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FAULT DETECTION USING PARAMETER ESTIMATION 
A. POULIEZOS, G. STAVRAKAKIS AND C .  LEFAS 

Department of Production Engineering, Technical University of Crete, Aghiou Markov Street, 73132 Chania, Greece 

SUMMARY 

This paper presents a brief summary of fault-detection methods using parameter estimation techniques. 
An overview of the fault-detection system design methodology is first presented, followed by the 
principles of parameter-estimation fault-detection techniques. Applications from the field of industrial 
processes are given and finally a case study is described which applies the general techniques to the 
fault detection of D.C. motors using multiprocessor systems. 

KEY WORDS Fault detection Parameter estimation Reliability 

INTRODUCTION 

The increasing complexity of man-made systems, 
such as computer and communication networks, 
manufacturing systems and electrical power systems, 
poses difficult problems to the users of these sys- 
tems. 

The complexity arises not only from the high 
dimensionality of these systems and the large vol- 
umes of the information flow, but also from the 
randomness of faults and failures. 

Carefully constructed optimal operational strateg- 
ies can easily be rendered null by an unexpected 
failure, hence the crucial importance of reliable and 
fast fault detection, location and isolation. 

Benvenistel distinguishes three typical situations 
in which the need for detecting changes in dynamical 
systems arises: 

1. 

2. 

3. 

Change detection is an integral part of the 
modelling of a signal or a system. A typical 
example of this is the segmentation of signals 
in view of pattern recognition, especially 
speech signals, electroencephalograms, or 
various geophysical signals. Applications are 
reported by Doerschuk ef  al. ,* Andre- 
Obrecht3 and Nikiforov and T i k h ~ n o v . ~  
Detection plays the part of an alarm during 
the monitoring of a dynamical system, the 
most frequent case being the detection of 
failures in sensors or actuators in control sys- 
tems. A more difficult variant of this category 
is the monitoring of vibrating structures (tur- 
bines, motors, offshore platforms), where 
monitoring is aimed at the detection of 
changes in the vibrating behaviour of the 
structure, possibly related to the occurrence 
of fissures or fatigue. 
Change detection is a tool for improving the 
tracking capability of an adaptive algorithm 
in the presence of non-stationarities in the 
system to be identified. In this case, detection 

is only one of the possible ways of adapting 
the gain of a recursive algorithm. 

In this paper we survey a subset of the many 
failure detection methods available, namely those 
that are based on parameter estimation. 

PROBLEM STATEMENT 

Following I ~ e r m a n , ~  a fault is defined as a non- 
permitted deviation of a characteristic property of a 
system, which leads to the inability of the system to 
fulfil its intended purpose. Fault monitoring or fault 
detection is performed by checking whether certain 
directly measurable or estimated variables are within 
specified tolerance limits. 

The next step is fault diagnosis: the fault is located 
and the cause of it is established. This is followed 
by the fault evaluation, which is accompanied by an 
estimation of the fault’s size and possibly an indi- 
cation of the time instant of its occurrence, which 
may show how the fault will affect the process. 

Faults are divided into different hazard classes 
according to an incidenthequence analysis or a fault 
tree analysis, as 

(a) unsteady faults (random structural changes) 
(b) steady faults (permanent structural changes) 
(c) catastrophic faults (structural changes cre- 

ating catastrophes) 

Faults often appear in that order, and progressive 
deterioration may lead to catastrophes. Faults can 
also be classified into evolving (due to ageing) and 
cataleptic (random). 

After the effect of the fault is evaluated, a decision 
on the action to be taken can be made. If the fault 
is tolerable, the process may continue operating; if 
it is conditionally tolerable, a change of operation 
has to be performed. If the fault is intolerable, the 
process must be stopped, and the fault eliminated. 
The above ideas are shown schematically in Figure 1. 
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Figure 1. Supervision loop on appearance of a fault 

Cataleptic fault detection is carried out as a real 
time task. Modelling of the wear process is perfor- 
med by monitoring the evolution of evolving faults 
and consequently the forecasting of the risk of fail- 
ure or unavailability is made practical. 

