
FPGA-based 3D Graphics Pipeline and

Advanced Rendering Effects

Diploma Thesis Report

by Fotis Pegios

Advisor: Prof. Aikaterini Mania
Co-Advisors: Prof. Ioannis Papaefstathiou and

Prof. Apostolos Dollas

Electronic and Computer Engineering Department
Technical University of Crete

Greece
February 17, 2016

Abstract

Since their invention by Xilinx in 1984, FPGAs have gone from
being simple glue logic chips to actually replacing custom application-
specific integrated circuits (ASICs) and processors for signal processing
and real-time applications. As they enhance in speed, size and abil-
ities, FPGAs are becoming more useful in areas where ASICs were
used before. 3D graphics rendering is one such area, where research is
underway as to how FPGAs can help to improve the performance of
graphics processing units with less energy consumption.

In this project we represent an FPGA-based Graphic Processor for
low power applications and three advanced 3D rendering effects, imple-
mented using a hardware description language (VHDL). Approaching
such a project, we have the ambition to fully understand how a simple
GPU really works in depth and how graphics algorithms are imple-
mented on low-level programming language. On the grounds that this
thesis will be available to the programming society, there is promise
for future upgrade and expansion.

i

Acknowledgements

Foremost, I would like to express my sincere gratitude to my su-
pervisor Prof. Aikaterini Mania for the continuous support of my un-
dergraduate studies, for her patience, motivation, enthusiasm, and im-
mense knowledge. Her guidance helped me in all the time of developing
and writing of this thesis. Besides my advisor, I would like to thank
the rest of my thesis committee: Prof. Ioannis Papaefstathiou and
Apostolas Dollas for their encouragement and accurate comments to
my work.

Also, I would like to thank Dr. George-Alex Koulieris and PhD
candidate Pavlos Malakonakis for the continuous guidance, help and
knowledge they gave me during the development of this thesis. I wish
them all the best for their future careers.

Special thanks to Mr. Markos Kimionis and the Microprocessor and
Hardware Lab of the University, which gave me the the best equipment
to develop this project.

I thank all my friends and classmates for their continuous interest
and encouragement during all the years of my studies.

I am also grateful to Mr. Mike Field from New Zealand, a good
person and an FPGA expert, who helped me deal with a great difficulty
I encountered and took me several days to overcome.

Finally, I thank my parents for supporting me throughout my stud-
ies at University, providing me all the conveniences in order to complete
my undergraduate degree successfully.

ii

Contents

1 Introduction 1

2 Background Research 3
2.1 Graphics Rendering Pipeline 3

2.1.1 Vertex Processing . 3
2.1.2 Primitive Assembly 16
2.1.3 Clipping . 16
2.1.4 Rasterization . 16
2.1.5 Z-buffering . 18
2.1.6 Shading . 19
2.1.7 Texture Mapping . 22

2.2 3D Rendering Effects . 26
2.2.1 Perlin Noise . 26
2.2.2 Particle System . 29
2.2.3 Displacement Mapping 31

2.3 Introduction to FPGAs . 32
2.4 High-Level Synthesis . 35

3 Related Work 37

4 Project Overview and Design 42
4.1 Parts of Implementation . 42

4.1.1 Graphics Pipeline Implementation Phases 42
4.1.2 3D Rendering Effects 42

4.2 High Level Design . 43
4.3 Target Device . 44
4.4 Software Platform . 46

5 Implementation 49
5.1 Vertex Processing and Rasterization Phase 49

5.1.1 FaceVertices . 49
5.1.2 Processor Unit . 50
5.1.3 Dual-Port RAM . 57
5.1.4 Display Unit . 58

5.2 Shading Phase . 59
5.2.1 Flat Shading . 62
5.2.2 Gouraud Shading . 63

5.3 Texture Mapping Phase . 65

iii

5.4 3D Rendering Effects . 67
5.4.1 Perlin Noise Mapping to Ramp Texture 67
5.4.2 Particle System . 68
5.4.3 Displacement Mapping using Perlin Noise 71

6 System Evaluation 75
6.1 Vertex Processing and Rasterization 75
6.2 Shading . 76
6.3 Texture Mapping . 77
6.4 Perlin Noise Mapping to Ramp Texture 78
6.5 Particle System . 79
6.6 Displacement Mapping using Perlin Noise 80

7 Conclusions and Recommendations 83

8 Appendix 86
8.1 MatrixMultiplication - HLS code 86
8.2 MatrixVectorMultiplication - HLS code 89
8.3 TransformCoordinates - HLS code 91
8.4 I2C sender - VHDL code . 92
8.5 FaceNormalVector - HLS code 98
8.6 CenterPoint - HLS code . 99
8.7 ComputeNdotL - HLS code 100
8.8 PerlinNoise - HLS code . 102
8.9 ParticleSystem - HLS code 106
8.10 MapColor - HLS code . 111
8.11 ParticleSystem (Repeller) - HLS code 113

iv

List of Figures

1 Three teapots each one in its own model space 3
2 Three teapots set in World Space 4
3 Sphere transformed from model space to world space 5
4 Generic World Transformation Matrix 5
5 Translation Matrix form . 6
6 Scale Matrix form . 6
7 Rotation Matrix form around X Axis 7
8 Rotation Matrix form around Y Axis 7
9 Rotation Matrix form around Z Axis 7
10 On the Left two teapots and a camera in World Space; On

the right everything is transformed into View Space (World
Space is represented only to help visualize the transformation) 8

11 Orthographic Projection . 10
12 Ortho-Projection Matrix . 10
13 A projector that is projecting a 2D image onto a screen . . . 11
14 The W dimension is the distance from the projector to the

screen . 11
15 The projector close to the screen 12
16 The projector is 3 meters away from the screen 12
17 The projector is 1 meter away from the screen 13
18 The far-away mountain appears to be smaller than the cat . . 14
19 Perspective-Projection Matrix 14
20 Perspective Projection . 15
21 Cases of Triangles . 17
22 Shading in Computer Graphics 19
23 Flat Shading . 19
24 Blue Arrows: normals of the face, Green and Red Arrows:

any edge vector of the face . 20
25 Gouraud Shading . 21
26 Face and Vertex Normals . 21
27 Gouraud shading linear interpolation 22
28 Left pyramid: with texture, Right pyramid: without texture . 23
29 U and V texture coordinates 24
30 Fire is created using the Perlin noise function 26
31 Two dimensional slice through 3D Perlin noise at z=0 27
32 A particle system used to simulate a fire, created in 3dengfx . 30
33 A cube emitting 5000 animated particles, obeying a “gravi-

tational” force in the negative Y direction. 31

v

34 Displacement mapping in mesh using texture 32
35 Displacement Mapping for creating multilevel terrain 33
36 Simplified diagram of the implemented graphics pipeline. . . 37
37 Example of an output by Kasik and Kurecka work. 38
38 Slim shader Triangle Setup 38
39 3D graphics full pipeline . 39
40 Overall Flow of Tile-based Path Rendering (Left: Overall

Flow, Right: Tile Binning . 40
41 Frame rates(fps) for various scenes by FreePipe 41
42 High Level Design . 44
43 Kintex-7 KC705 Evaluation Kit 45
44 XC7K325T Device Feature Summary 45
45 Xilinx Vivado Design Suite 2014.1 running synthesis 46
46 Xilinx floating-point IP that provides a range of floating-point

operations. 47
47 A, B and C are the vertices that describe triangle 49
48 Block Diagram of FaceVertices component 50
49 Block Diagram of Processor Unit 51
50 Block Diagram of Transformation Component 52
51 Block Diagram of Rotation Component 52
52 Block diagram of Project component 53
53 Flowchart of DrawTriangle component in Rasterization Phase 54
54 Flowchart of ProcessScanLine component in Rasterization Phase 55
55 Flowchart of DrawPoint component 56
56 Controller FSM . 56
57 Block diagram of Frame Buffer 57
58 Swap process of Frame buffers 58
59 Resources utilization in Vertex Processing and Rasterization

phase . 59
60 FaceVertices Component in Shading Phase 60
61 Project component in Shading Phase 61
62 MatrixVectorMultiplication component in Shading Phase (La-

tency = 160 cycles) . 62
63 Flowchart of DrawTriangle in Flat Shading 62
64 Resources utilization in Flat Shading phase 63
65 Flowchart of DrawTriangle in Gouraud Shading 64
66 Resources utilization in Gouraud Shading phase 64
67 FaceVertices component in Texture Mapping Phase 65
68 Wood Grayscale Texture (64x64) 65
69 Flowchart of ProcessScanLine in Texture Mapping Phase . . 66

vi

70 Resources utilization in Texture Mapping phase 67
71 Perlin Noise Mapping to Grayscale Ramp Texture 67
72 Grayscale Ramp Texture . 68
73 Resources utilization in Perlin Noise Mapping to Ramp Tex-

ture effect . 68
74 ParticleVertices component 69
75 Repeller Object (Cube) in World Space 70
76 Flowchart of ParticleVertices component 70
77 Resources utilization in Particle System effect 71
78 Resources utilization in Perlin System with Repeller effect . . 71
79 FaceVertices component in Displacement Mapping Terrain

using Perlin Noise effect . 72
80 TerrainVerticesGenerator component 72
81 Project component in Displacement Mapping Terrain using

Perlin Noise effect . 73
82 Mini version of the grid (seeing from top) 74
83 Resources utilization in Displacement Mapping Terrain using

Perlin Noise effect . 74
84 Vertex Processing and Rasterization phase running in software 75
85 Rasterization phase running on the FPGA 76
86 Flat Shading phase running in software 76
87 Flat Shading phase running on the FPGA 76
88 Gouraud Shading phase running in software 77
89 Gouraud Shading phase running on the FPGA 77
90 Texture Mapping phase running in software 77
91 Texture Mapping phase running on the FPGA 78
92 Perlin Noise Mapping to Ramp Texture running in software . 78
93 Perlin Noise Mapping to Ramp Texture running on the FPGA 78
94 Particle System running software 79
95 Particle System running on the FPGA 79
96 Particle System with Repeller running in software 79
97 Particle System with Repeller running on the FPGA 80
98 Displacement Mapping using Perlin Noise running in software 80
99 Displacement Mapping using Perlin Noise running on the FPGA 80
100 Vertex Processing and Rasterization phase running in soft-

ware (left) and on the FPGA (right) with 640 ∗ 480 pixels
resolution . 82

101 Latency for Matrix Multiplication using VHDL and HLS sep-
arately . 84

vii

102 DSPs Utilization for Matrix Multiplication using VHDL and
HLS separately . 85

103 Creating two Triangles in parallel 86
104 Resources Utilization and Latency for MatrixMultiplication

component . 87
105 Resources Utilization and Latency for MatrixVectorMultipli-

cation component . 90
106 Resources Utilization and Latency for TransformCoordinates

component . 92
107 Resources Utilization and Latency for VnFace component . . 98
108 Resources Utilization and Latency for CenterPoint component 99
109 Resources Utilization and Latency for ComputeNdotL com-

ponent . 100
110 Resources Utilization and Latency for PerlinNoise component 102
111 Resources Utilization and Latency for ParticleSystem compo-

nent . 106
112 Resources Utilization and Latency for MapColor component . 112
113 Resources Utilization and Latency for ParticleSystem (Re-

peller) component . 114

viii

List of Acronyms

ASIC Application Specific Integrated Circuits

FPGA Field Programmable Gate Array

GPU Graphics Processing Unit

HDL Hardware Description Language

Microblaze A soft-core 32 bit RISC microprocessor designed specifically
for Xilnix FPGAs

Pipeline A sequence of functional units which performs task in several
steps

Pixel Contraction of Picture element

RAM Random Access Memory

RTL Register Transfer Level

Vertex The point of intersection of lines

VHDL Very High Speed Integrated Circuit (VHSIC) Hardware Description
Language

Xilinx Company invented the FPGA

2D Two Dimensional

3D Three Dimensional

ix

1 Introduction

While the popularity of mobile devices and embedded systems that use 3D
animations and graphics is escalating, it makes sense to look for new ideas
that can help and improve their evolution and better operation. In contrast
with Application-Specific Integrated Circuits (aka ASICs) that the majority
of modern devices use, FPGAs have the capability to be reprogrammed over
the time. With FPGAs, developers are able to improve or modify the initial
design depending on their current requirements at any time and without
any cost.

Apart from that, handheld systems use batteries in order to operate ef-
fectively. If the internal graphics processor of any portable device requires
great amounts of energy, many issues can be faced due to the power man-
agement. On the other hand, FPGAs have little energy consumption when
they operate. This means that FPGA-based graphics processors could be a
solution to encounter such issues.

The main goal of this project was to implement a graphics processor unit
on an FPGA. Apart from the processor, three advanced 3D rendering ef-
fects were implemented too, in order to demonstrate the capabilities of this
system. Implemented entirely in Hardware Description Language (HDL)
without the use of any processor, this system is open and configurable,
providing a graphics system that could be easily adapted or optimized for
specific requirements. The implementation was based on a tutorial series
written by David Rousset and called ”Learning how to write a 3D soft en-
gine from scratch in C#, TypeScript or JavaScript”[27].

To achieve the goal of this project, three primary objectives had to be met.
The graphics processor should be able to:

• Render any object depending on the coordinates imported

• Generate the final image at reasonable speeds

• Provide a display output interface

These objective were completed through the design and implementation of
various necessary components. In this project we did not focus so much on
the performance of the system, but on its successful operation. Thus, several
optimizations can be done in the future to enhance the current performance.

1

The remainder of this report provides the reader with some background
research in the relevant areas of graphics processing and algorithms, FPGA
technology and High-level Synthesis (chapter 2), chapter 3 presents some
related works, chapter 4 then describes an overview of the project including
the goals of this project, the high level design, the target device and software
platform were used for the implementation. Chapter 5 includes the hard-
ware implementation, chapter 6 describes the evaluation of the system after
performing several tests, and finally chapter 7 contains the conclusions we
drew about the process we used as well as our recommendations for future
work.

2

2 Background Research

Before proceeding to the design and implementation, it is vital to give the
reader all the necessary mathematical background information about the
graphics processing and the concept we used in this project. This section
discusses the computer graphics pipeline, the rendering effects we imple-
mented, an introduction to FPGAs and some information about High-Level
synthesis.

2.1 Graphics Rendering Pipeline

In 3D computer graphics, the graphics pipeline or rendering pipeline refers
to the sequence of steps used to create a 2D raster representation of a 3D
scene[10]. Plainly speaking, once a 3D model has been created, for instance
in a video game or any other 3D computer animation, the graphics pipeline
is the process of turning that 3D model into what the computer displays.
A complete rendering pipeline consists of these stages: Vertex Processing,
Primitive Assembly, Clipping, Rasterization, Z-buffering, Shading and Tex-
ture Mapping.

It is called a pipeline because vertices are put through each step one at
a time, and at each step along the “pipe”, the vertex is rendered into its
image form.

Figure 1: Three teapots each one in its own model space

2.1.1 Vertex Processing

In 3D graphics processing, a vertex is typically specified in the form of an
(x, y, z) triple as a discrete position within the 3D coordinate system. These
are often accompanied by many other parameters and vectors, representing

3

such data as shading color, texture, coordinates or normal direction. Vertex
processing is the responsible process for decoding this data and preparing
them to be assembled as primitives and then rasterized. The vertex po-
sitions must be transformed from their 3D coordinates into 2D space as
approximated by a display device for this to be done.

When a model first starts out, it is generally centered on the origin, meaning
the center of the object is at (0, 0, 0). This also means that all the objects
in a scene will be in the exact center of the world, all piled up on top of
each other, which does not make a very excellent scene. The first step is to
sort out the new positions of all the models in relation to each other. This
is called World Transformation.

Figure 2: Three teapots set in World Space

Once all the objects in the world have been sorted out and the vertices’ posi-
tions have been altered to represent world coordinates, we have to transform
them into the View space. In graphics we usually use a camera analogy, i.e.
the viewer, located at the View Reference Point (VRP), observes the scene
through a camera and can move around the scene. This is accomplished
by defining a viewing coordinate system (VCS) which has the position and
orientation of the camera. Then we align the VCS with the world coordinate
system (WCS), creating a viewing transformation matrix. This matrix is
then applied to all the objects in the scene which moves them into the proper
position as seen from the VRP. This process is known as View Transfor-
mation.

After the coordinate system has been rearanged, then it is time to con-
vert all the 3D models into 2D images. In this step, the 3D coordinates are
converted into screen coordinates. This process is known as Projection
Transformation[18].

4

World Transformation World Transformation, in essence, changes co-
ordinates from model space to world space. In other words, it places a model
in a world at an exact point defined by coordinates.

Figure 3: Sphere transformed from model space to world space

In order to apply the transformation, we have to multiply all the vertices
that we want to transform against the transformation matrix. In Fig-
ure 4, we can see how we represent a generic transformation in matrix
form. Where TransformXAxis is the X axis orientation in the new space,
TransformYAxis is the Y axis orientation in the new space, TransformZAxis
is the Z axis orientation in the new space and Translation describes the po-
sition where the new space is going to be relatively to the current space.

Figure 4: Generic World Transformation Matrix

Sometimes we want to do simple transformation, like translations, rotations
or scalings.

• Translation refers to the movement of a vertex along a coordinate
system axis.

• Rotation is the process of spinning 3D objects along an axis. Like
translation, it can be done along multiple axes simultaneously, allowing
the user to position the model as desired.

5

• Scaling is the action of making a 3D object larger or smaller. When
an object is scaled, each vertex in the object is multiplied by a given
number. These numbers can be different for each axis, resulting in
various stretching effects.

In these cases we may use the following matrices which are special cases of
the generic form we have just presented.

Translation Matrix In Figure 5, Translation is a 3D vector that repre-
sent the position where we want to move our space to. A translation matrix
leaves all the axis rotated exactly as the active space.

Figure 5: Translation Matrix form

Scale Matrix In Figure 6, Scale is a 3D vector that represent the scale
along each axis. If you read the first column you can see how the new X
axis it is still facing the same direction but it is scaled by the scalar Scale.x.
The same happens to all the other axis as well. Also we can notice how the
translation column is all zeros, which means no translation is required.

Figure 6: Scale Matrix form

Rotation Matrix around X Axis In Figure 7, θ is the angle we want to
use for our rotation. Notice how the first column will never change, which is
expected since we are rotating around X axis. Also notice how change theta
to 90◦ remaps the Y axis into Z axis and the Z axis into Y axis.

The rotation matrices for the Z axis and the Y axis behave in the same
way of the X axis matrix.

6

Figure 7: Rotation Matrix form around X Axis

Figure 8: Rotation Matrix form around Y Axis

All the matrices we have just presented are the most used ones we need
to describe rigid transformations. We can chain several transformations
together by multiplying matrices one after the other. The result will be a
single matrix that encodes the full transformation and it is called World
Matrix.

Figure 9: Rotation Matrix form around Z Axis

View Transformation With all the objects at the right place we now
need to project them to the screen. This is usually done in two steps. The
first step moves all the object in another space called the View Space. The
second step performs the actual projection using the projection matrix. This
last step is a bit different from the others and we will see it in detail in next.

