
TECHNICAL UNIVERSITY OF CRETE

MASTER THESIS

A Streaming Implementation of the Event
Calculus

Author:

Alexandros MAVROMMATIS

Supervisor:

Prof. Minos GAROFALAKIS

THESIS COMMITTEE

Prof. Minos GAROFALAKIS (Technical University of Crete)

Assoc. Prof. Michail G. LAGOUDAKIS (Technical University of Crete)

Dr. Alexander ARTIKIS (University of Piraeus, N.C.S.R. Demokritos)

Technical University of Crete

School of Electronic & Computer Engineering

in collaboration with the

National Centre for Scientific Research “Demokritos”

Institute of Informatics and Telecommunications

April 2016

http://www.tuc.gr
http://www.softnet.tuc.gr/~minos/
http://www.tuc.gr
http://www.ece.tuc.gr
http://www.demokritos.gr
http://www.iit.demokritos.gr

Abstract

Events provide the fundamental abstraction for representing time-evolving information

that may affect situations under certain circumstances. The research domain of Complex

Event Recognition focuses on tracking and analysing streams of events, in order to detect

event patterns of special significance. The event streams may originate from various

sources, such as sensors, video tracking systems, computer networks, etc. Furthermore,

the event stream velocity and volume pose significant challenges to event processing

systems. We propose dRTEC, an event recognition system that employs the Event Cal-

culus formalism and operates in multiple computer cores for scalable distributed event

recognition. We evaluate dRTEC experimentally using two real world applications and

we show that it is capable of real-time and efficient event recognition.

Περίληψη

Τα γεγονότα παρέχουν την θεμελιώδη αφαίρεση για την αναπαράσταση μιας χρονικά εξε-

λισσόμενης πληροφορίας, η οποία μπορεί να επηρεάσει καταστάσεις κάτω από ορισμένες

συνθήκες. Το πεδίο έρευνας της Αναγνώρισης Σύνθετων Γεγονότων επικεντρώνεται στην

παρακολούθηση και ανάλυση ροών από γεγονότα, με στόχο τον εντοπισμό προτύπων από

γεγονότα ιδιαίτερης σημασίας. Οι ροές από γεγονότα μπορούν να προέρχονται από διάφορες

πηγές, όπως αισθητήρες, συστήματα παρακολούθησης με βίντεο, δίκτυα υπολογιστών κ.λπ.

Επιπλέον, η ταχύτητα και ο όγκος των ροών από γεγονότα δημιουργούν σημαντικές προ-

κλήσεις για τα συστήματα επεξεργασίας γεγονότων. Προτείνουμε το dRTEC, ένα σύστη-

μα αναγνώρισης γεγονότων που χρησιμοποιεί το φορμαλισμό του Λογισμού Πράξης και

λειτουργεί σε πολλαπλούς πυρήνες υπολογιστών για κλιμακούμενη και κατανεμημένη ανα-

γνώριση γεγονότων. Αξιολογούμε πειραματικά το dRTEC, χρησιμοποιώντας δύο εφαρμογές

του πραγματικού κόσμου και προβάλλουμε τη δυνατότητά του για αποδοτική αναγνώριση

γεγονότων σε πραγματικό χρόνο.

Acknowledgements

To start with, I would like to thank my advisors, Dr. Georgios Paliouras and Dr. Alexan-

der Artikis, for the opportunity they gave me to complete my master thesis at N.C.S.R.

Demokritos. Without their advise and guidance, I would have never been able to succeed

in of the most important goals in my life and become familiar with the field of research.

Furthermore, I would like to thank my supervisor, prof. Minos Garofalakis, for his un-

wavering trust in completing a collaborative thesis and gaining experience outside the

usual boundaries of a university.

I am also grateful to my colleague Dr. Anastasios Skarlatidis for his assistance and advise

for the successful completion of my thesis. With his knowledge and patience, he guided

me to bypass basic obstacles and thinking out of the box.

A big thank you to my friends and colleagues, and especially Konstantinos Pechlivanis

and Evangelos Michelioudakis, for their assistance and support throughout these two

and a half years.

Last but not least, a massive thank you to my family for being there supporting me

throughout my effort and encouraging me in any difficulty I faced.

Alexandros Mavrommatis

Chania, April 2016

Contents

Abstract ii

Acknowledgements vi

Contents vii

List of Figures ix

List of Tables xi

List of Algorithms xiii

1 Introduction 17

1.1 Motivation . 18

1.2 Contributions . 19

1.3 Thesis Outline . 19

2 Background 21

2.1 Preliminaries . 21

2.1.1 Apache Spark . 21

2.1.2 Related Frameworks . 23

2.1.3 Framework Comparison . 23

2.2 Event Calculus . 24

2.2.1 Simple Fluents . 26

2.2.2 Statically Determined Fluents . 28

viii Contents

2.3 Window Mechanism Example . 29

2.4 Related Work . 32

2.4.1 Complex Event Recognition Systems 32

2.4.2 Distributed and Data Streaming Systems 33

3 Distributed Run-Time Event Recognition 37

3.1 Dynamic Grounding & Indexing . 38

3.2 Non-Relational Processing . 39

3.3 Pairing & Relational Processing . 39

3.4 Reasoning . 40

4 Experimental Results 45

4.1 Activity Recognition . 45

4.2 Maritime Surveillance . 48

5 Conclusions and Future Work 51

5.1 Conclusions . 51

5.2 Future Work . 52

Bibliography 55

List of Figures

2.1 Windowing in RTEC. 30

3.1 dRTEC processing. 38

4.1 Activity recognition with 10 tracked entities. 46

4.2 Activity recognition with 20 tracked entities. 47

4.3 Event recognition for maritime surveillance. 49

List of Tables

2.1 Main predicates of RTEC. 25

List of Algorithms

3.1 Initiation of leaving object in dRTEC. 40

3.2 Termination of leaving object in dRTEC. 40

3.3 GETINTERVAL function. 41

3.4 AMALGAMATE function. 42

3.5 Simple fluent leaving object in dRTEC. 42

3.6 MAKEINTERVALSFROMPOINTS function. 42

3.7 Statically determined fluent greeting in dRTEC. 43

1 | Introduction

As the number of sources increases which can feed a system with input data, so does

the need for distributed systems. These systems can handle big flows of data, since the

traditional data processing systems are inadequate. One of the well known challenges

of big data processing is the complex event recognition. Event recognition systems aims

to detect real-time events from the incoming flow according to specific patterns. Such

systems tend to lead to more confident decision making. Better decisions can result in

greater operational efficiency, cost reduction and minimized risk.

Event recognition systems receive as input a stream of time-stamped events (SDEs), in

order to identify composite events (CEs). A SDE is a low-level event produced by a

sensor or device, which may or may not have been preprocessed [25]. A CE is a high-

level recognized event which has been derived according to a concrete definition. Such a

definition imposes temporal, and possibly, atemporal constraints on its subevents - SDEs

or other CEs.

There are numerous distributed event recognition systems in the current literature [15].

Most of these systems are concentrating in representing the complex event definitions in

a query model [10, 20, 34]. They exhibit a method for query optimization by translating

them into automata and distributing them among a cluster of computers.

We present a distributed streaming engine, including novel techniques for fast CE recog-

nition, called “distributed Event Calculus for Run-Time reasoning” (dRTEC). dRTEC

uses an efficient dialect of the Event Calculus [21], a logic programming formalism for

representing and reasoning about events. dRTEC includes novel techniques for efficient

and real-time CE recognition, scalable to large number of SDEs and CEs, represented as

follows:

• A distributed data streaming CE recognition system using Apache Spark Stream-

ing framework, containing a window mechanism and an interval manipulation

operation for the CE intervals for efficient reasoning.

• An indexing method which separates SDEs according to their entities for real-time

CE recognition.

18 Introduction

• An evaluation of two real-world big data applications.

We evaluate dRTEC experimentally using two real-world applications: activity recog-

nition and maritime surveillance. In activity recognition, the SDEs are “short-term

activities” detected on video frames such as a person walking, running, moving abruptly

or being active or inactive. The goal is to recognize “long-term activities” which are

combinations of the “short-term” ones. Such activities are a person leaves an object

unattended, two people moving together, fighting or meeting. Maritime surveillance

contains SDEs which are critical movements (MEs) detected from vessels sailing through

the Greek seas. Such MEs are a vessel starts or ends having low speed, a vessel’s speed

change, a communication gap starts or ends, and a vessel turns or is stopped. In maritime

surveillance, we aim to recognize CEs related to vessel behaviour such as illegal shipping,

suspicious vessel delay, and a vessel approaches fast another one.

1.1 Motivation

In recent years, CE recognition systems are being widely used in various applications.

They provide a convenient way to detect important incidents and serious hazard, without

the human participation. Once the detection is done, they contribute to the decision

making operation, in order to prevent or facilitate an imminent situation.

Maritime surveillance application is a fine example of a CE recognition use case. Vessels

are equipped with Automatic Identification System (AIS)1 transponders. These transpon-

ders send information about the vessel, such as position, velocity, type, and destination,

to other vessels or a base station. This information is fused and then received by the

CE recognition system for processing. The detected events are taken into account by

the maritime authorities in order to monitor the activities of vessels. Thus, dangerous

situations, such as illegal shipping, can be identified and avoided.

In our approach, CE recognition is based on the logic based dialect of Event Calculus.

Event Calculus is a notable tool for CE recognition. It has built-in axioms for complex

temporal representation, including the formalization of inertia. In addition, Event Cal-

culus contains temporal, as well as atemporal constraints for the CE definitions. There

are numerous other approaches, such as [14], [17], [8], [22], which lack the ability of

complex reasoning over domain knowledge [7].

On the other hand, our approach is designed for CE recognition over data streams. Sev-

eral approaches have been published which receive input stream of events, such as [15],

[18] and [23]. [29] and [24] handle streams of input events which may be received

out-of order and/or with a delay. [22] implements a similar to our window mechanism

for processing input data, by simulating sliding windows over the event stream.
1http://www.imo.org/OurWork/Safety/Navigation/Pages/AIS.aspx

http://www.imo.org/OurWork/Safety/Navigation/Pages/AIS.aspx

Introduction 19

Nowadays, there is a significant progress around the field of distributed implementations.

Novel systems, such as CE recognition systems, process large amount of data. Thus,

they tend to be implemented for execution in a cluster of cores. The job is separated in

tasks, which will be distributed among the cores, for parallel execution. [34], [33] and

[20] achieve this distribution among computers, according to a specific algorithm; either

by distributing the CE definitions, or the input data, or the detection system entities

(sources/devices).

In conclusion, the motivation of our approach has three basic directions; the implemen-

tation of a distributed CE recognition engine among a cluster of computers. This engine

should receive a data stream as input, whose events will be represented in an Event

Calculus dialect.

1.2 Contributions

In this thesis, we focus on CE recognition over a large amount of data, using an Event

Calculus dialect for its representation. The system is distributed for a fast and efficient

processing, making the CE recognition accurate in big data applications. In particular

the contributions of this thesis are the following:

• A distributed CE recognition system, using an Event Calculus dialect. One of our

basic aims is the implementation of a big data application system. The distribution

of the tasks among several cores and the parallel execution of them makes CE

recognition significantly fast to process such large datasets. Using Event Calculus

makes more convenient for the developer to create CE rules, since its syntax is

based in natural language and it is domain-independent.

• An indexing method which separates the data and allocates it amongst the cores.