The design of fault-detection systems involves the 
consideration of several issues. One is usually inter- 
ested in designing a system that will respond rapidly 
when a fault occurs. This property, however, will 
in most cases make the system sensitive to noise, 
resulting in frequent false alarms triggered by noise 
in the fault-detection mechanism. The trade-off 
between these two design issues will depend on the 
specific application. 

Fault-detection schemes are mainly parameter- 
estimation algorithms trying to detect unexpected 
variations of the monitored parameters. Since moni- 
tored signals are usually embedded in noise, any 
fault-detection algorithm aims at the rejection of 
noise. 

The effectiveness of a fault-detection algorithm is 
qualitatively judged by the ‘probability’ of false 
alarms and the speed with which a fault is detected. 
A fault-detection algorithm is usually the implemen- 
tation of a general-purpose estimation method to 
the particular monitored process. 

The quality of fault detection depends mainly on 
two factors: 

(i) the sophistication of the algorithm 
(ii) the sampling rate of the system. 

Unfortunately, these two factors have contradict- 
ing requirements. More sophisticated algorithms 
require more computations per iteration and conse- 
quently result in smaller sampling rates. A compro- 
mise has to be found between the tolerable cost of 
a fault monitoring system (which directly affects the 
computational resources that can be allocated to the 
fault detection system), the sophistication of the 
estimation algorithm and the resulting sampling 
rate. 

The cost of computer hardware is dropping dra- 
matically as VLSI technology advances. Modern 

microprocessors offer computational power unim- 
aginable even five years ago and at the same cost. 
This makes the implementation of sophisticated esti- 
mation algorithms feasible in new areas not thought 
possible up to now. It also allows the use of other 
techniques for fault detection. 

FAULT DETECTION METHODOLOGY 

Excellent surveys of fault detection methods are 
given by Willsky,6 Iserman5 and T~afestas .~ An 
interesting survey of methods of detecting instants 
of change of random process properties is given 
by Kligene and Telksnis,s and Torgovitskii9 surveys 
similar methods. 

Recent advances in fault detection and reliability, 
including knowledge-based systems, robust, fault 
tolerant and intelligent controllers and sophisticated 
estimation/detection techniques, appear in Refer- 
ences 10 and 11. 

Supervision of technical processes was for a long 
time restricted to checking directly measurable vari- 
ables for upward or downward trends. This was 
sometimes automated using simple limit-value moni- 
tors. Various faults in the process could then be 
detected, but often only after the measurable output 
values had been effected considerably. 

The general problem of fault detection could be 
described as an attempt to orientate process faults 
with the aid of the input and output variables u(t) 
and y(t), as shown in Figure 2. 

Mathematical models of the process and its sig- 
nals, 

can be used, where n represents non-measurable 
disturbance signals from the process and its manipul- 
ating and measuring equipment, 8 non-measurable 
process parameters and x partially measurable inter- 
nal state variables. Process parameters are constant 
or slowly changing time-variable coefficients and 
state variables are time-dependent. 
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n 

U > I 1  J> II 

k 
Figure 2. Representation of a process with measurable input 
variables u, measurable output variables y, and non-directly 
measurable disturbance variables n, process parameters tl and 

state variables x 

MODEL-BASED PARAMETER ESTIMATION 
DETECTION METHODS 

Fault detection via parameter estimation relies on 
the principle that possible faults in the process can 
be associated with specific parameters and states of 
a mathematical model of a process. However, it is 
necessary to have a theoretical dynamic model of 
the process to apply parameter estimation methods. 
This is derived from the basic balance equations for 
mass, energy and momentum, the physico-chemical 
state equations and the phenomenological laws for 
any irreversible phenomena. The models will then 
appear in the continuous-time domain, in the form 
of ordinary or partial differential equations. Their 
parameters ei are expressed in dependence on pro- 
cess coefficients pi ,  such as storage or resistance 
quantities, whose changes indicate a process fault. 
Hence, the parameters Bi of continuous time models 
have to be estimated. In this case there is a minimum 
number of independently measurable quantities 
which permit the estimation of various states and 
parameters. Parameter estimation is a non-linear 
procedure when coupled with state estimation and, 
consequently, linear observability theory does not 
apply, resulting, in some cases, in erroneous esti- 
mation.12 