The View Space is an auxiliary space that we use to simplify the math
and keep everything elegant and encoded into matrices. The idea is that we
need to render to a virtual camera, which implies projecting all the vertices
onto the camera screen that can be arbitrarily oriented in space. The math
simplifies a lot if we could have the camera centered in the origin and watch-

7

ing down one of the three axis, let’s say the Z axis to stick to the convention.

So we create a space that remaps the World Space so that the camera is in
the origin and looks down along the Z axis. This space is the View Space
(sometimes called Camera Space) and the transformation we apply moves
all the vertices from World Space to View Space.

Figure 10: On the Left two teapots and a camera in World Space; On the
right everything is transformed into View Space (World Space is represented
only to help visualize the transformation)

Now, if we imagine we want to put the camera in World Space we would
use a transformation matrix (here View matrix) that is located where the
camera is and is oriented so that the Z axis is looking to the camera target.
The inverse of this transformation, if applied to all the objects in World
Space, would move the entire world into View Space. Notice that we can
combine the two transformations Model To World and World to View into
a single transformation Model To View.

View Matrix A common method to derive the view matrix is to compute
a Look-at matrix given[19]

• The position of the camera in world space (usually referred to as the
eye position)

• The current world’s up-direction: usually [0, 1, 0]

• The camera look-at target: the origin [0, 0, 0]

8

A software typical implementation of Look-at function which exists in Baby-
lon.math.js library looks like this:

Listing 1: Look-at function by Math.babylon.js

Matrix.LookAtLH = function LookAtLH(eye, target, up) {

var zAxis = target.subtract(eye);

zAxis.normalize();

var xAxis = Vector3.Cross(up, zAxis);

xAxis.normalize();

var yAxis = Vector3.Cross(zAxis, xAxis);

yAxis.normalize();

var ex = -Vector3.Dot(xAxis, eye);

var ey = -Vector3.Dot(yAxis, eye);

var ez = -Vector3.Dot(zAxis, eye);

return Matrix.FromValues(xAxis.x, yAxis.x, zAxis.x, 0,

xAxis.y, yAxis.y, zAxis.y, 0, xAxis.z, yAxis.z,

zAxis.z, 0, ex, ey, ez, 1);

};

Projection Transformation If view transformation can be thought of
as a camera, then this step can be thought of as a lens. Once view trans-
formation is completed, we have to change the 3D scene into one big 2D
image so it can be drawn on the screen. The process that does this is called
projection transformation. It is simply the converting of 3D coordinates to
screen coordinates and moving from View space to Projection Space.

To go from the View Space into the Projection Space we need another ma-
trix, the Projection matrix, and the values of this matrix depend on what
type of projection we want to perform. The two most used projections are
the Orthographic Projection and the Perspective Projection.

In Orthographic projection, projection space is a cuboid which dimensions
are between -1 and 1 for every axis. This space is very handy for clipping
(anything outside the 1:-1 range is outside the camera view area) and sim-
plifies the flattening operation (we just need to drop the z value to get a
flat image). To do the Orthographic projection we have to define the size of
the area that the camera can see. This is usually defined with a width and
height values for the x and y axis, and a near and far z values for the z axis.
Given these values we can create the transformation matrix that remaps the
box area into the cuboid.

9

Figure 11: Orthographic Projection

The matrix that follows is used to transform vectors from View Space into
Ortho-Projected Space and assumes a right handed coordinates system.

Figure 12: Ortho-Projection Matrix

The other projection is the Perspective projection. The idea is similar to
the orthographic projection, but this time the view area is a frustum and
therefore it is a bit more tricky to remap. Before proceeding to perspective
projection, we need to discuss about the homogeneous coordinates and pro-
jective Geometry[20].

Most of the time when working with 3D, we are thinking in terms of Eu-
clidean geometry (that is, coordinates in three-dimensional space (X, Y, and
Z)). However, there are certain situations where it is useful to think in terms
of projective geometry instead. Projective geometry has an extra dimension,
called W, in addition to the X, Y, and Z dimensions. This four-dimensional
space is called “projective space” and coordinates in projective space are
called “homogeneous coordinates”.

10

Before we move on to 3D, we have to look at how projective geometry works
in 2D. Imagine a projector that is projecting a 2D image onto a screen. It
is easy to identify the X and Y dimensions of the projected image (Figure
13).

Figure 13: A projector that is projecting a 2D image onto a screen

Now, if we step back from the 2D image and look at the projector and the
screen, we can see the W dimension too. The W dimension is the distance
from the projector to the screen (Figure 14).

Figure 14: The W dimension is the distance from the projector to the screen

Now, if we move the projector closer to the screen, the whole 2D image
becomes smaller. If we move the projector away from the screen, the 2D
image becomes larger. As we can see, the value of W affects the size (a.k.a.
scale) of the image (Figure 15).

11

There is no such thing as a 3D projector, so it is harder to imagine pro-
jective geometry in 3D, but the W value works exactly the same as it does
in 2D. When W increases, the coordinate expands (scales up). When W de-
creases, the coordinate shrinks (scales down). The W is basically a scaling
transformation for the 3D coordinate. The usual advice for 3D program-

Figure 15: The projector close to the screen

ming beginners is to always set W=1 whenever converting a 3D coordinate
to a 4D coordinate. The reason for this is that when you scale a coordinate
by 1 it does not shrink or grow, it just stays the same size. So, when W = 1
it has no effect on the X, Y or Z values.

Figure 16: The projector is 3 meters away from the screen

For this reason, when it comes to 3D computer graphics, coordinates are
said to be “correct” only when W = 1. If we rendered coordinates with
W > 1 then everything would look too small, and with W < 1 everything
would look too big. If we tried to render with W = 0 our program would

12

crash when it attempted to divide by zero. With W < 0 everything would
flip upside-down and back-to-front.

Mathematically speaking, there is no such thing as an “incorrect” homoge-
neous coordinate. Using coordinates with W=1 is just a useful convention
for 3D computer graphics. Now, Let us say that the projector is 3 meters
away from the screen (Figure 16), and there is a dot on the 2D image at the
coordinate (15, 21). This gives us the projective coordinate vector:

(X,Y,W) = (15, 21, 3)

Now, we can imagine that the projector was pushed closer to the screen so
that the distance was 1 meter. The closer the project gets to the screen, the
smaller the image becomes. The projector has moved three times closer, so
the image becomes three times smaller. If we take the original coordinate
vector and divide all the values by three, we get the new vector where W = 1:

(153 ,
21
3 ,

3
3) = (5, 7, 1) The dot is now at coordinate (5, 7).

Figure 17: The projector is 1 meter away from the screen

This is how an “incorrect” homogeneous coordinate is converted to a “cor-
rect” coordinate: divide all the values by W. The process is exactly the
same for 2D and 3D coordinates. Dividing all the values in a vector is done
by scalar multiplication with the reciprocal of the divisor. Here is a 4D
example:

(15(10, 20, 30, 5) = (105 ,
20
5 ,

30
5 ,

5
5) = (2, 4, 6, 1)

In regard to 3D computer graphics, homogeneous coordinates are useful in
certain situations. The 4th dimension W is usually unchanged, when us-
ing homogeneous coordinates in matrix transformation. W is set to 1 when

13

converting a 3D coordinate into 4D, and it is usually still 1 after the trans-
formation matrices are applied, at which point it can be converted back into
a 3D coordinate by ignoring the W. This is true for all translation, rota-
tion, and scaling transformations, which are by far the most common types
of transformations. The notable exception is projection matrices, which do
affect the W dimension.

In 3D, “perspective” is the phenomenon where an object appears smaller
the further away it is from the camera. A far-away mountain can appear to
be smaller than a cat, if the cat is close enough to the camera.

Figure 18: The far-away mountain appears to be smaller than the cat

Perspective is implemented in 3D computer graphics by using a transforma-
tion matrix (Figure 19) that changes the W element of each vertex. After
the the camera matrix is applied to each vertex, but before the projection
matrix is applied, the Z element of each vertex represents the distance away
from the camera.

Figure 19: Perspective-Projection Matrix

Therefore, the larger Z is, the more the vertex should be scaled down. The
W dimension affects the scale, so the projection matrix just changes the W

14

value based on the Z value. Here is an example of a perspective projection
matrix being applied to a homogeneous coordinate:

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0

×


2
3
4
1

 =


2
3
4
4


It is easy to notice how the W value is changed to 4, which comes from
the Z value. After the perspective projection matrix is applied, each ver-
tex undergoes “perspective division”. Perspective division is just a specific
term for converting the homogeneous coordinate back to W=1, as explained
earlier. Continuing with the example above, the perspective division step
would look like this:

1
4(2, 3, 4, 4) = (0.5, 0.75, 1, 1)

After perspective division, the W value is discarded, and we are left with a
3D coordinate that has been correctly scaled according to a 3D perspective
projection.

Figure 20: Perspective Projection

In this project we used the perspective projection and here is the function
from Babylon.math.js that was implemented to compute the projection ma-
trix.

Listing 2: Perspective function by Math.babylon.js

Matrix.PerspectiveFovLH = function PerspectiveFovLH(fov, aspect,

znear, zfar) {

15

var matrix = Matrix.Zero();

var tan = 1.0 / (Math.tan(fov * 0.5));

matrix.m[0] = tan / aspect;

matrix.m[1] = matrix.m[2] = matrix.m[3] = 0.0;

matrix.m[5] = tan;

matrix.m[4] = matrix.m[6] = matrix.m[7] = 0.0;

matrix.m[8] = matrix.m[9] = 0.0;

matrix.m[10] = -zfar / (znear - zfar);

matrix.m[11] = 1.0;

matrix.m[12] = matrix.m[13] = matrix.m[15] = 0.0;

matrix.m[14] = (znear * zfar) / (znear - zfar);

return matrix;

};

Consequently, the final matrix we multiply with the vertices in order to
display a 3D scene into a 2D image is:

[ProjectionMatrix]× [V iewMatrix]×WorldMatrix =
[ModelV iewProjectionMatrix]

2.1.2 Primitive Assembly

A primitive consists of one or more vertices to form a point, line or closed
polygon. Our system uses triangles to form faces. This stage takes the
transformed vertices from the vertex processing stage and groups them into
primitives (triangles).

2.1.3 Clipping

In the stage immediately following primitive assembly, primitives are clipped
to fit just within the viewport or view volume and then prepared for rasteri-
zation to the display device. Once triangle vertices are transformed to their
proper 2D locations, some of these locations may be outside the viewing
window, or the area on the screen to which pixels will actually be written.
Clipping is the process of truncating triangles to fit them inside the viewing
area[11].

2.1.4 Rasterization

Rasterization is the task of taking an image described in a vector graph-
ics format (shapes) and converting it into a raster image (pixels or dots) for
output on a video display or printer, or for storage in a bitmap file format[12].

16

The most basic rasterization algorithm takes a 3D scene, described as poly-
gons, and renders it onto a 2D surface, usually a computer monitor. Poly-
gons are themselves represented as collections of triangles. Triangles are rep-
resented by 3 vertices in 3D-space. At a very basic level, rasterizers simply
take a stream of vertices, transform them into corresponding 2-dimensional
points on the viewer’s monitor and fill in the transformed 2-dimensional tri-
angles as appropriate.

The Rasterization Algorithm that was implemented in this project is very
simple but also efficient[13]. If we are sorting the three vertices of each trian-
gle on the Y coordinates in order to always have P1 followed by P2 followed
by P3, we will finally have two possible cases as we see in Figure 21.

Figure 21: Cases of Triangles

• P2 is on the right of P1P3 line or

• P2 is on the left of P1P3 line

In our case, as we want to always draw our lines from left to right, from sx
to ex, we have to handle these situations. Moreover, we are drawing from
left to right by moving down from P1.y to P3.y following the red line drawn
on the left case of the figure. But we need to change our logic reaching P2.y
as the slope will change in both cases. For this reason, we have got two step
in the scan line process.

• Moving down from P1.y to P2.y and

17

• Moving down from P2.y to P3.y, which is the final destination

To be able to sort the cases between case 1 and case 2, we simply need to
compute the inverse slopes in this way:

dP1P2 = P2.x−P1.x
P2.y−P1.y , dP1P3 = P3.x−P1.x

P3.y−P1.y

If dP1P2 > dP1P3, then we are in the first case with P2 on the right, oth-
erwise if dP1P2 < dP1P3, we are in the second case with P2 on the left.

Now that we have seen the basic logic of our algorithm, we need to know
how to compute X on each line between SX (Start X) and EX (End X). So
we need to compute SX and EX first. As we know the Y value and the slope
P1P3 and P1P2, we can easily find SX and EX we are interested in.

Let’s take the step 1 of the case 1 as an example. First step is to com-
pute our gradient with the current Y value in our loop. It will tell us at
which stage we are in the scan line processing between P1.y and P2.y in
Step 1.

gradient = currentY−P1.Y
P2.Y−P1.Y

As X and Y are linearly linked, we can interpolate SX based on this gradient
using P1.x and P3.x, and interpolate EX using P1.x and P2.x. Finally,
knowing the SX and EX we are able to draw the line between them.

2.1.5 Z-buffering

In computer graphics, z-buffering, also known as depth buffering, is the man-
agement of image depth coordinates in 3D graphics[14]. It is one solution
to the visibility problem, which is the problem of deciding which elements
of a rendered scene are visible, and which are hidden.

When an object is rendered, the depth of a generated pixel (z coordinate)
is stored in a buffer (the z-buffer or depth buffer). This buffer is usually
arranged as a two-dimensional array (x-y) with one element for each screen
pixel. If another object of the scene must be rendered in the same pixel,
the method compares the two depths and overrides the current pixel if the
object is closer to the observer. The chosen depth is then saved to the z-
buffer, replacing the old one.

18

Finally, in our implementation in the same way we are interpolating X value
between each side of the triangles, we need to interpolate also Z values using
the same algorithm for each pixel.

2.1.6 Shading

In computer graphics, shading refers to the process of altering the color
of an object/surface/polygon in the 3D scene, based on its transparency,
material, fresnel, subsurface scattering, angle to lights and distance from
lights to create a photorealistic effect. Shading is performed during the
rendering process by a program called a shader[15].

Figure 22: Shading in Computer Graphics

Flat Shading Flat shading is a lighting technique used in 3D computer
graphics to shade each polygon of an object based on the angle between
the polygon’s surface normal and the direction of the light source, their
respective colors and the intensity of the light source. It is usually used
for high speed rendering where more advanced shading techniques are too
computationally expensive. As a result of flat shading all of the polygon’s
vertices are colored with one color, allowing differentiation between adjacent
polygons.

Figure 23: Flat Shading

19

To be able to apply the flat shading algorithm, we first need to compute the
normal vector of the face. Once we have got it, we need to know the angle
between this normal vector and the light vector. To be more precise, we use
a dot product which give us the cosine of the angle between those 2 vectors.
As this value could be -1 and 1, we cut it between 0 and 1. This final value
will be used to apply the quantity of light to apply to every face based on
its current color. In conclusion, the final color of the face will be:

finalcolor = color ∗max(0, cos(angle))

Figure 24: Blue Arrows: normals of the face, Green and Red Arrows: any
edge vector of the face

After the calculation of the normal coordinates we need to define a light. In
our project we used the simplest one: the point light. The point light is
simply a 3D point (a Vector3). The quantity of light that every face receives
is be the same whatever the distance from the light is. We will then simply
vary the intensity based on the angle between the normal vector and the
vector made of this point light and the center of the face.

So the light direction vector will be:

lightDirection = lightPosition− centerFacePosition

This will give us the light direction vector. To compute the angle between
this light vector and the normal vector and finally the intensity of the color,
we use a dot product.

20

angle = normalV ector · lightDirection

Gouraud Shading Gouraud shading, named after Henri Gouraud[16], is
an interpolation method used in computer graphics to produce continuous
shading of surfaces represented by polygon meshes. In practice, Gouraud
shading is most often used to achieve continuous lighting on triangle sur-
faces by computing the lighting at the corners of each triangle and linearly
interpolating the resulting colors for each pixel covered by the triangle.

Figure 25: Gouraud Shading

In this type of shading, rather than using 1 unique normal per face, and
thus a unique color per face, we are using 3 normals: 1 per vertex of our
triangles. We will then have 3 level of colors defined and we will interpolate
the color of each pixel between each vertex using the same algorithm. Using
this interpolation, we will then have a continuous lighting on our triangles.

Figure 26: Face and Vertex Normals

21

We can see in Figure 26 the differences between flat shading and gouraud
shading. The flat uses a centered unique normal and the gouraud uses 3
normals. It can be seen also on a 3D mesh (the pyramid) that the normal
is per vertex per face. This means that the same vertex will have different
normals based on the face it is currently being drawn.

Another good way to understand what we do with this shading is illus-
trated in Figure 27. In this figure, if the upper vertex normal has an angle
> 90 degrees with the light direction, its color should then be black (min-
imum level of light = 0). If the two other vertex normal has an angle of
0 degree with the light direction, this means that they should receive the
maximum level of light (1). To fill the triangle, we interpolate to color level
between each vertex in order to have a nice gradient.

Figure 27: Gouraud shading linear interpolation

2.1.7 Texture Mapping

Texture mapping means applying any type of picture on one or more faces
of a 3D model[17]. The picture, also known as texture can be anything but
is often a pattern such as bricks, foliage, barren land, etc. that adds realism
to the scene.

For example, compare the images in Figure 28. The left pyramid uses tex-
ture to fill in the faces and the right one uses gradient colors.

22

To get texture mapping working, three things need to be done:

• Load a texture into a memory.

• Supply texture coordinates with the vertices (to map the texture to
them) and

• Perform a sampling operation from the texture using the texture co-
ordinates in order to get the right pixel color

Figure 28: Left pyramid: with texture, Right pyramid: without texture

Since a triangle is scaled, rotated, translated and finally projected it can
land on the screen in numerous ways and look very different depending on
its orientation to the camera. What the GPU needs to do is make the tex-
ture follow the movement of the vertices of the triangle so that it will look
real (if the texture appear to “swim” across the triangle it will not). To do
that, a set of coordinates known as ’texture coordinates’ have to be supplied
to each vertex. As the GPU rasterizes the triangle it interpolates the tex-
ture coordinates across the triangle face and in the fragment shader these
coordinates are mapped to the texture. This action is known as ’sampling’
and the result of sampling is a texel (a pixel in a texture). The texel often
contains a color which is used to paint the corresponding pixel on the screen.

In this implementation, a single 2D image was used as a texture to map
every face of the mesh in 3D. A 2D texture has a width and height that can
be any number within the limitations of the specification. Multiplying the

23

width by height tells you the number of texels in the texture. The texture
coordinates of a vertex are not the coordinates of a texel inside the texture.
That would be too limiting because replacing a texture with one that has
different width/height means that we will need to update the texture coor-
dinates of all the vertices to match the new texture. The ideal scenario is
to be able to change textures without changing texture coordinates.

Therefore, texture coordinates are specified in texture space which is sim-
ply the normalized range [0, 1]. This means that the texture coordinate is
usually a fraction and by multiplying that fraction with the corresponding
width/height of a texture we get the coordinate of the texel in the texture.
For example, if the texture coordinate is [0.5, 0.1] and the texture has a
width of 320 and a height of 200 the texel location will be (160, 20) (0.5 *
320 = 160 and 0.1 * 200 = 20).