This is achieved based on the input entities of the data. That makes CE recognition

more efficient than the aforementioned approaches. Additionally, it includes a

dynamic grounding method making our system agnostic to the participating entities

avoiding redundant computations.

• We used the Apache Spark framework in our implementation. Apache Spark is

a reactive programming tool for building scalable and fault-tolerant streaming

applications

1.3 Thesis Outline

In Chapter 2, we provide the required background for Apache Spark, the large-data

framework that we used for implementing dRTEC. We also make reference to similar

20 Introduction

large-data frameworks which currently exist, as well as a comparison of them. We review

and discuss the literature around distributed and non-logic based CE recognition systems.

Chapter 3 presents the main architecture design and implementation of our approach.

We then, in Chapter 4, present the experimental evaluation of dRTEC using a number

of different applications. Finally, in Chapter 5, we present the main conclusions of this

work along with discussion regarding the open issues and future directions.

2 | Background

In this thesis we focus on distributed event recognition using data streams as input. This

chapter provides the required background for our work. Starting from the preliminaries,

in Section 2.1 we present the technological basis that we used and the purpose of this

selection, in order to implement our work. Our implementation make use of the Event

Calculus formalism which is briefly presented in Section 2.2. In Section 2.3, we illustrate

an example of the window mechanism that we used in our work. Finally in Section 2.4,

we present related work in the domain of distributed, streaming, and CE recognition

systems.

2.1 Preliminaries

Nowadays, distributing computing frameworks are widely used in most applications;

from communication network applications to big data processing ones. In this section,

we describe Apache Spark, an efficient distributed streaming platform for data processing,

which is used for the dRTEC implementation. Then, we describe similar distributed

platforms and finally we state a comparison of them.

2.1.1 Apache Spark

Apache Spark1 is an open source distributed computing framework. Spark extends the

famous MapReduce model, in order to support different types of operations, such as

interactive queries and streaming processing. Spark’s main purpose is speed, which

is important in processing large amount of data. It has been proved that Spark runs

programs 100x faster than Hadoop MapReduce in memory and 10x on disk.

One of Spark’s features is the ability to run in-memory computations, comparing to most

of the other frameworks that run on disk. Additionally, Spark combines these different

processing operations, such as SQL and streaming, to produce complex data analysis

pipelines. For that purpose, it provides a rich set of high-level tools such as Spark SQL
1Apache Spark website: http://spark.apache.org

http://spark.apache.org

22 Background

for SQL and structures data processing, MLlib for machine learning, Spark Streaming for

streaming applications and GraphX for graph processing.

Apache Spark provides high-level APIs in Java, Scala, R and Python with rich built-in

libraries. It is able to run in different types of clusters including EC2, Hadoop YARN

and Apache Mesos. It is compatible with various other frameworks from DBMSs, such

as Apache Cassandra and MongoDB, to message brokers, such as Apache Kafka and

RabbitMQ.

Spark’s main abstraction is a distributed collection called resilient distributed dataset
(RDD) [37]. RDD enables an efficient data reuse in intermediate results across multiple

computations. It is a fault-tolerant and parallel data structure which provides the ability

to the user for persisting results in memory. RDDs are distributed across machines via

a partitioning method based on a key for each record (e.g. hash or range partitioned).

RDD also provides to the user a rich set of operations, called transformations (e.g. map,

filter, join). Spark supports fault-tolerance by saving in memory the transformations

which will take place on an RDD, building its lineage, rather than the actual data. RDD

contains another set of operations called actions, which return a result value to the

application or save it to a storage system. Spark computes RDDs, not at the time of their

transformations, but lazily the first time they are used in an action, deriving a pipeline

of transformations.

Spark Streaming2 is one of Apache Spark basic extensions. It extends the core of Spark

API which allows data engineers and scientists to process large amount of data in real-

time from different sources. The stream processing and computing style is based on

micro batches. In Spark Streaming, the developer can write streaming jobs in the same

way that writes batch jobs in Spark. Thus, it provides the ability of reusing a Spark

application for streaming processing with a minimum modification. Spark Streaming is

also fault-tolerant by supporting operations over sliding windows of data. It is a stateful

stream processing system, since the developer may maintain a state on disk, based on

the data window.

Spark Streaming main collection is discretized stream (D-Stream) [38]. D-Stream is

built on RDDs – the Spark’s main core abstraction – and is actually represented as an

immutable sequence of them. D-Stream supports streaming computations as a series of

short, stateless, and deterministic tasks on small time intervals. It includes the basic RDD

operations of transformations (e.g. map, filter) and actions (e.g reduce).
2Apache Spark Streaming website: http://spark.apache.org/streaming/

http://spark.apache.org/streaming/

Background 23

2.1.2 Related Frameworks

In our days, numerous of platforms have been implemented in order to serve the increas-

ing need of distributed streaming applications. Apache Storm3 is an open source dis-

tributed real-time computation framework for processing large amount of high-velocity

data. Storm is efficiently fast with the ability of processing over a million of records per

second per node of a cluster. It is a reliable processing system for unbounded streams

of data, supporting fault-tolerance in the case of every record will be processed “at least

once”. It is initially written in the Clojure programming language but it is usable in many

programming languages.

Storm is a scalable easy to set up and operate framework. An application written in storm

is designed as a “topology” in the shape of a directed acyclic graph (DAG), wiring “spouts”

– input data streams – and “bolts” – processing and output modules. A topology is a

pipeline of transformations acting similarly to a MapReduce job, but with the difference

that the data is processed in real-time and not in individual batches. It is used in various

types of applications, such as real-time analytics, online machine learning, etc.

One of Storm’s basic extension is Trident. Trident is a high-level abstraction for real-time

processing of data in batches. It is on top of Storm, providing operations such as map,

reduce, join, aggregate, etc., for stateful stream processing with low latency.

Apache Flink4 is another commonly used open source scalable distributed stream process-

ing platform. Flink is a dataflow engine in a parallel and pipelined manner. It supports

streaming computations over bulks/batches with an efficient and low latency processing.

Flink provides high-level APIs in Java and Scala, including numerous libraries, such as

Gelly – for graph processing, CEP – for complex event processing, and machine learning.

It also supports consuming data from reliable sources such as Apache Kafka.

2.1.3 Framework Comparison

The most suitable method to choose the appropriate distributed framework for a specific

application is the comparison of them. We selected Apache Spark for our implementation,

collecting the benefits and the drawbacks compared to other famous related frameworks.

One of the newest competitors of Spark is Apache Flink. Spark and Flink are both general-

purpose stream processing platforms. They are applicable in a wide field of use cases and

large data scenarios. They both include streaming processing, graph processing, machine

learning and SQL queries extensions. They are capable of running in standalone mode

or in a common cluster.
3Apache Storm website: http://storm.apache.org/
4Apache Flink website: https://flink.apache.org/

http://storm.apache.org/
https://flink.apache.org/

24 Background

Apache Flink is optimized for cyclic or mostly iterative processing by using iterative

transformations on its collections. This derives from an optimization of join algorithms,

operator chaining, partitioning reusing and sorting. It is also adequately efficient in batch

processing but still it handles data streams as true streams. On the other hand, Spark is

based on RDDs. These are in-memory data structures, thus giving the capability of big

batch calculations. Spark Streaming wraps data streams into micro-batches, making the

streaming processing an explicit batch processing. Moreover, while the batch program is

running, the data for the next micro-batch is collected. They both have an efficient mem-

ory management but Flink relies on an idiomatic API. At the time we made our option,

Flick was not quite developed, making Spark a more mature with a bigger community

framework. Spark has also the same capabilities with Flink in a micro-batch processing –

the purpose of our option.

Apache Storm is the fundamental framework which antagonizes Apache Spark in most

cases. Both platforms are distributed stream processing ones, with lots of benefits for

efficient computations in big data. They are compatible with Hadoop distributions, nu-

merous cluster managers such as Apache Mesos and Hadoop YARN, as well as DBMSs

such as Apache Cassandra and MongoDB. Both frameworks are fault-tolerant and scal-

able to large volumes of data.

Apache Storm, instead of micro-batching, operates on tuple streams, processing one

tuple at a time. Only the Trident extension has the ability of handling streams in micro-

batching. It is a lower latency framework comparing to Apache Spark but Spark has the

advantage of higher throughput in large datasets. Storm’s fault-tolerance is based on

the case that every record will be processed “at least once”, on the other hand Spark’s

fault-tolerance is “exactly once”. One basic difference between the two platforms is

the method used for parallelization; Storm performs task-parallel computations while

Spark performs data-parallel ones. This is a more convenient method for our approach.

In addition, dRTEC needs the execution of operations of MapReduce model, which are

available in Spark. We may have used Storm along with the Trident extension, since

it simulates the same behaviour with the one that Spark does. However, Trident was

relatively new, at the time we selected the appropriate framework. Spark is also being

maintained and updated a lot more than Storm is, over the last years. Finally, dRTEC

needs the execution of stateful operations, maintaining an in-memory state for the former

window. Storm does not support such operations, thus the developer has to implement

them by himself.

2.2 Event Calculus

Our approach make use of a syntax, presented in RTEC [9], for the SDEs and CE defini-

tions representation. RTEC is a CE recognition system using an Event Calculus dialect

Background 25

(EC). EC [21] is a logic programming formalism for representing and reasoning about

events and their effects. The time model of the dialect which is used in RTEC is linear,

including integer time-points. Variables start with an upper-case letter, while predicates

and constants start with a lower-case letter. We define F as fluent – a property that is

allowed to have different values at different time-points – while F = V denotes that

fluent F has value V . Boolean fluents also exist whose possible values are true or false.

Table 2.1: Main predicates of RTEC.

Predicate Meaning
happensAt(E , T) Event E is occurring at time T
holdsAt(F=V , T) The value of fluent F is V at time T
holdsFor(F=V , I) I is the list of maximal intervals for which

F = V holds continuously
initiatedAt(F=V , T) At time T a period of time for which F = V

is initiated
terminatedAt(F=V , T) At time T a period of time for which F = V

is terminated
union_all(L, I) I is the list of maximal intervals produced

by the union of the lists of maximal intervals
of list L

intersect_all(L, I) I is the list of maximal intervals produced
by the intersection of the lists of maximal
intervals of list L

relative_complement_all(I ′, L, I) I is the list of maximal intervals produced by
the relative complement of the list of maxi-
mal intervals I ′ with respect to every list of
maximal intervals of list L

complement_all(I ′, I) I is the list of maximal intervals produced by
the complement of the list of maximal inter-
vals I ′ with respect to the current window

Table 2.1 summarizes the RTEC predicates available to the event description developer.

holdsAt(F=V , T) represents that fluent F has value V at a particular time-point T .

holdsFor(F=V , I) represents that I is the list of maximal intervals for which F = V

holds continuously. holdsAt and holdsFor are defined in such a way that, for any fluent F ,

holdsAt(F=V , T) is valid if and only if T ∈ I for which holdsFor(F=V , I).

The happensAt predicate represents an instance of an event type. E.g. in activity recogni-

tion happensAt(appear(id0), 10) represents the occurrence of event type

appear(id0) at time-point 10. When it is clear from the context, there is no need to sepa-

rate an event from its type. The definitions are based on the use of happensAt predicate,

the effects of events with initiatedAt and terminatedAt predicates, and the values of the

fluents with the use of holdsAt and holdsFor predicates. There may be also other possibly

atemporal constraints, which transcend the boundaries of EC but are applicable in RTEC.