A simple dynamic process model with lumped 
parameters, linearized about an operating point, 
may be described by the differential equation 

y(t) + . . . + u,y'"'(t) = b,u(t) 
+ b1u(1)(t) + . . . + b,u(")(t) 

The process model parameters, 

are defined as relationships of several physical pro- 
cess coefficients, e.g. length, mass, speed, drag coef- 
ficient, viscosity, resistances, capacities. Faults 
which become noticeable in these physical process 
constants are therefore also expressed in the process 
model parameters. If the physical process coef- 
ficients, indicative of process faults, are not directly 
measurable, an attempt can be made to detect their 
changes via the changes in the process model par- 
ameters 8. The following procedure is therefore 
applied: 

1. Establishment of the mathematical model of 
the normal process, 

mainly from theoretical considerations. At this 
stage allowable tolerances for process coef- 
ficient values are also defined. 

2. Determination of the relationship between the 
model parameters ei and the physical process 
coefficients pi ,  

3. Estimation of the model parameters €Ii from 
measurements of y(t), u(t), by a suitable esti- 
mation procedure. 

4. Calculation of process coefficients, via the 
inverse relationship, 

5. Decision on whether a fault has occurred, 
based on the changes Apj calculated in step 4 
and tolerance limits from step 1. Decisions can 
be made either by simply checking against the 
predetermined threshold levels, or by using 
more sophisticated methods from the fields of 
statistical decision theory and pattern recog- 
nition. A fault decision should include the fault 
type, fault size and time of occurrence. 
Location and cause of the process fault will 
follow a positive fault decision. This may be 
achieved with the aid of a fault catalogue in 
which the relationship between process faults 
and changes in the coefficients Apj has been 
established. 

The basis of this class of methods is the combi- 
nation of theoretical modelling and parameter esti- 
mation of continuous-time models. A block diagram 
is given in Figure 3. Since, however, a necessary 
requirement of this procedure is the existence of the 
inverse relationship (5 ) ,  it may be restricted to well- 
defined processes. 

Having in mind these requirements the next sec- 
tion will briefly discuss some applications of the 
method and a case study, indicating the different 
approaches taken for each of the steps 1-5 described 
earlier. 

APPLICATIONS 

Dalla Molle and Himmelblau13 have applied real- 
time parameter estimation techniques for fault 
detection in an evaporator. The complexities of a 
real evaporator have been simplified, so that the 
model reduces to 

= F - (wx,+E,) - V 
dt 
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Figure 3. Fault detection based on parameter estimation and 
Itheoretical mode7ling 

where 

and UA = (heat transfer coefficient) x (area of 
heat transfer) 
T, is the steam temperature in the steam chest, TB 
is the normal boiling point of the solvent, C, is the 
heat capacity of the solution, TF is the temperature 
of the feed system, QL is the rate of heat loss to the 
surroundings, AH, is the heat of vaporization of the 
solvent, Q, is the total rate of heat trtansfer from 
steam, w is constant (0.6), p is the boiling point 
elevation per mass fraction of solute and E, is con- 
stant (0.1). 

Figure 4 shows the rest of the notation. 
Here the states of the model are the holdup and 

temperature. Two techniques for non-linear esti- 
mation were compared, namely (a) a non-linear 
state observer combined with a least-squares (LS) 
parameter-estimation scheme and (b) an extended 
Kalman filter. The need for non-linear techniques 
is due to the fact that x1 (holdup) appears in the 
denominator of the differential equation for x2 (tem- 
perature). 