Figure 29: U and V texture coordinates

The usual convention is to use U and V as the axis of the texture space
where U corresponds to X in the 2D cartesian coordinate system and V
corresponds to Y. System treats the values of the UV axes as going from
left to right on the U axis and down to up on the V axis.

Figure 29 presents the texture space and you can see the origin of that
space in the bottom left corner. U grows towards the right and V grows
up. Now consider a triangle whose texture coordinates are specified in the
following picture:

24

Let us say that we apply a texture such that when using these texture
coordinates we get the picture of the small house in the location above.
Now the triangle goes through various transformations and when the time
comes to rasterize it, it looks like this:

It can be seen, that the texture coordinates “stick” to the vertices as they
are a core attributes and they do not change under the transformations.
When interpolating the texture coordinates most pixels get the same tex-
ture coordinates as in the original picture (because they remained in the
same place relative to the vertices) and since the triangle was flipped so is
the texture which is applied to it. This means that as the original triangle
is rotated, stretched or squeezed the texture diligently follows it.

Note that there are also techniques that change the texture coordinates
in order to move texture across the triangle face in some controlled way.

25

2.2 3D Rendering Effects

2.2.1 Perlin Noise

Perlin noise is a type of gradient noise developed by Ken Perlin in 1983 as a
result of his frustration with the “machine-like” look of computer graphics at
the time[21]. In 1997, Perlin was awarded an Academy Award for Technical
Achievement for discovering the algorithm.

Figure 30: Fire is created using the Perlin noise function

Perlin noise is a procedural texture primitive, a type of gradient noise used
by visual effects artists to increase the appearance of realism in computer
graphics. The function has a pseudo-random appearance, yet all of its visual
details are the same size. This property allows it to be readily controllable;
multiple scaled copies of Perlin noise can be inserted into mathematical ex-
pressions to create a great variety of procedural textures. Synthetic textures
using Perlin noise are often used in CGI to make computer-generated visual
elements, such as object surfaces, fire, smoke, or clouds, appear more nat-
ural, by imitating the controlled random appearance of textures of nature.

It is also frequently used to generate textures when memory is extremely
limited, such as in demos, and is increasingly finding use in graphics pro-
cessing units for real-time graphics in computer games.

26

Figure 31: Two dimensional slice through 3D Perlin noise at z=0

Perlin noise is most commonly implemented as a two-, three- or four-dimensional
function, but can be defined for any number of dimensions. An implemen-
tation typically involves three steps: grid definition with random gradient
vectors, computation of the dot product between the distance-gradient vec-
tors and interpolation between these values. In this project, we implemented
the 3D version of the function.

Grid definition Define an n-dimensional grid. At each grid node as-
sign a random gradient vector of unit length in n dimensions. For a one-
dimensional grid each node will be assigned either +1 or -1, for a two-
dimensional grid each node will be assigned a random vector on the unit
circle, and so forth for higher dimensions.

Computation of the (pseudo-) random gradients in one and two dimensions
is trivial using a random number generator. For higher dimensions a Monte
Carlo approach can be used where random Cartesian coordinates are chosen
in a unit cube, points falling outside the unit ball are discarded, and the
remaining points are normalized to lie on the unit sphere. The process is
continued until the required number of random gradients are obtained.

In order to negate the expensive process of computing new gradients for
each grid node, some implementations use a hash and lookup table for a
finite number of precomputed gradient vectors. The use of a hash also per-
mits the inclusion of a random seed where multiple instances of Perlin noise

27

are required.

Dot product Given an n-dimensional argument for the noise function,
the next step in the algorithm is to determine into which grid cell the given
point falls. For each corner node of that cell, the distance vector between the
point and the node is determined. The dot product between the gradient
vector at the node and the distance vector is then computed.

For a point in a two-dimensional grid, this will require the computation
of 4 distance vectors and dot products, while in three dimensions 8 distance
vectors and 8 dot products are needed. This leads to the O(2n) complexity
scaling.

Interpolation The final step is interpolation between the 2n dot products
computed at the nodes of the cell containing the argument point. This has
the consequence that the noise function returns 0 when evaluated at the grid
nodes themselves.

Interpolation is performed using a function that has zero first derivative
(and possibly also second derivative) at the 2n grid nodes. This has the
effect that the gradient of the resulting noise function at each grid node
coincides with the precomputed random gradient vector there. If n = 1, an
example of a function that interpolates between value a0 at grid node 0 and
value a1 at grid node 1 is

f(x) = a0 + smoothstep(x) · (a1 − a0), for 0 ≤ x ≤ 1

The following is pseudocode for a two-dimensional implementation of Clas-
sical Perlin Noise[22].

Listing 3: Pseudocode for 2D Implementation of Perlin Noise

// Function to linearly interpolate between a0 and a1

// Weight w should be in the range [0.0, 1.0]

function lerp(float a0, float a1, float w) {

return (1.0 - w)*a0 + w*a1;

}

// Computes the dot product of the distance and gradient vectors.

function dotGridGradient(int ix, int iy, float x, float y) {

// Precomputed (or otherwise) gradient vectors at each grid node

28

extern float Gradient[IXMAX][IYMAX][2];

// Compute the distance vector

float dx = x - (float)ix;

float dy = y - (float)iy;

// Compute the dot-product

return (dx*Gradient[iy][ix][0] + dy*Gradient[iy][ix][1]);

}

// Compute Perlin noise at coordinates x, y

function perlin(float x, float y) {

// Determine grid cell coordinates

int x0 = (x > 0.0 ? (int)x : (int)x - 1);

int x1 = x0 + 1;

int y0 = (y > 0.0 ? (int)y : (int)y - 1);

int y1 = y0 + 1;

// Determine interpolation weights

// Could also use higher order polynomial/s-curve here

float sx = x - (float)x0;

float sy = y - (float)y0;

// Interpolate between grid point gradients

float n0, n1, ix0, ix1, value;

n0 = dotGridGradient(x0, y0, x, y);

n1 = dotGridGradient(x1, y0, x, y);

ix0 = lerp(n0, n1, sx);

n0 = dotGridGradient(x0, y1, x, y);

n1 = dotGridGradient(x1, y1, x, y);

ix1 = lerp(n0, n1, sx);

value = lerp(ix0, ix1, sy);

return value;

}

2.2.2 Particle System

A particle system is a technique in game physics, motion graphics, and com-
puter graphics that uses a large number of very small sprites, 3D models, or
other graphic objects to simulate certain kinds of “fuzzy” phenomena, which
are otherwise very hard to reproduce with conventional rendering techniques
- usually highly chaotic systems, natural phenomena, or processes caused by
chemical reactions[23].

29

Examples of such phenomena which are commonly replicated using particle
systems include fire, explosions, smoke, moving water (such as a waterfall),
sparks, falling leaves, rock falls, clouds, fog, snow, dust, meteor tails, stars
and galaxies, or abstract visual effects like glowing trails, magic spells, etc.
- these use particles that fade out quickly and are then re-emitted from the
effect’s source. Another technique can be used for things that contain many
strands - such as fur, hair, and grass - involving rendering an entire parti-
cle’s lifetime at once, which can then be drawn and manipulated as a single
strand of the material in question.

Typically a particle system’s position and motion in 3D space are controlled
by what is referred to as an emitter. The emitter acts as the source of the
particles, and its location in 3D space determines where they are generated
and where they move to. A regular 3D mesh object, such as a cube or a
plane, can be used as an emitter. The emitter has attached to it a set of
particle behavior parameters. These parameters can include:

Figure 32: A particle system used to simulate a fire, created in 3dengfx

• The spawning rate (how many particles are generated per unit of time)

• The particles’ initial velocity vector (the direction they are emitted

30

upon creation)

• Particle lifetime (the length of time each individual particle exists be-
fore disappearing)

• Particle color, and many more.

Figure 33: A cube emitting 5000 animated particles, obeying a “gravita-
tional” force in the negative Y direction.

It is common for all or most of these parameters to be “fuzzy” instead of a
precise numeric value, the artist specifies a central value and the degree of
randomness allowable on either side of the center (i.e. the average particle’s
lifetime might be 50 frames 20%). When using a mesh object as an emitter,
the initial velocity vector is often set to be normal to the individual face(s)
of the object, making the particles appear to “spray” directly from each face
but optional.

2.2.3 Displacement Mapping

Displacement mapping is an alternative computer graphics technique using
a (procedural-) texture- or height map to cause an effect where the actual
geometric position of points over the textured surface are displaced, often

31

along the local surface normal, according to the value the texture function
evaluates to at each point on the surface[24]. It gives surfaces a great sense
of depth and detail, permitting in particular self-occlusion, self-shadowing
and silhouettes; on the other hand, it is the most costly of this class of
techniques owing to the large amount of additional geometry.

Figure 34: Displacement mapping in mesh using texture

In this project we used the idea of displacement mapping in combination
with Perlin noise function in order to generate pseudorandom terrains like
the scene we can see in Figure 35.

2.3 Introduction to FPGAs

At the highest level, FPGAs are reprogrammable silicon chips. Using pre-
built logic blocks and programmable routing resources, we can configure
these chips to implement custom hardware functionality without ever hav-
ing to pick up a breadboard or soldering iron. We develop digital computing
tasks in software and compile them down to a configuration file or bitstream
that contains information on how the components should be wired together.
In addition, FPGAs are completely reconfigurable and instantly take on a
brand new “personality” when you recompile a different configuration of
circuitry. In the past, FPGA technology could be used only by engineers
with a deep understanding of digital hardware design. The rise of high-level

32

Figure 35: Displacement Mapping for creating multilevel terrain

design tools, however, is changing the rules of FPGA programming, with
new technologies that convert graphical block diagrams or even C code into
digital hardware circuitry[25].

FPGA chip adoption across all industries is driven by the fact that FP-
GAs combine the best parts of ASICs and processor-based systems. FPGAs
provide hardware-timed speed and reliability, but they do not require high
volumes to justify the large upfront expense of custom ASIC design. Re-
programmable silicon also has the same flexibility of software running on a
processor-based system, but it is not limited by the number of processing
cores available. Unlike processors, FPGAs are truly parallel in nature, so dif-
ferent processing operations do not have to compete for the same resources.
Each independent processing task is assigned to a dedicated section of the
chip, and can function autonomously without any influence from other logic
blocks. As a result, the performance of one part of the application is not
affected when you add more processing.

Here are the top 5 benefits of FPGAs.

1. Performance

2. Time to Market

3. Cost

4. Reliability

33

5. Long-Term Maintenance

Performance Taking advantage of hardware parallelism, FPGAs exceed
the computing power of digital signal processors (DSP’s) by breaking the
paradigm of sequential execution and accomplishing more per clock cycle.
BDTI, a noted analyst and benchmarking firm, released benchmarks show-
ing how FPGAs can deliver many times the processing power per dollar
of a DSP solution in some applications. Controlling inputs and outputs
(I/O) at the hardware level provides faster response times and specialized
functionality to closely match application requirements.

Time to market FPGA technology offers flexibility and rapid prototyp-
ing capabilities in the face of increased time-to-market concerns. We can
test an idea or concept and verify it in hardware without going through the
long fabrication process of custom ASIC design. We can then implement
incremental changes and iterate on an FPGA design within hours instead of
weeks. Commercial off-the-shelf (COTS) hardware is also available with dif-
ferent types of I/O already connected to a user-programmable FPGA chip.
The growing availability of high-level software tools decreases the learning
curve with layers of abstraction and often offers valuable IP cores (prebuilt
functions) for advanced control and signal processing.

Cost The nonrecurring engineering (NRE) expense of custom ASIC design
far exceeds that of FPGA-based hardware solutions. The large initial invest-
ment in ASICs is easy to justify for OEM’s shipping thousands of chips per
year, but many end users need custom hardware functionality for the tens
to hundreds of systems in development. The very nature of programmable
silicon means you have no fabrication costs or long lead times for assembly.
Because system requirements often change over time, the cost of making
incremental changes to FPGA designs is negligible when compared to the
large expense of respinning an ASIC.

Reliability While software tools provide the programming environment,
FPGA circuitry is truly a “hard” implementation of program execution.
Processor-based systems often involve several layers of abstraction to help
schedule tasks and share resources among multiple processes. The driver
layer controls hardware resources and the OS manages memory and pro-
cessor bandwidth. For any given processor core, only one instruction can
execute at a time, and processor-based systems are continually at risk of

34

time-critical tasks preempting one another. FPGAs, which do not use OS’s,
minimize reliability concerns with true parallel execution and deterministic
hardware dedicated to every task.

Long-term maintenance As mentioned earlier, FPGA chips are field-
upgradable and do not require the time and expense involved with ASIC
redesign. Digital communication protocols, for example, have specifications
that can change over time, and ASIC-based interfaces may cause mainte-
nance and forward-compatibility challenges. Being reconfigurable, FPGA
chips can keep up with future modifications that might be necessary. As a
product or system matures, you can make functional enhancements without
spending time redesigning hardware or modifying the board layout.

To sum up, the adoption of FPGA technology continues to increase as
higher-level tools evolve to deliver the benefits of reprogrammable silicon
to engineers and scientists at all levels of expertise.

2.4 High-Level Synthesis

High-level synthesis (HLS), sometimes referred to as C synthesis, electronic
system-level (ESL) synthesis, algorithmic synthesis, or behavioral synthesis,
is an automated design process that interprets an algorithmic description
of a desired behavior and creates digital hardware that implements that
behavior. Synthesis begins with a high-level specification of the problem,
where behavior is generally decoupled from e.g. clock-level timing. Early
HLS explored a variety of input specification languages, although recent re-
search and commercial applications generally accept synthesizable subsets of
ANSI C/C++/SystemC/Matlab. The code is analyzed, architecturally con-
strained, and scheduled to create a register-transfer level (RTL) hardware
description language (HDL), which is then in turn commonly synthesized
to the gate level by the use of a logic synthesis tool. The goal of HLS is to
let hardware designers efficiently build and verify hardware, by giving them
better control over optimization of their design architecture, and through
the nature of allowing the designer to describe the design at a higher level
of abstraction while the tool does the RTL implementation. Verification of
the RTL is an important part of the process[26].

Hardware design can be created at a variety of levels of abstraction. The
commonly used levels of abstraction are gate level, register-transfer level
(RTL), and algorithmic level.

35

While logic synthesis uses an RTL description of the design, high-level syn-
thesis works at a higher level of abstraction, starting with an algorithmic
description in a high-level language such as SystemC and Ansi C/C++.
The designer typically develops the module functionality and the intercon-
nect protocol. The high-level synthesis tools handle the micro-architecture
and transform untimed or partially timed functional code into fully timed
RTL implementations, automatically creating cycle-by-cycle detail for hard-
ware implementation. The (RTL) implementations are then used directly in
a conventional logic synthesis flow to create a gate-level implementation.

In this project we used high-level synthesis to generate specific components
of the implementation.

36

3 Related Work

Several projects have attempted to implement FPGA-based three dimen-
sional graphics rendering. One of the works have been done includes “Im-
plementation of a Simple 3D Graphics Pipeline” by Vladimir Kasik and Ales
Kurecka[1]. This project presents a hardware-based graphics pipeline based
on FPGA that utilizes parallel computation for simple projection of a wire-
frame 3D model. Pipelining and strong parallelism were commonly used to
obtain the target frequency of 100MHz.

Figure 36: Simplified diagram of the implemented graphics pipeline.

This graphics pipeline consists of the unit for computing the projection ma-
trix, the vertex unit, the simple rendering unit and a two-port video memory.
The pipeline first deletes video RAM, computes the projection matrix with
transferred parameters (azimuth, elevation, viewing angle) and reads the
normalized 3D model from the vertex memory and their interconnections.

37

This is then displayed in 2D and rescaled for display on the screen. The
wireframe model is then drawn in the video memory from the computed 2D
vertices. The implementation of the project was for the Xilinx Spartan-6
circuit with a graphics output to VGA. The tests carried out resulted in
real-time rendering at over 5000 FPS.

Figure 37: Example of an output by Kasik and Kurecka work.

Another one work was the ”Implementation of a 3D Graphics Rasterizer
with Texture and Slim Shader on FPGA” by Ajay Kashyap and Ashish
Sharma[2]. They designed a 3D graphics hardware with rasterizer having
texture and slim-shader for the efficient 3D graphics accelerator. All stages
of the graphics pipeline were developed on FPGA using RTL design.

The main rendering operation such as texturing, shading, blending and
depth comparison was performed by a component called slim shader. In
slim shader vertical strip assignment was done, as shown in Figure 38.

Figure 38: Slim shader Triangle Setup

38

Each triangle was divided into two alternative strips of A and B, and two
pixel processors were used to rasterize the triangles in horizontal order.
This triangle distribution to two pixel processors enhanced the overall per-
formance of 3D pipeline by accelerating setup operation.

Kyungsu Kim et al. at Electronics and Telecommunications Research Insti-
tute in Korea have done research in 3D graphics hardware with title ”Im-
plementation of 3D Graphics Accelerator Using Full Pipeline Scheme on
FPGA”[3]. The research was based on the graphics pipeline shown in Fig-
ure 39 which contains Geometry stage and Rasterization stage. Geometry
stage consists of vertex shader, clipping engine and viewport mapping. Ras-
terization stage is composed of triangle setup engine, rasterizer, pixel shader
and raster operators.

Figure 39: 3D graphics full pipeline

This system was synthesized and implemented on Virtex 5 FPGA and op-
erated with 35MHz clock frequency. It was able to render 70,000 triangles
of Stanford Bunny at 30 FPS.

Peter Szanto and Bela Feher designed an FPGA implementation which
supports programmable pixel computing with title ”Implementing a Pro-
grammable Pixel Pipeline in FPGAs”[4]. The implemented graphics accel-
erator supports hidden surface removal and shading in hardware. Trans-
formation from local model coordinate system into the screen space’s co-
ordinate system, clipping and vertex based lighting are computed by the
host processor. The hidden surface removal (HSR) part was based on the
idea originally created by PowerVR: tile based deferred rendering [7]. This
method ensures that no processing power is wasted on computing non-visible

39

pixels, and also saves memory bandwidth.

The implementation was not done using one of the most common hardware
description languages (such as Verilog or VHDL), but an ANSI-C based tool,
Celoxica’s DK1 Design Suite[5].

Finally, Jeong-Joon Yoo et al. presented “Tile-based Path Rendering for
Mobile Device”[6]. In this project, they designed a novel tile-based path
rendering scheme that provides a fast rendering on mobile device. The
proposed tile-based approach which effectively reduced memory I/O and
computation simultaneously, gave them an acceptable high performance of
path rendering on mobile device. Although tile-based rendering had been
already used in 3D graphics or GPU, it was the first time to introduce the
concept of tile-based scheme for path rendering.

Tile-based path rendering was composed of two steps as shown in Figure
40; i) Tile Binning step that generates Tile Bin Data, ii) Rendering step
that renders path data located in each tile using the Tile Bin Data.

Figure 40: Overall Flow of Tile-based Path Rendering (Left: Overall Flow,
Right: Tile Binning

As a result, they got a scalable performance (FPS) not only on high reso-
lution but also on normal resolution pixel size. This scheme could be used
not only in middle-end smart phone but also in FHD and QHD smart phone.