26 Background

The last four items of Table 2.1 are interval manipulation predicates specific to RTEC.

union_all(L, I) computes the list I of maximal intervals representing the union of

maximal intervals of the lists of list L. For example:

union_all([[(10, 20)], [(4, 15), (18, 22), (30, 42)]], [(4, 22), (30, 42)])

An interval of the form (Ts, Te) in RTEC represents the closed-open interval [Ts, Te). I in

union_all(L, I) is a list of maximal intervals that includes each time-point that is part of

at least one list of L. intersect_all(L, I) computes the list I of maximal intervals such

that I represents the intersection of maximal intervals of the lists of list L. For example:

intersect_all([[(10, 20)], [(4, 15), (18, 22), (30, 42)]], [(10, 15), (18, 20)])

I in intersect_all(L, I) is a list of maximal intervals that includes each time-point

that is part of all lists of L. relative_complement_all(I ′, L, I) computes the list I of

maximal intervals such that I represents the relative complement of the list of maximal

intervals I ′ with respect to the maximal intervals of the lists of list L. For instance:

relative_complement_all([(5, 25), (27, 46)], [[(4, 12)], [(18, 22), (30, 42)]],

[(13, 17), (23, 25), (27, 30), (43, 46)])

I in relative_complement_all(I ′, L, I) is a list of maximal intervals that includes each

time-point of I ′ that is not part of any list of L. complement_all(I ′, I) computes the

list I of maximal intervals such that I represents the complement of the list of maximal

intervals I ′ with respect to the current window interval. For example, if current window

interval is (50, 100), then:

complement_all([(55, 60), (72, 88), (90, 97)], [(50, 55), (60, 72), (88, 90), (97, 100)])

2.2.1 Simple Fluents

RTEC fluents belong to two categories: simple and statically determined. We assume,

without loss of generality, that these types are disjoint. A fluent F is simple fluent when

F = V holds at a particular time-point T , if F = V has been initiated at an earlier time-

point and has not been terminated yet. This is an implementation of the law of inertia.

For a simple fluent, the list I in holdsFor(F=V , I) contains the maximal intervals at

which F = V . These intervals are computed by the amalgamation of all the time-points

between the time-point at which F initiated having the value V and F terminated having

this value. initiatedAt and terminatedAt rules are domain-specific. If F = V2 is initiated

at Tf then effectively F = V1 is terminated at Tf , for all other possible values V1 of F .

Thus, a fluent cannot have more than one value at a specific time-point. However, a

fluent is not necessary to have a value at every time-point. There is a difference between

initiating a boolean fluent F = false and terminating F = true; the former implies, but

is not implied by the latter.

Background 27

In activity recognition, we are interested in capturing the activity of leaving an object

unattended – consider the following formalization:

initiatedAt(leaving_object(P,Obj) = true, T)←
happensAt(appear(Obj), T),

holdsAt(inactive(Obj)=true, T),

holdsAt(close(P ,Obj)=true, T),

holdsAt(person(P)=true, T)

(2.1)

terminatedAt(leaving_object(P,Obj) = true, T)←
happensAt(disappear(Obj), T)

(2.2)

leaving_object(P,Obj) is a boolean fluent denoting that person P leaves the object Obj

unattended. Under certain circumstances, an unattended object may be considered

suspicious and therefore we need to record it. appear and disappear are instantaneous

SDEs produced by the underlying computer vision algorithms. An entity “appears” when

it is first tracked. Similarly, an entity “disappears” when it stops being tracked. An object

carried by a person is not tracked–only the person that carries it is tracked. The object

will be tracked, that is, it will “appear”, if and only if the person leaves it somewhere.

inactive is a durative SDE. Objects (as opposed to persons) can exhibit only inactive

activity. close(P ,Obj) is a statically determined fluent indicating whether the distance

between two entities P and Obj, tracked in the surveillance videos, is less than some

threshold of pixel positions. person(P) is a simple fluent indicating whether there is

sufficient information that entity P is a person as opposed to an object. According to

rule (2.1), “leaving object” is initiated when an inactive entity starts being tracked close

to a person. Rule (2.2) dictates that “leaving object” stops being recognised when the

entity is no longer tracked.

In addition to events constraints, initiatedAt and terminatedAt predicates in the bodies of

rules may specify constraints on fluents. start(F=V) (resp. end(F=V)) is a built-in

RTEC event taking place at each starting (ending) point of each maximal interval for

which F = V holds continuously.

The maximal intervals during which leaving_object(P,Obj) = true holds continuously

are computed using the built-in RTEC predicate holdsFor from rules 2.1 and 2.2.

initiatedAt(F=V , T) does not necessarily imply that F 6= V at T . Similarly,

terminatedAt(F=V , T) does not necessarily imply that F = V at T . Suppose that

F = V is initiated at time-points 30, 40, and 55 and terminated at time-points 60 and 70

(and at no other time-points). In that case, F = V holds at all time-points T such that

30 < T ≤ 60.

28 Background

2.2.2 Statically Determined Fluents

A fluent F is called statically determined if the CE description may include domain-specific

holdsFor rules, used to define the values of the fluent F in terms of the values of other

fluents. Such holdsFor rules use interval manipulation construct (see Table 2.1). In activity

recognition, we are interested in identifying whether two people are greeting each other

– consider the following formalization:

holdsFor(greeting(P1 ,P2)=true, I)←
holdsFor(close(P1 ,P2)=true, I1),

holdsFor(active(P1)=true, I2),

holdsFor(inactive(P1)=true, I3),

holdsFor(person(P1)=true, I4),

intersect_all([I3, I4], I5),

union_all([I2, I5], I6),

holdsFor(person(P2), true)I7,

holdsFor(running(P2), true)I8,

holdsFor(abrupt(P2), true)I9,

complement_all(I7, [I8, I9])I10,

intersect_all([I1, I6, I10], I)

(2.3)

A greeting distinguishes meetings from other, related types of interaction. Similar to

inactive, active (mild body movement without changing location), running and abrupt

are durative SDEs produced by the vision algorithms. According to rule 2.3, two tracked

entities P1 and P2 are said to be greeting, if they are close to each other, P1 is active or

an inactive person, and P2 is a person that is neither running nor moving abruptly.

The interval manipulation constructs of RTEC support the following type of definition:

for all time-points T , F = V holds at T if and only if some boolean combinations of

fluent-value pairs holds at T . The use of interval manipulation constructs leads to more

concise definitions of the CEs in many cases. In the absence of these constructs, one

would have adopt the traditional style of EC representation, by computing all the initia-

tion and termination points of all possible combinations of fluent-value pairs, and then

use the domain-independent holdsFor rule to compute the maximal intervals of the CE.

Such formalization is much more complex and lower-level than the representation using

interval manipulation. In general, interval manipulation constructs may significantly

simplify the durative CE definitions.

Background 29

2.3 Window Mechanism Example

dRTEC performs run-time recognition by computing and storing the maximal intervals

of the fluents and time-points in which the events occur. It is implemented using Apache

Spark. Spark uses its own mechanism for constructing windows (for further details see

Section 2.1.1). The design and implementation of the window mechanism in our work

is based on RTEC [9]. CE recognition is executed at specific query times Q1, Q2, At

each query time Qi only the SDEs that fall within a particular interval – “window” (W)

– are taken into consideration. The rest of the SDEs that do not fall within the window

are discarded. The reason that we use windows for the CE recognition is the recognition

cost. This procedure is based only on the window size and not the entire history of the

SDEs from the beginning of the execution. In the case that we used the complete history,

the memory capacity would not be adequately sufficient to store all the intervals and

time-points. The window size, as well as the temporal distance between two consecutive

query times – the “slide” (Qi - Qi−1) – can be set by the developer. According to the

above information, we may observe the following cases:

• W = Qi −Qi−1. In this case, we have consecutive (non-overlapping) windows. If

the SDEs arrive in time, there will be no loss of information. But if the SDEs do

not arrive in a timely manner, then the SDEs, that took place before Qi and arrived

after it, will be lost. Similarly the SDEs which took place before Qi and are revised

after it, will not be taken into consideration.

• W > Qi − Qi−1. This is the common case with overlapping windows. Since the

majority of SDEs arrive with a particular delay in most applications, a window size

larger than the slide duration is required. In this case, the effects of the revised

SDEs that took place in (Qi − W,Qi−1], but arrived after Qi−1, are taken into

account.

Note that even when the window size is larger than the slide duration, it is plausable

that SDEs may be lost. The only way for the data loss possibility to be minimized, is

the increase of the window size. However, an increase to the window size may cause a

reduction to the CE recognition efficiency. CE recognition efficiency and fault tolerance

depends on each specific application differently. In what follows we give an illustrative

example and a detailed account of how “windowing” works in RTEC.

30 Background

time

Q16

Window

Q19Q18Q17Q15

time

Q16

Window

Q19Q18Q17Q15

time

Q16

(c)

Window

Q19Q18Q17Q15

(a)

(b)

Figure 2.1: Windowing in RTEC.

Figure 2.1 shows windowing in RTEC. To avoid clutter, we present instances of only five

SDEs. The instantaneous SDEs are plotted with dots, and durative SDEs with lines. In

this example, we have W > Qi −Qi−1; we are interested to recognize two CEs:

• CEsimple represented as simple fluent (see Section 2.2.1). Its starting and ending

points, as well as its maximal intervals are represented above Window in Figure 2.1

• CEstd represented as statically determined fluent (see Section 2.2.2). In this ex-

ample, the maximal intervals of CEstd is the result of the union of two durative

SDEs. The maximal intervals of CEstd are displayed above the maximal intervals

of CEsimple.

For simplicity, we make the assumption that the maximal intervals of both CEs are defined

only by SDEs, and not by other CEs.

Figure 2.1 shows the steps that RTEC follows for CE recognition in a specific window.

Figure 2.1(a) displays RTEC before the beginning of CE recognition at query time Q18.

The bold dots and lines represent the instantaneous and durative SDEs respectively,

which take place between Q17 and Q18. This figure also shows the maximal intervals for

CEstd and CEsimple that were computed and stored at query time Q17.

Figure 2.1(b) shows the RTEC state at the beginning of CE recognition at query time

Q18. In this window, only the SDEs that take place in (Q18 − W,Q18] are taken into

consideration. The rest of the SDEs are retracted. The durative SDEs that start before

Q18 −W and end after it, are partially retracted; only the sub-interval that fall within

the window is stored.

Background 31

CEs will be handled in the same way; the CEs that have been completed before Qi −W

are retracted. The CEs that start before Qi −W and ends after it, are partially retracted

and only a sub-interval which fall within (Qi −W,Qi] are taken into consideration. The

latter CEs could be also fully retracted, since they have been recognized. The reason,

that they are partially retracted, is that they may be revised by SDEs which are received

with a delay, or by SDEs which have been erroneous emitted by the sources. A delayed or

incorrectly emitted SDE also indicates a delayed or incorrectly recognized CE. There is a

case that we could have kept some of the CE intervals and not retract all of them. This

is computationally very expensive to determine which of them should be retracted and

which not. Thus, the (partial) retraction of all the CE intervals and their computation

from scratch for each window, is the only reasonable solution.

According to the above information, Figure 2.1(b) shows the maximal intervals of the two

CEs which are recognized, after their retraction. The intervals of CEstd that computed at

Q17 are partially retracted; only the sub-interval which fall within (Q18−W,Q18] is taken

into consideration. Similarly for CEsimple, the intervals that take place before Q18 −W

are fully retracted. The starting point of the interval that fall within the window is the

only stored; its endpoint has to be recalculated.

