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Abstract. In the present work the ultimate failure load and the collapse mechanism of
a stone arch bridge are estimated by the usage of (a) a multi - part elastic model with
unilateral contact frictional interfaces and (b) a continuous damage model. According to
the contact model, contact interfaces simulating potential cracks are considered and their
opening or sliding indicates crack initiation. The second model deals with the material
damage consisting in the development of internal microcracks that affect the load bearing
capacity of the material. Satisfactory comparison of the results is reported here.
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1. DESCRIPTION OF THE UNILATERAL CONTACT
AND THE DAMAGE MODEL

In this paper is presented a first step in the cooperation between a discrete and a
continuum model. Objective goal of this cooperation is to study as accurately as possible
structures with non linear behavior, like masonry arches.

A stone bridge consists of stone blocks and the mortar joints. Low tensile strength
of the arch, which is found in the joints, contrary to the high compressive strength of the
blocks, make the whole structure highly non linear.

In the present study two models are used for the calculation of the failure load and
the collapse mechanism of the arch bridge. The first model [1] uses unilateral contact -
friction interfaces in order to describe the mechanical behavior of the arch. The model
has been successfully applied to a real structure which was experimentally tested in the
past [1]. The second model is a damage model [2], which was initially developed for a
general use. In this study, the model is initially used for the calculation of the limit load
and the collapse mechanism of a real structure. Thus, parameters of this model need to
be appropriately adjusted.
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The two models are presented in the following paragraphs. Their predictions on a
bridge with a concentrated force applied at the quarter span of the arch, which is probably
the worst position of the live load [3], are compared.

1.1. The unilateral contact - friction model

The elastic model of the bridge is divided by a number of interfaces perpendicular

to the center line of the arch. Unilateral contact law governs the behavior in the normal
direction of an interface, indicating that no tension forces can be transmitted in this di-
rection. The behavior in the tangential direction takes into account that sliding may or
may not occur.
The unilateral contact - friction problem is a nonlinear problem in which the nonlinearity
is restricted to certain interfaces or the boundary. Consequently, the equations of equilib-
rium are nonlinear even if the material obeys a linear elastic law or a small displacement
assumption is considered. For the frictional contact problem the Virtual Work equation is
written in a general form as

/ T:0edV = / ou - tdS—l—/ su-fdv+ [ su-t"dS'+ [ ou-ttds’ (1)
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where 7 is the stress matrix, de is the virtual strain matrix; du is the virtual displacement
matrix, t and f are surface and body force vectors respectively, and t” and t! are the
normal and tangential traction vectors on the actual contact boundary S’. The contact
constraint is enforced in the Virtual Work equation, with Lagrange multipliers representing
the contact pressures. Lagrange multipliers are also used to enforce sticking conditions in
the tangential direction. The set of the nonlinear equations is solved by the Newton -
Raphson incremental iterative procedure.

In the simplest case of frictionless contact, the problem can be formulated as a parametric
linear complementarity problem (LCP) [4]

Ku+ N'r =P, + \P (2a)
Nu-g<0 (2b)
r>0 (2¢)
(Nu-—g)'r=0. (2d)

Equation (2a) expresses equilibrium equations of the unilateral contact problem without
friction, K is the stiffness matrix and u is the displacement vector. P, denotes the self -
weight of the structure and P represents the live load multiplied by the scalar parameter
A. N is an appropriate geometric transformation matrix and vector g contains the initial
gaps for the description of the unilateral contact joints. Relations (2b), (2¢), (2d) represent
the constraints of the unilateral contact problem for the whole discretized structure, i.e. no
- penetration, no - tension and either closed or open (complementarity). The enforcement
of the constraints can be achieved by using Lagrange multipliers. Thus, r is the vector
of Lagrange multipliers corresponding to the inequality constraints and is equal to the
corresponding contact pressure (-t").

The calculation of the ultimate load is based on the exploitation of the solvability con-
ditions for linear complementarity problems and variational inequalities. Every part of
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the bridge between two interfaces may develop rigid body displacements, which must be
compatible with the constraints of the unilateral contact problem, otherwise no solution
exists. In other words an equilibrium configuration may or may not exist, depending on
the geometry of the structure and the direction of the applied loading. Collapse occurs at
the load step of the load incrementation where solvability is first violated.

This model is presented in more details in [1].

1.2. The damage model

In this case, a linear elastic model is considered where the damage of the material
has been taken into account. The damage is caused by the opening of internal microcracks
which lead to the decrease in the load carrying capacity of the material, and, eventually, to
the possible failure of the system. The material is assumed to be elastic with constitutive
law

7 = (K(de) (3)
where ( is the scalar damage field. Following the ideas of Frémond and Nedjar [5, 6], the

damage field is defined as an internal variable and measures the fractional decrease in the
strength of the material, taking the values as the ratio

Bery
C=Cxt) =4 (4)
between the effective modulus of elasticity of the material E. ;s and that of the damage-free
material F. Due to this definition, the variable ( varies between 0 and 1. When ( = 1 the
material is damage-free, when ¢ = 0 the material is completely damaged and for 0 < { < 1
it is partially damaged. Following the derivation in Frémond and Nedjar [5, 6] the evolution
of the microfractures responsible for the damage is described by the differencial inclusion