Two process parameters of interest associated 
with process degradation or faulty operation are 
tlie heat transfer coefficient UA, which cannot be 

Feed 
\ Holdup (W) 
/ 

( F J  xF# IF, Cp) Ex i t  

(E, x, I, C, 1 

\ 
/ 

J , J ,  
Steam (Ts) 

Figure 4. Evaporator configuration and flow chart 

measured directly by any means, and the compo- 
sition of the feed, xF. Simulated faults on these 
parameters were used to compare the two fault 
detection methods. Results from the LS estimation 
scheme with a forgetting factor of 0.95 were quite 
satisfactory and showed that the scheme is valid in 
the simultaneous presence of faults. The extended 
Kalman filter required 15 times more computational 
time than the L.S.E. scheme and its simulation 
results showed that there was need for some heuris- 
tics in the analysis of the estimates to avoid misdi- 
agnosing faults when more than one fault occurs at 
a time. Furthermore, decision rules and confidence 
coefficients should be selected based on filter par- 
ameters and the dynamics of the process. 

Stavrakakis and Dialynas14 used recursive least- 
squares estimation with forgetting factor and hyp- 
othesis-testing techniques for improving the 
reliability performance of power substations. Fol- 
lowing a positive fault decision, the substation is 
reconfigured according to a detailed fault tree. The 
fault detection methodology adopted was applied to 
the following power substation components: 

(A) Power transformers, modelled by their one- 
phase equivalent circuit, described by, 

dli dl0 V, = M - - R210 - LZe- 
dt dt (9) 

where Vi and V,, are the actual input (primary) and 
output (secondary) voltages, Zi and I, are the actual 
input (primary) and output (secondary) currents, 
R1 and R2 are the primary and secondary winding 
resistances, L1 and L2 are the primary and second- 
ary winding self-inductances, L, is the mutual 
inductance between windings on the same core, and 
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LIn L, Simulation results on a typical 400/150 kV high- 
voltage substation were analysed and showed that 
the proposed methodology is suitable for integrated 
Power autOmation- 

Geiger15 uses a discrete square root filter (DSF), 

M = - , L , , = L , + L , , L , , =  L , + -  
a a2 

The faults that most frequently arise in practice 
in the power transformers, were classified as follows: 

1. 

2. 

3. 

Failures in the magnetic circuits (cores, yokes 
and clamping structure). 
Failures in the windings (coils and minor insu- 
lation and terminal gear). 
Failures in the dielectric circuit (oil and major 
insulation). 

4. Structural failures. 

By monitoring the estimated values of R1, RZ, 
L1,, L2,, M and performing a hypothesis testing 
using the likelihood ratio test, a change in these 
parameters can be detected, leading to a decision 
regarding one of the failures 1 4 ,  described above. 

(B) Substation lines and cables, modelled by their 
equivalent one-phase circuit which neglects entirely 
the susceptance and leakance, and is described by 
the simple first order differential equation 

dZi 
Vi = V, + Rli + L -  

dt 

The most important failures occurring on the lines 
or cables of power substations are the short circuits 
which are generally due to insulation breakdown. 
By applying the previously described method on the 
parameters R and L of this model, short circuits can 
be detected and localized early, in this way avoiding 
further degradation of the system. 

(C) Synchronous generators. The model used cor- 
responds to an unsaturated cylindrical-rotor 
machine under balanced polyphase conditions, and 
is described by 

dl0 Ef = V ,  + r,l, + L, - dt 

where Vo is the actual value of terminal voltage, Ef 
is the actual value of the excitation voltage, L, is 
the synchronous reactance (constant at constant fre- 
quency) and ra i the armature resistance. 

Here, deviations of L,, r, from their nominal 
values will indicate a voltage failure of the a.c. 
synchronous generator, which is a result of an open 
in the field circuit, an open in the field rheostat or 
a failure of the exciter generator. The loss of field 
excitation to a generator operating in parallel with 
others, causes it to lose load and overspeed. High 
armature current caused by the high voltage differ- 
ential between the armature and the bus, and the 
high currents induced in the field iron and field 
windings by the armature current, will cause rapid 
heating of the apparatus. This is avoided, in the case 
of failure, by the fast detection which the proposed 
method provides. 

to monitor the operation of a d.c. motor pump 
system. The methodology is similar to that of the 
previous authors, differing only in the way that the 
parameters of interest are estimated. The differen- 
tial equations used in the modelling are 

dl2 
dt L2- + R,AZ,(t) + 'PAR = AUz(t) (12) 

dR 8 - + CFlAR(t) = 'PAZ2(t) (13) dt 

where AU2(t) is the armature voltage, AZ,(t) is the 
armature current (A), AR(t) is the speed of rotation 
(s-l), R2 is the armature resistance (a), LZ is the 
armature inductance (H), 'P is the magnetic flux 
linkage (Wb), 8 is the moment of inertia (kgm2) 
and cF1 is the friction coefficient (Nms). 