Figure 2.1(c) illustrates the step after the CE recognition. As we mentioned above, SDEs

which belong in (Q18 −W,Q18] are only considered. CEstd is defined by the union of

two durative SDEs. The new calculated intervals are being amalgamated with the stored

intervals from the previous window, in order to create one continuous interval. The first

of the maximal intervals happens to be identical to the one which has been calculated in

the previous window; there was no revised or retracted SDEs. This is just a feature of

the example. If CEstd had been defined as the intersection of the durative SDEs, then

the intervals would have changed in the current window.

Figure 2.1(c) also shows how the intervals of CEsimple are computed at query time

Q18. Arrows facing upwards and downwards indicate the starting and ending points

of CEsimple respectively. Similarly to CEstd, the intervals which end before Q18 −W

are retracted and the starting point of the interval that fall within (Q18 − W,Q18] is

stored. For simple fluents, it is more convenient to partially retract its intervals, since

the starting points are the only ones stored (not an entire sub-intervals). That also

requires less memory for each window state than the statically determined fluents. For

the current window, we calculate the starting and ending points of the simple fluent

using the relevant initiatedAt and terminatedAt rules. Comparing Figure 2.1(a) with 2.1(c),

we observe that the ending point of the last interval which was computed at query time

Q17 was invalidated in the light of the new SDEs that became available at Q18.

Once the starting and ending points have been calculated, we use the domain- indepen-

dent rule holdsFor, in order to calculate a simple fluent’s maximal intervals. The first

interval of CEsimple became shorter comparing to the one that was computed at the

32 Background

previous query time. The second interval remains open, since there was no ending point

calculated.

The example above shows the CE recognition procedure when SDEs arrive with a variable

delay. CE intervals are computed at an earlier query time. Thus, they may be (partially)

retracted at the current or a future query time, when SDEs arrive with a delay or are

revised. Depending on the application requirements, RTEC may be set to report:

• CEs, the moment when they are recognized, even if they may be (partially) re-

tracted in the future.

• CEs which may partially, but not completely retracted in the future; whose intervals

overlap Qi+1 −W .

• CEs which will not be retracted at all in the future; whose interval end before

Qi+1 −W .

2.4 Related Work

This section provides an overview of previous works, particularly related to complex

event recognition. There is a range of different systems that have been used to detect

events using various approaches. We outline complex event recognition systems, as well

as distributed and streaming systems with similarities to our approach.

2.4.1 Complex Event Recognition Systems

CE recognition systems combine events that occur in an environment, in order to detect

composite events. In this section, we present CE recognition systems that have been

developed for different application domains. CE recognition systems’ primary goal is the

fast combination of logical, temporal and spatial constraints to identify CEs accurately.

NagiaraCQ [12] is one of the first widely used CE recognition system. It uses an XML-QL

language to represent CE rules in queries. It contains a non-partitioning pattern matching

method, using a graph of algebraic operators, in order to detect high level events.

Most of the modern CE recognition systems contain a partitioning or indexing mechanism

to achieve the aforementioned goal. Cayuga [16] is an example of a high-performance

CE recognition system. It represents CE definitions in queries which are later translated

into automata, using event algebra extensions. It contains a custom heap management,

indexing of operator predicates and reuse of shared automata instances. However, it

remains a non-distributed CE recognition system without optimizations, such as query

rewriting.

Background 33

Hirtzel [19] proposes another work where CE definitions are represented as queries

which are translated into automata. In this approach, the automata operators are sep-

arated into different partitions for parallel execution. Although this method supports

stateful operations, it would be a nasty option for a distributed implementation; It would

create shuffle dependencies among the cores, causing memory misuse.

Akdere et al. [6] present a complex event detection system in monitoring environment

with many distributed sources. This approach uses several operators to combine primitive

events in order to produce complex ones. These operators show the temporal correlation

among the events. Thus, it creates an event detection graph for each separate complex

event, whose leaf nodes represent the primitive events and the non-leaf nodes represent

the participating operators. Additionally, using several techniques, it creates plans repre-

sented in FSMs. The goal is the best plan selection for the event detection which has the

lowest cost-latency ratio, in order to reduce the demand of a continuous data receiving

from sources.

Event Calculus [21] is not a query language per se, but it has been widely used to

model event querying and reasoning for CE recognition. More recently, variants of Event

Calculus has been proposed that extend it, in order to be better suited for CE recognition,

such as [31], [9], and [30]. RTEC [9] is an Event Calculus formalism for representing

and reasoning about events and their effects. It contains an indexing mechanism that

makes it robust to SDEs which are irrelevant to the CEs we want to recognize, as well as

a windowing mechanism to support real-time CE recognition.

2.4.2 Distributed and Data Streaming Systems

This section presents several distributed and streaming CE recognition approaches that

recognize CEs from heterogeneous streams of information, such as sensor data. The CE

definitions are described by patterns that isolate several primitive events and combine

their mutual relations. There are numerous distributed CE recognition systems that

represent CE definitions into automata. The parallel execution in such systems is mainly

based on the distribution of either the automata instances or the automata states, and

not on the distribution of the input data.

In the previous section we described implementations whose CE recognition is based on

specific cost models [6]. In various works, such as [34] and [33], the aforementioned

distribution is based on such cost models. These models are mostly used to create more

efficient queries which represent the CE definitions, and to reduce the recognition latency.

NEXT CEP [34] is a distributed CE recognition system that translates event query patterns

into automata, in order to distribute them among a cluster of machines. NEXT CEP aims

to achieve a more efficient CE recognition and an optimal query distribution. It uses

query optimizations, such as query rewriting, and a particular cost model.

34 Background

Similar approaches, such as Ahmad et al. [5], propose greedy deployment plans to

reduce network bandwidth and communication. Schilling et al. [33] manage the rule

distribution by creating a graph connecting the nodes of the processing network. Using

a placement algorithm, they decrease the network usage through a cost function.

DistCED [32] is another distributed system that translates queries into automata. In this

work, they constructed a specific CE language to represent the queries. Although it does

not contain a cost model method, it includes a detection policy awaiting the input events

to become stable before feeding them to the system.

RIP [10] is a scalable pattern matching system over event streams. The queries that

represent the CE definitions follow the MATCH-RECOGNIZE model. It distributes the input

events which belong to individual run instances of a query’s FSM to different processing

units. The run instances are distributed in a round-robin scheduling, since the queries

are independent to each other.

Borealis [3] is a streaming system representing event patterns into queries. It contains

query optimizers using performance statistics. The queries are distributed on a set of

Aurora [2] engines for parallel CE recognition. Similarly to Akdere et al. [6] approach,

ZStream [27] uses tree-based plans to model pattern matching queries. Multiple plans

with different costs are assigned to each pattern.

Despite of the efficient and accurate CE recognition of the aforementioned approaches,

there is a lack of load balancing on the distribution and fault-tolerance. These features

are available in our work due to the participation of Apache Spark and the partitioning

method used. Medusa [13] uses price-based contracts for dynamic load-balancing in a

cluster deployment.

In streaming systems, there is always the possibility that the input events are received

with a variable delay from the processing system. Our implementation deals with such

case by creating a suitable window mechanism. Mutschler et al. [29] created a dis-

tributed approach based on the data sensors. Every node in the network runs the same

event processing middleware. A buffering middleware also exists for temporal sorting

of the input events, in order to deal with delay issues. The buffer feeds the system with

data, which is separated into batches, periodically. It is a fault-tolerant system, since it

contains a state recovery with a stream replay method.

SASE+ [4] contains shared match buffer to share partial matches across different FSM

runs efficiently. It would benefit from a similar to our implementation’s distribution,

since it does not use shared memory among the cores.

Recent CE recognition systems make use of frameworks which are based on the MapRe-

duce model for the distribution implementation. Chawda et al. [11] designed a dis-

tributed system using the Apache Hadoop MapReduce model, in order to create joins

among the query intervals. The queries are mostly based on temporal correlations

Background 35

among the events comparing to our approach that extends Event Calculus beyond inter-

val correlations. It uses Allen’s algebra to define the operations of the intervals, such as

partitioning, projecting, splitting and replicating.

Numerous CE recognition systems uses Apache Spark for their distribution. The design

of most of these systems is based on lambda architecture, that allows to handle massive

quantities of data, combining different frameworks. KillrWeather [26] is an in-progress

distributed system that integrates Apache Spark, Apache Cassandra, and Apache Kafka

for fast streaming computations. It receives time series data as input, in order to recog-

nize CEs regarding to weather information, such as temperature, precipitations, etc.

Stratio Streaming [28] is distributed CE processing engine using Apache Spark Streaming.

It allows the creation of streams and queries on the fly, sending large data streams,

and building windows over the data. The queries are represented in a simple SQL-

like language. It runs several instances of the open source Siddhi [36] CEP engine for

parallel CE recognition, and uses Apache Kafka for a real-time messaging bus to this

end. It contains a convenient API which helps the developer to work with live streams

straightaway.

3 | Distributed Run-Time Event Recogni-

tion

CE recognition systems which support data streams as input should be efficient enough

to recognize events in real-time, as well as to scale a large number of SDEs. On the other

hand, SDEs might not necessarily arrive at the exact time that they took place. There

may be a (variable) delay between the time that the CE recognition system received a

SDE and its occurrence time (for a further discussion see [35]). Nonetheless, SDEs could

be revised or fully retracted in the future. This a potential case, since a SDE may be

erroneous emitted from its source, or it was reported by mistake which is later realised.

The SDE revision and rejection is not performed by the CE recognition system, but by

the underlying SDE detection system.

In this section we present dRTEC, a distributed implementation of RTEC in Spark Stream-

ing using the Scala programming language. In addition to the optimisation techniques

of RTEC, such as windowing, dRTEC supports event recognition using a structured set

of operations for distributed reasoning. Figure 3.1 illustrates the basic components

of the engine using the activity recognition application. dRTEC accepts SDE streams

through MQTT1, a lightweight publish-subscribe messaging transport. Spark Streaming

separates the incoming SDE stream into individual sets, called “micro-batches”. The win-

dow in dRTEC may contain one or more micro-batches. Each micro-batch may contain

events, expressed by happensAt, and fluents, expressed by holdsFor (durative) and hold-

sAt (instantaneous). For example, according to the SDEs in the first micro-batch shown

in Figure 3.1, the entity id0 started being tracked–“appeared”–at time/video frame 80.