40

Apart form FPGA-based implementations, it is vital to mention a render-
ing pipeline implemented in CUDA[8], because CUDA is a powerful tool
for general purpose computing that provides more flexible control over the
graphics hardware.

Fang Liu et al. presented a system for fully programmable rendering archi-
tecture on current graphics hardware with title “FreePipe: a Programmable
Parallel Rendering Architecture for Efficient Multi-Fragment Effects”[9].
This system bridges between the traditional graphics pipeline and a gen-
eral purpose computing architecture while retaining the advantages of both
sides. The core of the system is a z-buffer based triangle rasterizer that is
entirely implemented in CUDA. All stages of the pipeline can be mapped to
CUDA programming model. The system is fully programmable while still
having comparable performance to the traditional graphics pipeline.

Two novel schemes had been proposed within this architecture for efficient
rendering of multi-fragment effects in a single geometry pass using CUDA
atomic operations. Both schemes had significant speed improvement over
the stat-ofthe- art depth peeling algorithm. In Figure 41, we can see the
performance of this implementation.

Figure 41: Frame rates(fps) for various scenes by FreePipe

41

4 Project Overview and Design

This section presents an overview of the project’s design. More specifically,
this section presents the parts of the implementation, a high level design de-
scribing the system’s various components, the target device and the software
platform we used for the implementation.

4.1 Parts of Implementation

In this project we implemented a full 3D rendering pipeline in three sepa-
rate phases and four advanced 3D rendering effects that use the previously
implemented graphics pipeline.

4.1.1 Graphics Pipeline Implementation Phases

The graphics pipeline was implemented in three phases.

1. Vertex Processing and Rasterization: The vertices of the objects
are joined three each time in order to create a triangle and then the
inside are of the triangle is filled with color. Apart from lighting and
texture mapping, all steps of the graphics pipeline are executed.

2. Lighting: First we define a light source at a point in 3D space. Then
computing the angle between the light direction and the normal per
face (or normal per vertex in Gouraud shading), every pixel’s color is
multiplied by an intensity value creating shading and giving photore-
alism to the scene.

3. Texture Mapping: In contrast with phases 1 and 2 where there is
a fixed color for filling triangles, at this phase a texture is shown on
every face of the mesh.

4.1.2 3D Rendering Effects

Perlin Noise Mapping to Ramp Texture In this part, we use Perlin-
Noise function in order to create textures for the mesh. The color of every
pixel in each face of the mesh depends on its coordinates (x, y, z). Perlin-
Noise function is called with the coordinates of the pixel as inputs and a
decimal number between 0 and 1 comes as output. This number is mapped
with a ramp texture that contains 256 color values (shades of grey). The
color we get after the mapping operation corresponds to the current pixel.

42

Particle System In this effect, 300 triangles (particles) are emitted from
the same position in the 3D world (0, 0, 0.5) First of all, running a pseu-
dorandom function we get each particle’s parameters: lifespan, speed and
direction. Particle coordinates are changed per frame depending on these
three parameters and gravity force which is the same for all. The output on
the screen looks like an emission of white particles falling down.

This part has a second version with the placement of a Repeller Object in
the 3D world. In our example, this object is a cube with fixed coordinates.
When a particle collides on the cube, it gets an opposing force depending on
its direction. So, the particle bounces on the repeller and continues falling.

Displacement Mapping using Perlin Noise 3200 triangles have been
initialized in order to create a terrain. When the user pushes the confirm
button on the board, we get a random number r from 0 to 4095. This num-
ber is used as input to the PerlinNoise function PerlinNoise(x, r, z) (x and
z are the coordinates of the current vertex).

The result of the perlin noise function is used as y value for every vertex
of the mesh. Consequently, after rendering we can see a terrain with mul-
tiple levels on the screen. We can generate different terrains (4095 different
terrains) randomly by just pushing the confirm button.

4.2 High Level Design

The high level design of this project includes four components. These com-
ponents and their responsibilities are described below.

• Face Vertices ROM

• Rendering Processor

• Frame Buffer

• Display Driver

Each component had its own specific responsibilities. FaceVerticesROM is
a memory where the coordinates of the 3D object we want to render are
stored. Apart from that, this module is responsible for giving to processor
three vertices a time that describe a triangle. In Lighting and Texture Map-
ping phases, FaceVerticesROM contains also the normals per vertex and the
texture coordinates for each vertex.

43

Rendering Processor is the module in which all the graphics pipeline steps
and raster operations are executed. All these operations are controlled by a
component called Controller which is a part of Processor. The rasterization
results (frame) is written to the frame buffer. As we proceed to Shading and
Texture Mapping phases, this module will be larger and more complex due
to various algorithms we launch.

Frame Buffer is the responsible component for containing the current frame.
It is dual port because both processor and display unit are allowed to read
from it but only processor can write.

Display Driver is a projection module which reads the frame from frame
buffer and pixels one by one are displayed on the screen. This module oper-
ates independently of other operations are being executed on the processor
unit.

It can be seen in Figure 42 that the system uses the Shared Memory model
of communication.

Figure 42: High Level Design

4.3 Target Device

The FPGA development board upon the system was developed is Kintex-7
FPGA KC705 Evaluation Kit[29]. The Kintex-7 FPGA KC705 evaluation
kit provides a comprehensive, high-performance development and demon-
stration platform using the Kintex-7 FPGA family for high-bandwidth and
high-performance applications in multiple market segments. The kit en-
ables designing with DDR3, I/O expansion through FMC, and common
serial standards, such as PCI Express, XAUI, and proprietary serial stan-
dards through the SMA interface.

Xilinx, the leading FPGA manufacturer, has designed the Kintex-7 with

44

high performance and is one of its ideal offering for FPGA-based graphics
acceleration as it has the necessary resources for GPU computations. The
selected XC7K325T-2FFG900C FPGA includes 326080 logic cells, 840 DSP
slices, 407600 CLB Flip-flops, 4000Kb maximum distributed RAM and sup-
ports integrated hard memory, high performance clocking, serial IO and an
integrated PCI-Express (PCI-E) endpoint block.

Figure 43: Kintex-7 KC705 Evaluation Kit

The KC705 Evaluation Kit enables developers to easily prototype designs
with the XC7K325T-2FFG900C Kintex-7 FPGA. The kit includes all the
basic components of the Xilinx Base Targeted Design Platform in one pack-
age. With the KC706, developers can easily take advantage of the features of
the Kintex-7. Additionally, the kit includes HDMI video output, a Fixed Os-
cillator with differential 200MHz output, 1GB of DDR3 memory SODIMM
, and various expansion connections. The support for the Kintex-7 FPGA,

Figure 44: XC7K325T Device Feature Summary

45

digital video output interface, and 200MHz clock all made the KC705 an
appropriate choice for FPGA-based graphics acceleration. Additionally, its
support for PCI-E created an additional advantage for potential applications
in a desktop PC environment.

4.4 Software Platform

As mentioned previously, the language used for this project was VHDL and
the the target platform was Kintex-7. Because we used a 7-series board, the
software platform used for the design was Vivado Design Suite 2014.1[28]
(for lower series board we should use Xilinx ISE). Vivado Design Suite is a
software suite produced by Xilinx for synthesis and analysis of HDL designs,
superseding the older Xilinx ISE with additional features for system on a
chip development and high-level synthesis.

Figure 45: Xilinx Vivado Design Suite 2014.1 running synthesis

This software includes an in-built logic simulator and introduces high-level
synthesis, with a toolchain that converts C code into programmable logic.
Vivado has been described as a “state-of-the-art comprehensive EDA tool
with all the latest bells and whistles in terms of data model, integration,
algorithms, and performance”.

Vivado enables developers to synthesize (compile) their designs, perform
timing analysis, examine RTL diagrams, simulate a design’s reaction to

46

different stimuli, and configure the target device with the programmer. So
Vivado includes four components: Vivado High-Level Synthesis, Vivado
Simulator and Vivado IP Integrator.

Figure 46: Xilinx floating-point IP that provides a range of floating-point
operations.

Vivado High-Level Synthesis The Vivado High-Level Synthesis com-
piler enables C, C++ and SystemC programs to be directly targeted into
Xilinx devices without the need to manually create RTL. Vivado HLS is
widely reviewed to increase developer productivity, and is confirmed to sup-
port C++ classes, templates, functions and operator overloading.

Vivado Simulator The Vivado Simulator is a compiled-language simula-
tor that supports mixed-language, TCL scripts, encrypted IP and enhanced
verification. It gives the ability to developer to simulate his design before
programming the device.

Vivado IP Integrator The Vivado IP Integrator allows engineers to
quickly integrate and configure IP from the large Xilinx IP library. In-

47

tellectual Property library provides numerous implemented components to
help developers focus on their application design and be more productive.
For instance, there already implemented ip’s that perform multiplication
and other mathematical operations. In this project, the majority of mathe-
matical operations were implemented using the floating point ip core

Vivado HLS was used in this project for specific computations, that are
mentioned in the next section, and C was the preferred language. All these
C codes were verified using simulation inside HLS and then we synthesized
them to get the HDL code (in VHD files) and some TCL scripts. In order to
import this RTL to our project, we added these VHD files to the implemen-
tations and ran the TCL scripts from the TCL console in Vivado. When
TCL files are executed, some IP cores are created in order the RTL of this
design to run properly and give the correct output.

Having an RTL description of the design in VHDL, we use Vivado to syn-
thesize it, targeted for the Kintex-7 FPGA architecture. Once synthesized,
a net-list is exported. This is used by the Xilinx Alliance Design Manager
(XADM) FPGA layout tool to map the design to the FPGA using placement
and routing in order to create an FPGA configuration bit-file. Finally, this
bit-file is used to configure the FPGA to form the designed digital system.

48

5 Implementation

In this section, we will discuss about the architecture of all the parts and
phases of the implementation in depth. On the grounds that the rendering
effects use the graphics pipeline in order to be rendered, it is vital to begin
with implementation of the pipeline.

In order to discuss the rendering pipeline’s implementation, we have to ana-
lyze the individual components of the high level design, separately for every
phase of the implementation.

5.1 Vertex Processing and Rasterization Phase

In this phase, we display the mesh on the screen using one solid color to fill
its faces.

5.1.1 FaceVertices

This component is responsible for the coordinate production of three vertices
that declare a triangle in order to draw a face of a 3D object.

Figure 47: A, B and C are the vertices that describe triangle

In FaceVertices component there is a memory called VerticesROM. This
ROM contains the x, y and z coordinates of all the vertices of a mesh.
In order to find the appropriate three vertices that declare a triangle we
need a second memory that is called IndicesROM. This ROM contains three
numbers per triangle. These numbers correspond to the addresses in Ver-
ticesROM. The content of VerticesROM in these addresses are the x, y, z
coordinates of the three vertices of the triangle.

All ROM memories were implemented using Distributed Memory Gener-
ator IP form Vivado. They were initialized with .coe files in binary radix.
Coe files were generated with the use of Matlab.

49

Figure 48: Block Diagram of FaceVertices component

Registers are used to store the vertex coordinates to be ready for output.
The control component contains an FSM that is responsible for the right
operation of the vertices production.

5.1.2 Processor Unit

This is the most complex and biggest component of the implementation. In
this component all the operations are performed in order to create the frame.
It is comprised of eight modules which all are controlled by the controller
component. The mathematical operations were described in VHDL with the
use of several basic IP cores.

Transformation Component This component performs all the opera-
tions of the vertex processing stage. Specifically, it performs this multipli-
cation:

[ProjectionMatrix] ∗ [V iewMatrix] ∗ [WorldMatrix]

50

Figure 49: Block Diagram of Processor Unit

In order to compute the projection and view matrices, we implemented the
perspective algorithm (Listing 2) and Look-at algorithm (Listing 1) men-
tioned earlier using high level synthesis (HLS) and placed the the appropri-
ate RTL in Projection and View component respectively. Also, here are the
input parameters we used as example in the project for View and Projection
component:

cameraPosition = (0, 0, 5), cameraTarget = (0, 0, 0) and

fov = 0.78, aspect = 400/200, znear = 0.01, zfar = 1.0

These two matrices start to be computed in parallel when Controller enables

51

Figure 50: Block Diagram of Transformation Component

the Transformation component. After this computation, they are multiplied
using the MatrixMul5 component. in this phase, all MatrixMultiplication
components (MatrixMul in Figure 50) were implemented using high-level
synthesis (Appendix 8.1). Also, the world matrix starts to be computed the
same time with projection and view matrices. It is computed by multiplying
Scale Matrix, Rotation Matrix and Translation Matrix. Because Rotation
matrix comes from the multiplication below, it must be computed first.

[RotationMatrix] =
[RotationXMatrix] ∗ [RotationYMatrix] ∗ [RotationZMatrix]

Figure 51: Block Diagram of Rotation Component

52

Each Rotation component that computes the separate rotation matrix, con-
sists of two modules: an Adder and a Cosine Lookup table. The adder
is initialized with zero and is increased or decreased depending the inputs.
The output value from the adder is the angle θ and must be always in this
range [0, 358] (angle is increased or decreased 2 degrees each time). Then,
the Cosine Lookup table gives the appropriate positive cosine, positive sine
and negative sine as output, depending always on the angle θ.

In the same way, Translation and Scale matrix are computed (without the
cosine lookup table). The order of the matrix multiplications for the World
Matrix is: 1. MatrixMul1, 2. MatrixMul2, 3. MatrixMul3, 4. MatrixMul4.
World matrix is computed faster than the multiplication of projection and
view, because the latters’ matrices are more complex. So when MatriMul5
has finished, the result from MatrixMul4 is ready. The last step is to mul-
tiply these two matrices in order to get the final transformation matrix.

Figure 52: Block diagram of Project component

Project Component Project component takes some 3D coordinates and
transform them in 2D coordinates using the transformation matrix. As it can
be seen from the block diagram (in Figure 52), it is consisted of six modules.

53

In MatrixVectorMultiplication component (Appendix 8.2), we multiply the
transformation matrix with the face vertices of a point of a triangle. The
result is divided by w value in TransformCoordinates component (Appendix
8.3) and final x and y values are scaled to the viewport width and height
in ProjectX and ProjectY components respectively. Because FaceVertices
component gives each time the coordinates of the three vertices of a triangle
we need to do this process three times for each vertex. That is why this
register exists, in order to store the final coordinates of every vertex.

MatrixVectorMultiplication and TransformCoordinates components were im-
plemented using high-level synthesis.

DrawTriangle, ProcessScanLine, DrawPoint and DepthBuffer Com-
ponents These four components are responsible for the rasterization of a
triangle depending on the pixel coordinates that come out from project mod-
ule. ProcessScanLine is a part from DrawTriangle and DrawPoint is a part
from ProcessScanLine. In other words, DrawTriangle calls ProcessScanLine
component multiple times in order to raster all the lines of the triangle and
ProcessScanLine calls DrawPoint component many times in order to draw
all the points of each line.

Figure 53: Flowchart of DrawTriangle component in Rasterization Phase

First of all, in the DrawTriangle component, we sort the points that are
given as inputs from project component in order to have them always in the
same order - with P1 always up, and then P2 between P1 and P3. Then, we
detect which case of a triangle we have (with P2 on the right or P2 on the
left) and divide the triangle into two parts, to a flat bottom and a flat top

54

triangle. Now for every line of these triangles, the appropriate coordinates
of every line are given to ProcessScanline component in order to raster the
lines.

The ProcessScanLine component in order to draw a line has to find the
sarting X and Z, and ending X and Z of it. At first, we compute the gra-
dient of the triangle edges (left and right) thanks to current Y. Then, we
interpolate the coordinates with the given gradients and we have the values
we want to draw the line. After that, we use the DrawPoint component in
order to write every point of a line on the frame buffer.

Figure 54: Flowchart of ProcessScanLine component in Rasterization Phase

The Drawpoint component, before writing the appropriate value to the
frame buffer, does the clipping operation by checking if the current point of
the triangle is visible on screen. Then, it checks the value of the depth buffer
in current’s x and y coordinates in order to identify if another object exists
in front of it in the scene. Depending on that, the color value is written on
the frame buffer and the z value in the depth buffer. Finally, Depth buffer
is the memory in which we store the z value of a point which exists in the
same x, y coordinates in frame buffer. Frame buffer and depth buffer have
the same size.

Clear component This component is responsible for clearing the frame
and depth buffers. When it is called, it writes black color to all addresses
of the frame buffer and a great value to the addresses of the depth buffer.
This is the initialization of the buffers.

Write Memory Multiplexer This multiplexer is responsible for allowing
which component (Clear or DrawPoint) to write to frame and depth buffer.
It decides depending on the input it gets from the controller component. In

55

Figure 55: Flowchart of DrawPoint component

the beginning of each frame, buffers are cleared, so multiplexer allows to clear
component to write into buffers. After that, drawpoint is the component
that writes into buffers until current frame is completed. And this operation
continues.

Controller Controller is a Frequent State Machine (FSM) and the main
module of processor unit which gives the right values to the previously re-
ferred components in order to execute the pipeline successfully.

Figure 56: Controller FSM

At first, Controller enables the transformation component. When it fin-
ishes, enables the Clear component to clear the buffer and then it enables
the FaceVertices component to get the first vertices that describe a triangle.
When vertices are ready, Controller enables the Project component and then
the DrawTriangle. When this process finishes, Controller enables the FaceV-
ertices again to get the next three vertices and the same process continues.
If FaceVertices component has given all the vertices of the mesh (Vertex-
ProcessDone = 1), Controller enables Transformation component and the

56

whole process is repeated from the beginning. In Figure 56, we can see the
execution order of the components.

5.1.3 Dual-Port RAM

Dual-Port RAM includes the frame buffer. This memory is dual port because
display unit needs always to read color values and processor unit needs to
write whenever it has to. Because the viewport of the frame we used in this
project is 400x200, memory’s size is 400 ∗ 200 ∗ 8bits (the color depth is 8
bits). In order to translate the x, y coordinates in addresses to the buffer
we use a component which is called CoordsToAddr. Our dual-port RAM

Figure 57: Block diagram of Frame Buffer

consists of two same frame buffers allowing full memory bandwidth to both
the processor display unit. When processor unit writes on the first frame
buffer, display unit reads from the second one. When processor unit finishes
writing the mesh, it starts writing to the second buffer and display unit
reads from the first one. This swap process continues.

57

Figure 58: Swap process of Frame buffers

5.1.4 Display Unit

The final component of the implementation is the display unit. It includes a
module called ImageBuilder, which is responsible for reading the color values
of every address from framebuffer serial and gives the screen the appropriate
color for every pixel at the right time. First of all, it is necessary to compute
the pixel clock. Depending on VGA timings and specifications, the screen
resolution we used in this project (1024x720) has 806 lines in a “whole
frame” and the size of a whole line is 1344 pixels. That size includes the
porches, sync and visible area (parameters for vga interface)[31]. So, we
need to display 1344∗806=1083264 pixels on each frame. Now, in order to
find the suitable pixel clock, we multiply the total amount of pixels with 60
(Hz) Industry standard timing.

1.083.264pixels ∗ 60Hz = 64.99MHz

That is why we selected to use 65MHz as the pixel clock’s frequency.