The required derivatives of the process input and 
output signals were calculated using quasi-analogue 
state variable filters (SVFs), realized on a digital 
computer. Maximum likelihood estimation was used 
in the decision-making process, which is able to 
distinguish between five different types of fault, i.e. 
in the resistance, inductance, magnetic flux, moment 
of inertia and friction coefficient. 

A simulated fault of 2 per cent in the armature 
resistance R was successfully detected after 12 sam- 
pling intervals, verifying the speed of the method. 
A drawback of this method is the fact that it cannot 
be used for on-line detection. 

A CASE STUDY 

The case study describes a fast fault detection system 
for robotic d.c. motor drives. The detection system 
is implemented on a commercially available parallel 
processing machine. 

The dynamic equations for the armature circuit 
and the mechanics of a d.c. motor lead to the state- 
space representation for the actuator of the ith robot 
link, given in the Appendix. Also shown in detail 
in the Appendix are the steps of the fault detection 
algorithm. 

The effectiveness of the method was verified using 
simulated data. For this purpose the d.c. motor 
robotic actuator parameters were chosen as 

R = 1.04 R, L = 0.00089 H, K ,  = 0.0224 Vs/rad 
J ,  = 040005 kgm2, p = 0.005 kgm2/s, N = 64 

where R is the armature resistance, L is the arma- 
ture inductance, K ,  is the electromechanical con- 
stant of the motor, J ,  is the moment of inertia of 
the drive rotor, p is the viscous friction coefficient 
and N is the gear ratio. 
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A 2 kHz sampling frequency is considered. The 
non-error statistics are calculated using N, = 300 
samples, whereas the detection window was 
N ,  = 50. The first parameter estimate to be used 
by the detection procedure was taken at time 
k = 70, giving a large initial sample. The likelihood 
ratio fault-detection threshold value is 11-2 and 
M = 10. From sample time k = 1 to 130, the normal 
operating d.c. drive was simulated. A simulated 
fault occurred at k = 131, indicated by a 4-8 per 
cent change in the armature resistance Ri (Rif = 1.09 
a). A recursive least-squares (RLS) estimator (see 
Appendix) with a forgetting factor of A = 0.95 for 
estimating €I,, and A = 0.99 for €Ib is used. All esti- 
mates converge quickly to their respective true 
values. The exact estimated values are shown in 
Table I. 

A major factor for the success of the algorithm is 
the 2 kHz sampling rate. This means that the algor- 
ithm must be implemented on a computer capable 
of performing all the above calculations in 0.5 ms. 
The above procedure is, however, suitable for 
implementation in commercially available parallel 
processing machines, e.g. the INMOS transputer 
system. This algorithm is implemented in a system 
employing five transputers, as shown in Figure 5. 
The numbers shown in Figure 5 correspond to the 
tasks performed by each machine according to the 
task partition 1-5 described earlier. This also forms 
a four-stage pipeline where its first stage consists of 
machine 1. Its second stage consists of machines 2 
and 3 and its third stage consists of machines 4 and 
5. Stage 6 consists only of machine 6, which is 
underused by the algorithm, leaving power for suit- 
able presentation of the results. 

CONCLUSIONS 

An attempt has been made, based on our knowledge 
and experience, to review some fault-detection 
methods based on process model parameter esti- 
mation. These methods require a precise knowledge 
of the process and the application of estimation and 
decision-making algorithms. The failure-detection 
problem is an extremely complex one and the choice 
of an appropriate design depends heavily on the 
particular application. Issues such as available com- 
putational facilities and level of hardware redun- 
dancy enter in a crucial way in the design decision. 