Moreover, the entity id1 was running continuously in the interval (90,100).

dRTEC performs various types of processing on the incoming SDE streams. These are

presented in the sections that follow. The incoming SDEs are parsed and indexed for data

partitioning. Then, various event recognition tasks are distributed in different processing

threads. These tasks include fluent processing and window mechanism. Efficient and

fast event recognition is achieved through the distribution of the input SDEs amongst the
1http://mqtt.org/

http://mqtt.org/

38 Distributed Run-Time Event Recognition

Input Stream

Dynamic Grounding &
Indexing

Key Values

id
0

id
1

happensAt,appear

holdsFor,inactive,true

holdsFor,running,true
holdsFor,abrupt,true

[80-81)

[100-110)

[90-100)

[130-145)

Pairing
Key Values

(i
d

0
,i

d
1

)

holdsFor,running,true
holdsFor,abrupt,true

id
0

id
1

happensAt,appear
holdsFor,inactive,true

[80-81)
[100-110)

[90-100)
[130-145)

(i
d

1
,i

d
0

)

Output Stream
Micro-Batch M

holdsFor,meeting,id0;id1,true,
83;90
holdsFor,moving,id1;id0,true,
90;120

id
0

id
1

Processing Thread 1
Key Values

(i
d

0
,i

d
1

)

holdsFor,running,true
holdsFor,abrupt,true

id
0

id
1

happensAt,appear

holdsFor,inactive,true

[80-81)

[100-110)

[90-100)

[130-145)

Relational Processing

Micro-Batch M+1
holdsFor,abrupt,id1,true,
130;145
holdsFor,inactive,id0,true,
100;110

Non Relational
Processing

Processing Thread 1
Key Values

id
0 happensAt,appear

holdsFor,inactive,true

[80-81)

[100-110)

Micro-Batch M
happensAt,appear,id0,80
holdsFor,running,id1,true,
90;100

Non Relational
Processing

Processing Thread N
Key Values

id
1 holdsFor,running,true

holdsFor,abrupt,true

[90-100)

[130-145)

holdsFor,running,true
holdsFor,abrupt,true

[90-100)
[130-145)

happensAt,appear
holdsFor,inactive,true

[80-81)
[100-110)

Micro-Batch M+1
holdsFor,meeting,id0;id1,true,
120;145
holdsFor,fighting,id1;id0,true,
130;140

Processing Thread N
Key Values

Relational Processing

(i
d

1
,i

d
0

) holdsFor,running,true
holdsFor,abrupt,true

id
0

id
1

happensAt,appear

holdsFor,inactive,true

[80-81)

[100-110)

[90-100)

[130-145)

Reasoning

Statically Determined
Fluent Processing

Simple Fluent
Processing

Window Mechanism

Figure 3.1: dRTEC processing.

processing threads. The CEs that are recognised using the incoming SDEs are streamed

out through MQTT (see “Output Stream” in Figure 3.1).

3.1 Dynamic Grounding & Indexing

At each recognition time Qi, RTEC grounds the CE patterns using a set of constants for the

variables appearing in the patterns, except the variables related to time. Moreover, RTEC

operates under the assumption that the set of constants is “static”, in the sense that it does

not change over time, and known in advance. For instance, in the maritime surveillance

domain, RTEC operates under the assumption that all vessel ids are known beforehand.

Similarly, in activity recognition all ids of the tracked entities are assumed to be known.

For many application domains, this assumption is unrealistic. More importantly, there

are (many) query times in which RTEC attempts to recognise CEs for (many) constants,

for which no information exists in the current window.

To address this issue, dRTEC supports “dynamic grounding”. At each query time Qi,

dRTEC scans the SDEs of the current window ω to construct the list of entities for which

CE recognition should be performed. Then, it appends to this list all entities that have

CE intervals overlapping Qi−ω. Such intervals may be extended or (partially) retracted,

given the information that is available in the current window. In this manner, dRTEC

avoids unnecessary calculations by restricting attention to entities for which a CE may

be recognised at the current query time.

Indexing is used to convert the input SDEs into a key-value pair format for data parti-

tioning. The partitions are distributed among the available cores/processing threads of

the underlying hardware for parallel processing. Each SDE is indexed according to its

Distributed Run-Time Event Recognition 39

entity. In activity recognition, for example, the index concerns the ids of the tracked en-

tities (see “Dynamic Grounding & Indexing” in Figure 3.1). For each window, the SDEs

concerning the same entity are grouped together and subsequently sent to the same

processing thread. If the number of SDE entities is greater than the available processing

threads, the processing threads will contain more than one SDE entity.

3.2 Non-Relational Processing

Indexing is followed by non-relational fluent processing performed at each thread in

parallel (see the “Non Relational Processing” boxes of Figure 3.1). Non-relational pro-

cessing refers to the computation of the maximal intervals of fluents involving a single

entity. (In the absence of such fluents, dRTEC proceeds directly to “pairing”.) In activity

recognition, for example, we want to determine whether a tracked entity is a human or

an object (see the rules presented in Section 2.2). An entity is said to be a person if it has

exhibited one of the “running”, “active”, “walking” or “abrupt movement” short-term

behaviours since it started being tracked. In other words, the classification of an entity as

a person or an object depends only the short-term activities of that entity. The distinction

between non-relational and relational processing allows us to trivially parallelise a sig-

nificant part of the CE recognition process (non-relational CE patterns). The processing

threads are independent from one another, avoiding data transfers among them that are

very costly.

Non-relational, as well as relational processing, concerns both statically determined and

simple fluent processing, and windowing. These tasks are discussed in Section 3.4.

3.3 Pairing & Relational Processing

Relational processing concerns CE patterns that involve two or more entities. In activity

recognition, we want to recognise whether two people are moving together or fighting.

Prior to relational CE recognition, dRTEC produces all possible relations that may arise

from the list of entities computed by the dynamic grounding process–see “Pairing” in

Figure 3.1. Then, these relations are distributed to all available processing threads

for parallel CE recognition. Note that, in contrast to non-relational processing, the

information available to each processing thread is not disjoint. Assume, for example,

that the pair (id0, id1) is processed by processing thread 1, while the pair (id1, id2)

is processed by thread 2. Then both threads will have the output of non-relational

processing concerning id1 (e.g. the list of maximal intervals during which id1 is said to

be a person). However, there is no replication of computation, as the output of non-

relational processing is cached, and the sets of relations of the processing threads are

40 Distributed Run-Time Event Recognition

disjoint. Furthermore, similar to non-relational processing, each processing thread has

all the necessary information, thus avoiding costly data transfers.

3.4 Reasoning

As mentioned earlier, both relational and non-relational processing concern the compu-

tation of the list of maximal intervals of fluents. For both types of fluent, simple and

statically determined, dRTEC follows the reasoning algorithms of RTEC.

In the windowing mechanism, dRTEC performs run-time recognition by computing and

storing the maximal intervals of the fluents and time-points in which events occur. The

SDEs and recognized CEs that fall within the window are saved along with their intervals

in a Spark Streaming “state” instance. For example, in the case of a simple fluent CEs ,

dRTEC checks, at each query time Qi, if there is a maximal interval of CEs that overlaps

Qi−ω. If there is such an interval then it will be discarded, while its initiating point will

be kept. Then, dRTEC computes the initiating points of CEs in (Qi−ω,Qi], and appends

them to initiating point (if any) prior to Qi−ω. If the list of initiating points is empty

then the empty list of intervals is returned. Otherwise, dRTEC computes the terminating

points of CEs in (Qi−ω,Qi], and pairs adjacent initiating and terminating points, as

discussed in Section 2.3, to produce the maximal intervals.

Spark Streaming includes its own windowing mechanism. This mechanism is very ef-

ficient but lacks of some features that are important for event recognition, such as the

determination of the window boundaries. dRTEC windows are temporally defined in

order for the “forget” mechanism to take place (retraction of SDE and CE). Spark

Streaming does not support a relation between the actual real-time windows and the

SDE occurrence times. Thus, an extension to Spark Streaming windowing mechanism

was necessary, in order to be functional in our implementation.

Definition 3.1 Initiation of leaving object in dRTEC.
I1← GETINTERVAL(occurrences, Obj , Fluent(happensAt , appear))
I2← GETINTERVAL(occurrences, Obj , Fluent(holdsFor , inactive, true))
I3← GETINTERVAL(occurrences, (P ,Obj), Fluent(holdsFor , close, true))
I4← GETINTERVAL(occurrences, P , Fluent(holdsFor , person, true))
I ← I1.INTERSECT_ALL(I2).INTERSECT_ALL(I3).INTERSECT_ALL(I4)
AMALGAMATE(occurrences, (P,Obj), Fluent(initiatedAt, leaving_object, true), I)

Definition 3.2 Termination of leaving object in dRTEC.
I ← GETINTERVAL(occurrences, Obj , Fluent(happensAt , disappear))
AMALGAMATE(occurrences, (P,Obj), Fluent(terminatedAt, leaving_object, true), I)

Definitions 3.1 and 3.2 show, respectively, the initiating and terminating conditions of

the “leaving object” CE that were presented in Section 2.2.1 in the language of RTEC.

Recall that “leaving object” is a simple fluent.

Distributed Run-Time Event Recognition 41

dRTEC uses exclusively intervals in its patterns. The occurrence of an event, such as

“appear”, is represented by an instantaneous interval. This way, in addition to stati-

cally determined fluents, the interval manipulation constructs can be used for specifying

simple fluents. In dRTEC, these constructs are supported by “interval instances” and

described as follows:

• interval.UNION_ALL(list): produces the union of interval and the list of maximal

intervals list

• interval.INTERSECT_ALL(list): produces the intersection of interval and the list of

maximal intervals list

• interval.RELATIVE_COMPLEMENT_ALL(list): produces the relative complement of

interval and the list of maximal intervals list

• interval.COMPLEMENT_ALL(): produces the complement of interval and the cur-

rent window interval

Algorithm 3.3 GETINTERVAL function.
1: function GETINTERVAL(occurrences, entities, fluent)
2: if (entities, fluent) ∈ occurrences then
3: intervals← occurrences.GET(entities, fluent)
4: return intervals

5: else
6: FLUENTDEFINITION ← definitions.GET(fluent)
7: FLUENTDEFINITION(occurences, entities, fluent)
8: intervals← occurrences.GET(entities, fluent)
9: return intervals

10: end if
11: end function

The GETINTERVAL function (Algorithm 3.3) retrieves the list of maximal intervals of

a fluent. GETINTERVAL has three parameters: (a) the collection “occurrences”, i.e. a

map pointing to the list of maximal intervals of a fluent, (b) the list of entities of the

fluent, and (c) the fluent object. It checks the collection “occurrences” whether the pair

(entities, fluent) is already recognized and returns its list of maximal intervals (lines

2-4). If it is not recognized, it retrieves the fluent definition from the list of definitions,

and recognizes the fluent (lines 5-9).

42 Distributed Run-Time Event Recognition

Algorithm 3.4 AMALGAMATE function.
1: function AMALGAMATE(occurrences, entities, fluent, newInterval)
2: if (entities, fluent) ∈ occurrences then
3: intervals← occurrences.GET(entities, fluent)
4: ASSERT(occurrences, ((entities, fluent)⇐ intervals.UNION_ALL(newInterval)))
5: else
6: ASSERT(occurrences, ((entities, fluent)⇐ newInterval))
7: end if
8: end function

The AMALGAMATE function (Algorithm 3.4) is responsible for concatenating a newly

calculated interval for a specific pair (entities, fluent) to its list of maximal intervals.

AMALGAMATE has four parameters: (a) the collection “occurrences”, (b) the list of en-

tities of the fluent, (c) the fluent object, and (d) the newly calculated interval. If the

collection “occurrences” already contains the pair, newInterval is concatenated with the

previous list of intervals, using the interval manipulation function UNION_ALL (lines 2-4).

Otherwise, newInterval is inserted in “occurrences” along with the pair.

We may mention that CE recognition in dRTEC is hierarchical. A CE definition of a

higher level uses CE definitions of lower levels, as well as SDEs. Recognition takes place

top-down until it reaches CE definition whose recognition is based only on input SDEs

(bottom level).