Imagebuilder component sends binary color values and signals for horizon-
tal and vertical synchronizing to an digital to analog converter that exists
in KC705 board called ADV7511 [30]. Then this analog device sends the
appropriate values to the HDMI transmitter. In order to get access to the
converter, we have to use I2C bus. This part of VHDL code was imple-
mented by Mike Field (Appendix 8.4). I2C bus is used to configures the

58

chip once, soon after at power on, and from then on it does nothing. Be-
cause the interface to the ADV7511 is running at Double Data Rate (DDR),
data is transferred on both the rising edge and falling edge of pixel clock.
So, the rest design has to tick twice as fast. That is the reason why we used
130 MHz as the main frequency of the system.

Figure 59: Resources utilization in Vertex Processing and Rasterization
phase

As we can see in Figure 59, the implementation of Vertex Processing and
Rasterization phase uses about the half of available Look-Up tables, 31%
of available blockram and 97 % of DSP slices. The great amount of DSP
slices is logical because we use numerous floating point IP cores for all the
transformations. In the next phases, we will see that some replacements had
to done to decrease the DSP’s in order to fit the logic in the device.

5.2 Shading Phase

In the second phase of the implementation, we added shading to the already
implemented in previous phase rendering pipeline. The two types of shading
that were implemented are Flat and the Gouraud Shading. In both shading
types, we had to add in FaceVertices component one further memory that
keeps the normals per vertex of the triangles. So FaceVertices component
has as outputs the normals per vertex alongside the coordinates of each ver-
tex.

In Project component, apart from transforming the vertex coordinates into
2D space using MatrixVectorMultiplication and TransformCoordinates com-
ponents, we needed also the world matrix and the normals in the 3D world.

59

So we transformed them too. We added these two transformations, because
their output values are necessary in DrawTriangle component.

Due to limited resources of the device, we did not use the HLS RTL inside
MatrixVectorMultiplication component. It needed more DSP slices from the
available, so we implemented a new MatrixVectorMultiplication component
that needed less resources. But it was much slower. In this phase, we faced
that problem because we added more complexity to other components to
implement shading.

Figure 60: FaceVertices Component in Shading Phase

The MatrixVectorMultiplication component multiplies a matrix with a vec-
tor. As we know from linear algebra, if we want to multiply M[4][4] matrix
with N[4] vector, here are the values that equal to K[4] vector.

K1 = (M11 ∗N1) +M12 ∗N2 +M13 ∗N3 +M14 ∗N4

K2 = (M21 ∗N1) +M22 ∗N2 +M23 ∗N3 +M24 ∗N4

K3 = (M31 ∗N1) +M32 ∗N2 +M33 ∗N3 +M34 ∗N4

K4 = (M41 ∗N1) +M42 ∗N2 +M43 ∗N3 +M44 ∗N4

So in this component, we compute the four values of K vector one by one
and store them in a register. When we have computed all of them, the K
vector is ready.

60

Figure 61: Project component in Shading Phase

The block diagram of MatrixVectorMultiplication component can be seen
in Figure 62.

In Transformation component we faced also the same problem with re-
sources. We removed two MatrixMultiplication components were imple-
mented using HLS and replaced them with two other components imple-
mented with the same logic as we saw in Figure 62. But because this time
we want 16 values for the K matrix, latency is about 640 cycles. The compo-
nents that we replaced were MatrixMul4 and MatrixMul5 (see in Figure 50.
(The rest project’s implementation uses these new components, MatrixMul-
tiplication and MatrixVectorMultiplication, that we created without HLS)

The further changes that we had to do in Transformation, DrawTriangle
and ProcessScanLine components are different for Flat and Gouraud shad-
ing so it will be discussed separately.

61

Figure 62: MatrixVectorMultiplication component in Shading Phase (La-
tency = 160 cycles)

5.2.1 Flat Shading

In this type of shading, DrawTriangle component includes some computa-
tions that had to be done in order to find the intensity of the color of the
face. Intensity is a value between 0 and 1.

Figure 63: Flowchart of DrawTriangle in Flat Shading

So, first of all we have to find the face normal vector which is the average
normal between each vertex’s normal (Appenix 8.5). That is why we needed
to compute the vertex normals in 3D world in Project component. Then

62

using the point coordinates in 3D world, we compute the center point of
the face (Appendix 8.6). After declaring the light position (in our project
light source is in this coordinate (2, -2, 10)), we compute the cosine of the
angle between the light vector and the normal vector of the face using dot
product (Appendix 8.7). The cosine value is the intensity of face’s color. It
is multiplied with the initial color and the result is being written later into
the FrameBuffer.

The components that compute the face normal vector, the center point of
the face and the dot product were implemented using high-level synthesis.

Figure 64: Resources utilization in Flat Shading phase

After the removal of HLS components and their replacements with the new
ones described previously, we decreased the number of DSP slices success-
fully. Comparing to the previous phase’s table, we can see that in this phase
more resources are used due to the greater complexity of the flat shading
implementation.

5.2.2 Gouraud Shading

In Gouraud Shading, DrawTriangle component does not include the same
computations as in Flat Shading. Here, we compute only the cosine of the
angle between the light vector and the normal vector for all vertices of atri-
angle separately. So, we have three intensity values of color for each vertex.
In ProcessScanLine component now, we have to find the intensity value of
the color of each pixel. We did this by interpolating the vertex normals first
in the sides of the triangle and then in the line we are rasterizing. The final
interpolated value is the intensity of the color. Intensity is multiplied with

63

Figure 65: Flowchart of DrawTriangle in Gouraud Shading

the initial color and the result is being written into the FrameBuffer later
using the DrawPoint component for every pixel.

Figure 66: Resources utilization in Gouraud Shading phase

In Figure 66, we can see that this implementation uses a little less resources
than Flat Shading. We expected that, because in this phase we do not use
the two implemented in HLS components for the center point of the face
and the face normal. This means less DSP slices and logic cells.

64

5.3 Texture Mapping Phase

In Texture Mapping phase, we used the Gouraud shading implementation
and added some extra logic. At first, we needed a new memory to contain
the texture coordinates of each vertex.

Figure 67: FaceVertices component in Texture Mapping Phase

For this reason, in FaceVertices component, we created the textureCoor-
dinatesROM. These texture coordinates have been added as outputs to
FaceVertices component. Texture coordinates are numbers between 0 and
1. Project and DrawTriangle components have remained the same.

Figure 68: Wood Grayscale Texture (64x64)

The only change we did was the addition of some outputs with the texture
coordinates of each vertex. All the computations for the final color of every

65

pixel depending on the texture are being done in ProcessScanLine compo-
nent.

In ProcessScanLine component, a new memory called TextureROM was
created to contain the texture color values. The texture image we used for
the demonstration of the example mesh is a simple wooden surface with
dimensions: 64 pixels width and 64 pixels height. Using Matlab code, a
COE file was created that describes the texture colors with 8bit values. It
contains only grayscale colors.

Figure 69: Flowchart of ProcessScanLine in Texture Mapping Phase

In ProcessScanLine component, after the interpolation of normals on Y axis,
texture coordinates are also interpolated on the same Y axis in order to com-
pute the Starting U and Starting V values. Moreover, another two values,
U and V, have to be computed for every pixel of the line using interpolation
again. These values are multiplied with width and height of the texture
image respectively, in order to get the corresponding pixel color of the tex-
ture from TextureROM. Knowing now the right texture color, we multiply
it with the intensities values. The result is the color value that will be later
written into FrameBuffer using DrawPoint component.

As we expected, it can be seen in Figure 70 that we use more resources

66

than previous phases. Due to the use of more floating points for the com-
putations and the new memories that added, the utilization of DSP slices,
Flip-flops and LUT’s has been increased.

Figure 70: Resources utilization in Texture Mapping phase

5.4 3D Rendering Effects

For the implementation of the 3D rendering effects we used the rasterization
phase and added there the appropriate components.

5.4.1 Perlin Noise Mapping to Ramp Texture

In this effect, the only component that we had to change, in comparison
to the rasterization phase, is the ProcessScanLine component. After the

Figure 71: Perlin Noise Mapping to Grayscale Ramp Texture

67

implementation of the Perlin Noise function using high-level synthesis (Ap-
pendix 8.8), we used the exported component as the latest component in
ProcessScanLine before calling the DrawPoint. This component gets the
coordinates in 3D space of the point that is going to be drawn and gives a
decimal value between 0 and 1 as output. This value is mapped with an
1D texture 1x256 pixel to get a color value, which will be passed alongside
with the pixel coordinates to DrawPoint component. Despite the fact that
we use only grayscale colors to these pixels, any color we want can be put in
this 1D texture in order to have a real color mapping (i.e. colors from blue
to red). In Figure 72, we can see an example of a grayscale ramp texture
(1D texture).

Figure 72: Grayscale Ramp Texture

Figure 73: Resources utilization in Perlin Noise Mapping to Ramp Texture
effect

In Figure 73, we can see that this implementation does not utilize more
resources than the previous implementations.

5.4.2 Particle System

In Particle System implementation we removed the FaceVertices component
and created a new one called ParticleVertices. This component is responsi-
ble for generating the vertices of the particles (triangles) and also updating

68

their coordinates in order to see them moving per frame. The ParticleVer-
tices component consists of three modules: Triangle, MapColor and Parti-
cleSystem.

• The Triangle module includes memories that keep the vertices, velocity
in each axis and lifespan of the particles.

• The MapColor module maps the lifespan of the particles with a grayscale
ramp texture in order to generate their color. With this mapping, par-
ticles look like disappearing as they reach their lifespan.

• The ParticleSystem module updates the characteristics of the particles
and writes them back to memories in Triangle module.

Figure 74: ParticleVertices component

ParticleSystem (Appendix 23) and MapColor (Appendix 8.10) modules were
implemented using high level synthesis.

All particles begin the emission from the same coordinates in the 3D space
and depending their velocity in each axis they are moving. As particles
reach their maximum lifetime, their color changes from white to black in
order to give realism to the scene. In Figure 76, we can see the steps that
ParticleVertices component follows.

As mentioned in the previous section, we implemented a second version

69

of this effect called Particle System with Repeller. Both versions have the
same components, but we made some changes in Triangle and PartcileSys-
tem component. In Triangle component, we define in the first lines the
vertex coordinates of the repeller object. In Figure 75, we can see the world
coordinates of the repeller object we used in this implementation.

Figure 75: Repeller Object (Cube) in World Space

Now in ParticleSystem component, we made some changes in order the par-
ticles to react when colliding with the object. Before updating the vertices
of the particle, we check if the particle collides with the cube. If it collides on
the top face, it bounces up and then continues falling down. If it collides on
the right face of the cube, it changes direction to the right. Particles change
direction due to an instant counter force we added to the particle when it
hits the object. This updated ParticleSystem component was implemented
using high level synthesis too (Appendix 8.11).

Figure 76: Flowchart of ParticleVertices component

70

Figure 77: Resources utilization in Particle System effect

Figure 78: Resources utilization in Perlin System with Repeller effect

In Figures 77 and 78, we can see that the implementation of Particle System
with Repeller uses more resources than the implementation without the
repeller object. We expected that because we need extra logic.

5.4.3 Displacement Mapping using Perlin Noise

In this last rendering effect, we do not use any memory that holds vertices
or other parameters that help to render the terrain. In FaceVertices com-
ponent, a new module called TerrainVerticesGenerator was implemented in
order to produce vertices that describe a horizontal grid (terrain). While x
and z values are produced according to the grid, y values of these vertices
are chosen using the Random component we implemented using high-level
synthesis.

71

Figure 79: FaceVertices component in Displacement Mapping Terrain using
Perlin Noise effect

Since system’s startup, a counter is running from 0 to 4095. When user
pushes the center button of the D-pad on the board, a value is chosen in
this range (0 - 4095).

Figure 80: TerrainVerticesGenerator component

This value is the input to Random component and the output of this com-
ponent is a random value used to compute later the y value of the current
triangle’s vertices. Knowing now the coordinates of the vertices and having
a random number, we want to give to y of each vertex a ’pseudorandom’

72

value in order to create a terrain with multiple levels. As we do not want
these values to be irrelevant to their ’neighboring’ vertices, we use Perlin
Noise function once again. The Perlin Noise component uses x and z value
from vertices coordinates as inputs and takes the random value was chosen
from the counter as the y input. The output value of the PerlinNoise com-
ponent is used as the final y value of the vertex that is going for projection
alongside with the initial x and y coordinates.

Figure 81: Project component in Displacement Mapping Terrain using Per-
lin Noise effect

The grid we create consists of 9600 vertices and 3200 triangles. These tri-
angles describe the whole grid. In Figure 82, we can see an example of the

73

grid and how the triangles create it.

Figure 82: Mini version of the grid (seeing from top)

Also, in Figure 83, we can see the resources utilization for this implementa-
tion. As we expected, we do not need much more resources than the previous
implementations.

Figure 83: Resources utilization in Displacement Mapping Terrain using
Perlin Noise effect

74

6 System Evaluation

To verify the functionality and efficiency of the system described in the pre-
vious sections, we carried out a number of tests. These tests measured the
performance of the graphics pipeline’s implementation phases (Rasteriza-
tion, Flat and Gouraud Shading) and the rendering effects in frames-per-
second (FPS), both in software and hardware. These phases were already
developed in Javascript and we just executed them using the browser. Also,
it must be stated that these demos are CPU accelerated in single threaded
implementations.

Software demos were launched on an AMD FX-8120 8-Core 3.1GHz com-
puter, with 8GB of RAM and Windows 8 Professional 64-bit. Due to the
huge speed difference between the computer and the embedded platform
(which ran at 130MHz), FPGA was expected to perform much slower than
software. Hardware demos were run on the XC7K325T-2FFG900C Kintex-
7 FPGA and KC705 development board using HDMI cable to display the
results on a 19” LG Flatron LCD TV-Monitor.

6.1 Vertex Processing and Rasterization

In the first demo, we tested the performance of the rasterization phase. This
demo used our implementation to draw a white cube which is being rotated
in all axes. Here is a caption of this test running in software.

Figure 84: Vertex Processing and Rasterization phase running in software

As we can see in Figure 84, the average performance in software was about
140 FPS.

Next, the same test was launched in FPGA, seen in Figure 85. We can
see that as more triangles are drawn the performance decreased. However,
we can see that triangle primitives were drawn successfully. The frame rate
peaked at 44 FPS and the average was about 39 FPS.

75

Figure 85: Rasterization phase running on the FPGA

6.2 Shading

The purpose of the Flat and Gouraud shading demos was to test the func-
tionality of the shading implementations.

Figure 86: Flat Shading phase running in software

At first, we ran Flat Shading phase after setting the light position in (2, 2,
10). The cube was being rotated in all axes. As we can see in Figure 86, the
average frame rate of Flat shading running in software was about 130 FPS.
Then we tested the same demo on the FPGA and we can see the result in
Figure 87.

Figure 87: Flat Shading phase running on the FPGA

The frame rate on the FPGA peaked at 38 FPS and the average was about
33 FPS. In Figure 88, we can see the Gouraud shading running in software.
The average frame rate was about 127 FPS. A screenshot of the same demo

76

Figure 88: Gouraud Shading phase running in software

can be seen running on the actual graphics hardware FPGA implementation
in Figure 89.

Figure 89: Gouraud Shading phase running on the FPGA

Gouraud shading algorithm was also implemented successfully on the FPGA.
The frame rate peaked at 36 FPS and the average was about 33 FPS.

6.3 Texture Mapping

The fourth demo included the texture mapping phase. As mentioned in the
previous section, we used an image of wood as texture for the faces of the
cube. In Figure 90, we can see the demo running in software.

Figure 90: Texture Mapping phase running in software

The average frame rate was about 40 FPS. A screenshot of the same demo
can be seen running on the actual graphics hardware FPGA implementation
in Figure 91.

77

Figure 91: Texture Mapping phase running on the FPGA

After seeing the results, we can say that texture mapping was implemented
successfully. The frame rate peaked at 33 FPS and the average was about
28 FPS.

6.4 Perlin Noise Mapping to Ramp Texture

Our first 3D rendering effect, included a demo with the same cube as we
used for the graphics pipeline’s phases. We expected low performance on
this test, as the perlin noise component takes many cycles in order to give
output. In Figure 92, we can see the demo running in software.

Figure 92: Perlin Noise Mapping to Ramp Texture running in software

The average frame rate was about 10 FPS in software. In Figure 93, we can
see the demo running on the FPGA.

Figure 93: Perlin Noise Mapping to Ramp Texture running on the FPGA

The result is what we expected. A pseudorandom texture has been applied
to the faces, but we see wrong colors on the screen. We assumed that Vivado

78

may change the color signal in order to optimize the final circuit. The frame
rate on the FPGA peaked at 10 fps and the average was about 8 FPS.

6.5 Particle System

In our particle system test, we expected high performance because the graph-
ics processor has to render very small triangles. In Figure 94, we can see
a screenshot of the particle system running in software with average frame
rate 180 FPS.

Figure 94: Particle System running software

In Figure 95, we see the hardware implementation on the FPGA.

Figure 95: Particle System running on the FPGA

The average frame rate was about 220 FPS.

Figure 96: Particle System with Repeller running in software

In Figure 97, we can see the particle system with repeller running in software.
The average frame rate in software was about 170 FPS. In Figure 95, we
can see the hardware implementation on the FPGA.

79

Figure 97: Particle System with Repeller running on the FPGA

In this demo we had an average frame rate about 193FPS.

6.6 Displacement Mapping using Perlin Noise

The last demo we ran was about the Displacement Mapping using Perlin
Noise. In Figure 98, we can see the demo running in software.

Figure 98: Displacement Mapping using Perlin Noise running in software

The average frame rate in software was about 22 FPS. In Figure 99, we can
see the hardware implementation on the FPGA.

Figure 99: Displacement Mapping using Perlin Noise running on the FPGA

After seeing the results in Figure 99, we can say that our last rendering
effect was implemented successfully too. By clicking the center button of
the D-pad on the board, we got random terrains. The frame rate peaked
at 18 FPS and the average was about 15 FPS. This terrain consists of 3200
triangles and 9600 vertices.

80

Table 1: Measurements Results

Implementation
Average FPS

(SW)
Average FPS

(FPGA)
SpeedUp

(FPGA/SW)

Vertex Processing
and Rasterization

140 39 0.28

Flat Shading 130 34 0.26

Gouraud Shading 127 33 0.26

Texture Mapping 41 28 0.69

Perlin Noise Mapping
to Ramp Texture

10 8 0.8

Particle System 180 220 1.22

Particle System
with Repeller

170 193 1.14

Displacement
Mapping
using Perlin Noise

22 15 0.68

As we can see from the table 1, our system has speed-up only in particle
system effect. This means that it is more efficient for small faces render-
ing and when we have great number of triangles, such as particles, than a
single threaded CPU implementation. In first three phases we have very
low performance. In Texture Mapping phase, Displacement Mapping and
Perlin Noise Mapping the performance on the FPGA is a little lower than
in software. In hardware, when we use the perlin noise function, we can see
that performance is not much lower than in software. It can be concluded
that Perlin Noise function decreases the frame rate in software to a great ex-
tent, while the FPGA-based Perlin Noise implementation seems to be more
efficient.