The development of failure-detection methods has 
passed its infancy stage. However, much work needs 

Figure 5 .  The INMOS transputer for the real-time computer 
implementation of the d.c. drive fault detection algorithm 

to be done in the development of implementable 
systems, complete with a variety of design trade- 
offs. Work is also needed in the development of 
efficient techniques for failure compensation and 
system reorganization. In addition there is a need 
for the analysis of the robustness of various failure 
detection systems in the presence of variations in 
system parameters and in the presence of modelling 
errors and system non-linearities. 

APPENDIX 

Using the global dynamic model of a three degrees- 
of-freedom robotic manipulator derived by Tzaf- 
estas and Stavrakakis,16 the state-space represen- 
tation for the actuator of the ith link of the robot 
can be written as 

y(')(t) + A1y(')(t) + &y(t) = B,u(t) (14) 

where 

Al = 0 E lR4x4 

r 1  1 

where Vi is the applied armature voltage, TLi is the 
disturbance torque referred to the link side of the 
drive shaft, ii is the armature current, wi is the shaft 

Table I. True and estimated values for test run 

True value 1-09 0.00089 1.4336 0-2048 20.48 

sample time k=300 1.1 0.000896 1.4476 0.2038 20.82 
Estimated values at 
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angular velocity referred to the link side of the drive 
shaft, Ni is the gear ratio, Jmi is the moment of 
inertia of the drive rotor, Kmi is the electromechani- 
cal constant of the motor (the back-emf constant is 
equal to the torque constant), RI is the armature 
resistance, Li is the armature inductance, pi is the 
viscous friction coefficient, and the subscript i 
denotes the ith joint of the robotic manipulator. 

Define 

i.e. 

The following variables are measured for each 
motor: 

(a) armature current 
(b) angular velocity 
(c) armature voltage 
(d) shaft torque. 

The former two are the system outputs, whereas 
the latter are the system inputs. Input and output 
signal measurements are available at discrete times 
t = kT,, k = 0, 1, . . ., N, . . ., where To is the 
sampling time, defined as zi(k), wi(k),  Vi(k) ,  TLi(k).  
The fault-detection algorithm for this case consists 
of the following steps (tasks): 

1. Measure i i(k),  o i ( k ) ,  Vi(k) ,  TLi(k) and com- 
pute the derivatives i!l)(k) and o!l)(k) by a 
third-order backward formula. 

2. Perform one iteration of the recursive least 
squares (RLS) parameter estimation algorithm 
for parameters 

3. Perform one iteration of the parameter esti- 
mation algorithm for parameters 

4. (a) Calculate the physical parameters p , (k ) ,  
i = 1, 2, 3 from the previously computed 
estimates 8, and 8b7 using 

. .  

(16) 
1 
03 

pz (k )  = Lj = - (k)  

The case of a fault occurrence in the 

gear box is considered as an event with 
probability 0. 

(b) Redefine the data window by accepting 
the new estimatespi(k), i = 1, 2, 3, drop- 
ping the oldest estimates p,(k-N,-l) and 
recalculating the real-time parameter 
mean and variance estimates (i.e. the par- 
ameter statistics are estimated over the 
N ,  + 1 most recent parameter estimates). 

(c) Compute the likelihood ratio for the hyp- 
othesis-detection problem. 

(d) Decide on whether a fault condition exists. 
The decision is taken by comparing the 
likelihood ratio obtained in stage 4(c), 
against a predefined threshold. To avoid 
false alarms, the fault condition is signalled 
if the threshold is exceeded at M consecu- 
tive instants. The optimal threshold value 
and M are best chosen by trial and error 
using simulation. 

5 .  Perform steps 4(a) to 4(d) for parameters 
p4(k), p5(k),  using 

The above procedure assumes that the algorithm 
is run initially on a fault-free d.c. motor. From this 
run the non-error statistics are obtained and are 
used subsequently in steps 4(b), 4(c), 5(b), 5(c). 
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