Definition 3.5 Simple fluent leaving object in dRTEC.
I1← GETINTERVAL(occurrences, (P ,Obj), Fluent(initiatedAt , leaving_object , true))
I2← GETINTERVAL(occurrences, (P ,Obj), Fluent(terminatedAt , leaving_object , true))
I ← MAKEINTERVALSFROMPOINTS(I1, I2)
AMALGAMATE(occurrences, (P,Obj), Fluent(holdsFor, leaving_object, true), I)

Algorithm 3.6 MAKEINTERVALSFROMPOINTS function.
1: function MAKEINTERVALSFROMPOINTS(initPoints, termPoints)
2: intervals← []

3: timepoints← SORT(initPoints ∪ termPoints)
4: tempInit← −1
5: for all point ∈ timepoints do
6: if point ∈ initPoints and tempInit == −1 then
7: tempInit← point

8: else if point ∈ termPoints and tempInit 6= −1 then
9: ASSERT(intervals, (tempInit, point))

10: tempInit← −1
11: end if
12: end for
13: if tempInitiation 6= −1 then
14: ASSERT(intervals, (tempInit,∞))
15: end if
16: end function

Distributed Run-Time Event Recognition 43

The processing of simple fluents is based on the functions described above. Additionally

for the simple fluents, we need to calculate their lists of maximal intervals based on

their initiation and termination time-points (see Definition 3.5). This is achieved using

the MAKEINTERVALSFROMPOINTS function (Algorithm 3.6). For each initiation point,

MAKEINTERVALSFROMPOINTS searches for the first termination time-point that follows it.

As soon as it is found, a new maximal interval is inserted in the fluent’s list (lines 5-12).

If there is an initiation time-point left without any termination, then an open interval is

added to the fluent’s list (lines 13-15).

Statically determined fluents in dRTEC are specified in a similar manner. Definition 3.7,

for example, shows the specification of “greeting” (see rule 2.3 for the RTEC representa-

tion).

Definition 3.7 Statically determined fluent greeting in dRTEC.
I1← GETINTERVAL(occurrences, (P1 ,P2), Fluent(holdsFor , close, true))
I2← GETINTERVAL(occurrences, P1 , Fluent(holdsFor , active, true))
I3← GETINTERVAL(occurrences, P1 , Fluent(holdsFor , inactive, true))
I4← GETINTERVAL(occurrences, P1 , Fluent(holdsFor , person, true))
I5← I3.INTERSECT_ALL(I4)
I6← I2.UNION_ALL(I5)
I7← GETINTERVAL(occurrences, P2 , Fluent(holdsFor , person, true))
I8← GETINTERVAL(occurrences, P2 , Fluent(holdsFor , running , true))
I9← GETINTERVAL(occurrences, P2 , Fluent(holdsFor , abrupt , true))
I10← I7.RELATIVE_COMPLEMENT_ALL(I8.UNION_ALL(I9))
I ← I1.INTERSECT_ALL(I6).INTERSECT_ALL(I10)
AMALGAMATE(occurrences, (P,Obj), Fluent(holdsFor, greeting, true), I)

4 | Experimental Results

dRTEC has been evaluated in the context of two stream processing systems. In the system

of the SYNAISTHISI project, dRTEC is the long-term activity recognition module operat-

ing on short-term activities detected on video frames. In the datACRON project, dRTEC

recognises suspicious and illegal vessel activities given a compressed vessel position

stream produced by a trajectory processing module. The empirical analysis presented be-

low was performed on a computer with dual Intel Xeon E5-2630 processors, amounting

to 24 processing threads, and 256GB RAM, running Ubuntu 14.04 LTS 64-Bit with Linux

kernel 3.13 and Java OpenJDK 1.8. dRTEC is implemented in Apache Spark Streaming

1.5.2 using Scala 2.11.7. The source code, including the CE patterns for both application

domains, is publicly available1. dRTEC’s warm up period is excluded from the results

presented in this section. In all cases, dRTEC recognises the same CEs as RTEC.

4.1 Activity Recognition

The SYNAISTHISI project aims at developing customisable, distributed, low-cost, and

automated security and surveillance solutions. To evaluate dRTEC, we used the CAVIAR

benchmark dataset2 which consists of 28 surveillance videos of a public space. The

CAVIAR videos show actors which are instructed to carry out several scenarios. Each

video has been manually annotated by the CAVIAR team to provide the ground truth

for activities which take place on individual video frames. These short-term activities

are: entering and exiting the surveillance area, walking, running, moving abruptly, being

active and being inactive. We view these activities as SDEs. The CAVIAR team has also

annotated the videos with long-term activities: a person leaving an object unattended,

people having a meeting, moving together, and fighting. These are the CEs that we want

to recognise.

We compare dRTEC results, with the one produced by RTEC, on the discrepancies in the

recognised CE time-points. dRTEC has an upper limit that begins to be 100% accurate

(window size and slide duration equal to 1,000 ms). Nevertheless, dRTEC is less accurate
1https://github.com/blackeye42/dRTEC
2http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1

https://github.com/blackeye42/dRTEC
http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1

46 Experimental Results

0 20 40 60 80 100 120
0

100

200

300

400

Window size (sec)

A
v
g

 #
 o

f
S

D
E

s
 (

th
o

u
s
a
n

d
s
)

0 20 40 60 80 100 120
0

100

200

300

A
v
g

 #
 o

f
C

E
s

Avg # of SDEs

Avg # of CEs

(a) Number of SDEs and CEs.

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

Window size (sec)

A
v

g
.

re
c

o
g

n
it

io
n

 t
im

e
 (

s
e

c
)

dRTEC CE Recognition

RTEC CE Recognition

(b) dRTEC vs RTEC: 24 processing threads.

0 5 10 15 20 25
0

5

10

15

of processing threads

A
v
g

.
re

c
o

g
n

it
io

n
 t

im
e
 (

s
e
c
)

(c) dRTEC vs RTEC: 110 sec window.

Figure 4.1: Activity recognition with 10 tracked entities.

in the individual executions; there is a big data loss, as well as the CEs which are

recognised are rarely correct. The first hypothesis would be that the CAVIAR dataset has

a lot of SDEs per window as input, and/or produces a large amount of CEs as output.

However we measured the average number of CEs per window which is less than 250

in a window size of 110 sec. The reason which makes dRTEC very inaccurate is that

the CEs are correlated to the pairs of the tracked entities. The CAVIAR dataset contains

occurrences for 10 entities; that is interpreted to 90 pairs of entities after the pairing

operation is done. The procedure for 90 pairs is very slow for such a small number of

SDEs as input, making the precise of data receiving infeasible.

As we mentioned above, the CAVIAR dataset includes 10 tracked entities, i.e. 90 entity

pairs (most CEs in this application concern a pair of entities), while the frame rate

is 40 milliseconds (ms). On average, 179 SDEs are detected per second (sec). To

stress test dRTEC, we constructed a larger dataset. Instead of reporting SDEs every 40

ms, the enlarged dataset provides data in every ms. The SDEs of video frame/time k

of the original dataset are copied 39 times for each subsequent ms after time k. The

resulting dataset has on average of 3,474 SDEs per sec. Figures 4.1(a)–4.1(c) show

the experimental results on this dataset. We varied the window size from 10 sec to 110

sec. The slide step Qi−Qi−1 was set to be equal to the size of the window. Figure 4.1(a)

shows the average number of SDEs per window size. The 10 sec window corresponds to

approximately 36K SDEs while the 110 sec one corresponds to 365K SDEs. Figure 4.1(a)

also shows the number of recognised CEs; these range from 80 to 230. We measured

the window state size in memory. It increases as the window size gets larger, but after a

given point it remains stable around 300 MB.

Experimental Results 47

0 20 40 60 80 100 120
0

200

400

600

800

1000

Window size (sec)

A
v

g
 #

 o
f

S
D

E
s

 (
th

o
u

s
a

n
d

s
)

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

A
v

g
 #

 o
f

C
E

s
 (

th
o

u
s

a
n

d
s

)Avg # of SDEs

Avg # of CEs

(a) Number of SDEs and CEs.

0 20 40 60 80 100 120
0

2

4

6

8

Window size (sec)

A
v

g
.

re
c

o
g

n
it

io
n

 t
im

e
 (

s
e

c
)

dRTEC CE Recognition

RTEC CE Recognition

(b) dRTEC vs RTEC: 24 processing threads.

0 5 10 15 20 25
0

20

40

60

of processing threads

A
v
g

.
re

c
o

g
n

it
io

n
 t

im
e
 (

s
e
c
)

(c) dRTEC vs RTEC: 110 sec window.

Figure 4.2: Activity recognition with 20 tracked entities.

The average CE recognition times per window (in CPU seconds) for both dRTEC and

RTEC are shown in Figure 4.1(b). dRTEC made use of all 24 processing threads. To

allow for a fair comparison, we invoked 24 instances of RTEC, each using in parallel

one processing thread of the underlying hardware. Every RTEC instance was set to

perform CE recognition for at most 4 entity pairs, and was provided only with the SDEs

concerning the entities of these pairs. For most window sizes, dRTEC outperforms RTEC,

but only slightly.

Figure 4.1(c) shows the effect of increasing the number of available processing threads

on the performance of dRTEC and RTEC. We varied the number of available threads

from 2 to 24; the window size was set to 110 sec. RTEC achieves its best performance

early–the increase of processing threads affects it only slightly. In contrast, dRTEC

requires all 24 processing threads to match (slightly outperform) RTEC. The cost of data

partitioning through dynamic grounding and indexing in dRTEC pays off only in the case

of 24 threads.

To stress test further dRTEC, we constructed an even larger dataset by adding a copy of

the previous dataset with new identifiers. Thus, the resulting dataset contains a total of

20 tracked entities and 380 entity pairs, while approximately 7K SDEs take place per sec.

Figures 4.2(a)–4.2(c) show the experimental results. We varied again the window size

from 10 sec to 110 sec. In this case, however, the SDEs range from 72K to 730K (see

Figure 4.2(a)). The number of recognised CEs is also much higher; it ranges from 390

to 1100. We also measured the window state size in memory. It has the same behaviour

with the one on the previous dataset; after a given point, it remains stable around 700

48 Experimental Results

MB. The larger window state size is expected, since the number of entities in this dataset

is twice larger than the previous one, as well as the number of SDEs per sec.

Figure 4.2(b) shows the average CE recognition times per window when all 24 processing

threads are available. Each RTEC instance was set to perform CE recognition for at most

16 entity pairs, having available only the SDEs concerning the entities of these pairs.

Both dRTEC and RTEC remain real-time, even in the presence of 730K SDE windows. In

this set of experiments, dRTEC outperforms RTEC in all window sizes, and the difference

is more significant. This is an indication that dRTEC scales better to larger datasets.

Figure 4.2(c) shows the effect of increasing the processing threads. We observe a similar

pattern to that of the previous experiments (see Figure 4.1(c)).

4.2 Maritime Surveillance

The datACRON project targets at introducing novel methods to detect threats and ab-

normal activity of very large numbers of moving entities in large geographic areas. In

the stream processing system of datACRON, dRTEC serves as the component recognis-

ing various types of suspicious and illegal vessel activity. We conducted experiments

against a real position stream from the Automated Identification System3, spanning from

1 June 2009 to 31 August 2009, for 6,425 vessels sailing through the Aegean, the Ionian,

and part of the Mediterranean Sea4. The trajectory detection module of datACRON

compresses the vessel position stream to a stream of critical movement events of the

following types: “low speed”, “speed change”, “gap”, indicating communication gaps,

“turn”, and “stopped”, indicating that a vessel has stopped in the open sea. Each such

event includes the coordinates, speed and heading of the vessel at the time of critical

event detection. This way, the SDE stream includes 15,884,253 events. Given this SDE

stream, we recognise the following CEs: illegal shipping, suspicious vessel delay and

vessel pursuit.