In order to see the performance in a larger resolution, we used the same im-
plementation as we did in Vertex and Rasterization Phase, replacing frame
buffer and depth buffer with larger block ram. We ran the demo both in
software and FPGA. The selected resolution was 640 ∗ 480 due to the lim-
ited block ram resources of the board. In Figure 100 we can see the demo
running both in software and on the FPGA.

The performance was very low in this resolution. In software, the average
frame rate was about 22 FPS and on the FPGA about 7 FPS. These results

81

show us that our system is more efficient for screens with low resolution,
such as small handheld devices.

Figure 100: Vertex Processing and Rasterization phase running in software
(left) and on the FPGA (right) with 640 ∗ 480 pixels resolution

82

7 Conclusions and Recommendations

In conclusion, we can say that our main goal of developing three advanced
rendering effects using an FPGA-based 3D graphics pipeline has been achieved.
This graphics processor is able to render any 3D object, as we can see from
the last two rendering effects and independently from the complexity of the
mesh (the terrain in the third effect consists of 9600 vertices).

In comparison to modern commercial graphics platforms, the performance of
our system in frames per second was very low. However, additional features
could be added to the FPGA implementation presented in this thesis in or-
der to optimize the current design and make it function even more efficiently.

One feature that could be added to definitely improve the performance would
be the application of pipeline to the implementation. In our system, new
vertices enter the graphics pipeline when the rasterization of the previous
ones has been completed successfully. In order to avoid this great delay,
we could have some pipeline stages with the appropriate control unit and
pipeline registers in order to pass the next vertices earlier.

Moreover, as we have seen from the resources utilization figures, we have
used almost all the available DSP slices of Kintex-7 which are essential for
the floating point operations. If we had a stronger FPGA with more DPS
slices, we would be able to render two different triangles at the same time.
For instance, we could use two Project, DrawTriangle, ProcessScanLine and
DrawPoint components (Figure 103). In this case we would need also a
DrawControl component to control the writing process of the pixels into
the buffers, because processor unit can write only one pixel per cycle. This
implementation would offer, as mentioned, the rasterization of two triangles
simultaneously so we could have about double performance.

We could also raster more triangles in parallel using more times the pre-
viously referred components, considering also the number of triangles that
describe the mesh.

Furthermore, a finding that came during the implementation of this project
was that HLS can help extremely in optimizing the performance of a module.
More particularly, the matrix multiplication component implemented with
HLS requires 36 cycles to give the right output, while the implementation
in VHDL needs 610 cycles (Figure 101). This is due to the optimizations

83

that the HLS makes with the directives we have chosen.

Figure 101: Latency for Matrix Multiplication using VHDL and HLS sepa-
rately

However, the HLS implementation uses 80 DSP slices while the respective
one in VHDL uses 14 DSPs (Figure 102). This means that in order to
achieve higher performance by using HLS, we need quite more resources.

Because the difference in efficiency between the two ways of implementa-
tion is particularly high, we could reduce the circuit performance we take
from HLS in order to need less resources and have a balanced situation.

With the experience of suing both implementation methods, we can can
conclude that the decision of choosing between HLS and VHDL depends
on the complexity of the problem we need to implement. It is worth noting
that the implementation of matrix multiplication in VHDL took us two days
with its verification, while HLS just two minutes.
To sum up, a great variety of potential portable devices that display 3D

84

Figure 102: DSPs Utilization for Matrix Multiplication using VHDL and
HLS separately

animations and graphics could use such a graphic processor. Devices such
as Google Glasses, GPU navigators, smartphones and tablets need great
performance and low energy consumption. As FPGAs need little energy
to operate and based on the results of this project, we believe that an im-
proved implementation of this 3D graphics pipeline with better performance
is attainable in the future for handheld devices.

85

Figure 103: Creating two Triangles in parallel

8 Appendix

8.1 MatrixMultiplication - HLS code

In this component we multiply two matrices, M[4][4] and N[4][4] and we
get the K[4][4] matrix. We used pipeline, dataflow and unroll directives to
optimize the performance of the implementation.

Listing 4: MatrixMultiplication HLS code

#include <math.h>

#include "MatrixMul.h"

void MatrixMul(

86

Figure 104: Resources Utilization and Latency for MatrixMultiplication
component

// Matrix M[4][4] - Input

float m_11_in, float m_12_in, float m_13_in, float m_14_in,

float m_21_in, float m_22_in, float m_23_in, float m_24_in,

float m_31_in, float m_32_in, float m_33_in, float m_34_in,

float m_41_in, float m_42_in, float m_43_in, float m_44_in,

// Matrix N[4][4] - Input

float n_11_in, float n_12_in, float n_13_in, float n_14_in,

float n_21_in, float n_22_in, float n_23_in, float n_24_in,

float n_31_in, float n_32_in, float n_33_in, float n_34_in,

float n_41_in, float n_42_in, float n_43_in, float n_44_in,

// Matrix K[4][4] - Output

float *k_11_out, float *k_12_out, float *k_13_out, float

*k_14_out,

float *k_21_out, float *k_22_out, float *k_23_out, float

*k_24_out,

float *k_31_out, float *k_32_out, float *k_33_out, float

*k_34_out,

float *k_41_out, float *k_42_out, float *k_43_out, float

*k_44_out

)

{

#pragma HLS DATAFLOW

#pragma HLS PIPELINE

// We write M and N input values to

// arrays in C

float m[4][4], n[4][4];

m[0][0] = m_11_in;

m[0][1] = m_12_in;

m[0][2] = m_13_in;

87

m[0][3] = m_14_in;

m[1][0] = m_21_in;

m[1][1] = m_22_in;

m[1][2] = m_23_in;

m[1][3] = m_24_in;

m[2][0] = m_31_in;

m[2][1] = m_32_in;

m[2][2] = m_33_in;

m[2][3] = m_34_in;

m[3][0] = m_41_in;

m[3][1] = m_42_in;

m[3][2] = m_43_in;

m[3][3] = m_44_in;

n[0][0] = n_11_in;

n[0][1] = n_12_in;

n[0][2] = n_13_in;

n[0][3] = n_14_in;

n[1][0] = n_21_in;

n[1][1] = n_22_in;

n[1][2] = n_23_in;

n[1][3] = n_24_in;

n[2][0] = n_31_in;

n[2][1] = n_32_in;

n[2][2] = n_33_in;

n[2][3] = n_34_in;

n[3][0] = n_41_in;

n[3][1] = n_42_in;

n[3][2] = n_43_in;

n[3][3] = n_44_in;

// t_k array contains the values for the

// final K matrix

float t_k[16];

float sum = 0;

int cnt = 0;

int row, column, p;

for (row = 0; row < 4; row++) {

#pragma HLS PIPELINE

#pragma HLS UNROLL factor=4

for (column = 0; column < 4; column++) {

#pragma HLS PIPELINE

#pragma HLS UNROLL factor=4

// in this for loop we compute values of K matrix

for (p = 0; p < 4; p++) {

#pragma HLS PIPELINE

88

#pragma HLS UNROLL factor=4

sum = sum + m[row][p]*n[p][column];

}

t_k[cnt] = sum;

cnt++;

sum = 0;

}

}

// we assign the computed K matrix to output

*k_11_out = t_k[0];

*k_12_out = t_k[1];

*k_13_out = t_k[2];

*k_14_out = t_k[3];

*k_21_out = t_k[4];

*k_22_out = t_k[5];

*k_23_out = t_k[6];

*k_24_out = t_k[7];

*k_31_out = t_k[8];

*k_32_out = t_k[9];

*k_33_out = t_k[10];

*k_34_out = t_k[11];

*k_41_out = t_k[12];

*k_42_out = t_k[13];

*k_43_out = t_k[14];

*k_44_out = t_k[15];

}

8.2 MatrixVectorMultiplication - HLS code

In this component we multiply matrix M[4][4] with vector N[4] and we get
the K[4] final vector. We used pipeline, dataflow and unroll directives to
optimize the performance of the implementation.

Listing 5: MatrixVectorMultiplication HLS code

#include <math.h>

#include "MatrixArrayMul.h"

void MatrixArrayMul(

// Matrix M[4][4] - Input

float m_11_in, float m_12_in, float m_13_in, float m_14_in,

float m_21_in, float m_22_in, float m_23_in, float m_24_in,

float m_31_in, float m_32_in, float m_33_in, float m_34_in,

float m_41_in, float m_42_in, float m_43_in, float m_44_in,

89

Figure 105: Resources Utilization and Latency for MatrixVectorMultiplica-
tion component

// Vector N[4] - Input

float n_1_in, float n_2_in, float n_3_in, float n_4_in,

// Vector K4] - Output

float *k_1_out, float *k_2_out, float *k_3_out, float *k_4_out

){

#pragma HLS DATAFLOW

#pragma HLS PIPELINE

// We write M and N input values to

// arrays in C

float m[4][4], n[4];

m[0][0] = m_11_in;

m[0][1] = m_12_in;

m[0][2] = m_13_in;

m[0][3] = m_14_in;

m[1][0] = m_21_in;

m[1][1] = m_22_in;

m[1][2] = m_23_in;

m[1][3] = m_24_in;

m[2][0] = m_31_in;

m[2][1] = m_32_in;

m[2][2] = m_33_in;

m[2][3] = m_34_in;

m[3][0] = m_41_in;

m[3][1] = m_42_in;

m[3][2] = m_43_in;

m[3][3] = m_44_in;

n[0] = n_1_in;

n[1] = n_2_in;

n[2] = n_3_in;

90

n[3] = n_4_in;

// t_k array contains the values for the

// final K vector

float t_k[4];

float sum = 0;

int cnt = 0;

int row, p;

for (row = 0; row < 4; row++) {

#pragma HLS PIPELINE

#pragma HLS UNROLL factor=4

// in this for loop we compute values of K vector

for (p = 0; p < 4; p++) {

#pragma HLS PIPELINE

#pragma HLS UNROLL factor=4

sum = sum + m[row][p]*n[p];

}

t_k[cnt] = sum;

cnt++;

sum = 0;

}

// we assign the computed K vector to output

*k_1_out = t_k[0];

*k_2_out = t_k[1];

*k_3_out = t_k[2];

*k_4_out = t_k[3];

}

8.3 TransformCoordinates - HLS code

In this component we divide x , y and z with w value. We used pipeline and
dataflow directives to optimize the performance of the implementation.

Listing 6: TransformCoordinates HLS code

#include "TransformCoordinates.h"

void TransformCoordinates(

// X, Y and Z - Input

float x_in, float y_in, float z_in,

// W value - Input

float w_in,

// Updated X, Y and Z - Output

91

Figure 106: Resources Utilization and Latency for TransformCoordinates
component

float *x_out, float *y_out, float *z_out)

{

#pragma HLS DATAFLOW

#pragma HLS PIPELINE II=2

*x_out = x_in / w_in;

*y_out = y_in / w_in;

*z_out = z_in / w_in;

}

8.4 I2C sender - VHDL code

This component sends register writes over an I2C-like interface to the ADV7511
HDMI transmitter. It was implemented by Mike Field.

Listing 7: I2C sender VHDL code

--

-- Engineer: <mfield@concepts.co.nz

--

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.NUMERIC_STD.ALL;

entity i2c_sender is

Port (clk : in STD_LOGIC;

resend : in STD_LOGIC;

sioc : out STD_LOGIC;

siod : inout STD_LOGIC

);

92

end i2c_sender;

architecture Behavioral of i2c_sender is

signal divider : unsigned(7 downto 0) := (others =>

’0’);

-- this value gives nearly 200ms cycles before the first

register is written

signal initial_pause : unsigned(22 downto 0) := (others =>

’0’);

signal finished : std_logic := ’0’;

signal address : std_logic_vector(7 downto 0) :=

(others => ’0’);

signal clk_first_quarter : std_logic_vector(28 downto 0) :=

(others => ’1’);

signal clk_last_quarter : std_logic_vector(28 downto 0) :=

(others => ’1’);

signal busy_sr : std_logic_vector(28 downto 0) :=

(others => ’1’);

signal data_sr : std_logic_vector(28 downto 0) :=

(others => ’1’);

signal tristate_sr : std_logic_vector(28 downto 0) :=

(others => ’0’);

signal reg_value : std_logic_vector(15 downto 0) :=

(others => ’0’);

constant i2c_wr_addr : std_logic_vector(7 downto 0) := x"72";

type reg_value_pair is ARRAY(0 TO 63) OF std_logic_vector(15

DOWNTO 0);

signal switch_config_sent : std_logic := ’0’;

signal reg_value_pairs : reg_value_pair := (

-- Powerup please!

x"4110",

-- These valuse must be set as follows

x"9803", x"9AE0", x"9C30", x"9D61", x"A2A4", x"A3A4",

x"E0D0", x"5512", x"F900",

-- Input mode

x"1506", -- YCbCr 422, DDR, External sync

x"4810", -- Left justified data (D23 downto 8)

93

x"1637", -- 8 bit style 2, 1st half on rising edge -

YCrCb clipping

x"1700", -- output aspect ratio 16:9, external DE

x"D03C", -- auto sync data - must be set for DDR modes.

-- Output mode

x"AF04", -- DVI mode

x"4c04", -- Deep colour off (HDMI only?) - not needed

x"4000", -- Turn off additional data packets - not needed

-- As a start, here’s the identity Matrix a <= A, b <= B, c

<= C

-- -- ([R or Cr]* A1 + [G or Y] * A2 + [B or Cb] *

A3)/4096 + A4 = Red or Cr

-- x"18A8", x"1900", x"1A00", x"1B00", x"1C00", x"1D00",

x"1E00", x"1F00",

--

-- -- ([R or Cr]* B1 + [G or Y] * B2 + [B or Cb] *

B3)/4096 + B4 = Green or Y

-- x"2000", x"2100", x"2208", x"2300", x"2400", x"2500",

x"2604", x"2700",

--

-- -- ([R or Cr]* C1 + [G or Y] * C2 + [B or Cb] *

C3)/4096 + C4 = Blue or Cb

-- x"2808", x"2900", x"2A00", x"2B00", x"2C08", x"2D00",

x"2E04", x"2F00",

--

-- Here is the YCrCb => RGB conversion, as per programming

guide

-- This is table 57 - HDTV YCbCr (16 to 255) to RGB (0 to 255)

--

-- (Cr * A1 + Y * A2 + Cb * A3)/4096 +

A4 = Red

x"18E7", x"1934", x"1A04", x"1BAD", x"1C00", x"1D00",

x"1E1C", x"1F1B",

-- (Cr * B1 + Y * B2 + Cb * B3)/4096 +

B4 = Green

x"201D", x"21DC", x"2204", x"23AD", x"241F", x"2524",

x"2601", x"2735",

94

-- (Cr * C1 + Y * C2 + Cb * C3)/4096 +

C4 = Blue

x"2800", x"2900", x"2A04", x"2BAD", x"2C08", x"2D7C",

x"2E1B", x"2F77",

-- Extra space filled with FFFFs to signify end of data

x"FFFF", x"FFFF", x"FFFF", x"FFFF", x"FFFF", x"FFFF",

x"FFFF",

x"FFFF", x"FFFF", x"FFFF", x"FFFF", x"FFFF", x"FFFF",

x"FFFF", x"FFFF",

x"FFFF", x"FFFF", x"FFFF", x"FFFF", x"FFFF", x"FFFF",

x"FFFF"

);

begin

registers: process(clk)

begin

if rising_edge(clk) then

reg_value <= reg_value_pairs(to_integer(unsigned(address)));

end if;

end process;

i2c_tristate: process(data_sr, tristate_sr)

begin

if tristate_sr(tristate_sr’length-1) = ’0’ then

siod <= data_sr(data_sr’length-1);

else

siod <= ’Z’;

end if;

end process;

with divider(divider’length-1 downto divider’length-2)

select sioc <= clk_first_quarter(clk_first_quarter’length -1)

when "00",

clk_last_quarter(clk_last_quarter’length -1)

when "11",

’1’ when others;

i2c_send: process(clk)

begin

if rising_edge(clk) then

if resend = ’1’ then

address <= (others => ’0’);

clk_first_quarter <= (others => ’1’);

95

clk_last_quarter <= (others => ’1’);

busy_sr <= (others => ’0’);

divider <= (others => ’0’);

initial_pause <= (others => ’0’);

finished <= ’0’;

end if;

if busy_sr(busy_sr’length-1) = ’0’ then

if initial_pause(initial_pause’length-1) = ’0’ then

initial_pause <= initial_pause+1;

elsif switch_config_sent = ’0’ then

-- the HDMI chip is behind a bus switch

-- That needs to be configured - so once we have waited

-- for a while we jam the command into the shift

registers

-- ready for transmission once the pause is over.

--

clk_first_quarter <= (others => ’0’);

clk_first_quarter(clk_first_quarter’length-1) <= ’1’;

clk_first_quarter(8 downto 0) <= (others => ’1’);

clk_last_quarter <= (others => ’0’);

clk_last_quarter(9 downto 0) <= (others => ’1’);

-- Start Address Ack Register Ack

Stop Padding

tristate_sr <= "0" & "00000000" & "1" & "00000000" &

"1" & "0" & "000000000";

data_sr <= "0" & "11101000" & "1" & "00100000" &

"1" & "0" & "111111111";

-- We don’t care if we wait too long whnconfiguring

the switch....

busy_sr <= (others => ’1’);

switch_config_sent <= ’1’;

elsif finished = ’0’ then

if divider = "11111111" then

divider <= (others =>’0’);

if reg_value(15 downto 8) = "11111111" then

finished <= ’1’;

else

-- move the new data into the shift registers

clk_first_quarter <= (others => ’0’);

clk_first_quarter(clk_first_quarter’length-1)

<= ’1’;

96

clk_last_quarter <= (others => ’0’);

clk_last_quarter(0) <= ’1’;

-- Start Address Ack

Register Ack Value Ack

Stop

tristate_sr <= "0" & "00000000" & "1" &

"00000000" & "1" & "00000000"

& "1" & "0";

data_sr <= "0" & i2c_wr_addr & "1" &

reg_value(15 downto 8) & "1" & reg_value(7

downto 0) & "1" & "0";

busy_sr <= (others => ’1’);

address <=

std_logic_vector(unsigned(address)+1);

end if;

else

divider <= divider+1;

end if;

end if;

else

if divider = "11111111" then -- divide clkin by 255 for

I2C

tristate_sr <= tristate_sr(tristate_sr’length-2

downto 0) & ’0’;

busy_sr <= busy_sr(busy_sr’length-2 downto 0)

& ’0’;

data_sr <= data_sr(data_sr’length-2 downto 0)

& ’1’;

clk_first_quarter <=

clk_first_quarter(clk_first_quarter’length-2

downto 0) & ’1’;

clk_last_quarter <=

clk_last_quarter(clk_first_quarter’length-2 downto

0) & ’1’;

divider <= (others => ’0’);

else

divider <= divider+1;

end if;

end if;

end if;

end process;

end Behavioral;

97

8.5 FaceNormalVector - HLS code

In this component, we compute the face normal from three vertex’s normals.
Normal face’s vector is the average normal between each vertex’s normal.
In orde to compute our normal vector, we just need to take the 3 vertices
normals, add them to each other and divide them by 3. We used pipeline
and dataflow directives to optimize the performance of the implementation.

