from analogous cases
of nonassociated laws in friction, plasticity etc, see, e.g., [21]).

5 Lemke’s Algorithm

There are many results on the existence and the uniqueness of the solution. We
make especially reference to Al-Fahed et al. [11] where the conditions guaranteeing
the solvability of the LCP are based on the theory of Fichera [22] for nonsymmetric
variational inequalities.

Lemke’s algorithm [23] is used here to solve the LCP (38) and (49) which are in
the general following form:

w −Mz = b

w ≥ 0, z ≥ 0, wTz = 0 (50)

We start from a feasible point which is not easy to obtain. In order to over-
come this difficulty, the algorithm which we use introduces a ’measure of feasability’
expressed by an additional nonnegative z0. Problem (50) is then written in the
following form

w −Mz− e0z0 = b

w ≥ 0, z ≥ 0, z0 ≥ 0, wT z = 0 (51)

where
e0 = [1, 1, ..., 1]T

Let us describe the complementarity pivot algorithm [24] where we consider m
to be the number of variables contained in each vector w and z in (51). Recall that
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an m-vector composed of certain nonzero elements of the vectors w and z is called
a basic vector. Let w be the initial base vector of problem (51), while A means the
m × (2m + 1) matrix and h the m-vector for writing the first equation in (51) in
tableau form. Initially, A and h take the forms :

A = [I −M − e0], h = b (52)

The algorithm has the following steps.
Step 1. Initialization: Set k = 1, let w be the initial basic vector, and find tk

such that
btk = min

j
bj : j = 1, ...,m

If btk ≤ 0, then continue with Step 2, otherwise the algorithm stops with z = 0
(unique if btk ≥ 0 )

Step 2. Initial infeasability z
(1)
0 : Drop from the basic vector the basic variable

which corresponds to index tk and insert z0 in its position. This is performed by
going directly to Step 4.

Step 3. Complementarity change of basic variables: Set k = k + 1, let s be the
column of the nonbasic variables complementary to the dropped variable which has
to enter the basis according to the complementary pivoting rule, and find the basic
variable, to be dropped, by means of the minimum ratio law, i.e., find tk such that

Rtk =
{

min
j

hj

ajs
: ajs ≥ 0, j = 1, ...,m

}
,

where ajs, hj , i = 1, ..., 2m+1 and j = 1, ..., m are the components of the current
tableau A and h. If {ajs} ≤ 0 for all j, i.e., the algorithm is unable to introduce the
variable s into the base without violating the nonnegativity restriction, then go to
Step 6, otherwise continue with Step 4. This is done in order to drop from the basic
vector the variable which corresponds to index tk, and to insert in its position the
nonbasic variable which correponds to column s.

Step 4. Apply a Gauss-Jordan pivot elimination step (first phase of the Simplex
method of linear programming) with pivot row the tkth row and pivot column the
sth column (respectively, the (2m + 1)th column) if k > 1 (respectively if k = 1).

Step 5. Stopping criterion: If z0 is the droped basic variable (i.e., z0 = 0), then
go to Step 7, otherwise continue with Step 3.

Step 6. Ray termination: The algorithm is terminated with ray termination
(z0 > 0) and the LCP has no solution.

Step 7. Normal exit: The algorithm is terminated with z0 = 0 and the current
basic vector contains the solution of the LCP.

From all the above steps we conclude that if ray termination occurs, the LCP
has no solution. In this case, the data of the problem are incompatible, which
means that the structure cannot be supported from the existing unilateral joints
and for the applied loading and the geometry of the assumed problem. We could
summurize that the Lemke’s algorithm reduces the initial residual |w−Mz−b| for
w ≥ 0, z ≥ 0, wTz = 0 to zero.
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Figure 5: The mesh around the cylinder contour.

6 Numerical results

To discretize the rolling problem with BEM, constant as well as discontinuous
quadratic elements are used. The computations with the both kinds of elements
are presented only in the frictionless case. In the other cases, we use constant el-
ements which give better results. In fact, seeing some small difference in traction
results according to the used element, that point will be investigated more deeply.
Indeed, in the literature, there is almost no reference to this statement; we can
only cite Karami [25] and Stavroulakis et al. [16] who remarked the existence of
oscillations in the traction behaviour with quadratic elements.

For all the computations, a unit circle is divided into 56 elements as shown in
Figure 5. Young modulus and Poisson coefficient are taken to be 94500 and 0.1,
respectively. The rigid body normal and tangential displacement used were dN =
R/2 and dT = 0.1dN where R is the radius of the cylinder. The numerical simulations
are made with |Q/P | = 0.1 where Q and P are the resultants of tangential and
normal forces respectively. The creepage used1 is ξ = 1/500 as in [3].