We varied the window size from 1 hour, including approximately 26K SDEs, to 24 hours,

including 285K SDEs (see Figure 4.3(a)). The slide step Qi−Qi−1 is always equal to the

window size. The number of recognised CEs ranges from 5K to 86K. In other words, the

recognised CEs are almost two orders of magnitude more than the CEs in the activity

recognition application. As the window size increases, the capacity of memory used for

the window state gets larger, since the number of appeared vessels becomes bigger in a

larger window. There is a linear relation between the windows size and the size of the

window state in memory.
3http://www.imo.org/OurWork/Safety/Navigation/Pages/AIS.aspx
4This anonymised dataset (for privacy, each vessel id has been replaced by a sequence number) is publicly

available at http://chorochronos.datastories.org/?q=content/imis-3months

http://www.imo.org/OurWork/Safety/Navigation/Pages/AIS.aspx
http://chorochronos.datastories.org/?q=content/imis-3months

Experimental Results 49

0 5 10 15 20 25
0

200

400

Window size (hours)

A
v

g
 #

 o
f

S
D

E
s

 (
th

o
u

s
a

n
d

s
)

0 5 10 15 20 25
0

50

100

A
v

g
 #

 o
f

C
E

s
 (

th
o

u
s

a
n

d
s

)Avg # of SDEs

Avg # of CEs

(a) Number of SDEs and CEs.

0 5 10 15 20 25
0

5

10

Window size (hours)

A
v
g

.
re

c
o

g
n

it
io

n
 t

im
e
 (

s
e
c
)

dRTEC CE Recognition

RTEC CE Recognition

(b) dRTEC vs RTEC: 24 processing threads.

0 5 10 15 20 25
0

10

20

30

of processing threads

A
v
g

.
re

c
o

g
n

it
io

n
 t

im
e
 (

s
e
c
)

(c) dRTEC vs RTEC: 24 hour window.

Figure 4.3: Event recognition for maritime surveillance.

Figure 4.3(b) shows the average CE recognition times per window when all processing

threads are used. Similar to the previous experiments, each RTEC instance was given only

the SDEs of the vessels for which it performs CE recognition. Although RTEC matches

the performance of dRTEC for small window sizes (1 hour and 2 hour windows), dRTEC

scales much better to larger window sizes. In other words, dRTEC seems to perform

much better in the presence of a large number of CEs. Figure 4.3(c) shows the effect

of increasing the processing threads. Unlike the activity recognition application, dRTEC

outperforms RTEC even when just a few processing threads are available. Similar to

the activity recognition domain, dRTEC makes better use of the increasing number of

threads.

5 | Conclusions and Future Work

In this thesis, we focused on implementing a distributed algorithm for event recogni-

tion from streaming data. In Section 2.1 we presented Apache Spark – the distributed

streaming framework we used for implementing our approach – and we provided in-

formation for several similar platforms. Furthermore in Section 2.2, we illustrated the

Event Calculus dialect – the logic programming formalism we used for the CE definitions

representation. In Section 2.3, we illustrated an example of the window mechanism, in

order to make it more comprehensive to the reader. This mechanism faces the problem

with the delayed received SDEs. There are numerous CE recognition engines in the re-

cent literature, especially in the field of distributed and data streaming systems. Section

2.4 provides details about these approaches and states the issues which are left open. To

address some issues in this thesis, we developed a distributed streaming system using an

Event Calculus dialect for the event description.

5.1 Conclusions

In Chapter 3 we described in details our approach along with the novelties which are

introduced in the current literature. We analysed the issues that our work deals with and

the methods that are used to handle these issues. Finally, we presented our apporach,

dRTEC – a distributed Event Calculus for Run-Time Reasoning. We stated its design and

architecture, the individual reasoning and partitioning methods that consist it and how

they operate.

In Chapter 4 we evaluated dRTEC on two real-world applications. We compared dRTEC

with the previous Prolog implementation in the field of velocity and accuracy. Based on

the evaluation, we conclude to the following observations:

• dRTEC is a stable and accurate CE recognition system, as soon as there is sufficient

time for a window to be established.

• It is a real-time engine regardless the size of the dataset.

52 Conclusion and Future Work

• It shows the benefits of a distributed system in large real-word datasets (thousands

of SDEs and CEs) comparing to similar non-distributed systems.

• It manages memory efficiently without exceeding its limits and creating bottle-

necks.

• dRTEC leverages the available resources of a computer system for fast and efficient

CE recognition.

5.2 Future Work

In this section, we describe several directions which can lead to a future extension of our

work.

Indexing Optimization

Our work make use of an indexing operation for separating the input data into partitions,

and distributing them into a cluster of cores. This indexing operation is based on the

input event entity. In most applications, the CE definitions dictate the existence of a

relational model amongst the event entities, implemented through the pairing operation.

This model is not the most appropriate one for a big number of entities. It creates a

large set of partition keys which cannot be executed in parallel, even in a computer

with high amount of available resources. An alternative indexing mechanism would

be useful to avoid the relational model of the event entities. However, this mechanism

should still have the ability to create partitions which are independent to each other, in

order to avoid the shuffle dependencies among the partitions. In any other case, the CE

recognition would be slow and inefficient.

Event Calculus Prolog Parsing

As we mentioned in previous sections, in our approach we use an Event Calculus dialect

for the CE definitions. Event Calculus is a logic programming formalism and is more

convenient for the developer to be implemented in a logic programming language, such

as Prolog. In our work, we present an Event Calculus representation which is less

comprehensive to the developer. The developer should also have an extensive knowledge

in the object-oriented programming. Thus, an Event Calculus parser would be useful,

converting the Prolog representation into dRTEC representation automatically, without

the developer’s participation.

Uncertainty

Uncertainty in the CE recognition may be caused by various reasons, such as SDEs

that contain noise, erroneous emitted SDEs from the source, incomplete input streams,

inconsistent SDE or CE annotation, etc. This issue may lead to inaccurate CE detection,

Conclusion and Future Work 53

compromising the performance of a system that contains a CE recognition module. To

deal with this issue, we could port dRTEC into probabilistic frameworks.

Bibliography

[1] CIDR 2007, Third Biennial Conference on Innovative Data Systems Research, Asilomar,
CA, USA, January 7-10, 2007, Online Proceedings, 2007. www.cidrdb.org.

[2] Daniel J. Abadi, Don Carney, Ugur Çetintemel, Mitch Cherniack, Christian Convey,

Sangdon Lee, Michael Stonebraker, Nesime Tatbul, and Stan Zdonik. Aurora: A

new model and architecture for data stream management. The VLDB Journal, 12

(2):120–139, August 2003. ISSN 1066-8888. doi: 10.1007/s00778-003-0095-z.

URL http://dx.doi.org/10.1007/s00778-003-0095-z.

[3] Daniel J Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Cetintemel, Mitch Cher-

niack, Jeong-Hyon Hwang, Wolfgang Lindner, Anurag S Maskey, Alexander Rasin,

Esther Ryvkina, Nesime Tatbul, Ying Xing, and Stan Zdonik. The Design of the

Borealis Stream Processing Engine. In Second Biennial Conference on Innovative
Data Systems Research (CIDR 2005), Asilomar, CA, January 2005.

[4] Jagrati Agrawal, Yanlei Diao, Daniel Gyllstrom, and Neil Immerman. Efficient

pattern matching over event streams. In Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’08, pages 147–160,

New York, NY, USA, 2008. ACM. ISBN 978-1-60558-102-6. doi: 10.1145/

1376616.1376634. URL http://doi.acm.org/10.1145/1376616.1376634.

[5] Yanif Ahmad and Uğur Çetintemel. Network-aware query processing for stream-

based applications. In Proceedings of the Thirtieth International Conference on
Very Large Data Bases - Volume 30, VLDB ’04, pages 456–467. VLDB Endowment,

2004. ISBN 0-12-088469-0. URL http://dl.acm.org/citation.cfm?id=1316689.

1316730.

[6] Mert Akdere, Uǧur Çetintemel, and Nesime Tatbul. Plan-based complex event

detection across distributed sources. Proc. VLDB Endow., 1(1):66–77, August

2008. ISSN 2150-8097. doi: 10.14778/1453856.1453869. URL http://dx.doi.

org/10.14778/1453856.1453869.

[7] Darko Anicic, Sebastian Rudolph, Paul Fodor, and Nenad Stojanovic. Real-time

complex event recognition and reasoning-a logic programming approach. Applied

http://dx.doi.org/10.1007/s00778-003-0095-z
http://doi.acm.org/10.1145/1376616.1376634
http://dl.acm.org/citation.cfm?id=1316689.1316730
http://dl.acm.org/citation.cfm?id=1316689.1316730
http://dx.doi.org/10.14778/1453856.1453869
http://dx.doi.org/10.14778/1453856.1453869

56 Bibliography

Artificial Intelligence, 26(1-2):6–57, February 2012. doi: 10.1080/08839514.2012.

636616.

[8] Arvind Arasu, Shivnath Babu, and Jennifer Widom. The cql continuous query

language: Semantic foundations and query execution. The VLDB Journal, 15(2):

121–142, June 2006. ISSN 1066-8888. doi: 10.1007/s00778-004-0147-z. URL

http://dx.doi.org/10.1007/s00778-004-0147-z.

[9] A. Artikis, M. Sergot, and G. Paliouras. An event calculus for event recognition.

Knowledge and Data Engineering, IEEE Transactions on, 27(4):895–908, April 2015.

ISSN 1041-4347. doi: 10.1109/TKDE.2014.2356476.

[10] Cagri Balkesen, Nihal Dindar, Matthias Wetter, and Nesime Tatbul. Rip: Run-based

intra-query parallelism for scalable complex event processing. In Proceedings of
the 7th ACM International Conference on Distributed Event-based Systems, DEBS ’13,

pages 3–14, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-1758-0. doi: 10.

1145/2488222.2488257. URL http://doi.acm.org/10.1145/2488222.2488257.

[11] Bhupesh Chawda, Himanshu Gupta, Sumit Negi, Tanveer A. Faruquie, L. Venkata

Subramaniam, and Mukesh K. Mohania. Processing interval joins on map-reduce.

In Sihem Amer-Yahia, Vassilis Christophides, Anastasios Kementsietsidis, Minos N.

Garofalakis, Stratos Idreos, and Vincent Leroy, editors, Proceedings of the 17th
International Conference on Extending Database Technology, EDBT 2014, Athens,
Greece, March 24-28, 2014., pages 463–474. OpenProceedings.org, 2014. doi: 10.

5441/002/edbt.2014.42. URL http://dx.doi.org/10.5441/002/edbt.2014.42.

[12] Jianjun Chen, David J. DeWitt, Feng Tian, and Yuan Wang. Niagaracq: A scalable

continuous query system for internet databases. In Proceedings of the 2000 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’00, pages 379–

390, New York, NY, USA, 2000. ACM. ISBN 1-58113-217-4. doi: 10.1145/342009.

335432. URL http://doi.acm.org/10.1145/342009.335432.

[13] Mitch Cherniack, Hari Balakrishnan, Magdalena Balazinska, Donald Carney, Ugur

Cetintemel, Ying Xing, and Stan Zdonik. Scalable Distributed Stream Processing. In

CIDR 2003 - First Biennial Conference on Innovative Data Systems Research, Asilomar,

CA, January 2003.