Figure 107: Resources Utilization and Latency for VnFace component

Listing 8: Face Normal Vector HLS code

#include <math.h>

#include "VnFace.h"

void VnFace(

// Vertex Normals V1, V2, V3 - Inputs

float v1_x_in, float v1_y_in, float v1_z_in,

float v2_x_in, float v2_y_in, float v2_z_in,

float v3_x_in, float v3_y_in, float v3_z_in,

// Face Normal - Output

float *vnFace_x, float *vnFace_y, float *vnFace_z){

#pragma HLS DATAFLOW

#pragma HLS PIPELINE II=2

// v2.add(v3)

float temp1_x = v2_x_in + v3_x_in;

float temp1_y = v2_y_in + v3_y_in;

float temp1_z = v2_z_in + v3_z_in;

// v1.add(v2.add(v3))

float temp2_x = v1_x_in + temp1_x;

98

float temp2_y = v1_y_in + temp1_y;

float temp2_z = v1_z_in + temp1_z;

// (v1.add(v2.add(v3))).scale(1 / 3);

*vnFace_x = temp2_x / 3;

*vnFace_y = temp2_y / 3;

*vnFace_z = temp2_z / 3;

}

8.6 CenterPoint - HLS code

In this component, we compute the center point of the face from the three
vertices. We used pipeline and dataflow directives to optimize the perfor-
mance of the implementation.

Figure 108: Resources Utilization and Latency for CenterPoint component

Listing 9: CenterPoint HLS code

#include <math.h>

#include "CenterPoint.h"

void CenterPoint(

// Vertices V1, V2, V3 - Inputs

float v1_x_in, float v1_y_in, float v1_z_in,

float v2_x_in, float v2_y_in, float v2_z_in,

float v3_x_in, float v3_y_in, float v3_z_in,

// CenterPoint - Output

float *CenterPoint_x, float *CenterPoint_y, float

*CenterPoint_z){

#pragma HLS DATAFLOW

#pragma HLS PIPELINE II=2

99

// v2.add(v3)

float temp1_x = v2_x_in + v3_x_in;

float temp1_y = v2_y_in + v3_y_in;

float temp1_z = v2_z_in + v3_z_in;

// v1.add(v2.add(v3))

float temp2_x = v1_x_in + temp1_x;

float temp2_y = v1_y_in + temp1_y;

float temp2_z = v1_z_in + temp1_z;

// (v1.add(v2.add(v3))).scale(1 / 3);

*CenterPoint_x = temp2_x / 3;

*CenterPoint_y = temp2_y / 3;

*CenterPoint_z = temp2_z / 3;

}

8.7 ComputeNdotL - HLS code

This component computes the cosine of the angle between the light vector
and the normal vector using dot product. It returns a value between 0 and
1, which is the intensity of the color for shading. We used pipeline and
dataflow directives to optimize the performance of the implementation.

Figure 109: Resources Utilization and Latency for ComputeNdotL compo-
nent

Listing 10: ComputeNdotL HLS code

#include <math.h>

#include "ComputeNDotL.h"

100

void ComputeNDotL(

// Vertex coordinates - Input

float vertex_x_in, float vertex_y_in, float vertex_z_in,

// Normal Vector - Input

float normal_x_in, float normal_y_in, float normal_z_in,

// Light Positin - Input

float lightPos_x_in, float lightPos_y_in, float lightPos_z_in,

// Final Color Intensity - Output

float *colorIntensity_out){

#pragma HLS DATAFLOW

#pragma HLS PIPELINE II=2

// lightDirection = lightPosition.subtract(vertex)

float lightDir_x = lightPos_x_in - vertex_x_in;

float lightDir_y = lightPos_y_in - vertex_y_in;

float lightDir_z = lightPos_z_in - vertex_z_in;

// normal.normalize();

float normalLength;

normalLength = sqrt((normal_x_in*normal_x_in) +

(normal_y_in*normal_y_in) + (normal_z_in*normal_z_in));

float num;

float normal_x;

float normal_y;

float normal_z;

if (normalLength == 0) {

normal_x = normal_x_in;

normal_y = normal_y_in;

normal_z = normal_z_in;

}

else {

num = 1.0 / normalLength;

normal_x = normal_x_in * num;

normal_y = normal_y_in * num;

normal_z = normal_z_in * num;

}

// lightDirection.normalize();

normalLength = sqrt((lightDir_x * lightDir_x) + (lightDir_y *

lightDir_y) + (lightDir_z * lightDir_z));

num = 1.0 / normalLength;

101

float lightDir2_x = lightDir_x * num;

float lightDir2_y = lightDir_y * num;

float lightDir2_z = lightDir_z * num;

// return Math.max(0, BABYLON.Vector3.Dot(normal,

lightDirection));

float Dot = (normal_x * lightDir2_x) + (normal_y *

lightDir2_y) + (normal_z * lightDir2_z);

if (Dot > 0) {

*colorIntensity_out = Dot;

}

else {

*colorIntensity_out = 0;

}

}

8.8 PerlinNoise - HLS code

This component maps perlin noise value to a ramp texture. At first we
compute the noise value depending on the coordinates (x, y, z) given as
inputs. The value we get is a decimal between 0 and 1, so we multiply it
with 255 in order o map it to the 0x255 grayscale texture. Finally, this
component returns a color value. We used pipeline, dataflow and unroll
directives to optimize the performance of the implementation.

Figure 110: Resources Utilization and Latency for PerlinNoise component

Listing 11: PerlinNoise HLS code

#include <math.h>

#include "PerlinNoise.h"

102

void PerlinNoise(

// Pixel Coordinates - Inputs

float x_in, float y_in, float z_in,

// Color value - Output

float *rampTextureAddr){

// DEFINE PERLIN’S CONSTANT ARRAY

int permutation[256] = {151,160,137,91,90,15,

131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,

190,

6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,

88,237,149,56,87,174,20,125,136,171,168,

68,175,74,165,71,134,139,48,27,166,

77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,

102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208,

89,18,169,200,196,

135,130,116,188,159,86,164,100,109,198,173,186,

3,64,52,217,226,250,124,123,

5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,

223,183,170,213,119,248,152, 2,44,154,163,

70,221,153,101,155,167, 43,172,9,

129,22,39,253, 19,98,108,110,79,113,224,232,178,185,

112,104,218,246,97,228,

251,34,242,193,238,210,144,12,191,179,162,241,

81,51,145,235,249,14,239,107,

49,192,214, 31,181,199,106,157,184,

84,204,176,115,121,50,45,127, 4,150,254,

138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180};

float x23, y23, z23;

float tempX, tempY, tempZ;

int X, Y, Z;

float x2, y2, z2;

float u, v, w;

int p[512], i;

int A, AA, AB, B, BA, BB;

float PerlinNoise_out;

// viewportWidth is 400 and viewportHeight is 200

// we check if the current pixel is inside this area

// to avoid computing perlin noise value for pixels that won’t

be drawn

// in the screen. Trick for running faster!

if ((x_in >= 0) && (x_in <= 399) && (y_in >= 0) && (y_in <=199)){

103

x23 = (x_in)+0.285;

y23 = (y_in)+0.285;

// We multiply z_in with 100000 because it is a very little

value

// and in order to avoid the component to get it as zero.

// That’s the reason we also added a random value (0.285) to

all input

//coordinates

z23 = (z_in*100000)+0.285;

// FIND UNIT CUBE THAT CONTAINS POINT.

tempX = floor(x23);

X = (int)tempX & 255;

tempY = floor(y23);

Y = (int)tempY & 255;

tempZ = floor(z23);

Z = (int)tempZ & 255;

// FIND RELATIVE X,Y,Z OF POINT IN CUBE.

x2 = x23 - floor(x23);

y2 = y23 - floor(y23);

z2 = z23 - floor(z23);

// COMPUTE FADE CURVES FOR EACH OF X,Y,Z.

u = fade(x2);

v = fade(y2);

w = fade(z2);

for (i=0; i < 256 ; i++){

#pragma HLS UNROLL factor=4

#pragma HLS PIPELINE

p[256+i] = p[i] = permutation[i];

}

// HASH COORDINATES OF THE 8 CUBE CORNERS,

A = p[X]+Y;

AA = p[A]+Z;

AB = p[A+1]+Z;

B = p[X+1]+Y;

BA = p[B]+Z;

BB = p[B+1]+Z;

PerlinNoise_out = lerp(w, lerp(v, lerp(u, grad(p[AA], x2 , y2

, z2), // AND ADD

grad(p[BA], x2-1, y2 , z2)),

104

// BLENDED

lerp(u, grad(p[AB], x2 , y2-1, z2),

// RESULTS

grad(p[BB], x2-1, y2-1, z2

))),// FROM 8

lerp(v, lerp(u, grad(p[AA+1], x2 , y2 ,

z2-1), // CORNERS

grad(p[BA+1], x2-1, y2 , z2-1

)), // OF CUBE

lerp(u, grad(p[AB+1], x2 , y2-1, z2-1

),

grad(p[BB+1], x2-1, y2-1, z2-1

))));

// Perlin noise Mapping to Ramp Texture

*rampTextureAddr = abs(PerlinNoise_out*255);

}

else{

// else we give black color.

*rampTextureAddr = 0.00;

}

}

//////////// FUNCTIONS //////////////////////////

float fade(float t){

#pragma HLS PIPELINE

return t * t * t * (t * (t * 6 - 15) + 10);

}

float lerp(float t, float a, float b){

#pragma HLS PIPELINE

return a + t * (b - a);

}

float grad(int hash, float x, float y, float z){

#pragma HLS PIPELINE

// CONVERT LO 4 BITS OF HASH CODE

int h = hash & 15;

// INTO 12 GRADIENT DIRECTIONS.

float u = h<8 ? x : y;

float v = h<4 ? y : h==12||h==14 ? x : z;

return ((h&1) == 0 ? u : -u) + ((h&2) == 0 ? v : -v);

}

105

///

8.9 ParticleSystem - HLS code

In this component we update the particle parameters. We used pipeline and
dataflow directives to optimize the performance of the implementation.

Figure 111: Resources Utilization and Latency for ParticleSystem compo-
nent

Listing 12: ParticleSystem HLS code

#include <math.h>

#include "ParticleSystem.h"

void ParticleSystem(

// Inputs

float addr_in, // number of current face

float v1_x_in, float v1_y_in, float v1_z_in, // coordinates of

vertex 1

float v2_x_in, float v2_y_in, float v2_z_in, // coordinates of

vertex 2

float v3_x_in, float v3_y_in, float v3_z_in, // coordinates of

vertex 3

float x_step_in, float y_step_in, float z_step_in, // rate of

change in x, y and z axes

float check_in, // we use this flag type variable to check if

it the first time

// this particle is parsed

float lifespan_in, // remaining lifetime

// Outputs

// these variables are the updated inputs

106

float *addr_out,

float *v1_x_out, float *v1_y_out, float *v1_z_out,

float *v2_x_out, float *v2_y_out, float *v2_z_out,

float *v3_x_out, float *v3_y_out, float *v3_z_out,

float *x_step_out, float *y_step_out, float *z_step_out,

float *check_out, float *lifespan_out){

#pragma HLS PIPELINE

// Output temp variables

float tv1_x_out, tv1_y_out, tv1_z_out;

float tv2_x_out, tv2_y_out, tv2_z_out;

float tv3_x_out, tv3_y_out, tv3_z_out;

float tx_step_out, ty_step_out, tz_step_out;

float tcheck_out, tlifespan_out;

// we get a random value for maximum

// lifespan of current particle

float lifespan_const = prandLifespan(addr_in);

// a is the value for the acceleration

// of the particles

float a = 2.5;

// t is the current time variable for the

// equation of motion

float t = 0;

// when t variable reaches its maximum time

// it dies

float max_time = lifespan_const/1000;

// check is zero only the first time we update

// current’s particle parameters, then is always 1

if (check_in == 0){

// Generate Random Numbers X, Y

// prX, prY and prZ are the coordinates where the

// particle starts moving from. It is also the rate

// of change in each axis.

float prX = prandX(addr_in);

float prY = prandY(addr_in);

float prZ = prandZ(addr_in);

// we initialize time -> 0

t = max_time - (lifespan_const/1000); // Time Variable

107

// setting the coordinates of the vertices

tv1_x_out = prX; // VertexA

tv1_y_out = (prY*t) - (a*t*t); // y depends on kinematic

equation

tv1_z_out = 0.50;

tv2_x_out = tv1_x_out - 0.01; // VertexB

tv2_y_out = tv1_y_out - 0.02; // we place it lower then vertexA

tv2_z_out = 0.50;

tv3_x_out = tv1_x_out + 0.01; // VertexC

tv3_y_out = tv1_y_out - 0.02; // we place it lower then vertexA

tv3_z_out = 0.50 - 0.02;

//

// these values are being written to memory

// in order to get them when we want to update

// the same particle again

tx_step_out = prX;

ty_step_out = prY;

tz_step_out = prZ;

tcheck_out = 1;

tlifespan_out = lifespan_const;

//

}

else if (check_in == 1){

// lefespan_in = 0 and we initilize particle’s

// paramaeters (do the same as we did when check was 0.

if (lifespan_in == 0){

// Generate Random Numbers X, Y

float prX = prandX(addr_in);

float prY = prandY(addr_in);

float prZ = prandZ(addr_in);

t = max_time - (lifespan_const/1000); // Time Variable

tv1_x_out = 0.00; // VertexA

tv1_y_out = (prY*t) - (a*t*t);

tv1_z_out = 0.50;

tv2_x_out = tv1_x_out - 0.01; // VertexB

tv2_y_out = tv1_y_out - 0.02;

tv2_z_out = 0.50;

108

tv3_x_out = tv1_x_out + 0.01; // VertexC

tv3_y_out = tv1_y_out - 0.02;

tv3_z_out = 0.50 - 0.02;

//

tx_step_out = prX;

ty_step_out = prY;

tz_step_out = prZ;

tcheck_out = 1;

tlifespan_out = lifespan_const;

//

}

else{// here we update the parameters

// t variable depends on remaining lifetime

t = max_time - (lifespan_in/1000);

// Updating the coordinates of the vertices

tv1_x_out = v1_x_in + x_step_in; // VertexA

tv1_y_out = (y_step_in*t) -a*t*t;

tv1_z_out = 0.50 + z_step_in;

tv2_x_out = tv1_x_out - 0.01; // VertexB

tv2_y_out = tv1_y_out - 0.02;

tv2_z_out = 0.50 + z_step_in;

tv3_x_out = tv1_x_out + 0.01; // VertexC

tv3_y_out = tv1_y_out - 0.02;

tv3_z_out = 0.50 + z_step_in - 0.02;

//

tx_step_out = x_step_in;

ty_step_out = y_step_in;

tz_step_out = z_step_in;

tcheck_out = 1;

tlifespan_out = lifespan_in - 1;

//

}

}

*addr_out = addr_in;

*v1_x_out = tv1_x_out;

*v1_y_out = tv1_y_out;

*v1_z_out = tv1_z_out;

*v2_x_out = tv2_x_out;

*v2_y_out = tv2_y_out;

109

*v2_z_out = tv2_z_out;

*v3_x_out = tv3_x_out;

*v3_y_out = tv3_y_out;

*v3_z_out = tv3_z_out;

*x_step_out = tx_step_out;

*y_step_out = ty_step_out;

*z_step_out = tz_step_out;

*check_out = tcheck_out;

*lifespan_out = tlifespan_out;

}

/////////// FUNCTIONS /////////////////////////////////

float prandX(float addr){

#pragma HLS PIPELINE

int x, p, x1, i;

x = 123456789;

p = 289; // top Limit

i = addr + 200;

x1 = (((i*x*234525)/53112) % p);

// Make it Float

float temp = x1;

float prand = temp/800000;

return prand;

}

float prandY(float addr){

#pragma HLS PIPELINE

int y, p, y1, i;

y = 123456789;

p = 10789; // top Limit

i = addr + 200;

y1 = (((i*y*219745)/53112) % p);

// Make it Float

float temp = y1;

// Make it positive

float prandt1 = temp/4000;

float prandt2 = prandt1 * prandt1;

float prand = sqrt(prandt2);

110

return prand;

}

float prandZ(float addr){

#pragma HLS PIPELINE

int x, p, x1, i;

x = 123456789;

p = 289; // Right/Left Limit

i = addr + 200;

x1 = (((i*x*234525)/53112) % p);

// Make it Float

float temp = x1;

float prand = temp/600000;

return prand;

}

float prandLifespan(float addr){

#pragma HLS PIPELINE

int y, p, y1, i;

y = 123456789;

p = 156; // Up Limit

i = addr + 200;

y1 = (((i*y*234525)/53112) % p);

// Make it Float

float temp = y1;

// Make it positive

float prandt1 = temp + 1100;

float prandt2 = prandt1 * prandt1;

float prand = sqrt(prandt2);

return prand;

}

//

8.10 MapColor - HLS code

In this component, we map particle’s lifespan to grayscale ramp texture. As
particle is dying (remaining lifetime → 0), its color becomes darker. We

111

used pipeline directive to optimize the performance of the implementation.

Figure 112: Resources Utilization and Latency for MapColor component

Listing 13: MapColor HLS code

#include <math.h>

#include "MapColor.h"

void MapColor(

// Inputs

float addr_in, // particles’s number/address

float check_in, // check if particle has ever be drawn

float lifespan_in, // particle’s remaining lifetime

// Output, final color value

float *color_out){

#pragma HLS PIPELINE

// Output temp Variables

float tcolor_out;

// compute the maximum lifespan for cureent particles

float lifespan_const = prandLifespanMC(addr_in);

// if particle has never parsed again, we draw black color

if (check_in == 0){

tcolor_out = 255;

}

else{

if (lifespan_in == 0){ // particle dies

tcolor_out = 255; // black color

}

else{

// mapping lifespan with grayscale 1x255 ramp texture

112

tcolor_out = ((lifespan_in - 1) / lifespan_const) * 255;

}

}

*color_out = tcolor_out;

}

/////////// FUNCTIONS /////////////////////////////////

float prandLifespanMC(float addr){

#pragma HLS PIPELINE

int y, p, y1, i;

y = 123456789;

p = 156; // top Limit

i = addr + 200;

y1 = (((i*y*234525)/53112) % p);

// Make it Float

float temp = y1;

// Make it positive

float prandt1 = temp + 1100;

float prandt2 = prandt1 * prandt1;

float prand = sqrt(prandt2);

return prand;

}

//

8.11 ParticleSystem (Repeller) - HLS code

In this component we update particle parameters and change their directions
in case of collision with the repeler object (cube). We used pipeline and
dataflow directives to optimize the performance of the implementation.