¢ =K AC+ Y, 11(€) 2 B(d¢, €) (5)

where £ is the damage diffusion constant, 9v¢, ;) is the subdifferential of the indicator
function of the interval [, 1] ({« is supposed to be a lower bound for the damage) and ¢ is
the damage source function, which contributes to the evolution of the damage depending
on the mechanical stresses, and in this case has the form

P(de, ¢) = M1 <1E—C> - %/\2 Set - det + \s3. (6)

Here de' is the positive part of the strain tensor, that is, only tension is supposed to
contribute to the development of damage and A1, Ao and A3 are process parameters. The
body is supposed to initially occupy a domain £ whose boundary 9€2 = I is divided into
two disjoint parts: I'p, where the body is supposed to be fixed (homogeneus Dirichlet
condition), and I'y, where surface tractions (fy) are considered (Neumann boundary con-
dition). In order to analyze and solve numerically this model, a variational formulation is
obtained, consisting in an evolutionary variational equation for the mechanical behaviour
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and a nonlinear variational inequality for the damage evolution:

(CKu(t), e(w)) 2(y2x2 = (fB(1), fw)v + (fN(8), W)L2ry)2 YW EV, (7)
(C(), € = C() p2@) + (VC(E), V(€ = C(1)) 1202
> (¢(5€(t)7 C(t))v §— C(t))LZ(Q)v V¢ ek, (8)

where

V={fve[H(Q)]?;v=0 on I'p}
K={cHYQ):( <6<1 ae in Q}

are the sets of admissible displacements and damage fields, respectively. Moreover, (.,.)x
denotes the inner product on the variational space X. Details about the variational and
numerical analysis of this model, as well as its numerical resolution can be found in [2].
Collapse occurs at the loading step for which the whole cross-section of the bridge reaches
the lower bound for the damage (..

2. AN APPLICATION ON A REAL SCALE MASONRY BRIDGE

A plane stress model of stone arch bridge without fill is considered [7], as shown in
Figure 1(a). Loading includes self - weight and a concentrated load at the quarter span of
the bridge. Young’s modulus is 5GPa, Poisson’ s ratio 0.3 and density 2200Kg/m?.

2.1. General

For the contact analysis, the finite element model consists of 3036 quadrilateral,
four - node, bilinear finite elements with two translational degrees of freedom per node.
A typical finite element length is 0.05m. A load increment equal to 0.02KN is considered
in the iterative incremental procedure. The friction coefficient is chosen equal to 0.6. This
value is high enough to prevent sliding. Therefore a direct comparison of the results with
the ones provided by the damage model is possible. In addition, a relatively large number
of interfaces equal to 40 has been considered for the arch as the exact number of interfaces
along the bridge’s geometry tends to be meaningless in case many interfaces are used [1].

The damage model consists of 8400 triangular Lagrange finite elements with two
translational degrees of freedom per node, and a total of 4515 nodes. Furthermore, the
following data for the damage model have been used: k = 0.001s (time step size), kK =
1072, ¢, =0.01, Ay =2.d—3, o =5 x 102, A3 =7 x 1074,

2.2. Results

The failure load for the contact model of 40 interfaces is 87.14KN. This limit load
compares well with the one obtained by the damage model, which is equal to 90 KN. In
Figure 1(b) the force - displacement diagrams of the two methods are compared. More-
over, both methods predict the same, well-known, mechanism of collapse. A four hinges
mechanism arise in case of a quarter span load. The same conclusion arises from both ex-
perimental research [8] and the classical collapse mechanism method of Heyman [3]. The
above results are schematically shown in Figure 2(a),(b). In Figure 2(b) also the damage
field over the deformed configuration (deformations multiplied by a factor 50) is plotted.
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Fig. 1. (a) Geometry (m) of the masonry bridge-12 contact interfaces (b) Force-
displacement diagram
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Fig. 2. Collapse mechanism from (a) unilateral contact-friction model (b) Damage model

3. CONCLUSIONS

The collapse mechanism of both contact and damage models at failure coincides with
the one predicted by the classical collapse mechanism method of Heyman. The failure load
obtained by the two methods is almost identical as well. However, there is a divergence in
the force - displacement diagrams where the damage model has an ascending branch at
failure. Further investigation, including for example parameter identification, will possibly
lead to better comparison results.
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TIEP XUC MOT CHIEU VA PHAN TiCH HU HONG
TRONG VOM DA CONG

Trong nghién cttu nay tai trong pha hity cyic han va co ché pha hiy ctia cau da duge
tinh todn st dung (a) mo hinh dan hoi timg khic véi ma sat tiép xtc mot chiéu va (b)
mo6 hinh hu héng lién tuc. Theo mo hinh tiép xic, ta xem xét mat tiép xtic mo phong
thé nang ctia vét niit va vét nitt bat dau khi cac mét tiép xtc mé hodc truct di. Mo hinh
tht hai lam viéc v6i hu hong vat lieu bao gdom su phat trién cac vét nitt micro bén trong
va anh hudng dén kha ning chiu tai clia vat lieu. Trong bai bdo két qua clia hai mo hinh
dugce so sanh.
Tit khoa: Vom da cong, phan tich gidi han, tiép xtc mot chiéu, mo hinh hu héng lién tuc