[14] Gianpaolo Cugola and Alessandro Margara. Tesla: A formally defined event spec-

ification language. In Proceedings of the Fourth ACM International Conference
on Distributed Event-Based Systems, DEBS ’10, pages 50–61, New York, NY, USA,

2010. ACM. ISBN 978-1-60558-927-5. doi: 10.1145/1827418.1827427. URL

http://doi.acm.org/10.1145/1827418.1827427.

[15] Gianpaolo Cugola and Alessandro Margara. Processing flows of information: From

data stream to complex event processing. ACM Comput. Surv., 44(3):15:1–15:62,

http://dx.doi.org/10.1007/s00778-004-0147-z
http://doi.acm.org/10.1145/2488222.2488257
http://dx.doi.org/10.5441/002/edbt.2014.42
http://doi.acm.org/10.1145/342009.335432
http://doi.acm.org/10.1145/1827418.1827427

Bibliography 57

June 2012. ISSN 0360-0300. doi: 10.1145/2187671.2187677. URL http:

//doi.acm.org/10.1145/2187671.2187677.

[16] Alan J. Demers, Johannes Gehrke, Biswanath Panda, Mirek Riedewald, Varun

Sharma, and Walker M. White. Cayuga: A general purpose event monitoring

system. In CIDR 2007, Third Biennial Conference on Innovative Data Systems Re-
search, Asilomar, CA, USA, January 7-10, 2007, Online Proceedings DBL [1], pages

412–422. URL http://www.cidrdb.org/cidr2007/papers/cidr07p47.pdf.

[17] Christophe Dousson and Pierre Le Maigat. Chronicle Recognition Improvement Us-

ing Temporal Focusing and Hierarchization. In Proceedings of the 20th International
Joint Conference on Artificial Intelligence (IJCAI), pages 324–329, 2007.

[18] Daniel Gyllstrom, Eugene Wu, Hee-Jin Chae, Yanlei Diao, Patrick Stahlberg, and

Gordon Anderson. SASE: complex event processing over streams (demo). In CIDR
2007, Third Biennial Conference on Innovative Data Systems Research, Asilomar, CA,
USA, January 7-10, 2007, Online Proceedings DBL [1], pages 407–411. URL

http://www.cidrdb.org/cidr2007/papers/cidr07p46.pdf.

[19] Martin Hirzel. Partition and compose: parallel complex event processing. In

François Bry, Adrian Paschke, Patrick Th. Eugster, Christof Fetzer, and Andreas

Behrend, editors, Proceedings of the Sixth ACM International Conference on Dis-
tributed Event-Based Systems, DEBS 2012, Berlin, Germany, July 16-20, 2012, pages

191–200. ACM, 2012. ISBN 978-1-4503-1315-5. doi: 10.1145/2335484.2335506.

URL http://doi.acm.org/10.1145/2335484.2335506.

[20] Martin Hirzel. Partition and compose: Parallel complex event processing. In Pro-
ceedings of the 6th ACM International Conference on Distributed Event-Based Systems,
DEBS ’12, pages 191–200, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-

1315-5. doi: 10.1145/2335484.2335506. URL http://doi.acm.org/10.1145/

2335484.2335506.

[21] Robert Kowalski and Marek Sergot. A Logic-based Calculus of Events. New
Generation Computing, 4(1):67–95, 1986.

[22] Jürgen Krämer and Bernhard Seeger. Semantics and implementation of continuous

sliding window queries over data streams. ACM Trans. Database Syst., 34(1):

4:1–4:49, April 2009. ISSN 0362-5915. doi: 10.1145/1508857.1508861. URL

http://doi.acm.org/10.1145/1508857.1508861.

[23] Ming Li, Murali Mani, Elke A. Rundensteiner, and Tao Lin. Complex event pattern

detection over streams with interval-based temporal semantics. In Proceedings
of the 5th ACM International Conference on Distributed Event-based System, DEBS

’11, pages 291–302, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0423-8.

doi: 10.1145/2002259.2002297. URL http://doi.acm.org/10.1145/2002259.

2002297.

http://doi.acm.org/10.1145/2187671.2187677
http://doi.acm.org/10.1145/2187671.2187677
http://www.cidrdb.org/cidr2007/papers/cidr07p47.pdf
http://www.cidrdb.org/cidr2007/papers/cidr07p46.pdf
http://doi.acm.org/10.1145/2335484.2335506
http://doi.acm.org/10.1145/2335484.2335506
http://doi.acm.org/10.1145/2335484.2335506
http://doi.acm.org/10.1145/1508857.1508861
http://doi.acm.org/10.1145/2002259.2002297
http://doi.acm.org/10.1145/2002259.2002297

58 Bibliography

[24] Mo Liu, Ming Li, D. Golovnya, E.A. Rundensteiner, and K. Claypool. Sequence

pattern query processing over out-of-order event streams. In Data Engineering,
2009. ICDE ’09. IEEE 25th International Conference on, pages 784–795, March

2009. doi: 10.1109/ICDE.2009.95.

[25] D Luckham and R Schulte. EPTS Event Processing Glossary v1.1. Technical report,

July 2008.

[26] Patrick McFadin. Stratio Streaming: a new approach to Spark Streaming. Tech-

nical report, February 2015. URL http://www.slideshare.net/patrickmcfadin/

owning-time-series-with-team-apache-strata-san-jose-2015.

[27] Yuan Mei and Samuel Madden. Zstream: A cost-based query processor for adap-

tively detecting composite events. In Proceedings of the 2009 ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD ’09, pages 193–206, New York,

NY, USA, 2009. ACM. ISBN 978-1-60558-551-2. doi: 10.1145/1559845.1559867.

URL http://doi.acm.org/10.1145/1559845.1559867.

[28] David Morales and Oscar Mendez. Owning Time Series with Team Apache: Kafka,

Spark Cassandra. Technical report, June 2014. URL http://www.slideshare.

net/Stratio/spark-summit-stratio-streaming.

[29] Christopher Mutschler and Michael Philippsen. Adaptive speculative processing of

out-of-order event streams. ACM Trans. Internet Technol., 14(1):4:1–4:24, August

2014. ISSN 1533-5399. doi: 10.1145/2633686. URL http://doi.acm.org/10.

1145/2633686.

[30] Adrian Paschke. ECA-LP / eca-ruleml: A homogeneous event-condition-action logic

programming language. CoRR, abs/cs/0609143, 2006. URL http://arxiv.org/

abs/cs/0609143.

[31] Adrian Paschke, Alexander Kozlenkov, and Harold Boley. A homogeneous reaction

rule language for complex event processing. CoRR, abs/1008.0823, 2010. URL

http://arxiv.org/abs/1008.0823.

[32] Peter R. Pietzuch, Brian Shand, and Jean Bacon. A framework for event com-

position in distributed systems. In Proceedings of the ACM/IFIP/USENIX 2003
International Conference on Middleware, Middleware ’03, pages 62–82, New York,

NY, USA, 2003. Springer-Verlag New York, Inc. ISBN 3-540-40317-5. URL

http://dl.acm.org/citation.cfm?id=1515915.1515921.

[33] B. Schilling, B. Koldehofe, and K. Rothermel. Efficient and distributed rule place-

ment in heavy constraint-driven event systems. In High Performance Computing
and Communications (HPCC), 2011 IEEE 13th International Conference on, pages

355–364, Sept 2011. doi: 10.1109/HPCC.2011.53.

http://www.slideshare.net/patrickmcfadin/owning-time-series-with-team-apache-strata-san-jose-2015
http://www.slideshare.net/patrickmcfadin/owning-time-series-with-team-apache-strata-san-jose-2015
http://doi.acm.org/10.1145/1559845.1559867
http://www.slideshare.net/Stratio/spark-summit-stratio-streaming
http://www.slideshare.net/Stratio/spark-summit-stratio-streaming
http://doi.acm.org/10.1145/2633686
http://doi.acm.org/10.1145/2633686
http://arxiv.org/abs/cs/0609143
http://arxiv.org/abs/cs/0609143
http://arxiv.org/abs/1008.0823
http://dl.acm.org/citation.cfm?id=1515915.1515921

Bibliography 59

[34] Nicholas Poul Schultz-Møller, Matteo Migliavacca, and Peter Pietzuch. Distributed

complex event processing with query rewriting. In Proceedings of the Third ACM
International Conference on Distributed Event-Based Systems, DEBS ’09, pages 4:1–

4:12, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-665-6. doi: 10.1145/

1619258.1619264. URL http://doi.acm.org/10.1145/1619258.1619264.

[35] Utkarsh Srivastava and Jennifer Widom. Flexible time management in data stream

systems. In Proceedings of the Twenty-third ACM SIGMOD-SIGACT-SIGART Sympo-
sium on Principles of Database Systems, PODS ’04, pages 263–274, New York, NY,

USA, 2004. ACM. ISBN 158113858X. doi: 10.1145/1055558.1055596. URL

http://doi.acm.org/10.1145/1055558.1055596.

[36] Sriskandarajah Suhothayan, Kasun Gajasinghe, Isuru Loku Narangoda, Subash

Chaturanga, Srinath Perera, and Vishaka Nanayakkara. Siddhi: A second look at

complex event processing architectures. In Proceedings of the 2011 ACM Workshop
on Gateway Computing Environments, GCE ’11, pages 43–50, New York, NY, USA,

2011. ACM. ISBN 978-1-4503-1123-6. doi: 10.1145/2110486.2110493. URL

http://doi.acm.org/10.1145/2110486.2110493.

[37] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Mur-

phy McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. Resilient

distributed datasets: A fault-tolerant abstraction for in-memory cluster computing.

In Proceedings of the 9th USENIX Conference on Networked Systems Design and Im-
plementation, NSDI’12, pages 2–2, Berkeley, CA, USA, 2012. USENIX Association.

URL http://dl.acm.org/citation.cfm?id=2228298.2228301.

[38] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and

Ion Stoica. Discretized streams: Fault-tolerant streaming computation at scale. In

Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles,
SOSP ’13, pages 423–438, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-

2388-8. doi: 10.1145/2517349.2522737. URL http://doi.acm.org/10.1145/

2517349.2522737.

http://doi.acm.org/10.1145/1619258.1619264
http://doi.acm.org/10.1145/1055558.1055596
http://doi.acm.org/10.1145/2110486.2110493
http://dl.acm.org/citation.cfm?id=2228298.2228301
http://doi.acm.org/10.1145/2517349.2522737
http://doi.acm.org/10.1145/2517349.2522737

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Thesis Outline

	2 Background
	2.1 Preliminaries
	2.1.1 Apache Spark
	2.1.2 Related Frameworks
	2.1.3 Framework Comparison

	2.2 Event Calculus
	2.2.1 Simple Fluents
	2.2.2 Statically Determined Fluents

	2.3 Window Mechanism Example
	2.4 Related Work
	2.4.1 Complex Event Recognition Systems
	2.4.2 Distributed and Data Streaming Systems

	3 Distributed Run-Time Event Recognition
	3.1 Dynamic Grounding & Indexing
	3.2 Non-Relational Processing
	3.3 Pairing & Relational Processing
	3.4 Reasoning

	4 Experimental Results
	4.1 Activity Recognition
	4.2 Maritime Surveillance

	5 Conclusions and Future Work
	5.1 Conclusions
	5.2 Future Work

	Bibliography