Listing 14: ParticleSystem (Repeller) HLS code

#include <math.h>

#include "ParticleSystem.h"

void ParticleSystem(

// Inputs

float addr_in, // number of current face

float v1_x_in, float v1_y_in, float v1_z_in, // coordinates of

vertex 1

float v2_x_in, float v2_y_in, float v2_z_in, // coordinates of

113

Figure 113: Resources Utilization and Latency for ParticleSystem (Repeller)
component

vertex 2

float v3_x_in, float v3_y_in, float v3_z_in, // coordinates of

vertex 3

float x_step_in, float y_step_in, // rate of change in x, y

and z axes

float collision_time_in, // collision time

float check_in, // we use this flag type variable to check if

it the first time

// this particle is parsed

float lifespan_in, // remaining lifetime

// Outputs

// these variables are the updated inputs

float *addr_out,

float *v1_x_out, float *v1_y_out, float *v1_z_out,

float *v2_x_out, float *v2_y_out, float *v2_z_out,

float *v3_x_out, float *v3_y_out, float *v3_z_out,

float *x_step_out, float *y_step_out,

float *collision_time_out,

float *check_out, float *lifespan_out){

#pragma HLS PIPELINE

// Output temp Variables

float tv1_x_out, tv1_y_out, tv1_z_out;

float tv2_x_out, tv2_y_out, tv2_z_out;

float tv3_x_out, tv3_y_out, tv3_z_out;

float tx_step_out, ty_step_out;

float tcollision_time_out;

float tcheck_out, tlifespan_out;

114

// we get a random value for maximum

// lifespan of current particle

float lifespan_const = prandLifespan(addr_in);

// a is the value for the acceleration

// of the particles

float a = 2.5;

// t is the current time variable for the

// equation of motion

float t = 0;

// when t variable reaches its maximum time

// it dies

float max_time = lifespan_const/1000;

// if addr_in is between 0 and 5, vertex coordinates

// belong to the cube we use as the repeller object

// cube’s vertices have been initialized in .coe file

if (addr_in == 0 || addr_in == 1 || addr_in == 2 || addr_in == 3 ||

addr_in == 4 || addr_in == 5){

// ...so we do not update anything

// we write the same values to memory

tv1_x_out = v1_x_in;

tv1_y_out = v1_y_in;

tv1_z_out = v1_z_in;

tv2_x_out = v2_x_in;

tv2_y_out = v2_y_in;

tv2_z_out = v2_z_in;

tv3_x_out = v3_x_in;

tv3_y_out = v3_y_in;

tv3_z_out = v3_z_in;

//

tx_step_out = 0;

ty_step_out = 0;

tcollision_time_out = 0;

tcheck_out = 0;

tlifespan_out = lifespan_const;

//

}

else{ // if we have particle

115

// check is zero only the first time we update

// current’s particle parameters, then is always 1

if (check_in == 0){

// Generate Random Numbers X, Y

// prX, prY are the coordinates where the

// particle starts moving from. It is also the rate

// of change in each axis.

float prX = prandX(addr_in);

float prY = prandY(addr_in);

// we initialize time -> 0

t = max_time - (lifespan_const/1000); // Time Variable

// setting the coordinates of the vertices

tv1_x_out = prX; // VertexA

tv1_y_out = (prY*t) - (a*t*t); // y depends on kinematic

equation

tv1_z_out = 0.50;

tv2_x_out = tv1_x_out - 0.01; // VertexB

tv2_y_out = tv1_y_out - 0.02; // we place it lower then vertexA

tv2_z_out = 0.50;

tv3_x_out = tv1_x_out + 0.01; // VertexC

tv3_y_out = tv1_y_out - 0.02; // we place it lower then vertexA

tv3_z_out = 0.50;

//

// these values are being written to memory

// in order to get them when we want to update

// the same particle again

tx_step_out = prX;

ty_step_out = prY;

tcollision_time_out = 0;

tcheck_out = 1;

tlifespan_out = lifespan_const;

//

}

else if (check_in == 1){

// lefespan_in = 0 and we initilize particle’s

// paramaeters (do the same as we did when check was 0.

if (lifespan_in == 0){

// Generate Random Numbers X, Y

float prX = prandX(addr_in);

116

float prY = prandY(addr_in);

t = max_time - (lifespan_const/1000); // Time Variable

tv1_x_out = 0.00; // VertexA

tv1_y_out = (prY*t) - (a*t*t);

tv1_z_out = 0.50;

tv2_x_out = tv1_x_out - 0.01; // VertexB

tv2_y_out = tv1_y_out - 0.02;

tv2_z_out = 0.50;

tv3_x_out = tv1_x_out + 0.01; // VertexC

tv3_y_out = tv1_y_out - 0.02;

tv3_z_out = 0.50;

//

tx_step_out = prX;

ty_step_out = prY;

tcollision_time_out = 0;

tcheck_out = 1;

tlifespan_out = lifespan_const;

//

}

else{

// here we update the parameters

// t variable depends on remaining lifetime

t = max_time - (lifespan_in/1000);

tv1_x_out = v1_x_in + x_step_in; // VertexA

tv1_y_out = (y_step_in*t) -a*t*t;

tv1_z_out = v1_z_in + x_step_in;

tv2_x_out = tv1_x_out - 0.01; // VertexB

tv2_y_out = tv1_y_out - 0.02;

tv2_z_out = v1_z_in + x_step_in;

tv3_x_out = tv1_x_out + 0.01; // VertexC

tv3_y_out = tv1_y_out - 0.02;

tv3_z_out = v1_z_in + x_step_in;

// TopCollision

if (tv1_y_out >= -0.205 && tv1_y_out <= -0.2 && tv1_x_out

<= 0.20 && tv1_x_out >= 0.05 && tv1_z_out >= 0.0 &&

tv1_z_out <= 1.0){

117

tcollision_time_out = t;

tcheck_out = 2;

}

// RightCollision

else if (tv1_y_out < -0.205 && tv1_y_out >= -0.4 &&

tv1_x_out >= 0.05 && tv1_z_out >= 0.0 && tv1_z_out <=

1.0){

tcollision_time_out = 0;

tcheck_out = 3;

}

else{

tcollision_time_out = 0;

tcheck_out = 1;

}

//

tx_step_out = x_step_in;

ty_step_out = y_step_in;

tlifespan_out = lifespan_in - 1;

//

}

}

else if(check_in == 2){ // Top Collision

if (lifespan_in == 0){

// Generate Random Numbers X, Y

float prX = prandX(addr_in);

float prY = prandY(addr_in);

t = max_time - (lifespan_const/1000); // Time Variable

tv1_x_out = 0.00; // VertexA

tv1_y_out = (prY*t) - (a*t*t);

tv1_z_out = 0.50;

tv2_x_out = tv1_x_out - 0.01; // VertexB

tv2_y_out = tv1_y_out - 0.02;

tv2_z_out = 0.50;

tv3_x_out = tv1_x_out + 0.01; // VertexC

tv3_y_out = tv1_y_out - 0.02;

tv3_z_out = 0.50;

//

tx_step_out = prX;

118

ty_step_out = prY;

tcollision_time_out = 0;

tcheck_out = 1;

tlifespan_out = lifespan_const;

//

}

else{

t = max_time - (lifespan_in/1000);

tv1_x_out = v1_x_in + x_step_in*1.5; // VertexA

tv1_y_out = -0.2 +((y_step_in/2)*(t-collision_time_in))

-a*(t-collision_time_in)*(t-collision_time_in);

tv1_z_out = v1_z_in + x_step_in;

tv2_x_out = tv1_x_out - 0.01; // VertexB

tv2_y_out = tv1_y_out - 0.02;

tv2_z_out = v1_z_in + x_step_in;

tv3_x_out = tv1_x_out + 0.01; // VertexC

tv3_y_out = tv1_y_out - 0.02;

tv3_z_out = v1_z_in + x_step_in;

//

tx_step_out = x_step_in;

ty_step_out = y_step_in;

tcollision_time_out = collision_time_in;

tcheck_out = 2;

tlifespan_out = lifespan_in - 1;

//

}

}

else if(check_in == 3){ // Right Collision

if (lifespan_in == 0){

// Generate Random Numbers X, Y

float prX = prandX(addr_in);

float prY = prandY(addr_in);

t = max_time - (lifespan_const/1000); // Time Variable

tv1_x_out = 0.00; // VertexA

tv1_y_out = (prY*t) - (a*t*t);

tv1_z_out = 0.50;

tv2_x_out = tv1_x_out - 0.01; // VertexB

tv2_y_out = tv1_y_out - 0.02;

119

tv2_z_out = 0.50;

tv3_x_out = tv1_x_out + 0.01; // VertexC

tv3_y_out = tv1_y_out - 0.02;

tv3_z_out = 0.50;

//

tx_step_out = prX;

ty_step_out = prY;

tcollision_time_out = 0;

tcheck_out = 1;

tlifespan_out = lifespan_const;

//

}

else{

t = max_time - (lifespan_in/1000);

// change direction on x axis

tv1_x_out = v1_x_in - x_step_in; // VertexA

tv1_y_out = (y_step_in*t) -a*t*t;

tv1_z_out = v1_z_in + x_step_in;

tv2_x_out = tv1_x_out - 0.01; // VertexB

tv2_y_out = tv1_y_out - 0.02;

tv2_z_out = v1_z_in + x_step_in;

tv3_x_out = tv1_x_out + 0.01; // VertexC

tv3_y_out = tv1_y_out - 0.02;

tv3_z_out = v1_z_in + x_step_in;

//

tx_step_out = x_step_in;

ty_step_out = y_step_in;

tcollision_time_out = 0;

tcheck_out = 3;

tlifespan_out = lifespan_in - 1;

//

}

}

}

*addr_out = addr_in;

*v1_x_out = tv1_x_out;

*v1_y_out = tv1_y_out;

*v1_z_out = tv1_z_out;

*v2_x_out = tv2_x_out;

120

*v2_y_out = tv2_y_out;

*v2_z_out = tv2_z_out;

*v3_x_out = tv3_x_out;

*v3_y_out = tv3_y_out;

*v3_z_out = tv3_z_out;

*x_step_out = tx_step_out;

*y_step_out = ty_step_out;

*collision_time_out = tcollision_time_out;

*check_out = tcheck_out;

*lifespan_out = tlifespan_out;

}

/////////// FUNCTIONS //////////////////

float prandX(float addr){

#pragma HLS PIPELINE

int x, p, x1, i;

x = 123456789;

p = 289; // Up Limit

i = addr + 200;

x1 = (((i*x*234525)/53112) % p);

// Make it Float

float temp = x1;

float prand = temp/800000;

return prand;

}

float prandY(float addr){

#pragma HLS PIPELINE

int y, p, y1, i;

y = 123456789;

p = 10789; // Up Limit

i = addr + 200;

y1 = (((i*y*219745)/53112) % p);

// Make it Float

float temp = y1;

// Make it positive

float prandt1 = temp/4000;

float prandt2 = prandt1 * prandt1;

float prand = sqrt(prandt2);

121

return prand;

}

float prandLifespan(float addr){

#pragma HLS PIPELINE

int y, p, y1, i;

y = 123456789;

p = 156; // Up Limit

i = addr + 200;

y1 = (((i*y*234525)/53112) % p);

// Make it Float

float temp = y1;

// Make it positive

float prandt1 = temp + 1100;

float prandt2 = prandt1 * prandt1;

float prand = sqrt(prandt2);

return prand;

}

//

122

Bibliography

[1] Kasik V. and A. Kurecka, FPGA Implementation of a Simple 3D Graph-
ics Pipeline, 2015.

[2] Ajay Kashyap and Ashish Sharma, Implementation of a 3D Graphics
Rasterizer with Texture and Slim Shader on FPGA, 2013.

[3] Kyungsu Kim, Hoosung-Lee, Seonghyun Cho, Seongmo Park Implemen-
tation of 3D graphics accelerator using full pipeline scheme on FPGA.
SoC Design Conference, 2008. ISOCC ’08. International.

[4] Peter Szanto, Bela Feher Implementing a Programmable Pixel Pipeline
in FPGAs, 2008.

[5] DK Design Suite.
https://www.mentor.com/products/fpga/handel-c/

dk-design-suite/

[6] Jeong-Joon Yoo, Jaedon Lee, Sundeep Krishnadasan, Wonjong Lee,
John Brothers, Soojung RyuTile-based Path Rendering for Mobile De-
vice. ACM SIGGRAPH ASIA 2015, Symposium on Mobile Graphics and
Interactive Applications (MGIA).

[7] Imagination Technologies, PowerVR Software Development Kit, Imagi-
nation Technologies.
http://www.pvrdev.com

[8] NVIDIA CUDA.
http://www.nvidia.com/object/cuda_home_new.html

[9] Fang Liu, Meng-Cheng Huang, Xue-Hui Liu, En-Hua Wu FreePipe:
a Programmable Parallel Rendering Architecture for Efficient Multi-
Fragment Effects. ACM SIGGRAPH 2010 symposium on Interactive 3D
Graphics and Games.

[10] Graphics pipeline.
https://en.wikipedia.org/wiki/Graphics_pipelin

[11] Clipping.
https://en.wikipedia.org/wiki/Clipping_(computer_graphics)

[12] Rasterization.
https://en.wikipedia.org/wiki/Rasterisation

123

https://www.mentor.com/products/fpga/handel-c/dk-design-suite/
https://www.mentor.com/products/fpga/handel-c/dk-design-suite/
http://www.pvrdev.com
http://www.nvidia.com/object/cuda_home_new.html
https://en.wikipedia.org/wiki/Graphics_pipelin
https://en.wikipedia.org/wiki/Clipping_(computer_graphics)
https://en.wikipedia.org/wiki/Rasterisation

[13] Software Rasterization Algorithms for Filling Triangles.
http://www.sunshine2k.de/coding/java/TriangleRasterization/

TriangleRasterization.html

[14] Z-buffering.
https://en.wikipedia.org/wiki/Z-buffering

[15] Shading.
https://en.wikipedia.org/wiki/Shading

[16] Gouraud shading.
https://en.wikipedia.org/wiki/Gouraud_shading

[17] Basic Texture Mapping.
http://ogldev.atspace.co.uk/www/tutorial16/tutorial16.htm

[18] World, View and Projection Transformation Matrices.
http://www.codinglabs.net/article_world_view_projection_

matrix.aspx

[19] Matrix.LookAtLH(Vector3,Vector3,Vector3) Method (Mi-
crosoft.DirectX).
https://msdn.microsoft.com/en-us/library/windows/desktop/

bb281710(v=vs.85).aspx

[20] Explaining Homogeneous Coordinates and Projective Geometry.
http://www.tomdalling.com/blog/modern-opengl/

explaining-homogenous-coordinates-and-projective-geometry/

[21] Perlin noise.
https://en.wikipedia.org/wiki/Perlin_noise

[22] The original code from Perlin was originally published in java.
http://rosettacode.org/wiki/Perlin_noise

[23] Particle system.
https://en.wikipedia.org/wiki/Particle_system

[24] Displacement mapping.
https://en.wikipedia.org/wiki/Displacement_mapping

[25] Introduction to FPGA Technology.
http://www.ni.com/white-paper/6984/en/

124

http://www.sunshine2k.de/coding/java/TriangleRasterization/TriangleRasterization.html
http://www.sunshine2k.de/coding/java/TriangleRasterization/TriangleRasterization.html
https://en.wikipedia.org/wiki/Z-buffering
https://en.wikipedia.org/wiki/Shading
https://en.wikipedia.org/wiki/Gouraud_shading
http://ogldev.atspace.co.uk/www/tutorial16/tutorial16.htm
http://www.codinglabs.net/article_world_view_projection_matrix.aspx
http://www.codinglabs.net/article_world_view_projection_matrix.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/bb281710(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/bb281710(v=vs.85).aspx
http://www.tomdalling.com/blog/modern-opengl/explaining-homogenous-coordinates-and-projective-geometry/
http://www.tomdalling.com/blog/modern-opengl/explaining-homogenous-coordinates-and-projective-geometry/
https://en.wikipedia.org/wiki/Perlin_noise
http://rosettacode.org/wiki/Perlin_noise
https://en.wikipedia.org/wiki/Particle_system
https://en.wikipedia.org/wiki/Displacement_mapping
http://www.ni.com/white-paper/6984/en/

[26] High-level synthesis.
https://en.wikipedia.org/wiki/High-level_synthesis

[27] Learning how to write a 3D Soft Engine from scratch in TypeScript or
JavaScript.
https://blogs.msdn.microsoft.com/davrous/2013/06/13/

tutorial-series-learning-how-to-write-a/.../-javascript

[28] Xilinx Vivado Design Suite.
http://www.xilinx.com/products/design-tools/vivado.html

[29] Xilinx Kintex-7 FPGA KC705 Evaluation Kit.
http://www.xilinx.com/products/boards-and-kits/

ek-k7-kc705-g.html

[30] ADV7511 HDMI Transmitter.
http://www.analog.com/en/products/audio-video/

analoghdmidvi-interfaces/analog-hdmidvi-display-interfaces/

adv7511.html

[31] VGA timings.
http://hamsterworks.co.nz/mediawiki/index.php/VGA_timings

125

 https://en.wikipedia.org/wiki/High-level_synthesis
https://blogs.msdn.microsoft.com/davrous/2013/06/13/tutorial-series-learning-how-to-write-a/.../-javascript
https://blogs.msdn.microsoft.com/davrous/2013/06/13/tutorial-series-learning-how-to-write-a/.../-javascript
http://www.xilinx.com/products/design-tools/vivado.html
http://www.xilinx.com/products/boards-and-kits/ek-k7-kc705-g.html
http://www.xilinx.com/products/boards-and-kits/ek-k7-kc705-g.html
http://www.analog.com/en/products/audio-video/analoghdmidvi-interfaces/analog-hdmidvi-display-interfaces/adv7511.html
http://www.analog.com/en/products/audio-video/analoghdmidvi-interfaces/analog-hdmidvi-display-interfaces/adv7511.html
http://www.analog.com/en/products/audio-video/analoghdmidvi-interfaces/analog-hdmidvi-display-interfaces/adv7511.html
http://hamsterworks.co.nz/mediawiki/index.php/VGA_timings

	Introduction
	Background Research
	Graphics Rendering Pipeline
	Vertex Processing
	Primitive Assembly
	Clipping
	Rasterization
	Z-buffering
	Shading
	Texture Mapping

	3D Rendering Effects
	Perlin Noise
	Particle System
	Displacement Mapping

	Introduction to FPGAs
	High-Level Synthesis

	Related Work
	Project Overview and Design
	Parts of Implementation
	Graphics Pipeline Implementation Phases
	3D Rendering Effects

	High Level Design
	Target Device
	Software Platform

	Implementation
	Vertex Processing and Rasterization Phase
	FaceVertices
	Processor Unit
	Dual-Port RAM
	Display Unit

	Shading Phase
	Flat Shading
	Gouraud Shading

	Texture Mapping Phase
	3D Rendering Effects
	Perlin Noise Mapping to Ramp Texture
	Particle System
	Displacement Mapping using Perlin Noise

	System Evaluation
	Vertex Processing and Rasterization
	Shading
	Texture Mapping
	Perlin Noise Mapping to Ramp Texture
	Particle System
	Displacement Mapping using Perlin Noise

	Conclusions and Recommendations
	Appendix
	MatrixMultiplication - HLS code
	MatrixVectorMultiplication - HLS code
	TransformCoordinates - HLS code
	I2C sender - VHDL code
	FaceNormalVector - HLS code
	CenterPoint - HLS code
	ComputeNdotL - HLS code
	PerlinNoise - HLS code
	ParticleSystem - HLS code
	MapColor - HLS code
	ParticleSystem (Repeller) - HLS code