Firstly, the results concerning the frictionless unilateral contact are presented in
order to check our solution by comparing it to the analytical one due to the Hertz
theory [25, 26].

Around the contact zone, we approximate the 1/12 of the cylinder contour with
24 elements.

In Figure 6, the agreement between the Hertz theory solution and the results of

1personal communication
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Figure 6: Normal tractions in frictionless unilateral contact: Comparison of
different approximations with the analytic solution (Hertz theory)

our computations using constant and quadratic elements is presented. The residual
of the Lemke algorithm is about 10−18.

Figures 7, 8, and 9 show the behaviour of the normal and the tangential tractions
for different values of the friction coefficient, while Figure 10 gives the corresponding
tangential velocity. These results have been obtained using only a normal rigid body
displacement approach.

For the following analysis, both the rigid body displacement and rigid body
loading approaches have been implemented. In fact, here, the tangential effects
become active such that the potential contact area is bigger than in the previous
analysis. Hence, 1/6th of the cylinder contour is approximated in order to be able
to see the three parts of the contact area: separation, slip and stick.

The results shown in the Figures 11, 12, 13, and 14 are obtained by applying a
normal and a tangential rigid body displacements approach. Figure 11 shows the
existence of a separation area in the potential contact zone. The stick/slip area is
not centered because of the tangential effect. In the Figures 12 and 13, the normal
and the tangential tractions in the frictional contact case are plotted. Figure 14
shows the velocity behaviour only in the effective contact zone.

The residual of the computations in the frictional contact case considering the
rigid body displacement method are about 10−11.

The last four figures show the results of the rigid body loading approach. The
computed residual, related to this approach, with different values of the friction
coefficient is about 10−7.

All results of the frictional contact problem case satisfy the equations (2) and
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Figure 7: Normal and tangential tractions in the frictional contact case, µ =
0.02: Comparison with the analytic solution
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Figure 8: Normal and tangential tractions in the frictional contact case, µ =
0.1: Comparison with the analytic solution
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Figure 9: Normal and tangential tractions in the frictional contact case, µ =
0.5: Comparison with the analytic solution
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Figure 10: Tangential velocity: Dependence on the friction coefficient
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Figure 11: Distribution of stick/slip and normal separation in the potential
contact zone applying the rigid body displacement approach

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

x/a

Tt
-muTn
muTn

Figure 12: Normal and tangential tractions in the frictional contact case (µ =
0.1) applying the rigid body displacement approach
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Figure 13: Normal and tangential tractions in the frictional contact case (µ =
0.3) applying the rigid body displacement approach
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Figure 14: Tangential velocity in the effective contact zone applying the rigid
body displacement approach: Dependence on the friction coefficient
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Figure 15: Distribution of stick/slip and normal separation in the potential
contact zone applying the rigid body loading approach
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Figure 16: Normal and tangential tractions in the frictional contact case (µ =
0.1) applying the rigid body loading approach
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Figure 17: Normal and tangential tractions in the frictional contact case (µ =
0.7) applying the rigid body loading approach
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Figure 18: Tangential velocity in the effective contact zone applying the rigid
body loading approach: Dependence on the friction coefficient
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(26).

7 Conclusion
In the present work, the real rolling unilateral frictional contact problem has been
considered, not its smoothed version, leading to a linear complementarity problem.
Hence, this paper is somehow the extension of [3]: there, the assumption of a half-
space has been used while, here, the real domain geometry has been discretized not
the half-space. Thus, in the quasistatic frictional contact problem, an alternative to
compute the velocity has been proposed. The influence matrices representing the
elastostatic equations were determined using the Boundary Element Method which
allows to make the CPU time much smaller than when the Finite Element Method
would be applied. The nonsymmetric linear complementarity problem is solved with
the Lemke’s algorithm. The numerical results show a solution behaviour which is
verified by the mathematical modelling and the mechanical meaning, and they have
been compared with other results [1], [2] ,[3], [5], [7], [19], [25], [27] and [28]: the
trend is the same.

Finally, one can state that, although the actually solved problem, namely the
static problem, is well known theoretically, the presented method for solving the
LCP is an effective alternative to the existing methods for solving rolling problems,
namely the semi-analytical or trial and error methods, or solving the LCP by means
of equivalent non-linear equations.
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